
AMSP 2010 Algebra 3.5: Day 11 Solutions

Functional Equations Solutions

Solutions to Problems

1. Let R∗ denote the set of nonzero real numbers. Find all functions R∗ → R∗ such
that

f(x2 + y) = f(f(x)) +
f(xy)

f(x)
.

Solution. Suppose f(x) = x2 for all x. Then

(x2 + y)2 = x4 +
x2y2

x2
,

or 2x2y = 0, an abject contradiction. We conclude that there is some x0 with
f(x0) 6= x20. Letting y = f(x0)− x20, we obtain

f(f(x0)) = f(f(x0)) +
f(x0y)

f(x0)
,

so that the fraction would be zero, contradicting the given range.

2. Find all functions f : R\{0, 1} → R such that

f(x) + f

(
1

1− x

)
= 1 +

1

x(1− x)
.

Solution. We employ the facts that

1

1− 1
1−x

= 1− 1

x
and

1

1−
(
1− 1

x

) = x

to obtain

f

(
1

1− x

)
+ f

(
1− 1

x

)
= 3− x− 1

x
and f

(
1− 1

x

)
+ f(x) = 2 + x− 1

1− x
,

which gives us three equations in three unknowns. Subtracting the second equation
from the third, we obtain

f(x)− f
(

1

1− x

)
= 2x− 1 +

1

x
− 1

1− x
.

Finally, adding this to the first and dividing by 2 we get

f(x) = x+
1

x
,

the only solution.
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3. Find all functions f : Z→ Z such that for all x, y ∈ Z,

f(x− y + f(y)) = f(x) + f(y).

Solution. We will define g(x) = f(x)− x, so that our equation becomes

g(x+ g(y)) = g(x) + y.

Fixing x and letting y run through the integers we see that g is surjective. Let t be
such that g(t) = 0; then

g(x) = g(x+ g(t)) = g(x) + t,

so t = 0 and g(0) = 0. We may also find k with g(k) = 1. Setting y to be this k we
obtain

g(x+ 1) = g(x) + k

for any x, so that g(x) = kx for all x. Surjectivity forces k = ±1, and we immedi-
ately see that g(x) = ±x (or f(x) = 0 or 2x) are the only solutions.

4. Find all functions f : R→ R such that

f(f(x) + y) = 2x+ f(f(y)− x)

for all real x and y.

Solution. Setting y = −f(x) we obtain

f(0) = 2x+ f(f(−f(x))− x), i.e. f(f(−f(−x))− x) = f(0)− 2x,

so that as we run x through all the reals we obtain surjectivity for f(x). Let r be
such that f(r) = 0; then

f(y) = f(f(r) + y) = 2r + f(f(y)− r), or f(f(y)− r) = (f(y)− r)− r.

However f(y)− r runs through all the reals, so for any x we may say f(x) = x− r,
and all such solutions work in the original equation.

5. Determine all functions f : R→ R such that

f((x+ y)2) = (x+ y)(f(x) + f(y)).

Solution. Setting y = 0 we obtain f(x2) = xf(x), so f(0) = 0 and also

(x+ y)(f(x) + f(y)) = f((x+ y)2) = (x+ y)f(x+ y).

If x + y 6= 0 this immediately gives Cauchy’s equation f(x) + f(y) = f(x + y). If
x+ y = 0 with x 6= 0, then

xf(x) = f(x2) = (−x)f(−x)

2



AMSP 2010 Algebra 3.5: Day 11 Solutions

so that
f(x) + f(−x) = 0 = f(0);

the case x = y = 0 is clear. We conclude that for any x, y,

(x+ y)(f(x) + f(y)) = f((x+ y)2) = f(x2 + 2xy + y2)

= f(x2) + f(2xy) + f(y2) = xf(x) + f(2xy) + yf(y),

so that
f(2xy) = xf(y) + yf(x).

Setting y = 1 we obtain

2f(x) = f(2x) = xf(1) + f(x),

so f(x) = kx where k = f(1), and these are all solutions.

6. Let N = {0, 1, 2, . . .} be the set of nonnegative integers. Determine whether or not
there exists a bijective function f : N→ N such that for each m,n ∈ N,

f(3mn+m+ n) = 4f(m)f(n) + f(m) + f(n).

Solution. There exist infinitely (even uncountably) many such.

Let us rewrite the given equation as

f

(
(3m+ 1)(3n+ 1)− 1

3

)
=

(4f(m) + 1)(4f(n) + 1)− 1

4
.

Then what we seek is a bijection g : S → T where S is the set of 3k + 1 integers
and T is the set of 4k + 1 integers, such that

g(xy) = g(x)g(y).

Let Πa,m denote the set of primes congruent to a mod m. It is an elementary fact
that Π1,3,Π2,3,Π1,4, and Π3,4 are all infinite, so we may choose bijections Π1,3 → Π1,4

and Π2,3 → Π3,4. From these we may define a function g : S → T mapping prime
factorizations to their image under the two bijections. This works because an integer
is of the form 3k+1 if and only if it is factored into some number of 3k+1 primes and
an even number of 3k + 2 primes, and similarly for an integer of the form 4k + 1.
Therefore we have obtained our solution (and the uncountably many bijections
between the sets of primes yield the claimed uncountably many solutions).

7. Find all functions f : R+ → R satisfying

f(x) + f(y) ≤ f(x+ y)

2
and

f(x)

x
+
f(y)

y
≥ f(x+ y)

x+ y

for all x, y > 0.

Solution. To avoid confusion we set g(x) = −f(x)/x, and look for solutions to

xg(x) + yg(y) ≥
(
x+ y

2

)
g(x+ y) and g(x) + g(y) ≤ g(x+ y).
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Substituting y = x we obtain

2xg(x) ≥ xg(2x) and 2g(x) ≤ g(2x),

so that g(2x) = 2g(x). From this we obtain g(2nx) = 2ng(x) for any x. What’s
more,

g(nx) ≥ g(x) + g((n− 1)x) ≥ 2g(x) + g((n− 2)x) ≥ · · · ≥ ng(x)

for any positive integer n. Additionally,

5xg(x) = xg(x) + 2xg(2x) ≥ 3

2
xg(3x) ≥ 9

2
xg(x),

so 10g(x) ≥ 9g(x) and g(x) ≥ 0 for all x. Finally, whenever y > x we have
g(x) + g(y − x) ≤ g(y), and so g(x) is nondecreasing.

Let x be a positive real. Suppose we have positive integers n, n′,m,m′ with

2n′

m′
≥ x ≥ m

2n
.

Then

2n′

m′
g(1) =

1

m′
g
(

2n′
)
≥ g

(
2n′

m′

)
≥ g(x) ≥ g

(m
2n

)
≥ mg

(
1

2n

)
=
m

2n
g(1).

Since these fractions may be chosen arbitrarily close to one another, we conclude
that g(x) = g(1)x. The given inequalities work as well; the first is Titu’s Lemma
and the second is an equality. Thus f(x) = −ax2 for a ≥ 0 are the only solutions.

8. Let R denote the set of real numbers. Find all functions f : R→ R such that

f(x+ y) + f(x)f(y) = f(xy) + 2xy + 1.

Solution. Setting x = y = 0, we obtain f(0)2 = 1, of f(0) = ±1. However, if
f(0) = 1 then we may take y = 0 and obtain 2f(x) = f(x) + 1, or f(x) = 1 for all
x, a contradiction. Therefore we conclude that f(0) = −1.

Next, we look at (x, y) = (−1, 1), obtaining

−1 + f(1)f(−1) = f(−1)− 1,

or
f(−1)(f(1)− 1) = 0.

Case (a). If f(1) = 1 then using (x, y) = (x− 1, 1) we obtain

f(x) + f(x− 1) = f(x− 1) + 2x− 1,

or f(x) = 2x− 1, our first solution.
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Case (b). If f(−1) = 0, we may take (x, y) = (−1,−1) and get f(−2) = f(1) + 3,
and then with (x, y) = (−2, 1) we get

f(−2)f(1) = f(−2)− 3.

Combining these, we obtain

f(−2)(f(1)− 1) = 0.

Case (bi). Suppose f(1) = 0. We obtain

f(x) = f((x− 1) + 1) = f(x− 1) + 2x− 1 = f(−x)− 2x+ 1 + 2x− 1 = f(−x),

so that f(x) is an even function. Finally, taking (x, y) = (x,±x), we get

−1 + f(x)2 = f(x− x) + f(x)f(−x) = f(−x2)− 2x2 + 1

and
f(2x) + f(x)2 = f(x2) + 2x2 + 1 = f(−x2) + 2x2 + 1,

so we get f(2x) = 4x2 − 1, f(x) = x2 − 1, a solution.

Case (bii). Suppose f(1) = −2. In this case we get

f(x+ 1)− 2f(x) = f(x) + 2x+ 1, or f(x) = 3f(x− 1) + 2x− 1.

As f(−1) = 0, we have

f(x) = 3(f(−x)− 2x+ 1) + 2x− 1 = 3f(−x)− 4x+ 2.

Swapping the roles of x and −x here, we get f(−x) = 3f(x)+4x+2, a system of two
equations in two unknowns that we may use to solve for f(x), getting f(x) = −x−1,
the third solution.

9. Let R+ denote the set of positive real numbers and let k ∈ R+ be a constant.
Determine all functions f : R+ → R+ such that

f(x)f(y) = kf(x+ yf(x))

for all positive real numbers x and y.

Solution. Suppose that f(x) is injective. Setting x = a and y = 1, we obtain

f(a)f(1) = kf(a+ f(a)).

Setting x = 1 and y = a, we get

f(1)f(a) = kf(1 + af(1)).

We conclude by injectivity that a+ f(a) = 1 + af(1), or

f(a) = 1− a(f(1)− a),
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or in other words f(x) = 1 + cx for some constant c. In order for this to be a
solution, we need

(1 + cx)(1 + cy) = k(1 + c(x+ y(1 + cx))) = k(1 + cx)(1 + cy).

Therefore this is a solution if and only if k = 1.

Now suppose that f(x) is not injective, so f(a) = f(b) = c for some a < b ∈ R+.
We claim that f(x) = c for all positive x.

First, for all y we have

f(a)f(y) = kf(a+ yf(a)) = kf(a+ cy)

and
f(b)f(y) = kf(b+ yf(b)) = kf(b+ cy),

so
f((a− b) + b+ cy) = f(a+ cy) = f(b+ cy).

We conclude that f(x) is periodic of period a− b for all y ≥ b.

Now suppose we have x1 and x2 with f(x1) > f(x2). We conclude that for any y,
f(x1)f(y) 6= f(x2)f(y). However we may choose y so large that both x1 + yf(x1)
and x2 + yf(x2) are greater than or equal to b, and also that

[x1 + yf(x1)]− [x2 + yf(x2)] = (x1 − x2) + y(f(x1)− f(x2)) = n(a− b)

for some positive integer n, so that in fact

f(x1)f(y) = f(x1 + yf(x1)) = f(x2 + yf(x2)) = f(x2)f(y),

a contradiction so that in fact f(x) is a constant. Finally, if f(x) = c then c2 = kc
shows that f(x) = k. These families comprise all solutions.

10. Find all functions f : R→ R such that

f(f(x+ f(y))− 1) = f(x) + f(x+ y)− x.

Solution. Let us first prove that f(x) is injective. If f(y) = f(y′) for some y 6= y′,
we have

f(x) + f(x+ y)− x = f(f(x+ f(y))− 1)

= f(f(x+ f(y′))− 1)

= f(x) + f(x+ y′)− x,

so that f(x+ y) = f(x+ y′) and f is periodic with period y − y′ = p. However,

f(x) + f(x+ y)− x = f(f(x+ f(y))− 1)

= f(f(x+ p+ f(y))− 1)

= f(x+ p) + f(x+ p+ y)− x− p
= f(x) + f(x+ y)− x− p,
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so p = 0, a contradiction so that f is injective.

Now let y be arbitrary and set x = f(y)− f(0). We obtain

f(x) + f(x+ 0)− x = f(f(x+ f(0))− 1)

= f(f(0 + f(y))− 1)

= f(0) + f(0 + y)− 0

= f(0) + f(0) + x,

so that
f(y) = f(0) + x = f(x).

By injectivity, x = y, and so f(y) = y + f(0) = y + c. Now we plug back into our
original equation with x = y = 0:

2c = f(f(c)− 1) = f(2c− 1) = 3c− 1,

so c = 1 and f(x) = x+ 1 is the only solution.

11. Determine all functions f : R→ R such that

f(xf(y)) = (1− y)f(xy) + x2y2f(y)

for all real numbers x and y.

Solution. We observe that f(x) = 0 is a solution, and assume that f(x) is not
identically 0 from now on. Setting x = 1 we get

f(f(y)) = (1− y)f(y) + y2f(y) = (1− y + y2)f(y),

and setting y = 1, we obtain f(xf(1)) = x2f(1). If f(1) 6= 0, we are forced to
have f(x) = x2/f(1) for all x, so f(1) = 1/f(1) and f(x) = ±x2. This directly
contradicts our first equation:

±y4 = (1− y + y2)(±y2).

We conclude that f(1) = 0. Setting y = 1 in the first equation, we get

f(0) = f(1) = 0,

so f(0) = 0.

We claim these are the only two values of 0. Indeed, if f(y) = 0, then we have

0 = f(xf(y)) = (1− y)f(xy) + x2y2f(y) = (1− y)f(xy),

so that either y = 0, 1 or f(x) is identically 0, contradicting our assumptions.

Next we use y = 1/x.

f(xf(1/x)) = (1− 1/x)f(1) + f(1/x) = f(1/x),

so for any x 6= 0 we obtain f(f(x)/x) = f(x).
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Suppose now we have two values f(x) = f(y) 6= 0. We argue

(1− x+ x2)f(x) = f(f(x)) = f(f(y)) = (1− y + y2)f(y) = (1− y + y2)f(x).

So y = x, 1− x. However then we have

f(x)

x
= x, x− 1,

so for each x either f(x) = x2 or f(x) = x − x2. The latter case is a solution if it
holds for all x.

Suppose now that some f(x) = x2. We know

f(x2) = f(f(x)) = (1− x+ x2)f(x) = x2 − x3 + x4.

If f(x2) = x4, then x2 − x3 = 0 in which case x = 0, 1. If f(x2) = x2 − x4, then
2x4−x3 = 0, so x = 0, 1

2
. We already know that f(1) = 0, and moreover 02 = 0−02

and (1
2
)2 = 1

2
− (1

2
)2, so actually we may conclude that f(x) = x − x2 in any case.

Thus (in the nonzero case) this is the only solution.

12. Find all functions f : (0,∞)→ (0,∞) such that

f(p)2 + f(q)2

f(r2) + f(s2)
=
p2 + q2

r2 + s2

for all p, q, r, s > 0 with pq = rs.

Solution. Setting p = q = r = s = 1 we obtain f(1)2 = f(1) and so f(1) = 1. Now
let x > 0 and p = x, q = 1, r = s =

√
x to obtain

f(x)2 + 1

2f(x)
=
x2 + 1

2x
.

This rearranges into
xf(x)2 + x = x2f(x) + f(x),

or
(xf(x)− 1)(f(x)− x) = 0.

Therefore either f(x) = x or f(x) = 1/x for every x > 0.

The functions f(x) = x and f(x) = 1/x both satisfy the conditions of the problem;
we claim these are the only solutions. Suppose not; then there are a, b > 0 with
f(a) 6= a and f(b) 6= 1/b. We set p = a, q = b, and r = s =

√
ab and obtain

(a−2 + b2)/2f(ab) = (a2 + b2)/2ab, or

f(ab) =
ab(a−2 + b2)

a2 + b2
.

However, we know that f(ab) = ab or 1/ab. In the first case, a2 + b2 = a−2 + b2,
so a = 1 and f(1) = 1 contradicts our assumption on a. Likewise, if f(ab) = 1/ab,
then a2b2(a−2 + b2) = a2 + b2, so that b = 1, again a contradiction. We conclude
that f(x) = x, 1/x are the only solutions.
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13. Consider those functions f : N → N (here N denotes the positive integers) which
satisfy the condition

f(m+ n) ≥ f(m) + f(f(n))− 1

for all m,n ∈ N. Find all possible values of f(2009).

Solution. First notice that f(m + n) ≥ f(m) + f(f(n)) − 1 ≥ f(m), so f is
nondecreasing.

We claim that f(n) ≤ n + 1. To the contrary, suppose that f(n) = m + n where
m > 1. We write

f(2n) ≥ f(n) + f(f(n))− 1 ≥ 2(m+ n)− 1 = 2(m+ n− 1) + 1,

f(4n) ≥ f(2n) + f(f(2n))− 1 ≥ 2(m+ n− 1) + 1 + 2(m+ n− 1) = 4(m+ n− 1) + 1,
...

f(2kn) ≥ 2f(2k−1n)− 1 ≥ 2k(m+ n− 1) + 1.

Notice that f(k + 1) ≥ f(1) + f(f(k))− 1 ≥ f(f(k)), so that

f(2kn+ 1) ≥ f(f(2kn)) ≥ f(2k(m+ n− 1) + 1),

and so

f(2kn+ 1) = f(2kn+ 1) = f(2kn+ 2) = · · · = f(2k(m+ n− 1) + 1).

For some k we have 2k(m− 1) ≥ n. Then

f(2kn+ 1) = f(2k(m+ n− 1) + 1)

≥ f(2k(m+ n− 1) + 1− n) + f(f(n))− 1

= f(2kn+ 1) + f(f(n))− 1

≥ f(2kn+ 1) +m+ n− 1,

so m+ n ≤ 1, a contradiction. This proves the claim.

We prove that any value from 1 to 2010 may be obtained by f(2009). Indeed, for
any value less than or equal to 2009, we may choose a real number 0 < α ≤ 1 and
set f(n) = bnαc, because

f(m+n) = b(m+n)αc ≥ bmαc+bnαc > bmαc+bbnαcαc−1 = f(m)+f(f(n))−1.

To obtain f(2009) = 2010, consider

f(n) =

{
n, 2009 6 |n

n+ 1, 2009|n

Then 2009 6 |f(n), so f(f(n)) = f(n). Then f(m + n) ≥ f(m) + f(n) − 1 because
f(m+ n) ≥ m+ n and if f(m) + f(n)− 1 > m+ n then 2009 divides both m and
n and f(m + n) = m + n + 1 = f(m) + f(n) − 1. Thus any value from 1 to 2010
may be achieved by such functions.
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14. Suppose f(x) = xn + an−1x
n−1 + · · ·+ a0. Then

f(x) =
(
x+

an−1
n

)n
+ g(x)

for some polynomial g(x) of degree at most n− 2. For large enough x,

0 ≤ |g(x)| <
(
x+

an−1 − 1

n

)n

−
(
x+

an−1
n

)n
since the RHS has degree n− 1. Then(

x+
an−1 − 1

n

)n

< f(x) <

(
x+

an−1 + 1

n

)n

for large enough x so we must have f(x) =
(
x+ an−1

n

)n
for large enough x, and this

must be true for all x. Hence f(x) = (x+ c)n for some integer c.

15. From (a) it follows that f(xf(x)) = xf(x) for all x > 0. By induction on n, we
have that if f(a) = a for some a > 0, then f(an) = an for all n ∈ N. Note also that
a ≤ 1, since otherwise

lim
n→∞

f(an) = lim
n→∞

an =∞,

in contradiction to (b).

On the other hand, a = f(1 · a) = f(1 · f(a)) = af(1). Hence

1 = f(1) = f(a−1a) = f(a−1f(a)) = af(a−1),

implying f(a−1) = a−1. Thus we have (as above) f(a−n) = a−n for all n ∈ N and
a−1 ≤ 1. In conclusion, the only a > 0 such that f(a) = a is a = 1. Hence the
identity f(xf(x)) implies f(x) = 1

x
for all x > 0. It is easy to check that this

function satisfies (a) and (b) of the problem.

16. Yes. We verify that f(n) =
⌊
1+
√
5

2
n+ 1

2

⌋
is a function with all the required prop-

erties. We can compute f(1) = 2, and note that bxc < bx+ 1c and 1+
√
5

2
> 1 imply

that f(n) < f(n+ 1).

Now we verify the second part. Let c = 1+
√
5

2
. Noting that c > 1, we have

cn+
c

2
> cn+

1

2
≥
⌊
cn+

1

2

⌋
> cn− 1

2
> cn− c

2
.

Multiplying by 1
c

=
√
5−1
2

we get

n+
1

2
>

√
5− 1

2

⌊
cn+

1

2

⌋
> n− 1

2
.

Adding
⌊
cn+ 1

2

⌋
+ 1

2
we get⌊

cn+
1

2

⌋
+ n+ 1 > c

⌊
cn+

1

2

⌋
+

1

2
>

⌊
cn+

1

2

⌋
+ n.

Thus ⌊
cn+

1

2

⌋
+ n+ 1 >

⌊
c

⌊
cn+

1

2

⌋
+

1

2

⌋
≥
⌊
cn+

1

2

⌋
+ n.

or f(n) + n+ 1 > f(f(n) ≥ f(n) + n, implying f(f(n)) = f(n) + n.
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