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PREFACE

THIS book is a translation of the second Polish edition, published
in 1960, in which various improvements were made.

The contest for secondary school pupils known as the Mathe-
matical Olympiad has been held in Poland every year since
1949/50. It is organized by the Polish Mathematical Society
under the supervision of the Ministry of Education, which pro-
vides the necessary financial means. Direct control of the contest
is in the hands of a Central Committee in Warsaw and of Re-
gional Committees in seven university towns. In each com-
mittee university professors collaborate with secondary school
teachers.

Participation in the contests is voluntary. They are open
to all secondary school pupils in the country but in practice
candidates for the Olympiad are recruited from the two senior
forms (ages: 16 to 18).

The Olympiad comprises three stages.

Stage one (preparatory) lasts throughout October, November
and December. At the beginning of each month the Central
Committee sends out to all secondary schools in the country a set
of problems which pupils are expected to solve individually,
working at home, within the months in question. No check is
made to see whether they work entirely on their own. The pupils’
solutions are then mailed by their school to the appropriate
regional committee, where they are assessed. The authors of the
best solutions are then admitted to the second stage (regional)
contests. These take place in March—on the same day at all
the seven regional centres, and the same problems are set
at each. The contestants have to come up in person to their
nearest regional centre. The contest lasts two days. Each day
three problems have to be solved in the allotted time of four
hours. The candidates work in one room under the supervision
of members of the local regional committee; they are not
allowed to communicate with one another or to receive help
from the professors. Their chance to discuss the problems with
the professors comes at the social gatherings organized for
this purpose after the contest.

The pupils who have produced the best papers are admitted

vii




viii Preface

to the third stage (final) contest, which takes place in Warsaw
in the month of April and is organized along the same lines as the
regional contest. The papers are assessed by the Central Com-
mittee and the authors of the best of them are awarded prizes.

The problems set at the contests require only a knowledge
of school mathematics (i.e. elementary algebra, geometry and
trigonometry) but are on the whole more difficult than the usual
school exercises. Their degree of difficulty, however, is not uniform,
for it is considered desirable that not only the most gifted pupils
but also those of average ability should —with a certain effort—
manage to solve some of the problems and gain a number of
points at the contests.

This book contains the problems set at the first five Olympiads.
It has been prepared in order to provide secondary school pupils
with suitable topics to be worked out on their own, individually
or collectively. It aims at extending their knowledge of mathe-
matics and training them in mathematical thinking. Accordingly,
the solutions of most of the problems have been given in an extend-
ed form, the readers’ attention being drawn to various details of
the reasoning. In addition, several problems have been provided
with commentaries containing generalizations or further develop-
ment of the topics in question, including various supplementary
data of elementary mathematics outside the scope of the school
syllabus. These commentaries are given separately, in the form
of remarks following the solutions. This arrangement of the
contents has been adopted in order to make the book easy to
read even for less advanced pupils, who can skip over the material
contained in the remarks. More advanced readers, however,
will find in them instructive examples of mathematical reasoning,
which may stimulate their own initiative in posing problems
and seeking solutions. In most cases several solutions of the same
problem have been given, which might perhaps seem superfluous.
The aim, however, has been to show that the solution of a problem
may result from different mental associations and be obtained
through different processes of reasoning. It will be observed
that several of the solutions given in the book are due to the
pupils themselves. Thus for instance problem 15 was solved by
means of geometrical illustration (method III) by one of the
participants in the Third Olympiad and the original method III
of solving problem 153 was found by a participant in the Fourth
Olympiad. It has frequently occurred at the Olympiads that
pupils have presented different solutions from those expected
by the Committee.

S. STRASZEWICZ
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Arithmetic and Algebra






PROBLEMS

§ 1. Integers

1. Find two natural numbers ¢ and b given their greatest
common divisor D = 12 and their least common multiple M
= 432. Give the method of finding solutions in the general case.

2. Prove that a sum of natural numbers is divisible by 9 if
and only if the sum of all the digits of those numbers is divisible
by 9.

3. Prove that the number which in the decimal system is
expressed by means of 91 unities is a composite number.

4. Prove that if an integer a is not divisible either by 2 or
by 3, then the number a?2—1 is divisible by 24.

5. Find when the sum of the cubes of three successive natural
numbers is divisible by 18.

6. Prove that if the sum of three natural numbers is divisible
by 3, then the sum of the cubes of those numbers is also divisible
by 3.

7. Show that if n is an integer, then n®—3n2-42n is divisible
by 6.

8. Prove that number 2%--1 is divisible by 11.

9. Prove that the sum of two successive natural numbers
and the sum of their squares are relatively prime.

10. Prove that every odd prime number p can be represented
as the difference of the squares of two natural numbers, and
that this can be done in one way only.

11. What digits should be put instead of zeros in the third
and the fifth places in number 3000003 in order to give a number
divisible by 13? s

12. Prove that if a natural number » is greater than 4 and is
not a prime, then the product of the successive natural numbers
from 1 to n— 1 is divisible by =.

13. Prove that if » is an even natural number, then number
13"+ 6 is divisible by 7.
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14. Prove that among ten successive natural numbers there are

always at least one and at most four numbers that are not di-
visible by any of the numbers 2, 3, 5, 7.

15. Prove that none of the digits 2, 4, 7, 9 can be the last digit
of a number equal to the sum

142434 ... +n

where » is an arbitrary natural number.

§ 2. Polynomials, Algebraic Fractions, Irrational Expressions

16. Factorize the expression
(z+a)’— (27+-a7).
17. Factorize the expression
W = 24 (y—2)+y* (z—2)+2* (x—y).
18. Factorize the expression
W = at(b2—c?)+b%(c2—a?)+-c* (a2 —b?).
19. Factorize the expression
a(b—c)+ b(c—a)3+-c(a—b)3.
20. Determine p and ¢ such that the trinomial a*+pa?i-q
is divisible by a given trinomial z%-+axz-b.
21. Factorize the polynomial
28+at4-1

into factors of at most the second degree.
22. Prove that the polynomial

e ot 2 oY |
is divisible by the polynomial z*+a3-+a2?+4z-+1.
23. Prove that if
a—b b—c c—a
1+4ab + 1+bc + 14-ca -
then at least two of the numbers a, b, ¢ are equal.
24, Prove that if

0,

1
ab+bc+ca
then two of the numbers a, b, ¢ are opposite numbers.

I

1 1 1
@ T Tw =



Problems 5

25. Find the least value of the fraction
225
CESVE
26. Find numbers a, b, ¢, d for which the equation

2z—17 _a b
422 +16z-+15 = x-+c +x+d
would be an identity.

1)

1
27. Find 23+ e knowing that x—|—% = a, where a is a given

number.

28. Prove that y2, ¥3, y5 cannote be terms of the same
arithmetical progression.

29. Prove that if 1 <a <2, then we have
Vie+2v(a—1)]+y[a—2v(a—1)] = 2.
30. The expression
y = V(@—1)+V[z+24—10y(z—1)]
has a constant value in a certain interval. Find that interval.
31. Prove that if n is a natural number, then we have

(V2—-1)" = ym—y(m—1),

where m is a natural number.

§ 3. Equations

/ 32. Prove that if

aly+2) =z, bltz)—y, olaty) == )

and at least one of the numbers z, y, z is not equal to zero, then
we have

ab-+-be+ca-+2abc—1 = 0. (2)

« 33. Solve the equation
2| +|z—1]+|z—2| = a,
where a denotes a given positive number.

34. A motor-boat set off up the river at 9 o’clock and at the

~~ same time a ball was dropped from the motor-boat into the

river. At 9.15 the motor-boat turned round and travelled down
the river. At what time did it overtake the ball?
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85. Find for what value of the parameter m the sum of the
v squares of the roots of the equation

24+ (m—2)z— (m+3) =0
has the least value.
36. Prove that the equation

(x—a)(x—c)+2(x—b)(x—d) = 0, (1)
in which @ < b < ¢ < d, has two real roots.
37. Prove that if the equations »
2?2+mx+n =0 and 2>4pr+g=0 (1)

have a common root, then the following relation holds between
the coefficients of these equations:

(n—q)*— (m—p) (np—mgq) = 0. (2)
38. Find the condition which must be satisfied by the coeffi-
cients of the trinomials
2*+mz+n and 2*+pzrtq

for a root of each of these trinomials to lie between the roots
of the other trinomial. The letters m, n, p, ¢ denote real numbers.

39, Determine the coefficients of the equation 23—ax?-4
+bxr—c =0 in such a way as to have numbers a, b, ¢ as the
roots of this equation.

40. Find the necessary and sufficient conditions which must
be satisfied by the real numbers a, b, ¢ for the equation

23+ax?4-bx+c =0
to have three real roots forming an arithmetical progression.

41. Prove that the equation

m?2 n?

=1,

a—x b—=x

where m # 0, n # 0, a # b, has two real roots (m, n, a, b denote
real numbers).

42. How many real roots has the equation

x? x?
22 —a? + =4

xl —b2
(a, b—real numbers)?
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43. Solve the equation

1 1 1
— e t—=
a b x

1
a+b+zx
(@, b — real numbers # 0).

44. Find whether the equation

l+l+l_0
z—b ' x—c¢ '

r—a

where a, b, ¢ denote given real numbers, has real roots.
45. Give the conditions under which the equation

V(z—a)+v(z—b) = V(z—c)

has roots, assuming that there are no equal numbers among
the numbers a, b, c.

46. The lengths of the sides of a right-angled triangle are
natural numbers. The length of one of the perpendicular sides
is 10. Find the remaining sides of this triangle.

47. Find the integral solutions of the equation
yPrB—a® =91,
48. Solve the system of equations
»r—yz=3, yYy—2zx=4, 22—azy=>.
49. Solve the system of equations
?+zxt+y=8, y*42xy+z=168, 224 2yz+ 222 = 12480.

50. Solve the system of equations
xy = ax+by, yz=ay+bz, zx=aztbz,

where @ and b denote given real numbers.
51. Solve the system of equations

zy(x—y) = ab(a—b), P—y*= a3
52. Solve the system of equations

Pyt = 192, %+§_+%-_— 0, z—y+z=11.

53. Solve the system of equations

Ty =1, Zrg=2, x32,=3, ..., ZaT,=n.
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§ 4. Inequalities

54. Somebody has a balance with arms of unequal length.
In order to weigh 2 kg of sugar he proceeds as follows: he puts
a 1 kg weight on the left-hand scale and pours sugar on the
right-hand one until the two scales are balanced; emptying the
two scales, he then puts the 1 kg weight on the right-hand scale
and pours sugar on the left-hand one until the two scales are
balanced.

Are the two quantities of sugar taken together less than 2 kg,
more than 2 kg, or exactly 2 kg?

55. Show that for any numbers a, b, ¢ the following inequality
holds:

a?+-b24-c2 >ab-t-be+tca.
56. Prove that for any numbers a, b, ¢, =, y the following
inequality holds:
(@ +-b24-c?) (22 +y2+2%) > (ax-+by-cz)2.
57. Prove that if @ and b are the perpendicular sides of a right-
angled triangle, c its hypotenuse and » a number greater than 2,

then
a*-b" < c".

58. Prove that if m > 0, then
m+—:§ >3.

59. Prove that if ¢ > b > 0, then

1

“t G =3

60. Prove that if the sum of positive numbers a, b, ¢ is equal
to 1, then

1 1 1
— 4= >09.
a + b + c =9
61. Prove that if a >0, 6 >0, ¢ >0, then the following ine-
quality holds:
ab(a-+b)+bc(b+c)+ca(c+a) > 6abc.

62. Prove that if « >0, v >0, w >0, then the following
inequality holds:

us+v34ud > Suvw.



Problems

63. Prove that if > 0, y > 0 and x4y = 1, then

-2
64. Prove that if a < b < ¢ < d, then
(a+b—+c+d)? > 8(ac+bd).
65. Prove that if n is an integer greater than 2, then

gann=1) > nl.




SOLUTIONS

§ 1. Integers

1. If the greatest common divisor of numbers @ and b is 12,
then

a = 12117, b= 12!/,
z and y being relatively prime natural numbers. Consequently,

the least common multiple of numbers @ and b is 12zy, and
therefore

1220y = 432, ie. xy = 36.
Conversely, if 2y = 36 and numbers z, y are relatively prime,
then 12z and 12y give a solution of the problem.
We shall thus find numbers  and y by decomposing 36 into

the product of two relatively prime factors. There exist two
such decompositions:

36 =1X36 and 36=4X9.
We obtain two solutions:
z=1, y=36 o z=4, y=29.
The required numbers are:
12X1 =12 and 12Xx36 = 432

or
12XxX4 =48 and 12Xx9 = 108.

In the general case, given the greatest common divisor D and
the least common multiple M of numbers @ and b (M and D being
natural numbers), we reason in the same way and obtain the
equations .

a=Dx, b=Dy (xand y being relatively prime),

whence
M
—H .
A solution exists provided M is divisible by D. If this condi-
tion is satisfied, the problem has as many solutions as there are

10

Dzy=M and =zy=
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ways in which the natural number M/D can be decomposed
into two relatively prime factors = and y. Numbers D and M
always constitute one of the solutions.

2. (a) Let us first prove that the difference between a natural
number ¢ and the sum of its digits is divisible by 9. Let O,
C,, C,, Cs, ... denote, in succession, the digits indicating unities,
tens, hundreds, thousands and further orders of the number in
question. Then

a = Cg+C; X 104-Cy X 1004 C4 X 1000+-...,
8 = Co+0C,+0,+C3+...
Subtracting these equalities, we obtain
a—s = 0;X94C3X99+C43X 999+...

Since each component on the right-hand side is divisible by 9,
number a—s is also divisible by 9.

(b) Let a,, a,, ..., a, denote natural numbers and s,, s,, ..., 3,
the respective sums of their digits.

In the identity

a,+a,+...4a,
= [(a;—8,) -+ (@s—85)+ ...+ (ay—8) ]+ (8182 + ... +8p)
the component of the right-hand side which is contained in the
square brackets is divisible by 9 because, according to (a), it
is the sum of numbers which are divisible by 9. Consequently,
number a,+a,+ ... +a, is divisible by 9 if and only if the
component 8,+8,-+ ... +8,, i.e. the sum of all the digits of

numbers a,, @,, ..., a,, is divisible by 9, which is what we were
to prove.

3. Since 91 = 7x 13, the digits of the given number can

be divided into 13 groups containing 7 unities each:
1111111 1111111 ... 1111111,

This shows that the number in question is divisible by 1111111 ;

the quotient is
1 0000001 ... 0000001.

More precisely, let 1111111 = N. The given number can be

represented as the sum of 13 components,

L= NX10%4+NX1074... - NX10"+N

corresponding to the 13 groups of digits. By factorizing, we
obtain

L = NX(10%44107+...410741), (1)
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which shows that the given number is the product of two natural
numbers different from 1, i.e. it is not a prime number.

Another factorization of number L will be obtained by dividing
its digits into 7 groups containing 13 unities each; it will then
be observed that number L is divisible by the number

M =1111111111111.
We can also reason in the following way:
L = 1+410410%4...+10%,
Number L is thus the sum of 91 terms of a geometrical
progression having 1 as its first term and 10 as the common ratio.

According to the well-known formula for the sum of the terms
of a geometrical progression, we have

1091 —1
b=t
Hence
_(1o)m—1  (107—1  107—1
L= = 10—1 XTo=T" @)
Since for arbitrary a#b and a natural n
a"—b"
Pk a*14-a"-2b+...+-ab" 2+ b"1,

we find by substituting in the above formula first ¢ = 107, 5 =1,

n =13 and then ¢ =10, b =1, » =7 that each factor on

the right-hand side of formula (2) is equal to a natural number

different from 1. The factors are the same as in (1).
Analogously

(108)7—1  (10%8)7—1 _ 108—1
10—1 ~ 10°—1 10—1

L =

REmark. The theorem proved above is a particular case of
the following theorem. If all the digits of number L written in
a certain positional (not necessarily decimal) notation are unities,
and the number of those unities is composite, then number L is -
composite.

This theorem can easily be proved on the lines of the preceding
proof. We leave the proof as an exercise for the reader. The
inverse theorem is not true.

If the number of digits of L written by means of unities
alone is a prime number, then L can be either a prime number
or a composite number. For example, in the decimal system
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11 is a prime number while 111 is divisible by 3 and 11111 is
divisible by 41; in the binary system 11, 111, 11111, 1111111 are
prime numbers while 11111111111 is a composite number.

It is not known yet whether in every sequence of numbers
whose digits (in a certain positional system) are all unities there
are infinitely many prime numbers; neither do we know whether

there are infinitely many composite numbers in every sequence
of that kind.

4. Method I. a*—1 = (a—1)(a+1). Either of the numbers
a—1 and a+1 is divisible by 2, and, since their difference
is 2, one of these numbers is divisible by 4. Thus their product
is divisible by 8. On the other hand, since a is not divisible by 3,
either the preceding number, a—1, or the following number,
a1, is divisible by 3; thus the product (a—1)(a--1) is certainly
divisible by 3. And if the number (a—1)(a+1) is divisible by
either of the relatively prime numbers 3 and 8, it must be divisible
by their product, namely by 24.

Method II. If a is not divisible either by 2 or by 3, then,
divided by 6, it leaves the remainder 1 or the remainder 5, i.e.
it is of the form 6k+1 or 6k—1, k being an integer. If a = 6k--1,
then

a?—1 = (6k+1)2—1 = 36k2+12k+1—1 = 12k(3k+1);

since of the two numbers & and 3k-+1 one is divisible by 2, the
product 12k(3k+-1) is divisible by 12X 2, i.e. by 24.
New if @ = 6k—1, then

a*—1 = (6k—1)2—1 = 36k*—12k+1—1 = 12k(3k—1),
whence, as before, we conclude that a?—1 is divisible by 24.

5. Answer. The sum of the cubes of three successive natural
numbers is divisible by 18 if and only if the first of those numbers
is odd.

6. Hint: (a®+b3+c3) — (a+b-+c) = (a¥—a) + (b®—b) + (c®—c)
= (a—1)a(a+1)+ (b—1)b(b+1)+ (c—1)c(c+1).

Generalize the theorem to a sum of » numbers.
7. Hint: n®—3n2+2n = n(n—1)(n—2).
8. We know that if »n is a natural number and e and b are
arbitrary numbers, then
a"—b" = (a—b) (a" 1 +a"2b+a" 3%+ ... +ab" 240",
Putting @ = 25, b = —1, n = 11, we obtain
28811 = (254-1)(250—2461-240 |, —2541)=33%XC,
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where C is an integer. 2554-1 is thus divisible by 33, and hence
by 11.

ReEMARK 1. In the same manner we can prove in general that
number 2™ 1, where % is an odd number, is divisible by 2m-1.

ReEMARK 2. The above problem, and many other problems
concerning divisibility of numbers, can be solved quickly by
using the properties of congruences.

Two integers a and b are said to be congruent modulo k (k being
a natural number) if the difference a—b is divisible by k; this
is expressed by the formula

a = b(mod k),
which is called a congruence.

We can also say that two numbers are congruent modulo & if
they leave the same remainder when divided by .

From the definition of congruence we can immediately draw
the following conclusions:

(1) @ = a (mod k) for any integer @ and any natural number k.

(2) If @ = b (mod k), then b = a (mod k).

(3) If @ = b (mod k) and b = ¢ (mod k), then ¢ = ¢ (mod k).

(4) Ifa = b (mod k)and ¢ = d (mod k), then a+c= b+d (mod k)

The proofs of theorems 1-4 present no difficulty: the reader
is invited to carry them out by himself,

(5) If @ = b (mod k) and ¢ = d (mod k), then ac = bd (mod k).

To prove this it suffices to observe that ac—bd = ac—bc|bc—
—bd = (a—b)c+ (c—d)b.

Theorem (5) implies theorem

(6) If @ =b (mod k), then a? = b%(mod k), and generally:
a" = b" (mod %) for any natural n. We reach this last conclusion
by induction.

Using congruences we solve problem 8 in the following simple
way:

Since 25 = —1 (mod 11), we have (251 = (—1)11 (mod 11),
whence (25 = —1 (mod 11), which means that 2551 is divi-
sible by 11.

As an example of the use of congruences, we shall solve one
more problem:

Find the last digit of number 21000,

Since 2% = 2 (mod 10), we have

21000 = 2200 = 240 = 28 = 28X 2% = 2X 2% = 6(mod 10).
Thus the last digit of number 219 js 6.
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9. Denote by s the sum of the successive natural numbers
n and n--1 and by ¢ the sum of their squares:

s =n+(n+1) =2n+1, ¢ =n?4(n+1)2 = 2n242n41.
Then
s =4n?+4n+1 and 2t—s2=1.
The equality obtained shows that every common divisor of

s and ¢ is a divisor of unity; consequently, numbers s and ¢ have
no common divisor greater than 1, i.e. they are relatively prime.

REMARK. The above theorem can be generalized.

If two natural numbers a and b of different evenness are rela-
tively prime, then the sum s = a-+b and the sum of the squares
t = a?-+-b% are relatively prime.

Indeed, if numbers s and ¢ were not relatively prime, there
would exist a prime number p constituting a common divisor
of numbers s and ¢, and we should have p > 2 because if @ and
b are of different evenness, then numbers s and ¢ are odd. Now

2t—s2 = (a—b)?,
whence p would be a divisor of a—b and consequently also a divisor
of number (a+4b)+ (¢a—b) = 2a and of number (a-+b)— (a—b)

= 2b. This, however, is impossible because 2a¢ and 2b have no
common divisor greater than 2.

10. Suppose that
p = a?—b,
where @ and b denote natural numbers. Since
a?—b% = (a+b)(a—b)
and p is prime, one of the factors a-+b, a—b is equal to p and
the other is equal to 1. Since b > 0, we have a4+b > a—b, and
we infer that
a+b=p, a—b=1.
Solving these equations, we obtain
+1 —1
e pz '
Since p is odd, @ and b are integers. The equality

R

gives the required representation.




16 Arithmetic and Algebra
11. Denote the required digits by « and y and write the number
3020403 in the form
N =3X10%+2x 104y X 1024-3.
We are to find integers  and y for which IV will be divisible
by 13 and the following inequalities will be satisfied:
0<e<9, 0<y<9.
Numbers 108, 104, 102 divided by 13 leave the remainders 1,
3 and 9 respectively, whence
3Xx108 =13k, +3, xX10*=13k,+3x, yX10% = 13k3+9y,
where k,, k3, k3 are natural numbers. In that case
N = 13k+3+-3z+9y+3,
ie.
N = 13k+3(z+3y+2),
where % is a natural number.
N is divisible by 13 if and only if x+3y+2 is divisible by 13,
i.e. if z and y satisfy the equation
z+3y+2 = 13m,
where m denotes a natural number.
The inequalities z <{9, y <9 imply that
z4+3y+2 <9+3X9+2, ie. z+3y+2 <38;

consequently, m must satisfy the inequality 13m <38, ie. m
must be either 1 or 2.
(i) Taking m = 1 we obtain for « and y the equation

z+3y+2 =13, ie. x=11-3y.

With the restrictions 0 <z <9, 0 <y <9, this equation
has three integral solutions:

y=1, y=2, y=3,
r=8, x=5, x=2.
(ii) Taking m = 2 we have the equation
z4+3y+2 =26, ie. ax=3(8—y)
and we obtain the solutions:
y=56, y=6, y=17, y=S8,
=9, x=6, xx=3, zz=0.

The problem thus has 7 solutions, the corresponding numbers
being 3080103, 3050203, 3020303, 3090503, 3060603, 3030703,
3000803.
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REMARK. Problem 11 concerned changing the digits of a certain
definite number. Let us consider two examples of more general
problems of this kind.

I. We are given a natural number N not divisible by a prime
number p and having the digit 0 in the kth decimal place. Is it
possible to replace the 0 by such a digit x that the new number will
be divisible by p?

To begin with, it will be observed that if p is equal to 2 or 5,
the problem has no solution. Let us therefore suppose that p # 2
and p # 5.

If we put the digit = in the kth decimal place of number N,
the number obtained, N (z), is expressed by the formula

N(x) = N+ax 101, 1)

Consider the values of the function N (z) as x assumes the
values 0,1,2, ..., p—1

N(0), N(1), N(2), ..., N(p—1). )

Each of the p numbers of sequence (2) leaves a different re-
mainder when divided by p. Indeed, by formula (1) the difference
of two numbers of sequence (2) is expressed by the formula

N(@)—N(j) = (i—j) X 10*,

If ¢ # j, this number is not divisible by p because the factor
t—j is different from zero and absolutely less than p and the
factor 10*-1 has only the prime divisors 2 and 5. Accordingly,
numbers N (¢) and N (j) give different remainders when divided
by ».

Since the remainders of the numbers of sequence (2) are all
different and there are p such remainders, one and only one of
those remainders is equal to 0, i.e. one and only one of the numbers
of sequence (2) is divisible by p; suppose that number to be
N (z).

Ifoxo < 9, then z, gives the solution of the problem.

If z, > 9, the problem has no solution.

We conclude that:

(a) If p =3, the problem always has three solutions; the
required digits x are either 1, 4, 7 or 2, 5, 8.

(b) If p = 7, the problem has either two solutions—the digits
1, 8 or 2, 9, or one solution—one of the digits 3, 4, 5, 6.

(c) If p >11, the problem can either have one solution or
have no solution at all. If p = 11, the first case occurs, e.g. for
number 10; the second case occurs for number 109 for example.
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II. We are given a natural number N not divisible by a prime
number p > 11 and having the digit O in the kth and lth decimal
places. Is it possible to replace those zeros by such digits x and y
that the new number will be divisible by p?

If we put the digit « in the kth decimal place and the digit
y in the Ith decimal place of number N, we shall obtain number
N (z, y) expressed by the formula

N(z,y) = N+ X 10514y x 10", 3)
Consider those values of the function N (2, ) which are obtained

by substituting for  and y the values 0,1,2,...,p—1. We
obtain p? numbers:

N(,0), N(©,1), N@©,2), .., NO,p—1),
N@,0), N{1,1), N(@1,2), .., NQ,p—1),

.................................

N(p—l:o)’ N(p—]-’ 1)> N(p'—112)’ seey N(p—l’P_l)-

We ascertain, as in problem I, that in each row and in each
column of this table there is one and only one number divisible
by p; we denote such a number in the ith row by the symbol
N (i’ yi) .

The table thus contains p numbers divisible by p; they are
the numbers

N(O’ yo)’ -N(l>y1)’ N(2’ ?/2), cee N(p_l’yp-—l)’ (4)

the sequence of numbers ¥, ¥, ¥,, ..., ¥,_; containing the same
numbers as the sequence 0,1, 2, ..., p—1, but not in the same
order. Observe for instance that y, is certainly not equal to 0
because number N (0, 0) = N, by our assumption, is not divisible
by ». '

Number N (¢,y;) of sequence (4) gives the solution of the
problem if and only if ¢ <9 and y; <9. It is easy to count how
many such numbers can be contained in sequence (4). They
should be sought among the numbers

N(O’ ?/o), N(l:yl)’ LA N(g’ ?/s) (5)

If none of the numbers y,, ¥, ..., ¥y is greater than 9, the problem
has 10 solutions, given by the numbers of sequence (5). That is the
greatest possible number of solutions.

If the sequence y,, ¥, ..., ¥y includes numbers greater than
9 (there can be at most p—10 such numbers), the corresponding
terms should be deleted from sequence (5). The problem then

has at least 10— (p—10), i.e. 20— p solutions. Hence the follow-
ing conclusion:
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(a) If p = 11, the problem has at least 9 solutions. An example
of the maximum number of 10 solution is given by the number
101015.

(b) If p = 13, the problem has at least 7 solutions; the case
in which there are only 7 solutions has been discussed above.

(¢) If p = 17, the problem has at least three solutions.

(d) If p = 19, the problem has at least one solution.

(e) If p > 23, the problem may have no solution.

A suitable example for the case p = 23 can easily be found
if we consider that number 10?2 divided by 23 gives the remainder 1.
We suggest this as an exercise.

12. Since 7 is not prime, there exist natural numbers p and
gsuch that 1 <p < n, 1 <g<mnandn=pxXq. (For example
we can take as p the greatest prime factor of n.)

We shall distinguish two cases.

Case 1. p # q.

In this case p and ¢ are two different numbers of the sequence
1,2,...,2—1, and consequently the product 1 X 2X...X (n—1)
is divisible by n = p X ¢q.

Case 2. p =q.

In this case » = p?, and since n > 4, we have p2 > 4, whence
p > 2, p* > 2p, and thus 2p < n. Numbers p and 2p are two
different numbers of the sequence 1, 2, ..., n—1, and consequently
the product 1X2X ... X (n—1) is divisible by p X2p = 2n, and
thus of course divisible by n.

ReMARK. Given the same assumptions regarding n we can
prove more than is required in the problem. We can prove that
even the product 1X2X ... X (n—3) is divisible by =.

For this purpose let us observe that in the equality » = p X ¢,
where p and ¢ are natural numbers greater than 1, none of the
numbers p and ¢ can be greater than n—3. Indeed, if we had, say,
p > n—3, then, in view of ¢ > 2, we should obtain p X ¢ > 2 (n—3),
whence n > 2n—6 and n < 6; this, however, is impossible because
we have assumed that n > 4 and n # 5.

To prove the proposition given above let us, as before, distin-
guish two cases:

Case 1. p # q.

Since p <n—3 and ¢ <n—3, p and ¢ are two different natural
numbers of the sequence 1,2,...,7—3, and consequently the
product 1X2X ... X (n—3) is divisible by = = p Xgq.

Case 2. p =q.

In this case n = p2. Since n > 4, we have p > 2, and conse-
quently p >3. Hence we deduce successively that p? > 3p,
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n >2p+p, n >2p+3 and finally 2p <n—3. Numbers p and
2p are thus two different numbers of the sequence 1, 2, ..., n—3,
and consequently the product 1X2X ...X (n—3) is d.ivisible by
PpX2p = 2n, and thus of course divisible by .

It will also be observed that the product 1X2X ... X (n—4)
is not divisible by = either if n = 6 or if n = 9.

13. We shall prove that if n is even, then 13" divided by 7 gives
the remainder 1.

Method I. We shall use induction.

Let n = 2k. If k = 1, the theorem holds because

132 =169 = 7x24+1.
Suppose that for a certain & we have the equality
132%% = Tm+1,

where m is a natural number.
In that case

132041 — 132 % 132 — (Tm+-1)(7X 24+1) = TX (169m+-24)+1.

We conclude that the theorem holds for any natural k.
Method II. We apply the binomial theorem

n__ on_ (M) n- n\ n—-ipi n
(@+b)y = a —|—(1)a 1b+...+(i)a bit...4bm,
Taking a = 14, b = —1, we obtain

18" = [+ (—DF = 1+ () x 1402 (— 1)+

+...+(11f*) X147 % (—1) o (— D)™,

All the terms on the right side, except the last, are divisible
by 7, and (—1)" = 1 because » is even.

ExErcise. Prove the theorem by means of congruences.

14. In a sequence consisting of ten successive natural numbers
there are five even and five odd numbers. Consequently problem
14 can be reduced to the following problem:

Prove that among five successive odd numbers there are at
least one and at most four numbers not divisible by any of the
numbers 3, 5 and 7.

It will be observed that in the sequence of odd numbers every
third is divisible by three, every fifth by five and every seventh
by seven. Consequently:
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(a) Among five successive odd numbers there is at least one
divisible by 3; thus those numbers can include no more than four
numbers that are divisible by none of the numbers 3, 5 and 7.

The example of numbers 11, 13, 15, 17, 19, shows that five
successive odd numbers can include four numbers which are
divisible by none of the numbers 3, 5 and 7.

(b) Among five successive odd numbers there are at most two
divisible by 3, at most one divisible by 5 and at most one divisible
by 7. It follows that at least one of those five numbers is divisible
by none of the numbers 3, 5 and 7.

15. Method I. 1t will be observed that if the final digits of
numbers a and b are ¢ and d, then
ab = (10k-+-c)(10l4+-d) = 10(10kl+kd+cl)+cd,

where k and ! are integers; thus the last digit of the product ab
is the same as the last digit of the product cd.
We know that

142434 ... 40 = @
If n ends with the digit 0,1,2,3,4,5,6,7,8,9,

then n-41 ends with the digit 1,2,3,4,5,6,7,8,9,0,
and thus n(r+1) ends with the digit 0, 2, 6,2, 0,0, 2, 6, 2, 0.
If 1(1’;—1_) ended  with the digit 2,4, 7,9,

then n(n41) would end with the digit 4, 8, 4, 8,
which, as we have ascertained before, is impossible.

Method 11. If the last digit of the number in question is z,
then 2n(n+1) = 10k+x (k—a natural number) and consequently

n?+n— (20k+2z) = 0.
Since n is an integer, the discriminant of the above equation,
i.e. number

4 = 80k+8z+1,

is the square of an integer. The last digit of number 8z--1 consti-
tutes the last digit of the discriminant. If z is equal to 2, 4, 7, 9,
then 8241 ends with the digits 7, 3, 7, 3 respectively.

Now the square of an integer ending with digit ¢ has the form
(10a+c)* = 100a%+20ac+c?, and thus it has the same final digit
as c2. And since the squares of numbers from 0 to 9 end neither
with the digit 7 nor with the digit 3,  can be none of the digits
2,4, 7 and 9.
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Method III. We introduce the notation
8, =1+4+243+ ... +n.

To begin with, we ascertain that number S, is divisible by 5.
Indeed,
S = 142434445 =15,
and

Ssary = S+ (Bk-+1) + (BE+2) + ... + (5k+5) = Sgy+25k+Ss.

Thus if Sy, is divisible by 5, then also S5y is divisible by 5,
whence it follows by induction that for any natural £ number
Sy, is divisible by 5. Thus the last digit of number Sy, is either
0 or 5.

Let n = 5k--r, where r is one of the numbers 1, 2, 3, 4; then

Sekir = Ser+ (6k+1) + ... + (5k+7r) = Sg+5kr+8,.

Since number Sg+5kr is divisible by 5, its last digit is either
0 or 5. Consequently, the last digit of number Sg., is equal
either to the last digit of number S, or to the last digit of number
S,+5.

Now: if r is equal to _ 1, 2, 3, 4,
then the last digit of number S, is 1, 3, 6, 0,
and the last digit of number S,45 is 6, 8, 1, 5.

This implies that for any natural n the last digit of number
8, is one of the digits 0, 1, 3, 5, 6, 8, whence it can be none of the
digits 2, 4, 7, 9.

The same argument can be applied to the sum of the squares

= 124224324 ... +-n2
Ty = 1242243242452 = 55

Since

and

Toprr = Top+ (Bk+1)24 ... + (Bk—4-r)2 = Tg+26k2r+10kS,+T,,

we infer as before that number 7' is divisible by 5 for any natu-
ral k and that the last digit of number T, is equal either to
the last digit of number 7', or to the last digit of number 7T',+5.

If r is equal to 2, 3, 4,
then the last digit of number 7T, is 1 5, 4, 0,
and the last digit of number 7,45 is 6, 0, 9, 5.
Consequently, for any natural »n the last digit of number T,
is one of the digits 0, 1, 4, 5, 6, 9, i.e. digits 2, 3, 7, and 8 are

excluded.
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The same result will be obtained for the sum of the cubes of

natural numbers
U, = 13425433+ ... +nd

The above argument cannot be applied to the sum V, of the
fourth powers of numbers 1, 2, ..., n, because number V; is not
divisible by 5. It is easy to verify that any of the ten digits can
be the final digit of number V,. We suggest that the reader should
use the same method to investigate the cases of the next few
powers.

The preceding proof could be presented in a visual manner

as follows.
Divide a circular disc into 5 sectors 4, B, C, D, E (Fig. 1).

A‘ B8
E L‘
0
Fia. 1

Let us place the digits 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 in the successive
sectors following the arrow, as shown in the figure. If m is an
arbitrary natural number, then the last digit of number m is in
the mth sector counting from A in the direction indicated by
the arrow; if two numbers differ by a multiple of 5, their final
digits will be found in the same sector because increasing a number
by 5k corresponds to going round the disc k£ times. The final digits
of the sums 8, =1, §, =1+2, S§3=1+2+43, Sy = 1+2+4344,
Ss = 1424-34-4+5 are found in sectors 4, C, 4, E, E respect-
ively. The final digits of the next five sums, Sg, S;, Ss, Sy, Sio,
will be found in the same respective sectors, since those sums
differ, respectively, from sums 8;,S,, Ss, Sy, 85 by multiples
of number 5. The same applies to the sums 8,, S},, ..., 8;5, ete.
Thus the final digit of the sum S, will always be found in one
of the sectors 4, C, E; consequently, it can only be one of the
digits 1, 6, 3, 8, 0, 5.




24 Arithmetic and Algebra

In the same way we shall ascertain that the last digit of the
sum 7', of the squares and of the sum U, of the cubes of natural
numbers from 1 to » can only be found in one of the sectors 4,
D, E, i.e. that it can only be one of the digits 1, 6, 4, 9, 0, 5.

ReMARK. The question which digits can be the final digits

of the sums T,, U,, etc. can also be solved by method I. We
must then make use of the formulas

124224 ... +nz=w,
P s = PO
4 ’

ete. Method IIT does not require these formulas.

§ 2. Polynomials, Algebraic Fractions, Irrational Expressions

16. Since
(x+a)’ = (x+a) (x84 6aa®+15a2x* +20a%23 4 15a%2% +6a5z+ab),
2’ +a’ = (v+a)(@®—ar®+a?xt—a3rd+-ata? —abz+-ab),
we have
(x+a)’—(2"+a?) = (z+a)(Tax®+ 140’24 +21aP23+ 14a%2? - Tasz)
= Tax (z+a) (x*4 2023 30?22+ 2a3x+-a) .

The last factor of the above product can be decomposed by
grouping the terms, e.g. in the way we group them in solving the
reciprocal equation of the fourth degree:

22 4-2ax3+3a%2? 4 203x a4
= (z*+-at)+2ax (22 +a?) 4 3a%x?
= (224?24 2ax (224 a?)+a?a?
= (22+-a?+ax)?.
We obtain
(x+a)’— (27 +a7) = Tax(z+a) (x2+ax+a?)2.

The trinomial 224-ax-}-a? has no factors in the domain of real
numbers. In the domain of complex numbers it is equal to the

product
(x + 141y +2i '/3—0,) (x + i 42 —zi V3 a)
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and the given polynomial is a product of factors of the first
degree:

N 2 . 2
(z+a)’—(x"4-a”) = 7az(x—|-a,)(x_|_ﬂ§_a) (x—|— 1—1y3 a) )

2 2

17. To begin with, it will be observed that the expression
W is invariant under the cyclic substitution of the variables z,y, z,
i.e. it remains unchanged when we replace in it, simultaneously,
x by y, y by z and z by x.

If we substitute = y in the expression W, which is a polyno-
mial of the fourth degree with respect to x, we shall obtain W = 0;
the polynomial W is thus divisible by x—y, and since it is invariant
under cyclic substitution, it is also divisible by y—=z and by z—z,
and consequently by (z—y)(y—2)(z—=). In view of the fact
that W is a homogeneous polynomial of the fifth degree with
respect to x, y, z and (x—y)(y—=z)(2—=) is a homogeneous poly-
nomial of the third degree with respect to these variables, the
quotient of these polynomials must be a homogeneous polynomial
of the second degree with respect to z, y, 2z, and the polynomial
W has the form

W = (z—y) (y—=2) (—=) (ax?+by>+c2+day +eyz+fzx) .

Since both W and (z—y)(y—2)(z—x) are invariant under the
cyclic substitution of z, y, z, their quotient must have the same
property; therefore a =b=¢, d =c=f and

W = (z—y) (y—2) (z—2)[a(@*+y*+2)+d (xy+yz+22)].

In order to determine the coefficients @ and d it is sufficient
to find the values of the two sides of the above equality substi-
tuting for z,y and z arbitrary, but different, numerical values.
For example substituting x =0, y =1, 2= —1, we obtain
—2 = 2(2a—d) or 2a—d = —1; and substituting 2 =0, y =1,
z =2, we obtain —14 = 2(5a+2d) or (5a+2d) = —T; these
relations give us @ = —1, d = —1. Consequently

W = (x—y) (y—2) (x—2) (@ +y*+22+ay+yz+22).

ReMARE. The polynomial of the second degree occurring in
the decomposition of polynomial W which we have obtained is
itself irreducible, i.e. it is not a product of two polynomials of
the first degree. In order to prove this, it will be observed that
such polynomials would have to be homogeneous with respect
to z,y and z, and consequently for any values of z, ¥ and z the
following equality would hold:

224y 22 aytyz+2x = (av+by+cz) (e, 2+by+c,2).
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The coefficients a, b, ¢, a,, b;, ¢, would then satisfy the system
of equations

an, =1, (1)
bb, =1, (2)
ce, =1, 3)
abyab =1, )
be,+-bec =1, (5)
co+ca = 1. (6)

Now, by squaring equations (4) and (5) and taking into con-
sideration (1), (2) and (3), we obtain
(@b, +(a,0)* = —1, M
(be,)*+-(bye)* = —1. (8)
This shows that the system of equations (1)-(6) has no real
solutions. But neither has it any complex solutions. Indeed, by
multiplying equations (4) and (5) and taking-into consideration
(2) and (6), we obtain
ab%c+a,b%, = 0; 9)
next, by multiplying (9) and (6) and taking into consideration
(1) and (3), we obtain
(@b)*+ (a,b)*+ (bey)*+ (by0)* = O,
whence, by (7) and (8), follows the contradiction —2 = 0.

18. Answer:
W = (a+b)(b+c)(c+a)(b—a)(c—b)(a—c).
19. Answer:
(@—b)(b—c) (c—a)(a+b+-c).
20. The divisibility of the fourth degree polynomial x*-+pz?4¢q
by the quadratic trinomial z24-ax-+b denotes the existence of

a quadratic trinomial 22+ma-+n such that for every value of
x we have the equality

A pattg = (2-+aztb)(@t+matn),
ie.
22+ pai4-q = 22+ (a+m) 23+ (am~+b+n) 22+ (an+dm)x+bn.
This equality holds if and only if on both sides the coefficients

of equal powers of x are equal. We thus obtain for the unknowns
m, n, p, q the following system of equations:

at+m =20, (1)
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am-+-b+n =p, (2)

an+bm =0, 3)

bn=gq. (4)

From equation (1) we find m = —a, which, substituted in
equation (3), gives

a(n—>b) = 0. (5)

(a) If @ # 0, then » = b. From equations (2) and (4) we obtain
p=2b—a? q=20%
In this case the problem has the following solution:
2+ (2b—a?)x®+-b2 = (2% -+ax-+b) (¥®—ax+-b).

(b) If @ = 0, then equation (5) is an identity and = can be any
number. From equations (2) and (4) we obtain

p=>b+n, q=Dbn.
The solution has the form
At (b+n)at+bn = (22-+8) (22+n)
where n is an arbitrary number.

21. We transform the given polynomial in the following way:
28 at-1 = 28422441 —2t

= (2A+1)2—at

= (#+a?+1) (@' —a?+1)

= (224222 +1—2a?) (24222 +1—32?)

= [(@*+1P—a*][(«*+1)*— (x¥/3)*]

= (B*+a+1)(@*—x+1) (@2 +-2vV3+1) (@ —2V3+1).

The polynomial has been decomposed into four factors of the
second degree. Since none of those factors. has real roots, the
factors cannot be further decomposed in the domain of real num-
bers and the above result gives the required factorization.

In the domain of complex numbers each of the above quadratic
functions has two conjugate complex roots: they are, respectively,

—14+2y3 —1—2y3
a, = 5 and a,=— 5
1+2y3 1—2y3
ag = +;V and ag = ;V ’
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—V3+¢ —V3—1
a5 = ——2—" and ae = —2_,
Ay = 3+ and ag = y3—i
7= B g = 5 "

The given polynomial is the product of eight linear factors:
(—a,) (x—a,) (x—ag) (r—ag) (—as5) (x—ag) (x—a;) (x—ag) .

The above decomposition into complex factors can be obtained
by a shorter method. We know that the equation

2"—1=0
has » roots defined by the equation

T .. 2km
r = cos ¢ 8in ——,
n
where k runs over the successive values 0,1,2,...,n—1.

These roots can be represented geometrically in the plane of
the complex variable x as the vertices of a regular n-gon inscribed
in a circle with centre 0 and radius 1.

Now "

z2—1

»—1"

The roots of the equation 2842441 = 0 will thus be obtained
by writing down the twelve roots of the equation z1?—1 = 0 and
rejecting those four which are also roots of the equation z¢—1 = 0.
Geometrically, this amounts to choosing eight of the vertices

of a regular dodecagon, as shown in Fig. 2, in which the rejected
vertices are marked by dots.

x3—|—x‘+1 =

30°
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The roots of the equation 28+24+1 = 0 are thus the numbers
cos 30°4-14 sin 30°, cos 60°--7 sin 60°,
cos 120°+¢ sin 120°,  cos 150°-4-% sin 150°,
cos 210°+7 sin 210°,  cos 240°4-% sin 240°,
cos 300°-+14 sin 300°,  cos 330°4-¢ sin 330°,

i.e. the numbers

V3+i 1+iv3 —14iy3 —y3Ls
2 2’ 2 2

—V3—i —1-iy3 1—iy3 V3—i
2 El 2 E 2 ’ 2 ’

in accordance with the result obtained before.

22. Method I. We shall assume the well-known theorem of
algebra which states that the binomial a®—1 (where » is a natu-
ral number) is divisible by the binomial a—1, i.e. that

a"—1 = (a—1)(a" 14a"24...+1). (1)

The second factor on the right-hand side of formula (1) is a geo-
metrical progression, of which only the first two terms and the
last term are written down, the remaining terms being replaced
by dots.

The solution of the problem can be obtained by applying for-
mula (1) to the binomial 255—1 in two ways. First, if we substitute
a =z, n = 5 in formula (1), we obtain the equality

2% —1 = (2 —1) (x¥4238 2?2+l 1),
and applying formula (1) to the factor z*—1 we have
28—1 = (x—1) (204224 ... +1)(@¥+28+...41). (2)

If, on the other hand, we substitute @ = 5, n = 11 in formula
(1), we obtain the equality

a5 —1 = (25—1) (%0 +-at...+1),

which, on the application of formula (1) to the factor 25—1, gives
the equality

81 = (z—1) (@A +P+2+z+1)(@0+aB+...4+1).  (3)
Equalities (2) and (3) imply
(2024 +1) (2% +-a33+...+1)
= (ALt 1) (@0 1), (4)
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From this equality we shall derive the required theorem; we
first transform the first factor of the left-hand side:

PR L T |
= (x104-2%+...Fab) - (@54-at+4...+2) 1
= a8 (xt+23+...+ 1) (2422 +...+1)+1
= (e*+ad+...41) (284x)+1.

Formula (4) can therefore be written in the form

(A28 + ... +1) (25 +a) (28 +-2B+ ...+ 1)+ (@M +28 ... 1)
= (@A aB+... 1) (@O0+ a5 1 1),

Let us subtract the first term of the equality from each side,
and then let us factorize the right-hand side; we obtain

M2t 1 = (2423 +... 1) [0 a4 1 —
— (@5+a) (@M ta 1)) (5)

Equality (5) shows that the polynomial %2334 222421111 is
divisible by the polynomial a*-+a3-t-a?-+2—1.

The polynomial appearing in the square brackets on the right-
hand side of formula (5) could be ordered, on opening the round
brackets, according to the powers of z; this, however, is not
necessary for the proof of the theorem. We shall only remark that
the terms containing 2% and z* are reduced and consequently
formula (5) can be written in a simpler form:

P8 ] = (e adt... 1) [0 L 1 —
— (@8 +2) (¥ 22421 +1)]. (6)

Method II. Let us multiply each of the given polynomials

f(x) = a® a8 22 2111 ]
and
g(x) = ' +a3+22+-a+1
by #—1; we shall obtain the polynomials
F@) = (o—1) (@t 4o {2114 1)
=l M M 38 2 23 ga2 gn g ]
and
G (@) = (z—1)(@*+2*+22+a+1) = 25—1.
In order to prove that the polynomial f(x) is divisible by the

polynomial g (x) it is sufficient to show that the polynomial F (x)
is divisible by the polynomial G(z), i.e. by #5—1.
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Now

PR LR N NI e W |

= (@®—1)—a*(210—1)—2®(210—1)—2a'?) (x10—1)—

—a(@0—1) = [(@9'—1]— (@'—1) (@242 2)
— (@—1) (@04 .. +1)— (@5 —1) (@ +1) @2+ a2 4x)
= (25—1) [2"+2%+ ... +1—(a5+1) (@™ +a a1 +-2)].
Consequently
F(x) = G(z) [#°+2%+ ... +1— (@8+2z) (2B 2?2211 4-1)].
Thus the polynomial F(z) is indeed divisible by the polyno-
mial G (x), which is what we wanted to prove.

Dividing both sides of the last equality by x—1, we obtain
the formula

M3 L2 4 g1 1] = (2t a8t a+1)[0+aP ... +

+1— (@5 +2) (@® 422 +2 +1)],
i.e. the formula (6) obtained by method I.
Method I1I. A very short and simple solution of the problem
will be obtained by the use of complex numbers and their geome-

trical representation on a plane. If « denotes a complex variable,
then the roots of the equation

2"—1 =0

can be represented as the vertices of a regular n-gon 4,4, ... 4, in-
scribed in a unit circle C, drawn in the plane of complex numbers
x from the origin 0, the vertex 4, of the polygon lying at point
z =1
Let us write, as in method I:
255 1 = (xll_l)(x44_|_x33+x22+xu_|_1),
22—1 = (x—1) (et +ad4-22+a+1).

The roots of the binomial 255—1 correspond to the vertices 4,,
A,, ..., Ay of a regular 55-gon inscribed in the above-mentioned
circle C, the root # = 1 corresponding to the vertex 4,; (Fig. 3).
Similarly, the roots of the binomial z''—1 correspond to the
vertices of a regular 11-gon; those vertices are to be found
among the vertices of that 55-gon; namely they are the points
Ay, Ayy, Aygy ...y Ags. The roots of the polynomial xft{-a38-
+a?2+a1+1 correspond to those vertices of the 55-gon which
will remain after we have rejected the vertices of the 11-gon;

there are 44 of them and the vertices A,;, 4,,, 435, 4, are
among them,
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On the other hand, to the roots of the binomial 25—1 corres-
pond the vertices of a regular 5-gon, which are also to be found
among the vertices of the 55-gon: they are the points 4,;, 4,,,
Agq, Ay, Agy; to the roots of the polynomial a*+a®+a?+z+1
correspond only the vertices A4,,, 4,,, Agg, 444, because we must
reject the vertex Ag;, corresponding to the number x = 1.

Apparently the roots of the polynomial zt+a3+4a2+x-1
are at the same time roots of the polynomial #4138 4-2224 21141,
which implies that the latter polynomial is divisible by the former.

23. Method I. Let us multiply both sides of the equality
a—b b—c c—a

Trab + 15be T T5ea —

by the product (1+4-ab)(1-+bc)(1+ca); on the left side we shall

obtain the expression
W = (a—b)(1+bc) (1+ca)+

+ (b—¢) (1+ab) (1 +-ca) + (c—a) (1+ab) (1+be).  (2)

We could perform the multiplications indicated in this ex-

pression, obtaining 24 terms; we could then reduce similar terms

and finally, by a suitable grouping of the terms and by factorizing,
give the expression W the following form:

W = (a—b)(b—c) (c—a). 3)

0 (1)
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If W =0, then one of the factors of this product is equal to
zero; consequently at least two of the numbers a, b, ¢ are equal,
which is what was to be proved.

However, formula (3) could be obtained without a lengthy
algebraic manipulation. In mathematics we give preference to
methods based on reasoning and not on calculations, which are
often tedious and cumbersome. In this case we can use a very
simple argument.

It will be observed that with respect to any of the letters
a, b, ¢, e.g. the letter @, W is a polynomial of the second degree.
If we substitute b for a in equality (2), we shall obtain W = 0;
by a well-known theorem, the polynomial W is thus divisible by
a—b. In the same way we can ascertain that the polynomial W is
divisible by b—c¢ and by c—a; actually this results from the fact
that W remains unchanged if we apply a cyclic substitution,
i.e. if we replace a by b, b by ¢ and ¢ by a; thus if W is divisible
by a—b, it must be divisible by the binomials arising from the
binomial a—b through a cyclic substitution, i.e. by the binomials
b—c and c¢—a. Thus

W = (a—b)(b—c)(c—a)k. 4)

Since both W and (a—b)(b—c)(c—a) are polynomials of
the second degree with respect to a, the factor £ must be a po-
lynomial of degree zero with respect to e, and likewise with
respect to b and with respect to ¢, i.e. k is simply a numerical
coefficient. The value of £ will be found by substituting for a, b, ¢
in equality (4) some definite numbers, e.g. a =1, b = —1,
¢ =0; equality (4) then gives 2 =2k and k= 1. We have
thus proved formula (3), from which the theorem follows as before.

Method II. The structure of the components of the left side
of equation (1) brings to mind the formula for the tangent of
the difference of two angles, which leads us to the solution of
the problem with the use of trigonometry. We can write

a=tana, b=tanf, c¢=tany,

where «, 8, y are definite angles contained in the open interval
from —90° to 90°. Equation (1) assumes the form

tan a—tan tan f—tan y tan y—tan «

l+tanatanf = l4tanftany = l-4tanytana
or

tan (a—f)-+tan (B—y)+tan (y—a) =0, ()

each of the angles a—f, f—y, y—a being contained in the
open interval from —180° to 180°.
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Applying to the sum of the first two components in (5) the
formula
tan m--tan n = tan (m-») (1—tan m tan n),
we obtain
tan («—y) [1—tan («—p) tan (5—y)]+tan (y—a) = 0,
and therefore )
tan («—v) tan (x—p) tan (—y) = 0. (6)

One of the tangents in formula (6) must be equal to zero,
and since, as has been pointed out before, the corresponding
angle is greater than —180° and less than 180°, that angle must
also be equal to zero. At least two of the angles «, 8, y are thus
equal, and this means that at least two of the numbers a, b, c,
are equal.

24. Hint. See the solution of the preceding problem, method I.

25. Method I. Denote the value of the fraction by the letter
y and perform the transformation

wtl2?45 (2P +1)R— (22 4+1)+5 1 5
= == ] 1— + .
(@ 1)? @@ 1)? 21 @1
Let 1/(1+2?) = w ; then y is a quadratic function of the variable w:
y = 5uP—u+1.
We know from algebra that the quadratic function au?-+bu--¢
where @ > 0 has its minimum when % = —b/2a¢. Thus in our

case the least value of y corresponds to the value u = %, which
gives ¥, = 3o. The corresponding value of z is obtained from
the equation 1/(224-1) = £, whence 2? =9, and consequently
x=3 or x = —3.

Method II. Let 2 = z; then

24245
(z+1)2 °
since z+1 = 2241 >0, the above equation is equivalent to
(z+1)2y = 224245,
which can be written as
(y—1)2+ (2y—1) 2+ (y—5) = 0.

If certain values of y and 2 satisfy this equation, then either
y = 1 or the equation is quadratic with respect to z and its diseri-
minant is non-negative, i.e.
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(2y—1)>—4(y—1)(y—5) >0
whence

19
20y—19 >0 or y>%.

Hence the least value of y is y,_,, = -;—g«. From the given relation
between y and z we obtain the corresponding value z = 9, and
thus 22 =9, i.e. t =3 or & = —3.

ReMARK. We shall solve a more general problem: find the least
and the greatest values of the function

22-+ma+n
= Ptpriq (1)
pr+q
under the assumption that the trinomials a2-4-mx-+n and 224
+pz-+q have no root in common.
If the numbers z, y satisfy equation (1), then they also satisfy
the equation

(@*+prt+q)y = 2 +mz+n. 2)

Conversely, if the numbers z, y satisfy equation (2), then
22+px+q # 0; otherwise equality #2-+px+-¢g = 0 would, by (2),
imply the equality x®+maz+n = 0, which would contradict the
assumption that the given trinomials have no root in common.
Consequently x and y satisfy equation (1). Equations (1) and (2)
are thus equivalent.

We shall write equation (2) in the form

(y—1) @+ (py—m)z+ (qy—n) = 0. @)
Our problem consists in finding, among those values of y for
which equation (3) has roots, the least value y,,, and the greatest
value ¥ ...

If y =1, equation (3) is linear with respect to # and has a so-
lution for p # m. If y # 1, equation (3) is quadratic with respect
to x.

Let us find its discriminant

0(y) = (py—m)*—4(y—1)(gy—n)
and write it in the form

0(y) = (P*—49)y*—2(pm—2¢—2n)y+ (m*—dn).
Equation (3) has roots for those values of y # 1 for which d(y) > 0.
We shall distinguish three cases.

(i) p2—4q > 0. The quadratic function J(y) is then positive
provided |y| is sufficiently large. Thus in this case there exists
neither a greatest nor a least value y of fraction (1).
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(i) p2—4g < 0. The quadratic function §(y) is then negative
for sufficiently large values of |y|.

Since the function y of z expressed by formula (1) assumes
a definite value for every x and is not constant, we must have
é(y) >0 for infinitely many values of y; we could also prove
this by showing that the discriminant of the quadratic function
O (y) is positive in case (ii).

Thus in this case the quadratic function d(y) has two roots
and is positive if the value of y is contained between those roots.
Since §(1) = (p—m)? >0, the roots are the required values

Ymin 304 Yoo,
(iii) p2—4¢ = 0. The function é(y) has then the form

0(y) = —2(pm—2q—2n)y-+ (m?—4n).

It will be observed that in this case pm—2g—2n # 0; for the
equality p*—4qg = 0 implies that the trinomial z?+pzx+-q is
equal to (x+1p)? and has a double root —2p. By hypothesis
this root is not a root of the trinomial x24-mx--n, and therefore

> pm _pm 1
R 4+n=gq+n 5 = 5(2q+2n—pm) # 0.

Consequently, the solution of the problem in case (iii) is as
follows.

(a) If pm—2¢g—2n >0, then d(y) >0 for

m2—d4n
y< 2(mp—2q—2n)
Since under assumption (a)
m2—4n
2(pm—2q—2n) =1,
in view of m?2—4n—2(pm—29—2n) = (p—m)? >0, we have
. m2—4n
Yumax = 2(pm—2q—2n)’

and Y., does not exist.
(b) If pm—2¢g—2n < 0, then §(y) >0 for

m2—4n
Y2 S pm—2q—2m)’
and
m2—4n

Spm—2g—2n) =’
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thus
m2—4n
ymin = o o. o
2(pm—2q—2n)

and y,., does not exist.

We suggest that the reader should illustrate geometrically
the above cases (i), (ii), and (iii) choosing suitable numerical
values of m,n,p,q.

26. First, it may be observed that 42?-16x-+15 = 4(x2+4
+4x4+-3) =4 (x+3) (42 ; thus the left-hand side of equation (1)
has a numerical value only for values of x other than —3 or
—3. The right-hand side of equation (1) has a numerical meaning
only for values of # other than —c or —d. If equation (1) is to
be an identity, both its sides must have a numerical meaning
for the same values of z; therefore the denominators of the
fractions on the right side must be the binomials #+ 2, #4-3 and
the problem is reduced to finding numbers ¢ and b for which
the equation

2u—7 o« n
42 +162+15  x+3 ' a3

2

(2)

is an identity.

Suppose that such numbers exist, i.e. that equation (2), in
which ¢ and b denote definite numbers, is an identity. Then
both sides assume the same numerical values for every value
of x other than —2£ and than —3.

Let us multiply both sides of equation (2) by 4a?+16x+15

20—T7 = 4a (x—i— %)—1—4() (x—{—;) (3)

Equation (3) is also true for every value of z other than —3%

or —2. And we know that if two first degree functions of variable

x assume equal values, even if that occurs only for two different

values of x, then they have equal coefficients of # and equal
constant terms (i.e. they are identically equal).

Consequently
da-+- 4b= 2,
(4)
6a+10b = —7,
and therefore
a=3, b= —E. (5)
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Substituting these values in equation (2) we obtain
25—17 3 -3
4+ 162+15 43 + x+3- ©)

It does not yet follow that equation (6) is an identity; we
have only proved that if there exists a solution
of the problem, then equation (6) constitutes that solution.
We must still verify whether the two sides of equation (6) are
indeed identically equal. For this purpose we might transform
identically the right-hand side of (6), i.e. reduce its components
to a common denominator, perform the addition and simplify
the result; we should then obtain the same fraction as the one
appearing on the left-hand side of (6). Such a procedure, however,
is unnecessary, since it can be replaced by the following short
argument:

If @ and b have values (5), equations (4) are valid; then both
sides of equation (3) are linear functions of x with identical
coefficients and identical constant terms, and consequently
equation (3) is valid for every value of z. Dividing both sides
of (3) by 4(z+3)(x+32), we obtain (for ¢ =3 and b= —3)
equation (6); thus equation (6) is valid for every value of x other
than —% or —%, i.e. equation (6) is an identity.

REMARK 1. The values of @ and b can also be found in the fol-
lowing manner. Equation (3) must be valid for every value
of z, ie. unlike equality (2), also for z = —% and 2 = —3.
Substituting these values in equation (3), we immediately obtain
—12 = —4g and —10 = 4b, whence a =3, b = —3.

REmMaRk 2. The theorem stating that two first degree functions
which assume equal values for two (different) values of 2 have
coefficients respectively equal is a particular case of the fol-
lowing theorem:

If two nth degree polynomials in x are equal,

a@+a 2"+ .. ta, x+a, = bx"+ba" 1+ ... +b, . x+b,
for n+1 different values of x, then the corresponding coefficients

- of those polynomials are equal, i.e. the equality is an identity.

The above equation can be replaced by

(@g—Dbg) 2"+ (@ —by) 2™ 1+ ... + (¥p_1—bp_1) T+ (@y—bs) =0
and we obtain the following theorem:

If an nth degree polynomial in = assumes the value 0 for n-4-1
different values of  (in other words: if it has n-+1 different roots),
then all the coefficients of that polynomial are zeros, i.e. the poly-
nomial is identically equal to zero.
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This theorem can be proved as follows. Assume that the theorem
is valid for polynomials of degree m—1. Let the polynomial

Cot" ¢, 2" 1+ ... HCp Xy (7)
have n--1 different roots x;, @,, ..., Z,4;. We can then determine

the numbers d;, dy,...,d,—, in such a way that the following
identity holds:

Cot" 2"t L. FCp_ i@ H-Cy
= (x—,) (dg2" 1 +-d 2" 2+ ... +dp ot +d,_y). (8)
Indeed it is sufficient to find such values d,, d;, ..., d,—; that
the coefficients of the identical powers of = will be the same on

both sides of equation (8), i.e. that dy, d,, ..., d,_; will satisfy
the system of equations

o = dy,
¢ = dy—dyz,
¢y = dy — dy2,,

........... (9)

Cn = —lp_1%;- .
From the first n—1 equations of system (9) we obtain success-
ively
do = Cos
dy = ¢;+dg; = ¢1+-coy
dy = Cy+dy2; = Ca+0,%;+Ce2],
Auy = CuyH oy = Cp 1+ Cpoy+ ... FC12F 2cp2} L.
The above values satisfy also the last equation of system (9),
since by substituting the value of d,_, in this equation we get
Cp = — (Cay FCaa®i+ ..o 02720217 2y
or
c®i e @l I+ . e+, =0,
which is valid since #, is a root of polynomial (7).
Identity (8) implies that numbers z,, 23, ..., 4+, Wwhich
by hypothesis are roots of the polynomial appearing on the left-

hand side of this identity, are also roots of the polynomial on
the right-hand side, and since the factor x—x, is not equal to
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zero for any of the n numbers z,, 3, ..., %,4,, those numbers
are the roots of the polynomial dgz"14d 2" 2+ ... +d, ,x+d, ,
of degree n—1. Thus by the assumption we made at the begin-
ning, dy=d, =...=d, , =d,_; =0, and therefore equations
(9) give

We have proved that if the theorem is valid for polynomials
of degree n—1, then it is also valid for polynomials of degree n.
Clearly, the theorem is valid for polynomials of degree zero,
since, if the polynomial ¢, is equal to zero for a value z = 2,
it means that ¢y = 0.

By the induction principle, we infer from the above two pre-
mises that the theorem is valid for polynomials of any degree.

REMARK 3. In the above arguments we used the notion of
identical equality of two algebraic expressions. This notion
is usually defined as follows:

Suppose we are given two expressions A(x,y,...) and
B(z,y,...) containing the same variables z,y,... We say
that A(z,y,...) and B(z,y,...) are identically equal or that
the equation A(x,y,..) =B(z,y,...) is an identity if for
every system of numbers z;,¥y,,... for which one of these
expressions has a definite value the other expression also has
a definite numerical value, both values being equal, i.e. 4 (x,,
Yo ---) = B(%g, Yg, -..). Two expressions identically equal to
a third are of course identically equal to each other. Passing
from one expression to an expression identically equal to it is
called an identical transformation of the given expression.

It is often convenient to use a more general notion of identity.
Suppose that we are given two expressions, 4 (z,y,...) and
B(z,y, ...), and a set Z of numbers. The equation 4 (z, y, ...) =
= B(z, y,...) is said to be an identity in the set Z if it is valid
for any values of z, y, ... belonging to the set Z. An equation
which is an identity in one set of numbers is not necessarily
an identity in another set. For example the equation

log xy = log x+log ¥

is an identity in the set of positive numbers but is not an identity
in the set of all real numbers, since, if x << 0 and y < 0, then
the left-hand side of this equality has a numerical meaning and
the right-hand side has not. Similarly, the equation

Vab = ya X yb

is an identity in the set of non-negative numbers, and the equation
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a?—1

=a-+b

a—1
is an identity in the set of all real numbers different from 1.
27. We shall approach the problem in a more general manner
1
and show that for any natural k we can find ¥+ — given x+ L .
x x

It will be observed that

1 ] 1 1
e e o)
X X X X

whence
1 m, L ny 1 m—n i
Zmtn (x T x_"') (1 T —x;) N (x xm" ) ' 1)

1
Equation (1) allows us to reduce the evaluation of x"—i——z to
a

xm+n+

the evaluation of expressions of the same form but with a lower
exponent. Formulas of this kind are called recursive formulas.
If n =1, (1) gives

1 1 1 1
amtl e (-TL'M—F ﬁ) (x -+ —xf)— (xm_l‘!" P ) ) (2)

and if n = m, we obtain

L xim — (a;’"—l— Lm)“—z. . (3)
X

1
We shall use the above formulas to find x13-{—xlm given x—l—; =a.

By formula (3)
1

1 2
.'L'2—|———2 == (z—l——) -——-2 = a2—2’
x x
1 14?
af;'}“? == x2+'a? —2 = a4—4a2—|—2
By formula (2)
x3-|——1§ = (x2_|_,1_2) (x _|_l)__(x_|_,1_) — a3—3a;
x x x x
hence by formula (3)

2
x“—l—is = (x‘*—l— i) —2 = a%—6at+-9a2—2.
x a3
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Then, using formula (1), we obtain

1 1 1 1
"”ff(”’*?) (+—)‘(+—)

= (a*—4a?+2) (a®—3a)—a = a’—Tab+1403—Ta,
and finally

1 1 1 1
= () o ) 3)

= (a’"—"7a%4-140%—"7a) (a®—6a*+9a%—2)—a
= a'3—13a'1+4-65a°—156a71182a5—91a%+-13a.
28. If numbers y2, V3, Y5 were terms of an arithmetical
progression with difference d, they would differ from one another

by a multiple of number d, i.e. there would exist integers m and =,
different from O and such that

V3—V2 =md,
V5—v2 = nd.
Eliminating d, we should obtain
m(V5—y2) = n(V3—v2),
whence
my5—ny3 = (m—n)y2.
Squaring both sides, we should obtain
5m2++-3n2—2mny15 = 2 (m—n)?
and finally
5n2+-3n2—2 (m—n)?

15 =
14 2mn

This equality, however, is contradictory since the left-hand
side is an irrational number whereas the right-hand side is a ra-
tional number. Numbers y¥2, ¥3, ¥5 thus cannot be terms of
the same arithmetical progression.

29. Since 1 <a <2, ¥ (ea—1) denotes a definite number, and
0 <y (a—1) < 1. Further, we have

a+2vy(a—1) = a—1+2y (a—1)+1 =[y (a—1)+1F,
a—2y(a—1) = a—1—2y (a—1)+1 =[¥ (a—1)—1F.
The expression '

u = V[a+2v(a—1)]+V[a—2v(a—1)]
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thus has a definite numerical value, namely
u= [V@—1D)+1|+V(@—1)—1| = Y@a—1)+1+1—y(a—1) = 2.
30. Hint.
Vie+24—10y (@z—1)] = Y [V(z—1)—5] = [V (z—1)—5];

the expression y has a constant value equal to 5 if 1 <<z <{26.

81. Method I. First, we shall prove that for any natural =»
there exist natural numbers a and b such that

1—=v2)" =vya*—vy (2b?),

a?—2b2 = (—1)".

Proof. For n =1 the theorem is valid, namely a =b = 1.
Suppose that the theorem is valid for a certain »; then

(1=v2)" = (1—y2)"(1—v2) = [Va*—V (26*)](1-V2)
= (@a—b¥2)(1—v2) = (a+2b)—(a+b)V2
= V[(a+2b)*]—V[2(a+Db)]
= Vai—V (2b3),

where a, and b, are natural numbers and
a?—2b% = (a+20)2—2(a+b)2 = —a®42b°
= —(@®—25%) = (—1)™,

Thus the theorem is also valid for the exponent n+1. Hence we
infer by induction that the theorem is valid for any natural n.

The theorem involved in the problem is an immediate conclusion
from the theorem proved above; for, if # is an even number,
then

and

(V21" = (1—V2)" = Va*— v (2b?),
where @ and b, and therefore also a? and 252, are natural numbers
and a?—2b% = 1. If n is an odd number, then

(V2—1)" = —(1—V2)" = V(20*)—Va?,
where 262 and a? are natural numbers and
202—a? = — (a2—20%) = — (—1) = 1.
Method II. Since

o (V2" (V212 (V2D (V2-1)°
2 2

(v2—-1)

we have

H

(V2—1)" = ym—Vk,
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where
_[oztyr vz P2 (v2—1en2
N 2 o 4 ’
- [<v2+1)"—w2—1>"]2_ (V241 (Y212
N 2 o 4 ’

and consequently
m—k=1, ie. k=m—1.

It remains to prove that m is a natural number. According to
Newton’s binomial formula we have

(217 = v (F) 2 () v (5) vare

(v21y = 2= () v (5) v (g) ovare
and thus

241)" + (Y2—1)
ym=PEHVHO2ZD oy (3) var=et .

The above equality implies that, if » is even, ym is a sum of
natural numbers, whence ym and m are natural numbers. If
n is odd, then yYm is a sum of numbers of the form ay2, where a
is a natural number; consequently ym is the product of a natural
number and y2, whence m is a natural number. The theorem is
thus proved.

We shall give two more solutions of the problem, not so concise
as the above two but having the advantage of suggesting them-
selves quite naturally.

Method I1I. We shall use the induction method. The theorem
stating that for a natural n we have the equality

(V2—1)* =m—y(m—1) (m—natural number)

is valid if n = 1; in this case m = 2. Suppose that it is valid for
a certain natural n; then

(V2—1) = (y2—1y"(Y2—1) = [(Ym—V (m—1)](Y2—1)
= V(2m)+V (m—1)—V[2(m—1)]—Vm
= VIV 2m) +V (m—1)E—y/{V[2(m—1)] + ym}®

and .
[V 2m)+V (m—1)P—{y[2(m—1)] + Vm}?
= 3Bm—142y[2m(m—1)]}—{3m—2+2)/[2m(m—1)]} = 1.
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We shall prove that [yV2m—-y (m—1)]? is a natural number.
Since

v @2m) +V (m—1)F = 3m—1+2y[2m(m—1)],

it is sufficient to prove that 2m(m—1) is a square of a natural
number, It will be observed that (y¥2—1)" is a number of the
form ay2-+-b, where a and b are integers, since each term of the
expansion of (¥2—1)" according to Newton’s formula is either
an integer or the product of an integer and y’2. Consequently,
by the induction hypothesis

ym—y (m—1) = ay24-b.

By squaring, we obtain
2m—1—2y[m(m—1)] = 2a2+b2+2aby2.
It follows that
—2)/[m(m—1)] = 2aby2, 2m(m—1) = 4a2?,
and thus the number 2m (m—1) is the square of the natural number
2%6&7[1; have shown that the theorem is valid for the exponent

n-+1 if it is valid for the exponent n. And since it is valid for
n = 1, it is valid for any natural ».

REMARK. In the end part of the above proof we assumed the
following theorem:
If

A+By(C = K+LyM,
where A, B, C, K, L, M are rational numbers, L # 0, and M is
not a square of a rational number, then
A=K and By(C=LyM.
The proof of this theorem is simple. The equality assumed implies
that
ByC =K—A+LyM.
Hence
B = (K—A4P+2(K—A)LyM+ LM,
2(K—A)LYM = B*C—L*M—(K—A).
The right-hand side of the last equation represents a rational
number, and thus the left-hand side must also be equal to a ra-

tional number; under the assumption made regarding L and M,
this occurs only for K = 4.
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Method IV is actually a slight modification of method II. The
equality
(V2—1)" =¢ym—vy(m—1) 1)
is regarded as an equation with the unknown m. We solve this
equation:
ym = (V2—1)"+¥(m—1),
m = (V2—1)""+2(y2—1)"Y(m—1)+m—1,

1—(v2-1)" _ 1—(v2-1)" (v2+Lr
2(v2—-1y 2(v2=1)" T (v2+1)"

Vim—1) =
= U2~ (V217

m—1= %[<v2+1)"—(v2—1)"]2,

1

m =

[(v2+1)"—(v2—1"*+1

[(V2+1)"+ (v2—1)"—2]+1

— = e

= T Lv241r+ (v2—1p.

Substituting in equation (1) this value of m we find that it
satisfies that equation. The proof that it is a natural number has
been given in method II.

§ 3. Equations

32. The given system (1) can be regarded as a system of equa-
tions with unknowns z, y, z. We are to show that if system (1)
is satisfied by certain numbers z, y, z which are not all equal to
zero, then the coefficients a, b, ¢ satisfy equation (2).

For this purpose we can follow the usual procedure of solving
a system of equations of the first degree, i.e. eliminate the un-
knowns successively, e.g. by the method of addition and subtrac-
tion.

Let us rewrite (1) as

—z+ay+az = 0,
bx— y-+bz =0, (3)
cx+ cy— z=0.
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Eliminating y first from the first and the second equations
and then from the second and the third equations of (3), we
obtain the system

(@b—1)z+ (a+ab)z = 0,
(be+c)x+ (be—1)z = 0. (4)

Multiplying equations (4) by — (bc—1) and by a-ab respec-
tively and then adding them, we eliminate z:

(be+-¢) (@+ab)z — (ab—1) (bc—1)z = 0.
Performing the operations, we obtain
(ab+bc+ca+-2abc—1)x = 0. )

When we eliminate x and z or  and y from system (3), we obtain
similarly

(ab+bc-+ca+2abc—1)y = 0, (6)

(ab+bec+ca+-2abc—1)z = 0. (7)

Since numbers x, y, z satisfy equations (1), they satisfy also
equations (5), (6) and (7) and, since at least one of the numbers
2, y, z is different from zero, the bracketed expression in equations
(5), (6), (7) must be equal to 0, i.e.

ab-+-bec+ca-+2abc—1 = 0.
This is what we were required to prove.

REMARK 1. As we know, a system of linear equations has one
unique solution, has infinitely many solutions or has no solu-
tions (is inconsistent).

System (1) is a system of homogeneous linear equations, i.e. all
the terms of the equations are of the first degree with respect
to z, y, z. A system of this kind is certainly consistent since it
has a zero solution: z = 0, y = 0, z = 0. If the solution (0, 0, 0)
is unique, the equations are called independent. If there exists
a solution (z, y, 2) different from (0, 0, 0) then there are infinitely
many solutions, since, besides the solution (x, y, 2), every group
(kz, ky, kz), where k is arbitrary, is a solution of the system.
The equations are not independent.

We have proved above that if the system of equations (1) has
a non-zero solution, then equation (2) holds.

We shall show that the inverse theorem is also true:
If equation (2) holds, then system (1) has a non-zero solution.

Accordingly, system (3), and thus also system (1), are equivalent
to the system
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(@b—1)z + (a-t+ab)z = 0,
(be+-¢)x + (be—1)z = 0, (8)
brx—y+bz =0,

consisting of equations (4) and the second equation of system (3).
Indeed, if equations (3) hold, then equations (8) also hold; con-
versely, equations (8) imply the first and the third equations
of system (3) if from the first and the second equations of (8)
we subtract the third equation, having first multiplied it once
by a and once by c.

Now, if equation (2), which can be written in the form

(be+c) (a+ab) — (ab—1) (bc—1) = 0,
is satisfied, then we can satisfy the first two equations of (8) by
setting, say,
z = a+ab, z=1—ab;
substituting these values in the third equation of system (8), we
shall obtain y = b-+ab.

If at least one of the numbers a-ab, 1 —ab, b-+ab is different
from 0, then they constitute a non-zero solution of the system
of equations (8).

If they are each equal to zero,

at+ab=0, 1—ab=0, b+ab=0,

then ¢ = —1, b = —1; in this case system (8) assumes the form
O0Xz+0x2z=0,
OXxz—(c+1)z=0,
—x—y—2z =0,

and it is obvious that this system has non-zero solutions, e.g.
=1, y=—1,2=0.

The theorems proved above—the direct one and the inverse
one—can be jointly expressed as follows:

The necessary and sufficient condition that the system of equations
(1) have non-zero solutions is equality (2).

RemARK 2. The above theorem is a particular case of an import-
ant theorem of algebra which states that a system of » homogene-
ous linear equations has non-zero solutions if and only if the
so-called determinant of the system is equal to zero. In our case
this determinant is

-1 a @
4= b —1 b|=abtbctca+t+2abc—1.
¢c ¢ —1
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33. Let us recall the definition of the absolute value |I| of a real
number I:
if 1>0 then |l|=1,
if l<0 then |[l]= —I.
In order to solve the equation
o] +le—1|+[z—2| = a, 1)
it is best to replace it with an equation which does not contain the
symbol of absolute value. We shall seek the solutions of the equa-

tion successively in the intervals (—o0, 0), (0, 1), (1, 2), (2, o0).
1. If # <0, then equation (1) assumes the form

—z—(x—1)—(x—2)=a, ie. —3z+3=a.
Hence
3—a
T =

The condition x < 0 is satisfied if @ > 3.
2. If 0 <z <1, equation (1) assumes the form
z—(@—1)—(x—2) =a, ie. —2z+3=a.
Hence
r=3—a.
The condition 0 <z <1 is satisfied if 2 <a <3.
3. If 1 <z <2, equation (1) assumes the form
ztzr—1—(x—2) =a, ie. z+1=a.
Hence
r=a—1.
The condition 1 <z <2 is satisfied if 2 <a <3.
4, If 2 >2, equation (1) assumes the form
zt+zr—14+2r—2=a, ie. 3x—3=a.
Hence

__a+3

3
The condition x > 2 is satisfied if @ > 3.
Let us list the results obtained:
If a <2, equation (1) has no solutions.
If a =2, equation (1) has 1 solution: x=1.
If 2 <a < 3,equation (1) has 2 solutions: z = 3—a,
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If a >3, equation (1) has 2 solutions: z = (3—a)/3,
z = (a+3)/3.
The dependence of z upon a is represented graphically in Fig. 4.

Fi1a. 4

34. On stagnant water, the motor-boat would reach the ball
after another 15 minutes, i.e. at 9:30. It will be the same on
the river because the current ‘“carries” the motor-boat at the
same rate as it carries the ball. The motor-boat overtook the
ball at 9-30.

If one did not hit upon the above simple reasoning, it would
be possible to solve the problem by means of equations.

Seemingly there are too few data in the problem because we
are told neither the velocity proper of the motor-boat, ie. its
speed on stagnant water, nor the velocity of the river current.

In spite of that let us denote by « the number of hours elapsing
between 9 o’clock and the moment at which the motor-boat over-
took the ball. Let us introduce the velocity « of the current expres-
sed in kilometres per hour and the velocity v of the motor-boat in
stagnant water also expressed in km/hr. To form an equation we
must express by means of these quantities the distance covered
by the ball and that covered by the motor-boat.

In the course of « hr the ball travelled zu km with the current
of the river. '

The motor-boat sailed against the current for the first quarter
of an hour; its velocity was then v—u km/hr and the distance
it covered was therefore 1(v—u) km. For the remaining x—4 hr
the motor-boat sailed with the current, and thus with a velocity
of u+v km/hr; it covered (x—3)(x+v) km, travelling first the
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4 (v—u) km back to the starting point and then sailing the zu km

covered by the ball down to the point where it was overtaken

by the boat.
Thus

(x —%) (u4v) = i—(v—uH—xu.

When we simplify this equation by opening the brackets
and grouping the terms containing x on one side and the remaining
terms on the other side, we obtain the equation

1

TV = —0.

2

Since the specific velocity v of the motor-boat is certainly not
equal to zero, we can divide both sides of the equation by » and
obtain

Xr=—.

2

Thus the motor-boat will overtake the ball in 1 hr from the
moment it started, i.e. at 9-30.

The unknown quantities » and v have proved to be needed
only to form the equation. In the calculations they disappeared,
i.e.—as we say in mathematics—they were eliminated.

35. If the roots of the equation
22+ (m—2)z—(m+3) =0 (1)
are numbers z, and x,, then
23+ (m—2)w,— (m-+3) = 0,
&3+ (m—2)xy— (m+8) = 0.
Adding these equalities we obtain
x3+a3 + (m—2) (2, +2,)—2(m-+3) = 0.
Hence
v3fad = — (m—2) (2, +2,)+2 (m-3),
and since z;+z, = — (m—2), we have
22 4ad = (m—2)2+2(m+3) = m2—2m-+10 = (m—1)24-9.

The expression (m—1)2-+9 has its minimum value when m = 1.
Equation (1) then has the form 22—z —4 = 0; its roots are
o — 1+vy17 o — 1—y17
o2 2
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viT\*  (1—v17)*
() =

and

et = (11

REeMARK. If we take only real numbers into consideration, then
a quadratic equation has roots if and only if its disecriminant
A is non-negative.

In our problem the discriminant of equation (1) is

A = (m—2)2+-4(m+3) = m3+16

and is positive for any value of m; thus equation (1) always has
two roots.
If we pose the same problem for the equation

2 —(m+2)z+ (m+5) = 0 @)

for example, then a procedure analogous to the preceding one
gives
itaf = (m+1)2—T7.

The expression (m-1)2—7 has its least value when m = —1;
that least value is —7. This result seems false since the sum of
the squares z3-+a3 cannot have a negative value.

The point is that the discriminant of equation (2) is

A = (m+2)*—4(m+5) = m*—16,

and is non-negative only if m < —4 or if m >4. The equation
has roots only for such values of m; for other values of m (includ-
ing m = —1) there are no roots.

It is thus necessary to seek the least value of the sum of the
squares of the roots of the equation, equal to (m--1)2—7, under
the assumption that [m| >4.

Now if m increases from — oo to —4, the value of the expression
(m—4-1)2—7 decreases from oo to 2; if m increases from 4 to oo,
the value of the expression increases from 18 to co.

Hence the conclusion that the sum of the squares of the roots
of equation (2) is the least when m = —4; then equation (2)
assumes the form 2%42z-+1 =0 and has roots z;, =z, = —1;
we then have 22423 = 2.

The position is different if we consider the quadratic equation
22+ px-+q in the domain of complex numbers; then the roots al-
ways exist and—whether they are real or imaginary—the follow-
ing formula is valid:

x3taf = (2, +2,)2 2, 2, = p—2q.
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If the coefficients p and ¢ in the equation are real, then according
to this formula 23422 is also a real number, even if x, and x, are
complex numbers.

E.g., for equation (2), in which m denotes any real number,
the sum of the squares of the roots is equal to the real number
(m—+1)*—7 and has its least value —7 when m = —1. For this
value of m equation (2) is of the form z2—x -4 = 0; its roots are

_ 144y15 1—iy15
— ol —

and 1z, =-

E71

and it can easily be verified that

14+iv15\* | (1—iy15)®
o ()
36. Consider the left-hand side of the equation
(z—a) (z—0) +2 (e—b) (v—d) = O, (1)
i.e. the quadratic function
(r—a)(@—c)+2(x—b) (x—d). (2)

We know from algebra that a quadratic function has two real
roots (in other words two zeros) if and only if it assumes both
positive and negative values. Now if = is greater than any of
the numbers, a, b, ¢, d, then each of the differences x—a, z—b5,
x—c, x—d is positive and function (2) has a positive value.

It is easy to indicate a value of z for which this function is
negative; e.g. if x = b, it has the value

(b—a)(b—c),

which is negative, because by hypothesis b—a > 0 and b—c¢ < 0.
The theorem is thus proved.

REMARK 1. It can be seen from the above proof that, instead
of making the assumption a < b < ¢ < d, it is sufficient to assume.
that e < b <ec.

Similarly, it would be sufficient to assume that b <c¢ < d,
since then, by substituting the value z = ¢ in (2), we should
obtain a negative number (c—b)(c—d). Moreover, it will be
observed that the value of expression (2) remains the same if
we interchange the letters @ and ¢, and also if we interchange
the letters b and d. We can therefore state a theorem which is
stronger than the preceding one:

If either of the numbers b and d lies between the numbers a and

c or if either of the numbers a and c lies between the numbers b and d,
then equation (1) has two real roots.
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This theorem remains valid if we replace in equation (1) the
coefficient 2 by any positive number %; the above proof requires
no alterations. It will be different if, instead of the coefficient 2,
we take a negative number. We suggest that the reader should
investigate this case and find a sufficient condition for the roots
of the equation to be real.

REMARK 2. Another, considerably longer, proof of the theorem
can be derived from the consideration of the discriminant of
equation (1):

A = (a+c+2b-+2d)2—12(ac-+2bd).

Following the pattern of the solution of problem 64, we can
easily show that if either of the numbers @ and ¢ lies between the
numbers b and d or if either of the numbers b and d lies between
the numbers a and ¢, then 4 > 0.

87. Method I. Suppose that equations (1) have a root in com-
mon, i.e. that there exists a number 2 for which equalities (1)
hold. From (1) we must infer equality (2), in which number « does
not appear, i.e. we must eliminate the variable x (cf. problem
32).

Subtracting equations (1) we obtain

(m—p)z+(n—q) = 0. ©3)

@) If m—p = 0, then it follows from (3) that n—¢ = 0; con-

sequently equation (2) is satisfied, because each of the terms on

the left-hand side is equal to zero.
(ii) If m—p # 0, then equation (3) implies

__"rq
) r=— (4)

We substitute value (4) in one of the equations (1), say in the
first of them, and obtain

2
n—gq n—q
( ) —m +n =0,

m—p

whence
(n—g)*—m (n—q) (m—p) +n(m—p)* = 0;
finally we have
(n—q)*— (m—p){np—mg) =0,
i.e. the required condition (2).

REMARE. In eliminating the unknown x we have digtinguished
two cases. It is possible, however, to perform the elimination in such



Equations 55

a way that no distinctions are necessary; that is preferable because
in mathematics we always strive for arguments that are as general
as possible.

Multiplying both sides of equation (3) by x, we obtain

(m—p)a*+(n—g)x = 0, (5)
and from the first of the given equations (1) we have
2?2 = — (mx+mn). (6)

We substitute the expression for 22 from formula (6) in equation
(5):
—(m—p)(mz—+n)+ (n—g)z = 0.
Hence
[—m(m—p)+ (n—q)]Jz—n(m—p) = 0. (@)

Now we eliminate x from the linear equations (3) and (7).
Accordingly we multiply equation (3) by [—m(m—p)+ (n—q)]
and equation (7) by — (m—p) and obtain by addition:

(n—g)[—m(m—p) + (n—g)] +n(m—p)* = 0.
Hence :
(n—q)*— (m—p)[m(n—q)—n(m—p)] =0
and finally '
(n—g)*—(m—p) (np—mg) = 0.

Method II. If one of the roots @, x, of the first equation of
(1) is equal to one of the roots of the second equation, then one
of the differences x;,—xy, x,—a3, 2,—2,, 2,—2, is equal to zero.
This holds if and only if

(01 —3) (T — ) (T, —24) (XTa—24) = 0.

If we perform the multiplication on the left-hand side of this
equality and make use of the relations between the coefficients
and the roots of equations (1), namely z,+x, = —m, 2,2, = n,
T3+xy = —p, z3x, = q, we shall obtain

(n—g)*— (m—p) (np—mg) = 0.

Method III. If one of the roots z,, x, of the first equation of
(1) is at the same time a root of the second equation, then one
of the numbers 2?-+px,+q, 2%+ px,+q is equal to zero, and con-
sequently”

(a3 +pz,+q) (3+pry1+-q) = 0.
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Performing the multiplication on the left-hand side and taking
into account the relations »,+4-x, = —m,xx, = n, we obtain

(n—q)*—(m—p) (np—mgq) = 0.

REMARK. The theorem proved in this problem states that equa-
lity (2) is a necessary condition for equations (1) to have a root
in common. It can easily be shown that it is also a sufficient con-
dition, i.e. that the inverse theorem is also true: if equality (2)
holds, equations (1) have a root in common.

Indeed, if we substitute in equation (2) m = — (z,4%,), »
= X%y, P = — (¥3+2,;), ¢ = x37,, we shall obtain (see method
II above):

(2, —3) (X3—3) (2, — ) (x3—2g) = O,

which implies that one of the differences z;—x3, z,—a3, ,—2,,
x,—x, is equal to 0, i.e. one of the roots of the first equation of (1)
is equal to one of the roots of the second equation.

The above argument assumes the existence of the roots of
equations (1), and is valid in the domain of complex numbers.
If we consider only the real roots of equations (1) with real co-
efficients, the theorem must be modified. Although it follows from
(2) that one of the roots x,,z, is equal to one of the roots
Z,, &y, yet those roots might be imaginary numbers. We know,
however, that the roots of each of the equations (1) would then
be conjugatet complex numbers. Thus if we had, for instance,
z3 = @, then the conjugate numbers z,, x, would also be equal,
xz, = z,, and the given equations (1) would be identical.

Thus, in the set of real numbers, the inverse theorem under
consideration reads :

If equality (2) holds and equations (1) are not identical, then
those equations have a common root.

38. The problem is this: from the assumption that the tri-
nomials

2?+mz+n and 2?4-pztq 1

have real roots such that the first pair of roots separate the other
pair we are to derive the relation which then holds between the
coefficients m, n, p and gq.

1 The equation 2®+mxz+mn = 0 with real coefficients has imaginary
roots if m*—4n < 0; those roots are conjugate complex numbers
—mt1y (4n—m?)
2

Ty,0 =
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Denote the roots of the first trinomial by z,, z, and the roots
of the second trinomial by x5, x4. Let z; lie inside the interval
(%, z,) and =z, outside this interval.

Method I. We consider the differences between the roots of one
trinomial and those of the other.

By hypothesis the differences zg—=, and x3—x, have opposite
signs and the differences z,—x, and z,—x, have identical signs,
whence

(y—2y) (25—2y) <O  and  (z4—2y) (3y—w) > 0.  (2)
Since z,+x, = —m, x,x, = n, we have
(X3—y) (¥g—y) = 23— (%, 4,) V32, T, = 5 +-mag+n,
(T4—2,) (T4—Tp) = 22— (X, +25) Xy +2, 2, = 2d+M2+10.
Inequalities (2) assume the form
22tmas+n <0 and  aidmzgdn > 0. (8)
It follows that
(a3-+may+n) (2§ +maytn) < 0. 4)
Let us perform the multiplication on the left-hand side of

inequality (4) taking into account that z;t+z, = —p, 232, = ¢,
and aital = (x3-+2y)°—2x4w, = p®—2¢9. We shall obtain

(-4 may+-n) (a3+ mey )
= 230G+ M2y 2y (V3 +4) +MP2 T4 (W54 23) +mn (25 4-24) +-n?
= ¢*—mpq+m?q+n(p*—29) —mnp-+n?
= (n—q)*+mq (m—p)+np(p—m)
= (n—g)*+ (m—p) (mg—np).

Inequality (4) assumes the form

(n—q)*+ (m—p) (mg—np) < 0. (5)
We have obtained the following theorem:
If the pairs of the roots of trinomials (1) separate each other,

then the coefficients of these trinomials satisfy condition (5).

Method II. We shall apply a well-known theorem on the sign
of the quadratic function

f(@) = 2®+mz+n,
which reads:
If the function f(x) = 22+max-+n has real roots z, and x, and

%, < %, then for &, < x < x, we have f(x) <0 and for x < x,
or x > x, we have f(x) > 0.
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Thus if number z; lies inside and number x, outside the in-
terval (z;, #,), then the first of the values

f(@g) = a3+mastn, f(z,) = 2f-+mzy+n (6)
is negative and the other positive, whence
(23-+mas+n) (v3+mzs+n) <O,

which, as shown in method I, leads to condition (5).

Fia. 6

Figure 5 illustrates the respective positions of the parabolas
which are the graphs of the given quadratic trinomials

y=a*+maz+n and y=2’+prtg
with mutually separated roots.

ReMARK 1. We have proved that if trinomials (1) have real
roots and if the pairs of those roots separate each other, then in-
equality (5) is satisfied; this inequality thus gives a necessary
condition for the pairs of the roots of trinomials (1) to separate
each other.

We shall prove that this condition is sufficient, i.e. that the
inverse theorem holds:
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If inequality (5) holds, then trinomials (1) have real roots and
the pairs of the roots of those trinomials separate each other.

Proof. Substitute in inequality (5) the values
P = —(w3+2,), ¢ = 252,

We obtain inequality (4), which, by formulas (6), can be writ-

ten in the form
f(x3) f(za) <O. (7)

From inequality (7) we shall first draw the conclusion that
the roots z3 and z, are real numbers.

Suppose that z3 and z, are imaginary numbers. We know from
algebra that, if the roots of a quadratic function are imaginary,
then they are conjugate complex numbers, i.e. that

23 = a+iff, 4= a—iff,
where o and f are real numbers and ¢ denotes the imaginary
unit (2 = —1).
Let us find the values of the function f(z) = 2®+ma+n by
substituting for x the numbers 23 and =z,

f(@g) = (a+if)*+m(atip)+n
= (e2—[2+mo+n)+i(2af+mp),
f(zg) = (a—if)*+m(a—if)+n
= («@—[2+ma—+n)—i(20.5+mp).
We can see that if 23 and «, are conjugate complex numbers,
then f(z,;) and f(z,) are also conjugate complex numbers. A product

of conjugate complex numbers is a non-negative real number,
as can be seen from the equality (a--b¢)(a—bi) = a®+b%; con-

sequently
J(xs) f(zg) >0. 8)

The assumption that x; and z, are imaginary numbers has led
to inequality (8), which contradicts inequality (7); thus the
numbers z3 and x4 are real.

Therefore it follows from (7) that f(x3) and f(z,) are real numbers
with opposite signs. Consequently the function f(x) = 2*+mx+n
has real roots z; and z,, one of them lying between 3 and x, and
the other outside the interval (w3, z,), which is what was to
be proved.

Finally we have the following theorem:

A necessary and sufficient condition for the trinomials
w2+mz+n and a2-+prtq
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(m,n,p, g—real numbers) to have real and mutually separating
pairs of roots is the inequality

(n—q)*4 (m—p) (mg—np) > 0.

ReMaRk 2. If the pairs of numbers (z,;, 2;) and (x4, 2,) sepa-
rate each other, then, according to which of the numbers z;, z,
lies between the numbers z; and 2,, either the differences 23—z, ,
x3—x, have opposite signs and the differences z,—=z,, z,—=z,
have identical signs or wice versa. In both cases

(Tg—,) (T3—25) (X4 —2,) (5 —2,) < 0. 9

Conversely: if inequality (9) holds, then one of the products
(x3—2,) (xg—x;) and (x4—zx,)(xs—2,) is positive and the other
is negative; hence the pairs (z,, x,) and (3, z,) separate each
other.

Condition (9) can be replaced by the following equivalent
condition:

ot :M <0. (10)
Ty—Ty * Xy—T,y

Inequality (9) or (10) thus expresses a necessary and sufficient
condition for the pairs of numbers (%, x,) and (x4, x4) to separate
each other.

The expression appearing on the left side of inequality (10)
plays a considerable part in mathematical considerations: it is
called the cross-ratio of an ordered quadruple of numbers z,, x,, 2,
z, and is denoted by the symbol (z,, z,, x5, 2,).

Thus '

Tg—®, Tyg—T,

(21, x5, X3, 74) = .
DIR TR py—my w1y

Let us take, on the number axis, points 4., 4,, 45, 4, with
abscissae x,, Z,, T3, Z4.

The cross-ratio of four numbérs (z,, z,, 23, ) is also termed
the cross-ratio of four points A,,Ad,, A3, A, and denoted by
(Ay, 4y, A5, Ay).

Since the differences of abscissae x3—x,, T3—,, T;— 2, T4—T,
are the relative measures of the vectors 4,4;, 4,43, 4,44, 4,4,
lying on the axis (cf. problem 66), we have:

A4y | A4,
A4, A4,

Thus the cross-ratio (4,, 4,, A3, A,) is the ratio of the ratios
in which the points 43 and A4, divide the directed segment 4,4,.

(Al’ Az’ As, A&) =
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If (4,,4,, 45, 4,) <0, the pairs of points (4,,4,) and
(43, A,) separate each other.

If (4,,4,,45,4,) >0, those pairs do not separate each
other, i.e. either one pair lies within the other, or the two pairs
lie outside each other.

In the partlcular case of (Al,Az,Aa, J = —1, ie. if the
A,A

division ratlos and =% are opposite numbers, we say
A2A3 Aq4,

that the pairs (4,, 4,) and (43, 4,) separate each other harmo-
nically or that the quadruple of points A,, A,, A3, A4 is harmonic.
This case is shown in Fig. 6, in which

X 0 X o X X4
A] b A3 Az A‘
Fia. 6
Ady A4,
A2A3 - ’ A2A4

39. Method I. We know from algebra that the numbers z,,
%y, ¥z are the roots of the equation x3-+ma®+tnx+p =0 if and
only if the following conditions are satisfied :

T, +2yt+23 = —m,
T, Xyt Ty X3 +X3T, =M,
X, Tyg = — P.
The numbers a, b, ¢ are thus the roots of the equation
8—ax?-+br—c =0 (1)
if and only if they satisfy the equations
a+b+c=a,
ab-+bc+ca =0, (2)
abc = c.

The first of these equations gives b+4c = 0, which permits
us to reduce the left-hand side of the second equation to the
term bc and to replace the system of equations (2) by the equiva-
lent system

b+c=0,
b(c—1) =0, (3)
c(ab—1) = 0.



62 Arithmetic and Algebra

According to the second of these equations we should have
b = 0 or c—1 = 0; thus the system of equations (3) can be replaced
by an alternative of two systems:

b4+c=0,
b=0, (4a)
c(ab—1) =0,
or
b+c=0,
c—1=0, (4b)
c(ab—1) = 0.

A. System (4a) has the solution
b=0, ¢=0, . a—arbitrary.
The equation z3—ax? = 0 with the roots @, 0, O corresponds
to this solution.
B. System (4b) has the solution
a=—-1, b=-1, c¢=1.
The equation 23+2% —z — 1 = 0 with the roots —1, —1, 1
corresponds to this solution.

Method II. Substituting for z in equation (1) successively
a, b, ¢, we obtain a system of equations which must be satisfied
by the unknowns a, b, c:

ab—c =0,
b¥—ab?4-62—c =0, ()
c(ct—ac+b—1) = 0.

Taking advantage of the shape of the third of these equations,
we replace system (5) by an alternative of two systems of equa-
tions:

~ ab—c =0,
b3 —ab?+-b2—c =0, (5a)
c=0,
or
ab—c =0,
b®—ab®4-b2—c =0, (5b)

ct—ac+b—1 = 0.
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A. System (5a) is equivalent to the system

ab =20,
b (b—a+1) =0, (6)
c=0,

which we replace in turn by an alternative of two systems of
equations:

a=20,
b?(b—a-+1) =0, (6a)
c=0,
or
b=0,
Bd—a-+1) =0, (6b)
c=0.
System (6a) has two solutions:
L a=0, b= 0, c¢=0,
II. a=0, b=-1, c¢=0.

Solution I satisfies the conditions of the problem since the
equation 2% = 0 has the roots 0, 0, 0.

Solution II does not satisfy those conditions because the roots
of the equation 23—z = 0 are the numbers 0, —1, 1 and not
the numbers 0, —1, 0.

System (6b) has the solution

III. b=0, ¢=0, a—arbitrary.
This solution satisfies the conditions of the problem (see
method I). Solution I is a particular case of solution ITI.

B. In order to solve the system of equations (5b) we deter-
mine ¢ = ab from the first equation, substitute this value in
the remaining two equations and factorize the resulting polyno-
mials; in this manner we obtain a system of equations equiva-
lent to system (5b), namely

¢c—=ab,
b(b+1)(b—a) =0, (7)
(6—1)(a?b+1) = 0.

The third equation in system (7) implies that & % 0; we can
thus divide the second equation on both sides by b. On account



64 Arithmetic and Algebra

of the remaining factors of the second equation we can replace
system (7) by an alternative of two systems of equations

¢c=uab,
b+1=0, (7a)
(6—1) (a?b+1) =0,
or
¢c=ab,
b—a =0, (7b)

(6—1)(a?+1) = 0.

System (7a) has two solutions:

IvV. a= 1, b=-1, c¢=-1,

V. a=—1, b=-—-1, c¢= 1.

Solution IV does not satisfy the conditions of the problem
because the roots of the equation 23 —z*—z+1 = 0,i.e. (z—1)%(z+
+1) =0, are the numbers 1, 1, —1 and not the numbers 1,
-1, —1.

Solution V satisfies the conditions of the problem (see method I).

We replace system (7b) by an equivalent system by sub-

stituting @ for b in the first and in the third equations; we shall
obtain the system of equations

a?—c =0,
a—b=0, (8)
(a—1)(a®+1) = 0.
System (8) has the solutions:

VI’ a=1) b=1, C=1,
VII. a=—1, b=-—-1, ¢c=1,
VII.  a= 1+;'/3 —e, b—g, c—2e,

IX. a=1_“/3=l, b=—l—, ¢ =21

2 € € e

Solution VI does not satisfy the conditions of the problem
since the roots of the equation a3—a?4-z—1 are the numbers
1,2, —¢, and not the numbers 1,1, 1.

Solution VII is identical with solution V.
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Solution VIII does not satisfy the conditions of the problem
since the roots of the equation 2?—ex?t-ex—e2 =0 are the
numbers &, 2, — &2 and not the numbers ¢, ¢, €2.

Similarly, we ascertain that solution IX does not satisfy the
conditions of the problem.

Finally our problem has the solutions:

(A) a—arbitrary, b =0, c=0,
(B) a=—1, b=-—-1, c¢=1.
40. The roots of the equation
234-ax4+-br+c =0 (1)

form an arithmetical progression if and only if the sum of two of
them equals twice the third, i.e. if the sum of all three roots
equals three times one of them; since the sum of all the
roots of equation (1) is —a, one of them is —Zla. Therefore
a necessary and sufficient condition for the roots of equation
(1) to form an arithmetic progression is that the number —1a
should satisfy the equation.

Substituting —1a for 2 in (1), we obtain this condition in the

form
1\ 1 \? 1
(——ga) —|—a(—§a) —I—b(—ga)—i—c=0, (2)
or in the simplified form
2a8—9ab+4-27¢ = 0. (3)

Assume that the coefficients a, b, ¢ satisfy equation (3), i.e.
that equation (1) has a root —1a. It remains to find a necessary
and sufficient condition for the other two roots of equa-
tion (1) to be real. Those roots are the roots of the quadratic
equation which will be obtained by dividing both sides of (1)
by z-+1la. It is easiest to perform the division by subtracting

equations (1) and (2)

e e o

By factorizing and simplifying we obtain

(x—l—%a) [x2+§ax+ (b——%cﬁ)] =0.

The roots of the quadratic equation

x2—f—-§—ax—l— (b—%az) =0 (4)
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are real numbers if and only if

4 2
—_ —q2— a2
A4 g7 4(b ga)>0,

ie.
at—3b >0
or
1
b < 5 a?. (5)

The required necessary and sufficient conditions are thus
relations (3) and (5). It will be observed that if the equality

b= %—az
holds, then equality (3) gives
1
c= ﬁaz

and equation (1) assumes the form

xa—i—axz—}—éa?x-{—% a® =0,

3
(:v—{—-%—a) = 0.

This equation has three roots —ia, —1a, —%a, forming an

arithmetical progression with difference 0.

REMARK. The quadratic equation (4) can be obtained in a some-
what simpler way by using the following relation between the
roots z;, x,, 3 of equation (1):

Xy Tyt Xy Xy 22y = b. -

If 23 = —1a, then z,+2, = —2a, and the above relation gives

2, = b—2a? in view of which z, and =, are the roots of equa-
tion (4).

41, Let us write the given equation in the form

ie.

m? n2
a—x b—=x

and multiply this equation by (a—=x)(b—x)
m?(b—z)+n?(a—z)— (a—=x) (b—=zx) = 0. (2)
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Equations (1) and (2) are equivalent, i.e. they are satisfied
by the same values of x. Namely, (2) results from (1) when
multiplied by the number (a—z)(b—z). And if a number z satisfies
equation (2), then certainly « # @ and x # b, because for r = a
the left side of equation (2) assumes the value m?(b—a), which
is different from 0, and for x = b it assumes the value n2(a—b),
which is also different from 0; thus (a—=z) (b—xz) is different from 0;
consequently number x satisfies equation (1), which is obtained
from (2) through division by (a—=z)(b—=x).

Accordingly, we can replace equation (1) by equation (2).

Method I. Equation (2) can be written in the form

22+ [(m?+n?)— (a+b)]2+[ab— (m*b+n’a)] = 0.
Let us find the discriminant of this equation:
A = [(m2+n?)— (a+b)]2—4[ab— (m2b-+n2a)].

By means of a suitable transformation we shall prove that
4 >0.

A = (m2+n2)2—2(m2+n?) (@+b)+ (a+b)2—4ab-+-4m2b+-4n2a

— (mP+n2)2—2 (mP—n2) (a—b)+ (a—b)?
= (m?—n?)2—2(m?—n?) (@—>b)-+ (a—>b)2+4m?*n?
= [(m®—n?)— (a—b)2+4m?n2.
Since [(m2—mn2)— (a—b)]2 >0 and 4m?n® > 0, we have 4 > 0;

thus equation (2) has two different real roots.
In the above calculation we have twice applied the formula

(a+b)> = (a—b)2+4ab.

Method II. The preceding method requires rather long calcula-
tion. We can avoid it by applying the following simple argument.
The left-hand side of equation (2) is a quadratic function of
the variable x

@ (x) = m?(b—2z)+n?(a—zx)— (a—zx) (b—2x).

Function ¢ () assumes for x = a and # = b the values

p(@) =m?(b—a) and ¢ ()= n?*(a—>d)
respectively.

These values are of opposite signs; it follows that the function

@ (), and thus also equation (2), has one real root lying between
a and b and another real root lying outside this interval.
Remark. To those readers who are acquainted with analytic
geometry we shall now explain the relation which holds between
the above problem and a property of curves of the second degree.
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We shall rewrite equation (1) using different letters:
2 y2

o T =7

Let z and y denote the orthogonal coordinates of a point in
a plane, @ and b two unequal numbers, and 4 a variable para-
meter.

Let us investigate what curves are represented by equation (I)
for different values of 1. Assume that @ > b (if @ < b, the argu-
ment is analogous).

(1) If A< b, then a—A4 >0 and b—A > 0. Equation (I) is
then the axial equation of an ellipse with semi-axes ¥y (a—A)
and yV(b—A).

(2) If b< A<a, then a—1 >0, b—1 < 0. Equation (I) is
then the axial equation of a hyperbola with semi-axes y (a—A2)
and vy (A-D).

(3) If 2 > a, equation (I) is not satisfied by any real values
of  and y; we then say that the equation represents an tmaginary
curve.

In the sequel we shall consider only the values 1 < a.

The curves represented by equation (I) have one interesting
property: all these curves have the same foci. Indeed, in an ellipse
half the distance between the foci, which we shall denote by c,
is equal to the square root of the differences of the squared semi-
axes, and in a hyperbola this distance is equal to the square root
of the sum of the squared semi-axes. In case (1) we thus have

¢ =y[la—2)— (-] =V (a—b),

and in case (2) we also have
¢ =V[(@—1)+(A-b)] =V (a—b),

which means that ¢ has a constant value, independent of 4.

We say that equation (I) with a variable parameter A repre-
sents a family of confocal conics.

Let us assign to z and y definite (non-zero) values and let us
regard equation (I) as an equation with the unknown A. Since
a # b, the assumptions of problem 41 are satisfied, and we
know from the solution of that problem that equation (I) then
has two different real roots, 4, and 4,.

We thus obtain the following theorem as a geometrical inter-
pretation of the algebraic theorem of problem 41.

1=0. @)

Through every point of a plane lying neither on the x-axis nor on
the y-axis there pass two curves of the family (I) of confocal conies.
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It is easy to ascertain that one of those curves is an ellipse
and the other a hyperbola.
Indeed, if we replace equation (I) by the equivalent equation

2*(b—2)+y*(@—4) —(a—2)(b—1) =0,

we shall find that the left side of this equation assumes for 1 = a
a negative value z2(b—a) and for 1 = b a positive value y*(a—b);
consequently one of the roots A, 4, of this equation is less than
b (this root gives an ellipse), and the other root is contained
between b and a (and gives a hyperbola).

g4

Fia. 7

Figure 7 represents several curves of a family of this kind.
Their common foci are the points F, and F,.

An ellipse and a hyperbola of family (I) which pass through
the same point of the plane intersect at that point at right angles.
The proof of this theorem will present no difficulty to those readers
who know how to write the equation of a tangent to curve (I)
at a given point of the curve. We say that the family of confocal
conics is an orthogonal net of curves.

42, Method I. Since 0 is not a root of the given equation

x2 x2
=4, o

xr2—q?
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the number of its roots is even; if a is a root of this equation,
80 is —a. Introduce the notation 2% =z; equation (I) will
assume the form :
2 2z
Tt @)
The number of real roots of equation (1) is twice the number
of positive roots of equation (2); we shall therefore investigate
equation (2).
Let us multiply both sides of (2) by (z—a?) (z—b%). We obtain
2(z—b?)+-2(z—a?) = 4(2—a?) (z—b?);
which, when rearranged, gives
222 —3(a*+b%)2+4a%* = 0, 3)
Each root of equation (2) is a root of equation (3); conversely,
however, only those roots of equation (3) which do not satisfy
the equation
(2—a?) (z—b%) =0,
(i.e. which are different from @? and from b2) are at the same
time roots of equation (2). Let us therefore verify whether either

of the numbers a? and b% satisfies equation (3). Substituting
z = a? in equation (3), we obtain

a?(B2—a?) =0, 4)
and the substitution z = b2 gives
b2 (a*—b?) = 0. (5)

Equality (4) holds if @ = 0 or if a2 = b%, and equation (5)
holds if b = 0 or if a? = 2. Accordingly, we distinguish the fol-
lowing cases.

(i) @ # 0,b # 0, a® # b% In this case neither a2 nor b2 is a root
of equation (3); equations (2) and (3) are thus equivalent. The
discriminant of equation (3)

A = 9(a?+b2)2—32a2* = 9at— 14a2b2+-9b* = 9 (a2 —b2)2--4a?b?

is positive, and consequently, equation .(3) has two (different)
roots. They are both positive since they have a positive sum
2 (a®+5?%), and a positive product 2a2b>.

Thus in case (i) equation (2) has two positive roots and equation
(1) four real roots.

(ii) @ = 0, a? # b?%, whence b # 0. Equation (3) is not equivalent
to equation (2); it has the roots z = a? = 0 and z = 82, of which
only the second satisfies equation (2) and is positive. Equation
(1) has two real roots.
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(iii) 8 = 0, a®—b* # 0, whence a # 0. This case is analogous
to case (ii): equation (1) has two real roots.

(iv) a? = b? # 0. Equation (3) has, as in case (i), two (different)
positive roots, but is not equivalent to equation (2), because one
of the roots is z = a? = b2 Consequently, equation (2) has one
positive root and equation (1) has two positive roots.

(v) a® = b? = 0. Equation (3) has a double root z = 0, equa-
tions (2) and (1) have no roots.

Method II. Equation (1) can be written in the form

x2_a2+a2 x2__b2_|_b2

22 —a? x2—b?

—4=0

or in the form

a? b?

The left-hand side of equation (la) is a function of the variable
x: we shall denote it by f(x); we are to find the values of « for
which f(z) = 0.

We shall confine ourselves to the case where a # 0, b # 0,
a? < b%; we can assume that ¢ > 0 and b > O because only the
squares of a and b appear in the equation. Other cases can be
investigated in an analogous manner: we leave that to the reader
as an exercise.

Since f(0) = —4, and f(—=x) = f(x), it is sufficient to take
care of the positive roots of function f(z); its negative roots are
the numbers opposite to the positive roots.

Each positive root of function f(z) must satisfy one of the
inequalities 0 < 2 < a, a <z < b, x > b or, as we usually say,
it must belong to one of the intervals (0, a), (@, b), (b, ©).

In the interval (0, @) the fractions a?/(x®—a?) and b2/ (22—b2)
are both negative; thus in this interval there are no roots of f(x).

In the interval (a,b) the fraction a?/(z*—a?) is positive and
decreases with the increasing value of x; the fraction
b?%/(x*—b?) is negative and also decreasing when x increases since
then its absolute value increases. Consequently function f(x) is
decreasing in the interval (a, b). If « is sufficiently near a, funct-
ion f(z) is positive because the fraction a?/(x®—a?) assumes arbit-
rarily large values and ?/(22—b?%)—2 assumes values arbitrarily
near the number b2/ (a2—b2)—2. If «z is sufficiently near b, function
f(%) is negative because then b2/(x%2—b?) assumes negative values
with arbitrarily large absolute values, and a?/(z*—a*)—2 assumes
values arbitrarily near the number a?/(b2—a?)—2. We have ascer-
tained that in the interval (a,b) function f(x) decreases and
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assumes both positive and negative values. Since the function
is continuous, it has one and only one root in the interval (a, b).

In the interval (b, o0), the fractions a?/(x2—a?) and b2/ (x2—b?)
are positive and decreasing while x increases; consequently the
same applies to function f(x). If x is sufficiently near b, function
f(z) is positive, which we can ascertain in the same manner as
above. If z is sufficiently large, the fractions a?/(z2—a?) and
b?/(x*—b?) assume values arbitrarily near 0, whence f(x) has
a negative value. It follows, as before, that in the interval (b, o)
function f(x) has one and only one root.f

We conclude from the above that in the case where a # 0,
b # 0 and a? # b? the equation (1) has two positive and two nega-
tive roots.

43. Answer. If a+b # 0, then numbers —a and —b are the
roots of the equation, and if a+b = 0, then all numbers except
zero are roots of the equation.

44. Every number z satisfying the equation
1 1 1
=0 m

z—a x—b x—c

must also satisfy the equation
(x—b) (z—0)+ (z—c) (@—a) + (z—a) (x—b) =0,  (2)

obtained from equation (1) by multiplying both sides by
(x—a)(x—b) (x—c).

Conversely, every root x of equation (2) different from a, b and
¢ is a root of equation (1), since if we divide (2) by the number
(x—a) (x—b) (x—c), which is different from 0, we obtain (1).
Considering that none of the numbers a, b, ¢ is a root of equation
(1), we can see that the roots of (1) are those roots of (2) which
are equal to none of the numbers a, b, c.

We shall therefore investigate (2) taking into consideration
three cases.

Case 1. Numbers a, b, ¢ are different from one another; e.g.
let a < b < c. The left side of (2) is a quadratic function f(x)
of variable z:

f@) = (z—b)(x—c)+ (x—c) (x—a) + (z—a) (z—Db). 3)
Let us find the values of function f(x) if x equals a, b, or ¢. For-
mula (3) gives

1 In order to understand the above reasoning the reader needs rudi-
mentary information on continuous functions.
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f(@) = (a—b)(a—0),
f() = (b—c)(b—a),
f(e) = (c—a)(c—b).

Numbers f(a) and f(c) are positive since they are the products
of numbers of the same sign; number f(b) is negative since
b—c < 0, and b—a > 0. Consequently the quadratic function
f(z) has two real roots, one of them lying between a and b and
the other between b and c.

Equation (1) has the same roots. Thus equations (1) and (2)
are equivalent in this case.

Case 2. Two of the numbers a, b and ¢ are equal; e.g. let a = b
and a # c. Equation (2) assumes the form

(x—a)(x—c+x—c+x—0a) =0,
i.e. :
(x—a)(3r—2c—a) =0,
whence we find its roots, ¢ and (a+2c)/3. In view of a # ¢, the

second root equals neither @ nor c¢. In this case equation (1) has
only one root, namely the number (a+2c)/3.

Case 3. Numbers a, b, ¢ are equal. Equation (2) assumes the
form

3(x—a)? =
and has a double root # = a. Equation (1) has no roots in this
case.

REMARK. The proof that in case 1 equation (2) has two real
roots can also be carried out by showing that its discriminant
A is positive. Accordingly, we write equation (2) in the form

3x2—2(a+b+c)x + (ab--bc+ca) = 0
and find

%A = (a+b+4c)2—3(ab-+bc-t+ca) = a?+b2+c2—ab—bc—ca

— (2a2—|—2b2—{—202 2ab—2bc—2ca)

no

5 [(@—b)*+ (b—c)*+ (c—a)’] > 0.

45. Method I. From the assumption that no two of the numbers
a, b, c are equal it follows that none of them is a root of the given
equation. Indeed, substituting in that equation, say, x = a we
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obtain the equality ¥ (a—b) = ¥ (a—c), which is false because
b # c¢. Suppose that number 2 is a root of the given equation.
Then z > a, x > b, x > c; besides, V' (x—a) < ¥ (x—c), whence
z—a < z—c; consequently ¢ < a, and analogously ¢ < b. Thus
the equation can have roots if and only if numbers a, b, ¢ satisfy
the inequalities

c<a, c¢<b.

We shall show that, if this condition is satisfied, the equation
has one and only one root. Accordingly, we shall form a rational
equation which must be satisfied by the roots of the given equation.
We might obtain that equation by squaring the given equation
twice. It will be more convenient, however, to follow another
procedure. We write the following 4 equations (the first of them
equivalent to the given equation):

V(z—a)+V(@—b)—V(@—c) =0, 1)
V(z—a)—V (x—b)+V (x—c) =0, @)
—V@—a)+V (@—b)+V(@—c) =0, ®3)
V(z—a)+V (&—b)+V(z—c) = 0. (4)

We multiply these equations, using the easily verifiable formula
—(@+B—y) (a—p+p) (—a+B+y) (a4F+7)
= b4 pA—2a202 — 2522 — 29202,
and obtain the equation
(x—a)*+ (¢—b)*+ (x—c)*—2 (x—a) (x—b)—
—2(x—b)(x—c)—2(x—c) (x—a) = 0;
with the brackets removed and the terms rearranged it assumes
the form
322 —2(a+b4-c)x— (a2 +b2+c2—2ab—2bc—2ca) = 0.  (5)

Denoting by 4 the discriminant of equation (5), we have
%A = (a+b-+c)2+3 (a2 +b2+c2—2ab—2bc—2ca)

= 4(a?+-b2+c>*—ab—bc—ca)

= 2[(a—b)*+- (b—c)*+ (c—a)?],
whence we can see that 4 > 0; thus equation (5) has two real
roots.

We must now investigate whether those roots satisfy
equation (1). It will be observed that if 2 is a root of any of the
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equations (1), (2), (3), (4) then it satisfies also equation (5),
and in that case equation (5) has a root greater than any of the
numbers a, b, ¢. Conversely, if equation (5) has a root x satisfying
the conditions > a, * > b, * > ¢, then z is a root of one of the
equations (1)—(4), since the left side of equation (5) can then
be represented in the form of the product of the left sides of the
equations (1)—(4). Therefore we must find out whether any of
the roots of equation (5) is greater than a, b and c. Let f(x) denote
the left-hand side of equation (5); an easy calculation gives

f@)=—0—cp?, [fO)=—(@—c? flc)=—(a—b>

By the well-known theorem on the sign of a quadratic trinomial,
we infer from the above that the numbers a, b, ¢ lie between
the roots of equation (5); thus the required condition is satisfied
only by the greater of the roots of equation (5), namely by the
number

oy = %[(a+b+c)+2v<a2+b2+c2—ab—bc—w>l- ©)

Number x, expressed by formula (6) satisfies, as has been
observed above, one of the equations (1)-(4). Now, if c <a
and ¢ < b, then number x; can satisfy none of the equations
(2), (3), (4) since then y(x;—c) > V(¥;—a) and Y (z;—c)
> V(x,—b), and consequently the value of the left side of each
of the equations (2), (3), (4) is positive. Thus number z, is a root
of equation (1).

Method II. Let us introduce the notation

V(x—a’) = u, V(x_b) =, V(x_c) = w;

then
w—w? = c—a, (7)
v?—w? = ¢c—b, 8)
and equation (1) assumes the form
u+v = w. 9

If x satisfies equation (1), then %, v, w are positive numbers
satisfying equations (7), (8), (9). Conversely, if positive numbers
u, v, w satisfy equations (7), (8), (9), then the number z = u?+-a
= v2+b = w?+-c satisfies equation (1). The problem is thus
reduced to the determination of positive solutions of the system
of equations (7), (8), (9).

If numbers u > 0, » > 0, w > 0 satisfy this system of equa-
tions, then (9) implies that » << w and v < w, in view of which
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equations (7) and (8) imply that ¢ < @ and ¢ < b. The system
of equations (7), (8), (9) can thus have positive solutions only
if

c<a, c¢<b.

We shall prove that if this condition is satisfied then the system

of equations (7), (8), (9) has one and only one positive solution.

Substituting in (7) and (8) the value w from equation (9) gives
u24-2uv = b—ec,

v24-2uv = a—c. (10)

‘We multiply the first of these equations by a—c and the second
by ¢—b and then add them:

(a—c)ut+2(a—Db)uv + (c—b)v? = 0.

Since » # 0, we can replace this equation by

2
(a—c) (%) +2(a—b) (%) +e—b=0. (11)

Equation (11) is quadratic with respect to u/v. Since a—c > 0
and ¢c—b < 0, equation (11) has two real roots of which one and
only one is positive; let us denote it by «. From the equation
# = ov and from the equations (10) and (9) we obtain:

v — (b—c)a v—lu .
= ———a+2 , = wfu+v

as the only positive solution of system (7), (8), (9).
The given equation (1) has one root
_ (b—c)a
v= a+2

+a. (12)

Equation (11) gives
b—a+v(34)

a—cC

If we substitute this value of « in formula (12) and make the
necessary transformations, we obtain formula (6).

We have obtained the following result:

A necessary and sufficient condition for the equation

V(z—a)+V (x—b) =V (z—c),
where a, b, c are pairwise different, to have roots are the inequalities

c<a, c<b.
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If this condition is satisfied, the equation has one root
1
2= g[a—l—b+c+2 V(a2 +-b2+c2—ab—bc—ca)].

46. Let « denote the length of the hypotenuse and y the length
of the third side. Then
2?—y?2=100 or (z+4y)(z—y)= 100.
Writing
z+y=p, T—y=4¢q
we have

_pte _pr—q _
a=202 y=2d pxg=100.

Since z and y are natural numbers and 100 is an even number,
p and ¢ are even numbers and p > q. Hence p = 50, ¢ = 2, and
consequently x = 26, y = 24.

47. Let us write the given equation in the form

(y—=) (> +xy+a?) = 13X 7. 1)

It will be observed that the trinomial y2+xy-+-22? has a non-nega-

tive value for any z, y since

1
Ytey+at = 5 [+ +2°+y%] >0.

It follows that if the integers x and y satisfy equation (1),
then both factors on the left-hand side have positive integral
values. Since the right-hand side is divisible by 13 and by 7, the
left-hand side must also be divisible by 13 and by 7. And since
13 and 7 are prime numbers, only the following cases are possible:

(i) Number y—=z is divisible both by 13 and by 7; then x and
y must satisfy the equations

y—x =91, y*+4ayta?®=1.
This system of equations, however, has no real solutions and
thus of course no integral solutions.
(ii) Number z*+4-axy-2? is divisible by 13 and by 7. Then x
and y satisfy the equations

y—x =1, y*+tayt+a®=091.
This system has the solutions:
xr= 5, y= 6,
x=—6, y= —b5.
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(iii) Number y—u is divisible by 13 and number y24ay-+22 is
divisible by 7; this assumption leads to the system of equations
y—x =13, y*+axy+a®=".
This system has no real solutions.

(iv) Number y—a is divisible by 7 and number y*+xy-a? is
divisible by 13. Then

y—x =17, y+ay+a®=13.
Solving this system of equations we obtain the solutions
x=—3, y=4,
r=—4, y=3.
Thus equation (1) has only the following integral solutions:
z=5 x=-—6, zxz= -3, x=—4,
y=6, y=-—-5 y= 4, y= 3.
REMARE. We shall solve a more general problem:
Find the integral solutions of the equation
B—yl=c (1)
where c s a given integer.

It will be observed that if ¢ = 0, then the solution of the equa-
tion is any pair of equal integers, x = y. If ¢ < 0, then the equa-
tion can be written as

ys_xa = —c¢,

where the right-hand side is positive.

Thus it is sufficient to consider the case of ¢ > 0. Then we
must have z > y.

Suppose that there exist integers 2 and y which satisfy equa-
tion (1). Let us write it in the form

(x—y) (@®+xy+y*?) = c.

Let
r—y = u, (2)
e +ay+y® = v. 3)
Numbers » and v are positive integers and satisfy the condition
uv = C. (4)

Equations (2) and (3) can be solved in termé of u and v. Equa-
tion (2) gives
T = y+u. (5)
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Substituting this value in equation (3) we obtain the quadratic
equation :

u2—v

Y+ uy+ — 0. (6)

The discriminant of this equation must be a square of an integer,
ie.
4v—u?

=0 (7)

where ¢ denotes an integer.
Considering formulas (5), (6) and (7) we can see that numbers
z and y must satisfy the equations

= YT
or the equations
u—t —u—t
= = I
x 5 Y B (11)

Conversely, let u, v and ¢ be integers satisfying equations (4)
and (7); v and ¢ are either both even or both odd: this follows
from formula (7). Consequently z and y defined by formulas (I)
and (II) are integers; it is obvious from the above that they
satisfy equation (1).

We have thus obtained the following result:

In order to find the integral solutions of equation (1) for ¢ > 0
it is necessary to decompose number ¢ into two natural factors u
and v such that the number

4v—u?
3

is the square of a non-negative integer ¢; each factorization of
this kind is linked with two solutions of equation (1) represented
by formulas (I) and (IT).

We should therefore try out all decompositions of ¢ into two fac-
tors. The number of those trials can be reduced on the strength of
the following observation: since 4v—u? >0, we have 43 <4uw,
ie. u® <4c, whence

3
u <V (4c).

For example, let ¢ = 91 = 7x13. Then u < 8; therefore only
two possibilities should be tried out:
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(@) If w =1, v = 91, then
4v—u?
3
and formulas (I) and (II) give the solutions:

=121 =112, whence ¢=11,

x=6, y=5 and z= -5, y= —6.
(b) If w =17, v =13, then
4v—u?
3
and formulas (I) and (II) give the solutions:

=1, whence ¢=1

r=4, y=—3 and z=3, y= —4.

ExErcise. Prove the following theorems, which reduce the
number of trials necessary to solve equation (1).

() If number ¢ is divisible by 3, then both « and v must be
divisible by 3 (and thus to ensure the existence of the solutions
number ¢ must be divisible by 9).

(8) If number ¢ is of the form 3%k+1 where k is an integer,
then % must also be of the form 3%k4-1, and if ¢ is of the form
3k+2, then u must also be of the form 3k-2.

48. Let us multiply both sides of each of the given equations
by ¥, 2, « respectively and then let us add these equations; we
shall obtain the equation

5z+43y+4z = 0. 1)
Multiplying the given equations by z, z, y and adding them,
we obtain
dx+4-5y+3z = 0. (2)
From equations (1) and (2) we can find the ratios z :y :z.
By eliminating, say, z we obtain:
z = —1ly, (3)
and by eliminating x we obtain
z = 13y. (4)
We substitute these values, for example in the first of the given
equations:

(112>—13)y2 =3, whence y=21 or y = —¢.

In view of (3) and (4) we obtain two systems of values:

— 1 . | — 13
T="% Y=% =
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1 __n —
r=%, Y=—%, z2=-—%

Both the first and the second of these systems satisfy not
only the first of the given equations but also the remaining two,
which can be verified by substitution.

REeMARK. We shall consider a more general system of equations

r»—yz =a,
yi—zx =0b, 1)
2—zy =c,

where a, b, ¢ denote any real numbers.
Treating equations (1) in the same way as the preceding ones,
we obtain two equations of the first degree.

cx-tay+bz =0,

be+cy+az=0. @)

It is now necessary to distinguish two cases:

Case I. The coefficients ¢, a, b of the first equation of system
(2) are not proportional to the coefficients b, ¢, @ of the second
equation, i.e. the three equalities

a?—bc =0, b—ac=0, c*—ab=0 (3)

do not hold simultaneously.

This condition is equivalent to the assumption that numbers
a, b, c are not all equal. Indeed, if @ = b = ¢, then equations (3)
are obviously true. Conversely, if equations (3) are true, then
we also have

a(a®—bc) =0, b(b*—ac)=0, c(c2—ab)=0, (4)
ie.,
a8 =abc, b =abc, 3= abc,
and consequently
ad =03 =c3 whence a=0>b=c.
In view of the fact that in the case in question relations (4)

cannot all hold simultaneously, we can assume that, for example,
a(a®?—bec) # 0, i.e. that

a#0 and a?—bc #0O.

From system (2) we then obtain

b2—ac c2—ab
= 2= —x.
Y=t " a®—bc

(5)
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We now substitute expressions (5) for ¥ and z in one of the
equations of system (1), say in the first equation:

[ (a®—bc)2— (b2 —ac) (c®—ab)] 2? = a(a®—bc)2.
Transforming the coefficient of 22 we obtain
a(a3+b3+-c2—3abc) 2 = a(a?—bc)?,
and since a # 0,
(aB+-b%+c®—3abc) x* = (a*—bc)2. (6)
If
a®-+b3+-c2—3abc # 0

then we obtain from equation (6)

a?—be
V (a®+b3+c®—3abe)

for a®+b%+c3—3abc > 0, and

r =4

a’—bc .
v (3abc —a®—b%—c8) v

r= 4

if a®++b34c®—3abc < 0. We then find from equation (5) the
corresponding values of y and z.

ad-b3+c3—3abc = 0,

then equation (6) is contradictory since its left-hand side equals
zero whereas its right-hand side—by hypothesis—does not
equal zero.

In this case the given system of equations has no solutions.

Case II. The coefficients of equations (2) are proportional,
which has been shown to occur if a = b = c.

It is again necessary to distinguish two cases.

Let a # 0. Then each of the equations of system (2) gives
(on being divided by a) the same equation

z+y+z=0,

whence
2= —(o+y). ™

Substituting this expression in any of the equations (1) we
obtain the equation

Y +tay+a?—a =0,
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and consequently

_ —z4V (4a—32?)

> : (®)

Formulas (8) and (7) are the solution of system (1). The value
of x can be chosen arbitrarily; the values of y and z are then
determined by formulas (8) and (7).

Let @ = 0; thus also b =0 and ¢ = 0. System (1) assumes
the form

= yz,
y: = zzx,
22 =uwy.

Hence
¥ =uwyz, yYy=uwyz, 2*=ayz,
and consequently
ad = y% =28
In the domain of real numbers we obtain hence the equality
x=y =z,
and the solution of system (1) is
r=m, yYy=m, z=m,
where m denotes an arbitrary real number.

In the domain of complex numbers the equality %® = 2® im-
plies that y = ex, where ¢ denotes any of the numbers

—1+44y3 —1—:y3
2 ’ 2 ’
which are the roots of the equation #® = 1. Substituting the
value y = ex in the equation y%= 2z and considering that if
x = 0, then also z = 0, we obtain z = &2z.
The solution of system (1) is then

L

r=m, Yy=cem, z==¢cm,
where m denotes an arbitrary complex number.
REMARK. As we know
a3+b3+c2—3abc = (a+b+c) (a®+-b2+c2—ab—bc—ca),
and if @, b, ¢ are not all simultaneously equal, we have the in-
equality
Ca?4b2 4 c2—ab—be—ac > 0
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(see problem 55); consequently, in case I the condition for the
existence of solutions can be written as a-4b-c # O.

If a+b-+c > 0, the solutions are real, and if a+b+4c¢ < 0, the
solutions are imaginary.

49. The given system of equations has eight solutions:

; 2 _ g: Z _ gj 2 — }gi } a double solution,
3. =414, y= —12, z = 120,

4, = —4, y= —4, z = 120,

5. x=31, y=17-3i, 2z= —130,

6. = -3, y=17+3:, z = —130,

7. x =25, y = —22, z = —96,

8. x= -5, y = —12, z = —96.

50. Let us divide the equations (1) by zy, yz and 2z respec-
tively:

bie_,y,

z Yy

b a

S+5=b , (2)
i.,.i:l.

2 @

The solutions of system (2) are those solutions z, ¥, z of system
(1) in which z# 0, y# 0, 2 # 0.
Adding equations (2) we obtain

WH%%+%+3=3. 3)

If a+b =0, equation (3) expresses a contradiction: 0 = 3;
in this case system (2) has no solutions.

If a+b # 0, system (2) can be solved in the following way.
We multiply equations (2) by b2, —ab and a? respectively, and
then add them:

(@34 53) % = a?—ab-b2. (4)

Since a # —b, we have a3 # —b8, i.e. a34-b% % 0, and since
a3+4-b® = (a+b) (a®—ab+-b2), we have also a®—ab-b% # 0; then
equation (4) gives z = a-+b. Analogously y = a-+b, z = a+b.

Thus it is only for a+b # 0 that system (1) has a solution
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z,¥,2 in which none of the unknowns is equal to zero. This
solution is

z=a+b, y=a+b, z=a+b.

It remains to determine those solutions of system (1) in which
at least one of the unknowns is equal to zero.

For example, let z = 0. From system (1) we obtain for x and
y the system of equations

zy = ax-by,
ay =0, (5)
bx = 0.

If either a or b is different from zero, system (5) has only the
solution = 0, y = 0. For example if a # 0, the second equa-
tion of (5) gives y = 0, whence the first equation gives x = 0.

If a =b =0, then the second and the third equation of (5)
are satisfied by any values of 2 and y and the first equation
assumes the form

zy =0.

Thus one of the unknowns 2, y must be equal to zero, and
then the other unknown can have any value.

In the above reasoning we have assumed that z = 0. We shall
obtain analogous results by assuming that £ = 0 or that y = 0.

The results obtained can be listed as follows:

(a) If at least one of the numbers @ and b is not equal to zero,
system (1) has the solutions:

1. zr=a+db, y=a+b, 2z=ua+b;
2. x=0’ :ll=0, z2=20.

These solutions coincide if a+b = 0.
(b) If @ = b = 0, system (1) has the solutions:

1. z=0, y=0, z —arbitrary;
z =0, y —arbitrary, 2z =0;
3. x —arbitrary, y =0, z2=0.

51. Let us multiply by —3 the first equation of (1), and then
let us add it to the second equation; we obtain

(@—y)® = (a—b)},
which is equivalent (in the domain of real numbers) to the equation

z—y = a—b.



86 Arithmetic and Algebra

System (1) is equivalent to the system of equations
xy (x—y) = ab(a—D),
z—y =a—b (2)
y=a
and to the simpler system
zy (a—b) = ab(a—D),

x—y = a—b. 3)
We must distinguish two cases:
I. a—b # 0. System (3) is equivalent to
zy = ab,
4
z—y =a—>b, (4)
which has two solutions: x =a, y =056 and z = —b, y = —a.

II. a—b = 0. The first equation of system (3) is an identi-
ty, 0 =0, and system (3) reduces to one equation

z—y =0,

having the solution x = m, y = m, where m is any number.

REMARK. In the domain of complex numbers the equation
(x—y)? = (a—Db)® is equivalent to a disjunction of three equa-
tions: z—a = a—b, x—y = (a—b)e or z—y = (a—b)e?, where
_ —1+44y3
= 5 ,
whence system (1) is equivalent to a disjunction of three systems
of equations of which one is system (2) and the other two arise
from system (2) by replacing the second equation by the equation
xz—y = (a—b)e or by the equation x—y = (a—b)e2. The solving
of each of these systems proceeds in the same way as that of
system (2). The result is the following:

I If a—b # 0, the given system (1) has 6 solutions z, y in
the domain of complex numbers, namely

(a9 _b)’ (ae, bb‘), (a82, b82)’
(—b, —a), (—be, —ag), (—be% —ae?).
II. If @ = b, the solution of system (1) is
r=m, y=m,

where m is any complex number.

52. We shall replace the given system of equations (1) by an
equivalent system, which is obtained in the following way.
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Multiplying the second of equations (1),

1.1 1
—f— =0, . (1b)
r Yy oz

by the product zyz, we obtain the equation
xy+yz+ze = 0. (1b")
Replacing (1b) by (1b’) in system (1) we obtain
a2 = 192,
wy+yztew = 0, )
z—y+z =11

We shall prove that system (2) is equivalent to system (1).
Every triple z, y, z satisfying (1b) also satisfies (1b’) and thus
every triple z, y, z satisfying system (1) also satisfies system (2). Is
the converse statement true? A solution of (1b’) is given by any
triple z, y, z which satisfies (1b) and, moreover, by three numbers
of which two are equal to 0 and the third is arbitrary; since
triples of the second kind do not satisfy the remaining two equa-
tions of system (2), we conclude that every three numbers
z,y, 2 satisfying system (2) also satisfy system (1). We have
thus proved the equivalence of systems (1) and (2).

Let us transform system (2). Multiplying the second equation
by 2 and adding it to the first equation, we obtain the system

(x+y+2)? = 192,
zy+yztze =0, 3)
r—y+z =11,

which is equivalent to (2).
System (3) can be replaced by the disjunction:

z+y+z =19,
zy+yz+ze = 0. (3a)
rz—y+z =11,
or
z+y+z = —19,
xy+yz+ze =0, (3b)
z—y+z=11.

(A) Let us consider system (3a). Subtracting the third equation
from the first, we gbtain y = 4; substituting this value in the
second and third equations, we obtain the system of equations
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y=+4,
4(x+2z)+az =0, (4)
z+z =15,

equivalent to (3a). System (4) can be replaced in turn by the
system

y=4+4,
xz = —60, )
z-+z = 15.
This system has two solutions:
— 15+ y4
o 10—V465 -, 15HVES
2 2
or
1 46 15— y/465
x=w, y =4, ZZTV' (5b)

(B) Let us consider system (3b). Proceeding as before we reduce
it to the system

= —15,
xz = —60, (6)
r+z = —4.
This system has two solutions:
z=-—10, y=-—-15, z=6 (6a)
or
z=0, y=—15, z= —10. (6b)
53. In solving the system of equations
z2y =1,
T2 = 2,
Zgzy = 3, (1)
ZpZy =M,

we must distinguish two cases.
(a) Number » is even, » = 2m. Multiplying the equations:
first, third, ... up to the (2m—1)th, we obtain
L1 ToXgTq - Tom—1Lom = L1 X3X ... X (2m—1). (2)
Multiplying the equations: second, fourth, ... up to the 2mth,
we obtain: ,
ToXa Ty .. Tom @y = 2X4X ... X2m. (3)
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Equations (2) and (3) are inconsistent since their left sides
represent the same product of the unknowns whereas their right
sides are different. Hence if # is even, system (1) has no solutions.

(b) Number n is odd, n = 2m+-1.

To begin with, it will be observed that if the numbers z,, z,, ...,
x, satisfy system (1) then they are either all positive or all nega-
tive and, moreover, —z;, —%,, ..., —&, also satisfy system (1).
It is thus sufficient to find the positive solutions.

We multiply the equations of system (1):

(%, Zo%g «. Topey1)? = 1X2X3X ... X (2m+1),
whence
Ty To%g .o Tomry = V[IX2X3X ... X (2m41)]. 4)

We multiply every other equation: first, third, fifth, ... up to
the (2m--1)th, i.e. the last:

1Ty Tg + oo Loy £y = LXIXEX ... X (2m41). )
We divide equation (5) by equation (4):
IX3X5X ... X (2m+1)

z, = . 6
7YX 2X3X ... X (2m+1)] (6)
From the first 2m equations of system (1) we obtain
Z, = 1 23 = 2 2, = 3 Xy = 4
2—x1, 3—x2’ 4_373, 5"‘x4,
2m
ooy Tom+1 =a. (7)
Hence we can find successively the unknowns z,, g, ..., 2,
in terms of x,:
1 3 2x4
x2=x—1, x3 = 2z, x4=2—x1, Tg =—g— 1, - 8)

It is easy to prove that starting from z, the above values of
the unknowns are expressed by the formulas

_3X5X ... X(2k—1) 1
T2X4X .. X(26—2) T2y’
" . 2X4X ... X2k
BT T X8X ... X (2k—1)
where &k assumes the values 2, 3, ..., m.

We shall use induction. Substituting % = 2 in formulas (9)
we obtain for x, and zy the expressions given in (8). Suppose

Lok

Xy,
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now that formulas (9) are true for a certain £ >2; we shall prove
that they will remain true if we replace k by k1. Indeed, by (7)
we have z,,, = r/x,, whence

2k+1  1X3X ... X(2k—1)  2k+1

Toppr  2X4X ... X2k 2

o 242 2X4X .. X2k 2%k+2
HE T gkrs IX3X .. X(2k—1) 7 2k+1

Togte =

Xz,

and these are the very formulas resulting from formulas (9)
if we replace k by k+1.

In this way we have found the values of all the unknowns;
namely x, is expressed by formula (6), z, =1/, 23 = 2,
and the remaining unknowns are expressed by formulas (9).

It remains to verify whether the values obtained satisfy
the equations (1). As regards the first 2m equations, this fact
is undoubted because our method of finding the unknowns x,,
Xy, .en, Zomyq Makes it clear that they satisfy equations (7).
We shall verify whether the last equation is satisfied.

The second formula of (9) gives

o 2XAX . X2m
LT IX8X ... X (2m—1) Y

whence
e — 2X4X ... X2m 2
LT I8 X ... Xx(@m—1) Y
and thus, by (6)

2X4X ... X2m » 12X 32X 52X ... X (2m+-1)2
I1X3X ... X(2m—1)" 2X3X4X ... X (2m+1)
=2m--1.

The last equation is thus satisfied. We have obtained the
following result:

If » is an odd number, system (1) has two solutions. The first
solution is defined by formula (6), by the formulas z, = 1/z,,
23 = 2z;, and by formulas (9), in which % assumes the values

2,3, ...,4(n—1); the second solution consists of these numbers
multiplied by —1.

REMARE. In the same way as above we can solve (for an odd n)
a more general system of equations, replacing the right sides in
equations (1) by any real numbers whose product is positive.
We can also use the following, slightly different, method of solu-
tion.

Lom+1%1 =
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Suppose we are given the system of equations
1%y = Gy,
Ty = Ay,
........ (10)
TomTom+1 = Aom»
Tom+1%1 = Aam+1
with a,a, ... @yp; > 0. Let us write
R =c¢y(a,ay ... Agpr;) where e=1o0r ¢= —1.

Multiplying all the given equations and extracting the square

root from both sides, we obtain
Ty X g ov. Topypy = B.

On the other hand, by multiplying the equations containing
the numbers a,, a, ..., Gyp—1, @gpyy 0N their right-hand sides, we
obtain

Xy XXy oo Doy Ty = Gy Uyl ... Ay

Hence
2, = a; aaasl-{-- Qom+tr

If we perform in equations (10) a cyclic substitution of indices,

1,2,3,...,2m, 2m-+1
(2,3,4,...,2m+1, 1/’
i.e. if we replace each of the indices 1,2, ..., 2m by an index

greater by one, and the index 2m--1 by the index 1, then system
(10) will undergo no change, and formula (11) will become

(11)

Gy ... (gl

2, = (12)

Applying a cyclic substitution again, we obtain from (12)
the formula
A3qg -« Com+1%2
k. R 13
3 73 (13)
Continuing this procedure we obtain generally

_ Qok@opyp -+ om0y .. Dog_y
Lo — )

R

. Qo1 Aog 13 +++» Aomi1 AoQyg ... Aog
Tok+1 = B ’
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where k =1,2,3, ..., m. It is easy to verify that the values of
Zys Ty, onny Tomt+g Obtained in this way satisfy all the equations of
system (10); we have here two solutions of this system because
in expression R we can assume either ¢ =1 or ¢ = —1.

§ 4. Inequalities

54. Let us denote the number of kilogrammes of sugar weighed
at the first trial by x and that weighed at the second trial by
y. The lengths of the arms of the balance will be denoted by p and

q,p#q. .
By the law of the lever we have

gXx=pXx1l, whence x=-1ql,
_ _ 1
pXy=¢gX1l, whence y—;.
Consequently
21 g2
x+y=£+_q.=p+q > 2
q9 P rq
since
21 g2 21 g2_9 —a)?
P+, _ PP+e—2pq _ (P—9) >0 for p#g.
pq rq rq

Therefore the amount of sugar weighed is more than 2 kg.
55. Method I. Since
a?—2ab+-b% = (a—b)® >0,

we have

a?+b% >2ab,
and also

b2 +c? > 2bc
and

ct4-a >2ca.

Adding these three inequalities and dividing by 2 we obtain
a?+-b24-c? > ab-t-bctca.

Method I1. We shall use the method of reductio ad absurdum.
Suppose that for certain numbers a, b, ¢ we have the inequality

a?+4-b2+-c? < ab-+bec+-ca.
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In that case
‘a?+-b2+c2—ab—bec—ca < 0,
2a? 4202+ 2¢2—2ab—2bc—2ca < 0,
(@—b)*+ (b—c)*+ (c—a)® < 0.
We have obtained a false inequality since each of the squares
on the left-hand side is a non-negative number and consequently

the sum of these squares is a non-negative number. Thus for any
numbers a, b, ¢ we have the inequality

a?+-b24-¢2 > ab--bect-ca.

ReMARK. Methods I and II differ only in the approach since
both use premises which are essentially the same:

(1) a square of a number is a non-negative number,

(2) 2(a?2+b2+c*—ab—bc—ca) = (a—b)2+ (b—c)2+ (c—a)?.

Premise (2) implies that a?-4b24-c2—ab—bc—ca is equal to
zero only if a = b =c.

In the same way as above, we can prove that for any numbers
a,,a,, ..., a, we have the inequality

a+ai+ ... +ak >a,0,ta,05+ ... a,_1a,10a,0,,
equality occurring only if
a =a,=..=a,.
56. We are to prove that the number
L = (a®4-b*+-c%) («*+y*+2°) — (ax+ by +cz)?
is non-negative.

Method I. If we perform in expression L the required multi-
plication, reduce similar terms and suitably group the remaining
ones, we shall obtain
L = (V%22 —2abxy -+ a*y?) -+ (a?22—2aczz 1 c2a?) - (c2y? —2bcyx -+ 6222),
whence

L = (bx—ay)*+(az—cx)?+ (cy—bz)2. (1)

This shows that number L, as a sum of three squares, is not

negative. '

Method II. From the form of expression L we can see that 4L
is equal to the discriminant of the following quadratic function

f(X):
f(X) = (@®+-82+c2) X2—2 (ax--by--cz) X+ (2221 22).




94 Arithmetic and Algebra

This function can be given the form
f(X) = (@X—aP+(bX —y)*+(cX —2)%, @)

from which we infer that function f(X) can assume only non-nega-
tive values; thus its discriminant is not positive since a quadratic
function with a positive discriminant assumes both positive and
negative values. Hence the conclusion ’

(ax+by+-cz)2—(a?+b2+-c?) (2 +y2+22) <O,
i.e. L >0, which is what was to be proved.

ReMaRrK 1. We shall solve an additional question: in what case
does the following equality hold:

(@-+5 ) (@ -+92-+2)— (aw+by-+o2)? = 07
For this purpose we can use method I or method II.
(a) Formula (1) implies that the equality L = 0 holds if and
only if
br—ay =0, az—cx=0, cy—bz=0,
ie.
bx=ay, az=cx, cy=Dz.

These equalities signify that numbers z and y are proportional to
a and b, numbers x and 2 are proportional to @ and ¢, and numbers
y and z are proportional to b and ¢, or briefly: z, y, z are propor-
tional to a, b, c.

(b) Using the auxiliary function f(X) we ascertain that equality
L = 0 holds if and only if the discriminant of this function is
equal to zero; then function f(X) has a root which, by formula (2),
satisfies the equations

aX—2=0, bX—y=0 cX—2=0,

which is possible only if z, y, z are proportional to a, b, c.

REMARK 2. The theorem we have just proved can easily be
generalized as follows:
Ifa,,a,,...,a, and z,, x,, ..., x, are arbitrary numbers, then

(a8+ad+ ... +a?)(x34ad+ ... +al)—
—(ayz,tayxy+ ... +a,z,)? >0,
or briefly:

n n n 2
Zl'a?x Z:x?—(zlam) >0, (3)
i= i= i=

equality occurring if and only if numbers z,, z,, ..., ®, are pro-
portional to numbers a,, a,, ..., ,.
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A simple proof is obtained by repeating the reasoning of meth-
od II. Method I can also be used.

Inequality (3) is sometimes called the Schwarzt inequality,
although it was already known to Cauchy.

57. By the theorem of Pythagoras we have the relation
¢ = a?+b2. 1)
Let us multiply this equality by c"~2:
" = a?c" 2 -b2 2, 2)

Since ¢ > a > 0 and n > 2, we have ¢"2 > a2, whence

. a?c"% > q". (3)
Analogously
b2 > b, (4)
Relations (2), (3) and (4) imply the required inequality:
c® > a+b".
ReMark. We show in the same way that if » < 2, then
c® < a-un.

58. Inequality m-+4/m? >3 is equivalent to the inequality
m-+4/m?—3 >0 and thus also to the inequality m?®+4—3m? >0
(since m? > 0). Now m3-+4—3m? = m3-+1+3—3m? = (m3+1)—
—3(m?—1) = (m+1)(m*—m+1)—3(m+1)(m—1) = (m+1) X
X (m?—4m—+4) = (m+1) (m—2)2. Since m—+1 is positive for m >0
and (m—2)? is non-negative, we have m3+4—3m? >0, which is
what was to be proved.

It will be observed that the equality m--4/m? = 3 occurs only
if m—2 =0, ie. if m = 2.

59. Hint: (a—b)b <a?/4.

60. Method I. By dividing both sides of the equality 1 = a+b-+c¢
successively by a, b, ¢, we obtain

1 b ¢ 1 a c 1 a b
o tete e tity oot th
Consequently
1 1 1 a b b ¢ c a
7;+3+?=3+(?+;)+(?+?)+(;+?)'

1 H. A. Schwarz (1843-1921), a German mathematician.
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Now

a b  a®4+b>  (a—bp*{2ab (a—b)?
5 e ab ab T ab
If follows immediately that

+2.

c

14—2}2 and also i—}— =2, ——l——a—>2.
b a c a c

c
b
Accordingly
1 1 1
— o+ >3424242,
a b c
ie.
1 1 1
— >0,
a + b + c =9 )
Method I1I. Let us calculate the difference

ab-bc+-ca—9abe
abc )

1 1 1
Tty te = @

Since the denominator of the expression on the right is positive,
the proof of inequality (1) is reduced to showing that the numerator

L = ab+bc+ca—9%abe
is non-negative.
Substituting in L the value ¢ = 1—a—b, we obtain

L = ab+-b(1—a—b)+a(l—a—b)—9ab(l—a—>).

We shall consider L as a quadratic function of variable ¢ and
we shall write it as '
L = (95—1)a24-(95—1) (b—1)a—b(b—1).

~ Let us find the discriminant A of this function:
A = (9b—1)2(b—1)2+-4b(b—1)(95—1)
= (95—1)(b—1)(9b>*—6b-+1)
= (95—1)(b—1)(3b—1)2.

Observe that b < 1, and thus b—1 < 0, whereas (3b—1)2 >0;
we shall therefore have to distinguish two cases:

(i) 95—1 > 0. Then 4 <0 and the quadratic function L
has a non-negative value for any value of the variable a, and
thus the right-hand side of (2) is non-negative, whence the con-
clusion that

1 1 1
aTate =9
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(ii) 95—1 < 0. In this case we immediately conclude that

1 1
b<§, 7)—>97

and thus
1 1 1
—++=+—>9.
17 b c

Thus inequality (1) is true in both cases.

RemARK 1. It can be asked in what cases (under the given
assumptions) we have the equality

1 1 1
=9, ®)

i.e. for what positive values of a, b, ¢ whose sum is 1 the sum of
their reciprocals has its maximum value 9.

The answer to this question can easily be derived from either
of the above proofs. Following method I we obtain equality (3)
if and only if

a b c c a
— _——= — _—= - —:2
b+a +b a+c ’
ie. if
1
=b: = —_—
a ¢ 3

Following method II we obtain equality (3) only in case (1)
if we postulate that 4 = 0, and thus that 3b—1 = 0, whence

1 4 2 1\?
= —_— = 2__ —_— —_—] .
b_3, and L = 2a 3a+9 2(a 3)
Thus the equality L = 0 holds if and only if
1 1 1
o= b=y =3

REMARK 2. Let a, b, ¢ be arbitrary positive numbers. Let us
consider the numbers
m— a ”— b . c
T aFbte’ "T axbre PT aFbre”

Since the sum of numbers m, n, p is equal to 1, by applying
to them inequality (1) we obtain the inequality
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a+2+c i a+z+c n a+(l:+c_ >0,

ie. the inequality
1 1 1
(a-+b-+c) (— +++ —) >9
a b ¢

which can be written as

a+b+c> 3 .
3 /1 1 -1_ (4)
Tt

The left-hand side of inequality (4) is the arithmetical mean of
the numbers a, b, ¢ and its right-hand side is the reciprocal of
the arithmetical mean of the numbers 1/a, 1/b, 1/c, i.e. the harmo-
nic mean of a, b, c.

Inequality (4) expresses the following theorem:

The arithmetical mean of three positive numbers is at least equal
to the harmonic mean of those numbers.

These means are equal only if @ = b = ¢ (see remark 1). We
have deduced theorem (4) on the arithmetical mean and the har-
monic mean from the theorem proved in problem 60. Conversely,
the latter theorem is a conclusion from theorem (4) since if a+b-4
+c = 1, then inequality (4) implies inequality (1). The two theo-
rems are thus equivalent.

REMARK 3. Reasoning as in method I and in remark 1, we shall
easily prove a more general theorem :

If the sum of positive numbers al, @y, ..., a, 18 equal to 1, then

— + + + >n~
ay

equality occurring only if a;, = a, = ... = a,.

We ascertain, as in remark 2, that the above theorem is equi-
valent to the following theorem:

If a,, ay, ..., a, are positive numbers, then their arithmetical mean
s at least equal to their harmonic mean, i.e.
a,+a,+ ... +a 1
n a,

equality occurring only if @, = a, = ... =
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61. Method I. We use the transformation
ab (a+b)+bc(b+-c)+ca(c+a)—6abe
= a(b%+c?)—2abc+b (c2+a?)—2abc+-c (a?--b2) —2abe
= a(b—c)?+b(c—a)?+c(a—b)

We have obtained the sum of three non-negative numbers,
i.e. a non-negative number; hence immediately follows the in-
equality

ab(a+-b)-+be(b+c)+ca(c+a) > 6abe. (1)

Method I1. It is sufficient to prove that
ab(a-+b be(b+-c ca(c+a
(a+D) n (b+c) 1 (c+a)

abc abe abc =6
Now
ab(a+b) = be(b+c) | ca(cta)
abc abe abc

b b
=1+——+—+i+i+-a—
c c a a b b

a b b c c a
= (7; -I-—) + (—-I——) +(—+—).
a c b a c
This number is not less than 6 because
a b b ¢ c a
R R i

Method III. The problem can be reduced to problem 60 in the
following way:
Dividing both sides of (1) by the positive number abc we obtain
an equivalent inequality,
at+b bitc cta
e ot

c a b =6,

which in turn can be replaced by the inequality

a-t+b4tc i a-t+b+tc 4 a+b+c

c a b

Numbers a/(a+b+c), b/(@a+b+c), ¢/(a+b-c) are three pos-

itive numbers whose sum is 1. According to problem 60, the

sum of their reciprocals is not less than 9, which gives inequali-
ty (2).

We can also derive inequality (1) from the proposition that

the harmonic mean of three positive numbers is not greater than

>9. (2)
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their arithmetical mean because inequality (2) can be replaced
by the inequality

a+b-t+c 1 1 1
3 >3 (a + 5T c)’

expressing this very proposition (see problem 60, remark 2).
Method IV. We shall apply the theorem stating that the arith-
metical mean of two positive numbers is not less than their geomet-
rical mean:
a-+b b+-c cta
T T >vta, 2L > i),
2. 2 2
Multiplying these inequalities and simplifying, we obtain the
inequality

=V (ab),

(a-+b) (b+-c) (c+a) > 8abe,

whence, performing the multiplication and applying an easy
tranformation, we have

ab (a+b)+be(b+4-c)+ca(c+a) > 6abe.

REeMARK 1. We have proved above (method IIT) that inequality
(1) can be derived from the theorem given in problem 60. We
shall ascertain that the converse is also true: the solution of prob-
lem 60 can be derived from inequality (1).

Suppose that @ > 0, b > 0, ¢ > 0 and a-+b-+c¢ = 1. Inequality
(1) gives in succession:

ab(a-+-b)+bc (b-+c)+ca(c+a)—6abc >0,
a+db  b+tc
P22t o 6>

c a b

a-+-b+4c i a-+b+-c . a+b-+tc

c a b
and since a+b+c¢c = 1 we obtain

—6

0,

—9 >0,

1 1 1
staty =Y
REMARK 2. Inequality (1) can be generalized by showing that
if a,, ay, ..., @, denote positive numbers, then
A0y ... Gp(@xt+ag+ ... +a,)+
+aga, ... aya, (ag+a,+ ... +a,4a)+...

Fy 1y .. Cp_g (A A+ .. Fay )

>n(n—1)a,a, ... a,.
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The proof of this inequality can easily be obtained by any of
the methods I, IT, IIT. Method IV is unsuitable for this purpose.

62. Method I. We shall factorize the polynomial %3-84-w3—
—3uvw.
It will be observed that if we substitute for « in this polynomial
the expression —v—w, we obtain zero:
(—v—w)p4+v3+uwd—3 (—v—w)vw
= —18—3v2w—3vw? —ul+v3+ul-+3v2w-3vuw? = 0.

It follows that the polynomial in question is divisible by
u+v-4wt. This polynomial in the variables u, v, w is homogeneous,
ie. its terms are all of the same degree; moreover, it is sym-
melrical, i.e. it does not change with any permutation of the argu-
ments u, v, w. The same two properties characterize the divisor
u--v-4w. Consequently the quotient of these polynomials must
also be a homogeneous and symmetric polynomial in the variables
u, v, w, whence

s+ 3+ uB—3uvw = (ut+v+w)[a (w2412 +w?)+-b (wv+uw-t+wu)].

Comparing the coefficients of the corresponding terms of the
two sides, we obtain @ =1, b = —1. Since (see problem 55)

w2 v+w—uv—ovw—wu = % [(u—v)*+ (v—w)2+ (w—u)?],

we finally obtain
w403+ uwd—Buvw = % (u+v4+w)[(w—v)2+ (v—w)2+(w—u)?].

Since u+v-+w > 0 and (v—v)2+ (v—w)?4 (w—u)? >0, we have
w34 uB—3uvw >0, 1)
which is what was to be proved.
Method II. Let us introduce the notation
w=a ¥=0b, uw=c.
Inequality (1) assumes the form

AL S Viabo). @)

1 On the basis of the theorem stating that if a polynomial in a variable
« becomes zero on substituting a for x, then the polynomial is divisible
by z—a.
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Inequality (2), which is to be proved, states that the arithmetical
mean of three positive numbers is at least equal to their geometrical

mean.
To begin with, it will be observed that an analogous theorem

is true for two numbers, i.e. that

P >y,
since
a—2|—b —J/(ab) — a+b—22]/(ab) _ ( Va; 14/ )2 >o0.
The theorem is also true for four numbers because
a+-b i c+d
a—l—bi—c—l—d _ 2 - 2 > V(ab)—;—]/(cd) >:/(abcd). 3)

In order to prove the theorem for three numbers, i.e. to prove
inequality (2), we use inequality (3) taking d =%(a—|—b+c); we
obtain

a+b-+ct+L(atbtc) >i/ abe(a+b—+c)
“ - o
4 3
whence

1 4 / abe(a-Fb-+-c)
5 @+b+o) > ]/ —_—

and consequently

abc(a+b+-c)

1 4
3 (@a+b+-c)t > 3

Dividing both sides of this inequality by the positive number
% (a+b+-c) we obtain
( a-t+b+c

3
3 ) > abce,

whence finally

a4-btc
3
REMARK 1. The reasoning followed in method II is based on

an idea of a famous French mathematician, A. L. Cauchy (1789-
1857), who proved in this way the general theorem stating that

3
>V (abc) .
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the arithmetical mean of n positive numbers a,, a,, ..., @, is at least
equal to the geometrical mean of these numbers, i.e. that

Man_'_ag >;/(a1a2...a,,). ()

We shall reproduce this proof here. To begin with, we ascertain
that

(1) Inequality (e) is true if » = 2 (as before in method II).

(2) If inequality («) is true for n = k >2, then it is also true
for n = 2k. Indeed

O +0gt oo F Oty + oo FBop_y T

2k
a,+ay, | ag+a, Qo1+ Aoy,
I S B
- k

> '/(ala2)+'/(a3a4)—lI; AR >217(a1a2 e gy

Applying the principle of induction we conclude that inequality
(&) is true if » is any natural power of number 2, i.e. if n = 2™,
where m is a natural number. Finally, let n be a natural number
greater than 1 and not equal to a natural power of number 2.
In that case there exists a natural number m such that

2m-1 < q < 2M,

Let us denote the natural number 2™—n by p; thus n+p = 2™.
If besides the » positive numbers a,, a,, ..., a, we take p more
positive numbers, a,;,, @y4a, ..., @41, We shall obtain n-4p = 27
numbers for which, as has been shown before, we have the in-
equality

A+ ayt o F QA+ oo Uy

n—+p
nt
= ]/tala2 cee QpOpiy .o an+p)' (B)
Let us choose numbers a,.,, @,s, ..., @y, in such a way that
. o N . a,+a,+ ... +a,
Iniy = Opy = oo =Oggp=————.

We then obtain on the left side of (B) the expression

a,+a,4 ... +a,
n . A4+ ... +ay

n+p n

a,+a,+ ... +a,+p




104 Arithmetic and Algebra
and on the right-hand side of ($) the expression

JFIV[ (a1+a2+ ¢n)”]
R e A

Inequality (B) will thus assume the form

%+af+ . +a "i/[ (%+ﬂf+ +a)]
Ay Gy - "

Let us raise both sides of this inequality to the power n+p:
n+p ‘ 14
Vﬁﬂﬁmu+%) >%%“ﬂ4%+%+nuwﬁ.

n n

If we divide both sides of this inequality by the positive number
(@, + @+ ... +a,)P/n and then extract from them the root of
degree n, we shall obtain

rxy n
HL”—F(Z'_' > "/(alaz e an)'
ReEMaRk 2. If the numbers a,, a,, ..., a, are all equal, then
W‘: ;/(alaz.“an), (Y)

The inverse theorem, which is a supplement of theorem («),
is also true: the equality of the two sides of inequality (a), i.e.

equality (y), holds only if @, = a, = ... = a,.
In order to prove that, we can use the argument given in
remark 1. Namely, if the numbers a,, a,, ..., a, satisfy equality

(y) then, performing the earlier transformations in the inverse
order, we shall obtain, instead of inequality (@), the equality

A +Bo+ ... +Au Ayt oo FCpyp
n+p

n+p
= V(4103 ... CpBpiy +-- Cpyp).

On the basis of the inequalities given in (2) we conclude that

a,+a; | ay+a, Unip1T%ntp
5 t—g t Tt g

= V(a,a,)+V(agay)+ ... +V(“n+p_1an+p)-

Since each component of the left-hand side of this equality
is at least equal to the corresponding component of the right-hand
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side, the equality of the sums implies the equality of the correspon-
ding components, i.e.

a,+a,

9 = V(a1a2)>
whence (Va,—Va,)? =0 and a, =a, Since the successive
order of the numbers a,, a,, ..., a, is arbitrary, it follows that

these numbers are all equal.

We shall now give a simpler and more elegant proof of the
inverse theorem in question.

Suppose that equality (y) holds and that some of the numbers

@, @y, ..., &, are not equal, say a, # a, Then
a,+a
—12—2 > V(ala‘2)a
ie.
a,+a. 2
(sz) > a,a,.

In that case
a1+a2+a1—|—a2
a+a,+ ... +a, 2 2

n n

n a,+a n a,+a,)’
}l/(%?xsz Xaa...an)=]/[(l—j;—2) xaa...an]

n

> V(aamag ... a,) .

We have found that the supposition of @, # a, leads to a
contradiction of assumption (y); that supposition is thus false,
whence @, = a, = ... = a,.

REMARK 3. Denote the sum of positive numbers a,, a,, ..., a,
by S and their product by P. Writing inequality («) as

S\" n
P<(7) or S >nyP,

+ag+ ... +ay

we can state the following theorems:
(a) The greatest value of the product of n positive numbers whose
sum S is given s
S n
(7) '

This value is assumed if and only if the factors are all equal.
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(b) The least value of the sum of n positive numbers whose prod-
uct P is given s
n
nyP,
which is assumed by that sum if and only if the components are all
equal.

Using these theorems we can solve a great many problems
consisting in finding the greatest or the least value of a magnitude.
Here are a few examples to serve as exercises:

1. Which of the triangles with a given perimeter has the great-
est area?

2. Which of the parallelepipeds with a given volume has
(a) the least sum of the edges, (b) the least surface area ?

3. Which of the cylinders inscribed in a given sphere has the
greatest volume ?

4. We use a paper square of given side a to make a box in the
shape of a parallelepiped with a square base by cutting off at
the corners four equal squares of side 2 and then folding the
paper in a suitable way. For what value of x will the volume
of the box be greatest ?

REMARK 4. Applying the theorem on the arithmetical mean
and the geometrical mean to the numbers 1/a,, 1/a,, ..., 1/a,, we
obtain the inequality

1{1 1 1 n 1 1 1
Lyt )2/ (b o d)
n\a, = a a, a, ay  a,

it follows that

Consequently: the harmonic mean of n positive numbers is at
most equal to the geometrical mean of those numbers, the equality
of the two means occurring only if the given numbers are all
equal. Cf. problem 60.

63. Method 1. We shall transform the left-hand side of the

inequality
1 1
(3)(+3) =0 o

considering that z+y = 1:

(1+i)(1+l) 2l g+l ay+2 +_’
x Yy x Yy xy
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As we know, the product of positive numbers x and y whose
sum is constant is greatest if x = y; consequently if z4+y =1,
then 2y <1. It thus follows from the preceding equality that

(1+21¢-) (1—|—$) =142 :%: 9.

REMARK. Inequality (1) changes into an equality if and only
ifr=y=4%.

Method I11. We shall prove inequality (1) by showing that the
difference between its left side and its right side is non- nega,tlve
Since y = 1—z, we have

(”5‘) (“7)‘9 :(”%)(”ﬁx)—g

24l 2-w o SP-—Se42 _ 2(@a—1
x Tl1—x T ox(l—x) x(l—z)

The numerator of the fraction obtained is non-negative, and
the denominator is positive because x >0 and 1—x > 0; con-
sequently the fraction is non-negative.

Incidentally, it will be observed that this fraction is equal
to zero if and only if » = 1.

64. Method I. To prove inequality
(¢+b-+c+d)? > 8(ac+bd) 1

we shall introduce in the calculation, instead of numbers b,¢, d,
the successive differences between the given numbers. Let

b—a=r, c—b=s, d—c=t;
then
b=a+r, c¢=atr+s, d=at+rt+stt.

We substitute these values in the expression
m = (a-+b-+c+d)2—8(ac+bd) (2)
and obtain
m = (4a-+3r+2s+1)* — 8[a(a+r+s)+ (a+r)(@+rts+t)],
whence, on performing the operations, we have
m = r24rs+4s2-+4st—2rt 12

and finally
m = (r—t)?4-4rs+4s>+4st. (3)

Ifa<b,b<c,c<dthenr >0,s >0,t>0; it then follows
from (3) that m > 0, which means that inequality (1) holds.
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REMARK. It can be shown that the inequality m > 0, and thus
also the inequality given in the problem, are true under a much
weaker assumption. To show this we transform formula (3) as
follows:

m = (r—t-2s)248st. 4)

Equality (4) implies that if st > 0, i.e. if the given numbers
satisfy the condition

b<c<d or d<c<b, (5)

signifying that number ¢ is to be contained between the numbers
b and d, then m > 0.

It will be observed that if we interchange the letters a and ¢ in
(2), the value of the expression m will not change. Thus in in-
equalities (5) we can write a instead of c; as a new condition
sufficient for having m > 0, we obtain the condition b < a < d
ord < @ < b, i.e. the condition that number a should be contained
between numbers b and c.

But expression m retains its value also if we write in it b and
d instead of @ and ¢, and vice versa. Thus for the inequality m > 0
to hold it is also sufficient that b or d should be contained between
a and c¢. We have obtained the following result:

The inequality (a-+b-+c+d)? > 8(ac+bd) is true if either
of the numbers @, ¢ is contained between the numbers b and
d or if either of the numbers b, d is contained between the numbers
a, c.

If none of the above cases occurs, number m can be positive
as well as negative or equal to zero. For example, ifa = 0,5 = 2,
c=1,d=3,thenm=—12;ifa=0,b=2,c=1, d=10,
then m =9;ifa=0,6=2,c=1,d =9, then m = 0.

Method II. Let us order the expression m = (a+b-c--
~+d)>—8ac—8bd according to the powers of one of the letters,
say a: ‘

m = a?+2(b—3c+d)a+t[(b+c+d)2—8bd],
and let us find the discriminant of the quadratic function obtained :
14 = (b—3c+d)2—(b+c+d)2+8bd = (2b—2c+2d) (—4c)+-8bd
= 8(bd—bc+c2—cd) = 8(b—c)(d—c).

If b<e<d or d<<c<b, then 4 <0 and consequently
m > 0; we have obtained the same result as the one contained
in the remark to method I.

65. Method I. Number n(n—1) is equal to the sum of the
first n—1 natural numbers. Consequently
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1
2?"("_1) — QL243+en (1) — 93¢ 925 9By | W oL,

If m >2, then 2™ > m-}1, and thus

2X 22X 22X ... X2" 1 > 2X3X4X ... Xn = n!
and finally

2.15»:(;;—1) >nl.

The proof that for m >2 we have the inequality 2™ > m--1
is easily obtained by induction. '

Method II. Induction can be applied directly to the proof
of the inequality

Ln(n-1)
22" S . (1)

for any integer n > 2.
(a) If » = 3, inequality (1) is true because in that case

L p(n—
22"( 1)=23=8, and =n!=26.
(b) If inequality (1) is true for a certain £ >3, i.e. if

g (k-1)
22 > k!,

then
2%(k+1)k _ 2%k(k-—1)+k _ 2%k(k—1) w2k > 1 2k
>kl (k+1) = (k1)
and thus

Lik+1)k
22 ™ 1)1,

(a) and (b) imply that inequality (1) holds for any natural
n >3.
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PART TWO

Geometry and Trigonomeltry






PROBLEMS

§ 5. Proving Theorems

66. Given that S is the mid-point of a segment 4B of a straight
line, and M is any point on the straight line, prove that

MA*+ MB?* = 2 x84%+2 xX SM2.

67. A, B, C, D are points in a plane, no three of them being
collinear; AB = CD and 4D = BC. Prove that if the segments
AB and CD intersect, then the segments AC and BD are parallel.

68. Prove that if two medians of a triangle are equal, the
triangle is isosceles.

69. Prove that if the sides of a triangle are equal, respectively,
to the medians of another triangle, then each of the medians
of the first triangle is equal to 2 of the corresponding side of
the other triangle.

70. Prove that the ratio of the sum of the medians of every
triangle to its perimeter is contained in the interval (2, 1) and
is not contained in any smaller interval.

71. Prove that the altitudes of an acute-angled triangle are
the bisectors of the angles of a triangle whose vertices are the
feet of those altitudes.

72. Prove that if one of the sides a, b, ¢ of a friangle is equal
to the arithmetic mean of the remaining sides, then one of the
altitudes of that triangle is 3 times as great as the radius of the
circle inscribed in that triangle. .

78. Triangle ABC is right-angled at C. Draw the altitude CD,
and inscribe a circle in each of the triangles ABC, ACD and BCD.
Prove that the sum of the radii of those circles equals CD.

74. Prove that the altitudes h,, %,, k3 of a triangle and the
radii r,, 7y, r3 of the escribed circles satisfy the equality

1 1 1 1 1 1
h_l + T -+ T =—-F

L5 To T3

75. A vertical pole of altitude @ illuminated by the rays of
the sun threw a shadow upon a horizontal plane; the length

113
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[-F LR

of the shadow was @ at one moment, 2a¢ at another moment and
3a at a third moment. Prove that the sum of the angles of in-
cidence of the rays at those three moments equals a right angle.

76. On the successive sides of a square, choose points M, N, P,
@ in such a way that all the sides of the quadrilateral M N PQ
are equal. Prove that the quadrilateral M NP@ is a square.

77. The centres of four identical balls lie on a circle and the
centre of gravity of the system of those balls lies at the centre
of the circle. Show that the centres of the balls are the vertices
of a rectangle.

78. Show whether the following theorems are true:

(@) if the four vertices of a rectangle lie on the four sides of

a rhombus, then the sides of the rectangle are parallel to
the diagonals of the rhombus;

(b) if the four vertices of a square lie on the four sides of

a rhombus which is not a square, then the sides of the
square are parallel to the diagonals of the rhombus.

79. The diagonals of a trapezium ABCD intersect at S. Draw
a straight line through S parallel to the bases AB and CD of the
trapezium and intersecting the sides 4D and BC at points M and
N. Prove that MN is equal to the harmonic mean of the bases.

80. Inside a triangle ABC there lies a point P such that

< PAB = {BPC = «PCA = ¢.
Prove that

11 1 n 1
sin?g = sin?4 ' sin?B ' sin?C’

81. In a circle we draw a chord 4B and a diameter M N, and
determine the projections M’ and N’ of points M and N upon
the line 4B. Prove that M/'A = BN'.

82. We choose three points, 4, B and C, on a circle. Prove
that the feet of the perpendiculars drawn from an arbitrary point
M of the circle to the lines AB, BC and CA4 are collinear.

83. Given two circles, we draw one of their internal common
tangents and both their external common tangents. Prove that
the segment of the internal tangent contained between the
external tangents is equal to the segment of an external tangent
contained between its points of contact.

. 84. Given a convex quadrilateral, prove that if there exists
a circle tangent to its four sides produced then the differences
of the opposite sides.of that quadrilateral are equal.




Problems 115

85. In a circle we draw two equal chords AB and AC and
an arbitrary chord AD; the straight line AD intersects the
straight line BC at a point K. Prove that the product AE X AD
is independent of the position of point D on the circle, i.e. that
AEXAD = AC2

86. We are given a circle C and points 4 and B lying at different
distances from its centre. Prove that the common chords of
circle C and the circles passing through points 4 and B lie on
straight lines having one point in common.

87. The diagonals of a quadrilateral inscribed in a circle in-
tersect at a point K. Points M, N, P, Q are the projections of
K on the sides of that quadrilateral. Prove that the straight
lines KM, KN, KP and K@ bisect the angles of the quadrilateral
MNPQ.

88. A quadrilateral ABCD is inscribed in a circle. The straight
lines AB and CD intersect at E, and the straight lines 4D and
BC intersect at F. The bisector of 4« AEC intersects the side
BC at M and the side 4D at N; the bisector of < BFD inter-
sects the side AB at P and the side CD at Q. Prove that the
quadrilateral M PNQ is a rhombus.

89. Prove that in an isosceles trapezium circumscribed
about a circle the segments joining the points of contact of the
opposite sides with the circle pass through the point of intersec-
tion of the diagonals.

90. Prove that if a plane figure has two and only two axes
of symmetry, those axes are perpendicular.

91. Prove that if two altitudes of a tetrahedron intersect,
then the remaining two altitudes also intersect.

92. Prove that if the opposite edges of a tetrahedron ABCD
are equal, i.e. 4B = CD, AC = BD, AD = BC, then the straight
lines joining the mid-points of the opposite edges are perpen-
dicular and constitute the axes of symmetry of the tetrahedron.

93. Prove that a plane which passes (a) through the mid-
points of two opposite edges of a tetrahedron and (b) through
the mid-point of one of the remaining edges divides the tetra-
hedron into two parts of equal volumes. Does this assertion
remain true if we reject assumption (b)?

94. Given two skew straight lines m and », mark off a segment
AB of given length @ on m and a segment CD of given length
b on n. Prove that the volume of the tetrahedron 4BCD is in-
dependent of the position of the segments 4B and CD on m and n.
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§ 6. Finding Geometrical Magnitudes

95. In a parallelogram of given area § each vertex has been
connected with the mid-points of the opposite two sides. In this
manner the parallelogram has been cut into parts, one of them
being an octagon. Find the area of that octagon.

96. In a triangle ABC we choose points D, K, F on sides BC,
CA and AB respectively in such a way that

BD :DC =CE :EA =AF : FB =1,

where % is a given positive number. Given the area § of the triangle
ABC, find the area of the triangle DEF'.

97. In a triangle ABC a point M lies on the side BC, a point

N lies on the side AC, and the segments AM and BN intersect
at a point P. Given the ratios

BM :MC=m and AN :NC =n,
find the ratios AP: PM and BP : PN.
98. On the sides BC, CA4 and AB of a triangle ABC we choose
points M, N, P, respectively, in such a way that:
BM CN AP

G- NA PBE P
where k denotes a given number greater than 1; we then draw
the segments AM, BN and CP. Given the area S of the triangle
ABC, find the area of the triangle determined by the lines AM,
BN and CP.

99. In a triangle ABC the angle 4 is given. Is it possible to
find the angles B and C if we know that a certain straight line
passing through the point 4 divides the triangle into two isosceles
triangles ?

100. A circle is circumscribed about a triangle 4BC. Knowing
the radius R of that circle, find the radius of a circle passing
through the centres of the three circles escribed to the triangle
ABC.

101. Prove that the area S of a quadrilateral inscribed in
a circle and having sides a, b, ¢, d is expressed by the formula

8 =y[(p—a)(p—b)(p—c)(p—d)],
where 2p = a---b1t-c-d.

102. Prove that if a,b,c,d are the sides of a quadrilateral
which has a circle circumscribed about it and a circle inscribed
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in it, then the area S of the quadrilateral is expressed by the
formula

S = y/(abed).

103. Points 4, B, C, D are the consecutive vertices of a re-
gular polygon, and the following relation holds:

1 1 1
4B~ 40 TAD
How many sides has this polygon?

104. The angle at which a vertical mast mounted on a tower
is visible from a point on the ground has its greatest value « when
the distance from that point to the axis of the mast is a. Find
the height of the tower and the height of the mast.

105. The cross-section of a ball-bearing consists of two con-
centric circles, C and C,, between which there are » small circles
K,, K,, ..., K,, each of them tangent to the neighbouring two
and to the circles ¢ and C,. Given the radius r of the inside circle
C and the natural number 7, find the radius = of the circle C,
passing through the points of contact of the circles K, , K,, ..., K,
and the sum s of the lengths of those arcs of the circles K, K,,
..., K, which lie outside the circle C,.

106. A beam of length @ is suspended horizontally by its ends.
by means of two parallel ropes of lengths b. We twist the beam
through an angle ¢ about the vertical axis passing through the
centre of the beam. How far will the beam rise?

107. A homogeneous circular disc is suspended in a horizon=
tal position by means of a rope attached at its centre 0. At three
different points 4, B, C of the edge on the disc we place weights.
P1s Do, Pg Without disturbing the equilibrium of the disc. Find
the angles AOB, BOC, and COA.

108. Given the mutual distances of four points 4, B, C, D
in space, find the distance between the mid-point of the segment
AB and the mid-point of the segment CD.

109. Find the volume V of a tetrahedron ABCD given the
length d of the edge AB and the area S of the projection of the
tetrahedron upon a plane perpendicular to the line AB.

110. Through each vertex of a tetrahedron of a given volume
V we draw a plane parallel to the opposite face of the tetrahedron.
Find the volume of the tetrahedron formed by those planes.
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§ 7. Loci

111. Given two intersecting straight lines on a plane, find
on that plane the locus of a point for which the sum of the dis-
tances from the given lines is equal to a given segment a.

112. Find the locus of the centre of a rectangle whose vertices
lie on the perimeter of a given triangle.

113. A triangle 4ABC has been inscribed in a given circle. Find
the locus of the centre M of the circle inscribed in the triangle
ABC if the vertices 4 and B of the triangle are stationary and
the vertex C runs over the circumference of the given circle.

114. Given two concentric circles K, and K,, find the locus
of the vertex of an angle equal to a given angle o and having
one arm tangent to the circle K; and the other arm tangent to
the circle K,.

115. Given two intersecting straight lines @ and b, find the
locus of a point M having the following property: the distance
between the orthogonal projections of the point M wupon the
straight lines @ and b is constant and equal to a given segment d.

116. We are given on a plane two parallel straight lines @ and
b and a point P lying on neither of those lines. A variable straight
line m passes through point P and intersects the lines @ and b
at points 4, and B, respectively; another variable line passes
through the point P and intersects the lines ¢ and b at points 4,
and B, respectively. Find the locus of the point of intersection
of the lines 4,B, and 4,B,.

117. A disc of radius » rolls without sliding along the inside
" of arim of radius 2r. What line is traced by a point chosen arbi-
- trarily on the edge of the disc?

118. Given two intersecting planes 4 and B and a straight
line m intersecting those planes, find the locus of the centres of
segments, parallel to m, whose end-points lie on the planes A
and B.

119. Find the locus of the mid-points of segments of a given
length @ whose end-points lie on two perpendicular (intersecting
or skew) straight lines.

§ 8. Constructions

120. Given a straight line, a circle and a point A lying nei-
ther on the line nor on the circle, draw through the point 4 a
segment having one end-point on the circle and the other on the
straight line, the point 4 being the mid-point of that segment.
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121. We are given on a plane a straight line p and points 4
and B lying on one side of that line.

(1) Place on the line p a segment M N of length d in such a way

as to make the path AM -+ M N+ NB the shortest possible.

(2) Place on the line p a segment MN of length d so that

AM = NB.

122. Construct a quadrilateral ABCD given the lengths of the
sides 4B and CD and the angles of the quadrilateral.

123. Draw a pentagon in which the mid-points of the sides are
the vertices of a given pentagon. Find generalizations of this
problem.

124. Construct a rectangle by putting together nine squares
with sides equal to 1, 4, 7, 8, 9, 10, 14, 15 and 18.

125. In a given square inscribe a square in which one side or
one side produced passes through a given point K.

126. Draw three pairwise tangent circles whose centres are
the vertices of a given triangle.

127. In a circle equal chords 4B and AC have been drawn.
Draw a third chord which will be divided by the chords AB and
AC into 3 equal parts.

128. Given two points 4 and B of a circle, find a point C of
that circle for which the sum AC+4CBis equal to a given segment a.

129. Given two intersecting circles of radii » and R, draw
through one of the points of intersection a straight line which
intersects the circles at two further points, P and @, so that the
segment PQ is of a given length d.

130. Given a circle K and straight lines M P and M@ tangent
to that circle at points P and @, draw another tangent to that
circle, such that its segment included in the angle PM@Q is of
a given length I.

131. Given points M and IV on the diameter of a circle, inscribe
in that circle an isosceles triangle with one of the equal sides
passing through the point M and the other passing through the
point N.

182. Construct an equilateral triangle whose vertices lie on
three given parallel straight lines.

133. Given two concentric circles and a point 4, draw through
the point 4 a straight line whose segment contained in the larger
circle is divided by the smaller circle into three equal parts.
/ 134. Given two concentric circles, draw a square with two

vertices lying on -one circle and the other two vertices on the
other circle.
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135. Given a point 4, a straight line p and « circle %, construct
a triangle ABC, such that B lies on p, C lies on %, < 4 = 60°
and < B = 90°.

136. Given points 4 and B and a circle k, draw a circle passing
through 4 and B and having with the circle ¥ a common chord
of a given length d.

137. Given & circle and a line segment MN, find a point C
on the circle such that if the points of intersection of MC, NC
with the circle are 4, B respectively, then A ABC is similar to
AMNC.

138. Through a point M given on the line AB outside triangle
ABC draw a straight line intersecting the sides AC and BC at
points N and P in such a way that the segments AN and BP
are equal.

139. (a) Given non-collinear points 4, B, C, determine on the
plane ABC three parallel straight lines passing through the points
A, B, C respectively, the distances between neighbouring parallels
being equal. (b) Given non-coplanar points 4, B, C, D, determine
four parallel planes passing through the points 4, B, O, D respec-
tively, the distances between neighbouring planes being equal.

140. Given non-coplanar points 4, B, C, D, draw a plane through
the point 4 such that the orthogonal projection of the quadrila-
teral ABCD upon that plane is a parallelogram.

§ 9. Maxima and Minima

* 141. Houses A and B stand on the opposite sides of a river
whose banks at this place are rectilinear and parallel. Find where
a foot-bridge, perpendicular to the banks, should be constructed
in order to provide the shortest route from 4 to B.

142. Through a point M given inside an acute angle draw
a straight line which cuts off from that angle a triangle of the
least area.

143. Show that if a point M lies in a square ABCD with side 1,
then at most one of the distances M A, MB, MC and MD is
greater than -;71/5, at most two are greater than 1, and at most
three are greater than 3y/2.

144. A triangular piece of sheet metal weighs 900 g. Prove
that if we cut that piece along a straight line passing through
the centre of gravity of the triangle, it is impossible to cut off
a piece weighing less than 400 g.
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145. Given a straight line p and points 4 and B lying on op-
posite sides of the line, pass a circle through the points 4 and
B in such a way that the chord of that circle lying on line p be
the shortest possible.

146. Given a straight line m and points 4 and B not lying in
the same plane, determine on line m such a point C that the sum
of the segments AC and CB be the least possible.

147. Given a straight line p and points A and B within the
same plane, find a point M on p for which the sum 4 M2 BM?
is the least possible.

148. Given four spheres with the same radius r, each touching
the other three, find the radius of the smallest sphere that com-
prises them all.

149. Prove that of all triangles with a given base and a given
area the isosceles triangle has the smallest perimeter.

150. Prove that for every triangle the radius R of the circum-
circle and the radius r of the inscribed circle satisfy the inequality

R >2r.

151. Find the radius of the smallest circle which can enclose
any triangle with sides not longer than a given segment a.

152. We want to unscrew a square nut of side a by using a span-
ner with the aperture in the shape of a regular hexagon of
side b. What condition should be satisfied by sides @ and b to
make that possible?

153. A cyclist sets off from point O and rides with constant
velocity v along a rectilinear highway. A messenger, who is at
a distance a from point O and at a distance b from the highway,
wants to deliver a letter to the cyclist. What is the minimum
velocity with which the messenger should run in order to attain
his objective ?

154. In a circular tower whose interior diameter is 2 m there
is a winding staircase 6 m high. The height of each step is 0-15 m.
In a horizontal projection the steps form contiguous circular
sectors of 18°. The narrower ends of the steps are fixed in a cir-
cular column with diameter 064 m whose axis coincides with
the axis of the tower. Find the greatest length of a rectilinear
bar which could be carried up the stairs from the foot of the
tower to its top. (The thickness of the bar and the thickness of
the boards of which the steps are made are to be disregarded.)
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§ 10. Trigonometrical Transformations

155. Prove that if the angles 4, B, C of a triangle satisfy the
equation
/ cos34-+cos3B4cos3C =1,

then one of those angles is equal to 120°. »

156. Show that if none of the angles of a convex quadrilateral
ABCD is a right angle, then the following equality holds:

tan A -+tan B-+4tan C-4tan D

tan 4 tan B tan C tan D

157. Prove that if A+B+0C, A+B—C, A—B-+C or A—B—C
is equal to an odd multiple of two right angles, then cos? A +cos? B
+cos2C+2cos 4 cos BecosC =1 and that the converse is also

= cot A+cot B-}+-cot C4-cot D.

true.
158. What algebraic relation holds between 4, B and C if
cos B cos A
—  _ — cot T 9
oot A+ sin 4 cos C oot B+ sinBcosC

159. What algebraic relation holds between «, § and  if the
following equality holds:

tano+tan f-tany = tano tan § tany ?

160. Prove that if z;,%,,..., %, are angles between 0° and
180° and # is any natural number greater than 1, then

sin (z; +2,+ ... +x,) < sinz,+sinz,+ ... +sinz,.



SOLUTIONS

§ 5. Proving Theorems

66. In order to prove the equality
MA?+MB? = 2 X SA%--2 X SM? (1)

we shall express the lengths M4 and MB in terms of the lengths
SM and SA4.

M p! S 3
Fi1a. 8

If the point M lies as shown in Fig. 8, i.e. if it lies on B4 prod-
uced, then
MA = MS—AS,

MB = M8+SB = MS+AS
and consequently
MA24MB? = (MS—AS)?+4 (MS+AS8)? = 2M8*+2482,

which gives the required equality (1).

In order to complete the proof we must investigate the remain-
ing cases; namely if point M lies: (a) at point A, (b) between
points 4 and §, (c) at point §, (d) between points S and B, (e) at
point B, (f) on AB produced. In each of these cases the proof
is easy and is left to the reader.

It is possible, however, to avoid the tiresome investigation of
the above-mentioned cases by carrying out a general proof, i.e.
a proof that is applicable to each of those cases. For this purpose
we introduce, instead of the lengths of segments of a straight
line, the relative measures of directed segments, i.e. vectors on a
directed line (an axis).

We choose on a given line the positive direction, i.e. the direc-
tion from A4 to B. If P and @ are points of the line, then the
relative measure PQ of the vector with the initial point P and
end-point @ is: (a) the number equal to the length of the segment
PQ if the direction from P to @ is positive; (b) the number opposite
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to the length PQ if the direction from P to @ is negative; (¢) num-
ber zero if point § coincides with point P.
By this agreement we have

PQ+QP =0, whence QP = —PQ.

If P, Q, R are points of a line, then, regardless of their relative
position, we always have the equality
PQ4-QR = PR.

It will be observed that the square of the relative measure
PQ of a segment is equal to the square of the length of that seg-
ment; we denote both by the same symbol P@2.

Using relative measures, we can write in our problem, without
introducing a drawing,

MA =MS4+84, MB= MS+8B,

whence
MA2+MB?* = (MS+8SAR+ (MS+SB)?
=2X M824+-2X MS X (SA+8SB)+ 8424882,
Since § is the centre of the segment 4B, we have
SB = A8 = —8SA4, whence SA4+8SB =0,
and finally
MA2+-MB? = 2X MS8?+2 X S42,
which is what we wanted to prove.

ReMARE. Formula (1) is a particular case of the following
theorem:

If point S is the centre of gravity of a system of n points A, A,, ...,
A, in space (we assume the points to have equal masses) and M is
an arbitrary point in space, then

MAZL MASL ... +MA2 = n X MS?+SA3+-SAZ+ ... 1842,

We shall prove this theorem for n = 3. The proof will be under-
stood only by those readers who are acquainted with the notion
and properties of the sum of vectors and the scalar product of
vectors in space.

The symbol PQ will denote a vector with initial point P and
end-point @, and PQ will denote the length of that vector.

Let 8 (Fig. 9) be the centre of gravity of a triangle 4,4,4,
and M —any point in space.

Let us write the equalities:

MA, = M8+-S4,, MA, = MS8+S84,, MA, — MS-+84,.
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Squaring these equalities and then adding them, we obtain

MAS-MAZ+ MAS — 3 MS2 X M8 (SA, +8A4,+84,) +
+SA3+8SA3+SA%.

Now SA1+SA2—|—SA3 =0 because the vector SK 0ppos1te

to the vector SA:,, is equal to the sum of the vectors SA1+SA2
(the quadrilateral S4,K4, being a parallelogram); hence

MAR+MAZ+MAZ = 83X MS2+SA2+SAZ+843.

AT D‘\\ A
\\XK/
Fi1c. 9

If n = 2, the proof of our theorem, i.e. the proof of formula
(1) if M is any point in space, can easily be carried out without
the use of vector algebra.

67. Method I. Let M denote the intersection point of the
segments AB and OD (Fig. 10). The triangles ABC and CDA
with the common side AC are congruent because 4B = CD,
BC = AD; consequently <« BAC = 4« DCA. It follows that AMC

D 8
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is an isosceles triangle, i.e. that AM = CM, and thus also MB
= MD. In that case the bisector of the angles AMC and BMD
is an axis of symmetry of the figure; point C is symmetric to
point A and point B is symmetric to point D, whence AC||BD,
being perpendicular to the axis of symmetry.

Method II. Since AB = CD, we have
AM+MB =CM-+MD.

Suppose that AM # MD, e.g. let AM > MD; the above
equality then implies that CM > M B and

AM—MD =CM—MB.

In the triangles AMD and CMB the sides AD and OB, the
angles opposite to those sides at the vertex M and the differences
of the remaining sides are equal; consequently the triangles are
congruent and AM = CM, MD = MB, whence, as in method I,
we have AC||BD.

If AM = MD, then also CM = MB; the triangles AMD and
CMB are isosceles and have equal bases AD and BC and equal
angles at the vertex; consequently their remaining angles are
equal; thus the triangles are congruent in this case also.

REeMARK. In the above reasoning we have exploited a certain
theorem on the congruence of triangles; we shall explain this
more fully. To begin with, let us recall one of the fundamental
congruence theorems for triangles.

If two sides of one triangle are respectively equal to two sides of
another triangle and if the angles of those triangles which lie opposite
the greater of those sides are equal, then the triangles are congruent.

The proof is short.

Suppose that in triangles ABC and 4,B,C, we have AB
= A4,B,, BC =B,C,, AB>BC and <«C = «(; (Fig. 11).
If the angles at the vertices B and B, were not equal, e.g. if «B

G

A, 8
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were greater than < B;, then constructing <+ CBD = < B;,
we should obtain a triangle DBC congruent to the triangle 4,B,C, .
We should thus have DB = A4,B;, = AB and in the isosceles
triangle ABD the angles at the base would be equal, i.e. <« ADB
= < A. But $ADB > 40, as an exterior angle of the triangle
DBC, and thus we should have ¢4 > <C, i.e. in the triangle
ABC the greater angle would lie opposite the smaller side, which
is impossible. Consequently «B = < .B,, and thus the triangles
ABC and A4,B,C, are congruent.

We shall now prove the following congruence theorem for
triangles: If a side and the opposite angle of one triangle are
equal to a side and the opposite angle of another triangle and if
the differences of the remaining sides in those triangles are equal,
then the triangles are congruent.

In triangles ABC and 4,B,C, (Fig. 12) let AB = 4,B,, «C
= «0,, AC—BC = 4,C,—B,C,. Let us mark off CD = CB
and C,D, = C,B;. Then the triangles 4BD and A,B D, are

¢ G

B
Fic. 12

congruent by the theorem proved above. Indeed, AB = 4,B,,
AD = A,D,, AB > AD (since in triangle ABC the side AB
is greater than the difference of the sides AC—BC = 4D) and
+ ADB = <4 A,D, B, because < ADB = 180°— <« BDC = 180°—
—1(180°— () =90°+14«C and analogously <« A4,D,B,
= 90°41 4 C,. The congruence of the triangles mentioned im-
plies that <4 = <« A;, whence the triangle ABC is congruent
to the triangle 4,B,C,.

It will be observed that with the use of trigonometry we can
prove the above theorem very briefly. Namely, the law of sines
implies the well-known relation

«—p

sin

a—b

2
¢ Y
cos 5
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between the sides a, b, ¢ and the opposite angles «, 3, y of a triangle.
For given a, b, ¢ and 4, this formula defines uniquely the acute
angle («—f)/2, and thus also the two angles o and §, since

a4+ = 180°—y.

68. Method I. Let AD and BE be medians of the triangle ABC
(Fig. 13) with S as their intersection point.

If AD = BE, then AS = BS since AS = 24D and BS = ZBE.
Thus in the triangle ASB we have {BAS < ABS, whence
the triangles ABE and ABD are
C congruent, and this implies that

+BAC = 4« ABC.

Remark. The theorem can be
generahzed if AD and BE are such
£ D segments in a triangle 4 BC (Fig.13)
that the points D and E divide the
S sides BC and AC in the same ratio
and if AD = BE, then the triangle
is isosceles.
A 8  Indeed, if BD/BC = AE/AC,
Fig. 13 then by the inverse of Thales’ the-
orem the lines AB and DE are
parallel; by Thales’ theorem we thus have 4S/AD = BS/BE,
and, since 4D = BE, we have AS = BS. This implies, as before,
the equality of the angles 4 and B of triangle ABC.

Method I1. Let a, b, ¢ denote the lengths of the sides of a triangle
and m, and m, the lengths of the medians drawn to the sides
a and b. By a well-known formula for the length of a median of
a triangle we have

mi =1p+1c2—1a?,
my =12 +-La?—1b%
Subtracting these equalities we obtain
mi—mp = 2b2—32q2,
If m, = my, then the above equality gives b = a?, whence a = b.

Remark. The formula used above for the length of a median
of a triangle is a particular case of a more general formula, very
useful in calculations. Let us draw in triangle ABC a segment
AD = d, (Fig. 14), write BD = m and find d, in terms of the
sides a, b, ¢ of the triangle and of m.
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By the Cosine Rule applied to the triangles ABD and ABC?t
we have:

d2 = ¢24-m2—2cm cos B,
b? = c24-a?—2ca cos B.
We multiply the first of these equations by @ and the second
by m, and then subtract the second from the first
ad2—mb? = ac®—mc?-+mla—ma?, c
whence
ad? = mb2 (a—m) E—ma(a—m)

and

2 = fb_bz_i_“____”ﬁ&_m(a—m). m
a a

The formula we have obtained A B
is known as the Stewart® the- Tra. 14
orem.

If m = a/2, the Stewart formula gives the formula which we
have used before for the square of a median. If (a—m)/m = b/c,
ie. if m = ac/(b-c), d, is the bisector of <« A4; from the Stewart
formula we easily obtain

g2 — be(a+b-+c)(b4-c—a) .
¢ (b+c)? ’
we have found the length of the bisector d, if the sides of the
triangle are given.
We suggest to the reader that he should deduce the following
theorems from Stewart’s theorem:

(1) a theorem stating that, if two bisectors of a triangle are
equal, then the triangle is an isosceles one;

(2) the theorem formulated in the remark on method I.

69. Method I. Let AD, BE and COF be the medians of the
triangle 4 BC (Fig. 15).

t The theorem on cosines can of course be replaced here by the “gener-
alized theorem of Pythagoras” and thus the use of trigonometry can be
dispensed with.

1 Stewart (1717-1785)—a Scottish mathematician, professor of the
University of Edinburgh.
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Fia. 15

Let us translate triangle 4 BC to the position #GH and consider
triangle BHE. The sides BE and BH of this triangle are equal
to the medians BE and FC of triangle 4BC; we shall show that
the side £ H is equal to the third median, 4.D, of triangle ABC.
Indeed, the segments AE and DH lie on parallel lines AC and
FH, and A¥ = FD = DH, whence the quadrilateral ADHE is
a parallelogram and EH = AD.

The medians of the triangle BHE are the segments BK, HL,
EM ; each of them equals 2 of the corresponding side of the trian-
gle ABC since

BK = BD+DK = BD+1DC = 2BC,
HL = LD+DH = 1FD+DH = 3FH = 34C,
EM = ED+DM — AF+1FB = 34B.

Method 11. Let a, b, ¢ denote the sides of the triangle and m,,
my, m, the corresponding medians. The lengths of the medians
can be found from the formulas:

m3 = 1 (26%+2¢2—a?),
my = 1 (2c+2a2—1?),
m? = % (2a24-2b—c?).

Now let ¢, denote the median in a triangle with sides m,, my, m,
drawn to the side m,. By a formula analogous to the preceding
ones we have

12 = 1 (2mi+2m2—m3).

Substituting the above values of m,, my, m., we obtain
t3 = L[ (2¢24-2a2—b%) +1 (202 -+ 262 —c?) —4 (2B 2¢2—a?)]
=31X3a? = %o
Consequently
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REMARK. Method I has a certain superiority over method II
because it includes a proof that we can always construct a triangle
whose sides are equal to the medians of any given triangle, i.e.
that the sum of two medians of a triangle is always greater than
the third median. It would be rather cumbersome to draw this
conclusion from the formulas of method II.

70. Denote the sides of the triangle by BC =a, CA =0b,
AB = ¢, and the medians by m,, m,, m,. Let S denote the inter-
section point of the medians, i.e. the centre of gravity of the
triangle ABC (Fig. 16).

c
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We have
AS =2m,, BS=%m,, OCS=3m,.

In triangle BSC we have the inequality BS+SC > BC, i.e.

2 my+2m, > a; hence
my+m, > 3a,
and analogously
met+my >3b,  mytmy >3c.
Adding these inequalities and reducing, we obtain
Mg+my+m, >3 (a+b-+c),
whence
Mg—+my+m, 3

atbtec ~ & W
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Let C’ be the point symmetric to the vertex ¢ with respect
to the mid-point of the side AB. We have A0’ = BC = a, B(’
= AC = b. From the triangle €'AC we obtain the inequality
C'A+AC > C'C, i.e.

a-+b > 2m,
and analogously
b+c >2m,, ct+a>2m,.
Adding these inequalities and reducing, we obtain

a+b+c > ma_'_mb_l—mc’
whence
ma+mb+mc

a-t+b+c

Inequalities (1) and (2) express the proposition that the ratio
of the sum of the medians of any triangle to its perimeter is con-
tained between the numbers £ and 1, i.e. in the interval (3, 1).
It remains to prove that in the formulation of this theorem we
cannot replace the interval (2, 1) by a narrower interval, i.e. such
an interval (o, ) that

a>2 or f<I1.

Accordingly we must show that there exist triangles for which
the ratio in question is arbitrarily close to the number 2, and
also triangles for which this ratio is arbitrarily close to 1. This
fact can easily be demonstrated.

Namely, observe that in an isosceles triangle in which the
angle at the vertex is close to 180° the perimeter differs very
little from the base doubled, each of the equal medians differs
very little from 2 of the base and the third median is small, and
consequently the sum of the medians of the triangle differs little
from 2 of its perimeter. And if the angle at the vertex of an isos-
celes triangle is close to 0°, then the perimeter of the triangle
differs little from a doubled arm and each of the equal medians
differs little from 1 of an arm, whereas the third median differs
little from a whole arm ; consequently the sum of the medians differs
little from the perimeter of the triangle.

The above explanation is not a mathematical proof but it
gives a hint how to conduct the proof.

Suppose that in a triangle 4BC in which AC = BC (Fig. 17)
points M and P are the mid-points of the sides BC and 4B and
the segment M H is perpendicular to the side 4B. In the triangle
AMH we have the inequality

AM < AH+HM,

<1. )
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whence
my <Zc+%h,
where h = CP denotes the altitude of the isosceles triangle 4BC

(and also the median drawn to its base). Since m, = m, and
m, = h, we obtain from the above inequality

mg+my+m, < 3c+2h. (3)
c
h M
i
|
|
[
[
|
- l
A P H |8
c
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Since ¢ < a-+b, we have 2¢ < a+b-+c and 3¢ <3(a+b+-c), and
consequently inequality (3) gives

mg+my+m, < 3 (a+b-+c)+2h,

whence
my+my+m, 3 2h
atbt+c 4 < a+btc’ )
Now
2h 2h < ﬁ: sin A;

a-+b-4c = 2a-+c a
thus by the preceding inequality we have

mgt+my+m, 3 .
'm vy <sind. (5)

We have proved that in an isosceles triangle the ratio of the sum
of the medians to the perimeter differs from £ by less than the
sine of the angle at the base. Consequently this difference is arbi-
trarily small when <A is sufficiently close to 0°.
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Next it will be observed that in triangle BPC we have the
inequality BC < BP+PC, ie. a <%c+h, whence we obtain
a+b-+c < 2¢42h. (6)
But MH < AM and thus }h < m, and analogously 1+ < my;
since h = m, we have
2h < myt+mp-t+m,. (7)
By inequalities (6) and (7) we have
a-+b+c < 2¢+ (my+my+m,),
whence
My+my+m, 2¢

a-+b-+c a+b+c ’

Since

2¢ 2c c c
= —_— =2 —_—
a-+b4-c 2a-}+c < a X 2a 2 cos 4,

the preceding inequality implies that

My-t+my—+-m,
- W— < 2cosA. (8)

We have proved that in an isosceles triangle the ratio of the
.sum of the medians to the perimeter differs from unity by less
than twice the cosine of the angle at the base. This difference
is thus arbitrarily small if the angle at the base is sufficiently
close to 90°.

71. Let S be the intersection of the altitudes AM, BN and
CP of the acute-angled triangle 4BC (Fig. 18).

F1a. 18 Fia. 19

The quadrilateral SMCN, in which the angles at the vertices

M and N are right angles, is inscribed in a circle with diameter
S8C'; consequently
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+«SMN = «8CN

(angles inscribed in the same arc are equal).
Similarly in the quadrilateral SMBP

+«SMP = 48SBP.

But «SCN = < SBP since each of these angles equals 90°—
— <4 BAC; consequently «SMN = « SMP.
The altitude AM is thus indeed the bisector of the angle NMP.

REMARK. In an obtuse-angled triangle (Fig. 19) the altitude
AM drawn from the vertex of the obtuse angle A4 is the bisector
of the angle NM P and the remaining two altitudes are the bisectors
of the exterior angles of the triangle M NP; the proof is analogous
to the preceding one.

72. Suppose, for example, that @ = 1(b+-c). In the formulation
of the theorem it is not indicated which altitude is to be proved
to be three times as long as the radius p of the inscribed circle.
However, we easily conclude that under the above assumption
it can only be the altitude A, drawn to the side a.

Indeed, if the assumption a = }(b+-¢) implied that, for instance,
h, = 3p, then an exchange of letters b and ¢ would lead to the
conclusion that also h, = 3p, whence &, = k., and consequently
b = c. We should thus obtain the proposition: “If a = §(b+-c)
then b = ¢”, which is obviously false.

We are thus to prove that h, = 3p. We shall find the required
proof if we investigate the relations between the radius of the
inscribed circle and the other lengths in a triangle.

We know, for instance, that between the area P =%a,h,, the
perimeter 2p = a+-b-c and the radius ¢ of the inscribed circle,
we have the relation P = pp; consequently

ah, = o(a+b-+c). 1)

By our assumption we have b-c = 2a; thus a+b+c = 3a
and consequently (1) gives

ah, = 3ap, whence h, = 3p.

We could also base our reasoning on well-known formulas for
the segments determined on the sides of a triangle by the points
of contact of the inscribed circle. We leave it to the reader to
develop this idea.

REMARK. The converse theorem is also true:

If h, = 39, then a =1(b+c).

In order to prove this, it is sufficient to substitute h, = 3p
in equality (1).
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78. We adopt the notation indicated in Fig. 20; the radii of
the circles inscribed in triangles ABC, BCD, ACD will be denoted
by r, r, and r, respectively.

c
b a
h
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c
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Method I. Since the right-angled triangles ABC, CBD and
ACD are similar, the radii of the circles inscribed in these triangles
are proportional to their hypotenuses:

rrgir=a:b:c.

Hence

rytretr  r _ (at+b+o)r
aThic — % and rH4rytr= p .

The product of the perimeter of a triangle by the radius of
the circle inscribed in that triangle equals twice the area of the
triangle, i.e.

(@a+b-+c)r = ch.
Substituting this in the preceding formula, we obtain

ry+ry+r=h,
which is what was to be proved.

Method II. Let us apply the formula expressing the radius
of the circle inscribed in a right-angled triangle in terms of the
sides of that triangle.

As we know, the segment CK (Fig. 21) joining the vertex
C of any triangle 4 BC with the point of contact K of the inscribed
circle has the length

a+b—c
—

Since in the case in question we have C' = 90°, the quadrilateral

OKCL is a square and we obtain the formula

CK =
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r= 0K = CK = f’;’_c ) 1)

Analogously, for the triangles BCD and ACD (Fig. 20) we
have

} h —
r=ttE2t (@)

T2 9 (3)

[a =
Fi1c. 21

Adding equalities (1), (2) and (3) and considering that p4-g = ¢,
we obtain the required equality,

r4rytry =h.

Method II1I. We shall show that the altitude CD of triangle
ABC can be divided into three parts equal to the radii , r, and
r, respectively.

To begin with, we ascertain, as in method I, that the radii
71, 73, are proportional to the sides a, b, c. The radii r,, r,, r
are thus equal to the sides of a triangle similar to triangle ABC.
That triangle is right-angled ; the side equal to r is its hypotenuse.

Let point O be the centre of the circle inscribed in the triangle
ABC, and let the segments OK, OL, OM (Fig. 22) be the radii
of that circle which are perpendicular to the sides of the triangle.
The quadrilateral OKCL is a square of side r.

Let us draw the perpendiculars: LP_| CD, 0Q_| LP,OR_| CD.
The triangles CLP and LOQ are right-angled triangles with hypo-
tenuses equal to r; these triangles are similar to triangle ABC,
which we easily verify by considering the corresponding angles
of the three triangles. According to the remark made at the
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beginning, the other sides of the triangles CLP and LO@ are
equal to r; and 7,, respectively:

c
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LP=0Q=ry,, OP=1LQ=nr,.
Since
CD = CP+PR-+RD,

OCP=r,, PR=Q0O=r,, RD=O0M=r,
we have
CD = r,+ry+r.

REMARK. Let us draw LL, and KK, perpendicular to 4AB.
Since
LID = LP = Ty,

in order to determine the centre O of the circle inscribed in triangle
ADC we mark off on LL, a segment L,0, equal to r,.
Considering that L,M = LQ = r,, we can see that the triangle
MO, L, is congruent to the triangle CLP, whence MO, = r.
Similarly, the centre O, of the circle inscribed in triangle BDC
lies on K K, and MO, = r.
Thus the three centres, O, O,, O, of the circles inscribed in
the triangles ADC, BDC and ABC lie on a circle with centre M.

74. Hint. Multiply by the area of the triangle both sides of
the equality to be proved.

75. The angles mentioned in the problem are the angles ACB,
ADB, AEB in Fig. 23, in which AB = a, BC =a, BD = 2a,
BE = 3a, <B = 90°. Since 4 ACB = 45°, it is sufficient to
prove that

< ADB+ < AEB = 45°.

For this purpose let us rotate triangle A BD through 90° about
A to the position AFG and let us consider triangle ADG. It is
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right-angled and isosceles because < DAG = 90°, AD = AQG.
Consequently

€AGD = €« AGF+ 4« CGD = 45°,

G

Fic. 23
But ¢« AGF = €« ADB and <« CGD = 4 AEB (since A\ DGC
= AAEB). Therefore
+«ADB}- € AEB = 45°.

Figures 24 and 25 represent two modifications of the above
proof. The main idea is the construction of a right-angled isosceles

6

45 X
B C D Y E
Fio. 24

triangle with the acute angle equal to the sum of the angles x
= «ADB and y = < AEB. In Fig. 24 this triangle is AAEG,
and in Fig. 25 A ADG.
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ReMARK. Using trigonometry we can make the proof short:

1:anaz:—AB—l tan ~—AB—1-
~BD 2’ V=88 3’
consequently
t t 1.1
tan(z+y) = snzfteny 5+ =],

3
l1—tanztany 1—1xi
‘whence z-+y = 45°.

6
A y F
X
45° X
8 ¢ R
Fi1a. 26

76. Method I. By our assumption, the quadrilateral MNP@Q
(Fig. 26) is a rhombus; the diagonals M P and N@ are thus per-
pendicular and bisect each other. In order to prove that the

0 c
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rhombus M NPQ is a square it is sufficient to show that MP = NQ.
We shall prove first that the intersection point O of the dia-
gonals MP and NQ is the centre of the square ABCD.
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Indeed, point O is the centre of symmetry of the rhombus M NPQ;
consequently the lines AB and CD are symmetrical with respect
to point O since they are parallel and pass through the symmetric
points M and P. The lines AD and CB are also symmetrical.
Thus point O is the centre of symmetry of the whole figure: it
is therefore the centre of the square 4BCD.

Let us rotate the figure through 90° about O. The line OM,
perpendicular to the line ON, will then coincide with ON, whereas
AB will coincide with BC'; point M will thus assume the position
of N. It follows that OM = ON, whence MP = N@, which is
what we were to prove.

Method I1.1In order to prove that the quadrilateral M NPQ with
equal sides is a square it is sufficient to show that all its angles
are equal.

To begin with, it will be observed that if a segment of given
length with end-points M and N lying on the arms of angle K

Fia. 27

(Fig. 27) is shifted in such a way that the end-point M approaches
the vertex K, then the end-point NV will get farther away from K,
and vice versa.

Let us rotate the whole figure (Fig. 28) through 90° in the
direction of the arrow about the centre O of the square ABCD.
The vertices A, B, O, D, will fall on points B, C, D, A respectively.
We shall show that the points M, N, P, @ will fall on points N,
P, Q, M respectively.

Indeed, if the point M fell not on point N but, for instance,
on point M,, lying closer to the vertex C than point N, then,
according to the above remark, points N, P, @ would coincide
with points N,, P;, @, lying nearer the vertices D, 4, B, respec-
tively, than P, @, M, as shown in Fig. 28. The new figure is
congruent to the preceding one (but it is turned about). If we
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rotated it again through 90° in the same direction, the vertices
of the interior quadrilateral would again approach the respective
vertices of the square ABCD—and this would be repeated if
we rotated the figure through 90° for the third and the fourth
time, i.e. if we rotated it through 360° from the initial position.

D N, P In
Ml
N
o° |}
a 4
g
4 M q, 8

Fic. 28

We have obtained a contradiction because a rotation of 360°
makes all the points of a figure return to their initial positions.
Thus point M, cannot lie nearer the vertex C than point N.

Analogously, we conclude that point M, cannot lie farther
away from the vertex C than point N. Consequently, after a rota-
tion of 90° point M will fall on point N; points N, P, @ will fall
on points P, @, M respectively. It follows that the angles of the
quadrilateral M NPQ are equal.

ReEMARK I. In method II instead of rotating the figure four
times through 90°, we could make one 90° rotation only and
reason as follows:

If points M,, N,, P;, @, lay as shown in Fig. 28, we would
have the relations:

MB = M,C < NC,
NC = N,D < PD,
PD =P, 4 <Q@A4,
QA =@, B < MB,
and we would obtain the contradiction MB < MB.

ReMark 2. Method II is superior to method I in making it
possible to prove the following, more general theorem:
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If we choose points Py, P,, ..., P, on the successive sides of
a regular polygon of n sides in such a way that all the sides of
the polygon P;, P,, ..., P, are equal, the polygon is regular.

In the proof the figure must of course be turned through the
angle 360°/n.

77. Let A, B, C, D denote the successive vertices of the quad-
rilaterel formed by the centres of the balls, and M, N the centres
of two opposite sides AB and CD of that quadrilateral.

Let us replace the balls with centres 4 and B by a ball twice
as heavy with centre M, and the balls with centres C and D—by
a ball twice as heavy with centre N. The centre of gravity of the
new pair of balls is the same as the centre of gravity of the pre-
vious four, because the forces of gravity acting at points 4 and
B have been replaced by their resultant force, acting at point M,
and the forces of gravity acting at points C and D have been
replaced by their resultant force, acting at point N. Consequently,
the centre of gravity of the pair of balls placed at points M and
N, i.e. the mid-point of the segment MN, lies at the centre of
the circle under consideration.

The chords AB and CD, whose mid-points M and N lie on
a diameter of the circle, are perpendicular to that diameter;
they are thus parallel. The remaining two sides, BC and 4D,
of the quadrilateral 4BCD are also parallel. Consequently, the
quadrangle is a parallelogram inscribed in a circle, i.e. it is a rec-
tangle.

78. (a) The first proposition is not true; in order to demonstrate
this, it is sufficient to give a counterexample, i.e. to show a figure
contradicting the theorem.

From the centre O of the rhombus 4BCD (Fig. 29) let us draw
a circle with a radius greater than the distance from the centre

N
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of the rhombus to its side and smaller than half the shorter dia-
gonal of the rhombus.

The whole figure is symmetrical with respect to each of the
lines AC and BD, and also with respect to point O. The circle
intersects each side of the rhombus at two points. Let M be one
of the points of intersection of the side 4B with the circle, and let
N be that point of intersection of the side BC with the circle
which is not symmetrical to point M with respect to BD. Next,
let P and @ be points symmetrical to points M and N with respect
to point 0. The segments MP and NQ are thus diameters of the
circle; in view of the symmetry of the figure with respect to O,
points P and @ are points of intersection of the sides CD and
DA with the circle.

The quadrilateral MNPQ is a rectangle since each of its angles
is an angle inscribed in a semicircle (e.g. the diameter M P sub-
tends < M NP). The side MN of this rectangle is not perpendicular
to BD since MN does not pass through a point symmetric to
point M with respect to BD; consequently, the side M N is not
parallel to the diagonal AC. The side MN is not parallel to the
diagonal BD either, since it joins the points M and N, lying on
opposite sides of BD. The vertices M, N, P, @ of the rectangle
MNPQ lie on the sides AB, BC, CD, DA, respectively, of the
rhombus, but the sides of the rectangle are not parallel to the
diagonals of the rhombus. The rectangle MNPQ provides thus
a counterexample disproving proposition (a).

(b) We shall show that the second proposition is true.

Let MNPQ be a square inscribed in the rhombus 4BCD, the
vertices M, N, P, @ of the square lying, respectively, on the
sides AB, BC, CD, DA of the rhombus.

To begin with, we shall prove that the centre O of the square
is also the centre of the rhombus. Let us rotate the figure through
180° about point 0. The vertex M of the square will then take
the place of the opposite vertex P (Fig. 30) and the line AB

Ji}
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will pass through point P running parallel to 4B, i.e. it will coincide
with OD. Since the same argument is applicable to any side of
the rhombus, it follows that after the rotation the rhombus will
coincide with itself, which means that the centre of rotation O is
the centre of symmetry of the rhombus.

Let us now rotate the whole figure about point O through 90°
50°as to make OA coincide with OB (in Fig. 31 the direction of
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rotation is indicated by an arrow). After the rotation the square
MNPQ will become the square NPQM, i.e it will coincide with
itself; the rhombus ABCD will become the rhombus A’'B’'C’'D’,
which does not coincide with rhombus ABCD, since by hypothesis
ABCD is not a square. For example if 04 > OB, then 0A’ > OB
and OD’ = OD < 0A; consequently the segments D’A4A’ and
AB intersect. The intersection point of these segments is the
vertex M of the square, since after the rotation it is on point
M that point @ of segment A D will fall. Analogously, the segments
BC and A’'B’ intersect at the vertex N of the square.

The figure consisting of the two rhombi is symmetric with
respect to the line BD; in this symmetry point M corresponds
to point N. Thus MN is perpendicular to the axis of symmetry
BD, i.e. it is parallel to AC, which is what was to be proved.

Remark. If we rejected the assumption that the rhombus
ABCD is not a square, the theorem would not be true, because
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infinitely many squares can be inscribed in a square, only one
of them having sides parallel to the diagonals of the given square.

Theorem (b), which we have proved, implies that a rhombus
which is not a square can have only one square inscribed in it,
one vertex of the square lying on each side of the rhombus.
A stronger theorem ean be proved: there exists only one square
whose vertices lie on the boundary of a rhombus ABCD which
is not a square. For this purpose it is sufficient to show that there
exists no square with two vertices lying on the same side of a
rhombus and the remaining vertices on the other sides of the
rhombus. We leave this to the reader as an exercise.

79. To begin with, it will be observed (Fig. 32) that the segments
M8 and SN are equal. Indeed, triangles M SD and SNC are similar

M
M S N
A 8
- Fra. 32

to triangles ABD and ABC respectively, the scale of similarity
being the same in both cases since by Thales’ theorem we have
the equality MD/AD = NC/BC. Consequently each of the
segments M.S and SN is in the same ratio to the segment AB,
which means that M8 = SN.

The relation between the length of the segment MN and the
lengths of the bases AB and CD of the trapezium will be obtained
by considering the similar triangles ABD and MSD, in which

MS  SD
AB ~ BD’
and the similar triangles DBC and SBN, in which
sy _ BS
DC ~ BD’

Adding these equalities, we obtain

uS | SN _ BS+SD

AB ° DC BD =L
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and since MS = SN = 1MN, the last equality gives

2 1 1
MN ~— 4B T Do
which means exactly that the segment MN is the harmonic
mean of the bases AB and DC of the trapezium.
REMARK 1. The notion of the harmonic mean of two segments
is connected with the notion of the harmonic quadruple of points.

We shall consider directed segments, i.e. vecfors, on a straight
line p (Fig. 33) denoting by the symbols AB, AC, BC ete. the

A c 8 D V]
Fiq. 33

relative measures of the corresponding vectors (see problem 60).
We say that the four points 4, B, C, D lying on p form a harmonic
quadruple (4, B, C, D) or that the pairs (4, B) and (O, D) divide
each other harmonically if the following relation holds:

AC AD CA CB
2= "ED’ and thus also DA~ DB’ 1)

Equations (1) signify that the ratios in which the end-points
of one of the segments AB and CD divide the other segments
are opposite numbers.

If (4, B, C, D) is a harmonic quadruple of points, then the
segment AB is the harmonic mean of the segments AC and AD.
That is because equality (1) implies, successively, the equalities:

ACXBD = —BOXAD,
ACX (AD—AB) = —(AC—AB)X AD,

240X AD — ABX AD-AB X AC,
2 1 1
A8 — 40 Tap- (2)

Performing the above transformations in the inverse order,
we find that equality (2) implies equality (1). Thus if the segment
AB is the harmonic mean of the segments AC and AD, then the
points 4, B, C, D form a harmonic quadruple.

REMARK 2. Let us consider the point of intersection 71’ of the
non-parallel sides AD and BC of the trapezium (Fig. 34) and
points P and @ at which the straight line ST intersects the sides
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AB and CD. We shall prove that the points P, @, S, T' form
a harmonic quadruple.

T

A P 8
Fia. 34

Indeed, the segments AB and DC are homothetic with respect
to the centre 7'; consequently
AB PT
DC T QT
The segments 4B and CD are also homothetic with respect
to the centre S, whence
AB _ PS
DC Qs
We have put the minus sign on the right-hand side since the

segments PS and @S run in opposite directions. The equalities
obtained give

PT PS

QT — @S’
which is what we were to prove.

The above theorem together with remark 1 leads to a very
short proof of the theorem stating that in a trapezium (Fig. 34)
the segment M N, parallel to the bases 4B and OD, is the harmonic
mean of the bases. Indeed, the segments 4B, MN and DC, being
homothetic with respect to the centre 7', are proportional to the
segments PT, ST, QT':

AB:MN:DC = PT:8T:QT.
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Since P, @, S, T form a harmonic quadruple of points, accord-
ing to remark 1 the segments PT, ST, QT satisfy the relation

2 1 1
+

ST T~ PT T QT
The same relation holds between the segments 4B, MN and
DC, which are proportional to PT, ST, QT. Namely

2_1+1
MN ~— 4AB ' DC°

REMARK 3. The theorem given in remark 2 is a limiting case
of an important theorem on the complete quadrilateral.

A complete quadrilateral is a figure formed by four straight lines
a, b, ¢, d in a plane which intersect one another at six points 4, B,
C,D,E, F (Fig.35). The four lines are termed the sides and the six

F1a. 36

points—the vertices of a complete quadrilateral. Two vertices.
which do not lie on the same side are called opposite vertices.
A complete quadrilateral has three pairs of opposite vertices,
each vertex belonging to one pair. In Fig. 35 4 and B, C and D,
E and F are opposite vertices.

Lines passing through opposite vertices are called diagonals
of the complete quadrilateral. In Fig. 35 the diagonals are the lines
AB, CD, EF. The following theorem holds:
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On each diagonal of a complete quadrilateral the pair of vertices
of the quadrilateral divides harmonically the pair of the points of
intersection of that diagonal with the remaining two diagonals.

We shall prove, for example, that in Fig. 35 points E, F, P, Q
constitute a harmonic quadruple.

The proof will be based on the theorem of Menelaus?:

If a line intersects lines AB, BC, CA at points M, N, and P
respectively, then

AM % BN % CP
MB " NC ™ PA
We shall apply this theorem

(1) tolines AE, EF, FA, intersected by a line at points O, @, D:

AC EQ FD

—1.

oE ¥qr Xpa ~ b
(2) tolines DE, EF, FD, intersected by a line at points B, P, 4:
DB _EP FA _
BE PF 4D~
(3) to lines AD, DE, EA intersected by a line at points F, B, C':
AF DB X_E'_O'_ —
FDBEX A
From equalities (1) and (2) we obtain
EP __ADxBE . BQ _ _DAXCE
PF  FAXDB QF  FDxAC’
whence
EP EQ @ BEXFDXAC _ BEXFDXCA
PF'QF FAXDBXCE  AFXDBXEC’

and, in view of equality (3), we have

EP EQ
PF' QF

which means that points Z, ¥, P, @ form a harmonic quadruple.

—1,

80. We shall derive the required relation from the equation
area A ABC = area /\ APB--area A\ BP(C--area ACPA (1)

t See problem 97 (we consider directed segments).
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expressing the areas of the triangles in terms of the angles 4, B,
C, ¢ and of the radius R of the circle circumscribed on triangle
ABC (Fig. 36).

(a) We know that

area AABC = 2R?*sin 4 sin BsinC. (2)
(b) Observe that
4 APB =180°—B, <«BPC =180°—C, <£CP4 =180°—4,
since, for example,
4 APB = 180°—¢p— « PBA = 180°—¢— (B—¢) = 180°—B.

Let us write AP =g,, BP =g,, OP = p;. These segments
can be calculated by applying the Sine Rule to triangles 4PC,
APB, BPC. We obtain

. b Sin o — 2Rsin B <in
® = Sinsoo—4) T Tsma ¥
and similarly
2RsinC 2Rsin A4
sz—EB—-Slnq), Qszwsln(p.
Consequently
1 . 1 _2RsinB . .
area AAPB = -é-glcsmqo = ?X A sin g X 2R sin C sin ¢,
whence
area AAPB — 2R2 SR B 500 . 3)
sind4
Analogously
' area ABPC — 2RS4 SO o) @)

sin B
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area ACPA = 21328“’:1,111—83‘3 sin?g. )

Substituting expressions (2), (3), (4), (6) in (1), we obtain
sin B sin Gs

2R?sin A sin B 8sin C = 2R2 in2 p-4-

dividing both sides of this equality by 2R?sin 4 sin B sin C sin2p,
we finally obtain
1 1 1 + 1
sinp = sin?4 ' sin?B ' sin?C’

which is what was to be proved.

81. Let O be the centre of the given circle and § its projection
upon the line AB (Fig. 37). Point S is the mid-point of the chord
AB, ie.

SA = BS. 1))

On the other hand, we have MO = ON and therefore by pro-
jection

‘ M’'S = SN'. (2)
Adding equalities (1) and (2) we obtain
M'S+SA = BS+8N'. (3)
Since
M'S+84=M'A4 and BS+SN'= BN/, (4)
equality (3) gives
M’A = BN, (5)

Fia. 37 Fiq. 38
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REMARK. In the above reasoning we used Fig. 37. But, according
to the position of points 4, B, M, N on the circle, the relative
positions of points 4, B, M’, N' on AB may vary. If the proof
is to be correct we should investigate all the possible cases. The
proof will be similar in each of those cases. For example, in the
case presented in Fig. 38 we should write, as before, equalities
(1) and (2), but then we should have to subtract them from
each other. We would obtain

M'S—8A = SN'—BS (3a)
whence M A’ = BN'.

Such breaking up of a proof into several cases is very incon-
venient: the argument becomes long and tedious; moreover,
one must be particularly careful not to omit any of the possibilities.
In mathematics we give priority to general proofs, applicable
to every case. In our problem we shall obtain a proof of this
kind if we consider on A B, instead of segments in the usual sense,
directed segments or wvecfors. (See problem 60.)

Then equalities (1)-(5) obtained before are true for any position
of points 4, B, M, N on the circle (cf. Figs. 37 and 38). The proof
given above is general: it can even be carried out without the
aid of a drawing. What is more, the result obtained, M’4A = BN’,
signifies not only that the segments M'A and BN’ are of the
same length but that they have the same direction. As we say
in mathematics, we have proved a stronger theorem than the
preceding one.

82. The feet of the perpendiculars drawn from point M to the
lines BC, CA, AB will be denoted by P, @ and R respectively.
We are to prove that P, @, R are collinear. The line in question
is the so called Stmsont line of triangle A BC with respect to point
M.

If point M coincides with one of the points 4, B, C, then two
of the points P, @, R also lie at that point; in this case the theorem
is of course true.

Let point M lie inside one of the inscribed angles with vertices
A, B, C, say in the angle BAC. The quadrilateral ABMC is in-
scribed in a circle, and thus <« ABM+ < ACM = 180°.

If ABM and ACM are right angles, the theorem is true, since
then point R lies at point B and point @ at point C'; consequently
points P, @, R lie on BC.

It remains to investigate the case of one of those angles, say
< ABM, being obtuse; consequently < ACM is acute.

t Robert Simson (1687-1768), a Scottish mathematician.
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Then point R lies on AB produced, whereas point @ may lie
either on the segment CA or on C4 produced. Each of these
possibilities will be considered separately.

(a) Let @ lie on the segment AC (Fig. 39). In that case P
Ties on the segment BC. This follows from the fact that in triangle
BMC the angles at the vertices B and C are acute. Namely

F1e. 39

4 MBC = <« MAC, since they are inscribed in the same arc,
and «MAC is an acute angle of a right-angled triangle MAQ;
4+ MOB is acute as part of the acute angle MCA. Thus the foot
P of the altitude of triangle BMC drawn from vertex M lies on
the base BC of this triangle.

In order to prove that points P, @, R are collinear it is sufficient
to show that the angles RPB and QPC are equal.

Now points M, P, B, R lie on a circle because the angles at
points P and R are right angles; moreover, points P and M lie
on the same side of the chord RB and consequently < RPB
= <RMB.

Similarly points M, P, @, C lie on a circle because the angles
at points P and @ are right angles: points P and M lie on the same
side of QC, whence < QPC = < QMC.

But the angles RMB and QMC are equal because

<RMB = 90°— <« MBR
= 90°— (180°— « MBA) = « MBA—90°,
$QMC = 90°— 4« MCQ = 90°— « MCA
= 90°— (180°— « MBA) = « MBA—90°.
Thus «RPB = 4QPC and points P, @, R are collinear.



Proving Theorems 155

(b) Let point @ lie on CA produced (Fig. 40). In that case
point P lies on CB produced because <« MBC is obtuse: this
follows from the fact that « MBC = « MAC, « MAC being
obtuse since it is adjacent to
the acute angle MAQ. We
prove the collinearity of points
P, Q, R by showing that the
angles RPB and QPC to-
gether add up to 180°.

Indeed, reasoning as in case
(a), we find that < RPB
=180°— « RM B since points
M, R, P, B lie on a circle,
points M and P lying of the
opposite sides of the chord
RB; further, we find that
<QPC = «QMC and finally
that «RMB = «QMC.

Consequently < RPB=180°
— < QPC, whence we conclude Fic. 40
that P,Q,R are collinear.

83. We shall obtain the proof of the theorem in question by
using a theorem stating that the segments of the tangents drawn
to a circle from a point are equal. For example in Fig. 41, repre-

L

p
<

Fia. 41

senting the figure under consideration, PK = PR, PL = PS8,
QM = QR, QN = Q8.

Considering that the symmetric segments KL and MN are
equal, we can use a short argument:
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2KL = KL+MN = KP+PL+MQ+QN
= PR+PS+ERQ+8Q = (PR+RQ)+ (PS+8Q) = 2PQ,
and therefore KL = PQ.

ReMARK 1. The above proof is applicable also in the case of
the given circles being tangent (externally); then points R and
S coincide.

REeMARK 2. In an analogous way the following theorem can be
proved: The segment of an exterior tangent of two circles which s

contained between the interior tangents is equal to the segment of
an intertor tangent contained between its points of contact.

/

84. From school geometry we know the theorem stating that
in a quadrilateral circumscribed on a circle the sums of opposite
sides are equal. The theorem which we are to prove is analogous
to that theorem and can be proved in the same way on the grounds
of the fact that the segments of the tangents to a circle drawn
from a certain point are equal.

A BE\

Fi1a. 42

According to the notation adopted in Fig. 42 we have
AB = AM—BM, AD= AQ—DQ,

DC = DP—CP, BC = BN—CN,
whence
AB—DC = AM—BM—DP-}CP,

AD—BC = AQ—DQ—BN+CN;
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since
AM = AQ, BM = BN, CN=CP, DP= DQ,

we have
AB—DC = AD—BC.

REMARK. A circle tangent to the extensions of the sides of
a quadrilateral 4ABCD, which we shall call, for brevity, a circle
escribed to the quadrilateral, can exist only if the quadrilateral
has no parallel sides. For, if AB||CD, then the lines AB and CD
divide the plane into three do-
mains I, I1, I1T (Fig. 43) such |
that the required circle can lie
in none of them, since in do-

D c
main I there are no points of \ ’
AB, in domain III there are \\ I
no points of DC and in do- \
AN
A H 8

main II there are no extens-
ions of the sides AD and BC.

Let us assume that the half- - Vil
lines AB and DC intersect
at point E and the half-lines Fra, 43

AD and BC—at point F.

A circle escribed to quadrilateral ABCD (Fig. 42) is at the
same time escribed to triangle ABF and to triangle ADE. From
this observation we can derive a necessary and sufficient condition
of the existence of that circle. Namely, each of the equal segments
AM and AQ determined on the lines AB and 4D by the circle
escribed to triangles A BF and ADE is equal to half the perimeter
of the triangle 4ABF and also equal to half the perimeter of the
triangle ADE?!. Consequently, the perimeters of triangles 4 BF
and ADE are equal. Conversely, if triangles ABF and ADE have
equal perimeters, then the circles escribed to these triangles and
contained in the angle BAD are both tangent to the lines AB
and 4D at the same points M and @, whose distance from point
A equals half the common perimeter of the triangles; thus the
two circles eoincide and form a circle escribed to the quadrilateral
ABCD. Consequently:

A necessary and sufficient condition of the existence of a circle
escribed to the quadrilateral 4 BCD is the equality of the perime-
ters of the triangles ABF and ADE.

t We remind the reader of the proof known from textbooks of geometry:
AM = AB+BM = AB+ BN, AQ = AF+FQ = AF+FN, whence AM
+AQ = AB4+ BN+ AF--FN = AB+AF+BF.
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Using the above statement we can complete the preceding
result and prove the inverse theorem:

If the differences of opposite sides in a convex quadrilateral ABCD
which is not a parallelogram are equal, then there exists a circle
escribed to that quadrilateral.

Let us assume that AB—DC = AD—BC and that the sides
AD and BC are not parallel. It is easy to ascertain that then the
sides AB and DC are not parallel either. Indeed, if the sides 4B
and OD were parallel (Fig. 43), then by drawing in the trapezium
ABCD a segment DH ||CB we would obtain AB—DC = AB—
—HB = AH > AD—DH = AD—BC, whence the trapezium
would not satisfy our assumption that AB—DC = AD—BC.

Let us therefore consider a figure like the one represented in
Fig. 44. On the grounds of the preceding argument it is sufficient

Fia. 44

to prove that the perimeters of triangles ADE and ABF are equal.
Using the reductio ad absurdum method, suppose that, say, the
perimeter of A ADE is greater than the perimeter of A ABF.
Let us determine on the line A a point B’ for which the perimeter
of the triangle ADB’ is equal to the perimeter of the triangle
ABF?.

Point B’ lies inside the segment BE because the triangle ADB’
must be contained in the triangle ADE with a larger perimeter
and must contain the triangle ABD with a smaller perimeter
than the perimeter of the triangle ABF. Thus the segment DB’
intersects the segment BC at a point C’. In view of the equality

t The point B’ can be found by marking off on AE a segment AG equal
to AB+BF+FD and drawing the perpendicular bisector of segment DG.



Proving Theorems 159
of the perimeters of triangles ABF and ADB’ the quadrilateral

ABC'D has an escribed circle, whence, as we already know,
AB—DC’' = AD—BC'.
But
AB—DC = AD—BC,
by hypothesis. From these equalities we obtain by subtraction
DC—DC' = BC—BC' = C(C',
which is impossible. The theorem is thus proved.

85. Method I. Writing the required equality as

AE AC
AC T 4D’
we notice that it expresses the proportionality of two pairs of
sides of triangles AEC and ACD with the common angle 4.
The proof is thus reduced to showing that triangles 4EC and
ACD are similar.
To prove this it is sufficient to indicate one more pair of equal
angles in these triangles.

8 8
Fia. 45 Fic. 46

If point E lies between the points B and C (Fig. 45), then
4D = 4B (since they are angles inscribed in the same arc)
and «B = «ACB (since AC = AB), whence «D = «ACB.
If point E lies on BC produced (Fig. 46), then «ADC-- B
= 180°, (these angles being opposite in the inscribed quadrilateral
ABCOD) and €« ACE-4 4« ACB = 180°; since «B = <« ACB, we
have €« ADC = «ACE.
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Method I1. The fact that our figure is determined by two secants
of the circle intersecting at point E suggests the well-known

relation
AEXED = BEXCE

and a suitable transformation of it.
Hint: Draw the perpendicular AH to BC.

Method III. Another, equally successful device is to take into
consideration the chord AF lying on the axis of symmetry of

Fic. 47 Fic. 48

triangle ABC (Fig. 47 and 48). Since AHXAF = AC? (the
theorem on the square of a chord in a circle), the proof is reduced
to showing that

AEXAD = AHXAF,

this equality being an immediate consequence of the similarity
of the right-angled triangles AHE and ADF with the common
angle A.

REeMARE. The above problem is connected with the important
notion of inversion with respect to a circle.

Suppose that O(r) is a circle
with centre O and radius r given
in a plane (Fig. 49).

4 If A is an arbitrary point of

the plane different from O, then

the point 4’ on OA defined by
’ 7'2

04" = 04

is called the image of point 4 in

inversion with respect to the

Fic. 49 circle O(r).

r

0(r)
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Since
r2
OAI ’
the point A is—wvice versa—the image of point 4’.
The relation between the segments OA and 0A’ is usually writ-
ten down in the symmetric form

04X 04" =

04 =

If 0A = r, then 04’ = r and the points 4 and A4’ coincide.
If 0A < r, then OA’ > r, and vice versa.

Given one of the points 4 and A4, it is easy to find the other
point by construction, e.g. as shown in Fig. 49, in which the
angles OAT and OTA’ are right angles.

Every point of the plane except point O has a definite image
on the plane and every point except point O is the image of a defi-
nite point of the plane. We say that inversion with respect to the
circle O(r) 18 a transformation of the plane without point O onto
itself.

This transformation has many interesting properties. We shall
confine ourselves here to the determination of the images of
straight lines and circles in inversion, i.e. to the determination
of figures into which straight lines and circles are transformed.

A circle with centre O 13 transformed into a circle with the same
centre. In particular, the circle O(r) coincides with its image in
such a way that each point of the circle is its own image. Points
lying inside the circle O(r) have their images outside O(r) and
vice versa.

The image of every straight line drawn from the centre O is the
same straight line, but every point of that line is transformed
into another point except its point of intersection with O(r):
this point remains at the same place.

The tmage of a straight line m not passing through the centre
O s a circle passing through O with the exception of point O itself;
conversely, the image of such an “interrupted” circle is a straight
line which does not pass through the centre 0. The proof of this
theorem is simple (Fig. 50).

Suppose that the images of points 4 and B in inversion with
respect to the circle O(r) are 4’ and B’. From the equality
OAX0A’' = OBXOB’, which gives the proportion

04 _ OB
0B ~ 04"
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we infer that the triangles O4B and OB’A’ are similar and that
«0OAB = 4«O0B’A’. Thus if point B runs over a straight line
m perpendicular to OA, then point B’ describes a circle m’ with
diameter 04'—and vice versa.

g 8
0 4 A4 0
U’ m
(a) (b)

F1a. 50

In Figure 50a we have OA > OA’ and the line m lies outside
the circle m’; in Fig. 50b we have 04 = 0A4’, m and m’ being
tangent; finally, in Fig. 50c we have 04 < 0A’, the line m inter-
sects the circle m’ and we obtain the same figure as in problem
85. In fact, the essential point of that problem was to show
that inversion with centre 4 and radius AC (Figs. 45-48) trans-
forms the circle passing through points 4, B, C into the straight
line BC.

We shall prove in addition that the image of a circle m which
does not pass through the inversion centre O is also a circle which
does not pass through the centre O.

Let a point A’ be the image of point A of circle m (Fig. 51)
and let the straight line OA intersect the circle m at one more
point, B. Then

0AX04" =1+?

Fia. 51
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and
04 X0OB = k?

where k is the same number for every secant passing through O.

We obtain

2
04’ = (%) XOB.

Point A4’ thus corresponds to point B in a homothety with
centre O; the homothety ratio is the number (r/k)2.

If point A, and point B along with it, describe the circle m,
point A’ describes the circle m’ homothetic to m with respect to
point O. The circle m’ is thus the image of the circle m both in
a homothety with respect to point O and in inversion with respect
to the circle O(r). But each of these transformations associates
the points of one circle with the points of the other circle in
a different manner. For example point A’ corresponds to point
A in the inversion, and to point B in the homothety. The centre
8 of circle m (Fig. 51) corresponds in the inversion not to the
centre of circle m’ but to another point §’; similarly, the centre
T’ of circle m’ corresponds to point 7', other than the centre of
the circle m. In Figs. 51, 53 and 54 the centre O lies outside, and
in Fig. 52 inside the circle m.

Fic. 52

If the circle m intersects the inversion circle O(r), then its image
m' intersects the circle O(r) at the same points.

ExzercIse. When do the circles m and m’ coincide ?
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F1a. 54

86. If one of the given points, say point A4, lies on the circle C,
the theorem is obvious because then all the chords mentioned
in the theorem have the common end-point 4.

We shall carry out the proof for the case where neither of the
points 4 and B lies on the given circle C.

Let us consider two circles, K, and K,, passing through the
given points 4 and B and intersecting the circle C, the first at
points M and N and the second at points P and @ (Figs. 55 and
56). ‘ :
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The lines MN and P intersect. Indeed, if the lines M N and
PQ were parallel, then the segments MN and PQ, as parallel
chords of circle O, would have a common axis of symmetry,
passing through the centre of circle €. That axis of symmetry

Fia. 56
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would also pass through the centres of the circles K, and K,
and thus it would also be the axis of symmetry of the segment 4B.
Thus the centre of circle C would be equally distant from A4 and
from B, which is contrary to our assumption.

We shall show that the point of intersection 8 of the lines M N
and PQ lies on AB. Accordingly, it will be observed that § is
either the point of intersection of the chords M N and PQ (Fig. 55)
or the point of intersection of these chords produced (Fig. 56).
In the former case point § lies inside all three circles, C, K,
and K,, in the latter case point S lies outside those three circles.

The argument which follows is applicable to both cases.

Let us consider the straight line S4 and denote by B’ the second
common point of S4 and the circle K, and by B’’ the second
common point of S4 and K,.!

By a well-known theorem on the secant of a circle we can write

SAXSB' = SM XS8N (secants of circle K,),
SAXSB'' = SPX8Q (secants of circle K,),
SMXSN = SPXS8Q (secants of circle C).

Consequently
SAXSB' = SAXSB”,

whence
SB’' = SB"’.

Since the points B’ and B’’, both in the first and in the second
case, lie on S4 on the same side of point §, the equality obtained
implies that B’ and B'’ are one and the same point—one of the
common points of circles K, and K,. That point cannot be point
A since that would mean that the line 84 is a common tangent
of K, and K, at point 4, which is impossible because the circles
K, and K, are not tangent. Consequently, the points B’ and B"’
coincide with point B, which implies that point S lies on 4B.

The same point S will be obtained by describing any circle
passing through points A and B and intersecting circle C' at points
P’ and @', since—according to the above—P’Q’ intersects M N
at a point of 4B, i.e. at point S.

The theorem has thus been proved.

REmaRK 1. If points 4, B are equidistant from the centre of
circle C, then the common chords of C and the circles passing

t We do not know beforehand whether or not either of the points B’
and B’ coincides with point 4, which of course could happen only in a case
like that presented in Fig. 56. Our subsequent reasoning will prove this
to be impossible.
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through points 4, B are parallel to 4B, the figure being symmetric
with respect to the perpendicular bisector of the segment AB.

REMARK 2. The argument applied above to the circles K; and
K, can also be used if one or even both of those circles are tangent
to circle C provided that, instead of the secant MN or PQ, we
consider the common tangent of the circles C' and K, or C and K,.
Those common tangents pass through the point 8 of AB which
has been determined above.

REMARK 3. The theorem which has been proved above by using
the theorem on the secants of a circle can be deduced as a simple
consequence of the properties of the radical axis of two circles.
We shall explain this briefly.

Let O(r) be a circle with centre O and radius r, and let P be
a point lying in the plane of the circle at a distance d from O.
The number

d?—r?

is termed the power of point P for the circle O(r). This number is
positive, negative or equal to zero according to whether point
P lies outside the circle, inside it or on its circumference.

Y
\

N
Fia. 57 F1a. 58

Using the relative measures of directed segments on the axis
PO (Figs. 57 and 58) we have
PO=d, —0A=0B=r.
Consequently
d2—1r? = (d—r)(d+r) = (PO+0A4)(PO+0B) = PAX PB.

Let us draw through point P a straight line intersecting the
circle at points M and N. By a well-known theorem we have

PM X PN = PAX PB.
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We thus have the equality
d?—r2= PM X PN.

This equality expresses the following theorem:

The power of a point P for a circle is equal to the product of the
relative measures of the segments of an arbitrary secant passing
through P which are directed from point P towards the points of
intersection of the secant with the circle.

In the wording of this theorem we can replace “relative measures
of directed segments” by “lengths of segments”, at the same
time changing the word “power” to the words “absolute value
of the power”,

Fia. 59

Let us consider two non-concentric circles, 0,(r;) and Oy(r,),
on a plane; let 0,0, = a (Fig. 59). We shall show that on the line
0,0, there exists one and only one point H whose powers for
the given circles are equal, i.e. that

0, H>—r} = HO3—3.
Let us write the above equality as
0, H*—HO} = r}—r}. 1)

If O,H and HO, denote the relative measures of the segments
on the axis 0,0,, then
0,H+HO, = a. (2)
Dividing (1) by (2), we obtain
_r—3

0,H—HO, = — (3)
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From equalities (2) and (3) we can find O; H and HO,:

1 r2—r2 1 ri—rd
01H“§(a+ " ), HOz—E(a-—— -

These values satisfy condition (1) and uniquely determine point
H. This immediately implies the following theorem :

The geometrical locus of the points of a plane whose powers for
two non-concentric circles are equal is a straight line perpendicular
to the line joining their centres and passing through the point H,
defined above, of that line.

Indeed, if 4 is any point of the plane and K the projection of
point 4 upon the line 0,0, (Fig. 59), then

AO%—1r3 = AK?*+ 0, K*—1},
AO3—r3 = AK2+KO2—r3,
whence we can see that the equality of the powers
AO3—1r2 = AO}—r3
holds if and only if we have the equality of the powers
0,K2—r} = KO3—12,

i.e. if point K coincides with point H determined before. The
required locus is thus the line p drawn through H and perpen-
dicular to 0,0,.

The straight line p is termed the radical axis of the circles
0,(r;) and Oy(ry).

A common point of two circles belongs to the radical axis of
those circles because its power for either of them is 0. Thus the
power radical of intersecting circles passes through their points
of intersection, and the radical axis of tangent circles is their
common tangent at their point of contact; the radical axis of
circles having no points in common lies outside those circles.

If the centres of three circles are not collinear, then the three radical
axes of three pairs of those circles pass through one point, termed
the radical centre of the three circles in question.

Indeed, the three radical axes mentioned, being perpendicular
to the three sides of the triangle formed by the centres of the
circles, intersect pairwise; the point of intersection of two radical
axes has equal powers for all three circles and thus it lies on the
third radical axis as well.

The theorem on the radical centre makes it easy to draw the
radical axis of two circles having no points in common.
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We describe an auxiliary circle intersecting the given circles
and we determine the radical centre of the three circles; it lies
on the required power axis.

F1a. 60

Figure 60 shows two points, § and 7', of the required radical
axis p which have been determined by the use of two auxiliary
circles.

If the centres of three circles are different collinear points,
then the three radical axes of three pairs of those circles either
are three parallel lines or coincide and form one straight line.

Let us return to the theorem of problem 86 and to Figs. 55
and 56. The proof of that theorem can now be put very briefly.

All circles K, , K, passing through points 4 and B have a com-
mon radical axis—the straight line 4B. The radical axis of the
circles K, and C is the straight line MN. The point of intersection
S of the lines 4B and MN is the radical centre of the circles C,
K, and an arbitrary circle K, passing through the points 4 and B.
If the circle K, intersects the circle C' at points P and @, then
PQ, as the radical axis of the circles C' and K,, passes through
point S, which is what we were to prove.

The theorem which we have proved enables us to solve by
a simple method the following construction problem.

Draw a circle tangent to a given circle C and passing through
two given points A and B.

If points A and B are not equidistant from the centre of circle C,
we describe an auxiliary circle passing through points 4 and
B and intersecting circle C' at points M and N. We determine
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the point of intersection S of ABand MN. From point S we draw
a tangent to circle C. If the point of contact 7' of that tangent
with C does not lie on AB, then the circle passing through points
A, B, T is the required circle.

If points 4 and B are equidistant from the centre of circle C,
then point 7' is obtained at the intersection of the perpendicular
bisector of the segment AB with C.

The problem can have two solutions, one solution or no solu-
tions.

A detailed discussion of these possibilities (which is left to the
reader as an exercise) gives the following result:

(1) If points 4 and B both lie inside circle C or both lie outside
circle C while the straight line 4B is not tangent to the circle,
the problem has two solutions.

(2) If points A and B lie outside circle C and AB is tangent
to it, the problem has one solution.

(3) If one of the points A and B lies on the circle and the
other point lies either inside the circle or outside it but in such
a way that AB is not tangent to the circle, the problem has one
solution.

(4) In all the remaining cases, i.e. if one of the points 4, B
lies on circle C' and the other point lies on the tangent to the
circle at the first point, and also if one point lies inside circle C
and the other outside it, and finally if the points 4 and B both
lie on the given circle C, the problem has no solution.

87. Since «AQK = «AMK = 90° (Fig. 61), the points
A, M, K, Q lie on the circle with diameter AK; consequently

< KMQ = «KAQ = «CAD
(angles inscribed in the same arc).

A q 11
<
\\//E ______ p
/N\L
8 /
N
[A

Fi1a. 61
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Analogously
< KMN = «KBN = 4« DBC.

But «CAD = 4 DB(C (angles contained in the same arc),
and consequently « KMQ = <« KMN, which means that MK
is the bisector of the angle QMN. For the other angles of quadri-
lateral MNP the proof follows the same lines.

In Figure 61 the centre O of the circle lies inside quadrilateral
ABCD. If point O lies outside quadrilateral ABCD, two of the
projections of point K upon the sides of the quadrilateral lie on
those sides produced (Fig. 62). The quadrilateral MNPQ is
then concave.

The proof is essentially the same; it undergoes a slight modi-
fication with regard to the concave angle QM N :

+<KMQ = 180°— « KAQ = «CAD,
+«<KMN = 180°— « KBN = < DBC,
whence, as before, we obtain <« KMQ = <« KMN.

A'a
8,N,

Ne

/‘V

¢l P 0 |0
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If the centre O of the circle lies on the perimeter of quadrilateral
ABCD, e.g. on the side OD (Fig. 63), then point N coincides
with point B and point @ coincides with point 4. In this “lim-
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iting case” we obtain a deformed quadrilateral M NPQ in which
the vertices M, N, @ are collinear and the angle at the vertex
M is equal to 180°.

Also, in this case the perpendiculars KM, KN, KP, K@ are
the bisectors of the angles of the “quadrilateral” MNPQ. For
KM this is obvious; for KP the proof is the same as before. For
KN (and similarly for KQ) the argument is as follows:

Points N, C, P, K lie on the circle with diameter CK (since
4ONK = «CPK = 90°) and consequently

4 KNP = «KCP = «DCA, <«KNM = «DBA,

and since € DCA = 4« DBA, we have < KNP = « KNM, which
is what was to be proved.

88. Disregarding for the time being the condition that the
points 4, B, C, D lie on a circle, let us consider an arbitrary
convex quadrilateral ABCD in which the sides AB and CD
produced intersect at point E and the sides 4D and BC produced
—at point F.

Let us draw the bisectors £OQ and FO of the angles E and F
and the segment EF; denote the angles as shown in Fig. 64 and
consider the triangles EAF, ECF, EOF with the common base EF'.

Fia. 64

Each of the angles at the base EF in the triangle EZOF is the
arithmetical mean of the angles of triangles EAF and ECF at the
same vertex; this implies that the third angle = of triangle EOF
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is the arithmetical mean of the remaining angles, « and y, of
the triangles EAF and ECF:

e
2

The same conclusion can be reached in the following way:
From an arbitrary point M (Fig. 65) draw half-lines a,, b,, ¢,,

Fi1a. 65

d,, e, f, having, respectively, the directions of the half-lines
a,b,c,d,e,f, according to the notation of Fig. 64.

Since e, is the bisector of the angle between a, and ¢,, and
[y is the bisector of the angle between d, and b,, the angle between
e, and f; is the arithmetical mean of the angle between @, and d,
and the angle between ¢, and b,, which we shall write down as:

(e1, f1) =%[‘k(“vd1)+ <« (cy, by)]-
BUt {(el’fl) = ‘t(e’f): ‘t(al’dl) = {(a'yd)9 {(cl’bl)
= < (c, b), whence
(e, f) =3 [«(a,d)+<(c, B)].

We have obtained the same equality as before, which can
easily be verified.

Let us now assume that the quadrilateral 4 BCD is inscribed
in a circle (Fig. 66).

Accordingly, «+y = 180° and the preceding equality gives

2 =}(aty) = 90°.

This means that the diagonals of the quadrilateral MNPQ
are perpendicular.
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It will be observed that, consequently, the bisector EO of
angle K in triangle PEQ is perpendicular to the side P, whence
triangle PEQ is isosceles and point O is the mid-point of the
segment Pg). Analogously, point O is the mid-point of the segment
MN.

F

Fia. 66

The quadrilateral M PNQ, whose diagonals bisect each other
and are perpendicular, is therefore a rhombus.

89. Let E, F, G, H denote, respectively, the points of contact
of the sides AB, BC, CD, DA with the circle inscribed in the trape-
zium ABCD.

Method I. Let M be the point of intersection of the segments
EG and HF (Fig. 67). Since the trapezium ABCD is isosceles,
the straight line EG is an axis of symmetry of the figure, point
F being symmetric to point H and HF | EG. The parallel
lines AB, HF and DC determine proportional segments on the
lines E@ and BC, whence

EM BF

MG~ FC
Let N be the point of intersection of the diagonals AC and BD
of the trapezium. Since these diagonals are symmetric with respect
to the line EG, point N lies on the segment EQ (Fig. 68). Triangles
AEN and CGN are homothetic with respect to point N, whence
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EN - AE

NG 06"
But AE = EB = BF and FC = CG, whence AE/CG = BF/FC
the above proportions imply that

EM  EN

MG~ NG
Points M and N divide the segment EG in the same ratio and
consequently they coincide, which is what we were to prove.

C D G c
F H N RYa
' :
|
| |
'on
| 7 :
K 8 A £ L 8
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Method II. Let N denote, as in method I, the point of inter-
section of the diagonals AC and BD; it lies on the segment EG.
We shall prove that HN is the bisector of the angle AND (Fig. 69).

Indeed, the triangles AEN and CGN are homothetic with
respect to point N, and thus

AN AE

ON ~ oG-
But CN = DN, AE = AH, CG = GD = DH and thus the
above proportion gives

AN _ AH
DN ~ DH"

By the theorem on the bisector of an angle in a triangle, this
implies that HXN is the bisector of angle AND.

Similarly, the straight line NF is the bisector of the angle
BN(. The bisectors of the vertically opposed angles AND and
BNC are collinear, and consequently the line HF passes through
point N.
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Method I1I. Let M denote the point of intersection of the
segments EG and HF (Fig. 70). Let us join point M with points
A and C. Then

AE G
tan « AME =%’ tan €« CMG =Gir
Since AE = EB = BF, CG = CF, we have
BF CF
tan {AME:W, tan {OMG’:W.

But (see method I) BF|EM = CF|GM whence
tan ¢ AME = tan «CMG.

A £ 8
Fig. 69 Fia. 70

Since the angles AME and CMG are acute, we have « AME
= 4« CMQ@, which implies that points 4, M, C are collinear,
which is what was to be proved.

Method IV. Let us return to the figures represented in Figs. 67
and 68;let us draw segments AM,FK | AB,CL _| AB and write
<ABC =a, «MAB=f, «NAB=y. It will be observed
that AL = AE+EL = EB+GC = BF+4FC = BC. Now

wonpg_ EM _ KF _
=g =FF — W
tanny — OL _CL _
MY=4rL T Bo T T®

Consequently tan § = tan y, whence f§ = y, which implies that
the points M and N coincide.



178 Geometry and Trigonometry

Method V. We shall give here only the essential idea of the

proof, leaving its full development to the reader. Let AB = a,
CD =b,HF = z. It is easy to find that
2ab
atbd’
i.e. that the length x is the harmonic mean of the lengths of the
bases @ and b. For instance, we can draw in the trapezium the
altitude from vertex D and consider two similar right-angled
triangles whose hypotenuses are equal to (a+4b)/2 and 5/2 and
sides lying opposite vertex D are equal to (a—b)/2 and (x—b)/2
respectively.

As we know, in a trapezium the segment passing through the
point of intersection of its diagonals and parallel to its bases is
equal to the harmonic mean of the bases (see problem 70). Hence
we infer that the segment HF passes through the point of in-
tersection of the diagonals of the trapezium.

Method VI. Let P denote the point of intersection of diagonal
AC with segment HF (Fig. 71). Consider the triangles APH

and CPF: their angles at the
D 6 C vertex P are equal, whence the
\ ratio of their areas is equal to

\\\§ the ratio of the products of the
A ] \\ &\\\\X\\\ sides including those angles,
C\\\X\\\\\& area of AAPH _ PAXPH

\\ area of ACPF = PCXPF’
(1)

N\
p Next, it will be observed that
A £ 8 the angles (of those triangles)
Fia. 71 at the vertices H and F are
supplementary because ¢ AHP-
+ «PHD = 180°, and <«PHD = 4 PF(, being angles formed
by the chord HF and the tangents of the circle at points H and F. .
Consequently sin ¢ AHP = sin ¢ PFC and, since the area of
a triangle equals half the product of two sides multiplied by the
sine of the included angle, we have

area of AAPH AHXPH
area of ACPF  PFXCF '
Equalities (1) and (2) give
PAXPH AHXPH
PCXPF ~ PFXCF’

xr =

2)
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whence
PA AH
PC _ OF ° 3)

L

Fia. 72

Let @ denote the point of intersection of diagonal AC with

- segment EQ (Fig. 72). Applying to the triangles AQE and

CQ@G the argument used before with regard to the triangles APH
and CPF, we obtain

QA _ AE

QC  0G° @

' Since AH = AE and CF = CQ, we infer from (3) and (4) that
P4 QA

PC - QC" (8)

Equality (5) denotes that points P and @ divide segment AC
in the same ratio, i.e. they coincide. We have thus proved that
the diagonal AC passes through the point of intersection of seg-
'ments EG and HF. The same is of course true of the diagonal
BD, and thus the theorem has been proved.

,  ReEmMark. We have got acquainted with six different proofs
‘of the theorem formulated in the problem. If we reflect upon
them, we shall notice that in each of the first five proofs we used
‘the assumption of the circumscribed quadrilateral 4BCD being
an isosceles trapezium while in the sixth proof we resorted neither
to the fact of the lines AB and 0D being parallel nor to the equality
'AD = BC but based the proof solely on the fact that the quadri-
lateral ABCD is circumscribed on a circle. Thus proofs 1-5 do
'not really matter because proof 6 shows that a much more general
theorem is true. Namely:
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In a quadrilateral circumscribed about a circle the segments joining
the points of contact of opposite sides with the circle pass through
the point of intersection of the diagonals of the quadrilateral.

This theorem was discovered by Newton.

90. The theorem will be proved if we show that a plane figure
having two axes of symmetry which are not perpendicular has
at least one more axis of symmetry.

Suppose that a plane figure F
has two axes of symmetry, k and I,
which are not perpendicular. They
can either intersect (Fig. 73) or be
parallel (Fig. 74). In both cases the
reasoning will be the same. Let &’
be the line symmetric to k with re-
spect to I. The line &’ is of course
different from kand different from I.
We shall prove that %’ is an axis
of symmetry of figure F.

If a point 4 belongs to figure F,
then point B symmetric to A with
respect to axis [ also belongs to it,
and the same holds for point C
symmetric to B with respect to axis

F1g. 73 k and for point D symmetric to C

with respect to I. It will be observed

that the segment AD is symmetric to the segment BC with respect
to the axis ! because points 4 and D are symmetric to points B
and C, respectively, with respect to the same axis. Consequently

Fia. 74
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the perpendicular bisector of segment AD is symmetric to the
perpendicular bisector of segment BC (i.e. to k) with respect
to axis [, i.e. the perpendicular bisector of AD is the line k.

We have proved that, if a point 4 belongs to figure F, then
point D symmetric to 4 with respect to &’ also belongs to it, i.e.
that k' is an axis of symmetry of figure F.

91. Let AM and BN be altitudes of the tetrahedron 4BCD
(Fig. 75) intersecting at point S:

AS | plane BCD, BS | plane ACD.

The plane ABS passing through the lines 4.8 and BS perpendic-
ular to the planes BCD and ACD is perpendicular to those planes,
and thus it is also perpendicular to the line of their intersection,
ie. to OD:

plane ABS | CD.

Consequently CD is perpendicular to every straight line lying
in the plane 4BS, and in particular

CD | AB.
A A
p
D
D
8 8
g |/
C c
Fia. 75 Fia. 76

Thus through OD we can draw a plane perpendicular to AB.
If CP is an altitude of triangle ABC (Fig. 76), then the relations

CP |_AB, CD _| 4B
imply that
plane CDP ) AB.

The altitudes CK and DL of triangle ODP are altitudes of
the tetrahedron.

Indeed, OK | AB (since CK lies in the plane CDP) and
CK | PD, whence CK | plane ABD. Similarly DL | plane ABC.
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Since the altitudes CK and DL of the tetrahedron are alti-
tudes of a triangle, they intersect, which is what we were to prove.

92. Let K, L, M, N, P, @ denote the mid-points of the edges
of the tetrahedron ABCD, as shown in Fig. 77. It is sufficient
to prove that any of the lines KL, MN, PQ, say KL, is an axis
of symmetry of the tetrahedron and that it is perpendicular to
either of the remaining lines, say KL | PQ.

Fia. 77

Method I. Since by our assumption AD = BC and BD = AC,
the triangles ABD and ABC are congruent because their corre-
sponding sides are equal; consequently the medians DK and CK
of those triangles are equal, whence the triangle DKC is isosceles
and the median KL of this triangle is its altitude, i.e. KL | DC;
analogously, KL | AB.Thisimplies that KL is an axis of symmetry
of the tetrahedron since point B is symmetric to point 4 and
point C is symmetric to point D with respect to KL. The segment
BC is thus symmetric to the segment 4.D, whence the mid-point
Q of segment BC is symmetric to the mid-point P of segment AD;
the straight line PQ passing through points P and @ symmetric
with respect to KL intersects KI and is perpendicular to it.

Method II. Since the segment KP (Fig. 78) joins the mid-
points of the sides AB and AD of triangle ABD, we have KP'|| BD
and KP = 1BD; similarly QL|| BD and QL =1 BD, whence
KP || QL and KP = QL; the quadrilateral KPLQ is thus a par-
allelogram. From the assumption that AC = BD it follows
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further that KP — PL because KP =1BD and PL=41AC;
the parallelogram KPLQ is thus a rhombus. Consequently,
the segments KL and Pg) bisect each other and are perpendicular.

Fi1a. 78

Similarly, the segments KL and MN bisect each other and are
perpendicular. It follows that if we rotate the figure about KL
through 180° the points K, @, M fall upon the points K, P, N
respectively. Thus, if the figure is rotated in the above way,
AC, which passes through point M and is parallel to K@, will
replace the straight line passing through point N and parallel
to KP, i.e. the line BD; similarly, BC will replace AD, the triangle
ABC will replace the triangle BAD and the tetrahedron ABCD
will pass into itself. The straight line KL is thus an axis of sym-
metry of the tetrahedron.

Method III. About every tetrahedron we can circumscribe
a parallelepiped, i.e. construct a parallelepiped in which opposite
faces pass through the opposite edges of the tetrahedron. If the
opposite edges of the tetrahedron are equal, then the diagonals
of each face of the circumscribed parallelepiped are equal, whence
those faces are rectangles and the solid is a rectangular parallel-
epiped (Fig. 79).

As we know, a rectangular parallelepiped has three mutually
perpendicular axes of symmetry, passing through the centres
of the opposite faces of the solid. The same lines are axes of
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symmetry of the tetrahedron inscribed in it; they pass through
the mid-points of the opposite edges of the tetrahedron.

D
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\
\
\|
\
P A\l \R
N
\
M N
\
/ 8
K
A
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93. The plane passing through the mid-points M and P of the
opposite edges AB and CD of the tetrahedron 4BCD and through
the mid-point N of the edge BC (Fig. 80) must also pass through
the mid-point @ of the edge 4D, opposite to the edge BC. Indeed,
each of the straight lines NP and M@ is parallel to BD (by the
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theorem on the line joining the mid-points of two sides of
a triangle), whence M@ || NP; thus the plane MNP contains the
line M Q.

The plane MNPQ divides the tetrahedron into two parts;
let us find the volume of the part lying on the same side of the
plane M NPQ as the edge BD, i.e. the volume of the pentahedron
bounded by the parallelogram MNP@Q, the triangle BMN,
the trapeziums BM@D and BNPD and the triangle DPQ. Let
us draw the plane PQR through the mid-point R of the edge BD.
This plane divides the pentahedron into a tetrahedron, DPQR,
and a triangular prism, PQRBMN. The tetrahedron DPQR has
a volume equal to 3 the volume V of the tetrahedron 4BCD
since it is similar to the given one, the ratio of similitude being 1.
The volume of the prism PQRBMN, with a base equal to 4 the
base of the tetrahedron ABCD and an altitude equal to § the
altitude of that tetrahedron, is $X1X3V = 2V. Consequently,
the volume of the pentahedron DBMNPQ is 3V+3V =17, i.e.
the plane MNPQ divides the given tetrahedron into parts equal
in volume.

In order to answer the last question posed in problem 93,
let us draw through the mid-points M and P of the edges AB and
CD an arbitrary plane «. If the plane « passes through the edge CD,
it cuts the tetrahedron into two tetrahedrons, AMCD and BMCD,
whose volumes are equal because they have bases, AMC and BMC,
of equal areas and a common altitude from the vertex D. If the
plane « intersects CD, then points C and D lie on opposite sides
of that plane, and consequently the plane « intersects one of
the edges 4D and AC. It suffices to consider the case where the
plane « intersects AD at point @’ lying inside the segment @D (Fig.
81); we shall show that it then intersects BC at an interior
point N’ of the segment NC.

Indeed, the straight line @'P, along which the planes « and
ACD intersect, cuts AC produced at a point 7'; the straight
line MT, which is the intersection of the planes « and
ABC, cuts the segment NC, since segment MT joins points
M and T lying on opposite sides of BC, and lies in the strip between
the parallel lines A4C and MN.

The plane « cuts the tetrahedron into two parts; let us find
the volume of one of them, say the pentahedron DBMN'PQ’.
Since, as follows from the above, points N’ and @’ lie on opposite
sides of the plane MNPQ, we have

vol. DBMN'PQ’
= vol. DBMNPQ—vol. Q' MPQ+vol. NNMNP. (1)
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We shall prove that
vol. @’ MPQ = vol. N'MNP. (2)

Since the bases MPQ and MNP of the tetrahedrons Q' MPQ
and N'MNP are congruent triangles, being halves of the parallel-
ogram MNPQ, it suffices to prove that the vertices N’ and Q'
are equidistant from the plane M NPQ. This amounts to showing
that point 8, at which the diagonals N'Q’ and PM of the plane
quadrilateral MN'PQ’ intersect, bisects the segment N'Q’.

Fia. 81

Now the mid-points of all segments joining the points of AD
with the points of BO lie in the same plane, parallel to the two
skew lines AD and BC. This plane contains the points P and M,
whence it also contains point S; consequently, point 8 is indeed
the mid-point of the segment N'Q’.

Equalities (1) and (2) imply that

vol. DBMN'PQ’ = vol. DBMNPQ = 1V.

We have proved that every plane passing through the mid-
points of two opposite edges of a tetrahedron divides it in two
parts of equal volumes.

REMARK. The second part of this proof, i.e. the argument con-
cerning the division of the tetrahedron ABCD by an arbitrary
plane « passing through points M and P, can be made consider-
ably shorter.



Proving Theorems 187

Let us draw the orthogonal projection of the tetrahedron
upon a plane perpendicular to MP (Fig. 82).

Fic. 82

The projections of the edges AB and CD are two lines bisecting
each other at a point which is the common projection of points
M and P; thus the projections of the remaining edges form the
parallelogram ADBC, and the projection of the parallelogram
MNPQ coincides with the projection of the segment NQ. It
can be seen at once that any plane o passing through M P inter-
sects two opposite edges of the tetrahedron, e.g. AD at point
N’ and BC at point @', the projections of points N’ and @’ being
symmetric with respect to the centre of the parallelepiped ADBC;
this implies equality (1), and also equality (2) because the alti-
tudes of the tetrahedrons @'MPQ and N'MNP drawn from
vertices Q' and N’ are equal to the altitudes of triangles N'MN
and @Q'PQ drawn from the vertices @’ and N’ in the figure in
Fig. 82.

94. The figure formed by two skew lines m and = is most con-
veniently represented by means of projections on two perpen-
dicular planes. As the horizontal plane of projection we shall
take any plane parallel to both m and » (Fig. 83). The vertical
projections of the given lines will then be parallel lines m'’ and
n'’, the distance d between them being equal to the distance
between the skew lines m and n. The horizontal projections
m’ and n’ will be two intersecting lines forming an angle ¢ equal
to the angle between the skew lines m and n. The horizontal
projections of the segments 4B and CD, parallel to the horizontal
plane of projection, have lengths 4’B’ = a and C'D’ =b.

In order to find the volume of the tetrahedron ABCD, we shall
consider, to begin with, a certain parallelepiped “circumscribed”
about the tetrahedron, namely the parallelepiped for which the
segments AB and CD are diagonals of two opposite faces. The
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other two diagonals of the same faces are: the segment EF = b,
parallel to segment CD and having a common mid-point M with
segment AB, and the segment GH = a, parallel to segment AB
and having a common mid-point N with segment CD.

The volume V of the parallelepiped constructed in this way
is equal to the product of the area of face AEBF and its distance
from the opposite face, namely d.

But the area of the parallelogram AEBF, whose diagonals
have lengths @ and b and form an angle ¢, is equal to }absin ¢,
whence V =% abd sin ¢.

The tetrahedron ABCD is formed from the parallelepiped
by cutting off the four corner tetrahedrons, EABC, FABD,
GACD, HBOD (Fig. 84). The volume of each of those tetrahedrons,
with bases equal to 1 the bases of the parallelepiped and altitudes
equal to d, is V. '

Consequently, the volume of the tetrahedron ABCD is }V
=1 abd sin ¢, whence it depends only on the lengths @,b,d and
angle g, and is independent of the position of segments AB and
CD on lines m and n.

§ 6. Finding Geometrical Magnitudes

95. Denote the mid-points of the sides of the parallelogram
ABCD by K, L, M, N, as shown in Fig. 85, and the centre of
the parallelogram by O. The segment joining vertex A with

A K 8

[

Fia. 85

the mid-point L of side BC intersects the segment joining the
mid-points K and M of AB and CD at point § and the diagonal
BD at a point 7. Then
(a) OS =1 OK since S is the centre of the parallelogram ABLN;
(b) OT =4 OB, which can be proved as follows. Let us draw
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a segment joining the mid-point K of segment AB with the
mid-point P of segment BL. Then KP || SL; thus if @ is the point
of intersection of segments KP and OB, then in triangle KOQ
we have OT = TQ and in triangle BTL we have TQ = @B.

This implies that the area of triangle SOT is equal to I the
area of triangle KOB.

An analogous reasoning applies to any other segment joining
a vertex of the parallelogram with the mid-point of one of the
opposite sides. Parts of those segments, such as S7', are the
bases of eight triangles forming together an octagon (Fig. 86).

v

=
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The area of each of those triangles equals  of the corresponding
part of the parallelogram, whence the area of the octagon is
equal to 3 the area of the parallelogram.

96. The following equality holds (Fig. 87):
area DEF = S—(area AFE+area BDF+{area CED). (1)

c Now
area AFE
D =1AF X AE Xsin A,
E AF = —k—XAB
T k41 ’
A 3 8 AE — — L 40,
k+1
Fia. 87
whence
area AFE — k X ! ABX AC Xsin A4;
T e g AP AT XA
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since $ ABX ACXsin A = 8, we have

k
area AFE = UCTl)z xS, (2)
Similarly
k k
DF = ——— =—— _x4.

area B s X8, areaCED e xX8. (3)

Consequently, by formula (1) we have

3k 2—k+41

areaDEF—S—mxS—WXS. 4)

ReMARK. The above argument can be shortened by using
a theorem stating that the areas of triangles having an angle
in common are in the same ratio as the products of the sides
including that angle. We immediately obtain

area AFE AEXAF 1 k k
S T ACXAB T H17EF1 T GrD®
i.e. formula (2).

97. The problem can be solved in a simple manner on the
grounds of Thales’ theorem. Let us draw MK || BN (Fig. 88);
then in triangles BCN and MAK we have

NK _BM g AP _ AN
KC _ mMc ™ *¢ BTNk’

Fi1a. 88

Consequently,
AP AN __NC NK+KC KC 1
— T — —_— —_— —_— = ]_ —_ .
PM N0 XNE ~ "X NK "(HNK) ”( +m)
Analogously, we obtain

BP 1
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RemaARk. The solution of problem 97 follows immediately
from an important theorem of geometry, discovered by Menelaus
of Alexandria (about the year 80 A.p.). It reads:

If the sides AB, BC, CA of a triangle ABC or those sides produced
are tntersected by a straight line k at points M, N and P respectively,
then the product of the three ratios of division AM[MB, BN/NC,
CP/PA, equals unity:

AM BN _CP

B X FNe X Pa = (1)

Various proofs of this theorem are known; we shall reproduce
two of them.

1. Through the vertices 4, B, C of triangle ABC we draw
perpendiculars d, , d,, dg to the straight line k (Fig. 89). By Thales’
theorem

AM 4, BN _ d,

MB ~ d,” NC d;’

CP _ d
P4 4,
Consequently,

AM % BN>< cP
MB ™ NC ™ PA

di , dy ds
= Al 3
4, ",
F1e. 88 2. Let us choose in the plane of

triangle ABC an arbitrary straight
line ! intersecting the line k (Fig. 90). Let A’, B’, C' be
the parallel projections of points 4, B, C on I in the direction
of k, and let O’ be the common projection of points M, I, P.
Since the ratio of segments of a straight line is equal to the
ratio of their projections, we have
AM A'0’ BN B'O’ CcP co

MB _ OB ' NC ©0C°' P4 04’
and therefore

AM % BN % cP . A0 % B'O’ c'o’ 1

MB " NC " PA  OF o’ 0’4
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We invite the reader to verify that by either of methods
1 and 2 we can prove the following more general theorems,
stated in 1801 by a well-known French mathematician, L. Carnot:

F1a. 90

L. If a straight line intersects the sides A;A,, A,As, ..., A4,
of a plane polygon A,A,...A, or those sides produced at points
M, M,, ..., M, respectively, then

A M, N A, M, A, M,
M A, " M4, """ 7 M4,
II. If a plane intersects the sides A, A,, AyAg, ..., A4, of

a plane or skew polygon A, A, ... A, or those sides produced at points
M,, M,, ..., M, respectively, then we have equality (2).

If we apply the theorem of Menelaus in problem 97, e.g. to
triangle ACM intersected by the straight line NB (Fig. 88),
we obtain

X 1. 2)

AN CB _ MP

vo B X pPa b
whence
AP AN CB OM~+MB 1)
P NC “BM ~ "X MB _”(Hﬁ)’

we find the ratio BP/PN in an analogous way.

The theorem of Thales is a limiting case of the theorem of
Menelaus. For example, if the point N (Fig. 89) is stationary,
and point P recedes to infinity along the straight line C4, the
straight line NP tends to a line parallel to C4 and the ratio CP/PA
in formula (1) tends to 1, whence formula (1) becomes
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AM _ BN
MB NCO
expressing the theorem of Thales.

The theorem of Menelaus is often given a slightly different
form, involving, instead of lengths of segments, relative measures
of directed segments, i.e. vectors.

Let A, B, M be different points of a directed line, i.e. an axis,
and let symbols AM, M B denote the relative measures of vectors
on that axis. The ratio AM/MB is a positive number if the point
M lies between points 4 and B, since then numbers AM and MB,
as the relative measures of identically directed vectors, have the
same sign ; the ratio AM /M B is a negative number if point M lies
outside segment AB.

Under this agreement Menelaus’ theorem assumes the form

AM BN _ CP
MB “N¢ X P4
This is because only two cases are possible: either two of the
points M, N, P lie on the sides of the triangle and the third
on a side produced, or all three points M, N, P lie on the
extensions of the sides of the triangle. In the first case two of
the ratios AM/MB, BN/NC, CP/PA are positive and the third
is negative; in the second case all three ratios are negative. Thus
the product is always negative, its absolute value, as we have
proved, being equal to 1.
It will be observed that the second of the proofs, given above,
of formula (1) brings us immediately to formula (3) if we apply
it to directed segments, since then

Alol BIOI 0101 Alol ( OIBI) 0/0[

1,

— 1 (3)

0B “oc *oa ~oB \T 00| @0 =~

We suggest to the reader the following easy exercises:

1. From the solution of problem 97 given at the beginning of
this paragraph deduce a new proof of the theorem of Menelaus.

2. Prove the inverse of Menelaus’ theorem:

If points M, N, P lie on straight lines AB, BC, CA and equation
(3) holds, then points M, N, P are collinear.

3. Deduce from Menelaus’ theorem the following theorem,
stated in 1678 by an Italian mathematician Ceva:

If lines AS, BS, C8 intersect, respectively, the sides BC, CA
and AB of the triangle ABC or those sides produced at points
N, P, M, point S lying on none of the lines AB, BC, CA, then
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AM @ BN _ CP
MB “NC X P4
4. Formulate and prove the inverse of Ceva’s theorem.

5. Investigate the limiting cases of Ceva’s theorem if point
S or one or two of the points M, N, P recede to infinity.

=1.

98. Suppose that in Fig. 91
BM  CON AP

MC NA  PB

Denote the points of intersection of lines AM, BN and CP
by X, Y, Z, as in Fig. 91.

= k. 1)

A P B
Fia. 91

Since the areas of triangles with equal altitudes are in the
same ratio as their bases, we have

BM AX
area ABM = BC XS, areadBX = A—MX area ABM ;
consequently
BM AX
=X — . 2
area ABX BO XAM XS (2)

The ratios BM/BC and AX/AM are found by equation (1):

BC  BM+MC l—|——1-—— k-+1
BM BM k- k’
whence
BM k
= (3)
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The value of the ratio AX/AM can be obtained from the result
of problem 97 provided we replace letter P in it by letter X (cf.
Figs. 88 and 91); we obtain the equality

AX 1
zﬁ=4“ﬁy

where
po Ay _1  _B¥_.
NC k’ MC ’
whence '
AX 1 1 k41
Xﬂ=1b+ﬂzﬁr
and
AX AX k41 @)
AM ~— AX4+XM Bkl

Substituting the values of the ratios BM/BC and AX/AM
from formulas (3) and (4) in formula (2), we obtain

__k
k1

The value of the area of triangle BCY will be obtained by
replacing in the above calculation of the area of ABX the letters
A, B, C by B, C, A respectively, the letters M and N by N and P
respectively, and the letter X by Y'; the area of the triangle CAZ

will be found in an analogous way. The results of the calculations
will of course be the same: thus

area ABX = S.

k

area BCY = area CAZ — area ABX = bl

S.
Since

area XYZ = S— (area ABX +-area BCY +-area CAZ)
we have

3k
areaXYZZ S—mxs
and finally
i (k—1)2
areaXYZ = yo X 8. (5)

REMARK 1. In the above reasoning formula (4) could also be
obtained by applying Menelaus’ theorem (see problem 97) to
triangle ACM, intersected by the straight line BN, which gives
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AN % CB y MX
NC” BM " X4
Writing this equation in the form

AN CM{MB  MX _
NC X BM X4

—1.

—1,

ie.

NA MC+BM MX
X X =

CN BM XA L
and substituting in the last equality the values of the ratios

NA _ MC 1

CN  BM k&’
we obtain
1(1 MX
I(I“)ﬁzl’
and finally
AX  k+1
XM

which implies, as before, formula (4).

REMARK 2. The condition that & > 1 can be replaced by a
weaker one, namely that & > 0 and % # 1. The reasoning and
result (5) remain the same. It will be observed that, if k =0,
points M, N, P coincide with points B, C, A respectively, and
triangle XYZ coincides with triangle BCA. If k =1, triangle
XYZ is reduced to a single point—the centre of gravity of the
triangle ABC. In both cases formula (5) gives correct values
of the area: S and O.

99. Let us denote the required angles of triangle ABC by z
and y and let the segment 4D divide the triangle into two isos-
celes triangles, 7', and T,.

The segment 4D cannot be the common base of the triangles
T, and T,, since then we should have BD = BA, DC = AC,
whence BC = BA-AC, which is impossible.

Thus only the following two cases are possible.

I. The segment AD is, in both 7', and T,, one of the equal
sides: consequently the vertex of each of these triangles can be
either 4 or D.

Point A cannot be the common vertex of triangles 7', and T,,
since the segments AB, AD, AC are not all equal (AD is shorter
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than at least one of the sides 4B and AC). Thus two possibilities
remain: '
(a) Triangles 7', and 7', have D as their common vertex (Fig. 92).
In this case point D is equidistant from the points 4, B, C,
i.e. it is the centre of the circumscribed circle of the triangle;
angle 4, inscribed in a semicircle, is a right angle. But we know
that in every right-angled triangle the median drawn from the

A

F1a. 93

vertex of the right angle divides the triangle in two isosceles
triangles. Consequently angles « and y can have arbitrary values,
limited only by the condition: z+y = 90°.

(b) One of the isosceles triangles—say 7',—has the vertex A4,
and the other triangle, T',, has the vertex D (Fig. 93).

In this case the angle at the base in 7', is equal to the exterior
angle of triangle 7', at the vertex D, i.e. x = 2y.

From the above equation and from the equation x4y =180°—4
we obtain

@ =120—24, y=60°—14. )

IT. The segment AD is one of the equal sides in one triangle,
say T, and the base in the other triangle, T',.

In this case the vertex of triangle 7', must be point D; for
if it were point 4, then point D would be an end-point of the
‘base both in 7T; and in T',, and each of the adjacent angles at
vertex D would be an angle at the base of an isosceles triangle,
i.e. both would be acute angles, which is impossible.

We thus have the figure represented in Fig. 94. The angle z at
the base of triangle 7',, as an exterior angle of triangle 7', at
vertex D, equals 2x; hence <4 = z+2z = 3z, and thus

r=14, y=180°—24. (2)

It will be observed that the angle magnitudes defined by for-
mulas (1) and (2) may be identical. This, as can easily be verified,
takes place in two cases:

(a) if €4 = 90°, and the remaining angles are 60° and 30°, and
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(b) if 44 = 120° and the remaining angles are 40° and 20°.

The answer to our question is thus as follows:

If €4 =90° we can say nothing about the angles z and y
except the fact that x4y = 90°.

Fia. 94

If €A # 90°and 474 # 120°, then either one of the angles z,
y equals twice the other angle—formulas (1), or one of them
equals one third of angle 4—formulas (2).

If €A = 120°, the remaining angles are 40° and 20°,

100. Let S, T', U (Fig. 95) denote the centres of the escribed
circles of triangle A BC. These points are the vertices of the triangle
formed by the bisectors of the exterior angles of triangle 4BC.

\ //
\
G

Fic. 95

In order to find the radius of the circumscribed circle of triangle
STU we shall begin by determining the angles of this triangle.
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Since
+«8BC =90°—1B, <«SOB=90°—-1C,
we have
48 = 180°— (90°—1B)—(90°—1() =1 (B+0) = 90°—14.
Similarly

T =90°—1B, U =90°—1C.

We can see that triangle S7T'U has angles of the same magnitude
as those of triangles SBC, ABU and ATC; thus all these tri-
angles are similar. The ratio of similitude equals the ratio of the
corresponding sides, e.g. for triangles SBC and STU this ratio
is SB/ST.

It will be observed that point 7', being equally distant from
the lines 4B and BC, lies on the bisector BT of angle 4 BC, whence
angle SBT, formed by the bisectors of adjacent angles, is a right
angle.

The above-mentioned ratio of similitude is thus

g—g = cos § = cos (90°— 34) =sinL4.
The radius « of the circumscribed circle of triangle ST'U is
equal to the quotient of the radius R; of the circle circumscribing
the similar triangle SBC by the ratio of similitude of these
triangles:
sinld ”

Radius R, is determined by the side BC = a and the opposite
angle S of triangle SBC':

a a

_R = = <
17 2sin 8 2cos3d’

since @ = 2R sin A, where R is the radius of the circumcircle
of triangle ABC, we have

2R sin A

— - inl
o = Seosid 2R sin34.

Substituting this value in the preceding expression for z, we
obtain

x = 2R.
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REemark. This result can be obtained in an entirely different
way by starting from the observation that points 4, B, C are
the feet of the altitudes of triangle STU (Fig. 95). The circle
passing through these points is the so-called nine-point circle,
or the Feuerbach circlet, for triangle STU. We now give the proof
of this theorem—it contains also a solution of the above problem:

THEOREM ON THE FEUERBACH CIRCLE. In every triangle the follow-
tng nine points lie on the same circle: (a) the mid-points of the sides,
(b) the feet of the altitudes, (c) the mid-points of those segments
of the altitudes which join the orthocentret of the triangle with its ver-
tices. The centre of that circle is the mid-point of the line joining
the orthocentre of the triangle with the centre of the circumcircle, and
the radius is equal to half the radius of the circumcircle.

Proof. We shall adopt the following notation (Fig. 96): K, K,,
Ky—feet of the altitudes, H—orthocentre, M,, M,, My—mid-
points of the sides of triangle A4,4,A44; N,, N,, N3—mid-points
of segments 4,H, A,H, A H.

K, M, A,
Fic. 96

The triangles M, M,M 4 and N,N,N, are symmetric with respect
to a point F. Indeed, M, M, || A;4,|| NN, and M,N,||4.H|M,N,;
thus segments My N, and M,N, bisect each other; the same holds
for the pairs MoN,, M3Ng and MyN,, M N;. Marking off FO=HF
on the line HF, we obtain point O symmetric with respect to
point F to the orthocentre H of triangle 4,4,4,. But point H is

1 Charles Feuerbach (1800-1834) a schoolmaster in Erlangen (Bavaria).
I The orthocentre of a triangle is the voint of intersection of its altitudes.
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also the orthocentre of triangle N,N,Ng, whence the symmetric
point O is the orthocentre of the symetric triangle M, M, M,.

Since the altitudes of triangle M, M,M, are the perpendicular
bisectors of the sides of triangle A4,4,44, point O is the centre
of the circumeircle of triangle 4,4,45.

The triangles N;N,N; and 4,4,4, are homothetic in the ratio
1:2 with respect to point H. In this homothety point F corresponds
to point O because HF = 4 HO. And, since point O is the centre
of the circumcircle of triangle 4,4,44, point F is the centre of
the circumecircle of triangle N,V,N;, and thus, as the centre of
symmetry of triangles M, M,M; and N,N,N,, also the centre
of the circumcircle of triangle M, M, M,.

We have thus proved that points M, M,, M4, N,, N,, N, lie
on a circle with centre F. The radius of this circle is equal to half
the radius of the circumscribed circle of triangle 4,4,4;, since
the ratio of homothety for the two circles is 1.

Points K,, K,, K3 lie on the same circle because from those
points the diameters M,N,, M,N,, M3N; appear at right angles.

101. Denoting the sides and the angles of the quadrilateral as
in Fig. 97, we have

S = area ABD+area BOD = % (ad sin A+bcsin 0), (1)

and, since in a quadrilateral ABCD in-
scribed in a circle A4-C = 180°, we have

28 = (ad--bc) sin A. (2)
A C The relation between angle 4 and the
\ sides of the quadrilateral will be obtained
o by finding the length BD from triangle
) ABD and from triangle BCD:
BD? = a?4-d?—2ad cos A
Fia. 97 = b24-¢2—2bc cos C,
whence
a?+d?—b%—c? = 2ad cos A—2bc cos O 3)
and, since cos C = —cos 4, we have
a?+4-d?—b>—c? = 2(ad-+-bc) cos 4. (4)

We can eliminate angle 4 from relations (2) and (4). According-
ly, we multiply formula (2) by 2, square equalities (2) and (4)
and add them, obtaining
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168%+ (a?4d2—b*—c?)? = 4 (ad+bc)?.
Hence
1652 = 4 (ad+bc)2—(a?4-d>—b2—c?)?
= [2(ad+bc) +(a®+d?—b%2—c?)] [2(ad+bc) — (a2 +d?—b%—c?)]
= [(a+d)*—(b—c)’][(b+c)*—(a—d)*]
and finally
1682 = (a+d—b+c)(a+d+b—c)(b+c—a-+d)(b+c+a—d). (5)
We introduce the notation
a+b+tc+d=2p
and transform the factors appearing on the right-hand side of
equality (5):
a+d—b+c = a+b+c+d—2b = 2(p—b).
Similarly
atd+b—c = 2(p—c),
btc—atd = 2(p—a),
b4c+a—d = 2(p—d).
Substituting these expressions in equality (5) we obtain
1682 = 24p—a) (p—b) (p—c)(p—d),
whence
S = y/[(p—a)(p—b)(p—c)(p—d)]. (6)
REeMARK 1. Formula (6) for the area of a quadrilateral inscribed
in a circle is a particular case of a formula relating to the area
of any (convex or concave) quadrilateral.

As can easily be seen, formulas (1) and (3) are applicable to
every quadrilateral. They imply that

1682 = 4a?d?sin? 4 +-4b%c? sin? C+8abed sin A4 sin C,
(a?+4-d?—b%—c?)? = 4a?d? cos? A 4b3c? cos? C—8abed cos A cos C'.
Adding these equalities,
1682+ (a2-4-d2—b2—c?)? = 4a?d?-4b%c?—8abcd cos (A+0),
and substituting cos (4+C) = 2 cos? 1(4+C)—1, we obtain

1682 = 4 (ad+bc)2— (a®+d2 —b*—c?)2—16abcd cos? A_;_O .
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Applying to the first two terms of the right-hand side the same
transformation as before, we obtain

1682 = 16 (p—a) (p—b) (p—c) (p—d)—16abcd cos?

b

A4-C
2
whence finally we have the formula

5= ]/[(P—a) (p—b) (p—c) (p—d)—abed COSZfHO]' (7)

2

If A+-C = 180°, i.e. if the quadrilateral is inscribed in a circle,
then cos 1 (4+C) = 0; thus the second term under the radical
sign vanishes and formula (7) assumes form (6).

ReEMARK 2. From formula (7) we can immediately deduce
a proof of the inverse of the theorem expressed in problem 101.

If the area of a quadrilateral is expressed by formula (6), then
the quadrilateral has a circumscribed circle.

Indeed, if equalities (6) and (7) hold simultaneously, then
cos 1(A+C) = 0, whence A4-+C = 180°.

REMARK 3. We can draw another interesting conclusion from
formula (7): if the sides a, b, ¢, d are constant, formula (7) gives
the greatest value of the area S for 4-+C = 180°. Consequently,

A quadrilateral inscribed in a circle has an area greater than any
other quadrilateral with the same sides.

A stronger theorem can be provedt:

Among the quadrilaterals which can be constructed from given
sides a, b, ¢, d, the quadrilateral inscribed in a circle has the largest
area.

It might seem at first sight that both theorems express exactly
the same proposition. However, we shall easily see the difference
if we formulate the two theorems in the following way.

(a) If quadrilaterals A and B have sides of the same lengths,
and quadrilateral A has a circumscribed circle while quadrilateral
B has not, then the area of quadrilateral A is greater than the area
of quadrilateral B.

(b) Among the quadrilaterals having sides of the same lengths
there exists a quadrilateral with the greatest area: that quadrilateral
has a circumscribed circle.

T Theorem A is stronger than theorem B (i.e. B is weaker than A) if
theorem B follows from theorem A but not wvice versa.
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We have proved theorem (a) above; in order to prove theorem
(b) it remains to show that among the quadrilaterals with given
sides a, b, ¢, d there exists a quadrilateral inscribed in a circle.

Let ABCD be a quadrilateral with sides a, b, ¢, d (Fig. 98) in
which 4+C << 180°. If we choose on BD produced an arbitrary

F1a. 98

point D—in such a way, however, that the segment x = BD, is
shorter than a+d and than b--¢, then we can construct (as shown
in Fig. 98) a quadrilateral 4,BC,D; with sides a, b, ¢, d. Then
4, >4 and C; > C.

If point D, recedes from point D, angles 4, and C, increase,
and we can find such a position of point D, that 4,4 C, > 180°.
For example if a+d < b-}c, then it is sufficient to construct
a triangle 4,BD, in which 4, = 180°—C; then 4,+C, = 180°—
—C+C; > 180°.

Now the sum A4,-+0C, is a continuous function of the variable
z = BD,, which can easily be verified by calculating the angles
A, and C; from the triangles 4;BD; and BC,D, in terms of z
and of a, b, ¢, d. If point D, moves along the half-line BD
starting from point D, that function passes from values smaller
than 180° to values greater than 180°. Therefore it must pass
through 180°, i.e. there exists a point D, for which the quadrilateral
A; BC, D, is inscribed in a circle, and this is exactly what we wanted
to prove.

Instead of the above reasoning, based on the properties of
continuous functions, we can introduce another argument, requir-
ing merely elementary calculation.
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Accordingly, we shall first find the conditions which must be
satisfied by numbers a, b, ¢, d if they are to be the lengths of the
sides of a quadrilateral. Suppose that in a quadrilateral ABCD
sides AB, BC, CD and DA have the lengths a, b, c, d respectively.
The diagonal BD is shorter than either of the sums 4B+DA
and BC+CD but greater than either of the differences |AB—DA|,
|BC—CD|. Consequently

at+d > |b—c|, b+c>|a—d|. (8)

Conversely, if the numbers a, b, ¢, d satisfy inequalities (8), then
those numbers are the lengths of the sides of a quadrilateral.
Indeed, we can then choose a number e in such a way that

a+d>e>|a—d|, b+c>e>|b—c|. 9)

Constructing a triangle with sides a, d, ¢ and a triangle with
sides b, ¢, e, adjacent to the first one along the side e, we obtain
the required quadrilateral with sides a, b, ¢, d.

The angles 4 and C of that quadrilateral, formed by the pairs
of sides (a, d) and (b, c), are defined by the formulas

e =a?+d?*—2ad cos A, e2="b>+fc2—2bccosC. (10)
If the quadrilateral is inscribed in a circle, we have also
cos C = —cos4. (11)

The proof of theorem (b) formulated above will be obtained
by showing that under assumption (8) the system of equations
(10) and (11) has a solution (e, 4, C), with e satisfying conditions
9).

( )From (10) and (11) we obtain
a2 4d2—b—c?
2ad--2bc

Equalities (12) define the required angles 4 and C since the
value of the right-hand side is contained in the interval (—1, 1),
which can be ascertained by (8):

a?+d*—b2—c? (a+d)>— (b—c)?

14 2ad-+2bc = 2ad+2bc >0

cos A = —cosC = (12)

and

@+d*—b—c*  (b+c)P—(a—d)? 0
%ad+2c 2adt%e

The value of e can be obtained from either of the formulas
(10) by substituting for cos 4 or for cos C the value defined by
formula (12).
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The above theorem (b) is a particular case of a theorem of .
Cramer (Swiss mathematician, 1704-1752):

Among the polygons with given sides a,, a,, ..., a, (where n > 3)
the polygon tnscribed in a circle has the greatest area.

102. If a quadrilateral with sides a, b, ¢, d is inscribed in a circle,
then the area S is expressed (see problem 101) by the formula

8 = y[(p—a)(p—b)(p—o) (p—d)], 8y
in which
a+b+tc+d =2p.
If this quadrilateral is also circumscribed in a circle, then
atc=0b+d=p. (2)

Equality (2) implies that in a quadrilateral of this kind
p—a=c¢, p—b=d, p—c=a, p—d=>.
Substituting these values in formula (1) we obtain
S = v/ (abed). (3)

REMARK. Let us ask whether the inverse theorem holds, i.e.
whether the assumption that the area of a quadrilateral is expressed
by formula (3) implies that the quadrilateral in question has
a circumcircle and an inscribed circle. As can easily be ascer-
tained, that is not so; e.g. if the quadrilateral is a rectangle
with sides @, b, ¢c=a, d=0>b, with a# b, then S =ab
= V[(ab)?] = V(abcd), this quadrilateral has no inscribed circle
although it has a circumscribed one.

This example can be modified so as to obtain a quadrilateral
which would satisfy condition (3) without being either circum-
scribed on a circle or inscribed in one. Accordingly, instead of
a rectangle let us take such a quadrilateral ABCD inscribed
in a circle that AB =a, BO =b,CD =c¢, DA =d, and a = b,
¢ # d, B and D being right angles (Fig. 99).

The area of the quadrilateral 4 BCD is expressed by the formula

8 = area ABC-area ADC = ab;—(:d .

The right-angled isosceles triangle ABC has the same base
as the right-angled triangle ADC but a greater altitude, whence
area ABC > area ADC, i.e. ab > cd; since the arithmetical mean
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of the unequal numbers ab and cd is greater than its geometrical
mean, we have

S > y(abed).

Fic. 99

If we increase the diagonal AC, leaving the lengths of the
sides @, b, ¢, d unchanged, we obtain a quadrilateral AB'C'D’
(Fig. 99) with area S’ smaller than 8. It is essential that we
should choose point €' in such a way that 8’ = y/(abed). According-
ly we must determine the obtuse angles B’ and D’ so as to
satisfy two conditions:

a?+-b2—2ab cos B’ = c¢2-+-a?—2cd cos D’,
$absin B'+%cdsin D' = y/(abed).

It isnot necessary to carry out a general discussion of these equa-
tions; for our purpose it is sufficient to give the solution in some
particular case. Suppose.that the quadrilateral A BC'D is inscribed
in a circle with radius 1 and that CD is a side of a regular hexagon

inscribed in that circle, whence a =b=y2, ¢c=1, d=V3.
Substituting these values in the above equations we obtain

2 cos B’ = y3 cos D',
2 sin B'4y3sin D' = 2)/(2v3).

Squaring the first equation and then expressing the cosines
of the angles in terms of their sines, we obtain the equation

4sin? B'—3sin? D' = 1.

Dividing this equation by the second equation of the preceding
two, we have
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1
2sin B'—y3sin D' = ————,
2y/(2v3)
Thus

. 17 1 8y3-+1
sin B' =—| 2/ (2y3)+ ]: ,

4[ 4 21/(2v3) 8Y/(2v3)
. 1 1 8y3—1

D =——|27/(v3)— = .

o 2V3[ reve 2V(2v3)] /(6 v3)

It can easily be verified that the values obtained are less than 1,
i.e. they determine obtuse angles B’ and D’.

The quadrilateral AB'C’'D’ formed in this way has an area
8" = y/(abcd) = ]/(2 ¥3), but is neither inscribed in a circle
(since two opposite angles in it are obtuse) nor circumsecribed
about a circle (since the sums of its opposite sides are not equal).

Let us also observe the validity of a theorem partially inverse
to the theorem from problem 102:

If the area S of a quadrilateral with sides a, b, ¢, d is expressed
by the formula S = y/(abcd) and the quadrilateral has an inscribed
circle, then it has also a circumscribed circle.

Indeed, the area S of the quadrilateral ABCD with sides a,
b, ¢, d is given by formula (7) of problem 101, namely

§* = (p—a) (p—b) (p—) (p—d) — abed cos? 2

. @

From the assumption that the quadrilateral has a circumscribed
circle follows, as we have found before, the relation

(p—a)(p—D) (p—c)(p—d) = abed. (5)
Formulas (3), (4) and (5) give

§2 = §2-82 cos? A;{_C )
whence
A+C
cos 5 = 0,
and consequently
A0 = 180°,

which proves that the quadrilateral ABOD has a circumcircle.




210 Geometry and Trigonometry

103. Method I. Let r denote the radius of a circle circumscribed
about a regular polygon ABCD..., and 2z the convex angle at
the centre of that circle corresponding to the chord 4B. Then

(Fig. 100)
D

A
Fia. 100

AB = 2rsinx, AC =2rsin2x, AD = 2rsin 3z.

Substituting these expressions in the equation

1 1 1
4B ~ AC T 4D (1)
we obtain the equation
LI SN (@)
sin x sin 2z sin 3z

In order to solve equation (2) we multiply it by
sin x X sin 2z X sin 3z
and carry all the terms over to one side:
sin 2z X sin 3z—sin 2 X sin 3x—sin 2 X sin 22 = 0.
The left-hand side of this equation can be factorized. We obtain
successively
sin 2z X (sin 3z—sin #)—sin x sin 3z = 0,
sin 2x X 2 sin z cos 2z—sin z sin 3x = 0,
sin x X sin 4x—sin x X sin 3x = 0,
sin # X (sin 4z—sin 3z) = 0,
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and finally

. . Tx
sin x X sin 3 X cos 5 = 0. (3)
Equation (3) is not equivalent to equation (2). Namely, each
solution 2 of equation (2) is a solution of equation (3) but not
vice versa because only those solutions of equation (3) satisfy
(2) for which sin X sin 22X sin 3z # 0, i.e. which satisfy the
condition

kw kr
x # <> and x # = (4)
for any integer k.

Consequently, the roots of equations (2) are numbers satisfy-
ing the equation

x
=0
cos

and condition (4), whence

T 2nw
-’75:'7—+-7—, (6)

with n assuming integral values for which value (5) satisfies
condition (4).t

The required polygon must have at least 4 vertices, whence
0 < 2 <ir;informula (5) we must then take » = 0 and the
problem has a unique solution

I
7 2
which means that the regular polygon ABCD... is a heptagon.

Method II. To begin with, it will be observed that 4, B,
C, D cannot constitute all the vertices of the required polygon,
since, if they did, the polygon would be a square, and for a square
ABCD... equation (1) does not hold.

Let E denote the vertex of a polygon which follows D in the
succession 4BCD...; according to the above remark, vertex K does
not coincide with vertex 4.

Equation (1) implies that

ACXAD = ABX AD+ABX AC.

xr =

+ This condition signifies that the integer n in formula (5) is not arbi-
trary but must satisfy the inequalities n # (7k—2)/4 and n # (7k—3)/6,
where k is an arbitrary integer.
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Since AC = CE, AB = CD = DE, this equality gives
CEXAD =CDXAD+DEXAC. ()

Oﬁ the other hand, by Ptolemy’s theorem, with regard to the
inscribed quadrilateral ACDE we have:

CEXAD =CDXAE+DEXAC. (B)
From equalities («) and () we obtain '
AE = AD.

This equality implies that points D and E lie symmetrically
with respect to the diameter passing through point 4; thus
polygon ABCD is a regular heptagon.

REMARK 1. In method 2 we assumed, in accordance with the
wording of the problem, that for a certain regular polygon ABCD...
equality (1) holds and we proved that such a polygon is a heptagon.
In other words, the reasoning of method 2 is a proof of the following
theorem: if there exists a regular polygon ABCD... with property
(1), then that polygon is a heptagon. It does not follow from this
theorem that a regular heptagon indeed has the property expressed
by formula (1), just as from the sentence “if yesterday was
Thursday, today is Friday” it does not follow that today is Friday.
However, we can easily supplement our preceding argument
and prove that for a regular heptagon ABCDE... equation (1)
holds. :

Namely, applying Ptolemy’s theorem to the inscribed quadri-
lateral ACDE, formed by two adjacent sides and two diagonals
of a regular heptagon, we have

CEXAD =CDXx AE+DE X AC.
) Since CE = AC, AE = AD, CD = DE = AB, this equality
gives
ACKXAD = ABX AD+ABX AC,
whence, dividing by ACX AD, we obtain

1 1 1
AB ~ 4c T AD’
which is what was to be proved.
It will be observed that in method I this supplement is not
necessary since according to the calculation performed the value

# = 3w is the root of equation (2), and this means exactly that
the regular heptagon ABCDE... has property (1).
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REMARK 2. In method IT we resorted to an important theorem
of Ptolemy' on a quadrilateral inscribed in a circle; the theorem
reads as follows:

The product of the diagonals of a quadrilateral inscribed in a circle
18 equal to the sum of the products of its opposite sides.

This theorem can be proved in different ways. We shall give
here a short proof consisting in the calculation of the diagonals
of an inscribed quadrilateral with given sides on the basis of the
Cosine Rule.

Fia. 101

Adopting the notation of Fig. 101 we obtain from triangles
ABC and ADC

e? = a?+-b2—2 ab cos € ABC,
e = c24-d®—2cd cos €« ADC.
Since

4 ADC =180°— 4« ABC we have cos<ADC = —cos<«ABC;

multiplying the first of the preceding equalities by ed and the
second by ab, and then adding them, we obtain

1 Ptolemy of Alexandria (126-168 A.D.), mathematician and astron-
omer, author of a famous work, the Almagest, comprising an exposition
of plane and spherical trigonometry. By means of his theorem on the
quadrilateral Ptolemy devised the first tables of sines (the term *‘sine”
appeared later). It is owing to the Almagest that the theorem of Menelaus
has been handed down to us.
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(ab+-cd) €2 = (a?+-b%) cd+ (2 +d?)ad
= (a?cd-abc?)+ (b2cd+abd?)
= ac(ad-+bc)+bd (bc+ad)
= (ad-bc) (ac+-bd);
(ac+bd) (ad+be)
ab--cd

e? =

Analogously

__ (ab+-cd)(acH-bd)
- ad-+be ’

f2
whence

e*f? = (ac+bd)?
and ultimately

ef = ab+-bd.

104. Let the segment AB (Fig. 102) represent the tower and the
segment BC—the mast. From point P on the surface of the earth
the mast appears under the angle
BP(C, which is inscribed in the
circle passing through points B, C
and P. This angle is the greater
the smaller the radius of the
circle. Among the circles passing
through points B and C and
having common points with the
earth, the circle O(r) tangent
to the surface of the earth has
the least radius. The point of con-
tact M of this circle with the

F1a. 102 earth is the point mentioned in

the problem, ie. «BMC = «,

MA =a. If OD_| BC, then «COD = «, being equal to half
the angle at the centre subtended by the same arc as the inscribed
angle BM(C. Introducing the notation 4B =z, BC =y, we
obtain from the triangle COD and the rectangle AMOD the re-
lations '

Yy = 2a tan o, (1)
a
T s a’ ®
1—si
x=r_i/.= 2 —atanazax—wﬁ 3)
2 CcOoS o, COS o

containing the solution of the problem.
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REMARK. In the above solution we have assumed that in the
neighbourhood of the tower the surface of the earth is plane,
which is justifiable in view of the fact that only a very small
portion of that surface is involved.
Taking into account the spherical
shape of the earth we can find the
unknowns x and y in a similar man-
ner, using the figure in Fig. 103, in
which S denotes the centre of the
earth. From triangle COD, in which
the segment OD will be denoted by
b, we shall find

y = 2rsina, (4)
b=rcosa, (5) o
and from the triangle DOS we have R
b= (R+r)sinp, (6) L
y P
R—I—x-}-E: (R+r)cosf, (7) by
where f is the angle under which ‘\;S
the arc a appears from the centre Fre. 108

of the earth.

Formulas (5) and (6) give

Rsin g
Substituting this value of r in formula (4), we obtain

2R sin o sin
= Py . /3 ) (8)
08 o.—sin
and then find = from formula (7), obtaining after easy trans-
formations the result
v — R smﬂ(l—smoc)—cc')soc(l—cosﬁ) .
cos o—sin f§

)

The angle f§ is, in the circle with radius R, an angle at the
centre subtended by an arc of length a; the circular measure of
angle f is thus a/R and formulas (8) and (9) can be written as

. . a
2R sin « smf
Yy=——, (10)

. a
COS ¢ —SIN —

R
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sin —%— (1—sin o) —cos«, (1—-008 —%)

z=R (11)

. a
€08 o —8in —-
R

From these rather complicated formulas we can find « and y for
given @, « and R. But instead of these formulas we could use
approximate ones, which are obtained in the following way:

It is proved in trigonometry that for an angle with circular
measure 8 we have the approximate equalitiest

2
sinfx~ fi, cosf= 1—-5—;
for sin § the value £ is too large, the error being less than §3/6;
for cos § the value 1—f2/2 is too small, the error being less than
B4/24. .

For example if the distance @ in our problem does not exceed
100 km, then <f (under the assumption that B = 6 370 km)
is less than 1°, whence, taking the ratio a/R instead of sin f3,
we introduce an error of less than

73

6x 1803’

i.e. less than 0-000001* and, taking number 1—3 (a/R)? instead
of cos § we introduce an error of less than

™
24 X 180*’
i.e. less than 0-00000001. Substituting these approximate values
of sin (¢/R) and cos (¢/R) in formulas (10) and (11) we obtain
the formulas
2a sin «
= 1
cos a—a /R’ (10a)

t The sign & means ““equals approximately”’.

1 In order make sure of this fact it is not at all necessary to calculate
the fraction m®/(6 X 1803) : it suffices to reason as follows:
1w 1 (3>< 15)* 1 (315)3 1 (7)3 1343 1

180 ) ~ 6x10°\180) ~— 6x10°\2) 1057 6x64 = 10

71800 <6
we find in a similar way that
t < 1
24180* 108
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a(l—sin a__2 008 &
“~ 3R

v= cos a—a/R ’ (11a)

We observe that, if R increases indefinitely, or “tends to in-
finity”, whereas @ and « are constant, then the variables « and ¥,
defined by formulas (10a) and (11a), tend to the values defined by
formulas (1) and (3).

The question arises whether formulas (10a) and (11a) have any
practical significance, i.e. whether, for certain values of ¢ and
o« which might occur in reality, the accuracy of formulas (1)
and (3) might prove insufficient, making it necessary to use
formulas (10a) and (11a) or even the still more accurate formulas
(10) and (11). In order to answer this question we should have
to estimate the differences between the values obtained from
all these formulas, taking also into account the errors of measure-
ment which necessarily affect the given magnitudes. Calculations
of this kind are often performed in various branches of applied
mathematics, e.g. in geodesy.

105. In Fig. 104, representing a portion of the cross-section
of a ball-bearing, S denotes the centre of one of the small circles,

Fia. 104

L and N denote the points of contact of this circle with the adjacent
two small circles, and M and P denote its points of contact with
the circles € and C; with the common centre 0. According to the
conditions of the problem, < LON = 2x/n. In triangle LOS the
following relations hold between the sides OL =z, LS =y,
the hypotenuse OS = r+y and <« LOS = =n/n
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1
y=wtan—, (1)

2y = (Y. @)

Simplifying equation (2) and substituting in it value (1) for ¥,
we obtain the equation

z2—2r tan-;lx x—12=0.

This equation has two roots of different signs. The required
length of the radius x of circle C, is the positive root, i.e.

1
z = rtani-l— ]/(rz tanz—n——l—rz) = r[tan = 4+
n n n T

COS —

or
1+sin %
—- 3)

K
COS —
n

x=1rX

The length of the arc LPN is equal to the product of the cir-
cular measure of the concave angle LSN by radius y and, since
the circular measure of the convex angle LSN is t—2xr[n, we have

length of arc LPN = (271—7:-{-%;) y — ﬂ,(nfj_g) ,
1—}—sinE
L n
7r tan — X-

n+2 T n-+2

= 7t tan — =
n n n

T
COS —
n

The required sum s of the lengths of those arcs of the small
circles which lie outside circle C, is n times as great as the length
of the arc LPN ; consequently

. T
l—l—sm—;
T
J— 1 —_ —_——
s = mr(n-+2) tan - X - (4)
cos —
n

or, more simply,
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(n+2) sin%
s=mr—. (5)
1— sin~
n

Formulas (3) and (5) give the solution of the problem.

ReEMARK. Number s given by formula (4) is the length of the
curve formed by all such arcs of the small circles as the arc LPN.
It is a closed curve surrounding point O and lying in the ring
between circles C and C;. The distance of each point of that
curve from the corresponding point of circle C' (i.e. from the
point lying on the same half-line starting from point O) is at
most equal to the difference between the radii of circles ¢, and C.
Suppose that the difference is very small, i.e. that the ring between
C and C, is very narrow. Then the points of that closed curve lie
very close to the corresponding points of circle C and it might
be supposed that the length s differes very little from the length
of circle O, i.e. from 2nr. However, we find that that is not so
and that the length s is always more than  of the length of circle
C, even for a ring as narrow as we wish. In order to ascertain this
fact let us observe that in formula (4) we have

14-sin(xfn)

cos(m[n) >1

and that the tangent of an acute angle is greater than the circular
measure of that angle, whence tan(w/n) > w/n; thus formula
(4) implies the inequality

8 > nr(n—|—2)x—:—.

Considering that (n+2)/n > 1, we obtain the inequality

2 LANELIPUE §
8§ > m?r or 271:r>2~157...

106. In solving geometrical problems a correctly executed
drawing is an important aid. Figures in space are shown by
means of mappings or projections upon the plane of the drawing.
There are various methods of such a mapping. In elementary
geometry we usually draw oblique projections of figures; in many
cases it is convenient to use the method of orthogonal projections
on two perpendicular planes, i.e. the so called Monge method.

We shall present the solution of our problem in two variants,
using first one and then the other of the above-mentioned methods
of representation.
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Method I. Using the method of oblique projection we shall
adopt as the plane of projection the plane passing through the
beam AB and the suspension points M and N. We draw the
quadrilateral ABNM “life size” (Figs. 105 and 106). Let S denote
the centre of the beam. When twisted, the beam will assume
the position CD. The mid-point of the segment CD lies on the
plane of projection; suppose that it is point 7'.

M N M N

Kz

T -l
I
!
A S 8
F1a. 105 Fi1a. 106

The position of the projection of point ¢ depends on the direc-
tion of projecting; we can regard any point C’ as an oblique
projection of point C, for example as in Figs. 105 or 106. The
projection D’ of point D will be a point symmetric to point C’
with respect to point 7.

The finding of the required length S7' = « is simple. We draw
a segment TK, parallel and equal to S4; then

x=AK =AM—KM.

Now AM = b, while the segment KM is a side of the right-
angled triangle KMC with the hypotenuse MC =b and the
other side KC. The segment KC is the base of the isosceles triangle
KTC, in which TK =TC =1A4B =1a, «K1C = ¢.

Consequently

KC = asin%, KM — ]/(bz_az Sinz%_)‘

= b—]/(l'ﬁ—a2 sinz—(g—) .

If b < a, the torsion angle @ cannot be greater than the angle
@o defined by the formula

Finally

. b o
sm% =— where ¢, < 180°.
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For the value ¢ = @, we have x = b. A further enlargement
of the angle is not possible without stretching out the ropes.

If b>a, the greatest value of ¢ is 180°. For ¢ = 180° the
ropes cross each other if b > a and coincide if b = a.

In the above solution we were concerned with finding the
elevation of the beam when twisted. The drawing of the figure
in the parallel projection was only a relatively simple illustration
necessary for the calculation. If we want the drawing to constitute
the graphic solution of the problem, i.e. to give the correct length
of the segment ST for given lengths @, b and a given angle ¢,
we must execute it in a different way. Namely, point 7', which
in Figs. 105 and 106 was fixed arbitrarily, must be determined
by construction from the given magnitudes a, b, ¢.

Accordingly, it will be observed that in the right-angled tri-
angle KMC we know the hypotenuse MC = MA = b and the
side KC, equal to the base of the isosceles triangle KCT, in which
TK =TC=4%1a and «KTC = ¢@. From these data we can
construct a triangle in order to find the length KM and the
length ST = AM—KM.

The construction is represented in Fig. 107.

M N

Fic. 107

We construct a triangle ASP in which 48 = SP =%a, <« ASP
= ¢. We draw a semicircle with diameter AM and a chord AL
= AP in it. We mark off on M4 a segment MK equal to ML.
Point K determines the level of point 7', which will be found
by drawing a segment 7'S = KA parallel to AK.
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The projection C'D’ of the twisted beam will be drawn as
before by choosing point €’ in an arbitrary manner.

Method II. Figures 108-111 represent the figure in question
in the Monge projections for different values of angle ¢. The
vertical plane of projection is the plane ABNM, and the horizontal

M 7 NI/

KI/ Q
A”:
1
P\
s/ N
A o/ P B
|
C/
Fia. 108

plane of projection is an arbitrary plane perpendicular to ABN M.
We shall describe the execution of Fig. 108.

The projection C’D’ is obtained by rotating the segment A'B’
about its mid-point 8’ through the angle @. The vertical projection
of point D lies at such a point D'’ of the perpendicular drawn
from point D’ to A’B’ that the length of the segment ND is equal
to b, i.e. to the length of N''B"’.

In order to determine point D'’ we consider the right-angled
triangle N''DD'" formed by the segment ND = N''D = b, its
vertical projection N'’D’’ and the segment DD'"’, equal to the
distance of point D from the vertical plane of projection, i.e.
equal to the distance D'P of the projection D’ from A’'B’. We
construct such a triangle taking the segment N''B’’ = b as the
hypotenuse, describing a circle with diameter N''B’’ and drawing
in it a chord B’’Q = D'P. Point D'’ will lie at the intersection
of the circle described from point N'’ with radius N''Q and the
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M N
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straight line D'P. Point C'’ lies symmetrically to point D'’ on
the other side of the drawing.

Figure 109 for ¢ = 90°, Fig. 110 for an obtuse ¢, and Fig. 111
for p = 180° are executed in a similar way.

A drawing in the Monge projection executed (on a suitable
scale) as shown above gives the graphic solution of our problem,
since we obtain in it the required length = ST = §""T"’ according
to given lengths a, b and a given angle ¢.

In a drawing of this kind we can also calculate . Using Fig. 108
we have

x = SIITII — AIIKII — AIIMII_KIIMII — b*K”,M,,,
KIIMII — .V[(ﬂj['lOll)2_(K’l0l’)2]’
(MIICII)2 — (NIIDII)2 — (NIIQ)2

2
— b2_(BuQ)2 — b2__(DrP)2 —_ bz-—%sin%),

2
(K"C"") = (PB')? = (%——%COS (P) = azsin‘l—gi.

Consequently

2
KM = ]/ (bz_”‘T sin? p—a?sin® %)

M ?Il '7-// c” N — ]/ [bz— a?sin? % (0082%- --sin? %)]

o
l : ! @
— 2__q2qin2 -
i ) = ‘l/(b a?sin’ 2).
E Finally
]
T ol 4 e 0@
4”: ! is 18 z= b—]/(bz—azsng).
|
, \ Figure 112 corresponds to the case
; :S’ ) | where b <a and the angle ¢ = g,
A" A ! g satisfies the condition sin(py/2) = b/a.
&\ | In a circle with diameter A'B’ we
! draw chords A'C’ = B'D’ = b. Then
! < A'S'C" = g,.
c’ The projection C'’D’’ lies on the

Fra. 112 straight line M''N"'.
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107. The resultant of forces p, and p, pointing in the same
direction passes through a point M of the segment 4B (Fig. 113).
Since the dise, when loaded with the weights, retains its equilib-
rium, the resultant of the three forces p,, p,, p3 passes through
point O. Consequently, point M is different from point O; the
point of application of force pg, i.e. point C, lies at the point
of intersection of the edge of the disc with the half-line M0, and
the sum of the convex angles A0B, BOC, COA is equal to 360°.

We know from statics that the po-
A sition of point M is defined by

AM Py
MB 1)

In triangles AOM and BOM

AM oM
sin€ AOM =~ sin<+Ad ’

MB oM
sin ¢« MOB sin<B "’
and since €4 = < B, the above equalities imply that

AM MB ’
sin «AOM ~ sin €« MOB
Equations (1) and (2) give
D2 _ Py
sin €« AOM sin « MOB '’

and, since «AOM = 180°— «COA, < MOB = 180°— « BOC,
we have

Fia. 113

V4 Dy

sin < BOC ~ sin €C04 -

Analogous equalities hold for the remaining pairs of the re-
quired angles, i.e.

Py D Ps3 3)

sin « BOC ~ sin «C0A ~ sin« AOB
Equation (3) permits us to determine the angles BOC, COA
and AOB. Indeed, let 180°— 4« BOC = «, 180°— «C04 = 3,
180°— £ AOB = y; since «BOC-++COA+ 4« AOB = 360°, we
have o434y = 180°. Equations (3) assume the form

Py P2 D3

B _— . —_— . »
sin o sin 5 sin y
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whence angles «, f#, ¢ are the angles of a triangle with sides p,,
Py, Pg. We can find angles «, £, ¥ by applying the Cosine Rule
to that triangle, whereas the angles BOC, COA, AOB are calculated
as supplementary angles to «, £, . We thus obtain

2,2 .2
cos ¢BOC = Pr—Pa"Ps
2P,
2,2 .2
cos €004 = M, (4)
2psp,

2_ 22
cos «A0B — L Pi7Pa
2p, P,
Each of the required angles being contained between 0° and
180°, formulas (4) determine them in a unique manner.

REMAREK. According to the conditions of the problem, we have
assumed in the above solution that, when loaded with weights
P15 Pa» P3, the disc remains in equilibrium. The question arises
whether the weights p,, p,, ps can have arbitrary values, i.e.
whether arbitrary weights p,,p,,ps can be placed at three differ-
ent points of the disc in such a way that the disc retains its
equilibrium. Obviously that is not so. In the above reasoning
it has been found that numbers p,, p,, p3 express the lengths
of the sides of a triangle, and as such they must satisfy the ine-
qualities:

PiF+D2 >Ps, PatPs > D1, P3Py > Pa- (5)

We shall show that the necessary conditions (5) are also suffi-
cient. Suppose that numbers p,, p,, p; satisfy conditions (5).
Then there exists a triangle with sides p,, p,, ps. If the angles
of that triangle are «, 5, y, then we can determine on the edge
of the disc three different points 4, B, C' in such a way that
4 B0OC = 180°—c, <004 = 180°—p, 4 A0B = 180°—,
because (180°—a)+ (180°—pf)+ (180°—yp) = 360°. Angles BOC,
COA, AOB then satisfy equations (3). Let us place at points 4,
B, C the weights p,, p,, pg; we shall prove that the disc will then
be in equilibrium. Since each of the angles BOC, CO4, AOB is
less than 180°, the radius CO produced intersects the side 4B of the
triangle AOB at a point M. In that case equality (2) holds, and,
since €« AOM = 180°— «C0A, <« MOB = 180°— <« B0OC, we have

AM . MB
gin €«C0A ~ sin €« BOC °
It follows from equalities (6) and (3) that

(6)
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AM  p,

MB  p’
whence point M is the point of application of the resultant of
the parallel forces p, and p, applied at points 4 and B. Since this
resultant is equal to p,+p,, it remains to prove that point O is
the point of application of the resultant of the parallel forces
P1+p, and p, applied at points M and C respectively. Now equality
(3) implies that

Pi+DPs sin <« BOC+sin € COA
Dg - sin <408 (7)
sin <« MOB--sin €« AOM
sin €« AOB

Applying the Sine Rule to triangles 40M, MOB and AOB,
we have

sin < MOB = JZ}; sin € B,

. AM
sin €« AOM _msm <A,

. AB .
sin <« 40B _6A—sm «B.

Substituting these values in equation (7) and considering that
«A = <«B, AM+MB = AB, OA = 0OC, we obtain

Pit+pe oc
Py MO’

This equality shows that the resultant of the parallel forces
P1+p, and p, applied at points M and C indeed passes through O.
Consequently the resultant of the parallel forces p,, p,, P applied
at points 4, B, C respectively passes through point O, which is
what we were to prove.

108. Suppose that points 4, B, €, D do not lie on the same
plane. The mid-points M, N, P, Q, R, S of the segments AB, BC,
AC, AD, BD, OD (Fig. 114) are then different from one another.
By the theorem on the line joining the mid-points of two
sides of a triangle we have MR||AD||PS and MR = PS =%AD,
and similarly M P||BC!|RS and MP = RS = %BC. The quadrilat-
eral MPSR is a parallelogram; by the theorem on the sum of
the squares of the diagonals of a parallelogram we have
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MS?+PR* = MR*+ PS*+ MP*+RS? = 2AD*+3BC2.
Analogously
PR*-NQ@Q* = ;AB*++10D?,

NQ*+MS? =14C*+1BD>.

D

From the above three equations it is easy to find the lengths
M8, PR, NQ. For example we obtain

MS? = % (AC?*+AD*+ BC*+BD*— AB*—CD?). (1)

This is the required formula for the distance between the mid-
points of AB and CD, the mutual distances of points 4, B, C, D
being given.

The above reasoning remains unchanged if points 4, B, C, D
are co-planar but no three of them are collinear, the points M,
N, P, @, R, 8 being all different from one another.

It is easy to ascertain that formula (1) is general, i.e. that it
is true irrespective of the position of points 4, B, C, D. Some
of those points, or even all of them, could coincide. We leave
it to the reader to prove the validity of formula (1), by modifying
the above reasoning in a suitable manner, for the following cases,
which, together with those already considered, exhaust all the
possibilities.

(a) Three of the points 4, B, C, D are collinear, and the fourth
lies apart;

(b) points 4, B, C, D are collinear;

(c¢) no three of the points 4, B, C, D are collinear but points
M and 8, or N and @, or P and R, coincide.
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It would be possible, however, to prove the generality of formula
(1) in a different way, namely by regarding cases (a), (b), (c)
as limiting cases of the essential case, in which points 4, B, O, D
are not co-planar. We shall explain this for case (a). Suppose
that 4, B, C are three different points of a straight line p and
point D is not of p. Let M be the mid-point of segment AB and
S the mid-point of segment CD.

Let us choose point 4’ in the neighbourhood of point 4 but not
belonging to the plane of points 4, B, C, D. Let M’ denote the
mid-point of segment 4'B. Points 4', B, C, D are not co-planar,
whence, as has been proved before,

M'S? = 1(4'C*+ A'D*+BC*+BD*—A'B*—CD?.  (la)

Let point A’ tend to point 4 along, say, a straight line. Then
point M’ tends to point M, the lengths M’'S, A’C, A'D, A'B tend
to the lengths MS, 4AC, AD, AB and from formula (la) we obtain
formula (1) passing to the limit (as we say in mathematics). This
reasoning is based on the elementary facts of the so-called theory
of limits, which can be found in the initial chapters of any text-
book of mathematical analysis.

109. Method I. Let us draw through vertex A of the tetrahedron
ABCD a plane « perpendicular to the edge AB (Fig. 115) and

Fia. 115

through points C and D—lines parallel to the line AB which inter-
sect the plane « at points C’ and D’. The orthogonal projection
of the tetrahedron ABCD upon « is the triangle AC'D’.

S
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The volume V of the tetrahedron ABCD is equal to the volume
of the tetrahedron ABCD’ since both have the same base 4BC
and the line DD’ on which their vertices lie is parallel to 4B,
ie. it is also parallel to the plane ABC. Similarly, the volume
of the tetrahedron ABCD’ is equal to that of the tetrahedron
ABC'D’ because the vertices C and C’ of those tetrahedrons
lie on a line parallel to their common base ABD’. Consequently
the volume of the tetrahedron ABCD is equal to the volume of
the tetrahedron ABC'D’. Since AB | «, we have

volume ABC'D’ = % (area AC'D’) AB = £.8d

and finally
V=238d.

Method I1. The volume of the tetrahedron ABCD is expressed
by the formula
V = } (area BCD) X h, 1)

in which % denotes the length of the altitude AH of the tetra-
hedron drawn from vertex 4 (Fig. 116).

The projection .4’B’C’D’ of the tetrahedron on a plane perpen-
dicular to the line AB coincides with the projection B'C'D’ of
the triangle BCD (since the projection
A’ of point A coincides with the pro-
jection B’ of point B); therefore

S = area B'C'D’.

The area of a projection of a plane
figure is equal to the product of the
area of that figure and the cosine of
the acute angle ¢ between the plane
of the figure and the plane of projec-
tion; hence

area B'C'D’ = area BCD X cos g,

and consequently

N

Fic. 116 area BCD = .
cos

2)

Since the straight lines AH and 4B form the same acute angle
as planes perpendicular to them, in the right-angled triangle
ABH the angle BAH equals ¢ and

h = d cos . 3)
If follows from equalities (1), (2), (3) that
=18d.
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Method III. Let the segment DH = h be the altitude of the
tetrahedron ABCD drawn from vertex D upon the face 4BC,
and the segment CK = k the altitude of the triangle ABC' drawn
from vertex C upon side AB. Then

V = 4 (area ABO)h = 1XLABX kX h = Ld(1kh).

3

Let us denote by 4’, B’, C’, D’ the projections of the vertices
A, B, 0, D of the tetrahedron upon a plane « perpendicular to
the edge AB. Points A’ and B’ coincide and the projection of
the tetrahedron is the triangle 4’C"D’. The projection of the edge
4B is point 4’, and the projection of the face ABC is the segment
A'C’, whence the projection K’ of point K coincides with point 4’,
and the projection H’ of point H lies on the segment 4'C’ (Fig.
117).

DI
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The projection of the segment CK is the segment C'A4’; since
CK_| AB, we have CK]||a, and thus C'4A’ = CK = k, because
the projection of a segment parallel to the plane of projection
is a segment of the same length.

The segment DH is perpendicular to the plane 4BC, and the
plane ABC is perpendicular to the plane of projection o, whence
DH||e, and consequently D'H’ = DH = h. Since <« AHD is
a right angle whose arm DH is parallel to the plane of projection,
the projection of that angle, i.e. «A'H’'D’ is also a right angle,
and the segment D’H’ is an altitude of triangle 4'C’D’.

This implies that the product 1k% is equal to the area of the
triangle A’C’D’, i.e. is equal to S, and the preceding formula
gives

V=218d.
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Method IV. Let us place the projection plane o as shown in
Fig. 118, i.e. in such a way that the tetrahedron ABCD should
lie on one side of plane « and point 4 should be at a greater distance
from plane o than point B.

A

Fi1a. 118

The volume V of tetrahedron 4BCD is equal to the difference
of the volumes of two truncated triangular prisms, A’C’'D'ACD
and 4’C'D'BCD, with the common base 4’C’D’ and lateral edges
perpendicular to the base. Since the volume of a truncated
prism of this kind is equal to the product of the area of its base
by the arithmetic mean of its lateral edges, we have

vol. A’C'D'ACD — §x 4 ‘*Og +DD"
vol. A’C"D'BOD — s x 24 +0§ DD

Consequently
AA'—BA' 1
V=28x — 3 =3 Sd.

REMARK. The formula for the volume of a truncated triangular
prism, which we have used in method IV, can be proved as
follows:

Let ACDA'C'D’" (Fig. 118) be a prism of this kind and let
DD’ be its shortest lateral edge. Drawing through point D a plane
parallel to the plane A’C’D’ we cut the truncated prism into the
straight triangular prism DEFD'C’A’ and the pyramid DACEF.
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The base ACEF of this pyramid is a trapezium with bases AF
and CE and altitude EF, and the altitude DH of the pyramid
is at the same time an altitude of the triangle DEF. Consequently

V = vol. DEFD'C’'A’+-vol. DACEF
= (area D'C"'A’) X A’F—}-% (area ACEF)x DH

1 AF+4CE
(area D'C'A") X 34'F+ 5)( —;_— X EF X DH

(areaD'C'A’)(D'D+C'E-+A'F) +% (area DEF)(AF+CE)

w| = = |~

(area D'C"A’)(D'D--C'C+A'A).

110. To make easier the task of finding the solution, let us
consider first an analogous problem on the plane.

Let us draw through each vertex of triangle ABC a straight
line parallel to the opposite side of the triangle. These lines form
a triangle A4,B;C,; homothetic to
triangle ABC (Fig. 119). The A
centre of homothety is point S at
which the lines 4A4,, BB, CC,
intersect; point S is the centre
of gravity of triangle ABC and C
also of triangle A4,B;C;. The
homothety is inverse, since the
corresponding points, e.g. 4 and B
Ay, lie on half-lines S4 and 84, &
of opposite directions. The ho-
mothety ratio is

S4, AB, _ 9
S4 ~— AB  7°
Since the ratio of the areas of G
homothetic figures is equal to Fra. 119
the square of the homothety
ratio, the area of triangle 4,B,C, is four times as great as the
area of triangle ABC, which, in fact, can be seen at once.
Returning to our proper subject, let us briefly recall the pro-
perties of homothetic figures in space. Suppose that F is a given
figure in space with points A, B, C, ... Let us choose any point
S and a positive number k. If we mark off on the half-lines S4, SB,
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SC, ... segments S4’' = kx 84,8B' = kX SB, SC' = kXS0, ...,
then points 4', B’, ¢, ... will form a figure F’ directly homothetic
to figure F with respect to point S in the ratio k. If we mark
off segments SA; =kXSA, 8B, =kXxS8B, SC, =kxS8C, ...
on half-lines 84, 8B, S8C, ... produced, we obtain a figure
F, inversely homothetic to figure F with respect to point S in
the ratio £ (Fig. 120). It is easy to infer from this definition that
segment A, B, is a figure homothetic to segment 4B, the straight
lines AB and A,B; being parallel (or coinciding, which takes
place if AB passes through point 8). Triangle A4,B,C, is thus
a figure homothetic to triangle ABC, the planes of the triangles
being parallel (or coinciding if the plane ABC contains point S).
Tetrahedron A4,B,C.D, is a figure homothetic to tetrahedron
ABCD. The ratio of homothetic segments is equal to the homo-
thety ratio, the ratio of the areas of homothetic triangles (or
generally: of homothetic plane figures) is equal to the square
of the homothety ratio, and the ratio of the volumes of homothetic
tetrahedrons (or generally: of homothetic solids) is equal to the
cube of the homothety ratio.

In order to solve our problem we need also the following theo-
rem:

The segments joining the vertices of a tetrahedron with the centres
of gravity of the opposite faces intersect at one point, which divides
each of those segments in the ratio 3:1.

The proof of this theorem is simple; it suffices to carry it out
for one pair of those segments. Let M be the centre of gravity
of the face BCD and N the centre of gravity of the face ACD
of the tetrahedron ABCD (Fig. 120). The straight lines BM and
AN intersect at the mid-point P of the edge CD.

The segments AM and BN, joining the vertices A and B of
triangle ABP with points M and N of the sides BP and AP,
intersect at point § inside this triangle. Since 4P = 3 X NP and
BP =3X MP, we have MN|AB and AB =3XMN; hence
AS =3XSM and BS =3 X SN, which is what we were to prove.

Point 8 is the centre of gravity of the tetrahedron.

Using the above data we can formulate the solution of the
problem very briefly: We construct a figure inversely homothetic
in the ratio 3 to the tetrahedron ABCD with respect to its centre
of gravity S. That figure is the tetrahedron A4,B,C,D, whose
vertices lie on the extensions of the half-lines S4, SB, SC, 8D,
and S4, =3X84, 8B, = 3X 8B, §C, =3X 80, 8D, = 3 X 8D.

The plane B,0, D, is parallel to the corresponding plane BCD
and. passes through vertex A4, since point 4 is homothetic to
the centre of gravity M of face BCD.
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Fia. 120

Consequently the tetrahedron A4,B,C,D; is the one required in
the problem. Since it is homothetic to tetrahedron ABCD in the
ratio 3, its volume is 33X V, i.e. 27V.

§ 7. Loci

111. Suppose that given straight lines m and n intersect at
point O (Fig. 121).

Suppose that point K belongs to the required locus. We draw
KM | m, KN | n; the distances KM and KN satisfy the condi-
tion

KM+ KN = a.

Let us extend the segments MK and NK and mark off KP
= KN and KR = KM ; then MK+ KP = NK+KR = a, whence
points P and R lie, respectively, on lines m, and n, drawn par-
allel to m and = at a distance a. Point K, being equidistant from
m and n,, and likewise from % and m,, lies on the diagonal AB
of the thombus 04QB formed by the two pairs of parallels.
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Fia. 121

Conversely, if point L lies on the diagonal 4B (Fig. 122), then,
in view of the symmetry of the rhombus with respect to AB,
the sum of the distances of point L from m and n is equal to the
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sum of its distances from m and m,, i.e. is equal to a. It can thus
be seen that the locus of points lying in the angle AOB such that
the sum of their distances from m and n is equal to @ is the seg-
ment AB. In the angles BOC, COD, DOA those loci are the
segments BC, CD, DA. Consequently the required locus is the
perimeter of the rectangle 4BCD.

112. To begin with, we shall determine the locus of the centre
L of a rectangle EFGH with two vertices, £ and F, lying on the
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side AB of the triangle ABC, vertex G lying on the side BC and
vertex H on the side AC. Such rectangles exist only if neither of
the angles A and B of the triangle is obtuse. In the sequel we
shall assume that the angles 4 and B are both acute; in the case
of one of them being a right angle the reasoning below requires
a slight modification, which we leave to the reader.

Point L, whose locus we are seeking, is the mid-point of the
segment P@ joining the mid-points of sides ZH and FG of the
rectangle (Fig. 123). Let us

draw the altitude CD of trian- c
gle ABC.
Since triangles AEH and
ADC are homothetic with res-
pect to point A and triangles 7
BFG and BDC are homothe- K
tic with respect to point B, H, &
the straight lines AP and BQ \L
pass through the mid-point 7' \
of the segment CD. The trian- 4 I3 7S F 8
gles PQT and ABT are homo-
thetic with respect to point Fra. 123

T, whence the straight line

TL passes through the mid-point § of the segment AB.
Consequently the centre L of the rectangle EFGH lies inside the
segment ST joining the mid-point of the side AB with the
mid-point of the altitude CD of triangle ABC.

Conversely, every point L lying inside the segment ST is the
centre of a certain rectangle EFGH placed in the above posi-
tion. Indeed, drawing through point L a segment P homo-
thetic to segment AB with respect to point 7', and then draw-
ing through points P and @ segments FH and FG homothetic
to segment CD with respect to points A and B respectively, we
obtain a quadrilateral ZFGH ; and it follows from the properties
of homothetic segments that points P and @ are the mid-points
of segments EH and FG and point L is the mid-point of segment
PQ; hence we conclude that EFGH is a rectangle and point
L is its centre. The required locus is the interior of the seg-
ment S7'.

A certain variant of the above reasoning is based on the fact
that point L is the mid-point of segment MN joining the mid-
points of sides EF and GH of the rectangle (Fig. 124). Triangles
CH@G and CAB are homothetic with respect to point C, whence
CN intersects segment AB at its mid-point S. From the homo-
thety of triangles SM N and SDC with respect to point S it follows
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that SL passes through the mid-point 7' of the altitude CD.
Point L thus lies inside the segment ST

Conversely, if L is any point lying inside the segment S7' then
drawing first a segment MN homothetic to segment DC with
respect to point S, then a
c segment HG homothetic to
segment AB with respect to
point C, and finally segments
HE and GF perpendicular to
H@, we obtain a rectangle

K EFGH with centre L.
N & So far we have established

the following result:
L The locus of the centre L of

3 - a rectangle with two vertices

AL D MS ! 8 lying on the side AB of a

Fre. 124 triangle 4 BC and the remain-

ing two vertices lying on

the sides AC and BC is the interior of the segment joining the

mid-point of side AB with the mid-point of the corresponding
altitude of the triangle 4BC.

If the given triangle is acute-angled, this theorem holds for
each of its three sides. The locus mentioned in the problem then
consists of the interior points of three segments joining the mid-
points of the sides of the triangle with the sides of the correspond-
ing altitudes. We shall prove that those three segments intersect
at one point.

We shall adopt the notation of Fig. 125: D, I, F are the feet
of the altitudes, M, N, P—the mid-points of the sides, and @, R,

¢
D
NS M
E—_17Q
R
A F P 8

F1a. 125
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S—the mid-points of the altitudes of triangle ABC. Applying
Ceva’s theorem? to this triangle and its three altitudes, we obtain:
AFXBDXCE
FBXDOXEA
Since the sides of triangle M N P are parallel to the corresponding
sides of triangle ABC, we have:
NS AF PQ BD MR CE
SM ~ FB’ QN DC’ RP EA’

1.

whence

NSXPGXMR

SMXQNXEP 1.

By the inverse of Ceva’s theorem, we infer from the above
equation that the lines M@, NR and PS intersect at one point.
If the given triangle is right-angled, two of the three segments
constituting the locus in question coincide and we have Fig. 126,

c

Fia. 126

In an obtuse-angled triangle the required locus is the interior
of one segment.

113. Hint: Find the angle AMB. The required locus is formed
by two circular arcs joining points 4 and B. The points 4 and B
themselves do not belong to the locus.

114. Suppose that from point M a tangent MT to the circle
" K, and a tangent M S to circle K, have been drawn. Two cases
are possible:

1 See remark to problem 97.
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(a) the centre O of the given circles lies inside the angle T7M S
(Fig. 127),

Fia. 127

(b) point O lies outside the angle TMS (Fig. 128).

Fig. 128

We shall begin by determining the required locus for case (a).
If point M belongs to that locus, i.e. if in Fig. 127 we have
+<TMS = «, then the locus includes also the whole circle de-
scribed by point M when the figure is rotated about point O,
since in this rotation <7'MS remains unchanged. We shall
prove that the circumference of that circle is the required locus,



Loct 241

i.e. that apart from it there are no points satisfying the required
condition.

Let us consider any point lying nearer to point O than point M,
e.g. point M, of the segment 7M. Let the tangent M,S; to circle
K, intersect the tangent M S to the same circle at point L. In
triangle M M,L the exterior angle TM,L is greater than the
interior angle T'ML, ie. «TM,S, > «, whence neither point
M, nor any other point lying on the circle with centre O and
radius OM, belongs to the locus under consideration. No point
M, lying farther away from point O than point M belongs to
this locus either, since then <«7M,S < a. The theorem is thus
proved. It can be seen at the same time that the angle o has the
greatest value when the point M lies on circle K, e.g. at point 7';
then o = <« NTS, = 90°+¢, where ¢ is half the angle between
the tangents drawn from point 7' of circle K, to circle K,.

In case (b) the reasoning is analogous; it is illustrated in Fig. 128.
The required locus is another circle with the same centre 0. The
greatest possible value of angle « is then «N7TS, = 90°—g;
where @ has the same value as before.

Let us list the results obtained:

(1) If a« <90°—¢p, the required locus consists of two circles
with centre O.

(2) If90°—gp < a0 << 90°+-¢, the locus is a circle with centre O.

(3) If & > 90°+¢, the locus does not exist.

ReMaRrk 1. To construct the above-mentioned circles it suffices
to find one point of each of them. Accordingly, it is best to begin
by drawing the angle 708, which is equal to 180°—« in case (a)
and to « in case (b).

REeMark 2. The above reasoning requires a certain supplement;
namely it should be proved that the half-lines M8 and M,S,
always intersect. Now, if point M; lies on M N between points
T and M, then in case (a) circle K, is in the angle 7'M,S,, and
point M lies outside that angle; consequently the segment MS
must intersect the half-line M, 8,; in case (b) point M, and circle
K, lie on opposite sides of M, whence the segment M,S; must
intersect the half-line MS.

115. Answer: The required locus is the circle with the centre
at the point of intersection of the given straight lines and with
a radius equal to d/sin &, where a denotes one of the angles be-
tween the given lines.

116. Consider a certain position of the moving lines m and
n; let the straight lines 4,B, and 4,B, intersect at point Q. Sup-
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pose that point P is outside the strip of the plane determined by
the parallel lines @ and b; in that case point @ lies in this strip

(Fig. 129). Let 2, and h, denote the distances of point P from
a and from b, and %, and k,—the distances of the moving point
@ from a and from b.

From the fact that @ and b are parallel it follows that triangles
@, 4,4, and QB,B, are homothetic with respect to centre @;
the ratio of the corresponding altitudes %, and k, of these trian-
gles is thus equal to the ratio of the corresponding sides 4,4,
and B\B,, i.e.

krn 4,4,
k, BB’

Similarly, the homothety of triangles PA,4, and PB B, with

respect to centre P implies that

hl . A'].AZ
hy BB,
Consequently
ky by
S S 1
N 1

Conversely, let @ be a point of the strip between the lines a and
b whose distances k, and k, from @ and b satisfy equation (1).
Let us draw through point @ an arbitrary straight line intersecting
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a and b at points 4, and B,; let the straight line m passing through
points P and A, intersect b at point B, and let the straight line
n passing through points P and B, intersect @ at point 4,. Thus
point @', at which A4,B, intersects A4,B,, must coincide with
point @, since we know from the above reasoning that the dis-
tances of point @’ from a and b must be in the ratio A,: Ay, and
on the segment 4,B, point @ is the only one to have this pro-
perty. It follows that point @ belongs to the required locus.

We have proved that the required locus coincides with the
locus of those points lying in the strip between the lines a and
b whose distances from @ and b are in the given ratio &, : k,. Thus
the locus in question is a straight line parallel to @ and b, lying
in the strip between a and & and dividing the width of that strip
in the ratio hy: h,.

If point P is between the lines @ and b but is not equidistant
from them, the same reasoning as before leads to the conclu-
sion that the required locus is a straight line parallel to @ and b,
lying outside the strip between ¢ and b and such that its dis-
tances from @ and b are in the ratio A, : h,.

If point P is equidistant from a and b, the required locus does
not exist because then the straight lines 4B, and 4,B, are paral-
lel.

REeMARK 1. Using the above theorem we can easily solve the
following problem: We are given on a plane two parallel lines
a and b and a point P. Draw through P a line parallel to a and
b using only a straight edge.

ReMARK 2. Let M and N be the points of intersection of the
straight line PQ with a and b (Fig. 129). Since triangles P4, 4,
and PB,B, are homothetic with respect to the centre P and
triangles @4,4, and QB;B, are homothetic with respect to the
centre ¢, the homothety ratio A4,4,:B,B, being the same in
both cases, we have

PM _ QM
PN QN
This equality signifies that the pairs of points P, @ and M, N

divide one another harmonically, i.e. that point @ is harmonically
conjugate to point P with respect to points M and N.

+ We consider here non-directed segments. For directed segments

(vectors) we should have to write PM: PN = —QM:QN since, if the seg-
ments PM and PN have the same direction, then the segments QM
and QN have opposite directions.
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It will be observed that points M and N are the centres of
the segments 4,4, and B, B,. Indeed, the triangles PA,M and
PB,N are homothetic with respect to centre P, and the triangles
QMA, and @B, N are homothetic with respect to centre @, the
homothety ratio being the same in both cases; consequently

AM M4,
BN BN’
whence 4,M = M A, and analogously B;N = NB,.

Conversely, on an arbitrary straight line passing through point
P and intersecting @ and b at points M and N let us choose a point
@ harmonically conjugate to point P with respect to points M
and N. Let us then draw through point P a straight line m inter-
secting @ and b at points 4, and B;; mark off M4, = 4, M and
draw a straight line n through points P and 4,: it will intersect
b at a point B, such that BN = NB,. We shall prove that lines
A,B, and A,B, intersect at point Q. Indeed, if the point of inter-
section of 4,B, and 4,B, is @, then, as we have proved before,
the straight line P@, passes through the mid-points M and N
of the segments 4,4, and B,B,, whence point ¢, is harmonically
conjugate to point P with respect to points M and N ; consequently
point @, coincides with point @.

It follows that the locus determined previously is also the
locus of points @ which are harmonically conjugate to point
P with respect to the points of intersection of PQ with a and b.

Remark 3. The above consideration can be extended to the
case where a and b intersect. We then obtain Fig. 130. We are to
find the locus of point @ when the straight lines m and » are
variable.

The figure formed by the lines m, n, 4,B, and A4,B, is a com-
plete quadrilateral with vertices 4,,4,,B,, B,, P, @ and diagonals
PQ,a,b. As we know, the pair of vertices lying on one diag-
onal of a complete quadrilateral separates harmonically the pair
of points at which that diagonal intersects the remaining two
diagonals. (See problem 79.)

Consequently point @ is harmonically conjugate to point
P with respect to points M and N. Conversely, if a point @ is
harmonically conjugate to point P with respect to the points
of intersection M and N of the straight line PQ with @ and b,
then point @ belongs to the required locus. To prove this let
us draw through P the line m, intersecting @ and b at points
A, and B,, let us determine point 4, harmonically conjugate
to point 4, with respect to points M and R and let us draw through
P and A4, the line n, intersecting b at point B,. Then the lines
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m, n, A;By and A4,B; will form a complete quadrilateral, in which
one diagonal is the line 4,4, and the second diagonal is the
line B,B,, whence the third diagonal must pass through a point
harmonically conjugate to R with respect to 4, and A4,, i.e.
through point M. Consequently lines 4,B, and 4,B,; intersect
on PM ; since their point of intersection is harmonically conjugate
to P with respect to M and N and point @ is the only one to
have this property, the straight lines A4,B, and A4,B, intersect
at point Q. Point @ is thus a point of the required locus.

Fia. 130

If follows that the locus in question coincides with the locus
of points @ harmonically conjugate to P with respect to the
points of intersection of PQ with @ and . We shall prove that
the required locus is a straight line passing through the inter-
section R of lines a and b.

Let @ (Fig. 131) be the point of our locus determined by the
lines m and n, and 7' any other point of that locus; point 7' is
harmonically conjugate to P with respect to points A3, Bs at
which PT intersects @ and b. We are to prove that point 7T
lies on RQ. Let S be the intersection of RQ with 4,B,. Inves-
tigating the complete quadrilateral formed by the straight lines
a, b, A\B, and A4,B, with vertices 4,, B;, 4,, B,, @, R and
diagonals 4,B,, 4,B, and @R, we find that § is harmonically
conjugate to P with respect to 4, and B;. Consequently, in
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the complete quadrilateral formed by the lines @, b, 4,B;, 4;B,
the diagonal passing through vertex R must intersect the dia-
gonal A4,B; at point §; that diagonal is thus the line R(Q,
whence it follows further that the point of intersection of RQ
with the third diagonal, A3B;, of the complete quadrilateral
in question is point 7', as the one harmonically conjugate to
P with respect to 43 and B;. The theorem is thus proved.

Fia. 131

Using this theorem we can solve the following problem. Given
straight lines @ and b intersecting at an inaccessible point B (e.g.
a point lying outside our drawing space) and a point P, draw
the straight line PR using only a straight edge.

117. When the dise rolls along the rim, the points of the edge
of the disc become one after another the points of contact of
the disc with the rim. The condition of rolling without sliding
means that the length of the arc PQ between two points, P and @,
of the edge of the disc is equal to the length of that arc of the rim
upon which the points of the arc PQ successively fall when the
disc is rolling. Since the radius of the disc is equal to half the
radius of the rim, the edge of the disc always passes through the
centre O of the rim.

Let us choose a point P on the edge of the disc and let P coin-
cide with point 4 of the rim in the initial position of the disc.

When the disc rolls so far that its point of contact with the
rim runs over the quarter AB of the rim, the corresponding
points of the edge of the dise, i.e. those points which successively
touch the rim at the points of the arc AB, will form a semi-circle;
accordingly, when the point of contact reaches point B, point
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P will coincide with point 0. We shall prove that during that
motion P runs over the radius A0. Suppose that at a certain
moment the disc touches the rim at point @ of the arc AB.
The centre S of the disc is then the mid-point of the segment 0Q.
Point P is then so placed that the lengths of the arcs AQ and QP
(less than semi-circles) are equal. It follows that

£40Q =1 £PSQ. (1)

On the other hand, by the theorem on the exterior angle of
a triangle, < PSQ = <« POS+ «OPS, and since €« OPS = «POS
we have

+«POS =% «PSQ. 2)
Equations (1) and (2) give
< POS = «A40Q,

whence point P lies on the radius 40 (Fig. 132).

Conversely, if P’ is an arbitrary interior point of the segment
AO, then there exists a position of the disc in which P coincides
with P’: the centre of the disc then lies at the intersection of
the perpendicular bisector of seg-
ment OP’ with that arc of the
circle with centre O and radius r
which lies in the angle A0B.

We have proved that, when
the disc rolls over the quarter
AB of the rim, point P runs over
the radius A0. When rolling over
the quarter BC, the disc assumes S
positions symmetrical to those
it assumed before with respect

to the straight line OB; thus a
point P runs over the radius OC, )
symmetrical to 04, i.e. forming Fie. 132

together with OA the diameter

AC of the rim. Rolling over the remaining quarters of the rim,
point P will run over the diameter CA, since it will then assume
positions symmetrical to those it assumed before with respect to
the straight line 4C.

We have obtained the following result: when a disc is rolling
inside a rim with a radius twice as great, each point of the disc
runs over a diameter of that rim.

118. Denote by M and N the points of intersection of the
straight line m with the planes a and f, by S—the mid-point
of the segment M N and by s—the intersection line of the planes




248 Geometry and Trigonometry

o and f. We are to find the figure formed by the mid-points
of all segments XY parallel to MN and having their end-points
X and Y on the planes o and B. Accordingly let us consider the
pencil of planes with edge m, i.e. the set of all planes passing
through the line m. Every segment XY, being parallel to MN,
lies on one of the planes of that pencil. The required locus will
thus be determined if we find its points on every plane of the
pencil. We shall distinguish two cases.

(1) Suppose that a plane of the pencil in question intersects
the straight line s at point P, i.e. that it intersects the planes

Fia. 133

o and B along the straight lines PM and PN (Fig. 133). Those
of the segments XY under consideration which lie on the plane
MPN have their end-points on the lines PM and PN; the mid-
points Z of those segments thus form a straight line p passing
through points P and S.

(2) Suppose that a plane of the pencil in question is parallel
to the line s, i.e. that it intersects the planes « and § along the
lines MK and NL, parallel to s (Fig. 134).

Those of the segments XY under consideration which lie on
the plane M KS have their end-points on the lines MK and NL,
and the mid-points Z of those segments form a straight line
g passing through point S and parallel to s.

Thus the required locus consists of the points of all straight
lines drawn through point S to all points P of line s and of the
points of line ¢ drawn through point S parallel to s.

Those points form a plane, determined by point S and the
straight line s.
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REMARE. We might be in doubt whether the straight line
s belongs to our locus or not, since a straight line drawn parallel
to m from a point of s intersects the two planes « and f at the
same point and there is no segment X Y on it. However, in geometry
it is convenient to assume that, if points X and Y coincide, they
form a-zero segment, i.e. a segment consisting of one point only,
which is then in itself the initial point, the mid-point and the
end-point of the segment.

F1a. 134

According to this agreement the straight line s belongs to the
locus which we have determined.

119. (1) Let m and n be perpendicular lines intersecting at
point 0 (Fig. 135).

Let point S be the mid-point of a segment M N of length e with
end-points lying on m and =. In the rectangle OMPN (which
isreduced to the segment M N if M
or N coincides with 0), we have

08 = SM = %a.

Thus point S lies on a circle lying
in the plane of m and n with centre
O and radius }a.

Conversely, let S be a point of
that circle, i.e. OS = Za. Point S is Fro. 135
then the mid-point of a segment of
length @ with end-points lying on m and n. This segment
will be obtained by marking off on segment OS produced a
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segment SP = OS and constructing the rectangle OM PN ; then
MN = OP = 2X08 = a.

If point S lies on one of the given straight lines, the rectangle
OMPN is reduced to the segment OP.

We have shown that, if m and n intersect, then the required
locus is the circle with centre O and radius ta lying in the plane
of the given straight lines.

(2) Let us now consider the case where the lines m and n are
skew. Suppose that the shortest distance between them is equal
to d.

In a drawing it is easiest to represent m and » by means of
orthogonal projections on two perpendicular planes. As the
horizontal plane of projection we shall take a plane « parallel
to both m and n, and as the vertical plane of projection—any
plane perpendicular to «. The horizontal projections of m and
n are perpendicular lines m’ and »’, and the vertical projections
are parallel lines m’’ and n'’ whose distance from each other is
equal to d.

These projections are shown in Fig. 136. Points P and @ of
lines m and », whose common horizontal projection is the point
of intersection of projections m’ and n’, determine the shortest
distance PQ between m and n. The mid-point O of segment PQ

n" N” a/r
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has the projections: O’ = P’ = @’; 0" is the mid-point of the
segment P''Q". . :

Let us join a point M of m with a point N of n. The projections
of the mid-point S of segment MN lie at the mid-points S’ and
8’ of the projections M'N’ and M'’N’’ of that segment. The
actual length of the segment MN will be determined from its
projections by constructing a right-angled triangle with sides
M’'N’and N'Ny = d; the hypotenuse M'N, is equal to the segment
MN.

If MN = a, then

M'N' = y(M'Ni—N'N2) = V (a*—d?).

When the segment MN runs its end-points along the lines
m and n retaining its constant length @, the segment M'N’, as
can be seen from the above formula, also retains the constant
length ¥ (a®—d?).

Therefore the locus of the mid-point S’ of the segment M’'N’
is the circle ¥’ with centre O’ and radius 3V (a*—d?).

When point 8’ describes circle %', point §’’ runs over a seg-
ment k'’ of the straight line equidistant from m’’ and »’’, and
point S describes a circle £ whose projections are k£ and &’’. This
circle is the required locus; it lies on a plane equidistant from
m and n; its centre is at point O and its radius is equal to
1V (@*—d?).

Remark. The investigation of case (2) can also be carried
out on a drawing made in the oblique projection. As the plane
of projection we shall take the plane determined by one of the
given skew lines m and =, say m, and by the segment PQ—the
shortest distance between m and n. For simplicity, we shall
denote the projections of points and lines on this plane by the
letters which denote those points and lines themselves.

Fia. 137
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We draw the straight line m and the segment PQ of length
d perpendicular to m (Fig. 137). As the projection of n we can take
any straight line passing through point Q. Let M N be an arbitrary
segment of length a whose end-points lie on m and n. Let S be
the mid-point of this segment and O the mid-point of segment PQ.

Let us draw through point P a straight line r parallel to » and
consider the orthogonal projection of segment M N on the plane
(m, r) of lines m and r. Since PQ_| m and PQ | r, the segment
PQ is perpendicular to the plane (m, r).

Consequently the orthogonal projection N’ of point N on this
plane will be obtained by drawing a parallel to PQ from point
N to the point of intersection with r. The orthogonal projection
8’ of points S is found in a similar way by drawing a parallel to PQ
from point S to the point of intersection with MN'; point S’ is
the mid-point of segment M N'.

In the right-angled triangle M NN’ we have MN = a, NN' =d,
whence

MN' = Y (MN?*—NN'?) = y/ (a*—d?).

When segment M N of constant length a runs its end-points
along the lines m and n, segment MN’ keeps a constant length

Fic. 138
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V (@*—d?). Consequently, the locus of point 8’ is a circle with

centre P and radius PS’ =1/ (a*—d?) lying in the plane (m, r).
Point § is obtained through translating point 8’ perpendic-

ularly to the plane (m, r) by the length 8§’ = PO =1d.

Thus the locus of point § is a circle with centre O and radius
+V (a*—d?) lying in a plane parallel to both m and n.

In the oblique projection upon the plane MPQ both loci are
ellipses. Those ellipses have been drawn in Fig. 138 in the following
manner: Ellipse E, has been drawn as the oblique projection of
circle K with radius PU = } ¥ (a®*—d?), segments PU and PW
being taken as the projections of two perpendicular radii PU
and PV of that circle. Ellipse E, has been obtained through
a translation of ellipse E, determined by vector PO.

§ 8. Constructions

120. Let MN be the required segment with end-point M on
a given circle k, end-point N on the given straight line » and the
mid-point at a given point 4 (Fig. 139).

Fic. 139

Since point M is placed symmetrically to point N with respect
to centre A, it lies on the line symmetrical to » with respect
to A. This observation leads to the following construction.

/e draw line m symmetrical to » with respect to 4. It is most
convenient to choose on n two arbitrary points B and C, draw
the straight lines B4 and C4 and mark off on them the segments
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AD = BA and AE = (A, as shown in Fig. 139; DE is the required
line m. Suppose that m intersects the circle £ at point M. Drawing
the straight line M A until it intersects n» at point N, we obtain
the required segment M N, points M and N being the correspond-
ing points of lines m and n symmetrical with respect to 4;
consequently M4 = AN.

The problem has two solutions, one solution or no solutions
according to whether m intersects the circle %, is tangent to it
or lies outside it.

ReMARK. Instead of drawing a straight line m symmetrical
to n with respect to point 4 we could describe a circle I symmetrical
to the circle & with respect to 4 and determine the required point
N at the intersection of ! with the given straight line n.

In the same way we can solve any problem of the following
kind: Given any two lines I, and I, (straight lines, circles or any
other curves) and a point 4, draw a segment with mid-point 4,
one end-point on I, and the other on .

121. (1) On the given straight line p let us mark off a segment
MN =d (Fig. 140). The path AM++MN-+NB will be shortest
when the sum of the segments 4 M 4 NB is the least. Let us move

A
\/Q B
M N p

Fi1e. 140

point B parallel to p the distance BC = d in the opposite
direction to the direction MN; then AM-+NB = AM--MC.
The problem is thus reduced to determining on p a point M for
which the sum of its distances from the given points 4 and O,
lying on the same side of p, is the least. We solve this problem
. in a well-known way: point M is obtained as the point of inter-
section of p with the segment joining point 4 with a point C’,
symmetrical to C with respect to p.

From the above analysis of the problem we derive the con-
struction represented in Fig. 141. We move point B parallel to
p through the distance d. This translation can be made in two
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opposite directions; thus we obtain two points C; and C,. We
find points €7 and Cj symmetrical to points C; and C, with respect
to p and the points of intersection M, and M, of the segments
AC] and ACj with the straight line p. If points A and B do not

Fia. 141

lie on the same perpendicular to p, then only one of the points
C, and C, is suitable, namely that one which lies together with
point 4 on the same side of a perpendicular drawn through
B to the straight line p; suppose it is point C, (as in Fig. 141).
Indeed

AM,+M,C, = AM,+M,C, = AC, < AC,
= AM,+M,0, — AM,+M,C,,

whence the sum A4M,+ M,C,, being greater than the sum AM,+
+M,C,, does not give the required minimum.

Marking off on the straight line p a segment M,N, =d in
the direction of €, B, we obtain the required path AM,+M,N,+
+N,B. In this case the problem has one solution.

If points 4 and B lie on a perpendicular to the straight line p,
the problem has two solutions symmetrical with respect to the
line AB:

AM,+M,N,+N,B and AM,+M,N,+N,B (Fig. 142).

ExErcise. We suggest that the reader should solve the same
problem in the case where points 4 and B lie on opposite sides of
the straight line p.

(2) Suppose that MN is a segment of given length d lying
on p for which AM = BN (Fig. 143). Let us move point B parallel
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to p through the distance BC = d in the direction opposite to
that of MN; then the quadrilateral MNBC is a parallelogram,
whence OM = BN, and consequently also CM = AM. Thus
point M lies on the perpendicular bisector of the segment AC.

G
|
|
|
—=F
|
|
|
I
4

Fic. 142

A
C\ 3
M N 4
Fia. 143

We derive hence the solution of the problem represented in
Fig. 144. We move point B parallel to p the given distance d.
Since this translation can be made in two opposite directions,
we obtain two points C;, and C,. We draw the perpendicular
bisectors of the segments AC; and AC,. If those perpendicular
bisectors intersect p at points M, , M,, we mark off on p a segment
M,N, = d in the direction of C,B and a segment M,N,=d
in the direction of C,B; we obtain the required polygonal lines
AM,N,B and AM,N,B. The problem has two solutions with the
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exception of the case where one of the points C;, C,, say point C,
lies on a perpendicular drawn from point 4 to p. In that case,
if point C, is different from point 4, the problem has one solution
AM,N,B, since the perpendicular bisector of the segment AC;
does not intersect p; if point C, coincides with point A, the
problem has infinitely many solutions. Namely, a solution is
provided by any polygonal line AM,N,B for which the segment
"MN, is of length d and direction 4B and by one more polygonal
line AM,N,B, in which M, and N, are the projections of points
B and 4, respectively, upon the straight line p.

N, M, M, N,
Fia. 144

RemMARk. In problem (2) the condition that points 4 and
B should lie on the same side of p is inessential. If those points
lie on opposite sidés of p or if p passes through one of them (or
even through both), the solution of the problem is the same.

122. Let us denote the lengths of the given sides of the quadri-
lateral as follows: AB = a, OD = ¢. Consider the sums of the
successive angles of the quadrilateral:
A+B, B+C, C+D, A+D
and put these sums in pairs:
(4+B,0+D)

(A+D, B40).

In each of these pairs one of the
sums is not greater than 180°, since
the sum of all the four angles 4B
+C+D is 360°.

It suffices to consider the case s
where 4+ B <180° and A 4 D A P B
<180°; the argument which we F1e. 145

and
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shall develop can be applied to any other case by changing the
letter notation in a suitable way.

It is convenient to consider two possibilities:

I. A4B < 180°, whence C+D >>180°. Let ABCD be the
required quadrilateral. This quadrilateral is convex (Fig. 145)
or concave (Fig. 146) according to whether C' < 180° or C' > 180°.

Let us draw through the vertex B a line parallel to CD, and
through the vertex D a line parallel to BC; a parallelogram |
BCDM will be formed.

Fia. 146

(a) If A+D = 180°, i.e. if the quadrilateral ABCD is a trap-
ezium (Fig. 147), point M lies on the side 4B, MB = c.

In this particular case the construction of the quadrilateral
is easy.

We draw a segment AB = a. We construct <BAD = A4 and
4« ABC = B on the same side of the line AB. We then mark
off BM = c. We draw through point M a parallel to BC as far
as the intersection with the half-line 4D at point D. Through
point D we draw the line DC as
far as the intersection with BC at b ¢
point C. It is easy to verify that
the quadrilateral 4 BCD satisfies the
conditions of the problem. This so-
lution exists if point M lies inside
the segment AB,ie.ifc < a.

(b) If A+D < 180° (whence
B+C > 180°), point M lies inside
the angle BAD.
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Indeed, if the quadrilateral ABCD is convex (Fig. 145), the
half-line DM lies inside angle ADC since « MDC =180°—C < D;
consequently the half-line DM intersects the straight line AB
at point P lying inside the segment AB. The half-line BM lies
inside angle ABC because < CBM = 180°—C < B, whence
the half-line B} intersects the straight line 4D at a point NV lying
inside the segment AD. The segments DP and BN intersect at
point M lying inside the angle BAD.

Now if the quadrilateral ABCD is concave (Fig. 146), then
the half-line DM intersects the side 4B produced at point
P lying beyond point B; similarly, the half-line BM intersects
the side AD produced at point N lying beyond point D. The
segments DP and BN intersect at point M lying inside angle
BAD.

Let us calculate the angle ABM. In the case of a convex polygon

< ABM = B— < MBC = B— (180°—C) = B+4C—180°.
In the case of a concave polygon
< ABM = B+ <« CBM = B+180°— (360°—C) = B+(C—180°.

In both cases we know in the triangle ABM the sides AB = a
and BM = ¢ and the angle included between them; it is therefore
possible to construct triangle ABM, and thus find point M, as
follows.

We draw a segment AB = a and angles A and B at the half-lines
AB and BA, respectively; we then construct triangle ABM and
draw through point M a line parallel to the arm of angle B which
we have constructed. If that parallel line intersects the arm of
angle A at point D, then the vertex C of the quadrilateral will
be found at the intersection of the arm of angle B with the straight
line drawn through point D parallel to BM. The construction
makes it clear that the quadrilateral 4 BCD satisfies the conditions
of the problem. This solution exists if point M happens to be
inside angle BAD since it is only in that case that the construction
is feasible. This condition can easily be expressed as a relation be-
tween the data of the problem. Namely, the half-line BM intersects
in this case the arm of angle 4 which has been constructed and
forms triangle A BN because

A4 4« ABM = A+ (B+C—180°) = 180°—D < 180°.
Point M lies inside angle BAD if BM < BN. Now

sin «NAB sin A

BM =c¢, BN=ABXmB=aXm,
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thus the condition of solvability of the problem is

asin A
sinD ’

ie.
asin A > c¢sin D. (1)

It will be observed that, if 44-D = 180°, then sin 4 = sin D
and inequality (1) gives the condition @ > ¢, which has been
found for this case before. We can thus formulate the result of
the whole reasoning as follows:

If A—FB < 180°, the problem has a solution on condition that
inequality (1) is satisfied; there is only one solution.

II. A+B =180°. In this case the required quadrilateral is
a trapezium with bases 4D and BC (AD > BC, since we assumed
at the beginning that 4+D < 180°).

If A+D = 180°, the quadrilateral is a parallelogram, whence
AB = CD (Fig. 148). The problem can then be solved only if
the given sides satisfy the condition @ = ¢; there are infinitely
many solutions.

A a
Fia. 148 Fi1a. 149

If A+ D < 180°, then the parallel drawn from point B to the
side CD cuts off from the quadrilateral a triangle ABM (Fig. 149)
in which AB=a, BM =c¢, <«AMB =D, <«BAM = A. The
given sides and angles must therefore satisfy the following relation
(the Sine Rule):

a c
sinD  sind’
ie.
asin A = csin D. (2)
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If this condition is satisfied, the problem has infinitely many
solutions, which are obtained by constructing the triangle ABM
and translating the segment BM in the direction of AM.

It will be observed that, if 4--D = 180°, equation (2) gives
the condition a = ¢, which has been found for this case before.
We can thus say that:

If A+B =180° the problem has solutions provided equation
(2) ts satisfied; there are infinitely many solutions.

123. Method I. Analysis. Let B;, B,, By, By, B; be vertices
of a pentagon the mid-points of whose sides are the vertices 4,,
A,, As, Ay, Ay of a given pentagon (Fig. 150).

F1a. 150

Let us draw the diagonal B, B, and denote its mid-point by M.
The mid-points 4,, 4,, A3, M of the sides of the quadrilateral
B,B,B;3B, are, as we know, the vertices of a parallelogram. Point
M can thus be determined as the fourth vertex of a parallelogram
whose three successive vertices are A4,, 4,, 43. Next it will be
observed that, since 4, and A are the mid-points of the segments
BBy and B;B;, the segment A,A; is parallel to the diagonal
BB, and equal to half that diagonal. Thus, having point M,
we shall find point B, by drawing through point M a line parallel
to the side 4,4; and marking a segment MB, = 4,4, in the
direction of A4,4;. We shall then determine successively the
points B,, By, B,, B;.

Construction (Fig. 151). We construct the parallelogram 4,4,
AgM. Through point M we draw the parallel to the side 4,45
and mark off MB, = A4,4; in the direction of 4,45. We then
join point B; with point 4,, and on B4, produced beyond
point 4, we mark off 4,B, = B, A,. In the same way we determine
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points By, By, By. Finally we join point By with point B, and
obtain the polygon B,B,B3BB;. We shall prove that it is the

required one.

Since—according to the construction—points 4,, 4,, 45, 4, are
the mid-points of segments B,B,, B,By, BgB,, BBy, respectively,
it suffices to prove that point 4y lies on the segment BgB, and
is its mid-point. Now the segment M A, is parallel to the segment
B,B; and equal to half that segment since the same properties
characterize the segment 4,4, equal to M Az and parallel to it.

Fic. 152

Therefore point M is the mid-
point of the segment B,B,. The
segment A,A; is thus parallel to
the segment B,B, and equal to
half that segment, whence point
Ajgis the mid-point of the segment

;.

In performing the above con-
struction we can encounter cer-
tain particular cases. Namely,
three successive vertices of the
required polygon may occur on
one straight line (containing a
side of the given polygon) as
shown in Fig. 152.

It may also happen that one

of the points B; will coincide with one of those vertices 4,
with which, in our construction, it is to be joined by a segment.
This case is shown in Fig. 153, where point B; happens to coincide
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with 4;. We must then regard point B, as point B, as well (ob-
taining equal “zero segments” B;A; and AgB,) and perform
the rest of the construction as before.

In the constructions shown in Figs. 152 and 153 the figure
B,B,ByB,Bjy obtained is not a pentagon in the usual sense of the
word ; thus the problem has no solution. However, we can extend
the meaning of the term “pentagon” to cover the above cases,
e.g. by calling those figures “deformed pentagons”.

Fia. 153

If we agree to do this, the problem always has a solution (an
ordinary pentagon or a deformed one) and the solution is unique
because the construction determines the vertices B,, B,, Bg, B,,
B; in a unique manner.

ReMARK. (1) The condition that points 4,, 4,, A3, 44, A5 are
the vertices of a convex pentagon can be disregarded and a more
general problem posed:

In a plane, points A,, Ay, Ag, Ay, As are given. Find points
B,, B,, By, B,, By such that point A, is the mid-point of the segment
B, B,, point 4, the mid-point of the segment B,B;, elc., and Sfinally,
point Ag the mzd-pomt of the segment BgB, .

The solution proceeds as before, except that points 4,, 4,, A,
can now lie on a straight line. We shall now determine point
M by marking off on that line a segment A3M, equal to the
segment A,4, and identically directed, which replaces our former
construction of the parallelogram A4,4,4,M (Fig. 154).

M AJ Af Az

Fia. 154
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This problem always has one and only one solution if we admit
deformed solutions in which some of the points B,, B,, B;, By, B;
can coincide, e.g. as in Fig. 155.

8,

A M

A,.8,.5, A, A,.8,.8,
Fia. 155

The generalization of the problem can be pushed still further,
by admitting the coincidence of some of the given points 4,, 4,,
Ag, Ay, A, or even all of them. The process of the solution remains
the same but the deformations of the “polygon” B,B,B,B,B;
will go still further, as can be seen in Fig. 156 and 157 for instance.

45.5.5,.55

Fic. 166
8.8, As.8,.8,,8;

AL Ay AL ALM
Fre. 157

(2) A further generalization of the problem will be obtained
by assuming that we are given in a plane an arbitrary odd number
of points 4., 4,, ..., Agyt; (n—a natural number), not necessarily
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different, and we seek points B, B,, ..., By, such that point
A;is for 1 =1,2, ..., 2n the mid-point of segment B;B;.; and
point A4,,,, is the mid-point of segment B,,, B, .

We know how to solve this problem for » =2 (and also for
n = 1). The general solution will be obtained by induction.
Namely, we shall show how to solve the problem for any arbitrarily
chosen value of n greater than 2 under the assumption that the
solution for the value of n less by unity is already known.

We determine point M, as before, by drawing a segment A, M
equal to the segment 4,4, and identically directed. Then, for
the system of points M, A4, 45, ..., Ayyt,, whose number is
2(n—1)+1, we find the required system of points, in which point
M is the mid-point of segment B,B,, point 4, is the mid-point
of the segment B,B;, etc. Finally, we determine points B, and B;.

Under the agreement concerning the coincidence of points the
problem always has one solution.

If the number of given points is even, the problem generally
has no solution. For example for a given convex quadrilateral
A4,4,4,4, the quadrilateral B, B,ByB, exists only if the quadrilat-
eral A,4,454, is a parallelogram.

Method II. Analysis. Let B, B,B3B,By be the required pentagon
(Fig. 158). Let us draw the diagonals B,B; and B,B,. In the

F1c¢. 158

triangle B,B,B; the segment 4,4, joins the mid-points of the
sides ByB, and B;B,, whence B;B,||4,4, and B,B; = 24,4,;
also B By||454, and BB, = 24,4,.

Thus we know the lengths and the directions of two sides of
the triangle B,B;B,, whence we can find the length and the
direction of the third side, i.e. determine points B; and B,.
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Construction (Fig. 159). From an arbitrary point M, say from
point A,, we draw parallels to the sides 4,4, and A;4, of the
given pentagon and mark off MN = 24,4, and MP = 2444,.
We then draw through point A4, the parallel to the line NP and
mark off 43B; = A3B, = 3 NP. Next we find the vertex B; as
the point of intersection of the straight line drawn from point
B, parallel to the side 4,4, with the straight line drawn from point
B, parallel to the side 4,4;, the vertex B, at the intersection
of B34, and B, 4,, and finally the vertex By at the intersection
of B4, and B, A4;.

Fre. 159

Since triangle B, BB, is congruent to triangle MNP, we have
BB, = MN = 24,4,, and, since B, Bg|l4,4,, points 4, and
A, are the mid-points of the sides B,B, and B,B; and sumﬂarly
points A4 and Ay are the mid-points of the sides BBy and BB, .

In the construction performed above we can encounter similar
particular cases to those occurring in the construction of method I.
If 4,4,||454,, then instead of a triangle MNP we obtain three
segments of the same straight line. If, moreover, 4,4, = A;4,,
then points N and P coincide; we must then assume that points
By and By coincide with point 44, as in Fig. 153. Keeping to our
previous agreement as regards deformed pentagons, we conclude
that the problem always has a solution and that solution is unique,

ReMARE. The above method can also be applied to the more
general problems discussed in method I. Given 2n-1 points,
where n > 2, we replace the construction of the triangle B B3B4
by the construction of the “polygon” B;Bj... By,—1Bopty, in
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which the segments B;Bj, ByB, ..., By, By,y, are parallel to
the segments A,;A,, Agdy, ..., Agp-1A4,, respectively and are
twice the length of those segments. This is illustrated in Fig. 160
for n = 3.

Fig. 160

Method III (calculatory). Let us choose an arbitrary system
of orthogonal coordinates: given the points

Ay (21, Y1), As(a, Yo), Ag(x3, Ys), Aa(%s, Ya)s A5(25, Ys)s
we seek points
B, (X, Y,), By(X,, Ys), By(X3, Yy), By(Xy, Yy), Bs(Xs, Y5).

Since the coordinates of the mid-point of a segment are equal
to the arithmetical means of the corresponding coordinates of
the end-points of the segment, for the determination of the re-
quired coordinates we have two systems of equations:

Xi+X, =22, Y, +Y,=2y,
Xot+ Xy =22, Y,+Y3=2y,
X3+X, =225, Y3+Y,=2y,,
X+ X5 =22, Y, +Y5=2y,,
Xs+X, =225, Ys+Y,=2y;.
Let us add the equations of each system:
X4+ Xo+ X+ X+ X5 = &)+ T+ T3 +24 5,
Y+ Yo+ Y+ Y+ Y = 41+ +Ys+Yat+Ys-

Hence, taking into account the preceding equations, we shall
obtain the coordinates of point B,
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X, = v, —xyt+wg—24+25,

Y, =y1—Y+Ys—Yats,

and analogous formulas for the coordinates of points B,, By, B,,
By.

The construction of the required points according to these for-
mulas presents of course no difficulties but is not very interesting
from the geometrical point of view.

Keeping to our former agreement as regards deformed penta-
gons, we always obtain one solution. The condition that the given
points are to be the vertices of a convex pentagon is of no signi-
ficance here and the points can be chosen arbitrarily. The same
applies to the general problem if an arbitrary odd number of
points is given.

If the number of given points is even, the problem generally
has no solution, since it leads to an inconsistent system of equa
tions. For example, in the case of four points we would have
to sclve the following system of equations:

X 4+-Xy, =22, X,+X3=2x,, X;+X,=2x, X,+X, =2«,.

Adding the first equation to the third one, and the second to
the fourth, we should obtain

X+ X+ X3+ X, = 2(2,12),
X+ X+ X3+ X, = 2(@y+).
These equations are consistent only if

T3 = 2yt74.

124. We can arrange the given squares to form a rectangle
in one way only. We shall prove this by the following inference.

To begin with, it is clear that squares filling up a rectangle
must have sides parallel to the sides of the rectangle.

The area of the rectangle must be equal to the sum of the
areas of all the squares, i.e. the area of the required rectangle, is

12—|—42—}—72—!—8‘z—|-92—|—102—|—14:‘“'—|—15‘~’—|—182 = 1056.

Number 1056 = 25X 3% 11 is the product of the lengths of
two adjacent sides of the rectangle. In order to find those lengths
we must decompose 1056 into two factors, each of them not less
than 18, i.e. than the length of the side of the largest square.
There exist three such decompositions:

1056 = 22X 48 = 24X 44 = 32x 33.
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The decompositions 22X 48 and 24X 44 must be rejected; for,
if we place a square with side 18 in a rectangle of width 22 or 24,
the part of the rectangle remaining above or below the square
will be a strip of length 18 and width not greater than 6. That
strip cannot be filled up with the given squares: we can place
in it squares with sides 1 and 4 at most, and the sum 144 =5
is less than 18. The required rectangle, if it exists, has sides 32
and 33. We shall show that a rectangle A BOD with sides AB = 32

A p D
157
18°
M L N,
4 / &
R < 7
14°
10° g2
B K C
F1a. 161

and AD = 33 (Fig. 161) can indeed be made up from the given
nine squares in one way only, disregarding of course rotations
about the centre of the rectangle and reflections on its axes of
symmetry.

The square with side 18 must be placed in a corner of the rectan-
gle. Otherwise there would remain above and below that square
strips of length 18 and joint width 14 or 15. One of those strips
would thus be of width not greater than 7, and a strip like that
could not be filled up by the given squares: we could place in it
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squares with sides 1, 4, 7 at most, the sum 14547 being less
than 18.

Thus we draw a square AMNP with side AM = 18.

We shall now decide which squares should be placed alongside
the segment MB = 14. Number 14 must be either the length
of the side of one square or the sum of the lengths of the sides of
several squares;in the second case there are only two possibilities:

14 =94+441 or 14 =10+4.

These possibilities must both be rejected ; for, if we place along-
side the segment M B a square with side 9 or 10, there will remain
a strip of length 9 or 10 and width not greater than 5, which again
cannot be filled up with the remaining squares. Thus along the
side M.B we must place a square MBKL with side 14.

Let us now consider point N. From this point there should
run into the interior of the figure PNLKCD a line dividing the
rectangle into squares—either as an extension of the segment
MN or as an extension of the segment PN. The first alternative
cannot take place: the side PN = 18 would then be the sum of
the sides of several squares, including side 15, since for the square
with side 15 there would be no room elsewhere. But 18 = 153,
and 3 is neither the side nor the sum of the sides of any of the
given squares. Consequently, the dividing line starting from
N must be the extension of the side PN.

In this case, reasoning as before, we conclude that the seg-
ment LN =4 must be the side of one square only, LRSN;
we then find that the segment KR = 10 must also be the side
of one square only, after which we shall easily determine the
position of the remaining squares and obtain the solution of the
problem represented in Fig. 161.

REmARK. It follows from the above that a rectangle with sides
32 and 33 can be divided into 9 unequal squares. The question
arises whether every. rectangle can be divided into squares that
are all different. Now it can be proved that if the sides of the
rectangle are incommensurable, the rectangle cannot be divided
into squares at all. A rectangle with commensurable sides, however,
can be divided into squares that are all different, and this can
be done in infinitely many ways. Such divisions have been dis-
covered quite recently; until a short time ago they were believed
to be impossible. Figure 162 represents the division of a square
into 24 unequal squares given by the Canadian mathematician
Tutte in 1950; the numbers placed in the squares denote the
lengths of their sides. So far we do not know whether it is possible
to divide a square into fewer than 24 squares.
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125. A square inscribed in the square ABCD is any square
whose vertices lie on the boundary of the square A BCD. According
to this definition the square ABCD itself belongs to the squares
inscribed in ABCD.

If the given point K lies on the boundary of the square 4BCD,
the problem is solved immediately. Namely, if point K is one
of the vertices of that square, then the only solution is the square
ABCD itself; if point K lies between two vertices, then there
exist two solutions: the square ABCD and the square whose
vertices are obtained by a rotation of point K about the centre
of the square A BCD through multiples of a right angle.

We shall now consider the cases where point K is inside the
square ABCD (Fig. 163) or outside this square (Fig. 164).

Analysis. Suppose that the given point K lies on side M N or
on an extension of side MN of the square MNPQ inscribed in
the given square ABCD (Fig. 163 and 164).

The squares ABCD and MNPQ have a common centre O (see
problem 76).
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Let us rotate the square M NPQ about point O through 90° in
the direction determined by the succession of points 4, B, C, D
and marked in the drawing by an arrow. Points M, K will be
found after the rotation at points N, L respectively. Since
< KNL = 90°, point N lies on a circle with diameter KL.

Fia. 163 Fic. 164

Construction. We rotate point K about point O through 90°
e.g. in the direction marked by the arrow, and obtain point L,
lying on the perpendicular to the line OK at point O; then OL
= OK. We describe a circle I" with diameter KL.

Suppose that circle I" passes through point N, lying on the
boundary of the square ABOD. We construct a square MNPQ
inscribed in the square ABCD, denoting by M that vertex of
the inscribed square which after a rotation about O through
90° in the direction of the arrow becomes point N.

We shall show that the square MNPQ satisfies the condition
of the problem, ie. that the line MN passes through point K.

We shall consider two cases: '

(1) If point K lies inside the square ABCD (Fig. 163), then
+«OKM = <OLN, since angle OLN arises from the rotation of
angle OKM and «OLN--4OKN = 180°, < OLN and <OKN
being opposite angles of a quadrilateral inscribed in a circle.

It follows that

4 OKM+ €« OKN = 180°.

Since the half-lines OM and ON, and thus also the points M
and N, lie on opposite sides of the line OK, it follows from the
preceding equality that the halflines KM and KN form one
straight line.
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(2) If point K lies outside the square ABCD (Fig. 164), then
<OKM = «OLN, as in case (1), and <OLN = 4<OKN as
inscribed angles subtended by the arc ON.

It follows that

+<OKM = «OKN.

Since the half-lines OM and ON, and thus also the points M
and N, now lie on the same side of the line OK, it follows from
the preceding equation that the half-lines KM and KN coincide.

Discussion. The problem has as many solutions as there are
common points of circle I'and the boundary of the square ABCD.

We shall consider two cases:

(1) Point K, and thus also point L, lies inside the square 4 BCD.

In this case the vertices of the square ABCD lie outside the
circle I, since from each of them the diameter KL of I' lying
inside the square appears at an acute angle.

The segments OK and OL are shorter than half the diagonal
of the square ABCD, whence the segment KL is shorter than
the side of this square. Consequently a circle with diameter KL
cannot have common points with two opposite sides of the square
ABCD, and only the following cases are possible:

(a) circle I" intersects two adjacent sides of the square, which
gives 4 solutions;

(b) circle I' intersects one side of the square and is tangent to
the adjacent side—3 solutions;

(c) circle I' intersects one side of the square—2 solutions;

(d) circle I' is tangent to two adjacent sides of the square—2
solutions;

(e) circle I' is tangent to one side of the square—1 solution;

(f) circle I" has no common points with the boundary of the
square—the problem has no solutions.

(2) Point K, and thus also point L, lies outside the square
ABCD.

We shall show that in this case circle I intersects the perimeter
of the square at two points, i.e. that the problem has two solutions.

The arcs OK and OL of the semicircle KOL join the interior
point O of the square with its exterior points K and L, whence
they must have common points with the boundary of the square.
Let N be the first of those points on the arc OK passing from O
to K, and N, the first of those points on the arc OL passing from
O to L (Fig. 165).

We shall show that on circle I' there are no points common
with the boundary of the square except points N and N,. It
suffices to ascertain this for the arc NKLN,, since the arc NON,
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has been chosen in such a way that only the points N and N,
lie on the boundary of the square.

Since the arc NON, is less than the semicircle KOL, the angle
NON, is obtuse and points N and N, do not lie on the same side
of the square. Two cases are possible:

(i) Points N and N, lie on two adjacent sides of the square
ABCD, e.g. on the sides AB and AD (Fig. 165). The arc NKLN,
does not intersect either the polygonal line NBCDN,, since
it lies on the opposite side of the straight line NV,, or the poly-
gonal line NAN,, since <«NAN; = 90°, and an angle inscribed
in the arc NKLN, (greater than a semi-circle) is acute, whence
point A lies inside the circle I". The arc NKLN,, and thus also
the circle I', has only the points N and N, in common with the
boundary of the square.

Fi1a. 165 Fia. 166

(ii) Points N and N, lie on two opposite sides AB and CD of
the square ABCD (Fig. 166). Suppose that point O is on the
same side of the straight line NN, as the vertices B and C. The
arc NKLN, is on the opposite side and thus does not intersect
the polygonal line NBCN,. We shall prove that this arc does
not intersect the polygonal line NADN, either, showing that
the vertices 4 and D lie inside the circle I", whence it follows
that the polygonal line NADN, runs inside circle I

In the triangle NON, the angle NON, is greater than 90°,
whence at least one of the remaining angles is less than 45°.
Suppose that «ONN, < 45°. Since <ODN, = 45° and points
N and D lie on the same side of the straight line ON, , point D lies
inside the circle passing through the points N, O, N,, i.e. inside
circle I'. In that case <«ON,N < <ODN and, since «<ODN
< «0ODA = «0AN, we have <4ON,N < «OAN, whence it
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follows that point 4, lying on the same side of the straight line
ON as point N, lies inside circle I

We have thus proved that, if the given point K lies outside
the given square, the problem always has two solutions. If, more-
over, point K lies on an extension of any of the sides of the square
ABCD, then one of the solutions is the square ABCD itself.

Remark. In the first part of the above discussion we have
found that, according to the position of point K in the square
ABCD the number of solutions of the problem may be 4, 3, 2,
1or 0.

We can investigate this question more thoroughly and deter-
mine which number of solutions corresponds to which part of
the square.

The most convenient method of doing this will be the method
of coordinates. Let us choose a system of orthogonal coordinates
as in Fig. 167. In this system let point K have coordinates (z, y).
Point L, which has arisen from the rotation of point K clockwise
through 90°, has, as can easily be verified, the coordinates (y, a—x)
where a denotes the length of the side of the square.
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We shall find out how many points the circle I" with diameter
KL has in common with the segment 4B—according to the
values of z and y.

The distance RS of the centre S of I" from the line AB is equal
to the arithmetical mean of the distances of points K and L from
this line:
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RS = m . (1)

2

The radius of circle I" is equal to
SL = 3 KL = 3y/[(z—y)*+ (a—2—y)]. (2)

Since points 4 and B lie, as we have found before, outside
circle I', the required number of points is 2, 1 or 0, if RS < SL,
RS = SL or RS > SL respectively.

Using formulas (1) and (2) we obtain the corresponding rela-
tions between z, y and a. The equality RS = SL gives the relation

(@+y)? = (z—y>+ (a—2—y),
whence
(+y)P—(@—y) = (a—z—y),
ie.
4oy = (a—xr—y)2.

Extracting the square root from both sides we obtain
2V(zy) = |la—z—y|. 3)
(i) If a—ax—y >0, relation (3) can be written as
2V (xy) = a—z—y,
z+2V(vy)+y = a,
(Vz+Vy)? =a,

i.e.

and ultimately
Vz+Vy=Vva. 4)
(i) If a—a—y < 0, relation (3) assumes the form
2V (2y) = 2+y—a,

ie.
z—2V(zy)+y = a,
(Vx_ V!/)z = a,
whence
|[Ve—Vy| = Va,
and finally
Ve=Va+vVy or Vy=vVa+tVyz. (5)

A point lying inside the square has coordinates less than a and
thus it cannot satisfy either of the equalities (5).
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We have obtained the following result: circle I" has one point
in common with the side AB of the square ABCD if x and y
satisfy equation (4).

Equation (4) represents the arc BD of a parabola (Fig. 168)
whose focus is the centre of the square A BOD and directrix—the
line parallel to the diagonal BD passing through point 4.

If point K lies in the shaded part
of the square, its coordinates satis- 8 c
fy the inequality

Ve +vy <Va,
which corresponds to the inequa-
lity RS < SL. Circle I then inter-
sects the side 4B at two points.

If point K lies in the unshaded
part of the square, its coordinates
satisfy the inequality

Vz+vVy >Va;
then RS > SL and circle " has
no points in common with the seg- F1e. 168
ment AB.

The case of the remaining sides of the square is similar: the
corresponding parabolas are obtained by rotating the parabola
of Fig. 168 about point O
through 90°, 180° and 270°.

The ultimate result of the disc-
ussion is shown in Fig. 169.

If point K lies in one of the
areas shaded with horizontal
lines, the problem has 4 solutions;
if it lies in the unshaded areas,
the problem has 2 solutions; for
the points of the area shaded with
vertical lines there are no solu-
tions. It is left to the reader as
an exercise to find out what num-
Fra. 169 bers of solutions correspond to

the lines delimiting these areas.

126. Let us denote by =z, y, 2z, respectively, the radii of the
required circles K ,, Kg, K¢ with centres 4, B, C and let AB =c,
BC =a, CA =b.

1. Suppose that the circles of each pair are externally tangent.
Then the sum of the radii of each pair of circles is equal to the
distance of their centres:
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z+y =¢,
y+z =a, 1)
z+x =b.
Hence
. bl-c—a . c+a—b _a+b—c
g=—g Y=g T g

According to these formulas, it is easy to construct the required
segments z, y, 2. Since the lengths z, y, z satisfy equations (1),
the cireles described from points 4, B, C by the radii z, y, z are
externally tangent (Fig. 170). It will be observed that the same
formulas express the lengths of the segments which & circle in-
scribed in a triangle determines on the sides of the triangle. The
problem could thus be solved by constructing in the well-known
way a circle inscribed in a given triangle.

Q
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2. Suppose that two of the required circles are internally
tangent, e.g. let circle Ky lie inside circle K, and be tangent to
it at point M. Therefore circle K; must lie inside circle K, and
be externally tangent to circle Kp. Indeed, if circles K¢ and K4
were externally tangent, then the point of contact of circles Kp
and K¢ would have to be at point M since all the other points
of circle Kp lie inside circle K 4. But then both point 4 and point
C would lie on the straight line BM (since the centres of tangent
circles and their point of contact are collinear), i.e. points 4, B, C
would be collinear, contrary to the assumption that they are the
vertices of a triangle. In the same way we ascertain that circle
K must be externally tangent to circle Kg.
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Thus the following relations hold:

z—y = ¢,
r—z = b, 2)
Y4z =a.
System (2) has the solution:
v a-+t+b-tc
2 b
a+b—c
- 5
ct+a—b
=

If we construct segments z, y, z according to these formulas
and describe from points 4, B, C with the radii z, y, z circles
K,, Kg, K¢, then circle K, will be internally tangent to circles
Ky and K¢, and circles Kp and K¢ will be externally tangent
(Fig. 171), since =, y, z satisfy equations (2).

Fia. 171

It will be observed that the above formulas for z, y, z express
the lengths of the segments determined on the straight lines
AB, AC and BC by an escribed circle of triangle ABC tangent
to the side BC; the segments z, y, z could thus be found by con-
structing that escribed circle.
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Besides the above solution we have two analogous solutions,
in which circle Kp or circle K is internally tangent to the remain-
ing two circles.

The problem thus has four solutions in all.

127. We produce the segment BC both ways and mark off
BE = BC and CF = BC (Fig. 172). We join points E and F
with point 4.

Fia. 172

At the intersection of the straight lines AE and AF with the
circle we obtain points M and N; the segment MN is the chord
with the required property.

Indeed, the line AO (O—centre of the given circle) is an axis
of symmetry both of the circle and of triangle EAF, whence
Jpoints M and N are symmetric with
respect to A0, and MN is parallel
to EF. Segments MK, KL and LN
are proportional to the equal seg-
ments EB, BC and CF, whence
MK = KL = LN.

It remains to consider whether,
besides the chord MN (Fig. 172)
parallel to BC, there are any chords
oblique to BC and divided by the
chords 4B and AC into three equal
parts.

Fre. 173 Let MN (Fig. 173) be a chord

of the circle such that MK = KL

= LN. Let us denote AK =x, AL =y, KL =2, <«BAC = «,
AB = AC =a.

By the theorem on chords of a circle we have
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AKX KB = MKXKN,
ie.
z(a—zx) = 222 (1)
and analogously
yla—y) = 222, (2)
whence
z(a—2) = y(a—y),

and consequently, after an easy transformation, we obtain

(z—y)(@+y—a) = 0. @)

Thus two cases are possible:

(@) z—y =0, i.e. .= y; this leads to the solution worked
out before, in which we obtained a chord parallel to the straight
line BC.

(b) z+y—a =0, ie.

Y =a—x. (4)

In order to determine the unknown segments z, y, z we thus

have two equations (1) and (4); the third equation will be obtained
from triangle AKL:

2?2 = 2% +y*—2xy cos a. ()
From the system of equations (1), (4) and (5) we shall obtain
the values of z, ¥, =.

Eliminating y from equations (4) and (5) and taking into ac-
count equation (1), we obtain the equation

z(a—2z) = 22°>+2(a—x)>*—4x(a—2x) cos «,
which, rearranged, gives
(6-+4 cos a)x?2— (544 cos a) ax+2a® = 0.

Since 5-+4 cos & > 0, we can divide both sides of the equation
by 5-4 cos « and obtain for the unknown z the equation
2a?

2 = —=0. 6
v—ar+ 5-+4 cos a 0 ©)

This equation has real roots if

8a?
—at— — % S,
d=a 5t+dcosa

which, when solved with respect to cos «, gives the condition
cos o« >3,
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If cos « =3, the roots of equation (6) are equal. Since the
sum of these roots is equal to @, we have x =}a and formula (4)
gives y =}a, whence x =y, i.e. in this case there are no solu-
tions besides the chord parallel to BC.

Thus, ultimately, chords oblique to BC and satisfying the
condition of the problem exist if and only if cos « >%. Then
there exist two such chords; as can easily be seen, they lie symmet-
rically with respect to diameter AQ. In order to draw them we
can solve equation (6) and construct segment z according to
the algebraic expression obtained.

ExErcisE. Solve a more general problem, taking in the given
circle, instead of chords 4B and AC with a common end-point,
any two equal chords 4B and CD.

128. Analysis. Suppose that point C of the arc 4B (Fig.
174) satisfies the condition of the problem, i.e. that AC+CB
= a. On segment AC produced beyond point C let us mark off

A

Fia. 174

a segment CD = CB. Then AD =a and the angle ADB is
equal to half the angle ACB since <« ADB = <« DBC, whence
+«ACB = < ADB-}+4DBC = 2X «ADB. Point D thus lies:
(1) on the circle with centre 4 and radius a; (2) on the locus
of points from which segment 4B appears at an angle equal
to + X €« ACB and which lie on the same side of the line AB
as the arc ABC; this locus is an arc of circle S(SA4)t where

1 Circle S(SA4) is a circle with centre S and radius S4.
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8 is the mid-point of the arc ACB (<« ASB = 4 ACB, as angles
subtended by the same arc).

Construction. From the centre at mid-point 8; of one of
the arcs of the given circle with end-points 4 and B (Fig. 175)
we describe an arc joining points 4 and B on that side of the

Fia. 175

straight line 4B on which lies point §;. From point 4 as centre
we describe a circle with radius a. If this circle intersects the
arc described before at point D and if the segment AD intersects
the given circle at point C, then point C satisfies the condition
of the problem, i.e. 4C+CB = a. Indeed, <« ACB = «AS,B
=2X «ADB, whence <«DBC = «ACB—<4<ADB = <«ADB,
which implies that CD = CB and AC+CB = AC+4CD = a.
The above construction can be executed if the following condi-
tions are satisfied: (1) Circles §,(S;4) and A(a) have common
points D; this condition is expressed by the inequality @ < 28,4 ;
(2) segment AD intersects the arc A8,B; thus point D must lie
inside the arc BT of circle S,(S;4), determined by the chord
AB and the half-line AT tangent to the arc A8, B at point 4.
Now AT = AB since «TAS, = «8,4B, these angles being
respectively equal to the angles inscribed in the given circle and
subtended by the arcs 4.5, and S,.B. Condition (2) is thus expressed
(condition (1) being satisfied) by the inequality @ > 4B.
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Consequently, for the existence on the arc 4S,B of points C
with the required property AC+CB = a, it is necessary and
sufficient that the following inequality be satisfied:

AB <a <28, 4.

If a = 28,4, we have one solution—point §,, and if & < 28,4,
we obtain two points situated symmetrically with respect to

the straight line 48;.
For the arc 4S,B we obtain analogously the condition

AB < a <28,4.

Assuming that the condition a > AB is satisfied and that the
arc AS,B is smaller than the arc A4S,B, i.e. that 48, < A8,,
we can tabulate the results of the discussion as follows:

Case | Corresponding No. of Solutions
a> 28,4 0
a = 28,4 1
28,4 < a < 28,4 2
a= 28,4 3
a < 28,4 4

We invite the reader to make an analogous table for the case
of a > AB, S, 4 = 8,4.

129. Through the point of intersection A of given circles with
centres O and S we draw a straight line intersecting those circles
at points P and Q.

AQ

Fi1a. 176

Points P and @ lie either on opposite sides (Fig. 176) or on the
same side of point 4 (Fig. 177).
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In the first case PQ = AP + AQ; in the second case the secant
P@ can be in such a position that point @ will lie between points
A and P (as in Fig. 177) and then PQ = AP—AQ, or in such

Fia. 177

a position that point P lies between points 4 and @ and then
PQ = AQ—AP. In order to make one formula answer both
cases we shall use the sign of absolute value:

PQ = |AP—A4Q)|.

Let us draw from points O and S the perpendiculars OM and
SN to the straight line PQ and observe that

AM =14P, AN =14q.

The length of the segment MN is equal to half the length of
the segment PQ). Indeed, in the first case we have

and in the second case
MN = |AM—AN | = |} AP—-4AQ| = 1| AP—AQ| = PQ.

Let us draw through point O a line parallel to PQ; it will inter-
sect NS at point L. In the right-angled triangle OLS the hypo-
tenuse OS is the distance between the centres of the given circles
and OL = MN = PQ.

If the length PQ = d is given, we can construct triangle OLS
and consequently we can draw the straight line PQ as the line
parallel to the line OL passing through point 4.

This construction is shown in Fig. 178.
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We describe a circle with diameter OS. From point O as centre
we describe a circle with radius 1d. If the two circles have a common
point, L, then the line parallel to OL passing through point A is
the required straight line since PQ = 20L = d, which we ascer-
tain by conducting the above reasoning in the inverse order.

Fia. 178

The condition of the existence of point L is the inequality
1d <08, ie. d<2Xx08.

If d < 2X 08, the problem has two solutions: both secants are
symmetric with respect to the straight line passing through the
points of intersection of the given circles.

If d=2 X 08, there is one solution, namely a straight line parallel
to O8.

130. Suppose that KL = [ is the required segment of a tangent
and that point 8 is the projection of centre O of the given circle
K onto the straight line KL. The segment KL will be called
a solution of the first kind (Fig. 179) if points K and L lie on
segments MP and MQ; if points K and Llie on these segments
produced, we shall say that the segment KL is a solution of the
second kind (Fig. 183).

(a) We shall deal first with the determination of the solutions
of the first kind: namely we shall find the lengths of segments
OK and OL. Let <« PMQ = ¢. It will be observed that in triangle
KOL we have the side KL =1, the altitude OS = r (radius of
the circle), «KOL = 44« P0OQ = }(180°—¢) = 90°—¢/2, the
remaining angles being acute as the angles of the right-angled
triangles OKS and OLS. Thus if a solution of the problem exists,
then segments OK and OL are equal to two sides of an acute-
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angled triangle whose third side is equal to I, the corresponding
altitude is equal to the radius r of the given circle and the opposite
angle is 90°—¢/2, where ¢ is the angle between the given tan-

gents of circle k.

Fia. 179

The construction of such a triangle is as follows: we mark
off a segment AB = [ (Fig. 180) and on one side of the straight

line AB we describe an arc
passing through 4 and B and
including the inscribed angle
90°—¢. We then draw on the
same side of AB a line pa-
rallel to AB at a distance r.
The required triangle will be
obtained if this parallel line
intersects the arc at such a
point C that triangle ABC
will be acute-angled, i.e. that
the foot H of its altitude
from C will lie inside the seg-
ment AB.

A
1
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Suppose that we have constructed the required triangle ABC':
we shall investigate the necessary conditions later. The solution
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of our problem is now obtained immediately. Namely from the
centre O of the given circle k& (Fig. 181) we describe a circle with
radius g equal to segment AC in Fig. 180. This circle will inter-
sect the half-line PM at a point K because AC > CH, whence
o > OP. Point K will lie on the segment PM because < KOP
= «ACH < € ACB = 90°—¢/2 and <« MOP = 90°—¢/2; con-
sequently <« KOP < <« MOP.
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Analogously, we find on segment QM a point L such that
OL = BC.

We shall prove that the straight line KL is the solution of the
problem, i.e. that it is tangent to the given circle %k, and
KL = 1. Indeed, according to the construction we have « ACH
= < KOP; analogously « BCH = 4 L0OQ. Now <« ACH+ < BCH
= < ACB = 90°—¢/2, whence < KOP+ 4« LOQ = 90°—¢/2, and
consequently <4 KOL = 4 P0Q— (< KOP + <L0Q) = 180°—¢
—(90°—¢@/2) = 90°—¢/2 = 4« ACB. Triangles ACB and KOL
are thus congruent, which implies that KL = AB =1 and the
altitude O8 = CH = r, i.e. the straight line KL is tangent to the
given circle.

Let us return to the construction of triangle ABC. Let us draw
in Fig. 180 two perpendiculars: BE | ABand DF | AB (D being
the mid-point of segment AB). The required point C exists if
and only if BE < r < DF.

In order to explain the meaning of these conditions, let us draw
a tangent K,L, (Fig. 182) at the point of intersection 7', of the
given circle £ with segment OM and denote MP = m, K,L, = t,.
The right-angled triangles AEB and MOP are similar because
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«BAE = ¢/2 = «PMO; consequently BE:AB= OP : MP,
whence we can see that the condition BE < OP is equivalent
to the condition AB < MP, i.e. l < m. The right-angled triangles
ADF and K,T,0 are also similar because < AFD = 45°—q/4
= <« K,0T,; consequently FD:AD = OT,:K,T, and the con-
dition ¥FD > OT, is equivalent to the condition 4D > K,T,,
ie. I >1t,.
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Finally the condition of the existence of solutions of the problem
assumes the form
t, <l<m.

If this condition is satisfied, we have two solutions symmetrical
with respect to the straight line OM, except the case where
!l =1t, where we have only one solution—the straight line
K.L,.

(b) The solutions of the second kind are determined in an
analogous way. In this case < KOL = 90°+¢/2, which we shall
easily read from Fig. 183. We draw, as before, the segment AB =1
and describe an arc 4B including the inscribed angle 90°+¢/2.




Geometry and Trigonometry

290

Fia. 183




Constructions 291

Then, on the same side of AB, we draw a line parallel to AB at
a distance . Suppose that this parallel intersects the arc at point
C (Fig. 184).

On the extensions of segments MP and MQ (Fig. 185) we
determine such points K and L that OK = AC and OL = CB;
such points must exist because AC > r and CB > r. The line
KL is the required tangent, which we prove in the same way
as before, showing that triangles KOL and ACB are congruent.

Fic. 185

The above construction can be executed if point C exists, i.e. if
r < DF. The meaning of this condition will be clear if we draw
the tangent K,L, to the given circle k£ at point T, lying on
segment MO produced (Fig. 182), and we shall see that the
right-angled triangles BDF and K,T,0 are similar, whence
DF:DB = T,0:T,K,. The condition DF >r, ie. DF >T,0,
is thus equivalent to the condition DB > T,K,. This means that
the given length I of the segment of the tangent cannot be less
than the length of the segment of tangent L,K,, which we shall
denote by ¢,. If I > ¢,, there are two solutions of the second kind,
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symmetric with respect to the straight line OM, and if I =¢,,
the only solution is the tangent L,K,.

Let us tabulate the results obtained. It will be observed that
the segment K L, =¢, (Fig. 182) is always smaller than the
segment K,L, = ¢, and than the segment MP = m, where m is
equal to half the perimeter of the triangle MK,L,, whereas ¢,
can be smaller than m, equal to m or greater than m, according
to the size of angle ¢. In the light of the previous discussion we
can establish the following propositions

1. If 1 < ¢t,, the problem has no solutions.
2. If 1 =1, there exists one solution of the first kind.
3. If 1 > t,, the following cases must be distinguished:

if ¢, <1 < m, there exist two solutions of the first

kind,
if m <1 <,, there are no solutions,
A m<tyyif 1 =1, there exists one solution of the
second kind,
if 1 >4, there exist two solutions of the

second kind;

if ¢, <l < m, there exist two solutions of the

first kind,

if Il =m, there exists one solution of the second

B.m=t kind,
if I >m, there exist two solutions of the second

kind;
if t, <1< t,, there exist two solutions of the first

- kind,
if I=t,, there exist two solutions of the first kind,

and one solution of the second kind,

C. m >t,]if t, <1 < m, there exist two solutions of the first
kind and two solutions of the second
kind,

ifl >m, there exist two solutions of the sec-
ond kind.

Figure 186 illustrates the case where t, << I << m and the problem
has four solutions.

REMARK. Another method of solving the problem will be
obtained if, instead of seeking the lengths of OK and OL (Figs. 179
and 183), we seek the lengths of MK and ML.

In the case of a solution of the first kind (Fig. 179) the given
circle k is escribed to the triangle M KL, whence the length MP
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= m is equal to half the perimeter of that triangle (see the
note to problem 84); consequently

MK +ML = 2m—1I.

The required lengths M K and ML will be found by constructing
in the well-known way a triangle in which one side is equal to ;
the opposite angle is equal to ¢ and the sum of the remaining
two sides is equal to 2m—I.

Fi1a. 186

In the case of a solution of the second kind (Fig. 183) the
given circle k is inscribed in the triangle M KL, the perimeter of
that triangle is equal to

MK4+ML+KL = MP+KP-+-MQ-+LQ+KL,
and since
MP=MQ=m, KP=KS, LQ=LS, KP}+LQ=KL=I,

we have
MK+ML = 2m--1,

and the problem is reduced to the construction of a triangle in
which one side is equal to I, the opposite angle is equal to ¢ and
the sum of the remaining two sides is equal to 2m—-1.

We leave it to the reader to carry out a detailed discussion
(which should of course lead to the same results as in the preceding
solution).

131. Since the centre O of the circle lies on the axis of symmetry
of each isosceles triangle insecribed in that circle, the problem
can be solved only if points M and N lie on opposite sides of
point O, which is what will henceforth be assumed. If M0 = NO,
the problem is solved immediately; the vertex of the required
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triangle lies on the perpendicular bisector of segment MN (two
solutions). We shall thus assume that, say, MO > NO. Let
AABC be the required triangle (Fig. 187).

The straight line AQ is the bi-
sector of angle 4 of the triangle
MAN, whence

MA MO

~NA  NO’
thus point A4 lies on the circle of
Apollonius for the segment MN
and the ratio MO/NO. The const-
ruction is the following (Fig. 188).
We determine on the straight
line MN a point P dividing seg-
ment MN externally in the ra-
tio equal to MO/NO, ie. the
Fre. 187 point harmonically conjugate to
point O with respect to points
M and N. Accordingly we draw parallel segments MK = MO
and NL = NO and find point P of intersection of lines KL and
MN. We draw the above-mentioned circle of Apollonius, i.e.
the circle with diameter OP; if this circle intersects the given

Fi1c. 188

circle at point A4, then A4 is the vertex of the required triangle.
Indeed, since, by the construction, MA/NA = MO/NO, the
straight line 40 is the bisector of angle M AN and the chords
AB and AC are equal, being symmetrical with respect to the
diameter A0.
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The solution exists if the circle of Apollonius intersects the
given circle, i.e. if point P lies outside that circle. This condition
can be expressed as a relation between the lengths of the segments
MO = a, NO = b and the radius r of the given circle.

Let OP = z; we have the equality MP/NP = MO/NO, which
can be written as

a-t+zx a h 2ab
?b— - Z‘ > wnence xr = ‘mo

The condition of solvability of the problem is the inequality

x > r, i.e. the inequality

2ab <
a—>b

If this condition is satisfied, the problem has two solutions,
corresponding to two points of intersection of the circle of Apol-
lonius with the given circle; the triangles obtained are symmetric
with respect to the straight line MN.

Remark. In the same way we can solve a more general prob-
lem: Given a circle and points M and N lying on a straight line
passing through the centre of the circle, inscribe in that circle
an isosceles triangle whose equal sides or those sides produced
pass through points M and N respectively.

132. Method I (by rotation). Analysis. Let ABC be an equilat-
eral triangle whose vertices A, B, C lie on given parallel lines
a, b, c, respectively (Fig. 189).

/by
c/ c
/
/
/
/
/
! b
// [/B
/
/
c
/ A
/
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Let us rotate the whole figure about point 4 through an angle
BAC = 60°. After the rotation, point B will be at point C, and
the straight line b will assume the position b,. Given the centre
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A and the angle of rotation, we can draw the straight line b,
whence we will find point C at the intersection of lines b, and c.

Construction. We take an arbitrary point 4 on the straight
line a (Fig. 190). We rotate the line b about point A through 60°,
drawing AM |_a, < MAN = 60° and b, | AN. The line b, inter-
sects ¢ at point C. From point 4 we describe a circle with radius AC.
Let B be a point of intersection of this eircle with b lying on
the other side of the straight line AM with respect to point N.
The triangle ABC is equilateral.

/b1
C/
I/ ¢
%
A
4
// I
|
/ : 8 b
NI~
/ > a
/
y A
/
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In order to prove this, let us rotate the whole figure of Fig. 190
through the angle MAN. The straight line b will assume the
position b, and point B will describe an arc with radius AB and
will find itself at the intersection of that arc with the line b,, i.e.
at point C. Consequently < BAC = <« M AN = 60°, which shows
that triangle ABC is equilateral.

The construction can always be executed. Since the rotation
about point 4 through 60° can be performed in two directions,
for an arbitrary point A4 on line a there exist two equilateral
triangles with vertices lying on given lines a, b, ¢. Those triangles
are symmetrical with respect to the straight line AM, which is
an axis of symmetry of the given figure.

Method II. Analysis. Let the triangle ABC be the required
triangle (Fig. 191). The circle circumscribed about triangle 4 BC
intersects the straight line @ at points A and D (why must
point D be different from A?). By the theorem on inscribed
angles we have

+ADB = € ACB = 60°, <«BDC = «<BAC = 60°.

Taking an arbitrary point D, we can thus determine points
B and C, and then point 4.
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Construction. From the centre at point D, chosen arbitra-
rily on a, we describe a circle with an arbitrarily large radius
DK (Fig. 192). We mark off KM — MN = DK and draw the

b

Fia. 192

straight lines DM and DN, which intersect lines b and c¢ at
points B and C. From point C as centre we describe an arc with
radius OB as far as the intersection with the half line DK of a at
point A.

Triangle ABC is equilateral. In order to make sure of this,
let us consider the circle circumscribed about triangle BCD.
Since <BDC = 60°, BC is the side of a regular triangle inscribed
in this circle. The third vertex of that triangle must lie on the
half-line DK (since <<KDB = 60°) and also on the circle which
has been described from centre C. Thus point 4 is the third vertex.

The construction can always be performed. The circle with
centre ¢ and radius OB intersects the half-line DK at one
point, since BC > CP and thus also BC > CD. For a chosen
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point D we obtain two symmetrical solutions, since point K
can be taken either on one side or on the other side of point
D on the straight line a.

Method III (of similarity). Analysis. Let ABC be the required
triangle (Fig. 193).

C
0 B b
L/\/ )

A

Fia. 193

It will be observed that we can construct a figure similar to
the required one. It suffices to draw an arbitrary equilateral
triangle A4,B;C, (Fig. 194) and determine on side 4,C, a
point D, such that 4,D,/D,C,
= AD/DC. But the ratio AD/DC Cy

is known, being equal to the C
ratio of the corresponding distan-

ces between the parallel lines a, 0 B

b,c. Drawing a straight line b; 1 ! by
through B, and D, and then draw- l/\/‘/ a
ing a,||b, and ¢,||b,, we obtain a As )
figure which is similar to that of Fre. 194

Fig. 193, whence the angles mar-
ked in Figs. 193 and 194 are equal. Having the angle between the
line AB and the line @, we can draw the triangle ABC.

Construction. Points 4, and C,; are best chosen on the straight
lines @ and ¢ (Fig. 195) since then point D, is found immediately
at the intersection of the segment 4,0, with the straight line b.
Constructing the equilateral triangle 4,B,C;, we obtain the angle
A,B,D,. Taking an arbitrary point 4 of a as vertex, we draw
an angle equal to the angle 4,B,D; with one arm lying on a,
and thus obtain point B. Finally we construct <<BAC = 60°.
The triangle ABC is equilateral; we shall prove this fact.

The figure ABCD is similar to the figure 4,B,C,D,. Indeed,
triangle ABD is similar to triangle 4,B;D, (two pairs of angles
respectively equal) and point C of the line AD corresponds to
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point C; of the line 4, D, in view of the equality of the ratios
A,D,/D,C, and AD/DC. Triangle ABC is thus equilateral.

The construction can always be executed. Since an angle
equal to the angle 4,B,D, can be drawn with one arm lying on
the straight line @ on either side of point 4, we obtain two sym-
metric solutions.

G In c
81
0, D B b
& M
A, A ?

Fia. 195

Method IV (of geometrical loci). Analysis. If triangle ABC
is the triangle with the required properties, then, translating
it in the direction of the given lines @, b, ¢, we can place vertex
A at an arbitrarily chosen point of a. The problem is then reduced
to the determination of one of the remaining vertices, e.g. the
vertex c.

Point C will be found at the intersection of two loci:

(1) the straight line c,

(2) the locus of the third vertex of an equilateral triangle of
which one vertex is at point 4 and the second vertex, B, moves
along the straight line b.

We shall determine the second locus.

o

Fia. 196
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Since there exist two equilateral triangles with the same base
AB, let us first consider those triangles ABC in which points
A, B, C follow one another in the positive cyeclic order, i.e. in
the anti-clockwise direction

Suppose that, in the position 4B,C,, point C; lies on the
straight line b and that 4BC is any other position of the triangle.
We shall prove that point C lies on the straight line m passing
through C, and parallel to AB,.

In the proof we shall distinguish three possible positions of B:

(a) point B lies to the right of B, (Fig. 196),

0/3
1 /’,81 b

-

Fia. 197

(b) point B lies between points B, and C, (Fig. 197),

(¢) point B lies to the left of point C, (Fig. 198).

In case (a) we have <40, B = <€ ACB = 60°; the quadrilateral
ABCC, can be inscribed in a circle, whence « CC,.B = «CAB
= 60° and thus indeed CC,||4B,. If point B runs over the half-

Fia. 198

line of b lying to the right of B;, point C'runs over that half-line
of m which lies on the other side of b with respect to the
straight line a.
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Indeed, if C lies on that half-line and 4« CAB = 60°, then
4« CAB = «CC,B, whence in quadrilateral 4BCC, we have
4 ACB = € AC,B = 60° and triangle 4ABC is equilateral.

In cases (b) and (c) the reasoning is analogous. In Figs. 197
and 198 equal angles are marked ; point C runs over the remaining
parts of the straight line m.

Finally, considering triangles ABC with the negative cyclic
order of points 4, B, 0, i.e. triangles symmetrical to the previous
triangles with respect to their bases AB, we obtain the second
part of the required locus, namely the straight line » passing
through B, and parallel to AC,.

Thus the required locus is the pair of straight lines m and n,

Construction. We draw (Fig. 199) the equilateral triangle
AB,C, and the straight lines m and n, obtaining at their inter-

sections with the straight line ¢ points € and C.

Fra. 199

We construct < CAB = 60°. Triangle ABC is the required
equilateral triangle; the second solution is the triangle ABC
symmetrical to 4BC.

The construction can always be performed, and the problem
has two symmetrical solutions.

Method V (algebraical). Introducing the notation indicated
in Fig. 200 we find that

According to this formula we can construct angle x as shown
in Fig. 201. The proof that triangle 4BC drawn in this way is
equilateral is left to the reader as an exercise.
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133. We shall denote the radii of the given circles by R and
r,R>r.

Let us temporarily disregard the condition that the required
straight line should pass through the given point 4 and let us
deal only with the construction of an arbitrary chord MN of the
greater circle (Fig. 202) such as would be divided by the smaller
circle into three equal parts MK = KL = LN. One of the points
K, L, M, N can be chosen arbitrarily on its proper circle.

Mm/v
U

Fia. 202
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Several methods of solving this problem can be shown.

Method I (of geometrical loci). Analysis. Let us take an arbi-
trary point M on the greater circle and seek point L. It satisfies
two conditions: (1) it lies on the smaller circle and (2) ML
=2MN, which means that point L corresponds to point N in
the homothety with centre M and ratio 2. The locus of point
L is the circle corresponding to the greater of the given circles
in this homothety, i.e. the circle with radius 2R, tangent to the
greater circle at point M.

Fia. 203

Construction. We divide the diameter M N, = 2R of the greater
circle into three equal parts at points K, and L, (Fig. 203).
We describe a circle with centre K, and radius K,L, = 2R.
If this circle intersects the smaller of the given circles at point L,
the straight line ML is the required one, since by our construction
ML =2MN.

The problem has a solution if there exists a common point
L of the smaller circle with the circle described, i.e. if point
L, lies in the smaller circle. This occurs if OL, <r, i.e. if r > {R.
If r = iR, then of course the diameter of the greater circle
is the solution.

Method II (of rotation). Analysis. Suppose that the required
chord MN is to pass through point K chosen arbitrarily on the
smaller circle (Fig. 204)

Let us rotate the smaller circle about the point K through 180°.
Point L will then coincide with point M. Thus we determine
point M as the point of intersection of the rotated circle with
the greater of the given circles.
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The construction is shown in Fig. 204. We have determined
point O, symmetric to point O with respect to point K chosen
arbitrarily on the smaller circle and we have described from
point O, as centre a circle with radius O,K = r, obtaining point
M at the intersection with the greater circle. The straight line
MK is the required one because the segments MK and KL are
equal, being symmetric with respect to point K.

X
\

Fia. 204

The solution exists if 00,> R—r, i.e. if the condition r> ;R
is satisfied.

Method III. Analysis. Let MN (Fig. 205) be the required
chord. Let us mark off LP = OL on OL produced. The quadrilat-
eral OKPN is a parallelogram because its diagonals bisect each

Fia. 205 Fia. 206
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other; consequently KP = ON = R and in triangle OKP we
know the lengths of all the sides.

Construction. From the centre at an arbitrary point K of the
smaller circle we describe a circle with radius R, and from point
O—a circle with radius 2r (Fig. 206). We join point P, at which
these circles intersect, with point O; at the intersection of the
straight line OP with the smaller circle we obtain point L.

The solution exists if the above-mentioned circles have a point
in common, i.e. if
R
3

Method IV. Analysis. Let us produce LO (Fig. 205) until it
intersects the smaller circle at point ¢. In triangle LQM the
segment OK joins the mid-points of two sides, whence MQ
=2X 0K = 2r. Hence we have the following construction
(Fig. 207):

From an arbitrary point M of the greater circle we describe
a circle with radius 2r; suppose that it intersects the smaller
circle at point @; we then find point L at the intersection of the
straight line QO with the smaller circle.

The condition of existence of the solution—as in method III.

R2r<r, le. r>

Fia. 207 Fia. 208

Method V. Analysis. If MN is the required chord (Fig. 208)
and MT a tangent to the smaller circle with the point of contact 7',
then
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MT? = MKXML =4MIL?, whence ML?= MTx2MT.

The length ML can thus be determined as the geometrical
mean of the lengths M7 and 2M T,
The construction is shown in Fig. 208, where

ML =M8=MTXVv2.

The condition of existence of the solution is expressed by the
inequality
MS < R+r, ie. V[2(RP—1¥)] <R+
Transformed, this inequality gives as before:

R
T>-—3—.

Method VI (of similarity). This method, less convenient in
point of construction than the preceding ones, consists in drawing
first an arbitrary figure similar to that of Fig. 202.

The figure obtained should then be transformed by homothety
of a suitable ratio.

Method VII (calculatory). Let KL =z (Fig. 202) and let
H be the mid-point of segment KL. Applying to triangles OHL
and OHN the theorem of Pythagoras, we find the formula
_ V(B
= 2
by which it is easy to construct segment x. Since we must have
x < 2r, the condition of existence of the solution is the inequality
V(R2—r?) <2ry2 or r > R/3.

Suppose that, using one of the above constructions I-VII,
we draw a secant MN such that MK = KL = LN (Fig. 202).
There are infinitely many such secants; they form the set of
tangents to a circle with centre O and radius OH, where OH is
the distance from point O to the straight line M N. The determi-
nation of that one of those secants which passes through point
A is reduced to the well-known construction of a tangent from
point 4 to the circle in question.

Since OH = 4 y¥2X v (9r*—R?), the general result of the dis-
cussion is as follows:

x

04 > 1y2X v (9r*—R?), there exist two
solutions, .
. 0A = 1y2x v (9r2—R?), there exists one
(a) if r > R/3 and solutiort,
04 < 1y2x v (9r2—R?), there are no
solutions;
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(b) if »r = R/3, there exists one solution—the line 04;
(c) if r < R/3, there are no solutions.

134. Let us denote the radii of the given circles by R and 7,
R >r.

Method I (of rotation). Analysis. Let ABCD (Fig. 209) be the
required square. Let us rotate the smaller circle about point
A through 90° in the direction indicated by the arrow. Point
D will then lie at point B. Thus, if we choose an arbitrary ver-
tex A of the square, then vertex B will be found at the in-
tersection of the rotated circle with the given larger circle.

N
~
NS

Fia. 209 F1a. 210

The construction is shown in Fig. 210. We draw at point 4
a perpendicular to the straight line OA and mark off on it 40,
= AO; from point O, as centre we describe a circle with radius
0,4. If this circle intersects the larger of the given circles at
point B, the segment AB will be a side of the required square.
Indeed, drawing AD | AB we have AD = AB, because AD is
obtained by the rotation of segment 4B through 90°.

The solution exists if the circle rotated has a point in common
with the larger circle, which occurs if

00, >R—r.

From the triangle 040, we have 00, = ry2. Thus the above
condition gives the inequality

rV2>R—r, ie. r>R(y2—1).

If r > R(y2—1), there exist (for a chosen vertex A4) four
solutions pairwise symmetric with respect to the line OA.




308 Geometry and Trigonometry

If r = R(y2—1), there exist (for a chosen vertex A) two
solutions symmetric with respect to 0A4.

Method II (of similarity). Analysis. We construct a figure
(Fig. 211) similar to the given one (Fig. 209), taking an arbitrary
square A4,B,0,D, instead to the given square ABCD. Point
0, corresponding to point O will be found by considering (1)
that point O, lies on the axis of symmetry of the square A4, B, C; D,
parallel to the side 4, B, and (2) that the ratio 0, 4,: 0, B, is equal
to the ratio 04 : OB, i.e. r : R.

Fie. 211

The construction is shown in Fig. 211. Points P and @ have
been determined by dividing the side A4, B, of any square 4,B,C, D,
internally and externally in the ratio » : RB; an Apollonius circle
has been drawn with diameter PQ, and at the intersection of
this circle with the perpendicular bisector m of side B;C; point
O, has been obtained.

If we mark off 0, 4, = r and draw AB||4,B,, then 0,4/0,B
= 0,4,/0,B;, whence r/0,B = r/R and consequently O, B = R.

The length of AB is the length of the side of the required square.

The solution exists if the Apollonius circle has a point in
common with the line m, which occurs if PQ > A4,B,.

Now

r r
PQ'——-PAI—I-AlQ: PA]_ =~mAlBl, A1Q= R—T

Thus the above condition expresses the fact that

A,B,.

r r
Rir TR

Transforming this equality, we obtain
r+2rR—R2 >0, (r+R)>—2R®>0

>1.
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and finally
r > R(v2—1),

as before.

Method III (of geometrical loci). Analysis. Let us draw a dia-
meter AE of the smaller circle and a diagonal AC of the required
square (Fig. 212). Since < ADC = 90°, point E lies on the half-
line OD, whence the angle ACE equals 45°. Consequently if we
choose an arbitrary diameter AE, point C will be found at the
intersection of two loci: the larger circle and an arc with the
chord AE; the centre of that arc lies at the mid-point of the
semi-circle with diameter AE.

c B
45
E
0
g N A
Fia. 212

Construction. We draw an arbitrary diameter AE of the smaller
circle (Fig. 213) and a radius OM perpendicular to it. From point
M as centre we describe an arc with radius M4 as far as the
intersection at point C with the larger circle; we then determine
on the smaller circle point B at the intersection with the straight
line CE and join point B with point A. We draw 4AD||BC and
join point C with point D. The quadrilateral ABCD is a square.

Indeed, «ACE =L« AME = 45° and £ABC = 90° as an
inscribed angle subtended by the diameter AE, consequently
AB = BC and <BAD = 90°; the whole figure is symmetric

with respect to the perpendicular bisector of segment 4B, whence:

AD = BC.

The solution exists if the circle with centre M has a point in.

common with the given larger circle, which occurs if
MA >MN, ie if ry2>R—r,
which gives—as before—the condition » > R(y2—1).
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Fi1a. 213 Fia, 213a

RemARK. The problem can also be solved by finding the length
AB = z of the side of the square in terms of the radii B and r.

Let H denote the projection of point O upon the straight line
AB. Suppose that it lies on the segment AB (if it lies on 4B pro-
duced, the calculation is analogous); then (Fig. 213a)

OH :%, AH = y(0A4*—OH?),

HB = y(0B*—-0H?, AB= AH+{HB.
Consequently

V-]

This equation reduces to a bi-quadratic equation. The con-
struction of segment « according to the formula resulting from it
is cumbersome and we shall not discuss it here.

135. Method I (of geometrical loci). The problem reduces to
finding a point C satisfying the following conditions:

(1) point C lies on the given circle %;

(2) point C is a vertex of a triangle ABC in which vertex 4
is given, vertex B lies on the given straight line p, <4 = 60°
and < B = 90°.

We shall determine the locus of point C satisfying condition (2).
We shall distinguish two cases:

(a) Point A does not lie on the line p. Then there exist on p
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two points M and N of the required locus (Fig. 214); they are
vertices of triangles ATM and ATN where AT is the distance
of point 4 from p and « AMT = €« ANT = 30°.

Fia. 214

Let C be a point satisfying condition (2) and let angle ABC
have the same orientation as angle ATM.

Point M then lies on the circumcircle of triangle ABC. Indeed,
point B coincides with point M, lies on the half-line M7 (points
M and C then lying on the same side of AB and «AMB
= ¢ ACB = 30°) or lies on the T produced beyond point M ;
points M and C then lie on opposite sides of AB and «AMB+
+ <4« ACB = 180°, since <AMB = 180° — <« AMT = 150° and
< ACB = 30°.

Since AC is the diameter of the circumcircle of triangle 4BC,
4 AMC = 90°. We have thus found that all those points of
the required locus for which the angle ABC has the same orien-
tation as the angle ATM lie on a perpendicular drawn to AM
from point M. Conversely, every point C of that perpendicular
belongs to the locus; for, if the circumcircle of triangle A MC
passes through point B of the straight line p, the triangle ABC
satisfies condition (2) because < ABC = «AMC = 90° and
4 ACB = <« AMT = 30°.

Analogously, all points satisfying condition (2) and such that
the angle ABC has the same orientation as the angle ATN form
a line perpendicular to AN at point .
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We have proved that the required locus consists of two straight
lines perpendicular to 4M and AN at points M and N, re-

spectively.

(b) Point A4 lies on p. In this case we directly ascertain that
the required locus consists of all points of two straight lines

60N\AA60°

Fi1a. 215

passing through point 4 and
forming with p angles of 60°
and 120° except point A itself
(Fig. 215).

The solution of the problem
is obtained by finding the
points of intersection of the
given circle £ with the two
straight lines of the locus de-
termined. According to the
position of the circle with
respect to those lines, the
numbper of solutions of the
problem can be 4, 3,2, 1 or 0.

Method II (of rotation). The triangle ABC satisfying the
conditions of the problem (Fig. 216) will easily be constructed
if we find the mid-point M of the hypotenuse AC. Since AM

Fia. 216

= AB and «MAB = 60°, point M lies on a straight line ¢
which will be obtained by rotating p about point 4 through
an angle of 60°, point B then falling upon point M. On the other
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hand, considering that AM =1AC, point M lies on a circle k,
homothetic (directly) to the given circle k£ in the ratio 1:2
with respect to the centre of homothety A. Thus, if the solution
of the problem exists, point M is the point of intersection of
circle k, with g. Conversely, if M is such a point, then point C,
homothetic to M in the ratio 1:2 with respect to point 4, and
that point B of p which after the rotation falls on point M are
vertices of the required triangle.

Since the straight line » can be rotated about point 4 through
an angle of 60° in two directions, which gives two straight lines
q, and g,, the problem has as many solutions as there are common
points of circle &, and the lines ¢, and ¢,, i.e. 4,3, 2,1 or 0.

Fia. 217

In Figure 217 point 4, line p and circle & have been chosen
in such a manner that the problem has four solutions pairwise
symmetric.

It will be observed that we can solve the problem in a slightly
different way.

(a) Instead of rotating the straight line p, we can rotate the
circle k, about point 4 through 60° and thus obtain at the inter-
section of the circle and line p the vertex B of the required
triangle (Fig. 218).

(b) We can also rotate circle k& about point A4 through 60°.
At the intersection of the circle with a straight line p, homo-



Geometry and Trigonometry
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thetic to p with respect to point 4 in the ratio 2:1 we then obtain
point A, corresponding in this homothety to point B (Fig. 219).

Finally, it will be observed that our problem is equivalent
to the following one: construct an equilateral triangle with a given
vertex A (triangle ABM in Fig. 216 or triangle 44,C in Fig. 219)
in which one of the remaining vertices lies on a given straight
line and the other on a given circle.

136. Analysis. The problem is reduced to determining the
mid-point X of the common chord of the given circle and the
required one; for, having point X, we can draw in the given circle
k a chord CD with mid-point X and describe a circle passing
through points 4, B, C, D.

The locus of the centres X of chords of circle k¥ having a given
length d is a circle k' concentric with %, its radius being y/(r2—d2/4)
where r denotes the radius of circle k. It should be assumed here
that d <<2r.

(1) If the given points A and B are equidistant from centre
O of circle &k (Fig. 220), then the required circle intersects circle
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k at points symmetric with respect to the perpendicular bisector
of segment 4B, i.e. point X will be found at the intersection of
that perpendicular bisector with circle &’.

(2) If A and B are not equidistant from point O (Fig. 221), then
all common chords of circle & and of the circles passing through
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points 4 and B lie on straight lines which intersect AB at the
same point M (see problem 86).

Point M can be found by drawing any auxilliary circle ! passing
through points A and B and intersecting circle k. Point X will
be found at the intersection of circle &’ with a circle with diameter
OM which is the locus of the mid-points of chords for secants
across M.

Construction. We draw the circle k&’ in the well-known way.

In case (1) we draw the perpendicular bisector of segment 4B.
Through the point of intersection X of that bisector with circle
k' we draw a chord CD of circle k perpendicular to the line OX.
Finally we draw a circle passing through points A4, B, C; this
circle will also pass through point D, which is symmetric to C
with respect to OX. The circle drawn has a common chord CD of
length d with circle k, and is therefore the circle sought in the
problem.

In case (2) we draw an arbitrary circle ! passing through points
A and B and intersecting circle k£ at points P and . The straight
line PQ intersects the straight line AB at point M. We describe
a circle with diameter OM. If X is a point of intersection of that
circle with circle %’, then the straight line M X intersects circle
k along a chord CD of length d. We now draw a circle passing
through points A4, B, C; this circle will pass also through point
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D because MAX MB=MPX MQ, MPX MQ = MC x MD,
whence MAX MB = MCX MD. It will be the circle sought in
the problem.

Discussion. We shall investigate the existence and the number
of solutions of the problem according to the choice of the data.
We have already observed that the problem can be solved only
if the given length d satisfies the condition d < 2r where r is the
radius of the given circle k.

Assuming that this condition is satisfied, we shall investigate
all the cases that can occur.

I. The centre O of circle k lies on the perpendicular bisector
of segment AB.

(a) d < 27. The perpendicular bisector of AB intersects circle
k' at two points X; and X,, and thus there exist two chords,
C,D, and C,D, of circle k of length d and the direction of the
straight line 4B.

If AB does not coincide with any of the lines C,D, and C,D,,
i.e. if the distance of AB from point O is not equal to y/(r*—d?/4),
the problem has two solutions.

If AB coincides with, for example, C;D; but points 4 and B
do not lie on circle k, i.e. do not coincide with points C; and D,,
the problem has only one solution, namely the circle passing
through points 4, B, C,, D,.

Finally, if points A4 and B coincide with points ¢, and D,,
every circle passing through points 4 and B except circle k itself
is a solution of the problem.

(b) d = 2r. In this case circle k’ is reduced to point O; point
X also coincides with point O, and in the circle k there exists one
chord CD of length d and the direction of the straight line AB.

If the straight line AB does not pass through point O, then
the problem has one solution.

If the straight line AB passes through point O but points 4
and B do not lie on circle k, the problem has no solutions.

Finally, if the segment AB is a diameter of circle k, then every
circle passing through points 4 and B except circle k is a solution
of the problem.

II. The centre of circle £ does not lie on the perpendicular
bisector of segment AB.

(a) d < 2r. If the straight line AB lies outside circle %', i.e.
if its distance from point O is greater than y/(r2—d?/4), then
point M also lies outside circle k’. The circle with diameter OM
intersects circle %’ at two points, X; and X,. The straight lines
MX, and MX, determine in circle k¢ the chords C,.D; and C,D,
of length d. The problem has two solutions: the circle passing
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through points 4, B, C,, D, and the circle passing through points
A, B, C, D,.

If the straight line AB is tangent to circle ¥’ at point 7' and
point M is different from point 7', then the circle with diameter
OM intersects circle k&’ at two points, 7' and X. In this case there
is only one solution: the circle passing through points 4, B and
through points C, D at which MX intersects circle k.

If AB is tangent to circle ¥’ and point M coincides with the
point of contact 7', there is no solution. This case occurs if point
T lies inside segment AB and the geometric mean of segments
AT and BT is equal to id.

Finally, if 4 B intersects circle %', the problem has two solutions,
one solution or no solution according to whether point M lies
outside circle %', on that circle or inside it.

(b) & = 2r. In this case point X coincides with point O.

If the straight line 4B does not pass through point O, then the
straight line MO intersects circle k at two points, C' and D. The
problem has one solution: the circle passing through points 4, B,
C, D.

If AB passes through point O and point M is different from
point O, then MO intersects circle & at points C' and D of the
line AB and the problem has no solution.

Finally, if point M of the line AB coincides with point O, -
then every circle passing through points 4 and B is a solution of
the problem. This case occurs if point O lies inside segment AB

and radius » of circle k is the geometric mean of segments 0A
and OB.

REMARK. In the above problem number d, as the length of
a segment, is a positive number. However, we can consider the
“limiting” case of this problem with d = 0, i.e. the following
problem:

Through two given points A and B draw a circle tangent to the
gtven circle k.

The method of solution remains the same—the only difference
being the identity of circle ¥’ with circle k.

The discussion of the possible number of solutions can easily
be derived from the discussion carried out above for the case
d < 2r.

This problem has been discussed together with problem 86.

1387. To begin with, it will be observed that, if points M and
N lie on a given circle %, every point C of the circle except points
M and N satisfies the conditions of the problem: points 4 and
B coincide with points M and N and triangle ABC coincides
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with triangle MNC. In the sequel we shall disregard this case
and assume that at least one of the points M and N lies away
from circle k.

If C is the required point, then for the similar triangles 4BC
and MNC, having equal angles at the vertex C, one of the fol-
lowing cases must occur:

L«A = 4«M, «B= <N (solution of the first kind),
II. ¥4 = «N, «B = «M (solution of the second kind).
If the triangles are isosceles, the two cases occur simultaneously.

I. Seeking solutions of the first kind.

In solutions of the first kind, the sides AB and M N of triangles
ABC and MNC are parallel, whence the points M and N either
both lie on the segments AC and BC or both lie on those segments
produced. Thus our problem can have a solution of the first kind
only if points M and N either both lie inside the given circle k&
or both lie outside that circle.

We shall give two methods of obtaining such solutions.

Method I. If point C is a point with the required property
(Fig. 222), then triangles ABC and MNC are homothetic with

“
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respect to point C. In this homothety, to circle k, passing through
the centre of homothety C and through points 4 and B, corre-
sponds a circle [, tangent to k at point C and passing through
points M and N homothetic to 4 and B.

The problem is thus reduced to drawing a circle passing through
given points M, N and tangent to the given circle %.

The construction of such a circle was explained in problem
86 and again in problem 136.
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If we draw circle [, then point C at which it is tangent to circle
k will be the required point. Indeed, the straight lines MC and
NC intersect circle k, homothetic to circle I from centre C, at
points 4 and B, corresponding to points M and N. The triangles
ABC and MNC are homothetic, and we have €4 = «M and
4B = <N.

The problem has as many solutions as there are circles passing
through points M and N and tangent to circle k. Consequently
(see remark 2 to problem 86):

(1) If points M and N both lie inside circle %, or if they both
lie outside circle £ but the straight line N is not tangent to
that circle, the problem has two solutions.

(2) If points M and N lie outside circle & and the straight
line M N is tangent to that circle, the problem has one solution.

Method II. From the similarity of triangles MNC and ABC
(Fig. 222) it follows that

MA  MC
NB ~ NC°
It will be observed that the product MA X MC is equal to the

absolute value of the power of point M with respect to circle k.
Let us write the equality

MAx MC = . @)

A segment of length ¢ can be constructed as the geometrical
mean of the segments of an arbitrary secant of circle & passing
through point M. Similarly, we can construct a segment s satis-
fying the equality

(1)

NBXNC = s2. (3)
We divide equality (2) by equality (3) and obtain:
MAXMC _ #
NBXNC s’

Taking into account equality (1), we obtain
Mmc\*  (¢)\?
Ne)] " \s)”’

MC t
— T — 4
NC 8 : )
Equality (4) states that the ratio of the segments MC and
NC is equal to the ratio of the segments ¢ and s, which we are

whence
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able to construct. Point C will thus be found at the intersection
of circle & with the Apollonius circle for segment N and for
the ratio ¢:s.

To perform the construction according to the above plan pre-
sents no difficulties; however, it is less convenient than that of
method I.

If the straight line M N is tangent to circle k, the construction
is simpler because segments ¢ and s are then given; this is
shown in Fig, 223.
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In this case the Apollonius circle p intersects circle k at two
points, one of them being the point of contact 7' of circle k with
MN and the other the required point C. Thus the problem always
has one solution.

From the solution by method I we know that if MN is not
tangent to circle &, the problem has two solutions; consequently,
also in this case the Apollonius circle always intersects circle k.

II. Seeking solutions of the second kind.

Suppose that in the triangles ABC and MNC (Fig. 224) we
have

<4 = <«N.

Method I. From the similarity of triangles ABC and MNC it

follows that
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CA CB

N ~ oM’
whence

CAXCM = CBXCN.
c T
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Denoting the common value of these products by 7 we can
see that in an inversion with respect to a circle with centre C
and radius r point M corresponds to point 4, and point B corre-
sponds to point N (see remark to problem 85).

The centre of inversion C lies on the axis of symmetry of the
figure formed by circle k and straight line M/ N. The construction
is thus reduced to drawing a perpendicular from centre O of
circle £ to MN. If that perpendicular intersects circle £ at a point
C which does not lie on M N, that point gives the solution of the
problem. Indeed, the straight line C M, which is not perpendicular
to CO, intersects circle k also at point 4, and similarly the straight
line CN has, besides C, one more point, B, in common with
circle k.. In an inversion with centre C which transforms point
A into point M, to circle k corresponds the straight line passing
through point M and perpendicular to CO, i.e. the line MN.
Consequently, in that inversion, point N corresponds to point B,
whence we have

CAXCOM = CBXCN,
which gives
cA4 CB
ON oM~

Thus triangles 4BC and MNC are similar and <4 = <«N.

The construction is always possible. The perpendicular from
point O to MN intersects circle k£ at two points. One of them
may happen to lie on MN; this occurs if MN is tangent to k;
in that case the problem has one solution. If M N is not tangent
to k, the problem has two solutions.
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Method I1. The same construction as in method I can be obtained
in a different way without the use of transformation by inversion.

Let CT be a tangent to circle k at the required point C (Fig. 225).
By the well-known theorem on the angle between a tangent and
a chord we have

<« BOT = <A,
and since
{A == {N:
we have
4« BCT = 4«N.
ic T

|
|
I

|
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This implies that the straight lines C7 and MN are parallel.

Thus the construction is reduced to drawing a tangent to circle
k parallel to MN. The point of contact C will be found, as in
method I, at the intersection of circle £ with a perpendicular to
MN drawn from point O.

138. Analysis. Let us choose point M, say, on the side 4B
of the given triangle produced beyond point B (Fig. 226).
Suppose that the straight line m is the solution of the problem,
ie. that AN = BP.

Fia. 226
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Let us draw through point B a line parallel to m; it will intersect
the side AC of the triangle at a point Q. Applying the theorem
of Thales to the straight lines 4B and AC, intersected by the
parallel lines @B and m, and to the lines AC and BC, intersected
by the same parallel lines, we obtain

AM AN and BP PO
BM ~ QN QN  NC°

Since by hypothesis we have BP = AN, these properties imply

that
PC  AM
NC  BM®

Thus the required straight line m cuts off from the given triangle
a triangle PCN in which the ratio of the sides PC and NC is equal
to the ratio of the given segments AM and BM.

Construction. The straight line with the above properties will
be drawn in the following way: on the half-lines C4A and CB
(Fig. 227) we mark off segments CN, = BM and CP, = AM
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respectively. Through point M we draw a straight line m parallel
to P,N,; the line m intersects BC and AC at points P and N,
and the following proportions hold:

pPC PC AM
NC N, BM®
We must investigate whether the straight line m is the solution
of the problem. To begin with, it is easy to ascertain that the
required equality AN = BP holds. Indeed, drawing as before

the line BQ parallel to m and using the theorem of Thales, we
obtain the equalities
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AM AN PC BP

BM  QN’ ©NC @N
The left-hand sides of these equalities are equal by the construc-
tion; consequently

AN _ BP
ON ~ QN

The fulfilment of condition AN = BP does not yet ensure
that the straight line m is the required one, since it is necessary
for points N and P to lie within the sides AC and BC (as shown
in Fig. 227) and not beyond them. Drawing the figure with the
data changed we would find out that point N may happen to
lie on the extension of segment AC' beyond point A or beyond
point C.

We must therefore establish the necessary and sufficient condi-
tions for the point N determined by the preceding construction
to lie on the segment AC (point P will then lie on the segment BC).

If point N lies on AC, then point @, which belongs to the side
AN of the triangle AMN, also lies on AC, whence we have the
following order of points on that segment: 4, @, N, C.

Hence we shall draw two conclusions:

(1) Since AC/AN = (AQ+Q0)/(AQ-+QN) and @C > @N,
we have AC/AN < QC/QN?, which, in view of the equalities
QC/QN = BC/BP and BP = AN, gives AC/AN < BC[AN and
finally

whence AN = BP.

AC < BC. 1)

(2) Since, by the construction, BM/AM = CN,/CP; = CQ[CB,
and CQ < AC, we have

BM  AC ,
AM < CB (2)

Inequalities (1) and (2), which we have inferred from the
assumption that the line m is a solution of the problem, are
thus the necessary conditions of the existence of the solution.
We can express them in a simple way as follows: The given point
M must lie on the base produced beyond the end-point of the
larger of the remaining sides of the triangle and must divide
the base externally in a ratio less than the ratio of the smaller
side to the larger one.

1 We have used here the following theorem of artihmetic: if a > b > 0
and ¢ > 0, then (a-+c)/(b+c) < afb.
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We shall show that these necessary conditions are also sufficient.
Indeed, by the construction, point ¢ lies on the segment CN,,
and BM/AM = CN,/CP, = CQ/CB; thus if condition (2) is
satisfied, then

cQ AC
CB <~ CB’
i.e. point @ lies on the segment AC. In that case point N lies on

the half-line QC, because @ lies between 4 and N.
On the other hand, by the construction we have

AN _AM _CP, _CB

QN _ BM T ON, 0@’
thus, if condition (1) is satisfied, then
AN  AC AQ+QN> AQ+QC

whence CQ < AC,

W> a0 whence oN ac
this inequality implies that
AQ AQ
Q_N > —w, whence QN < QO.

Consequently point IV lies on the segment @C, and thus on AC.

We have obtained the following result : In the case of AM > BM,
the problem can be solved if and only if inequalities (1) and (2)
are satisfied. There is only one solution.

Remark 1. The necessity of condition (1) can be ascertained
in the following simple way: Let BP = AN (Fig. 228). Let us
draw PK||AN; then AN > PK, whence BP > PK and thus
also BC > AC.
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Remark 2. Condition (2) can be interpreted as follows: Let
AC'B (Fig. 229) be a triangle symmetric to triangle ACB. If
AC < BC, then AC’' > BC’' and the bisector of the exterior
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angle at vertex (' in the triangle AC'B intersects segment 4B
produced beyond point B at a point M,. By the theorem on
the bisector of an angle in a triangle we have
BM, BC"  AC
AM, AC' BC
Condition (2) can thus be replaced by the condition
BM BM,
A <A,
which means that point M should lie between points B and M.

Fia. 229

Remark 3. The solution of the problem can be made very
simple and clear if we make use of the theorem of Menelaus.
(See problem 77.)

If the straight line m intersects the directed straight lines 4B,
BC, CA at points M, P, N respectively, the following equality
holds:

AM BP CN
P~ PC N4

If m is the solution of our problem, then BP = N A and equality

(«) assumes the form

—1. 3}

AM CN
uB < Po— b (®)
Let us introduce the notation: 4B =¢, BC =a, CA = b»
BM = p, CN = z; then AM = ¢+p, PC = BC—BP = BC—
—NA = a—(b—=z) and equality (B) gives

c+p x ,
whence
—b
R (v)

4
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Since 0 << ON < CA, ie. 0 < 2 < b, formula (y) implies the
inequalities
b<a, t))

be
.p < a—b . (S)

Inequality (3) is identical with inequality (1), and inequality
(¢) is equivalent to the inequality p/(c+p) < b/a, i.e. to inequal-
ity (2). We have obtained the same necessary conditions of the
existence of the solution as before.

Suppose that conditions (8) and (¢) are satisfied. If we deter-
mine z from formula (y) and mark off CN = z on the half-line
CA, then the straight line M N will be the solution of the problem.
Indeed, we then have equality ('), and thus also equality (8), in
which P denotes the point of intersection of M N with the segment
BC. Since points M, N, P are collinear, equality («) is true;
and equalities (a) and (f) imply that BP = NA.

Formula (y) leads to the following construction, represented
in Fig. 230.
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We mark off CD = CA, draw ME || AD and mark off CN = EB;
the straight line MN is the required one.

139. (a) Suppose that the parallel straight lines a, b, ¢, passing
through points 4, B, C, respectively, satisfy the condition that
the distances between the neighbouring parallel lines should be
equal. Then that one of the lines a, b, ¢ which lies between the
other two is equidistant from them. Suppose that b is the line in
question. In that case, points 4 and C are equidistant from line
b and lie on opposite sides of that line; consequently & intersects
the segment AC at its mid-point M. The fact that points 4, B, C
are not collinear implies that point M is different from point B.
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Hence the construction: we draw a straight line b through
point B and mid-point M of the segment AC and then draw
through points 4 and C straight lines @ and ¢ parallel to b (Fig. 231).

Fi1a. 231

The parallel lines a, b, ¢ determined in this way give the solution
of the problem because the points 4 and C, and thus also the
lines @ and ¢, are equidistant from line b and lie on opposite
sides of that line.

The above solution has been found by assuming that line b lies
between lines @ and c; since that “interior” line can equally well
be a or ¢, the problem has three solutions.

(b) Suppose that the planes «, f, , d, passing through points
A, B, O, D respectively and parallel, satisfy the condition that
the distances between the neighbouring planes should be equal.
Let those planes lie in the order «, 8, y, d, i.e. let plane g be
equidistant from planes o and y, and plane y equidistant from
planes f and 4.

In that case points 4 and C are equidistant from plane § and
lie on its opposite sides, whence plane § passes through the mid-
point M of the segment AC. Similarly plane ) passes through
the mid-point N of the segment BD. The fact that points 4, B,
C, D are not coplanar implies that point M is different from point
B and point N is different from point C.

Hence we derive the following construction. We join point
B with the mid-point M of segment AC and point C' with the
mid-point N of segment BD (Fig. 232 represents a parallel
projection of the figure). The straight lines BM and CN are
skew; for, if they lay in one plane, then points 4, B, C, D would—
contrary to our assumption—Ilie in the same plane. We know
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from solid geometry that through two skew lines BM and CN
two and only two parallel planes § and y can be drawn.

Accordingly, we draw through point M a straight line m par-
allel to CN and through point N a straight line n parallel to
BM; plane § is then determined by lines m and BM and plane
y—by lines » and CN.

Fi1a. 232

Finally, through points A and D we draw planes «and ¢ par-
allel to planes § and y; we can determine them, as shown in
Fig. 232, by drawing through the points 4 and D straight lines
parallel to lines BM and CN respectively.

The planes a, 8, ¢, d determined in this way give the solution
of the problem, since the points 4 and O, and thus also the planes
o and y, are equidistant from plane 3, and similarly planes fand
are equidistant from plane y and lie on opposite sides of that plane.

We have obtained the above solution assuming that the re-
quired planes lie in the order «, 8, , d. For different successions
of the required planes we shall find—in the same way—other
solutions of the problem. The number of all the possible succes-
sions, in other words: of permutations of letters «, 8, y, d, is
41, i.e. 24. It will be observed, however, that two “inverse”
permutations, such as o, 8, y, 6 and 8, ¥, f, « for instance, give
the same solution. Consequently, the problem has 2 = 12 solutions,
corresponding to the permutations:

apyd, apdy, aypd, aydp, adfy, adyp,
Bayd, fady, fyad, Booy, yafd, ypad.
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140. Method I. Let B’, C’, D’ be the orthogonal projections
of points B, C, D respectively upon a plane a passing through
point 4. The projection of the mid-point M of segment AC is
the mid-point M’ of segment AC’ and the projection of the mid-
point N of segment BD is the mid-point N’ of segment B'D’.
The plane quadrilateral 4B'C’D’, which is the projection of the
quadrilateral ABCD upon the plane o, is a parallelogram if and
only if points M’ and N’ coincide. Then the projecting straight
lines MM’ and NN’ also coincide, whence the direction of project-
ing is the direction of the straight line MV (points M and N are
different, points 4, B, C, D not being coplanar). The required
plane is the plane passing through point 4 and perpendicular
to MN (Fig. 233). The problem always has one and only one
solution.

Fia. 233

Method II. Suppose, as in method I, that the quadrilateral
AB'C'D’ is the orthogonal projection of quadrilateral ABCD
upon a plane o« passing through point 4. Let us translate the
segment, BC until it assumes the position AE (Fig. 233). Then
the projections AE’ and B'C’ of segments AE and BC upon
the plane « are equal and parallel. The quadrilateral AB'C’D’
is a parallelogram if and only if the segments AD’ and B’C’ are
equal and parallel, which occurs if and only if segments AE’
and AD’ are equal and identically directed, i.e. if they coincide.
The projection E’ of point E thus coincides with the projection
D’ of point D, which means that the direction of projecting is
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the direction of the straight line DE (points D and E are different,
points 4, B, C, D not being coplanar).

Thus the only solution of the problem is the plane passing
through point 4 and perpendicular to DE.

REeMARK. The above implies that the straight lines MN and DE
mentioned in methods I and II are parallel. This can easily be
proved directly. Point M, as the mid-point of the diagonal AC
of the parallelogram ABCE, is also the mid-point of the diagonal
BE of that parallelogram; the straight line M N, passing through
the mid-points M and N of the sides BE and BD of triangle
BDE, is parallel to the side DE of that triangle.

§ 9. Maxima and Minima

141. Let the straight lines @ and b (Fig. 234) represent the
bank of the river and the polygonal line AMNB the passage
from A4 to B over the foot-bridge MN. The length MN, equal
to the distance between the parallel lines @ and b, is constant;
thus the problem consists in finding a position of the foot-bridge
MN for which the sum AM-+NB is the least.

8 8
a N ! a N |
! 1
! |
| X
,/’lﬂy //)lBl
b ,’/ b /// :
M M
A A
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Let us translate the segment NB to the position MB,. Since
AM+NB = AM+MB,, the problem is reduced to determin-
ing a point M for which the sum AM-+MB, has its minimum.
Point B, is known, since BB,||NM and BB, = NM; B, and
4 lie on opposite sides of line b. The minimum length AM -+ MB,
ocours if points 4, M and B, are collinear.

Hence follows the construction shown in Fig. 235. The problem
always has one and only one’ solution.
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ExEercrse. Using the above method, i.e. that of translation,
solve the following more general problem.

8

=
a/R
lp

N,

M
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Over several parallel tracks (Fig. 236) build bridges MN, PQ,
RS, ... in such a way as to obtain the shortest passage from A to B.

142. Answer. The required straight line is a diagonal of a par-
allelogram with centre at the given point M and two sides
lying on the arms of the given angle.

143. (1) Let M be a point of the square ABCD such that
MA >1y5. Let us draw from point 4 as centre a circle with
radius L5, Since 1 <1y5 < y2, points B and D lie inside
that circle and point C lies outside it, whence the circle intersects
the sides BC and DC at certain points S and 7'. From triangle
ABS we find BS =/[(kV5)2—1] =1, ie. § is the mid-point
of BC and likewise T is the mid-point of CD. Point M is in that
part of the square (shaded in Fig. 237) which lies in the common
part of the right-angled triangles BOT and CDS, and, since the
hypotenuse of a right-angled triangle is longer than any other
segment lying in that triangle, we have MB < BT, MC < BT,
MD < DS, i.e. each of the segments MB, MC, MD is less than
2v5 in length.

(2) Suppose that point M of the given square satisfies the
conditions M4 > 1 and MB > 1. Point M then lies outside the
circles with radius 1, described from points 4 and B as centres,
i.e. it lies in the domain (shaded in Fig. 238) contained in the
common part of triangles BCD and ACD, i.e. in the triangle
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COD. Each of the segments MC and MD is shorter than the
hypotenuse CD of this triangle, i.e. than 1.

D T c D C 0 c
M
-0
D
A 8 A 8
Fia. 237 Fia. 238 Fia. 239

(3) Suppose that for point M of the square we have MA
>1v2, MB >3%V2, MC >%y2. Point M then lies outside
the circles described from points 4, B, C as centres and passing
through the centre O of the square, i.e. it lies in a part of the
square (shaded in Fig. 329) which is contained in the square
with the diagonal OD; consequently MD < OD, i.e. MD <% v2.

REMARK. According to the above, number 1y5 is such that
at most one of the distances of point M from the vertices of the
square is greater than 3y5. Every number greater than 1y'5 has
this property of course, but is does not apply to any number less
than 2y'5, which can be seen for example from the fact that the
distance of point § in Fig. 237 from two vertices of the square,
A and D, is equal to 3V5.

The distances of point C from the remaining three vertices,
A, B, C, are not less than 1;and the distances of point O (Fig.239)
from all the four vertices 4, B, C, D are equal to +¥/2.

We can thus formulate the following theorem.

Numbers Lv5, 1, V2 are the least numbers ky, ky, kg such

that in a square with side 1 at most one of the distances of a point
of the square from its vertices is greater than k,, at most two of
those distances are greater than k, and at most three are greater than k.

Analogous numbers can be found for other figures.

We submit the following exercises to the reader:

(a) Find the least number %, such that in a regular hexagon
with side 1 at most one of the distances of a point of the hexagon
from its vertices is greater than k.

(b) Show that for a regular polygon with 2n-+1 sides the
least number &, mentioned above is equal to the diameter of the
polygon. (The definition of the diameter of a figure is given in
the remark to problem 151.)
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144. We assume that the metal plate is of uniform thickness;
the weight of a part of the plate is thus proportional to the area
of the plane figure represented by that part. The problem is
reduced to showing that, if we cut the triangle along a straight
line passing through its centre of gravity, i.e. through the point
of intersection of its medians, then each of the parts of the triangle
has an area equal to at least £ of the area of the whole triangle.

c

F1a. 240

Let P be the centre of gravity of triangle ABC with area S
(Fig. 240). If we cut the triangle along one of the medians, e.g.
along AD, we shall divide it into two triangles with areas equal
to 4 8. Cutting the triangle ABC along a segment passing through
point P and parallel to one of the sides of the triangle, e.g. along
the segment EF parallel to side AB, we shall divide it into
a triangle EFC and a trapezium ABFE. The triangle EFC is
similar to triangle ABC in the ratio EC/AC = £. Since the ratio
of the area of two similar figures is equal to the square of the
ratio of similarity, the area of triangle EF(C is equal to 45 and the
area of trapezium ABFE is equal to 3.

We have thus found that the assertion of the theorem holds
in the two cases we have examined. Let us draw through point
P any straight line not passing through any of the vertices of
the triangle and not parallel to any of its sides. This line will
intersect two sides of the triangle, e.g. side AC at point M and
side BC at point N. Points M and N lie on opposite sides of the
line EF; for instance let point M lie on the segment AE and point
N on the segment F'D. Our theorem will be proved if we show that

48 < area MNC < 38.
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Accordingly, it will be observed that
area MNC = area EF(C--area M PE—area NPF,

1
area MNC = area ADC+ area PND—area PMA. M)

Let K be the point symmetric to point 4 with respect to
point P. Point K lies on the segment PD produced beyond
point D, since PK = AP = 2PD. The triangle PFK is symmetric
to triangle PEA with respect to point P. Let L be the point of
segment FK symmetric to point M. Then

area M PE—area NPF = area LPF —area NPF
= area LNF > 0,
area PM A—area PND = area PLK —area PND
= area LKDN > 0.
Fquations (1) and inequalities (2) imply that
area MNC > area EFC, -ie. area MNC > %8;
area MNC < area ADC, 1ie. area MNC < —g—S.

145. Let M denote the point of intersection of straight lines
AB and p and let a circle passing through point 4 and B in-
tersect the line p at points C and D.

The chord CD is the sum of segments CM and MD, whose
product is equal, by the theorem on intersecting chords of a circle,
to the product of the given segments A M and MB.

We know from arithmetic that the sum of positive numbers
having a given product is least when the numbers are equall.
The chord CD is thus shortest when CM = MD, ie. when
point M is the mid-point of that chord. Consequently, the centre
of the required circle lies on a perpendicular drawn through point
M to the straight line p. Since the centre of that circle must also
lie on the perpendicular bisector of the chord 4B, we determine
it as the point of intersection of the two straight lines mentioned.
The problem always has one and only one solution.

146. We shall denote by « a half-plane with edge m passing
through point 4 and by f a similar half-plane passing through B
(Fig. 241).

1 This can be proved for instance in the following way. Let a+b = s,
ab = p; then (a—b)? = (a-+b)*—4ab = s*—4p, whence 8*—4p > 0; conse-
quently (with a constant p) s is least when s'—4p = 0 and then (a—b)?
= 0, i.e. @ = b. See also problem 62, remark 3.



Maxima and Minima 337

Let us rotate half-plane a about the line 7 in such a way as
to make it coincide with the extension of half-plane 8; point
A will then lie at a certain point 4,, coplanar with point B and
straight line m, point 4, and
B lying on opposite sides of
m. Let C' be the point of 4
intersection of segment A4,B
with m. If M is an arbitrary
point of m, then

AM+MB>A,B,

ie. A\ M+MB>A,C+CB.

Now 4, M = AM since 4, M
arises by the rotation of seg-
ment AM, and similarly 4,C
= AC. The preceding inequ-
ality thus gives

AM+MB > AC+CB.

Consequently the sum of the segments A M-+ M B has the least
value when point M coincides with point C.

m

Fra. 241

147. Method I. Let S be the mid-point of segment AB, and
M an arbitrary point of straight line p. Then

M8 =1AM>{1BM*—14B.

Indeed, if M lies away from the straight line 4B, this equality
is the well-known formula for the square of a median of a triangle
(see problem 68): if M lies on 4B, the verification of the equality
is immediate (see problem 66).

Consequently

AM*+BM?* = 2MS*+LAB2

Hence we can see that the sum AM2-4BM? is least when the
segment M S is shortest. Thus the required point M is the projec-
tion of point S upon the straight line p. The problem always has
one and only one solution.

Method I1. Let P (Fig. 242) be an arbitrary point of the straight
line p and A’ and B’ the projections of points 4 and B on that
line; let A4’ =a, BB'=0b, A'B’ =c¢ and let 2 denote the
relative measure of the vector 4P on the axis A'B’. From
triangles 44'P and BB’'P we have

AP* —a2ta?, BP?— Bt (c—a)
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Consequently
AP? L BP? — 24— 2cxt-a? b -c2.

We see that AP24-BP? is a quadratic function of variable
x which has its minimum for z = ¢/2, i.e. when point P is the
projection of the mid-point of segment 4B upon the straight
line p.

A

A P B
F1c. 242

148. The centres A, B, C, D of the given spheres are the
vertices of a regular tetrahedron of edge 2r. Let O be the centre
and R the radius of the sphere circumscribed on the tetrahedron
ABCD (Fig. 243).

LA,
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Let us consider a sphere K with centre O and radius ¢ = R-r.
It comprises all the given spheres and is internally tangent to
them at points 4;, B,, C,, D, lying on the extensions of segments
OA, OB, OC, OD respectively at a distance g from point O.

We shall prove that sphere K is the least sphere comprising
the given spheres.

To begin with, it will be observed that no sphere with centre
O and radius less than ¢ comprises the given spheres because
it does not contain points 4,, B,, C;, D,. Suppose next that
a certain sphere  with centre M different from O and radius
o, contains all the given spheres; we shall show that g, > g.

Let us describe from points 4,, B;, C,, D, as centres spheres
K, K,, K3, K, with radius g. The surfaces of those spheres,
and thus also the spheres themselves, have only one point O in
common because O is the only point equidistant from points
4,, B;, Cy, D,. Consequently point M must lie outside at least
one of the spheres K,, K,, K,, K,, e.g. outside the sphere K.
Then M A, > p; and since point A4, lies inside sphere @, we have
0, =>MA,, whence g; > p.

The radius g of sphere K will easily be computed if we consider
that the centre O lies on the altitude AH of the tetrahedron
ABCD and that the segment BH is the radius of the circle circum-
scribed on the equilateral triangle BCD of side 2r, whence

2r

BH:W'

Let €«0AB = z. In triangle AOB we have

cx— AB _r
ST = =R
whence
r

cos &

From triangle ABH we have

ose AH _VAB—BHY 1 a4\ _ /2
ST=TB T AB T 37V 3

Hence

R=13,
and thus
0 = Rtr=r(l+vi).
149. All triangles with the given base AB (Fig. 244) and the
given area P have equal altitudes, whence their vertices lie on
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two straight lines parallel to the straight line AB and lying sym-
metrically on both sides of it. Since symmetrical triangles have
equal perimeters, it is sufficient to prove the theorem for the
triangles lying on one side of 4B.

BI

Fia. 244

Let point M move along a straight line m parallel to 4B. The
perimeter AM-+-MB+AB of triangle AMB will be least when
the sum AM -+ MB has the least value. Let B’ denote the point
symmetric to point B with respect to m; then AM-+MB
=AM +MB’'. Now AM+4+MB' > AB’, the equality holding only
if point M coincides with point C, at which the straight line 4B’
intersects the straight line m. Consequently, of all the triangles
with base 4B whose vertices lie on the straight line m the triangle
ABC has the least perimeter. It is an isosceles triangle; indeed,
since OB = CB’ (as symmetric segments) and AC = CB’ (the
straight line m being parallel to side AB and passing through
the mid-point of the side BB’ of the triangle ABB’), we have
AC = CB.

REMARK. From the above theorem we can easily draw the fol-
lowing conclusion:

(o) Of all triangles with a given base and a given perimeter the
isosceles triangle has the greatest area (the greatest altitude).

Let ABC be an isosceles triangle (AC = BC) and let AMB
be any triangle with the same perimeter. Let A denote the
altitude of the first triangle and A,, the altitude of the second
triangle. We are to prove that ke > hy,. Now, if the inequality
he < hyy hold, we could construct an isosceles triangle AC'B
with altitude k¢ = hyy; the perimeter of that triangle would
be greater than the perimeter of triangle ACB, which has a smaller
altitude; consequently, it would also be greater than the perimeter
of the triangle AMB. But the triangles AC'B and AMB have
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equal bases and equal altitudes, whence their areas are equal;
this contradicts the theorem of problem 5 and thus proves the
validity of theorem ().

The reader is invited to prove theorem («) without referring
to problem 149 (the formula of Heron should be used) and to
show that the theorem of problem 149 is a conclusion from theorem
(a). The two theorems are equivalent.

150. Let triangle ABC be inscribed in a circle O(R)! and
circumscribed on a circle S(r) (Fig. 245). Suppose that AC # BC
and let us consider an isosceles triangle ABC, inscribed in the
circle O(R), point C, lying on the same side of the straight line
AB as point C.

F1a. 245

We shall show that radius », of the circle inscribed in triangle
ABC, is greater than the radius r of the circle inscribed in triangle
ABC. Indeed, when point C describes the arc BC,4, the centre
8 of the circle inscribed in triangle ABC describes an arc of
a circle passing through points 4 and B (see problem 113); the
distance of point S from 4B, i.e. the radius r of the circle inscribed
in the triangle ABC, will be greatest when point S lies on the
perpendicular bisector of segment AB, i.e. at the centre S; of
the circle inscribed in the triangle ABC,; consequently r; > r.

The inequality #, > r can also be proved by computation,
for example in the following way: Let 4, B, C denote the angles

+ The symbol O (R) denotes a circle with centre O and radius R.




342 GQeometry and Trigonometry

of triangle ABC; let us denote the side 4B by ¢ and find the area
of triangle ABS:

. A . B A—B A+B
c® SIn —é— Sin ? 2 cos ) — COS 9
areaABS:—W=ZX } A+B
2 sin sin ——
2 2
A—B . C
2 cOos -——2—— - Sln?
4 . CO8 —
2

When point ' describes the arc BC, 4, angle C' does not change
its magnitude; the area ABS has the greatest value when
cos (A—B)[2 =1, i.e. when 4 = B.

Consequently

area ABS < area ABS;, whence r<r,.

It follows from this inequality that if the inequality R >2r
holds for an isosceles triangle, then it holds for any triangle.
Tt is thus sufficient to prove this inequality for an isosceles triangle.

Now, adopting the usual no-

C tation for segments and angles

in an isosceles triangle 4 BC with

base AB, we have the formulas
(Fig. 246):

-r=—2—tan?,
¢ ¢
T 28inC " 2sin24°

The inequality R > 2r is thus
equivalent to the inequality

1
- Stan—
Ssm2d © g

Fic. 246

which in turn is equivalent to the inequality

1—2sin 24 tan% =>0.
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Let tan (4/2) = m; then

. 2m 1—m? . 4m(1—m?)
smA_m, cosA—m, s1n2A_W
The above inequality assumes the form

8m?(1—m?)
l]——— >0.
Eo

This inequality is equivalent to the inequality
(14+m?)2—8m?(1—m?) >0,
which, when rearranged, gives the inequality
ImAt—6m2+1 >0,
i.e. the inequality
(3m?*—1)2 >0.
Since the last inequality is always true, the inequality B > 2r,
which is equivalent to it, is also true.
ReEMARK 1. We shall consider when the equality
R =2r
oceurs.
The answer to this question can easily be deduced from the
preceding reasoning. The inequality » < r, proved at the begin-
ning implies that the equality B = 2r can occur only in an isosce-

les triangle; if the triangle is isosceles, this equality, as shown
in the preceding argument, leads to the equality
(3m*—1)2 =0,
whence we obtain
1 . A 1
73—, 1e. tan? = W'
which means that 4 = 60°, i.e. that the triangle is equilateral.

m =

REMARK 2. The inequality R > 2r is an immediate consequence
of the following theorem of Euler (1747):

In every triangle the distance d of the centre of the circumcircle
O(R) from the centre of the inscribed circle S(r) is expressed by
the formula

d* = R(R—2r).
This theorem can be proved in the following way (Fig. 247).
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In the circle O(R) circumscribed about triangle ABC we draw
a diameter KL through points O and S, and a chord CM through
points 8 and C. Then

KSXSL=CSXSM. (1)

We shall express both sides of equality (1) in terms of R, r and
d.

KS8x SI, = (KO+08)(0OL—08) = (R+d)(R—d) = R*—d2. (2)
From triangle CSP, where SP | BC, we have

g — SP __r 3)

sin «SCP C

The segment SM is equal to the segment BM. Indeed, since
C8 and BS are the bisectors of angles C' and B of triangle ABC,
we have

4« MSB = «SCB+ «S8BC = % + %,

+«8BM = «SBA+ «ABM = «SBA+ <|:AC’M=-§ -+ —g—,

whence <<« MSB = «SBM and SM = MB. From triangle
BCM we find

BM = 2R sin < BCM = 2R sin—g—,
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and thus also

SM = 2R sin%. )

Substituting the expressions from formulas (2), (3), (4) into
formula (1), we obtain

R—d*——"_xoRsin 2,
. C 2
sm?
and hence Euler’s formula
d* = R(R—2r).

In the above proof it is possible to dispense with the use of
trigonometry: if we draw the diameter M.D of circle O(R), then
the similarity of triangles CSP and DMB gives us at once

CSXSM = CSXBM = MDXSP = 2Rr.

In an analogous way we can prove the following theorem:

The distance d, of the centre of circle O(R) ctrcumscribed about
a triangle from the centre of the escribed circle S,(r,) tangent to
side a is expressed by the formula

a2 = R(R+2r,).

151. Let us consider an arbitrary triangle ABC and let AB
be a side which is not shorter than either of the remaining sides,
ie. AC <AB and BC < AB. Assume that 4B <a. Let us
describe circles with radius equal to the segment AB (Fig. 248)
from points 4 and B as centres.

The triangle ABC lies in one of the domains delimited by the
segment 4B and by two arcs of those circles, e.g. in the domain
ABD. Thus it lies in the circumcircle of the regular triangle
ABD. The radius r of this circle, i.e. the radius of the circle
passing through the vertices of the equilateral triangle with
side 4B, is AB/V3.

Since AB <a, we have r <a/y3. Consequently every tri-
angle with sides not longer than a is contained in a circle with
radius a/y3. It is not every triangle of this kind, however, that
will fit into a circle with radius R less than a/y3. For instance,
an equilateral triangle with side ¢ will not go into such a circle;
this is shown in Fig. 249. Hence the conclusion:

The circle with radius a/V3 is the smallest circle in which every
triangle with sides not longer than a can be enclosed.
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REMARK. Let F be an arbitrary geometrical figure, and let
A4 and B be points of that figure which lie farthest from each
other. The length d of the segment AB is called the diameter
of figure F. Thus for instance the diameter of a circle with radius
r is equal to 2r, the diameter of a rectangle is the length of its
diagonal, the diameter of a triangle is the length of its longest side.

0

i
r !0
4 | 8
/

R a
\~ \/
D _

F1a. 248 Fia. 249

The theorem proved above is a particular case of the following
theorem:

The circle with radius d] V'3 is the smallest circle in which every
plane figure with diameter not longer than d can be enclosed.

An analogous theorem holds in space:

The sphere with radius dv3 is the smallest sphere in which
every solid figure with diameter not greater than d can be enclosed.

The proofs of these theorems are much more difficult than
the proof given above and are beyond the scope of this book.

152. The nut can be unscrewed if and only if the following
two conditions are satisfied:

(1) The square @ of the nut can be enclosed by hexagon 8 of
the spanner.

(2) When being turned, the spanner strikes against the nut,
which occurs if the greatest distance of two points of the nut, i.e.
the diagonal of square @, is greater than the “least width” of
the aperture of the spanner, i.e. the distance between opposite
sides in hexagon 8.
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The above conditions must be expressed as relations between
the lengths @ and b.

Let b, denote the side of the greatest square that can be
enclosed by hexagon §. Condition (1) is then expressed by the
inequality

b < b,.

Condition (2) has the form

. V3
by2>ay3, ie. b>a V2
since the distance between opposite sides in a regular hexagon
of side a is ay3.

Joining the two inequalities in one formula we obtain the

condition
a % < b < by. (1)

We must find the length b, in terms of a.

Accordingly, we shall prove that the greatest square that can
be enclosed by hexagon S is equal to the square 4BCD (Fig. 250)
with sides parallel, respectively, to
two axes of symmetry of the hexa-
gon and vertices lying on the sides
of the hexagon.

Let @ be any square contained
in the hexagon 8. We are to prove
that @ is not greater than the
square 4BCD.

Two cases are possible:

Case 1. The centre of square @ lies
at the centre O of the hexagon. The
diagonals of square @ lie on per-
pendicular lines MP and NR, cut-
ting the hexagon into four parts. Fic. 250
Some of those parts contain whole
sides of the hexagon (why?), e.g. let a side KL of the hexagon
be inside angle MON.

Without loss of generality we can assume that the side AB of
the square ABCD is—as shown in Fig. 250—parallel to the side
KL of the hexagon, since the square ABCD can be suitably ro-
tated.

Then either the segments OM and ON coincide with the seg-
ments OA4 and OB, whence OM = OA, or one of them, say OM,
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lies—as in Fig. 250—outside angle A0B, the segment KM being
equal to at most half the side of the hexagon, and OM < 0OA.
In both cases we have OM < OA.

Now the diagonal of the square @ is not greater than the seg-
ment PM,and we have PM = 2X OM < 2X 04, ie. PM < AC.
It follows that square @ is not greater than the square 4BCD.

Case 2. The centre of square @ lies at a point O, different from
point O (Fig. 251); the diagonals of square @ lie on perpendicular
lines M, P, and N,E,.

Let us draw through point O straight lines MP || M, P, and
NR|| N,R,. As has been proved in case 1, one of the segments
MP and NR is not greater than
the diagonal AC of the square 4 BCD
(not shown in Fig. 251). For exam-
ple, let MP < AC. Now M,P,
< MP, whence M, P, << AC.

Since the diagonal of square @ is
not greater than the segment M, P,,
it is not greater than the segment
AC,i.e.square @ is not greater than
the square ABCD.

It follows that the length b, in
formula (1) is equal to the length of
the side of the square ABCD. We
can find it, for instance, from the
right-angled triangle DEF in Fig.
250, in which the longer side DF is equal to %b,, the shorter
side EF is equal to a—% by and the acute angles are 60° and 30°.

We obtain

1by = (a—1 by) V3,
whence
_ 2ay3
0 — V3 +1 ’
Thus the answer to the question which has been asked is: the

nut can be unscrewed if and only if the lengths a and b satisfy
the condition

ie. by=(3—Vy3)a.

ay3
V2
153. We shall assume that b > 0; let the reader himself formu-

late the answer to the question asked if b = 0, i.e. if the mess-
enger is on the road.

<b<(3—V¥3)a.
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Method I. Let M denote the point at which the messenger finds
himself, S the point of the meeting, ¢ the time which will elapse
between the initial moment and the moment of the meeting and
x the velocity of the messenger. Applying the Cosine Rule to
triangle MOS, in which OS = vt, M8 = xt, OM = a, we obtain

%2 = a?+-v%2—2avt cos o,
where « denotes angle M 0S. Hence
a2

1
z? = t—2~2cw cosoch-—I-vz.

Let us write 1/t = s; then

x? = a%s*—2av cos a X s+1v% = (as—v cos )2 +v2—22 cos? a,
or, more briefly,
22 = (as—v cos a)?4-v? sin? «. (1)

We seek a positive value of s for which the positive quantity z,
and thus also 2%, has the least value. We must distinguish two
cases here:

Case 1: coso >0, i.e. a is an acute angle. It follows from
formula (1) that x has the least value x,, if as—vcos« =0,
whence

vV COS
S =

a
Then

%y, = v?sin®«, and thus 2 ,, = vsin«.

‘min

Case 2: cos o <0, i.e. o is a right angle or an obtuse one. In
this case the required minimum does not exist since as—v cos « >0,
and thus also 22 is the smaller the nearer s is to zero, i.e. the
greater is ¢. As ¢ increases indefinitely, s tends to zero and z,
as shown by formula (1), tends to ».

We shall explain these results with the aid of a drawing. If
o < 90° (Fig. 252), the minimum velocity of the messenger is
equal to v sin o = vb/a; the meeting will take place at the moment
when 1/t = (v cos o)/a. Then

MS = vsina

= q tan «,
V COS ¢

which means that <OMS = 90°; the messenger should run
along a perpendicular to OM.
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If « >90° (Fig. 253), the messenger must cover a longer route
than the cyclist, and thus he can overtake him only if his velocity
is greater than the velocity v of the cyclist; the necessary surplus
of velocity, however, will be the less the greater is the angle

= vt -
0l s
(79
a b
&
B
M
Fra. 252
vt-
o s
r 3
mi a
|
| xt
1 /B
M
Fia. 253

4OMS = f, and can be arbitrarily small if the cyclist rides
in a direction which forms with OM an angle sufficiently near
180°—a.

Method I1. Adopting the same notation as before, we have

x ot  MS
v ot 08’
whence by the Sine Rule (Fig. 252)
x _ sina and __ sina
v sinf = mp

This equality implies that x assumes the least value when
sin B is greatest. If « < 90°, this occurs for § = 90°, whence
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. vb
xmmzvsmoz=—;.

If « >90° (Fig. 253), then angle § is acute; a greatest value
of f does not exist, the velocity x is the smaller the nearer the
angle 8 is to 180°—o. As angle § increases and tends to 180°—«,
velocity = decreases and tends to .

REMARK. In the above solution we can dispense with the use
of trigonometry, reasoning as follows.

If « <90° (Fig. 254) and MS | OM, we draw TH | OM
and RK | OM. Then

M8 HT MT M8 KR MR

0S5 ~or ~or’ 08 OE ~ O’
whence at point § of the road the ratio of the distances from
points M and O is smallest.

Fia. 255

If « >90° and point 7T lies farther from point O than point S
(Fig. 255), then, drawing NS parallel to M7, we have

MT _ NS _ M8
or ~ 08 T~ 08"

whence it is obvious that the required minimum does not exist.
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Method I1I. We are to find on the road a point S at which the
ratio MS/OS has its minimum.

Now every point S of the road lies on the circle of Apollonius
constructed for the segment OM and ratio k = MS/0S.If « > 90°,
then k is greater than 1, and is the smaller (the nearer to 1) the
greater the Apollonius circle; thus the required minimum does
not exist.

If o < 90°, the least value of k is less than 1 and corresponds
to that circle of Apollonius which is tangent to the road. Let
T be the centre of this circle and let K and L be the points at

S
:
|
|
|
!
|
|

3

Fia. 256

which the circle intersects the straight line OM (Fig. 256). The
pairs of points K, L and O, M separate each other harmonically,
whence
TK2=TOxTM,
and since
TK =1T8,
we have
T8 =TOXTM,
whence we conclude that point M is the orthogonal projection
of point S upon the straight line OM and MS/OS = sin o = b/a.
Remark. In the above reasoning we have made use of the
following theorem:
If the pairs of points A, B and O, D separate each other harmon-
tcally, t.e. if AC:CB = AD:BD and P is the mid-point of the
segment AB (Fig. 257), then

PB?2 = PCX PD.
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This equality may be proved as follows: by hypothesis we have
ACXBD = OBX AD.

O

A P C 8
Fia. 257

We replace the segments appearing in this equality by segments
with the initial point P, for instance AC = AP+ PC = PB+PC,
BD = PD—PB, etc.; we obtain

(PB+PC)(PD—PB) = (PB—PC)(PB+PD),

which, suitably arranged, gives
PB2 = PC X PD.

The same calculation performed in the inverse order shows
that, if the above equality holds, the pairs of points 4, B and
C, D separate each other harmonically.

154. A complete tour around the tower comprises 33 — 20
steps of total height 20X 0-15 m = 3 m. Thus the step numbered
204k lies exactly above the step numbered % at a distance of 3 m.
The orthogonal projection of the staircase upon a horizontal
plane of projection forms a circular ring with radii 1 m and
0-32 m divided into 20 sectors (Fig. 258).

The bar placed in the tower finds itself in the cross-section
of the staircase formed by a vertical plane o in-which that bar
is lying. Let the straight line PQ be the intersection line of plane
o with the horizontal plane of projection (i.e. its trace on that
plane). The shape of the above-mentioned cross-section will be
found by turning down the plane o upon the horizontal plane,
i.e. by marking off on the perpendiculars drawn at points of the
chord PQ segments equal to the altitudes of the corresponding
points of the section, as shown in Fig. 258. The polygonal line
L, arises by translating the polygonal line L; the distance of
3 m orthogonally to the straight line AB. In this cross-section
we can place a bar of length at most equal to

AC = y(AB*4BC?).

Considering the vertical planes parallel to plane «, we find
that the greatest value of length AC is obtained when the
trace of the plane is tangent to the interior circle of the ring, since
then the greatest lengths of the segments 4B and BC are obtained.
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Thus we must find the length of the longest bar that can be
carried up the stairs in such a manner that all the time it remains
tangent to the column.

A cross-section of the staircase formed by a plane tangent to
the column is drawn in the same way as the section in Fig. 258,
the difference being that the straight line 4B is tangent to the
smaller circle (Fig. 259).

The length of the chord 4B is found from the formula AB? = 4
X (0A42—0M?) = 4— (0-64)%, and the central angle AOB from
the formula cos $140B =OM/0A = 0-32, whence < AOB
= 142°40’. The angle A0B includes approximately 75 sectors
corresponding to the steps of the staircase.

The section drawn in Fig. 259 in a continuous line passes through
the end-point 4 of the edge of one of the steps, whence in the
lower part of the section there are 7 points of intersection of
the plane of the vertical section with the edges of the steps; they
are the points 1, 2,...,7, belonging to the edges with the
projections OA,, OA,, ..., 04,. In the upper part of the sec-
tion we have, analogously, the points 1’,2',...,7". We find
BD="7x015 m = 105 m, B = BD + DC =105 m 43 m
= 4045 m,

In a section of this kind we can place a bar of length at most
equal to

AC = VY (AB? + BC?) ~ 4-47 m.

Let the plane of the vertical section rotate about the axis of
the tower. Then the section will undergo changes and all its
possible shapes will have appeared during the rotation from
0° to 18°; in further rotation the same sections will appear after
every 18°, each time moved 0-15 m upwards.

For illustration by means of a drawing it is convenient to assume
that the plane ABC of the section is motionless and the fower
rotates, e.g. in the direction marked with an arrow in Fig. 259.
During a rotation from 0° to 18° point 4, runs over the arc 4,4
and point A4z runs over the arc Ag4,. Let us consider the succes-
sive stages of that rotation.

(1) While point A4, describes the arc AgB, the bar originally
placed in the position AC' may remain in this position, i.e. have
the maximum length 4:47 m which has been calculated above.
It will be observed that the position of the bar along the segment
AC is not disturbed during the rotation by any step edge; in
a carefully executed drawing it is clearly seen that points 1, 2, ..., 7
always lie on one side and points 1’, 2/, ..., 7' on the other side
of AC. We can verify the fact by calculation, showing that the
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angles BAl, BA2, ..., BAT remain smaller than angle BAC and
the angles BC1’, BC2’, ..., BC7' are greater than angle BCA.

(2) When the rotating point Ag has overtaken point B and
runs over the arc BA,, the situation changes; plane ABC inter-
sects in addition to the preceding step edges also those edges
whose projection is the radius O4g. In the upper part of the
section on the left the eighth recess is formed, and the bar can
be gradually moved in the plane 4ABC from the position 4C
upwards to the position A4'C’, i.e. it can be raised the height
of one step, namely 0-15 m. In Fig. 259 the corresponding shape
of the section is outlined with a dotted line.

(3) When point Ay assumes the position of 4,, we obtain
a section of the same shape as the initial one, but it is raised
0-15 m; the bar retains position 4'C’, in which it will remain
until point A4, reaches point B, after which it will again be possible
to move the bar upwards and so forth.

It follows that a bar 447 m in length can be carried up the
stairs; a longer bar could not be carried upwards since it could
not be contained in certain sections, e.g. in the initial section.

§ 10. Trigonometrical Transformations

155. The proof of the theorem will be obtained by transforming
the equation

co834-+cos3B+-cos3C = 1. (1)

In order to perform the transformation properly we should
consider what is aimed at. We can reason here in various ways.
Method I. To prove that one of the angles 4, B, C is equal
to 120° it suffices to prove that one of the differences 1—cos 34,
1—cos 3B, 1—cos 3C is equal to zero, which occurs if and only if

(I1—cos 34)(1—cos 3B)(1—cos 3C) = 0. (2)

Our aim is to infer equality (2) from equality (1). To make
the calculation easier we substitute in equality (1) the value
C = 180°— (A4 B), whence cos 3C = —cos(34-+3B), and con-
sequently

cos 34 +cos 3B—cos(34+3B) =1 (3)
or

cos 34 +cos 3B—cos 34 cos 3B-}+-sin 34 sin 3B—1 =0. (4)

Since we want to obtain a relation containing only the cosines
of angles, we write equality (4) as
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sin 34 sin 3B = 1—cos 34 —cos 3B-+cos 34 cos 3B,
or briefly
sin 34 sin 3B = (1—cos 34)(1—cos 3B),
and then square both sides:
sin? 34 sin? 3B = (1—cos 34)2(1—cos 3B)2.
We obtain
(1—cos? 34)(1—cos? 3B)— (1—cos 34)?(1—cos 3B)2 = 0,
(1—cos 34)(1—cos 3B)[(1+-cos 34) (1 +cos 3B)—
—(1—cos 34)%(1—cos 3B)?] =0,
(1—cos 34)(1—cos 3B)(cos 34-+cos 3B) = 0,

and since by hypothesis (1) we have

co8 34-}+-cos 3B = 1—cos 3C,

we finally obtain the required equality (2).

Method II. It is sufficient to prove that one of the numbers
sin24, sin 3B, sin —32—0 is equal to zero, since then one of the angles

24, 3B, 3C is equal to 180°.

Accordingly, we must deduce from equation (1) the equation
} sin34 sin 2B sin3C = 0. (5)
We transform equation (1) as follows:
1—cos 34— (cos 3B+-cos 30) = 0,
28in?$4—2 cos £ (B+-C) cos 3(B—C) = 0,
2sin?34+2sin34 cos3(B—0) =0,
2sin 24 [sin$4+cos 3 (B—0)] = 0,
2 sin $4[—cos 3 (B+C)+-cos 3 (B—0)] = 0,
4sin34 sin3Bsin3C = 0,
whence 4 = 120° or B = 120° or C = 120°.

Method 11I. We can also introduce tangents into our calculation
and proceed to show that equation (1) implies the equation

tan3A tan-3B tan 30 = 0.

This method requires slightly longer transformations, and we
must show first that the symbols tan34, tan2B, tan3C have
a numerical sense, i.e. that none of the angles 34, 3B, 3C is equal
to 180°, which can be inferred from equation (1).
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RemARK. The inverse theorem also holds: if one of the angles
A, B, C of a triangle is equal to 120°, then

cos 34 -+cos 3B-+cos 3C = 1.

We leave the proof to the reader as an exercise.

156. Suppose that none of the angles of the convex quadrilateral
ABCD is right. We are to prove that

tan 4 +4tan B4-tan Ctan D
tan 4 tan B tan C tan D

= cot A-+cot B+4cot C+cot D. (1)

- We know that
(44-B)+(C+D) = 360°,
whence
tan (4 +B)+tan(C+D) = 0. 2)
Hence
tan 4-+-tan B tan C--tan D
iI—tanAtan B ' 1—tanCtan D

Multiplying both sides of this equation by

(1—tan A4 tan B)(1—tan C tan D)
we obtain

(tan A+4tan B) (1—tan C tan D)+
-+ (tan C+tan D)(1—tan 4 tan B) = 0
or, after an easy transformation,
tan A--tan B4-tan C-tan D
= tan B tan C tan D4-tan A4 tan C tan D--tan A tan B tan D+
--tan 4 tan B tan C.
Dividing both sides of this equation by the product
tan A tan B tan C tan D,

we obtain the required equation (1).

However, there is a gap in the above proof, because equality
(2) requires the assumption that 4+B # 90° and A+ B # 270°.
Thus it is necessary to consider also the case where

A+B =90° and thus C+D = 270°. (3)
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(The case where A+ B = 270° and C+D = 90° need not be
considered separately, since it is obtained from the preceding
one by changing the letters.)

Now equation (3) and the fact that each angle of a convex
quadrilateral is contained between 0° and 180° imply the ine-
qualities

0° < 4 <90° 90° < C < 180°. 4)
From inequalities (4) we infer that
90° < 4 +C < 270°.

We can thus deduce from the equation 4-4-C' = 360°— (B+D)
that
tan (4 +C)+tan(B-+D) = 0, (2a)

and obtain equation (1) from equation (2a) in the same way
as before from equation (2).

ReMARK 1. In the preceding proof we derived inequalities (4)
using the assumption that the quadrilateral is convex. The question
arises whether formula (1) is also valid for a concave polygon if
none of its angles is right. We find that it is really so; our previous
reasoning, however, must be supplemented.

Suppose that the quadrilateral ABCD is concave. As in a convex
quadrilateral, we have the equality

A-+B+C+D = 360°,

since the diagonal drawn from the vertex of the concave angle
divides the quadrilateral into two triangles.

If the quadrilateral has two angles whose sum is equal neither
to 90° nor to 270°, then equation (1) will be proved in exactly
the same way as for a convex quadrllateral

But there are concave quadrilaterals in which every two angles
total 90° or 270°. Let 4 denote the concave angle of a quadri-
lateral; the above-mentioned case occurs if

B+0 =90°, C+D=90°, D-+B=90°
ie. if
B=C=D=45°, 4 =225°
Our preceding argument cannot be applied to a quadrilateral
of this kind (Fig. 260). But formula (1) is valid also in this case

because all the tangents appearing in it are then equal to 1 and
the formula expresses the equality 4 = 4.

REMARK 2. In the case where one or more angles of the quadri-
lateral are equal to 90° formula (1) becomes meaningless because
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there is no tangent of a right angle. However, if we perform the
division on the left-hand side of formula (1) and introduce the
cotangents of the angles instead of their tangents, we shall obtain
the following formula, valid for all quadrilaterals:

cot 4 cot B cot C+4-cot A cot B cot D-+cot A cot C cot D+
—+cot B cot C cot D = cot A-+cot B4cot C4-cot D.  (1%)

B

45

225

Fia. 260

The proof of formula (1*) can be carried out in exactly the
same way as the preceding proof of formula (1); the reader is
invited to verify this for himself.

If one of the angles of the quadrilateral, say D, is equal to 90°,
formula (1%) gives

cot 4 cot B cot C = cot A-cot B+-cot C.

If D=90° and C = 90°, formula (1*) is reduced to the
equality cot 4 +cot B=0; if D = C = B = 90°, formula (1*)
is reduced to cot 4 = 0.

REMARK 3. Inverting problem 156 we can ask what algebraic
relation holds between angles 4, B, C, D satisfying equality (1)
(or (1*). One can easily prove (we leave this to the reader as an
exercise) that it is the relation

A+B+C+D = kX 180°,
where k is an arbitrary integer.

157. Method I. The problem can be solved in a very simple
way if we notice that the equation x = (2k+1) X 180° is equivalent
to the equation cos(z/2) = 0. A necessary and sufficient con-
dition for one of the angles A-+B-+C, A+B—C, A—B+C,
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A—B—C to be equal to an odd multiple of 180° can thus be
expressed by the following equation:

A+B+C A+B—-C A—B4+C A—B—-C
cos 3 cos 3 cos 5 cos 3 =

0. (1)

The problem is thus reduced to showing that equality (1) is
equivalent to the equality

cos? A+4-cos? Btcos2 C+2cos 4 cos BeosC —1=0. (2)

We shall attain this by transforming the left-hand side of
equality (1) with the use of well-known formulas for the sums
and products of trigonometric functions:

A+B+C A4+B—-C A—B4+C A—B-C
cos cos cos
2 2 2 2
= 1[cos (4+B)+- cos C]X [cos(A—B)+ cos O]
= 1[cos (A -+ B) cos(4—B)+cos(4+B) cos C+
~+cos (A —B) cos C+-cos? C]
= 1(cos? 4 cos* B—sin? 4 sin? B-+2 cos A cos B cos C+cos? C)
=1(cos? A +4-cos? B+ cos? C+2 cos A cos B cos C—1).
We have found that the left-hand side of equation (1) is identical-
ly equal to £ of the left-hand side of equation (2). Thus the two
equations are equivalent, whence it follows that equation (2)

holds if and only if one of the angles A4+B+C, A+B-—0C,
A—B+C, A—B—C is an odd multiple of 180°.

Method I1. Suppose that one of the angles A+B-+C, A4+B—C,
A—B+C, A—B—C is equal to an odd multiple of 180°., For
example let

cos

A+-B+C = (2k+1) % 180°. (3)
Then C = (2k+1) X 180°—(4+B) and thus
cos ' = —cos(A+B) = sin 4 sin B—cos 4 cos B.
We substitute this value of cos C in the left-hand side of (2):

cos? A--cos? B4-cos? C4-2 cos 4 cos B cos C
= cos® 4 +cos? B+ (sin A sin B—cos 4 cos B)2-+
~+2 cos A cos B(sin 4 sin B—cos A cos B)
= 0082 A-}cos? B+-sin? 4 sin? B— cos? 4 cos? B
= ¢08? 4+-cos? B4 (1— cos? 4)(1— cos? B)— cos? 4 cos? B = 1.
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We have shown that if the angle 4 4 B-+-C satisfies equation (3),
then it satisfies also equation (2). Similarly, we shall verify this |
for each of the remaining angles, A4+B—C, A—B-+4C and
A—B—C.

It remains to prove the inverse theorem. Suppose that equality
(2) holds. Regarding this equality as an equation, say with cos ¢
as the unknown, let us write it as

cos? C+2 cos 4 cos B cos C+ (cos? 4+4-cos? B—1) =0
and let us find cos C according to the formula for the roots of
a quadratic equation:
cos 0 = —cos A cos B y[cos? A cos? B— (cos® A} cos? B—1)]
= —cos A cos B4 Y[(1— cos? 4) (1— cos? B)]
= —cos A cos B4-sin 4 sin B = —cos(4+B)
= cos [180°+4 (44 B)].
* Consequently C = 2k X 180°4-[180°+(4 4 B)], whence
O = (2k+1)x180°+4+B or C = (2k—1)x180°—A-+B.
This means that one of the angles A+B-+C, A+B—C, A—
~B+4C, A—B—C is an odd multiple of 180°.
158. From the equation

cos B oot B cos A
smdcosC 0 + sin B cos O

cot 4+ (1)

successively follow the equations
cos A sin B cos C+sin B cos B = sin A cos B cos O+sin A cos A4,

(cos A sin B—sin A cos B) cos C = sin 4 cos A—sin B cos B,

sin(B—A) cos C = 1 (sin24 —sin 2B),
sin (B—A) cos C = cos(4+B) sin(4—B),
sin (A —B)[cos(A+B)-+cos C] = 0,

A+B+C A+B—-C

cos =

sin (4 —B) cos 5 3 0. (2)
Equation (2) implies the alternative
sin(4—B) =0 or cosw =0
or COSM =0,

2
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equivalent to the alternative

A—B—1Fkr or M:£+mn
2 2

AL+LB—-C

——

where k, m, n denote integers.
We have obtained the following result: If equation (1) holds,
then

=~g—+nn,

A—B=kr or A+4+B+4+C=2m+1)n
or A+4+B—C = (2n+1)x, (3)

where k, m, n are integers.
It will be observed that relations (3) are not mutually
exclusive; e.g. if A = B = =n/2, ¢ =0, all three relations hold.

ReEMARK. As shown in the previous calculation, equality (1)
is equivalent to the equality
A+B+C A+B-C
cos
2 2
sin 4 sin B cos C

sin (4 —B) cos

= 0. (1)

Consequently, the following inversion of problem 158 is true:
If alternative (3) occurs and 4 # 0, B # 0, C # Ln-+kw, then
we have equality (1%), and thus also equality (1).

159. Method I. The equality

tan otan f--tan y = tan « tan g tan y (1)
implies that _
tan «-+-tan § = tan y(tan o tan f—1).
If tan « tan § # 1, we can divide both sides of the above equality
by 1—tan « tan §: :
tan a+-tan f &
lI—tanotanp 07

whence

tan (a+p) = tan(—yp),
and consequently

a—'_‘g = —V‘I—kn,

ie.

a-+f+y=kr (k—an arbitrary integer). #3)
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The above calculation has been preformed under the assumption
that tan « tan 8 # 1. Now this condition is always satisfied if
equality (1) is satisfied; indeed, if we had tan « tan § = 1, then
equality (1) would give tan «+-tan § = 0, which is impossible,
gince two real numbers whose product is equal to 1 have the
same sign and thus their sum cannot be equal to zero.

We have obtained the following result: if «, 3, y satisfy equality
(1), then the algebraic relation (2) holds between them,

Method II. Equality (1) can be written as

sin « sin f sin y sin o sin f sin y

_|_

coso ' cosff ' cosy  cosacosfcosy
It follows that

sin « cos § cos y--cos « sin f cos y+
-cos & cos B sin y—sin « sin § sin y = 0;
after a suitable grouping of the terms, we have

sin () cos y+cos (x+pf) siny =0,
ie.
sin (e +f+y) = 0.
"We conclude from this equality that
‘ oo+-f+y =krn  (k—an arbitrary integer).

REMARE. It is easy to verify the inverse theorem:

If a+p+y = ke (k—an integer) but none of the numbers o, f,
y 18 equal to Im+mm (m—an integer) then equality (2) holds.

160. Method I. We shall prove a “stronger” theorem:
If 0° <2;<180° for i =1,2,...,n, n >2, then
[sin (z; 4+t ... + x,)| < sin 2, +sin 2, -+ ... +sinz,.T (1)

In the proof we shall make use of the well-known properties
of the absolute value,

la+d] <la|+[b], |ab| = |a|X|D],

and of the fact that if 0° < z < 180°, then |sin x| = sinz > 0,
|cos x| < 1, and that |cosz| <1 for every =.

tIf |a| <b, then a < b (but not conversely), and thus inequality
(1) implies the inequality given in the text of the problem.

e i R Ty S S
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We conduct the proof using the induction principle. For n = 2,
theorem (1) is true because ;

sin (@, +,) = sin x, cos x,4-cos x, sin x,,
whence

[sin (2, +2,)| <|[sin 2| X |cos x,| -+ |cos @, | X |sin x,| < sin 2, -+ sin 2,i
Suppose that for an integer t > 2
|sin (z, 4 ... +23)| < sin 2, -Fsin 2,4+ ... + sin a2y

and let 0 <C a4, < 180°. Then:

|sin(z, -t ... Fap+2x4q)| = |sin (@ 25+ ... +2%)COS Xpp 1+

008 (@ +Ty+ ... ) 8in 2y

< |sin (@ +2at ... -2) CO8 T yq || COS (B2 ... Fag)sin 2|
< |sin(@y+2p+ ... ) [+ 80 ey, |

< 8in 2, 4sin 2, - ... + sin xp+-sin @44 .

We conclude by induction that theorem (1) is true for every
n >2.

Method I1. To begin with, we shall prove the following lemma
(auxiliary theorem). If n > 2 and 0° < ; << 180°for i = 1,2, ...,
n, then there exist numbers a,, @, ... such that

sin(x, -+, ... +2,) = a, sin x,+a, sin x,+ ... +a,sin z,,
and
ol <1, Jagl<l, ..., |ay1]<<1 and |a,] <1.

Proof. We use the method of mathematical induction. If n = 2,
the lemma is true because

sin (x, 4-x,) = cos x, sin 2, }-cos z, sin z, = a, sin 2, -}-a, sin z,,
where
la;| = |cos x| <1 and |ay|=|cosz,|<<l.
Suppose that for an integer &k > 2
sin (zy+2,+ ... +2;) = @, sin ,-+-a, sin z,+ ... +a; sin x,
where

la,] <1, Jal<<l, .., Jog,4l<1l and | <1
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and let 0° < 234, << 180°. Then
sin (z, 4+ ... FXFa4q) = sin(xy 42,4 ... +ay) cos apg
-cos (2, +2,4 ... 4-a3) sin x4,
= (@, sin &, }+a, sin X+ ... +a; sin ;) cos x4+
~+cos (x, + a4 ... Fay) sin apy,
= (@, COS Ty 4) Sin ;4 (@, oS 2y 4,) sin x4
+ oo (ag €08 Ty 1) SIN 2 A-CO8 (X 2o+ ... Fa3) Sin @y 4
= b, sin &, +b, sin x4 ... by sin 4y +by iy Sin 2444,
where
[by] = |ay cos Tpyy| = |ay| [0S Ty | < 15
similarly
[bg] <1, ooy |bg] <1, |bgsq] = |cOS (220t ... +a3)| <1.

We conclude by induction that the lemma is true for every

n >2.

We now pass to the proof of the theorem proper; using the lem-
ma, we can put it very briefly:

Since in the above equality

sin(z,+%,+ ... +a,) = @, sin 2, +a, sin 2,4+ ... +a,sin z,

the right-hand side is the sum of the products of the positive.

numbers sin z,, sin @,, ..., sin #, by coefficients which, with the
exception of the last, are less than 1, the last being at most equal
to 1, we have

sin (2, +,4 ... +,) < sin z,+sin 2o+ ... +sin z,.

e
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