Functional Equations

Strategies

- Substitution
 - 1. $x = 0, 1, y, -y, \frac{1}{y}$, etc.
 - 2. Recursive substitutions (y = f(x)).
- Surjectivity/injectivity
- Monotonicity
- Algebraic properties of the domain/range.
- Casework (e.g. either f(0) = 0 or otherwise...)
- Replacing the desired function with something perhaps easier to use, and then working backwards later.
- Finding a solution or family of solutions, and reverse-engineering an argument. Try a proof by contradiction.
- For functions $\mathbb{N} \to \mathbb{N}$, look in other bases.
- Use induction (for example, to find the values of the function on \mathbb{Z}). Keep in mind how many degrees of freedom there are (for example, maybe f(0), f(1), f(2) determine f for all of \mathbb{Z} .)
- Iterate (repeatedly apply f). Useful when the condition involves $f \circ f$. Possibly get a recursive relation.
- Approximate with a linear function: $f(x) = \lfloor cx \rfloor$.
- Cauchy's equation and variants. If f(x+y) = f(x)+f(y) and f is either continuous, monotonic, or bounded on an interval, then f(x) = cx for some constant c.
- Look for fixed points f(x) = x. What happens if there's a fixed point?
- Strategies for polynomials
 - 1. Roots
 - 2. Match degree and coefficients
 - 3. Use estimation; define a convergent sequence of integers.
- Symmetrize. If the LHS of a functional equation is symmetric, and the RHS is not, then the RHS equals the RHS with the variables permuted. Additional variables can help.
- Use δ - ϵ definition of continuity.

Problems

1. Let \mathbb{R}^* denote the set of nonzero real numbers. Find all functions $\mathbb{R}^* \to \mathbb{R}^*$ such that

$$f(x^2 + y) = f(f(x)) + \frac{f(xy)}{f(x)}.$$

2. Find all functions $f : \mathbb{R} \setminus \{0, 1\} \to \mathbb{R}$ such that

$$f(x) + f\left(\frac{1}{1-x}\right) = 1 + \frac{1}{x(1-x)}.$$

3. Find all functions $f : \mathbb{Z} \to \mathbb{Z}$ such that for all $x, y \in \mathbb{Z}$,

$$f(x - y + f(y)) = f(x) + f(y)$$

4. (ISL 2002/A2) Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(f(x) + y) = 2x + f(f(y) - x)$$

for all real x and y.

5. Determine all functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$f((x+y)^2) = (x+y)(f(x) + f(y)).$$

6. (ISL 1996) Let $\mathbb{N} = \{0, 1, 2, ...\}$ be the set of nonnegative integers. Find all functions $f : \mathbb{N} \to \mathbb{N}$ such that for each $m, n \in \mathbb{N}$,

$$f(3mn + m + n) = 4f(m)f(n) + f(m) + f(n).$$

7. Find all functions $f : \mathbb{R}^+ \to \mathbb{R}$ satisfying

$$f(x) + f(y) \le \frac{f(x+y)}{2}$$
 and $\frac{f(x)}{x} + \frac{f(y)}{y} \ge \frac{f(x+y)}{x+y}$

for all x, y > 0.

8. Let \mathbb{R} denote the set of real numbers. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(x+y) + f(x)f(y) = f(xy) + 2xy + 1.$$

9. Let \mathbb{R}^+ denote the set of positive real numbers and let $k \in \mathbb{R}^+$ be a constant. Determine all functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ such that

$$f(x)f(y) = kf(x+yf(x))$$

for all positive real numbers x and y.

10. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(f(x + f(y)) - 1) = f(x) + f(x + y) - x.$$

11. Determine all functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(xf(y)) = (1 - y)f(xy) + x^2y^2f(y)$$

for all real numbers x and y.

12. (IMO 2008/4) Find all functions $f: (0, \infty) \to (0, \infty)$ such that

$$\frac{f(p)^2 + f(q)^2}{f(r^2) + f(s^2)} = \frac{p^2 + q^2}{r^2 + s^2}$$

for all p, q, r, s > 0 with pq = rs.

13. Consider those functions $f : \mathbb{N} \to \mathbb{N}$ which satisfy the condition

$$f(m+n) \ge f(m) + f(f(n)) - 1$$

for all $m, n \in \mathbb{N}$. Find all possible values of f(2009).

- 14. Find all monic polynomials f(x) of degree d such that f(x) is a perfect dth power for every integer x.
- 15. (IMO 1983/1) Find all functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ such that
 - (a) f(xf(y)) = yf(x) for all $x, y \in \mathbb{R}^+$.
 - (b) $\lim_{x \to \infty} f(x) = 0.$
- 16. (IMO 1993/2) Does there exist a function f from the positive integers to the positive integers such that f(1) = 2, f(f(n)) = f(n) + n for all n, and f(n) < f(n+1) for all n?