AMSP 2010 Algebra 3.5: Day 11 Solutions

Functional Equations Solutions
Solutions to Problems

1. Let R* denote the set of nonzero real numbers. Find all functions R* — R* such

that Iey)
_ Yy
a4 9) = Fa) + L2,
Solution. Suppose f(z) = x? for all z. Then
@ty =at+ L

or 22%y = 0, an abject contradiction. We conclude that there is some g with
f(xo) # 2. Letting y = f(xo) — 22, we obtain

f(f(@0)) = f(f(x0)) +

so that the fraction would be zero, contradicting the given range.

2. Find all functions f : R\{0,1} — R such that

f(fv)+f( ! )=1+ !

1—x r(l—x)

Solution. We employ the facts that

to obtain

() (-2 =smem s (1D e =

which gives us three equations in three unknowns. Subtracting the second equation
from the third, we obtain

f(x)_f<1ix)_2x_1+i_lim'

Finally, adding this to the first and dividing by 2 we get

fl) =t

the only solution.
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3. Find all functions f : Z — 7Z such that for all z,y € Z,
fl@x—y+fy) = flx)+ fy).
Solution. We will define g(z) = f(x) — x, so that our equation becomes

g(x+g(y)) = g(z) +y.

Fixing x and letting y run through the integers we see that ¢ is surjective. Let t be
such that ¢(t) = 0; then

g(x) = g(r +g(t)) = g(z) + ¢,

sot =0 and g(0) = 0. We may also find k with g(k) = 1. Setting y to be this k we
obtain

glx+1)=g(x)+k

for any z, so that g(x) = kx for all x. Surjectivity forces k = £1, and we immedi-
ately see that g(x) = +x (or f(z) = 0 or 2z) are the only solutions.

4. Find all functions f : R — R such that

f(f(x) +y) =22+ f(f(y) — 2)

for all real  and y.

Solution. Setting y = — f(z) we obtain

f0) =2z + f(f(=f(x)) —x), Le. f(f(=f(-2)) — =)= f(0) - 2z,

so that as we run x through all the reals we obtain surjectivity for f(z). Let r be
such that f(r) = 0; then

f) = f(f(r) +y) =2r+ fF(f{y) =), or f(f(y) =) = (f(y) =) =7

However f(y)—r runs through all the reals, so for any = we may say f(x) =z —r,
and all such solutions work in the original equation.

5. Determine all functions f : R — R such that
Fll@+y)") = @ +y)(f() + f(y).
Solution. Setting y = 0 we obtain f(2?) = zf(x), so f(0) = 0 and also

(+y)(f(@)+ fW) = fl(z+y)?) = (x+y)f(z+y).

If z + y # 0 this immediately gives Cauchy’s equation f(x)+ f(y) = f(z +y). If
x+y =0 with x # 0, then
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so that
f(z) + f(=z) = 0= f(0);

the case x = y = 0 is clear. We conclude that for any z, vy,

(+y)(f@)+ W) = fl=z+y)?) = f@®+ 22y +¢°)
= f(@*) + fQxy) + f(y°) = xf(x) + f(2zy) + yf(y),

so that
fQry) = xf(y) +yf(z).
Setting y = 1 we obtain
2f(x) = f(2z) = 2f(1) + (=),
so f(z) = kx where k = f(1), and these are all solutions.

6. Let N=1{0,1,2,...} be the set of nonnegative integers. Determine whether or not
there exists a bijective function f : N — N such that for each m,n € N,

f@Bmn+m+n)=4f(m)f(n) + f(m)+ f(n).

Solution. There exist infinitely (even uncountably) many such.

Let us rewrite the given equation as

f ((3m+ 1)(3n—|— 1) - 1) _ (4f(m) + 1)(4f(n> + 1) _ 1'

3 4

Then what we seek is a bijection g : S — T where S is the set of 3k + 1 integers
and T is the set of 4k + 1 integers, such that

g(zy) = g(x)g(y).

Let 11,,, denote the set of primes congruent to a mod m. It is an elementary fact
that II; 3, II5 3, I1; 4, and II3 4 are all infinite, so we may choose bijections Iy 3 — II; 4
and Il 3 — II34. From these we may define a function g : S — 1" mapping prime
factorizations to their image under the two bijections. This works because an integer
is of the form 3k+1 if and only if it is factored into some number of 3k+1 primes and
an even number of 3k + 2 primes, and similarly for an integer of the form 4k + 1.
Therefore we have obtained our solution (and the uncountably many bijections
between the sets of primes yield the claimed uncountably many solutions).

7. Find all functions f : R — R satisfying

) + fly) < L8 g 1@ FW) S fle+y)
2 x Yy x+y
for all z,y > 0.
Solution. To avoid confusion we set g(z) = —f(x)/z, and look for solutions to

coe) +ya) = (S5 oo + ) and g(o) + 9(0) < o+ ).

3
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Substituting y = x we obtain
2zg(xz) > zg(2z) and 2g(x) < g(22),

so that g(2z) = 2¢g(z). From this we obtain ¢(2"z) = 2"g(z) for any . What’s
more,

g(nx) > g(x) + g((n — )z) = 29(z) + g((n — 2)x) > -+ > ng(z)

for any positive integer n. Additionally,

Se9(x) = rg(r) + 2ng(20) > Srg(37) > Jrg(),

so 10g(x) > 9¢(x) and g(x) > 0 for all x. Finally, whenever y > z we have
g(x) + gy — x) < g(y), and so g(x) is nondecreasing.

Let = be a positive real. Suppose we have positive integers n,n’, m, m’ with

|l\D
:\

> >m

/

3

Then

o =o(2) 20 (%) 20w 20 (3) 2o (5:) = o)

Since these fractions may be chosen arbitrarily close to one another, we conclude
that g(x) = g(1)z. The given inequalities work as well; the first is Titu’s Lemma
and the second is an equality. Thus f(x) = —ax? for a > 0 are the only solutions.

8. Let R denote the set of real numbers. Find all functions f : R — R such that
fle+y) + f(2)f(y) = flzy) + 22y + 1.

Solution. Setting x = y = 0, we obtain f(0)? = 1, of f(0) = +1. However, if
f(0) =1 then we may take y = 0 and obtain 2f(z) = f(z) + 1, or f(z) = 1 for all
x, a contradiction. Therefore we conclude that f(0) = —1.

Next, we look at (x,y) = (—1, 1), obtaining

L fOS-D) = F(-D) - 1,

or

fF=D(f(1) = 1) =0.
Case (a). If f(1) =1 then using (z,y) = (r — 1,1) we obtain
f@)+ flx—1)=fx—1)+ 2z —1,

or f(x) =2z — 1, our first solution.
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Case (b). If f(—1) = 0, we may take (z,y) = (—1,—1) and get f(—2) = f(1) + 3,
and then with (z,y) = (—2,1) we get

f(=2)f1) = f(-2) = 3.
Combining these, we obtain
fE2)(fA) = 1) =
Case (bi). Suppose f(1) = 0. We obtain
f@)=f((z—1)+1)=flr—1)+220—1=f(—2) — 20+ 1+220— 1 = f(—x),
so that f(z) is an even function. Finally, taking (z,y) = (z, £z), we get
—1+4 f(2)* = flz —2) + f(2)f(~2) = f(=2%) — 22" + 1

and
fQx)+ f(z)® = f(2?) + 22> + 1= f(=2®) + 227 + 1,

so we get f(2r) = 4x? — 1, f(z) = 2% — 1, a solution.

Case (bii). Suppose f(1) = —2. In this case we get
fla+1)—2f(z) = f(z) + 22+ 1, or f(z) =3f(x —1) + 2z — 1.
As f(~1) = 0, we have
Fla) =3(f(—2) — 20+ 1) + 22 — 1 = 3f(—x) — 4w + 2.

Swapping the roles of  and —z here, we get f(—z) = 3f(x)+4x+2, a system of two
equations in two unknowns that we may use to solve for f(x), getting f(z) = —z—1,
the third solution.

9. Let RT denote the set of positive real numbers and let & € R* be a constant.
Determine all functions f : R™ — R such that

f@)f(y) = kf(z+yf(x))

for all positive real numbers x and y.

Solution. Suppose that f(x) is injective. Setting x = a and y = 1, we obtain
fa)f(1) =kf(a+ f(a)).
Setting x = 1 and y = a, we get

fW)fa) = kf(1+af(1)).

We conclude by injectivity that a + f(a) = 1+ af(1), or
fla) =1—=a(f(1) —a),

5
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10.

or in other words f(z) = 1 + cx for some constant c. In order for this to be a
solution, we need

(I+cr)(14+cy) =k(1+clx+y(l+cx))) =k +cx)(1+cy).

Therefore this is a solution if and only if £ = 1.

Now suppose that f(z) is not injective, so f(a) = f(b) = ¢ for some a < b € R*.
We claim that f(x) = ¢ for all positive x.

First, for all y we have

fla)f(y) = kfla+yfla)) = kfa+cy)

and
F0)f(y) = kf(b+yf(b)) = kf(b+cy),
S0
fla=b)+b+cy) = fla+cy) = f(b+cy).
We conclude that f(z) is periodic of period a — b for all y > b.

Now suppose we have x; and xy with f(z1) > f(x2). We conclude that for any v,
f(z) f(y) # f(x2)f(y). However we may choose y so large that both x1 + yf(x1)
and xs + yf(x2) are greater than or equal to b, and also that

[+ yf(@)] = w2 +yf(22)] = (21 = 22) +y(f(21) = [(22)) = na =)

for some positive integer n, so that in fact

fx)f(y) = f(or +yf(x1)) = fe2 +yf(z2)) = f(22) (),

a contradiction so that in fact f(z) is a constant. Finally, if f(x) = ¢ then ¢* = kc
shows that f(z) = k. These families comprise all solutions.

Find all functions f : R — R such that
f(fle+fy) -1 =fl@)+ fla+y) —=

Solution. Let us first prove that f(x) is injective. If f(y) = f(y') for some y # ¢/,
we have

fl@)+fle+y)—z = f(flz+f(y) -1
= f(flz+f(y)—1)
= flx)+ flz+y)—

so that f(x +y) = f(x +¢') and f is periodic with period y — ¢y = p. However,
fl@)+ fle+y) -z = (x+ f(y) — 1)
(@+p+fly)—-1)

f(f
f(f
fle+p)+fla+p+y)—x—p
f@)+ fx+y) —x—p,

6
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11.

so p = 0, a contradiction so that f is injective.

Now let y be arbitrary and set x = f(y) — f(0). We obtain

f@)+fl@e+0)—z = f(flz+7(0)—1)
= fUO+fy) -1

f(0) +

f(0) +

= (O+y)—0
f(0) +

so that
fy) = f(0) +z = f(z)

By injectivity, = y, and so f(y) =y + f(0) = y + ¢. Now we plug back into our
original equation with x =y = 0:

2= f(f(c) ~ 1) = f2e—1) =3¢~ 1,
soc=1and f(x) =z + 1 is the only solution.

Determine all functions f : R — R such that

faf(y) = (1 —y)flzy) + 2*y* f(y)

for all real numbers x and y.

Solution. We observe that f(x) = 0 is a solution, and assume that f(z) is not
identically 0 from now on. Setting x = 1 we get

W) =Q-fw)+v"fly)=0—-y+y)f(y),

and setting y = 1, we obtain f(zf(1)) = 22f(1). If f(1) # 0, we are forced to
have f(x) = 2?/f(1) for all z, so f(1) = 1/f(1) and f(x) = +2* This directly
contradicts our first equation:

+yt = (1 —y+y7) (7).

We conclude that f(1) = 0. Setting y = 1 in the first equation, we get

so f(0) =
We claim these are the only two values of 0. Indeed, if f(y) = 0, then we have
= faf(y) = (L —y)f(ay) + 2*° f(y) = (1 = y) f(zy),

so that either y = 0,1 or f(z) is identically 0, contradicting our assumptions.

Next we use y = 1/x.

flaf(/z)) = (1 =1/x)f(1) + f(1/x) = f(1/2),
so for any « # 0 we obtain f(f(z)/z) = f(z).
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12.

Suppose now we have two values f(z) = f(y) # 0. We argue
(I—z+a2)f(x) = [(f(2) = () = L=y +y") () = (1 =y +y*) f(2).

So y = x,1 — x. However then we have

f(=)

T

=x,x—1,

x — x2. The latter case is a solution if it

so for each z either f(z) = 22 or f(z)
holds for all z.

Suppose now that some f(z) = z*. We know

f@) = f(f(2) = (1 -2 +2")f(z) =2” — 2’ + 2",

If f(z*) = x*, then 22 — 23 = 0 in which case z = 0,1. If f(2?) = 2? — 2%, then
20 —2% =0, s0 x = 0, 5. We already know that f(1) = 0, and moreover 0* = 0—0?

and (3)? = 3 — ()%, so actually we may conclude that f(z) = z — 2% in any case.
s (i

2
Thus (in the nonzero case) this is the only solution.

Find all functions f : (0,00) — (0,00) such that

f?+ fl@)? P’ +¢°
2

f)+ 1)~ Pt
for all p,q,r,s > 0 with pqg = rs.

Solution. Setting p = ¢ =1r = s =1 we obtain f(1)? = f(1) and so f(1) = 1. Now
let z>0andp=2x,¢=1,r=s=+/z to obtain

f@)?’+1 2*+1
2f(z) 2z

This rearranges into

of(2)* + o =2f(2) + f(2),
or

(xf(x) = 1(f(z) —z) = 0.

Therefore either f(x) =z or f(z) = 1/x for every x > 0.
The functions f(z) =z and f(z) = 1/x both satisfy the conditions of the problem;
we claim these are the only solutions. Suppose not; then there are a,b > 0 with
f(a) # a and f(b) # 1/b. We set p = a, ¢ = b, and r = s = V/ab and obtain
(a2 +0%)/2f(ab) = (a* + b*)/2ab, or

bla™? 4+ b?
o) =25

However, we know that f(ab) = ab or 1/ab. In the first case, a® + b* = a2 + b,
so a =1 and f(1) =1 contradicts our assumption on a. Likewise, if f(ab) = 1/ab,
then a?b*(a™2 + b*) = a® + b%, so that b = 1, again a contradiction. We conclude
that f(z) = x,1/z are the only solutions.

8
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13. Consider those functions f : N — N (here N denotes the positive integers) which
satisfy the condition

fm+n) = f(m)+ f(f(n)) -
for all m,n € N. Find all possible values of f(2009).

Solution. First notice that f(m +n) > f(m) + f(f(n)) —1 > f(m), so f is
nondecreasing.

We claim that f(n) < n+ 1. To the contrary, suppose that f(n) = m + n where
m > 1. We write

f@2n) > fn)+f(f(n))—1>2(m+n)—1=2(m+n—1)+1,
f(dn) > f@2n)+ f(f(2n))—1>2(m+n—1)+14+2(m+n—-1)=4(m+n—1)+1,
f(2Fn) z 2f(2"n) —1>2"(m+n—1)+ 1.

Notice that f(k+ 1) > f(1) + f(f(k)) — 1 > f(f(k)), so that
f@n4+1) > f(f(2%) > f(25(m+n—1)+1),
and so
fEn+1)=f@n+1)=f2"n+2)=---=f2"m+n—-1)+1).

For some k we have 28(m — 1) > n. Then

f@n+1) = f2"m+n—-1)+1)
> f@m+n—-1)+1-n)+ f(f(n) -1
= f2n+1)+ f(f(n) -1
> f@*n4+1)+m+n—1,

so m +n < 1, a contradiction. This proves the claim.

We prove that any value from 1 to 2010 may be obtained by f(2009). Indeed, for
any value less than or equal to 2009, we may choose a real number 0 < a < 1 and
set f(n) = |na], because

flm+n) = [(m+n)a| = [ma]+|na] > [ma|+|[na]a) =1 = f(m)+f(f(n))—-
To obtain f(2009) = 2010, consider

n, 2009 fn
n+1, 2009|n

Then 2009 ff(n), so f(f(n)) = f(n). Then f(m +n) > f(m)+ f(n) — 1 because
f(m+n)>m+mnandif f(m)+ f(n) —1>m+ n then 2009 divides both m and
nand f(m+n)=m+n+1= f(m)+ f(n) — 1. Thus any value from 1 to 2010
may be achieved by such functions.
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14. Suppose f(z) = 2"+ ap_12" ' + -+ + ag. Then

15.

16.

Qn

f(x) = (a: + n,1>" + g(x)

for some polynomial g(x) of degree at most n — 2. For large enough z,

n— —1 " n—1\"
0§|g(m)|<<x+alT) —(x—l—a 1)

n

since the RHS has degree n — 1. Then

(x+ Gn1 7 2 1)" < f(z) < <£E+ —an;—i_ 1)”

n

for large enough z so we must have f(z) = (z + %)n for large enough x, and this
must be true for all z. Hence f(z) = (z + ¢)™ for some integer c.

From (a) it follows that f(xf(z)) = xf(x) for all x > 0. By induction on n, we
have that if f(a) = a for some a > 0, then f(a™) = a" for all n € N. Note also that
a < 1, since otherwise

lim f(a") = lim a" = oo,
n—oo n—oo

in contradiction to (b).

On the other hand, a = f(1-a) = f(1- f(a)) = af(1). Hence
1=f(1) = f(a""a) = fla™" f(a)) = af(a),

implying f(a™!) = a=!. Thus we have (as above) f(a™") = a™" for all n € N and
a~! < 1. In conclusion, the only a > 0 such that f(a) = a is @ = 1. Hence the
identity f(zf(x)) implies f(z) = % for all z > 0. It is easy to check that this
function satisfies (a) and (b) of the problem.

Yes. We verify that f(n) = {%ﬁn + %J is a function with all the required prop-
erties. We can compute f(1) = 2, and note that |z| < [z + 1] and %5 > 1 imply
that f(n) < f(n+1).
Now we verify the second part. Let ¢ = %g Noting that ¢ > 1, we have
cn+£>cn—|—12 Lcn—l—lJ >cn—1>cn—g.
2 2 2 2 2

Multiplying by % = @ we get

Adding [en + 1] + § we get
1 1 1
cn—|—§ +n+1>clen+ = +§> cn+§ +n.

Thus

1 1 1 1
{cn—l—iJ +n+1> {c _cn+§_ +§J > Lcn—l—éJ + n.

or f(n)+n+1> f(f(n) = f(n) +n, implying f(f(n)) = f(n) +n.
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