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Note to the Reader

his book is one of a series written by professional mathematicians

in order to make some important mathematical ideas interesting
and understandable to a large audience of high school students and
laymen. Most of the volumes in the New Mathematical Library cover
topics not usually included in the high school curriculum; they vary in
difficulty, and, even within a single book, some parts require a greater
degree of concentration than others. Thus, while the reader needs
little technical knowledge to understand most of these books, he will
have to make an intellectual effort.

If the reader has so far encountered mathematics only in classroom
work, he should keep in mind that a book on mathematics cannot be
read quickly. Nor must he expect to understand all parts of the book
on first reading. He should feel free to skip complicated parts and
return to them later; often an argument will be clarified by a subse-
quent remark. On the other hand, sections containing thoroughly
familiar material may be read very quickly.

The best way to learn mathematics is to do mathematics, and each
book includes problems, some of which may require considerable
thought. The reader is urged to acquire the habit of reading with
paper and pencil in hand; in this way mathematics will become in-
creasingly meaningful to him,

IFor the authors and editors this is a new venture. They wish to
acknowledge the generous help given them by the many high school
teachers and students who assisted in the preparation of these mono-
graphs. The editors are interested in reactions to the books in this
series and hope that readers will write to: Editorial Committee of the
NMIL series, in care of THE INSTITUTE oF MATHEMATICAL SCIENCES,
NEw York Univenrsity, New York 3, N. Y.

The Editors
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Preface

When my father was alive, I often heard the words, “Niki, I have
problem”’; and more often than not the question which unfolded on
our living-room blackboard dealt with an inequality. Nowadays, I
like to think that it was partly because I never encountered questions
at school which were even remotely similar to those with which I
wrestled at home that I almost never found the solutions to any of
the problems on the home blackboard. Mathematical curricula of
today’s secondary schools continue to ignore the topic of inequalities.
Yet every mathematician knows that inequalities are important in
all branches of mathematics, sometimes even more important than
equalities.

In 1958 the Ann Arbor Public Schools gave me the opportunity to
hold frequent mathematical discussions with an enthusiastic group of
young people. These students, by their response and interest, stimu-
lated me to write the present book. Their understanding and enjoy-
ment of inequalities led me to believe that a careful exposition of
some of the topies we discussed would be well received by a wider
audience.

Geometric inequalities are especially appealing because their state-
ments can be easily grasped; at the same time they provide an excel-

3



4 GEOMETRIC INEQUALITIES

lent introduction to creative mathematical thought and to the spirit
of modern mathematics. The elementary inequalities that form the
subject matter of this book have the further advantage of demanding
and requiring only a clear head and a minimum of formal mathe-
matical training in order to be understood: a year of high-school
algebra and the fundamentals of plane geometry will usually be
sufficient. On occasions I have used some trigonometry. Thus, some
of the material can be profitably read by students in the second
semester of plane geometry, while the book as a whole should be
accessible to high-school juniors and seniors.

Another book in this series, An Introduction to Inequalilies, by
Edwin Beckenbach and Richard Bellman, provides additional back-
ground for the material I have presented. Moreovel, BBeckenbach’s
and Bellman’s lively and leisurely study contains some analogous
and some alternative treatments of many of the topics developed here.

Historically, geometric problems involving maxima and minima
were studied before the invention of the calculus. The calculus is a
powerful machine by which one can solve some of these problems
without ingenuity. It is not a panacea, however, and anyone who
intends to study or is now studying calculus, will find the material
of Chapters 2 and 3 useful in understanding what the calculus can
and cannot do.

Uninvited advice is usually ignored; yet I wish to offer some in
the hope that it will be helpful. No book on mathematics can have
enough illustrations and formulas. The thorough reader must always
work with pencil and paper at hand. He will need them for construct-
ing figures not provided in the text and for supplying missing steps
hetween assertions or formulas. Often, drawing a portion of a figure
in the text or rewriting a formula will clarify a troublesome point.
The exercises and problems included in the text also play an important
part. The reader who works on them as they appear will test and
increase his understanding of what he reads, and he will be better
prepared to proceed. The problems posed range from easy to difficult.
I have even mentioned some unsolved problems. I have given solu-
tions to selected problems in Chapter 4 in the hope that a reader who
has worked on a problem will find it helpful to compare his solution
with mine.

The manuscript was perused by Mrs. Jacqueline Lewis, Dr. An-
neli Lax, and Professor Leo Zippin and was greatly improved by their
criticisms, suggestions, and additions. I am particularly indebted to



PREFACE 5

Jacqueline Lewis and Anneli Lax for carefully checking the proofs
and the solutions to the problems.

I am grateful to the Ann Arbor Board of Education for the op-
portunity to develop the contents of this book. I give hearty thanks
to my student Robert Titiev of Ann Arbor High School who gave
more than he received. Above all I acknowledge the inspiration and
tutelage provided by my father, Donat K. Kazarinoff; his keenness
of mind, his scholarship, and his magnificent spirit led me into the
world of mathematics.

NicHoLas D. KAZARINOFF
Moscow, U.SS.R.
January, 1961
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CHAPTER ONE

Arithmetic and Geometric Means

1.1 Fundamentals

Let us consider a straight line and choose a point O on it. Because
of our experience with rulers, yardsticks, and measuring tapes, we
can associate, in our mind’s eye, a number with each point on the
line-—a positive number if the point is to the right of O, a negative
number if the point is to the left of O, and zero if it is O. These num-
bers are called real numbers and may be written as decimals. The

Figure 1.1

straight line we have associated with these numbers is called the real
line. In pictures we usually draw the real line horizontally and put
positive numbers to the right of zero. Some familiar real numbers are

1. —3/2, —4 + /5/3, and =. All the numbers we shall be work-
ing with are real numbers. At this point you have every right to
object and say that we really have not defined a real number. This is
correct. It is also true that a careful definition and discussion of real
numbers is at the foundation of mathematical analysis. Such a dis-
cussion is too sophisticated to be presented here but may be found,

7



8 GEOMETRIC INEQUALITIES

for example, in A Course of Pure Mathematics by G. H. Hardy (Cam-
bridge University Press, 1938). On the other hand, a thorough cle-
mentary treatment of some important properties of real numbers is
given by Ivan Niven in Numbers: Rational and Irrational, another
monograph in this series.

When we associate the real numbers with points on a straight line
(as we have done in I'ig. 1.1), we are implicitly asserting that the
real-number system has certain propertics. Since these properties are
so fundamental and important, let me call attention to them. Iirst
of all, we take it for granted that in the set of all real numbers there
is a subset which we call the set of positive real numbers, and that
this set (call it I?) has the following two propertics:

I. If @ is a real number, then exactly one of the following state-
ments is true: a is in I’, —a isin P, a is zero.

II. If @ and b are in I°, then @ + b and a-b are in I°.

Because the real-number system has this subset, we say it is ordered.
We use this property of order when we associate the real numbers
with the real line. If a is not in I” and a is not zero, then we say a is
negative. It can be proved that the real-number system is ordered.
Moreover, it can be shown by means of the definition of multiplica-
tion of real numbers that if a and b are negative, then ab is positive,
and that if a is positive and b is negative, then ab is negative. Of
course, a product of two or more real numbers is zero if and only if
at least one of the numbers is zero. If a is positive, we write a > 0.

The algebraic operations of addition and multiplication have geo-
metric interpretations on the real line. Addition is often thought of
as corresponding to a translation or shifting of the real line. Let us
assume that the real line is horizontal as we look at it in our mind’s

-X o X

L L i

I L] L
. / | \ )
{ t —t
-4x o 4x
t } }

Figure 1 2

eye. Then in order to perform the operation of addition by 4, for
example, we slide the real line to the right 4 units. To perform the
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operation of adding a real number b, we translate the real line to the
right b units if b is positive or to the left —b units if b is negative.
Of course, if b is zero, then no translation is performed. Multiplica-
tion by a positive number is often thought of as being a stretching or
contracting operation. In order to multiply by 4, for example, we
stretch the real line, leaving the origin fixed, so that every point is
exactly four times as far away from the origin as it originally was.
To multiply by —4 we first perform a stretching by a factor of 4,
and we then reflect cach point of the stretched line with respect to 0.
The order in which the operations of stretching and reflection are
performed makes no difference. Multiplication by 1 leaves all points
fixed; multiplication by zero compresses all points into a single point,
the origin.

DeFINITION 1. @ > b (or cquivalently b < a) if and only if
a — b > 0, that is, if and only if there is a positive number h such
thata = O + h.

“g > b” isread “a is greater than b”’;

“a < D" is read “a is less than b.”” The symbolic statement “a < b’
is called an inequality. Geometrically we see that a > b means that
a is to the right of b on the real line. It follows from property (I)
stated above that given any pair of real numbers a and b, exactly
one of the statementsa > b, a = b, and a < b is true.

TuEoREM 1. The relation of inequality s lransilive; that is, if a > b
and b > ¢, then a > c.

ProoF. By the hypothesis of the theorem, there exist positive
numbers h and k such that

a=bb+h and b=c¢+ k.
Hence,
a=(c+k)+h or a=c+ (k+ h).

But & + h is positive since h and k are. By definition, this means
that a > ¢. |f
If either one of the statements a < b or a = b holds, we write

t The symbol ] which appears at the end of the proof will appear at the end
of many proofs as a signal meaning ‘‘this completes the proof.”’
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a < b, which is read as ‘“‘a is less than or equal to b.”” For example,

1 <1 and 2 <3

sitice in each case one of the two possible alternatives “<” or “="

holds.
The next theorem tells how inequalities may be added.

THEOREM 2. Ifa > band ¢ > d, thena + ¢ > b + d.

The proof is just as easy as that of Theorem 1. You should con-
struct the proof yourself.

Note that, if a > b and ¢ > d, ac might not be greater than bd.
For example, 1 > —2and 2 > —3, but 2 < 6. The following theorem
gives the rules of multiplication for inequalities involving positive
numbers.

THEOREM 3. Ifa > b > 0and ¢c > d > 0, then

(1) ac > bd, (2) ac > be, and (3) <

Q-
o

Proor. By hypothesis there exist positive numbers h and k such
thate = b 4+ h and ¢ = d + k unless ¢ = d, in which case the equal-
ity ¢ = d + k still holds with £ = 0. Hence,

ac = (b + h)(d + k) or ac = bd + bk + h(d + k).

The number bk + h(d + k) is positive; therefore, by definition,
ac > bd. You should complete the proof of the second conclusion by
yourself. The third one follows from the second; for, choosing ¢ = 1/a,
we infer that

a-l>b- or 1>?-.
a a

L
a

Finally, by applying the second conclusion to the inequality 1 > b/a,
this time choosing ¢ = 1/b, we find that

]I

1 1 1
7720 T
Before we state the next theorem, let us review the definition of a

positive number raised to a fractional power. Let p be a positive
rational number, and let a be a positive real number. (A number is
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rational iIf it can be written in the form m/n where m and n are inte-
gers, n # 0.) Since p is rational and positive, p may be written as
m/n, where m and n are positive integers. The symbol a™ is defined
to mean

a.ao . -a.
\'\~

m factors

The symbol a'"'" stands for that positive real number z such that

x" = a. Moreover,

min (arn)lin.

a ==
If ¢ is a negative rational number, say ¢ = — p where p is positive,
then
o =L,
ar?

Of course, o’ = 1.

In this book we shall never have occasion to consider any number
raised to an irrational power. However, for the sake of generality, we
state the next theorem without restricting p to be rational. The
problem of deciding whether such numbers as

(Vv2)s o

arc rational or irrational once they have been defined is of great
difficulty.

THEoOREM 4. If a > b > Oand if p > 0, then a” > b, if p < 0,
then a® < b,

Proor. We shall prove the theorem only in case p is a positive
integer, and we shall leave to the reader the task of proving it for
any rational number p. (A complete proof is given by E. Becken-
bach and R. Bellman in their monograph An Introduction to In-
equalities.) Let p be given. It follows from the hypothesisa > b > 0
and Theorem 3 that

@ > 0.

If p is 2, we have nothing more to prove. Otherwise, we again apply
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Theorem 3, this time to the inequalities
a>b>0 and & >V
and we reach the conclusion
a > b
If p is 3, we are done. Otherwise, we continue in this way; and after
exactly p — 1 such steps in all, we obtain the desired inequality

a® > 0% |}

The above theorems provide the basic facts about operations with
inequalities which we shall need. Later on we often use them without
calling attention to this fact by a specific reference. Before proceed-
ing to use these theorems in our investigations, however, we shall
apply them in some simple situations so as to see just how often we
do use them and how important they thercfore are. The solution to
the following arithmetical problem illustrates them well.

ProBLEM. Which is larger, /7 + /10 or v/3 + +/17?

One way to decide is to find these numbers in a table of square roots
or simply to compute the square roots to a few decimal places. We
shall show that v/3 4+ /17 > /7 + +/10. Our demonstration
begins with a trivial observation and proceeds with the aid of the
theorems to reach the desired conclusion. To see how the solution
was discovered, one reverses the order of the reasoning. In doing the
exercises which follow this example, you will find that the most
natural method is to assume that the desired result is true and to
deduce from it various other inequalities until you obtain one which
you know is true. Next you must verify that cach step c¢an be re-
versed. If you succeed, you will have built a proof which leads from
the known inequality to the one desired. The example above was
deliberately chosen to have a long solution in order to illustrate the
use of each of Theorems 1-4. Moreover, since the difference hetween
V3 4 A/17 and v/7 + /10 is small (about .05), it is not surpris-

ing that one cannot readily select the bigger of these two numbers.

SoLutioNn. That 51 > 49 is true by Definition 1 because
51 = 49 + 2, and 2 is positive. Applying Theorem 4, with p = 1/2,
to this inequality, we find /51 > 7. Irom Theorem 3, with
a = +/51,b =7, and ¢ = 12, it follows that

124/51 > 12-7 = B84,
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We find, by adding 213 to both sides of this inequation and using
Theorem 2, that

213 + 124751 > 297,
But 297 > 280 = 4-70. Thercfore by Theorem 1,
213 4+ 124/51 > 1-70.
We next observe that
213 = 0 4+ 204 = 9 + 4.51 = 0 + (24/51)
and that
213 + 124/51 = 0 + 2.3 2+/51 + (24/51)*
= (3 + 24/51)".
Thus, by Theorem 4 with p = 1/2, we obtain the conclusion
3 + 24/51 > 2+/70.
This inequality ean be rewritten in the form
34+ 17 + 24/51 > 17 4+ 24/70  (Theorem 2);
or, sinnce 51 = 3-17 and 70 = 7-10, it can be rewritten in the form
(V3)' + 2:4/3. V17 + (V/17)°
> (V) + 2:4/7-4/10 + (1/10),
which is the samc as
(V3 + V1) > (V7 + V10)%

Again applying Theorem 4 with p = 1/2, we obtain the promised
result:

V3 4+ V17 > /7T + Viol)

As we have already remarked, there are much shorter ways of ob-
taining the same conclusion if one is willing to employ more advanced
results of clementary algebra. The following exercises provide similar
illustrations of our basic theorems.
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Exercises

1. Show that 2 + +/7 < 5.

2. Show that 2 + v/7 < 4.
3. Prove that if ¢ < 1, then 2 — 2a > 0.
4. Which is larger, /5/12 4+ 4/1/5 or \/1/3 + +/2/7? Prove your

conjecture (guess).

5. Which is the greater number, 2(4/2 + 4/6) or 34/2 + /32
Prove your conjecture.

A slightly more sophisticated mode of using the fundamental
theorems is given below. Let us consider the number

1 1
+\/_+\/_+ -+ ,_9999-1-100.

How big 1s it? We might find it difficult to make an accurate guess.
If we had a computing machine and enough time, we could make a
computation of this number accurate to two decimal places or more.
However, inequalities will help us to make a good estimate in a much
shorter time. My purpose is just to familiarize you with the applica-
tion of our basic theorems, so forgive me if I keep to textbook tradi-
tion and begin with “a rabbit out of a hat”; namely,

THEOREM 5. For every positive integer n,
2\/n+1—2\/7_t<~%<2\/5—2\/n—1.

To prove this statement 1s not so difficult. The hard part is to think
of it. You would not think of it unless you had already performed
some experiments with inequalities. Experimentation is a typical
occupation of mathematicians. We conduct many, many cxperiments,
only our experiments are made with numbers, geometrical figures,
and various other abstract objects. Our experiments, like those of
natural scientists, are mostly failures. Occasionally they are success-
ful, and we discover a theorem. Then it often happens that more
work is nceded to give a rigorous proof of the conjectured theorem,
which we have come to believe is true by experiment. One might
discover Theorem 5 by experimenting with the obvious statement
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that v/n + 1 > 4/n . The following proof is just a successful ex-
periment.

Proor. Since v/n + 1 > /7,

Vn + ; + Vi 2‘2/’7‘. (Why?)

Therefore, by Theorem 3,

(1) 2

1
ViEl + v

Now 1/4/n appears on the right. Sinee this is the quantity we are
trying to estimate, it is natural next to eliminate the square roots in
the denominator on the left. We recall the identity

(z+y(xz—y) =2 -,
which we specialize to the form
(Va+1+va)(vn+1-vn)=(vVn+t1) - (vn)

The right-hand member of this identity is obviously the number 1.
Hence, multiplying the numerator and denominator of the left-hand
member of the last inequality by v/n + 1 — 4/n, we find that

= 2(v/n + 1 — +/n).

(2) 2
Vit 1+ /7

The statements (1) and (2) together reveal that

2(v/7 F 1 — /) < -\}ﬁ ,
which is one half of what we wish to prove. The observation that
v/n > 4/n — 1 will enable you to prove the other half in a similar
way. Try it! | Which of our basic theorems have we used in this
proof?

We shall now use Theorem 5 to solve the problem at hand. Let us
“write down” the conclusion of the theorem in the ten thousand
particular casesn = 1,2, ---, 9999, 10*. (In the case n = 1 we can
afford to replace the right-hand estimate by an equality since the
remaining 9999 cases will still involve inequalities. Doing this we get
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a better final estimate.):
2v/2-2< 1 <1,
243 — 24/2 < ~\—/l—§ < 242 - 2,

244 — 24/3 < 7% < 24/3 — 24/2,

2+/10F — 24/3999 < 7§I5T9_§ < 24/9999 — 21/9998
and finally,

24/10001 — 2100 < —1—(1)—0 < 2-100 — 24/9999.
To obtain an approximation for the number we are considering, we
add the corresponding members of these incqualities to each other
one by one and observe that all but the first and last terms in the
sum

24/10001 — 2-100 + 2-100 — 2+/9999
+ -+ 243 -2/2+2/2-2

of the left-hand members appear twice, once with a plus and once
with a minus sign. The same is true of the sum of the right members.
The inequalities we obtain after this addition are, by Theorem 2,

1 1
2410001 — 2 <1 4+ —F< 4+ -+ + — < 2:100 — 1.
000 <1+ 5 + + 100 < 00
Since 4/ 10001 > 100, we have thus shown that
1 1
198<1 —_—— A —_.'._<199

+ V2 N T V1o
Of course, this estimate is a crude one, but it is much better than a
mere guess.

If we adopt a suitable notation, we can write down the preceding
argument more neatly. This notation is called summation notation.
We define

k=n

2.a tobe @+ a4+ - + any + a,.

k=1
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We read “a;”” as “a sub k” or as “a k”, and we read “ > s=T ai” as
“the sum from k equals 1 to k equals n of a sub k.”” We call k the
index of summation. For example,

j=4

foamd
§k2=1+4+9+16, D logj = log2 + log 3 + log 4
. :

=2

and
1=x3
i1, 2t 3t
SErnintste-ateot m
(By definition, k! = 1-2-3- --- -k when k is a positive integer, and

0! = 1. For example, 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120,
and 6! = 720.) If the choice of the index of summation is clear, as in
these examples, we suppress it and simply write

4

Zic, Elogj, andz(3+w

1

The number we estimated was 2104 1/4/k. Theorem 5 states that
2(VE+1— &) <U/vVE<2(WVk— VE=1)fork=1,2, -
Hence by Theorem 2 and from the fact that 2(4/2 — 1) <1 < 1
(the last strict inequality is deducible from the inequality 8 < 9 by
means of our theorems), we conclude that

104 104

2(\/§—l)+22(x/k+1—xf)<2~—~

104

<1+;2(\/E— VEk —1)

or
104
1

2(4/10001 — 1) <> — < 2-100 — 1.
1 Vi

From this result we obtained our final estimate. We shall continue
to use summation notation whenever it is convenient.

ProBLEM 1. Show that for all positive integers n

1 3 5 2n—1 1

[ e e

1
vin + 1 2 4 6 2n w/3n+

Can you improve this approximation?
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1.2 The Theorem of Arithmetic and Geometric Meanst

Consider the conjecture: Of all rectangles of area one, the square
has the smallest perimeter. It is clear that a long, skinny rectangle of
unit arca has a much greater perimeter than a fat one having the
same area, and the natural guess is that the square has the least
perimeter as it is the fattest rectangle. We now have a credible con-
jecture, but how can we prove it? One possibility is to restate it in
algebraic form and to attempt to prove the algebraic statement. Let
us do this.

Suppose we are given a rectangle, and we choose our unit of meas-
ure so that its area is 1 sq. unit. If its length is x, then its width must
be 1/x and its perimeter 2[x + (1/x)}]. The perimeter of the square
with area 1 1s 4. Thus we may restate our conjecture in the form

2(:c+£)24 if >0,
with equality only if x = 1; or
(3) ph122 i 23>0,

with equality only if x = 1. The next problem is to find a way of re-
ducing this statement to one whose truth we already know. The
thing to do is to multiply both sides of the inequality (3) by z. Then
it becomes

©£+1>2x if z>0,

which is equivalent to

£—2x+1>0 if z>0.

The combination (z — 1) appears to the eye now, and we rewrite
the last inequality as

(x— 1220 if z>0,

This statement is obvious since the square of a real number is never
negative.

t Several proofs of this theorem, each different from the one given here, may
be found in Chapter 4 of K, Beckenbach’s and R. Bellman’s An Introduction to
Inequalities in this series,
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If we can reverse our reasoning, we shall have discovered a proof
of (3). Let us try to do so. By Theorem 2, the fact that

(x — 1)>* >0 (for any real number z)
is equivalent to the inequality
2+ 12> 2z

If x > 0, we may apply Theorem 3 with ¢ = 1/x to this inequality
and find that

x+%22 if z>0.

Clearly, equality holds if and only if z = 1. |}

Our main objective in this chapter is to generalize the simple
theorem embodied in (3). The result (3) says that the sum of two
positive numbers whose product is 1 is a minimum when they are
equal. What can we say if more than two numbers are involved? A
direct generalization of our inequality (3) is

THEOREM 6. The sum of n posilive numbers whose product 1s equal to
1 s always greater than or equal lo n; equalily holds if and only if all
the numbers are equal (to 1). That 4s,if a; > 0 (z =1, ---, n) and
if ¢y-a2 - Qnyran = 1, then

n
Zla; Z n,

with equality holding if and only if a; = 1 for each 1.

We postpone its proof to page 23.

A geometric interpretation of this theorem is: If the volume of an
n-dimensional box (‘‘rectangular parallelepiped’) is 1, the sum of the
lengths of its edges is least when 1t is an n-dimensional cube. You are
most familiar with the cases n = 2 and n = 3 of this theorem. Of
course, one cannot easily visualize a space with dimension greater
than 3. Yet today mathematicians frequently consider problems in
spaces of dimension greater than 3 and even in spaces of infinite
dimension.
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The case n = 2 of Theorem 6 may be stated in another form: If
b, and b, are positive, then (use @, = b,/b:, a2 = bs/by)

b

4) -

b
+ = >
b1—2’

with equality only if b, = b,.

ProsLem 2. Given n positive numbers b,, -+, b,, what is the re-
statement of Theorem 6 in a form like that of inequality (4)?

DeFINITION 2. The arithmetic mean A of n numbers a,, -+- | a, is

a + a2+ -+ + an

n

The arithmetic mean of a collection of numbers is often called their
average.

If the truth of either one of two theorems implies the truth of the
other, then we say that the two theorems are equivalent. The follow-
ing proposition is equivalent to Theorem 6 but is more convenient
to prove. We shall prove it first and then use it to prove Theorem 6.

THEOREM 7. The product of n positive numbers with a given sum 1s
grealest when they are all equal; that 1s, if a; > 0 (i =1, ---,n)
and if D_ra; is fired, say at nA, then

(5) a Qs -t Qy S An’

with equality if and only <f

a1=a2=.-- =al’l-

Geometrically this theorem says: Of all n-dimensional boxes which
have the sum of the lengths of their edges the same, the n-dimensional
cube has the grealest volume. Still another equivalent geometric state-
ment of the theorem is: If a straight line segment is subdivided into a
given finite number of parts, the product of their lengths is a maximum
when they are equal.

As we promised above, we shall first prove Theorem 7, and then
we shall use this theorem to prove Theorem 6. The proof of Theorem
7 which is given below is based on the idea that if the n given num-
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bers are not all equal (to their average), then, two by two, we can
decrease those above the average and increase those below it until
the numbers are all equal, all the while increasing their product. It
would be difficult to work with n numbers all at once; it is much
better to approach them two at a time. Since the proof is slightly
complicated at first reading, an example which illustrates each step
in the proof is presented in parallel with it.

ProoF ofF THreorEM 7. If all the n numbers a, originally given are
equal to A, then equality holds in (5) as stated. If one of the given
positive numbers is unequal to A, then there is at least one larger
than A and at least one smaller than A.

Pick one smaller and one larger,
call them a; and a;, and write

ag=A—handa, = A + k.

Of course, h and k are positive.

We shall now change a; and a,

so as to increase the product of

the n numbers a; while keeping

their sum fixed at nA.

Let a; = A, and let
ap=A+k — h

Then
ar+a;=24+k—h
=a + a;
hence,

a4 a+a+ -+ oa
= Za.- = nA.
1

For example, suppose n = 4, and
suppose the given positive num-
bers arec 2, 3, 5, and 6. Then
A = 4, and none of the given
numbers is equal to 4. We may
choose @, = 3 and a; = 6. Then
ag =4 — land a; = 4 + 2, so
that h = 1 and k = 2.

We shall now change 3 and 6 so
as to increase the product of the
four given numbers while keep-
ing their sum fixed at 16 = 4-4.
Let a1 = 4, and let

aa=4+2-1=05.

Then

ai+a=4+@4+2-1)
= 4-1) 4+ (4+2)
= a1+ a;

hence,

44+54+2+5

=3+6+2+5=44.

! / ., e .
Clearly a;, and a., are positive. We now have a second collection of n
positive numbers whose sum is the same as the sum of the original
n numbers.
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We next observe that
a;a; > ma, .
Clearly, this is true since
aas = A(A + k — h)
= A* + (k — h)A,
and since
map = (4 — h)(A + k)
= A*+ (k — h)A — hk,
from which it follows that
a;a; = aqa, + h-k,
where h-k is positive. By Defini-
tion 1, this means that
aia; > 1y .

Thus,
/ [
alnaznaan PO -an
> aA1-Qo-Q3- -+ -~y .
/ !
If now A = a1 = a, = a3 = ---

We next observe that
4.5> 36
since
4.5 =44 +2 —1)
=44+ (2-1)4
and since
= (4 —1)(4 + 2)
=44+ (2-1)4 - 1-2,

Thus,
4-5-2-5 > 3:6-2.5.

= a,, there is nothing more to

prove. If not, then there is at least one of the new set of n numbers
a1, as, as, ---, a, which exceeds A and at least one which is less
than A. Call them b, and b,. Repeating the above argument with
the roles of a; and a, taken by b, and b, , we can find another set of
n positive numbers with sum n-A4 whose product is larger than the

product of the set a1 , as , Qy, *

If werepeat this process over and
over again, then after at most
n — 1 steps (including the first),
we shall have constructed a set
of n positive numbers all equal
to A with their sum equal to
nA and with their product larger
than the product of any other n
positive numbers with the same
sum. (It requires thought to see
that at most n — 1 steps are re-
quired.) |

’ an -

In our example, the first set of
numbers is (3, 6, 2, 5). The sec-
ond set is (4, 5, 2, 5). After the
second step, the set will be
(4435) (b1—2b2—5
by = 4, and b, = 3.) After the
third and last step the set will be
(4, 4, 4, 4). Note that we could
have chosen a¢; = 2 and a, = 6.
Then the second set would have
been (4, 4, 3, 5) and the third
set (4, 4, 4, 4). Thus the argu-
ment may be completed in less
than n — 1 steps for some sets
of numbers.
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We now use this theorem to prove Theorem 6.

ProoF oF THEOREM 6. We are given a; > 0 (¢ =1, .-+, n)
with a;-as- -+ -a, = 1; we wish to prove that .1 a; > n, with
equality holding only if all the a; equal 1. We reduce the problem to
the previous one by a device which is used over and over again in
mathematics. Namely, we divide each of the given numbers by the
sum of all of them. When we do this, we obtain n new numbers whose
sum is 1, and we can apply Theorem 7. Thus we let

s= 2. a, and b.f=gf.
1 s

Since the arithmetic mean of the b/s is

Iy =-ly @
Ni=1 N i=1 $§
_1 s_1
s n’
we conclude from Theorem 7 that
Iyt . . . 1
bi-bg- --- b, < (ﬁ) , with equality only if by = --- = b, = g
In terms of the original numbers a; , this statement is
ay-Qe-az: -+ ° Oy S (l) n |
s-s-s . * e -s n
Equality holds only if @, = a, = --- = a,. But by hypothesis
a-ay -+ ~a, = 1. Therefore

Ay Qo+ Oy _ (1) S (1)
s.s. ... .s s n
or, by Theorems 3 and 4,
n < s,

with equality holding only if each a; = 1. |

You yourself should demonstrate that Theorem 6 implies Theorem 7.
As a simple application of Theorem 6 for n = 2, we prove that f
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x* 15 positive (that 1s, if x s a real number different from zero) then

T L
14+ 24— 2
Clearly if z* > 0,
£ 1
1+ 4 !
x

if z is not zero. Equality holds only if x = =+1. }}

Note. By setting x = 0 in the final inequality, we see that the in-
equality holds for x = 0 and thus for all z.

ProBLEM 3. Show that if @ > 1, then logy a + log, 10 > 2.

DeriniTION 3. The geometric mean G of n positive numbera
a, -+, ay, is the nth root of their product:

G=Wal- e n .an_

Theorems 6 and 7 are equivalent to the famous and useful Theorem
of Geometric and Arithmetic Means:

THEOREM 8: The geomelric mean of n positive numbers is less than or
equal to their arithmetic mean. The two means are equal if and only if
the n numbers are equal.

Proor. The desired conclusion,
G < A,

follows directly from (5) if one applies Theorem 4 with p = 1/a.
Equality holds only if each a; = G. |}

In a similar way, any one of the last three theorems can be used to
prove each of the other two. You should attempt to do this.

We shall describe several geometrical applications of the last three
theorems in the next chapter. For the present we content ourselves
with two. The first is: Of all three-dimensional boxes with a given sur-
face area, the cube has the grealest volume.
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Proor. Let a, b, and ¢ denote the length, width, and height of a
box with surface area S and volume V. Clearly,

V=abc and S = 2(ab 4+ bc + ca).

The hypothesis that S is fixed means that the sum of the three quan-
tities ab, bc, and ac is fixed. This suggests applying Theorem 7 or 8
to them. The result is

S

25 1/3
<=
(V)" <2

ab + bc + ca
3

S 32
r< ()"

Equality holds only if ab = bc = ac. From this result we see that
the volume is greatest when ¢ = b = ¢, that is, when the box is a
cube. |

(ab-bc-ca)'® <

Thus,

The second is: The right circular cylinder of volume V which has the
least surface area 13 the one whose diameter is equal lo ils altitude.

Proor. We denote the surface area, radius, and altitude of a right
circular cylinder of volume V by S, r and h, respectively. Now,

S = 27x(r? 4+ rh) and V = wrth.

S=21r(r2+-z)
xr

_orr+ V1V
—21r(r +21rr+21rr)'

We can thus think of S/(6x) as the arithmetic mean of the three
numbers 72, V/(2xr) and V/(2xr) so that, by Theorem 8§,

2\ 1/3
_S_>(V_) .
6r — \4n?

But the right-hand member of this inequality is fixed. Therefore, S
is smallest when equality holds, that is, when

P’ = 21 or V = 2xr°,

r
Thus, S is smallest when 2r = h. |}

Therefore,
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ProBLEM 4. Prove that if @ and b are positive,

n+l = a + nb _
(6) Vab™ < 1 (n=1,2,3,-+)

with equality holding only if a = b.
ProBLEM 5. Show that for n > 2,

n!<(n-2'-1).

ProBLEM 6. Prove that if a, b, and ¢ are not negative, then

9abe < (a + b+ ¢)(bec + ca + ab).

ProBLEM 7. Use the inequality (3) of this section to show that if
a;: >0 (7' = 1,23 ,n),then

OROHES

In what follows we shall occasionally employ the notion of abso-
lute value. We next give its definition and briefly discuss its use.

DEFINITION 4. The absolute value of a number x is z if z > 0 and
is —x ifzx <O.

'The absolute value of z is denoted | z |. Definition 4 says that
lz|= 2 if 220

and
|lz| = —2 if 2 <O0.

It follows from this definition that |.z |* = 2* and, more importantly,
that

|2 ] = /22

For example,
| =6 = v/(—=6) = v/36 = 6.

If the points on a straight line are labeled with real numbers as ex-
plained on p. 7, then |z | is just the distance from the point z, or
—z, to the origin. The number |z — y | is the distance from the
point z on the real line to the point y on the real line. It is also the
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distance from the point —z to the point —y. Clearly,

lz—yl =]y — =l

If there were someone who did not have an intuitive grasp of the
concept of the distance between points on a straight line, then the
preceding remarks could be used to define the concept for him. As a
matter of convenience, in subsequent chapters we shall frequently
use the symbols 4B to denote the distance between geometric points
A and B.

It is important to note that a single inequality such as
lz| < |yl

is equivalent to two simultaneous inequalities. For example,
—3 < z < 3 is equivalent to | x| < 3. The equation | x| = 3 has
two roots: 3 and —3. Obviously, | 2| = 0 if and only if z = 0.

ProBLEM 8. Show that |e| — |b| £ |a+b| L |a|+ | b]|. What
is the geometric interpretation of these inequalities?
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CHAPTER TWO

Isoperimetric Theorems

2.1 Maxima and minima

The problem, which we met in Section 1.2, of determining the
rectangle of smallest perimeter among all those with area 1 is but
one of the problems of maxima and minima in geometry. Problems
of this kind were studied by Greek geometers before the birth of
Christ. Of course, it is uncertain who were the first people to pose
problems involving maxima and minima, but many arise quite nat-
urally and might have, and might yet occur to people in a primitive
culture. l'or example, what is there about the shape of a circular
cylinder that causes many flower stems, tree trunks, and many other
natural objects to take its shape, why are small water droplets and
bubbles. that float in air approximately spherical, and why does a
herd of reindeer form a circle if attacked by wolves? Admittedly,
these problems involve mathematics only indirectly, but they are
capable of stimulating mathematical thought. There are problems
which are more directly mathematical. I'or example, what shape
should a plot of ground be so that a given length of fence will enclose
the greatest area, and what are the dimensions of a cylindrical con-
tainer so that it will contain the greatest volume for a given surface
area? Can you think of other examples? The Greeks were mostly

29
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interested in natural phenomena such as the hexagonal arrangement
of cells in honeycomb, but they also had practical problems. Many
were connected with war (Just as in our own day!) such as the prob-
lem of estimating the size of an enemy’s camp. One would not like
to be in the enemy’s neighborhood at dawn with too few men. The
assumption was that the number of men was roughly proportional
to the area covered by their camp. It was common to measure the
size of an enemy’s camp by the length of its perimeter. Often this
procedure gave misleading conclusions, and hence, a better, more
mathematical solution to the problem was sought.

The mathematical questions underlying many of the examples
cited above are of two kinds: Of all geometric figures having a certain
property, which has the greatest area or volume; and of all figures
having a certain property, which has the least perimeter or surface
area? Loosely speaking, both these problems are called isoperimetric
problems; “isoperimetric” means ‘“‘with the same perimeter.” The
famous Isoperimetric Theorem, which took mankind over two thou-
sand years to prove after it was discovered, gives the solution to a
broad class of these questions.

THEOREM 9 (The Isoperimetric Theorem).
(A) Of all plane figures with a given perimeler, the circle has the greatest
area.
(B) Of all plane figures with a given area, the ctrcle has the least perim-
eler.

In language appropriate to three-dimensional space, this theorem

becomes:

(A) Of all solids with a given surface area, the sphere has the greatest
volume.

(B) Of all solids with a given volume, the sphere has the least surface
area.

In this chapter we shall discuss several isoperimetric theorems.
We begin with some simple ones, and we shall conclude with a dis-
cussion of the Isoperimetric Theorem itself. I'irst permit me to men-
tion a little of the history of this illustrious theorem. The solution of
the isoperimetric problem for rectangles was already known to Eueclid,
who lived about 300 B.c.; and it was probably known long before, as
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many of the theorems in Euclid’s Elements are not Euclid’s original
work. Archimedes (287-212 B.c.), one of the greatest mathematicians
of all time, knew the statement of the Isoperimetric Theorem. By
the beginning of the Christian era, the study of maxima and minima
in geometry had considerably advanced. We know, in fact, that
Zenodoros, who lived sometime between 200 B.c. and 90 A.p., wrote
a book entitled Isoperimetric Figures. There are, unfortunately, no
copies of his book left for us to read; but his results were described
and proved again by Pappus of Alexandria, who lived about 300 A.p.
We do have copies of his work [Pappus d’Alexandrie, La Collection
Mathématique, Book V, edited by P. VerEcke, Brouwer, Paris (1933)].
Pappus, of course, knew the Isoperimetric Theorem and, what is more
interesting, thought he had a proof of the theorem that a circle has a
greater area than any polygon with the same perimeter. In the main,
his work is exact and easy to follow.

Little progress was made from the work of the Greek geometers
until that of Simon Lhuilier, a Swiss of the late eighteenth century,
and of his fellow countryman Jacob Steiner (1796-1863) after him.
The methods developed by Lhuilier and Steiner in their research
have had great influence on mathematics and are still being used.
The methods of Steiner were essentially geometric (rather than
algebraic or analytic), that is, synthetic methods. In other words,
he reasoned from the geometrical properties of figures without resort-
ing to theorems of algebra and calculus and the method of analytic
geometry. (You used, or are using, synthetic methods in your study
of plane geometry.) Through his methods Steiner solved many prob-
lems which had resisted solution even with the help of the calculus
“invented” by Newton and Leibniz in the seventeenth century. In
turn, Steiner’s work stimulated a growth in analytical mathematics,
especially the calculus of variations. This was because of the error in
his proofs of the Isoperimetric Theorem. The error was found by the
German mathematician Karl Weierstrass, the founder of the rigor
characteristic of modern mathematics. In order to fill the gap in
Steiner’s proofs, Weierstrass had to develop the calculus further. He
had to put the whole subject upon a rigorous, logically sound basis.
Steiner’s work possesses a great deal of charm. I have tried to con-
duct the discussion of this chapter in the spirit of Steiner and to
illustrate his methods at every opportunity.
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2.2 Isoperimetric theorems for triangles

Polygons are among the simplest geometric figures, and triangles
are the most elementary figures among polygons. I‘or this reason the
foundation of our investigations of isoperimetric theorems consists of
two statements about triangles.

THEOREM 10.
(A) Of all triangles with a common base and perimeler, the isosceles
triangle has the grealest area.
(B) Of all triangles with a common base and area, the isosceles Iriangle
has the smallest pertmeler.

We shall also make use of a theorem which can be proved in the
same way as Theorem 10A is proved, and which in fact is a stronger
theorem.

Tueorem 10A’. If lwe triangles have the same base and the same
pertmeler, the one with the smaller difference in the lengths of ils legs
has the larger area.

We are now going to prove Theorem 10A; and in order to give the
broadest possible understanding of the theorem, we shall prove it in
two quite different ways and indicate still another. It is not common
in textbooks to give several proofs of a theorem, but I feel it should
be. Not only does this procedure lead to a deeper understanding of
results by revealing their connections with various ideas, but it takes
into account the fact that the proof which is most easily understood
by you might be difficult for a friend to grasp, while he or she might
best understand another proof.

I strongly urge you in reading the proofs that follow to construct
your own figure or figures in step with the proofs. A partially con-
structed figure is often more revealing than the finished illustrations
appearing in a text. You should experiment with variations of your
own as they occur to you. Find out what does not work as well as
what does. This is a way one discovers a proof of a theorem or under-
stands a proof presented on a silver blackboard.

ProoFr 1 oF THEOREM 10A. Let ABC be an isosceles triangle with
base AB, and let ABD be another triangle with the same base and
perimeter. This implies that AC + BC = AD + BD. (The symbol
XY denotes the distance from X to Y.) Since ABD has the same
perimeter as ABC but is not isosceles, it must have one side, say AD,
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c
G

F

Figure 2.1

such that AD > AC and another side BD such that BD < AC
(see I'ig. 2.1). It also must be that AD intcrsects BC at I, where
E = D. If it did not, either D would be interior to, or on the boundary
of, AABC [see Fig. 2.2(a)] or C would be interior to, or on the bound-
ary of, AABD [see I'ig. 2.2(b)]. That neither of these situations can
occur follows from the theorem which states that the sum of the
lengths of two sides of a triangle is greater than the length of the third
side. The reasoning is simple but perhaps not obvious, and therefore
I describe it. D

(c)
Figure 2.2

First we suppose D is interior to AABC and that E is the inter-
section of BC and AD cxtended. Then the theorem just quoted pro-
vides the incqualities

AC + CE > AD + DE
and

DE + EB > BD.
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Therefore, by Theorem 2,
AC + (CE + EB) + DE > AD + BD + DE

or

AC + CB > AD + BD.
This last statement contradicts the hypothesis that
AC + BC = AD + BD.

If D = E, then the above reasoning again leads us to a contradiction
of the hypothesis. Thus D is exterior to AABC as we claimed.

Next, suppose that C is inside or on the boundary of AABD as
pictured in Fig. 2.2(b). If this were so, then by the same reasoning
as before, we could deduce that AD + DB > AC + CB, which
again contradicts the hypothesis. We now proceed with the proof of
the theorem.

Let F be on AE with EF = EB. This choice of F is possible since
BE < AE, a fact guaranteed by the inequality

Angle EAB < Angle CAB = Angle EBA.

Also construct EG on EC (perhaps extended) with EG = ED. We
shall prove that G actually does lie between C and E. Since AEFG is
congruent to AEBD, we will then know that the area of AABC is
greater than the area of AABD. To prove that G lies between C and
E, we first observe that

FG = BD (AEFG = AEBD)

and

AC + BC = AD + BD (by hypothesis).
We now see that
AC + BC = AF + FD + F(@
= AF + BG + F(
= AF + BC £+ CG + FG

or

AC = AF + CG + FG,

the minus sign or the plus sign being used according as G lies between
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E and C or beyond C. The alternative
AC = AF + CG + FG

is impossible since a straight-line distance is the shortest distance

between two points; hence, G lies between E and C.

Let the area of a triangle XY Z be denoted by 7(XYZ). Then

T(ABC) = T(ABE) + T(EFG) + [T(AFG) + T(ACG)]
= [T(ABE) + T(BDE)] + [T(AFG) + T(ACQ)]
= T(ABD) + [T(AFG) + T(ACG)).

Consequently,
T(ABC) > T(ABD). |}

Before we go on to the second proof of Theorem 10A, let us agree
upon some notation and recall a theorem from plane geometry. Once
and for all let us agree that if A B( is a triangle, then a, b, and ¢ denote

the lengths of its sides; namely,
a=BC, b=AC, «c¢= AB.

Also let us agree that P is its perimeter, and 7' is its area.
The theorem we wish to recall is due to Heron.

TueoreM (Heron). For any triangle ABC,

(7) 167* = [(a 4+ b)* = [ — (a — b)),
and
(7) 16T* = P(P — 2a)(P — 2b)(P — 2¢).
A
!
h
l«— €
B D C

Figure 2.3

Proor. Let h denote the length of the altitude AD (see Fig. 2.3),

and let e = DC. Then

¢ —(a—e)l=h=>0-—-¢
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Thus,
¢ — o8 + 2ae = b

or, since a = 0,
e = —1—[a2+b2—02].
2a

The area of a triangle is half the product of the lengths of the base
and the altitude. Using this theorem and the value b* — ¢* for h*, we
find that

2T = ah,

Il

4W=&ﬁ=ﬂ#—ﬁ=&W—ﬁﬂ£+w—ﬁm
16T* = 4a®V’ — (&’ + b — %)’
= [2ab + (& + b* — ¢*)][2ab — (a® + b — ()],
= [(a + b)* = [’ — (a — b))

This proves formula (7). Since cach factor of the right member is
a difference of two squares, it can be further factored and written in
the form

(ae+b+c)yla+b—c)c+a—0>b)(c—a+d).

If we now write P in place of @ + ¢ 4+ b, we observe that we can
write (7) as (7). }}

You are perhaps more familiar with the theorem in the less con-
venient form

T = [s(s — a)(s — b)(s — ¢)]*%,

where s = /2. This is obtained by dividing both sides of (7’) by 4
and by then taking square roots of both members of the resulting
equality. The second proof of Theorem 10A is based upon (7).

ProoF 2 oF THEOREM 10A. Examining (7), we notice that 167"
is a product of two factors. If P and ¢ are fixed, then so is (¢ + b);
thus the first factor is fixed. Hence the product 167* increases if the
second factor increases. This is the case if a — b decreases. The second
factor is greatest when a — b = 0; hence 7T is greatest when a = b. |
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Exercise. Use the reasoning employed in one of the two proofs of
Theorem 10A to prove Theorem 10A’.

ProBLEM 9. Give a third proof of Theorem 10A using Theorem 10B.
Hint. Read the proof that Theorem 10A implics Theorem 10B, below.

Heron’s formula can also be used to prove Theorem 10B.

Proor or THEOoREM 10B. Since ¢ is fixed by hypothesis, I’ is small-
est when a + b is least. But since T is also fixed by hypothesis, the
product 167* of the two factors [(a + b)* — ¢*] and [¢* — (a — b)7
in (7) is constant. Hence, the first factor is smallest when the second
is greatest. But the first factor in Heron’s formula (7) is least when
a + bis least. Thus, @ + b is least when the second factor is greatest,
that is, whena — b = 0, or a = b. |

Another proof of Theorem 10B, which is independent of the one
above, is contained in the demonstration found at the end of Sec-
tion 3.1, in Chapter 3.

Theorems 10A and B arc equivalent, as we can casily show. We
shall give a full demonstration of the fact that the first implies the
second. The converse is posed as Iroblem 9.

Proor THAT THEOREM 10A 1MPLIES THEOREM 10B. Let A tbe any
triangle with arca 7' and perimeter I’. Suppose A; is an isosceles tri-
angle with the same base and area as A but with perimeter I, . We
shall prove that P > I’,, with equality only if A is isosceles.

Suppose A 1s an isosceles triangle with the same base as A, with
perimeter I° and with area T, . Theorem 10A guarantees that

T, > T.

Since A, and A, have the same base and are both isosceles, this im-
plies that the perimeter P of A, (and hence of A) is larger than P, . |

It is casy to illustrate the above proof with an example. Let A be
a right-angled triangle with sides 3, 4, and 5 units in length. Then
T = 6 and I’ = 12. See Fig. 2.4.

Let BC be the base of A. Then A;, anisosceles triangle with the
same base and area as A, has legs of length 4/13 and perimeter

t It is occasionally advantageous to use the symbol A’ (read ‘‘delta’) ns
the name of a particular triangle instead of as a symbol for the word ‘‘triangle.”
This is the case in the present instance
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|
l
l
1
|
!
AI 2

Figure 2.4

Py = 4 4+ 24/13. Clearly, 4/13 < 4; hence
Pr=44+24/13<4+4+24=12=P.

Now A:, an isosceles triangle with the same base and perimeter as
A, has legs of length 4 (in fact, A, isequilateral), and T, = 4 /3.
As expected, T, > T, since 44/3 > 6.

A natural and good question which could now be asked is: are there
theorems related to Theorem 10 which we can state and prove?
Before you proceed with your reading, try to imagine some. The most
obvious one from the point of view of its connection with Theorem 10
is the isoperimetric theorem for triangles; namely,

Tueorem 11A. Of all triangles unth a given perimeter, the equilateral
triangle has the greatest area.

We shall present three proofs of this theorem, cach with its own
merits. The first proof is essentially an illustration of Theorem 7, see
page 20, and thus really depends upon the Theorem of Arithmetic and
Geometric Means. The second one 1s long but illustrates a method of
great importance in mathematics. The third is almost as short as the
first and reflects geometrically the algebraic construction in the proof
of Theorem 7.

Proor 1. Let ABC be any triangle. Since I’ is fixed, formula (7)
tells us that 167* is greatest when (P — 2a) (I’ — 2b) (P — 2¢) is
greatest. According to Theorem 7, this maximum is achieved when
P —2a=P—2b= D — 2¢ that is, when a = b = ¢. Consequently,
T is a maximum for an equilateral triangle. |

Proor 2. This proof is due to Simon Lhuilier. It involves the
method of successive approximations. Since this method is in constant
use among mathematicians even today, it is well worth presenting to
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you in this simple context. It will also give you the opportunity to
become better acquainted with the notion of a limit.

Suppose that A, is any triangle and that it has perimeter P and
area T . So that we shall have something to discuss, let us also agree
that A, is not equilateral. We shall show that if A is the equilateral
triangle with area T' and perimeter I°, then 7' > T,. We shall do this
by constructing an infinite sequence of triangles

Al,A2,"',An,"',

each with perimeter P and such that each one after the first has a
greater area than its predecessor. As n becomes larger and larger, the
triangles A, will become more and more like the equilateral triangle
A, and their areas will approach the area of A. We shall make this
more precise a little later.

We now define the sequence { A,}. The first triangle in the sequence
is A, . Suppose that its base is of length b and its legs are of length
ay and a, . Let 8, = a; + a,. The second triangle in the sequence is
the isosceles triangle A, with base b and each leg 1s, in length. Let
8, = b 4+ 35, . The third triangle in the sequence is the isosceles tri-
angle A; with base 18, and each leg 1s, in length. For n > 3, having
constructed the isosceles triangle A, , we choose s, = 3(8._2 + $._1);
and we construct the isosceles triangle A, 1 with base 3s,—; and cach
leg %s. in length. We continue this process indefinitely. Each triangle
in the sequence constructed has perimeter P because in each step of
our construction, one side of the new triangle has the same length as
one side of its predecessor, and the sum of the lengths of the other
two sides is kept fixed.

Q, Qs
Tl Ta L I
b S
rd
AI Ay A3 s 0

Figure 2.5

We know that a solution to our problem exists since we have already
given one proof of the theorem. The question we must now face is:
Is it true that in some reasonable sense the equilateral triangle with
perimeter P is the limit of the sequence { A.}? We shall attempt to
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support strongly an affirmative answer. The reader must not lightly
dismiss the possibility that the sequence { A,} might have no limit.
We shall discuss this sort of eventuality in Section 2.4 after we have
considered more examples.

The areas and perimeters of the triangles A, are to be considered.
Let T, be the area of A, . Since A, and A.,;; each have a side of
length 4s,_, and have the same perimeter, it follows from Theorem
10A that T, > T, for each n.

Also, our triangles become more and more nearly equilateral. To
see this observe that, for each n, the triangle A, has two sides of
length 3s._, and that the third side has length 3s,_,. We may use
the difference

%(sn—l - 311—2)

between the lengths of a pair of unequal sides to measure how much
the nth triangle deviates from being an equilateral triangle. We shall
see from the following calculations that these differences become
smaller as n increases and, in fact, approach zero.

82 — 81 =(b+%31) - 8 =b_%31:
83 — 8 = (%81 + %32) — 8 %(31 - 32) = _%(b - %81),
84 — 83 = (382 + 4s3) — 83 3(82 — 83) = 272(b — %sy),

8n — 8p-1 = (38n—2 + 38p—1) — Sy = (—1)"22-00(h — 1g)),
Sngl T 8a T (%sﬂ—l + %su) — 8a (_l)uﬂlz_(nﬂl)(b - %81),

Il

I now ask you to be indulgent and to allow me to appeal to your
common sense and intuition for the remainder of the proof. The above
estimates of the differences s,,1 — s. guarantee that

lim (Sn+1 - Sn) = 0-

n 00
This statement is read as “the limit, as n becomes infinite, of the dif-
ference (8,41 — $.) is zero”. We define this statement to mean pre-
cisely this: Given a positive number e (any one, large or small), there
can be found a positive integer N such that

(8) |Sn+l_3n| <e

for all integers n greater than N. The important thing to notice is
that one fixes ¢ once and for all, and then one lonks for N. One can
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establish (8) by noticing that

b — 3s
Is,.+1—s,.|=|—2n_—?‘—|

and that, since |b — 38| is fixed, the right member becomes as
small as one desires if n 1s chosen large enough. Since each triangle
A, has perimeter I, it can be shown, using (8), that

(9) lim s, = % and lim7T,=T1T.

( By definition, the statement lim, .« 7. = T means that given any
positive number e, there can be found a positive integer N such that
| T» — T| < e for all integers n greater than N.) The conclusion
embodied in (9) can be rigorously proved using (8). However, such
a proof belongs to the theory of limits and is outside the scope of our
study. Finally, 1t is clear that since Twyy > T., T > T, for any n.
In particular, T > T, . |}

The third proof of Theorem 11A is due to Jacob Steiner. By a
clever geometric construction Steiner neatly avoided using the
method of successive approximations employed by Lhuilier.

ProoF 3. Consider any triangle A, with perimeter P, area T and
sides of lengths a, b, and ¢, where @ > b > ¢ so that I°/3 > ¢. We
suppose for the sake of argument that ¢ is closer to P/3 than a is,

and we let

P

h=-— 0.

3 c>
Instead of constructing an isosceles triangle A: as we did in the last
proof, we now construct a triangle A, (see Fig. 2.6) with base b and
legs of lengths P/3 and @ — h and call its area 7. (You should carry
out this construction youself with ruler and compass.) Since

P P
(a—h)+§—a+(§—h)—a+c,

A has perimeter P. We next note that the difference between the
lengths a and ¢ of the legs of A, is greater than the difference between
the lengths of the legs of A, ; that is,

P

a—c>(a—h)——g.
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This is true because from the inequality

it follows that

a—c>a—(§+h)= (a — h) —1—;.
We now apply Theorem 10A’ (see page 32) to the triangles A,

and A, and conclude that

> T,.

A, Az
Figure 2.6

We next construct an isosceles triangle A with base P/3 and legs

of length
1{ P

Since this number is P/3, the triangle A is equilateral; and by
Theorem 10A, its area T is greater than 7. Thus 7 > T, . A similar
argument can be carried out if

P P
a—§<§—c. l

The companion theorem to Theorem 11A is

THEOREM 11B. Of all triangles with a given area, the equilateral tri-
angle has the least pervmeter.

ProBLEM 10. Show that Theorems 11A and B are equivalent.
ProBLEM 11. Use Heron’s formula (7) to prove Theorem 11B.

ProBLEM 12. Of all triangles circumscribed about a given circle,
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which has the least area? Which has the smallest perimeter? Prove
your conjectures.

Hzint. Use the method by which the equivalence of Theorems 10A
and B is demonstrated.

ProBLEM 13. Of all triangles inscribed in a given circle, which has
the largest area? Which has the largest perimeter? Prove your con-
jectures.

Remark. 1t is quite difficult to give a nigorous elementary proof al-
though the result is reasonably obvious.

ProBLEM 14. Of all triangles with a given perimeter (or area), which
has the smallest circumscribing circle? Prove your claims.
Hint. Use the result of Problem 13.

It is time to call to attention a fact which you may have already
noticed: isoperimetric theorems come in pairs. Theorems 9, 10, and
11 are examples of this phenomenon. The situation is this. Suppose
that C is a class of plane figures for which the following isoperimetric
theorem holds:

() Of all figures with pertmeter P in the class C, the “blank” has the

) grealest area.

Suppose further that all “blanks’” are similar. Then the following

statement is also a theorem:

() Of fdl figures with area A in class C, the “blank” has the least
perimeler.

As an example, let C be the class of all triangles, and let the ‘‘blanks”

be the equilateral triangles. Then () gives us Theorem 11A and (#x)

gives us Theorem 11B. These two propositions are called dual theorems

because they are equivalent. What we have noticed is that the theory

of isoperimetric problems admits of duality; that is, isoperimetric

theorems come in equivalent pairs.

The equivalence of (*) and (*) is demonstrated by the method
so often used above. For example, to show that (*x) follows from (x),
we assume () is true and prove (*x). Let F be any figure in C with
area A and perimeter P, let B, be the ‘blank’ in C with area A and
perimeter P, andlet B; be the “blank’ in C with area 4, and perime-
ter P. We shall prove that P > P, . By (x), A2 > A. Since all *“blanks”
are similar and since the area of B, exceeds the area of B, , the perime-
ter of B; exceeds the perimeter of B,. Therefore, P > P,. ] That
(#x) implies (x) is just as easily proved.
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2.3 Isoperimetric theorems for polygons

We next turn our attention to quadrilaterals and polygons in gen-
eral. For brevity we call a polygon of n sides an n-gon. A regular
n-gon is an n-gon with equal sides and equal angles. A natural ques-
tion is: Of all n-gons with a given perimeter, which has the maximum
area? It is reasonable to guess that the regular n-gon is the one. It
turns out that it is just as difficult to verify this conjecture as to
prove the Isoperimetric Theorem. Before examining it, therefore, we
shall consider some simpler questions. For example, of all n-gons
(n is fixed) inscribed in a given circle, which has the greatest area?
For reasons of symmetry we might conjecture that again the regular
n-gon is the one. (Could it be that there is no n-gon of greatest area
which can be inscribed in the given circle, just as there is no regular
polygon which has a greater number of sides than any other? Our
intuition says no, and in this case it is truthful.) Having guessed the
answer, we shall now prove it. To do so we shall use the method of
Steiner given in the third proof of Theorem 11A above.

THEOREM 12. Of all n-gons inscribed in a given circle, the regular
n-gon has the grealest area.

Proor. We first observe that the proof of the theorem for n = 3
is in Chapter 4, where it is given as the solution to Problem 13. In the
remainder of the proof of Theorem 12 we assume that = is greater
than 3. Secondly, it should be emphasized that the various n-gons
which may be inscribed in a circle have different perimeters as well
as different areas.

Let R be a regular n-gon inscribed in a given circle @ with radius r,
and denote the length of each side of B by s and the length of each

(a) (b)
Figure 2.7
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subtended arc by § [see Fig. 2.7(a)]. Since Q has circumference 2r,

. 2ar

§ = —

n

Let G be any n-gon inscribed in Q. If the center of @ does not lie
inside G [see IFig. 2.7(b)], then the area of G is certainly less than
x1°/2, since in this case G lies in one half of the circle. But a regular
n-gon, n > 3, has a greater area than one half of its circumscribing
circle as a computation shows. Consequently, the theorem is true if
the center of @ does not lie inside of G. We henceforth assume that
the center of @ does lie inside G.

The details of the remainder of the proof are numerous. Before
you study them, read and think through the proof without paying
attention to details, but note the main steps in the argument and con-
vince yourself that, if these steps are correct, the desired conclusion
is obtained. The main steps are three:

(1) Construction 1, which is a recipe for constructing an n-gon G,
with the same sides and area as (¢, whose longest and shortest sides
are adjacent, and which is inscribed in @;

(2) Construction 2, which is a recipe for constructing an n-gon
G\’ with atleast one more side of length s than G has, with area greater
than that of G and G, , and which is inscribed in @;

(3) Repeating these constructions over and over again.

Let us denote the lengths of the sides of G by a. and the lengths of
the corresponding subtended arcs by d;. If G is not regular, then it
has at least one side of length less than s and at least one side of length
greater than s. Ior, if

a; <'s (i=1:-,n),

then a; < s for at least one 7, say a; < s, since otherwise G would
be regular. But if

a<s and a;: <s (7

21 3y - ’ n)$
then

4, <§ and 4; < § (:=2,3,---,n),
and consequently,
&1+&2+---+&,.<n§=21rr.

But 6, + @ + -+ + d, = 2#r, which is the circumference of Q.
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Therefore, it cannot be that a; < s for each 7 from 1 to n. Similarly,
it cannot be that a; > s for all £ from 1 to n.

Conslruction 1. Suppose that the longest side of G has length a, and
that the shortest side has length o, (a1 < s < a,). We construct a new
n-gon, G, by merely rearranging the order of G’s sides in such a way
that the longest side is adjacent to the shortest side; see Fig. 2.8.

Figure 2.8

1t is clear that the n-gon G, constructed in this way has the same
area as (@ because the area of each is equal to that of @ minus that of
the same pieces (the regions bounded by chords and subtended arcs
in Fig. 2.8).

Next we construct another n-gon G1, also inscribed in Q, and such
that the area of G| is greater than that of Gy and therefore is greater
than that of G.

Figure 2.9

Construction 2. Consider the arcs AB and BC subtended by a; and
a, . Let us recall that 4, < § and a, > §, and let us think of Fig. 2.9
as a magnified illustration of part of G, as seen in Fig. 2.8. Keep 4
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and C fixed and move B along the arc to a point B’ so that AB = s
The n-gon G1 is constructed to be the same as the n-gon G except that
G: has B’ as a vertex instead of B.

Consider the triangles ABC and AB’C. We shall now attempt to
make it plausible that the area of AAB’C is greater than the area of
AABC by ‘“demonstrating’” that the altitude from B’ is longer than
that from B. It is reasonable to believe that the altitude increases as
B approaches the midpoint M of ABC, so we shall limit ourselves to

N Pt
showing that B’ is closer to M than B is, or that B'M < BM.
Since 4; < §and d, > §, set

dgh=§—h and &, =§+#F, h>0 k>O0.

But
AM = Y(ar + a,)
so that
BM = M — AB = {(& + &) — &
= 3(@, — 4,)
=3S+k—§+h)
= 3(k + h),
and
B'M = |AM — AB'| =} | & + 6, — 25|
=Ll§—h+§+k— 2|
=1k —h|

Since k and h are positive, | k — k| < k 4 h. Therefore
B'M < BM,

as we promised to show. While you may now believe that AAB'C
has a longer altitude than A A BC and hence a greater area, you should
realize that we have not proved it down to the last detail. A rigorous
proof is provided by the fact that |a — ¢| < |CB’ — s| and the
following theorem: Of two triangles on the same base (AC) and with
the same vertex angle (equal to X ABC), the one with the smaller differ-
ence between the lengths of its legs has the longer altitude and the greater
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area. (A proof of this theorem involves some of the steps in the solu-
tion to Problem 13, presented in Chapter 4, and modifications of
others.)

We now have an n-gon G| inscribed in Q (with vertices 4, B, C,
etc.) which has a larger area than G and which has more sides of
length s than G has (at least one more). The area of G1 exceeds the
area of G since the area of AAB’C exceeds that of AABC and since
G1 and G, coincide except along AB and BC and AB’ and B'C. If
@1 is regular, there is nothing more to prove. If not, then we may
repeat the previous constructions; and after employing them at most
n — 1 times in all, we shall obtain a regular n-gon which is inscribed
in the given circle and which has a larger area than G has. |

It is also possible to give an elementary proof of the isoperimetric
theorem for quadrilaterals. (Elementary but not necessarily short and
easy—an elementary proof is one which does not involve sophisti-
cated advanced mathematics.)

THEOREM 13. Of all quadrilaterals with a given area, the square has
the least perimeler.

It is easier to first prove the dual theorem—Of all quadrilaterals with
a given pertmeler the square has the grealest area—and then to deduce
the desired conclusionﬁ

Figure 2,10

Proor. We begin by deriving a formula for the area of a quadri-
lateral in terms of its sides and two opposite angles. Let a quadri-
lateral be given with consecutive sides a, b, ¢, and d in length and with
area T and perimeter P. Suppose the first two sides include the angle
a and the remaining two include the angle 8. Let f be the length of
the diagonal which ‘“‘separates” the angles o and 8. Then, since the
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altitude from D of triangle ADF has length b sin @ and that from F
of triangle DBF has length | d sin 8 | (where for » < 8 < 2, sin 8
is negative, see Fig. 2.10),

2T = absin a + ed sin B,
from which it follows that

4T = 2absin a + 2¢d sin
and

16T* = 44’ sin® o + 8abed sin a sin 8 + 4c'd? sin® 8.
We see by the law of cosines that
o+ b —2bcosa == +d — 2dcosB
or
@ + bV —c —d = 2abcosa — 2¢d cos B,
and
(& + b — & — d")? = 4a’h® cos® a — Babed cos a cos 8 + 4c'd® cos’ 6.
Wenow add 167 and (a* + b* — & — d%)%, and we obtain the formula
16T + (& + U — & — d")? = 4’ (sin’ @ + cos’ @)
+ 4cd*(sin® 8 + cos®B) — 8abed (cos a cos 8 — sin a sin B).

But

+ 2 2
sin"x + cos x = 1,
and

cos (r + y) = cosxrcosy — sin xsin y

for all numbers z and y. Hence,
16T + (& + 0" — ¢ — d")°

10
(10) = 4a’b® + 4c°d® — 8 abed cos (ax + B8).

If we temporarily assume a, b, ¢, and d to be fixed, then we see from
(10) that T is largest when cos (a + B) is smallest, that is, when
cos (a+8) = —1.Hence, Tislargest whena +8=n. Ifa +8 = =,
we may consider the quadrilateral with sides a, b, ¢, and d to be in-
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Figure 2.11

scribed in a circle (see IMig. 2.11); for, consider the circle determined
by the vertices 4, B, and C. IFor all points D on the circle which are
not on the arc ABC, « + 8 = x. If D is inside the circle,
then @ + 8 > =; and if D isoutside the circle, @ + 8 < 7 (we assume
that D does not lic on the arc ABC). We have thus proved

THEOREM 14. A quadrilateral with given sides has the greatest area
when 1t can be inscribed in a circle.

It remains to complete the proof of the dual of Theorem 13; that is,
it remains to show that among all quadrilaterals with given P whose
opposite angles add up to =, the square has the greatest area. We now
allow the lengths of the sides of the quadrilateral to vary although
we keep P fixed, and we keep the sum « + 8 equal to =. This means,
of course, that the radius of the circumscribing circle will also be per-
mitted to change. Now when a« + 8 = 7, cos (a« + 8) = —1; and
we can rewrite equation (10) in the forms

16T% = 4(a’b* + c'd*) + 8abed — (a’ + V' — ¢ — d)?
= 4(ab + cd)' — (" + V' — & — &)
= [2(ab + cd) + (a® + b — & — d*)]

X [2(ab + ¢d) — (& + b — & — d?))
=[(a+ )" = (¢ = )] [(c + &' = (a — )]
=la+b+c—da+b—c+d

Xlc+d+a—blc+d—a+b
or

(11) 16T = (P — 2a)(P — 2b)(P — 2¢)(P — 2d).
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This result should call Heron’s formula sharply to mind and suggest
strongly that we apply the Theorem of Arithmetic and Geometric
Means (Theorem 8). If we do, we obtain the inequality

[(P — 2a)(P — 2b)(P — 2¢)(P — 2d)]1“

P—-—2a+P -2+ P —2¢+ P — 2d

<
4

or

P
|I2<__-
2T <3

Equality holds if
P—2a=P—-2b=D"P —2c=P — 2d,

that is, if and only if @ = b = ¢ = d. Thus if we fix P, T is greatest
when the inscribed quadrilateral is a square. All squares are similar;
hence by duaslity, if we fix T, P’ is least when the quadrilateral is a
square. |

In Section 1.2 we applied Theorem 8 to show that of all three-
dimensional boxes with a given surface area, the cube has the greatest
volume. The dual theorem is: Of all right prisms with a rectangular
base and having a given volume, the cube has the least surface area. It
and Theorem 13 enable us to prove a more general proposition con-
cerning quadrilateral prisms. A quadrilateral prism is defined as fol-
lows. Let @ and @’ be two congruent quadrilaterals lying in two
distinct parallel planes, and suppose that corresponding sides of Q
and Q" are parallel. A quadrilateral prism is the solid formed by Q
and € and all the line segments joining points of @ to corresponding
points of ¢’. If these line segments are perpendicular to the planes of
@ and @', the prism is said to be a right prism. Otherwise it is called
an oblique prism. Q and @’ are called the bases of the prism, and the
distance between their planes is the altitude of the prism. The volume
of a prism is equal to the area of one of its bases times its altitude.

TrEOREM 15. Of all quadrilateral prisms with a given volume, the cube
has the least surface area.

Proor. Let any quadrilateral prism I’ with surface area S be given.
Whatever we may do to P, its volume V is to remain fixed. The proof
has three main steps:



52 GEOMETRIC INEQUALITIES

GIVEN PRISM P RECTANGULAR PRISM P'
=
C c'
B B' ~ﬂ«
a ‘
CUBE RECTANGULAR PRISM P"

WITH SQUARE BASE
Figure 2.12

(1) Iixing the base of I’, we transform it into a right prism. See
I'ig. 2.12,

(2) Keeping the area A of its base fixed, we transform the right
prism with a quadrilateral base into a right prism with a square base.

(3) Lastly, we transform the right prism with a square base into
a cube.

Now, if a right prism and an oblique prism have a common base
and volume, the right prism has the smaller surface area. This is true
because both prisms have the same altitude, say h, and because each
lateral face of the right prism is a rectangle with altitude A, while the
corresponding lateral face of the oblique prism is a parallelogram with
altitude of at least length k and the same base as that of the rectangle
(see Fig. 2.13). The areas of corresponding lateral faces are pairwise
equal only if the given prism P is already a right prism. Thus step (1)
cannot increase S. If the given prism P’ is not a right prism, then
step (1) will actually decrease S.

Since both the area of the base and the altitude of the right prism
are kept fixed during step (2), and since the lateral surface area of a
right prism is equal to its altitude multiplied by the perimeter of its
base, it is a consequence of Theorem 13 that step (2) again cannot
increase S. Unless the base of the right prism is a square, S will ac-
tually be decreased as a result of step (2).



ISOPERIMETRIC THEOREMS 53

Dl
¢ D
C
B
Figure 2.13

Finally, by the dual theorem stated on page 51, step (3) cannot
increase S and will, in fact, decrease it unless the right prism with a
square base 1s already a cube. Therefore, unless I is a cube, S will
actually diminish during at least one of the three transformations
of P. |}

ProBLEM 15. Given the sum of the areas of five faces of a box (rec-
tangular parallelepiped with one face removed), find the box of
maximum possible volume.

ProsLEM 16. The girth of a box is twice its width plus twice its height.
Of all boxes whose length and girth combined do not exceed L inches,
which has the maximum volume?

A frequent parcel post user would do well to be familiar with the
solution to this problem.

ProBLEM 17. The sum of the lengths of the edges of a box is given.
Show that of all such boxes, the cube has the greatest volume and
surfacc area.

ProBLEM 18. Assuming that of all tetrahedra with volume V there is
one with the least surface area, show that the regular tetrahedron is
that one.

ProBLEM 19. An octahedron composed of two congruent pyramids
joined together at their square bases may be called a double pyramid
with a square base. Show that of all right double pyramids with a
square base and volume V, the regular octahedron has the least sur-
face arca. Extend the theorem to the class of all double pyramids with
square bhases.

Having proved the isoperimetric theorem for triangles and quadri-
laterals, we might be so encouraged as to believe that we could prove
corresponding theorems for pentagons, hexagons, and even for poly-
gons in general. Unfortunately, it seems at present that this cannot
be done without the use of the Isoperimetric Theorem itself or its
equivalent.
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Before we proceed any further, it might be well to define carefully
what is meant by a plane polygon. A plane polygon is made up of a
finite number of straight-line segments all of which lie in the same
plane. These line segments are called sides of the polygon and their
endpoints are called rertices of the polygon. A plane polygon is defined
by the condition that each vertex must be the endpoint of at least
two sides and that the only points lying on more than one side are
vertices. If each vertex of a plane polygon is the endpoint of exactly
two sides, then the plane polygon is called a simple plane polygon.
All the polygons we shall consider are simple plane polygons. We shall
continue to refer to a simple plane polygon simply as a polygon. The
region inside a polygon is called its interior. (People often refer to a
polygon together with its interior as a polygon.)

THEOREM 16. Given any n-gon which does not have all its sides of equal
length, one can construct another n-gon with the same perimeler, with
all sides of equal length, and with a larger area.

A false proof of this theorem is given below, one which the author
designed and with which he once deceived himself. It is based upon
Theorem 12. Read it carefully, and see if you can discover where it is
incorrect or incomplete.

ProoF. Let the given n-gon G have perimeter P. Since its sides are
not all of length I’/n, it must have at least one side of greater length
than P’/n and one of smaller length. Our first task is to show that we
may assume these two sides to be adjacent. When we have done this,
we shall complete the proof by using a slightly modified version of
the demonstration of Theorem 12.

Suppose G has no pair of adjacent sides with one longer than P/n
and one shorter. Then it must be that there are & consecutive sides
(k > 1) of length P/n which separate such a pair. Let the short side
be AB and the long side be XY. If the segment AC lies inside G, we
can reflect the triangle ABC using the perpendicular bisector of
AC as a two sided mirror and obtain a new n-gon AB'CD-..
with the same sides as G and with the same area (sce I'ig. 2.14).
If AC does not lie in G, then we first reflect the triangle ABC in
the line AC and obtain an n-gon with the same sides as G but with
a greater area. AC will he inside the new n-gon, and we now re-
flect in the perpendicular bisector of AC as hefore. We next repeat
this process with B, C, and D taking the roles of 4, B, and C, re-



ISOPERIMETRIC THEOREMS 55

spectively. After exactly & such steps, we shall have obtained an
n-gon with the same sides as G, with at least as great an area, and
with a pair of adjacent sides, one of which is shorter than P/n and
one of which is longer. Let them be called AB and BC, respectively.
We may suppose that AC is interior to the n-gon.

Figure 2.14

We now construct AB’C with AB’ = P/n and
AB + B’'C = AB + BC,

and we show that the area 7’ of AAB’C is greater than the area T
of AABC. We know, because of our construction, that

AB' + B'C = AB + BC

and that

AB < AB = -E < BC.
Hence

BC — AB > BC — AB'.
Morcover,

B'C = AB + BC — AB' < AB + BC — AB = BC.

Finally,

BC — AB > BC — AB' > B'C — AB'.
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Using Heron’s formula [see (7), page 35], we conclude that
167" = [(AB + BC)" — AC’]-[AC* — (BC — 4B)".

To compare T and 7', we observe that the first factor is the same for
both triangles while, according to the last inequality, the second
factor is greater for the triangle AB'C than for ABC; therefore
T’ > T. Hence, the area of the n-gon AB’C--- is greater than the
area of the n-gon ABC- - - . By construction the 1two n-gons have the
same perimeter.

If we repeat this argument at most n — 1 times, we shall obtain
an n-gon with perimeter > and with equal sides. It will have an area
greater than that of G. |

The error in this “proof” lies in the reflection steps. It may very
well be that the triangle A BC, for example, cannot be reflected in the
perpendicular bisector of AC without AB’ intersecting CD (see
Fig. 2.15), something which we cannot allow to happen. This reflec-
tion can be performed without such a difficulty provided G is convex..

1
Figure 2 15

DEFINITION 5. A plane figure is convex if the straight line scgments
joining pairs of points of the figure all lic entirely within the figure.

If a figure is not convex, then there is at least one pair of points of
the figure such that the line segment joining them lies outside the
figure except for its endpoints.

If G is not convex, one might hope to be able to find another n-gon
which is convex, which has the same sides in the same order, and
which has a larger area, by a finite number of reflection operations of
the following kind. Suppose all points of the line segment joining two
nonconsecutive vertices, say A and B, of G lic outside of G, except
for A and B. A reflection operation consists in reflecting the part of
the boundary of G lying between A and B in AB (see Fig. 2.16).
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N AFTER REFLECTION

Figure 2.16

QuesTtioN. Given an n-gon, GG, can one construct, with a finite num-
ber of reflection operations, a convex n-gon G’ having the same sides
in the same order as G?

Theorem 16 can be proved either by demonstrating that the
answer to this question is yes, which it is, or by using the following
argument. Join each pair of vertices of G by a straight-line segment.
Delete those segments that lie in the interior of some polygon. The
remaining line segments constitute a convex polygon called the con-
vex hull of G. Clearly it has a smaller perimeter and larger area than
G unless it coincides with G. The polygon of perimeter > which is
similar to the convex hull of G can now be transformed using the argu-
ment in the false proof above, and Theorem 16 is proved. The only
objection one might have to this argument is that the convex hull
of G might have fewer than n sides. However, by adding a few pseudo-
vertices on the interiors of sides one can consider the convex hull to
be an n-gon.

Another theorem which we cannot easily proveis: The regular n-gon
has the greatest area of all n-gons with equal sides and the same perimeter.
This 1s unfortunate in view of the following soluble problem.

ProBLEM 20. Show that a circle has a greater area than a regular
n-gon with the same perimeter.
Hqnt. Inscribe a circle in the regular n-gon. Suppose its radius is r
and that the n-gon has perimeter I’ and area A. Show that
2
4= B
4A 47
I'or, if we could prove this thcorem, then using the result of Prob-
lem 20, we could prove that: A circle has a greater area than any
polygon with the same perimeter. This would be a significant ac-
complishment.
The argument is as follows. Let S be any polygon, and let C be a
circle having the same perimeter I’ as S. By Theorem 16, we can
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construct a second polygon S’ with all sides of equal length, with
perimeter P, and with area 7’ greater than the area 7 of S. If a
regular polygon S” having perimeter P has an area T” > T”, then
by the result of Problem 20 the area of C is greater than 7", and
hence greater than 7'. As we have remarked, the “if" in this argument
is not easily removed.

2.4 Steiner’s attempt

Before we describe one of Steiner’s attempted proofs of the Iso-
perimetric Theorem, we should emphasize some points involved in
each of the proofs of isoperimetric theorems for polygons which we
have given.

In the first place, we have always proceeded constructively; that is,
in proving a theorem we have never argued that if the theorem were
false, a conclusion would follow which contradicts the hypothesis of
the theorem, hence the theorem must be correct. A proof which is
based on such an argument is often called an indirect proof. Indirect
proofs are nonconstructive. Our problem has been to show that a cer-
tain figure is an exiremal figure among a certain class of figures, that
is, that its area (or whatever property is under consideration) is
greater or less than that of any other figure in the class. By geo-
metric construction, we have always been able to demonstrate that
the conjectured extremal figure has the desired property.

In the second place, it is important to realize that it is not always
possible to give such an explicit demonstration. Indeed, it may be
that no extremal figure exists in the class of allowed figures. Merely
to show that any figure which is not the supposed extremal figure can
be improved is not sufficient argument to complete a proof that the
supposed extremum is indeed one. Also, we might not be sufficiently
clever to conjecture a solution to a given problem, although we might
be most curious as to its solution. Let us consider some specific exam-
ples illustrating these statements.

QuesTioN. Which fraction of the form 1/n (n = 1,2,3,.-:) 18
the smallest?

ProPosep SorLuTion. For each fraction of the form 1/n, except the
fraction 1/1, there is another fraction 1/»* which has the same form
and which is smaller; that is,

1

E<?_i lf n > 1.
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Therefore, 1/1 is the smallest fraction in the given collection of
fractions. |

This solution is obviously false; and, in fact, there is no smallest frac-
tion in the given class. We have found a number which, with respect
to the operation of squaring, is the only one of the allowed numbers
which cannot be decreased. Conceivably, all the other operations we
could think of would also have this property. But, as we have just
observed, this is not sufficient to show that 1 is the smallest of the
allowed numbers.

QuesTioN. Which is the surface of least area which
(A) is bounded by the circumierence C of a horizontal circular disc
of unit radius,
(B) passes through a point I” one unit above the center of the disc,
(C) is such that no vertical line cuts the surface in more than one

point?
p p P p
A
A &
“ <>
(a) (b) (c) (d)
A HEMISPHERE A PIECE OF A AN IMAGINARY A WITCH'S HAT
RIGHT CIRCULAR MUSICAL HORN
CONE
Figure 2.17

Some possible surfaces are illustrated in 1g. 2.17. Remember, the
circular disc is not part of any of them. Again, there i1s no extremal. To
prove this, first observe that the minimal surface, if it exists, must
have area greater than =, the area of the dise. But given any surface
satisfying the three specified conditions and having area § = « + h,
we can construct a surface consisting of (1) a thin “ice cream cone”
whose vertex is I and whose base lies in the dise hounded by € and
of (2) that portion of the dise which lies outside the base of the cone,
and such that the arca of this surface is less than # 4+ A [see Fig.
2.17(d)]. IFor let the radius of the base of the cone be r. Then the area
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of the surface is the sum 7 — #r* + #7r4/72 + 1 of the area = — =7
of the annulust and the area nr+/72 + 1 of the ice cream cone. More-
over, mr/7® + 1 — «7, which is equal to #r(~/7 + 1 — r), can
certainly be made less than h by taking r small enough. If we elimi-
nate condition (B), thereby widening the class of allowed surfaces,
then in the new class of surfaces there is a minimal surface, the disc.

Thus sometimes we can widen the class of allowed figures and thereby
solve a problem for which no extremal figure existed previously (as
in the above example and in case of the isoperimetric theorem for any
figure with area T instead of any polygon with area T'); and some-
times by restricting the class of allowed figures we can do the same
thing (as in the case of the isoperimetric problem restricted to tri-
angles instead of polygons in general with area T').

Perhaps you have noticed that I have not referred to problems for
which no extremal figure exists as “problems with no solution” or ‘“‘no
answer.”” In cases of this sort, I prefer to say that no extremal figure
of the desired kind exists but that, since this is known, the problem
has been solved.

Note. Perhaps the reader knows that, considering only surface ten-
sion, a soap film formed on a wire frame takes the shape of the surface
of least area among all those bounded by the frame. For an interesting
discussion of soap films and minimal surfaces, read pages 385-397 in
What is Mathematics? by Courant and Robbins, Oxford University
Press, New York, 1941.

Our intuition does not always advise us correctly. How do you
think the following question might be answered? Draw some pictures
before you make a conjecture.

QuesTioxn. Of all closed curves inside of which one can move a line
segment 1 unit long so that it makes a full turn of 360°, which en-
closes the least area? Or, colloquially speaking, what is the shape of
the parking lot of least area [or a parking lot of least area (there might
be least ones of many different shapes, all with the same area)] on
which a super-streamlined car of unit length can be turned around?

A circle of unit diameter is a possibility. Will a curve enclosing less
area do the job? A. S. Besicovitch was able to prove that there is no
such closed curve enclosing the least area. What is more astounding,
he proved that for any positive number p, no matter how small, there
is a closed curve having the desired property which encloses less than

t An annulus ts a plane figure bounded by two concentrie circles, that is,
a cirele with a circular hole in the middle
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p square units of area! One can move a line segment 1 unit long so
that it turns completely about but sweeps out only 1/10 of a sq. unit
of area in the process. If we had remarkably delicate instruments, we
could do the job using only 107" sq. units of area!

If we restrict the class of allowed figures by imposing the addi-
tional condition that they be convex, then an extremal curve does
exist. It is the equilateral triangle of altitude 1 unit (see Iig. 2.18).
For a solution and discussion of this problem and many other beauti-
ful problems concerning convex figures, read the book Plane Convex
Figures by the Russian mathematicians I. M. Yaglom and V. G. Bolt-
yanskil (German translation published by VEB Deutscher Verlag der
Wissenschaften, Berlin, 1956), English translation published by Holt,

Rinehart, and Winston, Inc., New York, 1961.

-._[.‘ -

INITIAL 3RD
POSITION POSITION POSITION POSITION
Figure 2.18

The difficulty in proving the Isoperimetric Theorem is of the same
sort as in the examples cited above, only in this case an extremal
figure does exist. It is relatively easy to show that for any plane figure
which is not a circle, there is another with the same perimeter but
with a larger area. This is not enough to prove the Isoperimetric
Theorem. This argument tells us only that, 7f there is a figure which
has a greater arca than any other figure with the same perimeter,
then it must be the cirele. It is altogether coneeivable that there is no
such extremal figure. Steiner did not believe that the point we are
now discussing was too serious. After all, it is obvious to the geometric
intuition that a solution to the Isoperimetric Problem does exist and
that it is the eircle. FFortunately for modern mathematies, Weierstrass
did belicve that he had raised a serious objection to Steiner’s proofs
of the Isoperimetric Theorem by calling attention to this point; and
in fact, he believed that his argument rendered Steiner’s proofs (and
also other proofs of other theorems) invalid. He overcame his own
objection by supplying, in a nonconstructive way, an existence proof
of the solution of the Isoperimetric Problem. And no one has yet
found a simple geometrical argument to show that the circle has a
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greater area than any other figure with the same perimeter. None is
expected to be found. All proofs of the Isoperimetric Theorem show,
in a nonconstructive way, that a figure of maximum area does exist.

While Steiner did not prove the Isoperimetric Theorem, the rea-
soning he used in attempting proofs is beautiful and ingenious. We
now consider one of his attempted proofs and demonstrate that: For
any plane figure which is not a circle there is another with grealer area
and with the same perimeler.

Figure 2.19

Let a plane figure with perimeter I’ be given, and suppose that it
is not a circle. If it is not convex, we construct another figure with
perimeter I but with a larger area as follows. We pick two points on
the boundary of the figure such that the line segment joining them
lies outside the figure, and we reflect that area between this line seg-
ment and the figure in the line segment as a mirror (see Fig. 2.19).
We choose the new figure to be the original one plus the area reflected
and its reflection. This new figure has the same perimeter but a larger
area. This argument really doesn’t take care of all possible ecases as
the diagrams in Ifig. 2.19 show, but it is casy to take care of the ex-
ceptions indicated. Try it.

If the given figure is convex, we take advantage of Theorem 14.
Since the figure is not a circle, there must exist four points on its
boundary which are not the vertices of a convex quadrilateral in-
scribed in a circle. Let us consider the convex quadrilateral whose
vertices are these four points. Let us assume that the parts of the
figure exterior to this quadrilateral (see shaded regions in Fig. 2.20)
are fixed in shape and area and rigidly attached to the sides of the
quadrilateral. Let us also consider the quadrilateral to have flexible
joints at its vertices. By Theorem 14, if we now distort the quadri-
lateral until it is inscribable in a circle, we shall have increased its
area. The new quadrilateral together with the pieces of the original
figure rigidly attached to it (see I7ig. 2.20) determines a new figure
with perimeter P> but with a greater area than that of the original
figure. This completes Steiner’s argument.
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Figure 2.20

ProBLEM 21. Show that the Isoperimetric Theorem implies that, of
all n-gons with the same sides, the one which can be inscribed in a
circle has the greatest area.

Using the result of this problem, we can prove that: Of all n-gons
with the same perimeler, the regular n-gon has the grealest area.

ProoF. Let G be any irregular n-gon. By the result of Problem 21
the n-gon G’, which has the same sides as G in the same order and
which can be inscribed in a circle, has a larger area. Since G’ is in-
scribed in a circle, we may rearrange its sides in any order we please.
Noting this fact, we can use the last half of the false proof of Theorem
16 to reach the desired conclusion. |

There is still another form in which we can state the Isoperimetric
Theorem. Let A denote the area and P the perimeter of a given figure,
and suppose that the circle of perimeter P has radius r. Then the
theorem is equivalent to the inequality

A < 7
or since r = P/2n,
47 A

5 <L

This inequality is called the Zsoperimelric tnequality. The quotient
4w A/ P is called the isoperimetric quotient by G. Pélya. Following
him, we abbreviate “isoperimetric quotient’” by “1.Q.” and state the
Isoperimetric Theorem in the following form: Of all plane figures, the
circle has the highest 1.Q.

ProBLEM 22. Compute the 1.Q. of several figures. Do the data
obtained support the theorem?
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CHAPTER THREEL
The Reflection Principle

3.1 Symmetry

“Symmetry, as wide or as narrow as you may define its meaning,
is one idea by which man through the ages has tried to comprehend
and create order, beauty and perfection.” Thus wrote Hermann
Weyl, one of the great mathematicians of our time.t Indeed, argu-
ments based upon notions of symmetry are among the most powerful
and elegant in mathematics. In this chapter we shall examine the role
played in the study of inequalities by the simplest kind of symmetry
which a plane figure can possess, namely, symmetry with respect to
a line (which divides the figure into two parts, each the mirror image
of the other). Symmetry strongly influenced the art of early civiliza-
tions. Its use in mathematics was begun by the Greeks. It led them
to their wonderful discoveries of regular polyhedra: tetrahedron,
cube, octahedron, dodecahedron, and icosahedron. In turn, the sym-
metries of polyhedra have been partially responsible for the creation
of the branch of modern mathematics known as algebraic topology.
For an introduction to this point of view, I highly recommend that
you read the book Geomelry and the I'magination by David Hilbert
and S. Cohn-Vossen, Chelsea Press, New York, 1952.

t This is a quotation from his lovely book, Symmetry, Princeton University
Press, 1952,

65
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Symmetry is aesthetically pleasing, and many wonderful geometric
figures can be found through constructions that involve reflections,
for example, constructions of regular polyhedra (read the discussion
by Hilbert and Cohn-Vossen). However, it is the abstract mathe-
matical principle which is associated with the concept of reflection
that we shall have occasion to use most often. The discovery of this
abstraction, known as the Reflection Principle, is credited to Heron.
He found that a ray of light reflected from a plane takes the shortest
possible path between the source and the recerver. Equivalent to this
principle is the fact that, for a ray reflected by a plane surface, the
angle of incidence equals the angle of reflection. In case you are un-
familiar with a proof of this equivalence, one is presented below.

Suppose A is the source, B is the receiver, and m is the reflector
(see Fig. 3.1). We first assume that ACB is a path with equal angles
of incidence and reflection and prove that it is the shortest path from
A to m to B. Let B’ be the reflection of B in m. Then
X ACX = XBCY = XA B'CY; and hence, ACB’ is a straight-line
segment, the shortest path from A4 to B’. But BC = B’C; and in
fact, BP = B’P for any point P on m. That is,

AP+ PB= AP + PR’ > AC + CB’ = AC + CB.

Therefore, ACB is the shortest path from A to m to B. The converse
of this theorem follows from the congruence ABCP = AB'CP
and the equality X ACX = X B'CP. |}

Bi

Figure 3 1

Although the reflection principle is both simple and obvious, it
makes clear, when used in the right place, what is otherwise opaque
or nearly so. I shall try to give some illustrations of this fact, but
first let us examine some ideas based upon simple reflection.
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3.2 Dido’s problem

Simple reflection was used to great effect by Steiner in connection
with the Isoperimetric Theorem and its consequences. One conse-
quence is the solution to Dido’s problem. Dido was the daughter of
a Tyrian king. According to legend, she was married to her uncle,
Acerbas, who was murdered for the sake of his wealth. Dido then
fled to Cyprus with Acerbas’ treasure and sailed from there to the
coast of Africa near Sicily. She told the local ruler that she would like
to purchase some land along the seashore, a piece not larger than an
oxhide can surround. He consented to this small request from a
beautiful lady and generously provided her with a large hide. The
clever Dido then cut the hide into thin strips and tied their ends
together to form a rope so as to be able to surround considerably more
land than the ruler had imagined. If we assume the seashore to be
a straight line and the earth to be flat, she was next faced with the
problem: What is the figure of maximum area which can be sur-
rounded by a string of given length and an unspecified portion of a
straight line? Dido solved the problem, and partly due to her success-
ful solution, became the founder and queen of the prosperous city
of Carthage.

As we mentioned, the solution to Dido’s problem lies in reflection.
If we think of the seashore as a mirror in which we reflect the region
surrounded by the hide rope, her problem becomes: What is the figure
of maximum area having a given line of symmetry (the seashore) and
a given perimeter (twice the length of the rope)? Since the class of
all figures with a given perimeter includes those which also have an
axis of symmetry, and since the circle has an axis of symmetry, the
Isoperimetric Theorem guarantees that the circle is the desired figure
of maximum area; hence, the solution to Dido’s problem is a semi-
circle.

ProBLEM 23. Which is the figure of maximum area bounded by a
string of length L and a stick of length D if L > D? Give a proof.

ProsLEM 24. The order and lengths of all but one of the sides of an
n-gon are given. Which such n-gon has the greatest area? Prove your
conjecture.

ProBLEM 25. Given a quarter of a plane, which is the figure of largest
area which can be cut off from it by a curve of given length? General-
ize your result.

Hint. Reflect more than once.
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ProBLEM 26. Generalize Problem 23 to three dimensions and solve
the new problem.

3.3 Steiner symmetrization

Assuming that there is a figure of maximum area among those with
a given perimeter, one can also use reflection to prove the Isoperi-
metric Theorem. Steiner devised several proofs of this kind. One of
his ideas was to prove that the maximal figure must be symmetric with
respect to every line which divides ils perimeter into two equal parts.

To prove this, we observe that the maximal figure must be convex
and confine further discussion to convex figures. Now, a chord which
divides the perimeter of a convex body into equal parts lies entirely
within the body. If there exists such a chord which does not divide
the area of the body into equal halves, then we can remove the half
with smaller area, and replace it by the mirror image of the larger
half. We thus obtain a new figure with a larger area but having the
same perimeter as the original one. This new figure may not be con-
vex. In this case we can make it convex (see Section 2.4) thus increas-
ing the area and leaving the perimeter fixed. Note also that a chord
which divides the perimeter in half may divide a convex body into
halves of equal area which are not symmetric with respect to the
chord. In this case it makes no difference which half is selected for
reflection. Again, the resulting fizure may not be convex, but it can
be made convex as before. Consequently, if it exists, the plane figure
of greatest area which has a given perimeter must be symmetric with
respect to every line which divides its perimeter into equal halves
and must therefore be a circle. (This last “must” needs substanti-
ation.) |}

Another of Steiner’s proofs of the Isoperimetric Theorem is based
in a different way upon the idea that the maximal figure must have an
axis of symmetry in every direction. To describe this idea, let us first
call attention to a theorem on trapezoids. Suppose ABCD is a trape-
zoid, and suppose AB’C’D is an isosceles trapezoid with the same bases
and altitude; that is, suppose AB'C’D is symmetric with respect to
the perpendicular bisector of AD. It is but a rewording of the Reflec-
tion Principle to say that the perimeter of a triangle having a given
base and altitude is least when it is isosceles. (See Fig. 3.2(d), where
A may be considered the source, D the receiver, and B'C’ the mirror.)
Thus the area of AB’C’'D is equal to the area of ABCD, while its
perimeter is less than or equal to the perimeter of ABCD.
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B C B' C'

Figure 3.2

Now consider any convex body [Fig. 3.3(a)]. Let us slice it into
thin strips whose sides are parallel; and, for the moment, let us assume
each strip to be a trapezoid [Fig. 3.3(b)]. From these trapezoids we
construct a new figure by transforming each one into an isosceles
trapezoid with the same bases and area and by then lining up the
new trapezoids so that they have a common perpendicular bisector
[Fig. 3.3(c)]. It follows from the above theorem on trapezoids that
Fig. 3.3(c) has the same area as Fig. 3.3(b) but a smaller perimeter.
If we divide the original convex body [Fig. 3.3(a)] into thinner and
thinner strips, the approximating polygons [Fig. 3.3(b)] will have
areas and perimeters approaching those of the original figure. (In

(a) (b)
Figure 3.3
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fact, one often defines the area and perimeter of a plane figure to be
the respective limits of the areas and perimeters of a sequence of
approximating polygons.) The transformed polygons [Fig. 3.3(c)]
will approach a convex body with an axis of symmetry. Thus, given
a convex body, we can construct another with the same area, no greater
perimeler, and with an axis of symmeltry in a given direction. (Can you
prove that the symmetrized figure is indeed convex?) This symmetric
convex body may also be thought of as being obtained by the follow-
ing construction.

Figure 3.4

Construction. Draw a straight line in the direction given, and con-
sider the chords of the original convex body which are perpendicular
to the drawn line. Move each such chord so that the drawn line be-
comes its perpendicular bisector.

The endpoints of the translated chords form a new symmetric
figure (see Fig. 3.4), with the same area as the original one but with a
smaller perimeter. This construction is called Steiner symmetrization.
It plays an important role in the theory of convex bodies.

We are now in a position to complete our ‘“‘proof’” of the Isoperi-
metric Theorem. Given a convex body which does not have an axis of
symmetry in some direction, we apply a Steiner symmetrization to it
with respect to that direction; and we obtain a new convex body with
the same area and a smaller perimeter. Then we magnify the new
body until its perimeter is the same as that of the original body. Thus,
if a figure does not have an axis of symmetry in every direction, it
cannot be the figure of largest area among all those with the same
perimeter, It follows that, if a maximal figure exists, the circle is the
maximal figure. (The proof of the last statement is left to the reader.)
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3.4 Conic sections

In this section we shall wander from the subject of inequalities for
a short time and consider some geometric objects for their own sake:
the ellipse, parabola, and hyperbola. These plane curves are known as
the conic sections, and they are so called because they are all curves
of intersection of a right circular cone and a plane. A right circular
cone is defined as follows: Let C be a circle, and let V be a point on
that line which is perpendicular to the plane of the circle and which
passes through its center O (see Fig. 3.5). If V' is not O, all the straight
lines passing through V and points of C form a surface which is called
a right circular cone. The line through V and O is its axis, and the
point V is its vertex.

A PARABOLA A HYPERBOLA

AN ELLIPSE

A CIRCLE

Figure 3.5

The curve of intersection of the cone and a plane perpendicular
to its axis is clearly a circle. When the intersecting plane is inclined
slightly from the perpendicular position, the curve of intersection is
no longer a circle, but it is still a closed curve. Any closed curve which
is the curve of intersection of a plane with a right circular cone is
called an ellipse. Thus, a circle is a special ellipse. Of course, not all
ellipses are circles. An ellipse plus its interior is convex because each
half of a right circular cone plus its interior is convex. As the plane
is inclined more and more, the ellipses formed by it and the cone
become more and more elongated. When the plane is parallel to one
of the lines making up the surface of the cone, the curve of inter-
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section is no longer a closed convex curve but is a curve of infinite
length, namely a parabola. If the plane is inclined still further, the
curve of intersection will still be of infinite length but will have two
separate branches. This conic section is defined to be a hyperbola.

Another way of characterizing the ellipse is this: An ellipse is a
plane curve such that for each point on the curve the sum of ils distances
to lwo fixed points 1s the same. Thus if one pins one end of a thread to
a point F and the other end to a point F; on a flat sheet of paper and
draws an arc by moving a pencil so as to keep the thread taut and
flat on the paper, the arc will be a portion of an ellipse (see Fig. 3.6).

Figure 3.6

The connection between this definition of the ellipse and its definition
as a conic section is easily established, although this is rarely done in
mathematics courses where the ellipse is discussed. We shall prove
that the ellipse defined as a conic section has the property described by
the figure above. Afterwards, we shall return to the subject of inequali-
ties and use the Reflection Principle to establish another important
property of the ellipse.

Proor. (A Belgian mathematician, Dandelin (1794-1847), had this
ingenious, beautiful idea.) Consider Fig. 3.7 which illustrates an
ellipse drawn on a right circular cone. We construct two spheres lying
inside the cone both of which are tangent to the cone and to the plane
of the ellipse. One sphere is above this plane and one is below it. Let
the points of tangency between the plane and the spheres be F, and
F,, and let P be any point on the ellipse. Consider the straight-line
segment VP,PP, on the surface of the cone, where V denotes its
vertex and where P, and P. are points of tangency between the line
segment and the spheres. Since PP, and PF, are segments of tangents
to the upper sphere which are drawn from the same point,

PF, = PP,.
Similarly,
PF, = PP,.
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Therefore,

PF,+ PF,= P,P + PP,= P,P,.

But P,P, isa constant independent of P. (Why?) Hence, PF, + PF:
is a constant, and we see that an ellipse is a curve which is the locus
of points in a plane the sums of whose distances to two fixed points

in the plane are all equal.
v
@

\
N

o

Figure 3.7

We shall have occasion to use later the following property of an
ellipse: It is the locus of the vertex P of a triangle F,PF, with fixed
base 2¢ = F,F, and fixed perimeter p > 4c. Any triangle 1 P’F, whose
vertex P’ lies inside the ellipse has a perimeter less than p, and any
triangle F',P'F, whose vertex P’ lies outside the ellipse has a perim-
eter greater than p.

It can be shown similarly that a hyperbola is a locus of points in
the plane the differences of whose distances to two fixed points are
all equal. (Two tangent spheres are constructed on the same side of
the plane of the hyperbola.)

ProBLEM 27. Draw a figure and complete the demonstration of this
property of the hyperbola.

The two fixed points mentioned in the above characterizations of
the ellipse and hyperbola are called foci. “Focus” is a Latin word
meaning a hearth, that is, a place where things are burned. (The plural
of “focus” is “foci,” and the “c” in “foci”’ is pronounced as an “s.”)
To see why the focus of an ellipseis a burning place, we use the Reflec-
tion Principle. Let [ be a tangent to an ellipse with foci F) and F; ; see
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Fig. 3.8. Let P be the point of tangency, and suppose that @ is any
other point on [. Since @ is outside the ellipse,

QF, + QF, > PF, + PF,.

Figure 3.8

Therefore, F1PF, is the shortest path from F, to [ to F;, and the
Reflection Principle thus tells us that thefocal radii PF, and PF, make
equal angles with the tangent [. This means that if the ellipse were a
reflector, rays from a point source of light at F, would all be focused
at F, by the ellipse; a focus is indeed a “burning place.”

CIRCLE
(SPECIAL ELLIPSE)

ELLIPSES

A PARABOLA
Figure 3.9

A PARABOLA

The vertices of an ellipse are the endpoints of the longest chord of
the ellipse, and this chord passes through the foci. If one focusof the
ellipse, say Fi, is fixed along with the closest vertex V,, and if the
other focus moves farther and farther away along the line through
V, and F,, then the ellipse becomes increasingly elongated and
finally, in the limit, becomes a parabola (see Fig. 3.9). In the limit,
the focal radius PF, is parallel to the axis, that is, the line through V,
and F, . This property of the parabola, that it reflects all rays emanat-
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ing from its focus in the same direction, is used, of course, in the
design of such diverse instruments as automobile headlights and
radio telescopes.

ProBLEM 28. Show that a tangent to a hyperbola bisccts the angle
made by the focal radii from the point of tangency.

Hint. Let | be the line which bisects angle F,TF; (see Fig. 3.10), and
show that T is the only point of [ which lies on the hyperbola by
proving that, for any other point P on I, PF, — PFs < TF, — TF,.
Use reflection in L

Figure 3.10

An ellipse and a hyperbola are said to be confocal if they have the
same foci,

ProsLEM 29, Prove that if an ellipse and a hyperbola are confocal,
then at any point where they intersect their tangents are
perpendicular.

3.5 Triangles

Arguments based upon the geometrical notion of reflection are
often unexpectedly helpful. Many problems resist the most strenuous
efforts directed at their solution; yet once one has the idea “‘try
reflection,” they yield and become charmingly simple. This is espe-
cially so with respect to properties of triangles. Triangles have been
studied for thousands of years, but new properties of triangles appear
every now and then. Some of them are only conjectured. That is,
there is substantial evidence supporting them, but no one has been
able to prove that they are true. In this section we shall examine
some of the more recently discovered properties of triangles.

We begin with Fagnano’s Problem (see Fig. 3.11): What s the
triangle of minimum perimeter which can be inscribed in a given acule-
angled triangle? Can you guess the solution? What does the Reflection
Principle tell you? Take some time, examine some special cases, and
see if you can formulate a conjecture.
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The solution of Fagnano’s Problem, which is given below, is due to
the famous Hungarian mathematician L. Fejér (1880-1958). He
found it in 1900 when he was a student in Berlin. To solve the prob-
lem, we observe that, by the Reflection Principle, the two angles
formed by each pair of sides of the minimal inscribed triangle with
the corresponding tangent side of the given triangle must be equal.
In other words, the vertices of the minimal inscribed triangle (or
triangles) are the only points on the sides of the given triangle to
which a billiard ball would return after exactly two reflections. The
beauty of Fejér’s argument is that it tells in a simple way how to
locate the vertices of the minimal triangle.

Suppose that the given triangle is ABC. One way of trying to find
the inscribed triangle UVW of minimum perimeter would be (a) to

A

U

Figure 3.11 Figure 3.12

pick any points U, and V, on the sides BC and AC, respectively, and
to choose W, on side AB so that the sum U,W, + V,W, isas small as
possible (see Fig. 3.12); (b) to keep V, and W, fixed and to determine
that point U, on BC which minimizes the sum W,U, + V,U, ; (¢) to
keep W, and U, fixed and to determine V, on AC so that U,V, + WV,
is minimized; and (d) with U, and V; fixed, to find W, so as to mini-
mize U,W, + V,W,; and so forth. This process would not stop in a
finite number of steps except in special cases. Moreover, one would
have to prove that this infinite process leads to a limiting triangle
UVW.

Fejér avoided this difficulty. His idea was to fix U and to find the
best possible position for ¥V and W—the position such that the perim-
eter of AUVW 1is smallest—in one bright stroke. To do this, he
reflected {J in the two sides AB and AC, thinking of them as mirrors.
(See Fig. 3.13.) Let us call the mirror images U’ and U”. Then

UW+ Wv+VvU”=UW+ WV + VU.

But the first sum is smallest when V and W lie on the straight line
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determined by U’ and U”. Thus, given U, we have determined the
position of V and W which minimizes the perimeter of AUVW.

We now need only to find the best position for U. (See Fig. 3.14.)
Since AB and AC are the perpendicular bisectors of UU’ and UU”,
respectively, AU’AU” is isosceles with AU’ = AU = AU”. The
base U'U” of A U’AU” has for its length the perimeter of AUVW.
Since X U'AU” = 2 X BAC, the angle U’AU” is fixed. Therefore,
the base of AU’ AU” will be shortest when its equal legs are shortest.
The legs are shortest when AU is shortest, and the smallest possible
value for AU occurs when AU is perpendicular to BC, that is, when
AU is an altitude. The fact that A ABC is acute-angled guarantees
that the foot of the altitude from A does lie on the side BC. Thus, we

have now uniquely specified the inscribed triangle of least perimeter.

Figure 3.13 Figure 3.14

Moreover, it is clear that if AUVW is minimal, whatever property
U has with respect to A, V" has the same property with respect to
B, and W has it with respect to C. This is true, since in the beginning
we could have fixed either V or W instead of U. Consequently, we
have proved

THEOREM 17. Given an acule-angled Iriangle, the vertices of the in-
scribed triangle with the smallest perimeter are the feel of the altitudes of
the given triangle.

This minimal triangle is called the pedal triangle. Theorem 17 deals
indirectly with the problem of hitting a ball on a triangular billiard
table so that it will return to its original position after two reflections.
The theorem shows that we can do this for particular positions of the
ball. Before you investigate whether or not it can be done from any
position try to solve:

ProBLEM 30. In what directions can one hit a ball lying on a rec-
tangular billiard table so that it will return to its original position
after a finite number of reflections? In what directions can one hit a
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ball so that it will strike another ball on the table? Can you solve
these problems for billiard tables of any other shape? Assume that
the balls are points.

Hint. Reflect the table and the ball using the sides of the table as
mirrors; then reflect the reflections; etc.

ProBLEM 31. What property must the n-gon of least perimeter in-
seribed in a convex n-gon have if it exists?

A conjecture which was first made just a few years ago and which
is related to the problem we have just solved is:

CoNJECTURE. A triangle is inscribed in a given triangle dividing it
into four smaller triangles. The perimeter of the inscribed triangle can
never be smaller than the perimeters of cach of the other three tri-
angles.

As yet no one has found a proof for this conjectured theorem. The
problem obtained by replacing the word ‘‘perimeter” in the above
conjecture by ‘“‘area’ has been solved by a method not based on the
ideas treated in this book.

In 1935 Paul Erdés conjectured a novel theorem concerning tri-
angles.

THEOREM 18 (Erd6s-Mordell). If P s any point of a triangle ABC
(inside or on the boundary) and if p., py , and p. are the distances from
P o the sides of A ABC [see Fig. 3.24(a) on page 86/, then

PA + PB + PC 2 2(pa + p» + po).

Further, equality holds above if and only if AABC s equilateral and
the point P 1is ils circumcenter.

Two years later, in 1937, L. J. Mordell and D. R. Barrow proved
Erdés’ conjecture, but neither’s proof was elementary. More recently,
in 1945, D. K. Kazarinoff found an elementary proof which is based
upon the idea of reflection. Before presenting his proof, we shall pro-
vide some motivation for Erdos’ conjecture, and we shall prove some
auxiliary theorems.

How was Erdos led to make his conjecture? What evideuce did he
have to suggest the idea? One possibility is that he generalized Euler’s
Inequality

R > 2r
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between the circumradius R and the inradius r of a triangle, where
equality holds only if the triangle is equilateral. This inequality is
a consequence of a theorem proved by Euler.

TueorReEM (Euler). The square of the distance between the centers of
the incircle and circumeircle of a triangle is R* — 2Rr.

For, since

R*—2Rr >0 and R >0,
R-2r2>0.

The sum PA + PB + PC is analogous to 3R, and the sum
P« + P» + pc is analogous to 3r; hence, it is reasonable to make the
conjecture which Erdés did make. However, he probably had more
evidence.

yo

N

Figure 3 15

Since Kuler’s Inequality B > 2r is an interesting result in itself,
we shall interrupt our discussion of the Erdés-Mordell Inequality
and first present two proofs of the inequality R > 2r, The first proof
establishes Euler’s Theorem that @2 = R? — 2Rr, where d is the dis-
tance hetween the incenter and circumcenter of a triangle. The sec-
ond proof establishes only the inequality £ > 2r and uses, at least
implicitly, the idea of reflection.

In the course of the first proof, we shall use the following two
lemmas.

LeEmMA 1. Let XY be a diameter of a circle with center at O (see Fig,
3.16). Let XY be intersected by a chord AE of this circle, and let O be the
point of inlersection. Then

AO0"-O'E = X0'-0'Y.
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Proor. The triangles O’AY and O’XE are similar because
X A0'Y = XXO'E and X XEOQ = XAYO.

Figure 3.16
Therefore L
A0’ _ oY i
X0’ OE

(If XY is not a diameter but any chord intersecting AE, the above
proof and result remain valid.)

LEmMA 2. Let ABC (see Fig. 3.17) be a triangle with incenter O,
and let E be the midpoint of the arc BC (not containing A) of the circum-
circle of ABC. Then

EB = EO' = EC.

~> U

s

e
/s

/
<

Figure 3.17

Proor. Let P be the excenter of A ABC opposite 4; that is, let P
be the point of intersection of the bisectors of the angle 4 and the
exterior angles UBC and VCB (see Fig. 3.17). (It is easy to show that
these three lines meet in one point.) The bisectors BO’ and BP are
perpendicular since the angles they bisect make a straight angle;
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similarly, the bisectors CO’ and CP are perpendicular. Therefore,
O’ and P are endpoints of a diameter of a circle which passes through
B and C. The center of this circle is the point of intersection of its
diameter O’ P with the perpendicular bisector of one of its chords,
BC. But AO’P is the bisector of X BAC. Therefore, AQ’P cuts the arc
BC (not containing A) of the circumcircle of A ABC at its midpoint.
This midpoint is also a point of the perpendicular bisector of BC.
Consequently, the midpoint E is the center of the circle through P,
C, 0, and B, and EB =EOQ’ = EC.}

Proor oF EULER’s THEOREM.T Let ABC bethegiven triangle, let O
and O’ be its circumcenter and incenter respectively, let D lieon AB
with O’D perpendicular to AB, let E be the point bisecting the arc
BC (the one which does not contain A4), and let FOF and X00'Y be
diameters of the circumcircle. Denoting 00’ by d, we have

X0 =R+ d and 0O'Y = R — d.

Figure 3.18
By Lemma 1,
AO"-OE = (R — d)(R + d).
By Lemma 2,
O'E= EC.
Thus

(R —d)(R+ d) = A0’ -EC.

{ Another proof is contained in the Hungarian Problem Book (to appear in
this series); see Note 2 to problem 1897/2. That proof is due to L. Fejér, who
was then a high school student
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The triangles AO'D and FEC are right triangles. But the angles DAO’
(that is, BAE) and CFE are equal since they cut off equal arcs (I?I?'
and ﬁz’) from the circumcircle. Therefore, triangles AO’D and FEC
are similar. Consequently,

40' _ 0D
EF EC
Since O'D = r and EF = 2R, this equality may be written as

r2R =R —d)(R + d) = R* — &

S

or O'D-EF = AQ-EC.

Hence,
d* = R*> — 2Rr- |}

We have already shown that, since I£ > 0, the last equality implies
the inequality B > 2r.

In the course of the second proof of the inequality B > 2r, we shall also
need two lemmas.

LemMMa 3. Consider a triangle with a fixed base BC whose vertex V lies
on a line { parallel to BC (see Fig. 3.19). Let M@ be the perpendicular bisector
of BC. Then, as V moves closer to @ along I, the inradius of triangle VBC
increases,

Figure 3.19

Proor. Construet the ellipse with foci at B and C such that every point
E on the ellipse satisfies the condition

BE + EC = BV + VC.
Then for any point ¥’ on I for which V7 < V@,
BV’ + V'C < BV + VC.

Since V” lies insides the ellipse, the perimeter P of triangle BVC is greater
than the perimeter P’ of triangle BV’C.
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Let r be the inradius of triangle BVC, and let  be that of triangle BV’C.
Since the areas of these triangles are the same, we have (see solution of
Problem 12)

T(BVC) = %’ = 7BV'C) = L 2"_

Since P > P/, it follows that r < »". §

LeEmMA 4. Consider a triangle with fixed base BC whose vertex U lies
on a line ! that makes g fixed angle with BC at C (see Fig. 3.20). As U moves
away from C along I, the inradius of triangle UBC increases.

Al

/
o U
- ’.Q
/r' r c

Figure 3.20 Figure 3.21

B

Proor. Let UC < U’C. To compare the radii r and r* of the incircles of
triangles UBC and U’BC, recall that the center of the incircle of a triangle is
the point of intersection of its three angle bisectors. Clearly, as U moves along
I away from C towards U’, the angle at B increases and the point of inter-
section O of the angle bisectors moves away from C toward O’ along the
fixed angle bisector of X. C. Therefore r < r’. |

SEcoND PRooF oF THE INEQUALITY R 2 2r. If the given triangle is equila-
teral, then B = 2r and the equality is satisfied.

Suppose the given triangle is not equilateral. Label its vertices A, B, C,
so that AC is its shortest side and so that the angle at A is smaller than the
angle at C (see Fig. 3.21). Let R be the radius of the circumcircle K of triangle
ABC, and let e be the side length of an equilateral triangle inseribed in K.
Then AC < e. From A, we move along the circumference of K, away from C,
until we come to a point A’ at which A’C = e. Let B’ be the third vertex
of the equilateral triangle A’B’C. Denoting the inradius of a triangle XYZ
by r(XYZ), we shall now prove that

R

(4BC) < r(4'BC) < r(A'B'C) = 5

To prove the first inequality, we move A4 along a line parallel to BC' until
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we come to 4” on A'C. By Lemma 1, r(4BC) < r(A”BC). We then move
from A” to A’ along A’C. By Lemma 2, r(4”BC) < r(A’BC). Now the
first inequality is established. To prove the second one, we move B to B”
along a line parallel to A’C and then move from B” to B’ along B'C. Hence,
if A ABC is not equilateral, 7(4BC) < R/2 or R > 2r(4BC). 1

ProBLEM 32. Use the Principle of Reflection and the result: Of all
n-gons wilth the same area, the regular n-gon has the smallest perimeter
(that is, the dual of the statement following Problem 21) to show that
if P is interior to a triangle A BC of area T, then

PA + PB + PC > 2+/v3T.

ProBLEM 33. Show that the last inequality implies that
PA + PB4+ PC26r=2(r+r+ 7).

This result further supports Theorem 18, Draw a triangle, and choose
an interior point P. Measure its distances to the vertices and sides.
Does the result support the theorem?

In order to prove the Erdés-Mordell Theorem, D. K. Kazarinoff
used a little known but beautiful generalization of the Pythagorean
Theorem, a theorem due to Pappus.

THEOREM 19 (Pappus). Let ABC be any triangle. Let AA'C'C and
BB"C”"(C be any two parallelograms constructed on AC and BC so thai
either both parallelograms are outside the triangle or both are not entirely

p

= \\\\\ \\

[\ e—] B

Figure 3.22
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oulside the triangle (see Fig. 3.22). Prolong their sides A'C’ and B"C”
to meet in P. Construct a third parallelogram ABP” P’ on AB wilh
AP’ parallel to CP and with AP’ = CP. The area of J ABP"P’ is
equal to the sum of the areas of the parallelograms AA’'C’'C and BB"C”"C.

The proof of this theorem, in case the parallelograms are outside
the triangle, is contained in Fig. 3.22; the proof for the other case is
just as simple. Note that when the given triangle is a right triangle
and the given parallelograms are squares on its legs, then Pappus’
Theorem specializes to the I’ythagorean Theorem.

I’roBLEM 34. Suppose that the parallelograms on the sides AC and
BC of triangle ABC have a common edge. Generalize Pappus’ Theo-
rem to three-dimensional space in this case.

Note that the case considered in >roblem 34 is actually not a special
case; the general case can always be reduced to it (see Fig. 3.22 in
which PC is the common edge of the shaded parallelograms). In the
proof of Theorem 18 below, we shall apply ’appus’ Theorem in this
apparently special case.

There is one more theorem from plane geometry which we shall
use in the proof of Theorem 18. It tells us under what conditions the
sign of equality holds in the inequality

LEMMA. Given a triangle ABC with circumcenter O, the biseclor of

the angle at A also bisects the angle belween AO and the allitude from
A to side BC.

Figure 3.23

Proor. Let AD be the altitude, AM the bisector of X 4, and A0S
a diameter of the circumcircle(see Fig. 3.23). Then X ABS and X ADC
are right angles; moreover, X ASB = X ACD because both angles
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are measured by %A’-l}. Therefore, triangles CAD and SAB are similar,
and X BAS = X DAC. Since AM is the bisector of X 4,

X SAM = %X DAM. |}

We can now prove the Erddés-Mordell Inequality—Theorem 18,
The key to the proof is in the first step, which is an application of a
reflection. Let triangle ABC be given, and let P be any point in its
interior or on its boundary. [See Fig. 3.24(a).] We replace A ABC by
a new triangle AB’C’, where B’ and C’ are the reflections of B and C,
respectively, with respect to the bisector AD of the angle at A [see
Fig. 3.24(b)]. We do not disturb the point P; this is important to
remember. We apply Pappus’ Theorem to A AB'C’ cousidering the
two given parallelograms to be those determined by A, P, and '
and A, P, and B’ [see Figs. 3.24 (¢) and (d)]. The sum of their areasis

cps + bp. .

(d)

Figure 3.24

The area of the third parallelogram (the one having base B'C’ of
length a and adjacent sides equal and parallel to P A) is less than or
equal to a- PA, equality holding if and only if A P is perpendicular to
B'C’. By the lemma stated on page 85, this occurs only if P lies on A0,
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where O is the circumcenter of A ABC. Thus, by Pappus’ Theorem,
cpy + bp. < aPA

or

C b —

— —P. <

p s + p P S P
Similarly,

a c —_

— _— <

5 P + A ps < PB
and

b a —
~— Ma - < .
CP +Cpb_ C

Adding the right- and left-hand sides, respectively, of the last three
inequalities, we find that

¢c b a
Each of the coefficients on the right-hand side is at least 2. Why?
(See Section 1.2 if you are puzzled.) Therefore

PA + PB + PC 2 2(p. + ps + po).

Equality holds if and only if @ = b = ¢ and P lies on A0, BO, and
CO; that is, equality holds if and only if A ABC is equilateral and
P is its center. |

A second elementary proof of the Erdos-Mordell Inequality has
been found by L. Bankoff, American Mathematical Monthly, Volume 65
(1958), p. 521.

PA + PB + PC > (b+"—)p., + (§+§)pb + (§+ ")p,,..

ProBrLEM 35. If P lies in a triangle ABC, then
PA-PB-PC 2 8 pa-ps Pe .

Equality holds only if the triangle is equilateral and P is its center.
Hint. Use the inequalities aPA > cpy + bpc, etc., and Theorem 8.

The next two problems are due to Professor A. Oppenheim of the
University of Malaya; he rates Problem 35B as a hard problem.
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ProBLEM 35A. Let g. = p» + p., let ¢ = p. + p., and let
gc = Pa + Po.

Prove that

PA -PB-PC 2 q.gq. .

ProBLEM 35B. Prove that
PB'PC+ PCPA+PAPquch+cha+ QaQb.

ProBLEM 36. Find the generalization of the Erdos-Mordell Inequality
for triangles to three-dimensional space. We note that while the cor-
rect generalization is known, no one has discovered a proof. What are
other possible inequalities which involve the distances from a point
P inside a tetrahedron to the faces, edges, and vertices of the tetra-
hedron?

ProBLEM 37. In a given convex quadrilateral, which is the point
such that the sum of its distances to the vertices is a minimum? What
is the solution if the quadrilateral is not convex?

ProBLEM 38. What is the solution to the above problem for a tri-
angle instead of a quadrilateral? Consider an acute-angled triangle
first.

Miscellaneous Problems

ProBLEM 39. Find the largest rhombus inside a given triangle, one
of whose angles is an angle of the triangle; see Fig. 3.25.

Figure 3.25

ProBLEM 40. Suppose the sides of a triangle A BC are in the relation
a <b <c Ifs,, s, and s are the lengths of the medians from the
vertices A, B, and C, respectively, and if f, , fy , and f. are the lengths
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of the angle bisectors from these vertices, show that
&> 8 >8 and fo > fii > f..

P’roBLEM 4] (Erdos). Let /° be any point inside a triangle A BC, and
suppose that AP, BP, and C P extended meet the sides at A’, B, and
C’, respectively. Prove that PA” + PB’ + PC’ is less than the length
of the longest side of the triangle.

ProBLEM 42. a, b, ¢, and d are positive. Show that

a c . . a a+ ¢ C
(a) ‘b—< 3 lmplleS that -b—< -b_—_'-—d < a.
a b _
(b) Wi+752 va + Vb
(¢) Va + b < Va + Vb
IN*_ 5 _
(d) (1 + 6_a) > 5 for a=1,2,3, .

ProBLEM 43. Of all triangles cut off from a fixed angle C by straight
lines passing through a fixed point H in the interior of the angle
(see Fig. 3.26), which has the least area?

Figure 3.26

ProBLEM 44. Let the region ABDC (see Fig. 3.27) be convex, and
suppose AB is parallel to CD. What must be the position of a tangent
EF to BD so that the area of AEFC is a minimum? Nofe. A straight-
line segment EF is langent to the curve BD if EF and BD have at
least one point in common and if all points of BD which are not on
EF lie on the same side of EF.

A B E

Figure 3.27
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ProBLEM 45 (Fejes-Toth). On the surface of a sphere the distance
between two points is the length of the shorter arc of a great circle
having these two points as endpoints. Consider n points on the surface
of a sphere, and let S be the sum of the distances between all distinct
pairs of these points. One can ask: What positions of the n points
yield the maximum value S, of S? The question has been resolved in
the cases n = 2, 3, 4, 5, and 6. Give the solution for n < 4. Can you
conjecture what the values of Su and Sy, are? Can you give an
inequality for S,?

ProBLEM 46. Which is the shortest area-bisecting chord of a triangle?
Which is the longest?
Hint. First, prove the following theorem.

THEOREM. Of two triangles which have a common angle and area, the
one with the smaller difference between the lengths of the sides forming
that angle has the smaller base.

ProBLEM 47. Replace ‘“area” by ‘“perimeter’’ in Problem 46 and
solve the new problems.

ProBLEM 48. Let @ be a convex quadrilateral with perimeter P.
Suppose that [ and m are two perpendicular chords which divide the
perimeter of Q into four equal parts. Show that if L is the sum of
the lengths of m and I, then L > P/2 with equality holding only for
rectangles. This problem is unsolved except in special cases.



CHAPTER FOUR

Hints and Solutions

The best advice I can offer on how to solve problems and prove
theorems is: solve problems and prove theorems; concoct examples
for evidence and hints as to general statements; consider special cases;
make guesses and decide if your examples support or invalidate them;
try to use, or modify and then use, reasoning you have employed or
encountered in other situations; if you become stymied, rest and renew
your efforts another day; use pencil and paper; keep a record of your
thoughts. The more curious you become, the more experience you will
acquire and the more you will learn. Think about mathematics, do
mathematics, enjoy mathematics!

For a careful development and illustrations of the above sugges-
tions and many more, I recommend that you read G. Pélya’s books,
How to Solve It, Princeton University Press, 1945 and Mathematics
and Plausible Reasoning (especially Vol. 1), Princeton University
Press, 1954. When all else fails, then in good conscience you may read
from the hints and solutions given below; but only read as much of
a solution as you need to complete it by yourself.

It is good to remember that problems fall into three classes: can’t,
think I can, and have. When you have completed your solution—this
means you have it written down so that someone who does not yet
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92 GEOMETRIC INEQUALITIES

know the solution and who is also fussy and critical can read it and
understand it without having to fill in details you have neglected to
describe—then compare the argument in the text with yours. Once
you see how a problem is solved or a theorem is proved, attempt to
provide a different solution or proof. Can you improve either the solu-
tion you have found or the one I have given? Incidentally, if you solve
one of the unsolved problems mentioned in this pamphlet, send
your solution to the editors of the NML series or to me.

Not all the problems and exercises given in the text are discussed
below. When a particular question is discussed, it may be that only a
hint or part of a solution is given. Sometimes other problems and
theorems are mentioned. Almost every solution needs further work.
In writing each one down, I have assumed that the reader is familiar
with the problem and has seriously attempted to solve it.

ExERrcIskE 1. Definition 1 reveals that

7<9;

and using Theorem 4 with p = 1, we find that
V7T < 3.

The desired conclusion now follows from Theorem 2. ||

ExERCISE 4. \/1/3 + ~/2/7 is larger. We discover this as follows.

If
5 1 1 3
Vo+ /s < /5 4/

then, by Theorem 4 with p = 2,
5 501 1 7,2
B2 Gty <3t mts
+1/ —<—+1/—+—

5 1 1
1/ 1/ +__1_2_3_5-7-12'

or

hence,
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But 8/21 > 1/3. Therefore, the left-hand member of the above in-
equality is a negative number, and the inequality is indeed correct.

Write out a careful proof by reversing the order of the above steps
and adding to them where necessary.

ProBLEM 1. We first prove that

(%) 2k — 1 Vik -3 (k=1,23 - n).
2k \/4k+1

By adding 16 k* — 12k* to both sides of the obviously correct state-
ment 1 > 0, we obtain the inequality

16k — 126 + 1 > 16Kk° — 12K

or
(2k — 1)°(4k + 1) > (2k)*(4k — 3),

which, by Theorems 3 and 4, is equivalent to (*). (In practice, one
begins by assuming that (x) is true, deduces 1 > 0, and then reverses
the steps to obtain a proof.)

The statements of the inequality () for each of the integers 1
through n are:

1o b 345 2n—3 _ Vin —7
2 \/5? 4 3) ¥ 2n_2 (—4n_3)
2n—1>\/4n—3
2n Vin -1
The product of all the left-hand members is
135 2n—=-3 2n—-1
2 4 6 on — 2 2n

The product of all the right-hand members is

1 /6 3  Aan—-T7T Vin -3 _ 1
V5 3 413 Vin—3 Vin—1 an+1

Consequently, by Theorem 3,

1 3 2n—1> i

232 T on Vin + 1
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The second inequality in Problem 1 can be established by first proving
that

2% — 1 _ +/3k — 2

_ k=1),
2k V3 +1 ( )
2k—1< Sk — 2 (k=2)31' ’n))

2k V3k + 1
and then by proceeding in analogy with the preceding argument.

ProBLEM 2,
bl. b2 b3 bn—-l bn
e T I C I T o
b2+b3+b4+ +bn+bl_ "
(by > 0,7 =1,2,---, n) is the desired inequality. Equality holds
onlyif by =by= --- = b,.
Note that

(21) (’12) (b_) =1
b2/ \bs by ’
ProBLEM 3. 1t is a consequence of the definition of logy a and log,10
that
logw a = (log,10)7".
To see this, let log,10 = N. Then
a" =10 and a = 10'"

so that

*-]:"' = logm .

N

Now use Theorem 6. (If you need more details, observe that

1
lOg]_o a’

logy a + log,10 = logywa +

let logiw @ = z, and use inequality (3) on page 18.) |}



HINTS AND SOLUTIONS 95

ProBLEM 4.
n + 1 terms
"NVabr ="Vabb - b < @+ bn++li. + 0 (Theorem 8)
n <+ lEactors
_a+mnb
n+ 1
Equality holds only if a = b. |
ProBLEM 5.
nl=1-23. ... -n<(1+2+n'“+n) (Theorem 8).
But

1+24+34+ - +mn

1{ 1 + 2 4+ 3 4+-4+n-14+ =n
2 +n + n—1 +n—-2+- 4+ 2 + 1

=%Kn+n+4n+n+4n+n+~~+wn+1%+m+1n

_n(n+1)
==

Therefore, by Theorem 1,

an+ 1" _ (n+ 1Y
"!<[ w3 ]"( 2 )

which was to be shown. |

ProBLEM 6. If a, b, and ¢ are positive,
ab + bc + ca > 3(ab-be-ca)'® = 3(abe)*? (Theorem 8):;
and
a+ b+ c > 3(abc)’? (Theorem 8).
Therefore, by Theorem 3, if a, b, and ¢ are positive,
(a + b+ c)(ab 4+ be + ca) > 9abe.

If a = b = ¢, equality holds. If two or more of a, b, and ¢ are zero,
equality holds. In all other cases inequality holds.
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ProBLEM 7, Solution 1. One can arrange the terms in the product as
follows:

(Ze)(Ea)-2+2+ o s

1 1 a;

An—1 Qn
+ ( (479 + an—l) ’
Considering each row of terms separately and using inequality (3) on

page 18, we conclude that each term in every row except the first
is greater than 2, and hence that

(F’:Za'-)(i—l—_)zn-w(n—1)-2+(n—2)-2+

T a;
+nh—-(m-2)]24+12;

or
= = 1 = n(n—l) 9
> a =)22|l X (n=k)|+n=2""—"+n=rn"
1 T @ k=1 2

Equality holdsonly if a; = a2 = -+ = a.. |}

Solution 2. Another way of arranging the terms is

3

1 1 al a]. a‘2 an—l an
a2 a2 ae a2

+2 42 42 4.4 242
I aq as an—1 (479
a a a a a
+=2 +2 +2 + .+ =4
O az as Un_1 Qn
A A Ap_ An— Qp
+ 1+ ﬂ1+ 1+...+ ﬂ1+ 1
a a2 a3 dn_1 n
An Un On Un Un
T = e

aL a2 as Ap—1 dn
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There are exactly n* terms in this sum, n rows of n terms each. Ob-
serving the rows and columns, we see that exactly n terms have the
numerator a; for each k from 1to n and that exactly n termshave the
denominator a; for each k from 1 to n. Therefore, the product of all
these n® positive fractions is 1; hence, by Theorem 6, their sum is at
least n*. Equality holds if and only if they are all equal, that is, if and
onlyifay =a,= -+ = a,. |

Can you find still another solution—one involving the result of
Problem 2 as applied to diagonal rows of terms in the sum of n* terms
above?

ProBLEM 8. A line of discovery of a proof is given below. If
la| = |b|L|a+b|<|al+ |b]
then, by Theorem 4,
laP —2lal-|b]+ |6 < |a+ b <L |alP+2lal-|b]|+]|b]

But|a|*=d, |b|° =V, and|a + b|* = (a + b)’. Therefore, if we
subtract o’ and ® from all three members of the last inequality, we
obtain the result

=2|a||b] <2ab < 2[al:|b]

Since |a | 2 a andsince |b| > b, |a|:|b| = ab. (Why?) Therefore,
it ¢s true that

—2|al-|b| £2ab < 2|a||b].

In order to write down a proof, we must be able to reverse the order
of the above steps. Such a reversal may not be possible. For example,
fx>y>12 >4 > 1;butif 2 > ¢ > 1, it need not be that
x>y >1; suppose xr = —4 and y = —3. However, in the case at
hand, we can reverse our steps.

Proor. Clearly, |a|®> = a®, |b|* = b, |a]|-|b| > ab, and
—|a|:|b| £ ab. Therefore, by Theorem 2,

la|* = 2la||b| + |b|* € @® + 2ab + ¥
<lal'+2lal-|b]+ b

Since (@ + b)* = | a + b |*, we obtain the desired conclusion from the
last inequalities by using Theorem 4 with p = }. |

Note that the inequality |[a| — | b| < | @ + b | actually implies that
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lla| — |b]| £ |a + b|. (These inequalities are valid for any real
numbers a and b.)

The number | @ + b | is the distance from the point a to the point
—b on the real line. The number | a | + | b | is the distance from a to
the origin plus the distance from —b to the origin. Thus, the right-
hand side of the inequality implies that the distance between two
points on the real line (¢ and —b may denote any pair of points de-
pending on the values of a and b) is less than or equal to the sum of
their distances to the origin. This geometric statement corresponds to
the triangle inequality, namely, that the sum of the lengths of two
sides of a triangle is greater than the length of the third side. Similarly,
the left-hand inequality is equivalent to the theorem that the distance
between two points on the real line is greater than or equal to the
difference of their distances to the origin and corresponds to another
well-known triangle inequality.

Can you prove and interpret the following inequalities?

(i) le| = b <|a—=b|<|al+|b]
(i) |[a—¢c|—|b—¢c|L|axb|L|a—c|+]|b-c¢]|.
If a and b are complex numbers, then again

la+ b < al+|b],

and the geometric interpretation of this inequality for complex num-
bers is the triangle inequality cited above.

ProBLEM 9. Let A be a triangle with area 7' and perimeter P. Let
A be an isosceles triangle with the same base and perimeter as A
but with area T . Lastly, let A, be an isosceles triangle with the same
base and area as A but with perimeter P, . By Theorem 10B as ap-
plied to A and A,,

P>P,,.

Thus, although A, and A, are both isosceles triangles with a common
base, the perimeter of A, is at least as great as the perimeter of A, .

Consequently, the area of A, is at least as great as the area of A ;
that iS, T]_ 2 T. l

Given the triangle A, construct the triangles A, and A, . See the
truth of the theorem with your own eyes.
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ProBLEM 10. I shall prove that Theorem 11A implies Theorem 11B.
Let A be any triangle with area T and perimeter P. Let A, be an
equilateral triangle with area T and perimeter P, . Lastly, let A, be
an equilateral triangle with area T; and perimeter P. By Theorem
11A as applied to A and A,,

T, > T.

Now, of two cquilateral triangles, the one with the greater area has
the greater perimeter (and, conversely, the onc with the greater
perimeter has the greater area). Thus, comparing A, and A,, we
conclude that P, < P. |}

ProBLEM 11. Dividing both the left- and right-hand members in
Heron’s formula (7°) by 16T”, we have the result

PP —2a) PP —2b) PY(P —2c)
(16TH7 (16771 (16T%)'73

Each factor in the above product is positive, so that we may apply
Theorem 6 and conclude that the sum of the three numbers whose
product is one is least when the three numbers are equal. The sum is

Pll3
(167?15
The three numbers are equal when P — 2¢ = P — 2b = P — 2c,

This happens if and only if a = b = ¢. Since T is fixed, this means
P is least whena = b = c. |}

= 1.

1/3
(1;;2) (P—2a+P—2+P—2), thatis,

ProBLEM 12. The equilateral triangle is the extremal one in both
cases.

Hint. Use the theorem that of all triangles with the same perimeter
(or area), the equilateral triangle has the largest inscribed circle.

Figure 4.1
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Proor. For any triangle ABC,
2T = rP,
where r is the radius of its inscribed circle. This is true because

r r ro_ r_p.T.
T—a-§+b §+c é—(a+b+c)2 P 5

Theorem 11A states that for fixed I, T is greatest when ABC is
equilateral. Hence for fixed P we see, from the relation 27" = rP°, that

r is greatest when ABC is equilateral. A similar argument can be
made if T is fixed. |

Solution to part of Problem 12. Let A be a triangle circumscribed
about the given circle of radius r, and suppose A has perimeter P and
area T. Let Ag be the equilateral triangle circumscribed about the
same circle, and denote its area and perimeter by Tz and Pg , respec-
tively. Lastly, let A, be an equilateral triangle with perimeter P, and
call the radius of its inscribed circle r, . Applying the above theorem
to A and A;, we conclude that r;, > r. But if one equilateral triangle,
A, has a larger inscribed circle than another, Ag, it also has a
larger area and perimeter. Therefore P > Pg . |

ProBLEM 13. If one is going to present a long proof or use an argu-
ment with a large number of long steps, it is always a good policy to
explain first what one is going to do. The solution of the present prob-
lem is just such an instance. The answers to the two questions posed
in Problem 13 are:

TuEOREM A. Of all triangles inscribed in a given circle, the equilateral
triangle has the largest perimeler,
and

THEOREM B. Of all triangles inscribed in a given circle, the equi-
lateral triangle has the largest area.

We shall present a complete proof of the first of these two theorems,
and we shall suggest how the second may be established. The proof of
Theorem A has two main parts. We first prove

TueoreM C. Of all triangles with the same base which are inscribed
tn a given circle, the isosceles triangle with the greater allitude has the
grealest perimeler,

We then prove that of all isosceles triangles inscribed in a given
circle, the equilateral triangle has the greatest perimeter,

Proor oF THEOrREM C. Let ABC be the inscribed triangle with
fixed vertices A and B. Let us denote the angles at 4, B and C by «,
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Figure 4.2
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8 and v, respectively. As the vertex C moves along the circumference
of the circle, the angle ¥ remains constant. Suppose the bisector of ¥
intersects the base AB at X. Let AD and BE be perpendiculars

drawn to CX, perhaps extended (Fig. 4.2). Then
bsin ¥y = AD, asin ¥y = BE

and

() (¢ + b) sin 4y = AD + BE.

Also, in the case illustrated by Fig. 4.2,

XAXD = 8 + v,

so that
AXAD = %XEBX = ix — (8 + #v)
=4a+B8+7v) — B+ 3v)
= $a — B).
Therefore

AX cos ¥(a — 8) = AD, BX cos Y{(a — 8) = BE,
and
(++) (AX + BX) cos }(a — 8) = ¢ cos $(« — p) = AD + BE.
It is a consequence of (x) and (**) that
(a + b) sin 3y = AD + BE = c cos 3(a — 8),
or

ccos 3 (a — B)
sin } v '

(a+b)=



102 GEOMETRIC INEQUALITIES

The angle v is fixed, and cos $(a — B) is greatest when o« = 8, that
is, when AABC is isosceles. Therefore a + bis greatest when AABC
is isosceles. Unless ¥ = 90°, there are two possible values for v, ac-
cording as C lies on one side of AB or the other. The smaller value
corresponds to the larger value of ¢ + b among the two possible
isosceles triangles ABC for fixed A and B; it also corresponds to the
longer altitude from C to AB. |}

Figure 4.3

It is easy to show, with the help of this theorem, that an isosceles
nonequilateral triangle inscribed in a given circle is not the triangle
of maximum perimeter inscribable in that circle; we merely take one
of the equal sides of the triangle as the new base and inscribe an isos-
celes triangle on this base (see Fig. 4.3). According to the theorem,
the new triangle has a larger perimeter than the given one. Since we
have not shown that, in a given circle, a triangle of maximum perim-
eter exists, the above method of increasing the perimeter of a non-
equilateral triangle does not constitute a proof of the existence of the
maximal figure. We therefore need to approach Theorem A from a
different point of view.

Proor oF THEOREM A. In view of Theorem C all we need to show
is that, among all isosceles triangles inscribed in the given circle, the
equilateral triangle has the greatest perimeter. Let AABC be isos-
celes (see Fig. 4.4), let CC’ be the diameter perpendicular to AB,
and let A0 be a radius of the given circle with A0 = R. We shall
first show that the perimeter 2a + c¢ is greatest when AC” = R.
Since, in this case, AABC must be equilateral, the proof of the
theorem will then be complete.

By the ’ythagorean Theorem,

a=vV4R* — 4¢"* and - =+/40" — O'X".

¢
2
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C
o
R
¢ £

Figure 4.4

Since the triangles AC’C and AC’X are similar,
C'’X _ AC’ v _ AC”

= s OF C'X SR

=

-~

-

Consequiently,

¢ =4/ 100 — (ACTY = AC ="
5 1/Ac _(23) = V4R' - AC”

Y- v (1 + AC')

=_1E\/2}3+A_C'\/2R—A_C’(2R+A_C’).

and

a+

o] B

We wish to find conditions under which P = 2(a + ¢/2) is a maxi-
mum. Since R is fixed, P will be a maximum when 6R*F? is a maxi-
muum. We first observe that

2
6R*P* = 12R (a + %)

= (2R + AC")(2R + AC") (2R + AC")(6R — 34C").

Secondly, we observe that 2R > AC’ and that the sum of the four
factors on the right is 12R, which does not depend on AC’. We are
thus able to use Theorem 7, which says that the product of four posi-
tive numbers with a given sum is greatest when they are all equal.
The value of AC’ which makes all factors equal is determined by the
equality

6R — 34AC’ = 2R + AC';
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the result 1s L
AC" = R.

Therefore, ¢ = a, and AABC is equilateral. |

The method by which the equivalence of Theorems 10A and 10B
was demonstrated can now be used to prove Theorem B:

Of all triangles inscribed in a given circle, the equilateral triangle has
the greatest area.

However, this method cannot be used to prove that Theorem B
implies Theorem A.

Theorem B is equivalent to the following proposition.

THEOREM. The product of the lengths of the sides of an equtlateral tri-
angle tnscribed in a circle is grealer than the product of the lengths of the
sides of any other lriangle inscribed in the same circle.

ProoF. For any triangle ABC (see Fig. 4.5),

ab sin C c

= and sinC =

- that i =<
5 5R that 1s,
A

Figure 4.5

Since R is fixed, we conclude that T is greatest whena-b- ¢ is greatest,
namely, whena = b = ¢. |

The preceding discussion illustrates a common phenomenon in
mathematics: simple questions which require much labor to be
answered.

ProBLEM 14. Theorem. Of all triangles with a given perimeler, the
equilateral triangle has the smallest circumeircle.

ProoFr. Let A be a triangle with circumradius R and perimeter P°.
Let Ag be an equilateral triangle with circumradius R and perimeter
Pg . Lastly, let A’ be an equilateral triangle with circumradius B’ and
perimeter P. By the result of Problem 13, Pg > P. Therefore

R>PR.|
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The theorem involving area instead of perimeter is similarly stated
and proved. One simply replaces perimeler by area wherever it appears
in the last theorem and proof.

ProBLEM 15. Let the dimensions of such a box be a, b, and ¢, with
the open end having edges of lengths ¢ and b; and denote its surface
area and volume by S and V, respectively. Then

S = 2ac + 2be + ab and V = abe.

By Theorem §,
S
[(2ac) (2bc) (ab)]'"? < 3
Since (abe)*® = V*? this inequality is equivalent to
23 S S3I2
V S 3.0 or V S 2._—3”2 .
The maximum value, $¥2/(2-3%*), of V is taken on if and only if
2ac = 2bc = ab,
that is, if and only if
a=b=2c

The box of maximum volume is therefore one half of a cube. J Can
you solve this problem using the Reflection Principle discussed in
Chapter 3?

ProBLEM 16. Let the dimensions and volume of such a box be de-
noted as in the solution to Problem 15. Then 2b + 2¢ is the girth, and

a+ 2b+ 2¢c < L.
By Theorem 8,

(a-2b-2¢)" < a+2§+2cs31_a or 22I3'Vm£§.
Therefore
L3
14 S 22.33 )

When V is at its maximum, which is L*/(3%-2*), then
a = 2b = 2¢.
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The height b and width ¢ of the box should therefore be equal, and its
length a should be twice its width (or twice its height).

ProBLEM 17. Let the dimensions of such a box be a, b, and ¢. Then
the sum L of the lengths of its edges is 4(a + b + ¢). By Theorem 8,

a+b+c 1/3 L

Therefore, the volume is greatest when V = (L/12)° and this hap-
pens if and only if a = b = ¢.
The surface area S of the box is

2(ab + be + ca).

By Theorem 8, 2ab < o> + b, 2bc < b + ¢, and 2ca < & + d°.
Equality holds in all three inequalities if and only if @ = b = ¢. There-
fore,

S22 +V +) =2+ b+ ) — 4(ab + be + ca)
=2(a+b+¢)—28

L2
3352(1).

L is fixed. Hence S is a maximum whena = b = ¢c. |}

(abc)”a <

or

PRroBLEM 18. Hint. Let M be a tetrahedron with volume V. If each
face of M is an equilateral triangle, then M is a regular tetrahedron,
and there is nothing to prove. Otherwise, choose a face which is not
an equilateral triangle. Keeping the volume of M fixed, transform M
by changing this face into an equilateral triangle of the same area and
by moving the opposite vertex until it lies above the center of this
triangle. This diminishes the surface area. Why? Can you prove it?
Therefore, if M is not a regular tetrahedron with volume V, there is
another tetrahedron with the same volume but with less surface area.
By hypothesis, a solution to the problem exists. Therefore, the regu-
lar tetrahedron must be that solution.

In 1884, R. Sturm gave a proof of this theorem which was in the
spirit of Steiner’s proof of the isoperimetric theorem for triangles. He
did not assume that an extremal tetrahedron exists. Although it is
elementary, his proof is not simple.

Solution. We first observe that the inequality
@+ )+ @G+ 2+ )"+ (w4 0)7T"
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b Xx+y )

Figure 4.6

is valid for any positive numbers z, y, u, and »; this inequality is, ac-
cording to I'ig. 4.6, equivalent to AB + BC > AC. Similarly, the in-
equality

(xﬂ + uﬂ)lfz + (yz + v2)1I2 + (22 + wﬂ)l[ﬂ
>+ y+2)°+ (u+ 0+ w)”?

is equivalent to the statement AB + BC + CD > AD, where ABCD
is a polygonal path. Weshall make use of this inequality in & moment.
The above inequalities and their generalizations to sums of n terms
were discovered and proved by the great geometer Hermann Min-
kowski (1864-1909).

Suppose the given tetrahedron M has volume V and total surface
area S. If M is not regular, then at least one face is not equilateral,
and we may assume it to be the base. We denote the base perimeter
by P, and we denote the base area by A. Now suppose that N is the
transformed tetrahedron with equilateral base and the same altitude.
Then N has volume V, total surface area S*, base perimeter P* < P,
and base area A.

Let h be the common altitude of M and N (see IVig. 4.7), let a, b,
and ¢ be the lengths of the sides of the base of M, and let ¢ be the
length of the sides of the base of N. Let p., p», and p. be the lengths
of the perpendiculars to the sides from the foot of the altitude of A7
to the base, and let p be the length of the corresponding perpendicu-
lars for N. Then, considering M, we see that

A= %(apa + bpy + cp.),
S = A+ alp: + K'Y + b(ps + K" + c(p? + 1)
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Figure 4.7
and
208 — 4) = (a9 + a0 + (Uph + VW)™ + (Fpt + ™
Similarly, by considering N, we see that
A = 3(ep + ep + ep) = 3(3e)p = 1P%p,
S* = A + e + A" + (0 + 1) + e(p" + 1)
= A+ 3P*(p" + A"
and
2(8* — A) = (P¥p" + P¥I)"™ = [(24)" + P¥A'T"
We now set
ape = 2, bpe = v, cpe = 2; ah = u, bh = v, ch = w,

and we apply the second inequality stated at the beginning of this
solution. Thus,

2(S — A) = (a'pi + W) + (V'pi + VR + (pi + 0%
=@+ 4"+ &+ N+ @+ W)
>z+y+2)"+ (u+ v+ w)?
= [(aps + bps + cpc)’ + (ah + bh + ch)]'”
= [(24)" + P’r)'"
> [(24)% + P**p?
= 2(8* — 4).

But if 2(S — A) > 2(S* — A), it follows that S > S*. |
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ProBLEM 19. Let such a double pyramid have volume V and surface
area S. Let the constituent pyramids have bases of area a® and alti-
tudes of length h. Then,

2 2 1/2
V=%¥, S=M{@)+M],am S = 4a*(a® + 4h2).

Hint. Write S as 4[a' + 2a°h* + 24°h*], and minimize the sum in
brackets using Theorem 8 for the case n = 3.

To extend the theorem to an oblique double pyramid @ with a
square base, first transform @ into a right double pyramid R with the
same base and with the same volume. If, for one of the oblique pyra-
mids constituting @, the distances from the foot of the altitude & to
the base to the sides of the base are x, , 2 , x3 , and z, , then the
lateral surface area S of Q is

4
2> Loz} + AYV2

teml

Therefore

4
S = qa Z [xf + h2]”2

=l

S ENT o

= a[(2a)® + (4h)*'"

2 1/2
= 4q [(g) + hz] ’

which is the surface area of R.

ProBLEM 20. Following the hint, we first observe that

P rP
A—n(fz—n)—*‘g—

22 22
2_1"P _TF'_
A—T and A—'4—/1

Therefore,
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Figure 4.8

But A > #r’, the area of the inscribed circle. Consequently, after re-
placing the 4 in the denominator of* the last fraction by =, we have
the inequality

2152 2

A < ’i - E .

47r? 4rx
The radius of a circle with perimeter I’ is I°/27; hence its area is
x(1?/2x)* or I’*/4x. Thus we have shown that a circle of perimeter I°
has a greater area than a regular n-gon with perimeter P. |

ProBLEM 21. Let the n sides of the n-gon which can be inscribed in
a circle be rigidly attached to the portions of the circle exterior to the
n-gon, thus forming n movable pieces (see I'ig. 4.9). Suppose their
total area is K. If these pieces are arranged so as to bound any other
n-gon with the same sides, then the new figure has the same perimeter
as the circle (or less if the pieces overlap). Let T be the area of the
new n-gon. By the Isoperimetric Theorem, the total area T + K of
the new figure (including overlapping) is less than the area A + K
of the circle. Therefore, T < A. |}

Figure 4.9

ProBLEM 23. Hint. The figures depicted in Fig. 4.10 each have the
same total perimeter L + L/. Which has the greater area? Why?
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L' L'

Figure 4.10

ProBLEM 24. Hint. The two n-gons with labeled sides which are de-
picted in Fig. 4.11 have n—1 corresponding sides equal and have
the same perlmeter

Figure 4.11

ProBLEM 25. Hint. The method implicit in I'ig. 4.12 works only
if the angle of the given sector of the plane is of the special form =/n,
. In other cases, it is difficult to give a solution.

( s

Figure 4.12

ProBLEM 26. The problem is: Find the surface of given area S,

one part of which is a fixed circular disc of area 4 (2A < S), which
includes the greatest volume.

ProBLEM 27. Hinl.
PF, = PP, and PF, = PP,
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because tangents to the same sphere from a point outside have equal
lengths.

ProBLEM 28. Let T be any point on the hyperbola (see Fig. 4.14).
Connect it with the foci F, and F,, and draw the bisector ! of the
angle F,TF, . We shall show that [ is the tangent by proving that any
other point P of [ does not lie on the hyperbola. Let F; be the reflec-
tion of F in I, and connect P with F,, F; and F; . Now,

| PF, — PF, | = | PF} — PF, | < FiF}

= |TF; — TR | = | TF, — TF, |,

Figure 4.14
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and the sign of equality holds only if the points P, F;, and F, are
collinear. This is the case only when P is T. Thus [ meets the hyper-
bola in one point only, and all other points lie on that side of the
hyperbola for which

| PF, — PF,| < | TF, — TF,| = constant = k.

We may call this side the “outside” of the hyperbola. Note that the
“interior” of the hyperbola, that is, all points P for which

| PF, — PFy| > k,
consists of two disjoint regions of the plane.

ProBLEM 29. Hini. The bisectors of the vertical angles formed by
two straight lines are perpendicular.

ProBLEM 30. The dashed line-segment joining P to I’ in Fig. 4.15
is the image of a path on the table from P to P. A point of intersection
of this line-segment with a side of a rectangle is a point where a ball
is reflected from a side of the billiard table, or it is an image of such
a point. Such a path, for example, is given by P—w—z— y—2— P.
To find a possible path from P to Q, connect P to any one of the
images of @ obtained by reflections.

x n n
o o | sP
’
|z
/
y‘/
7
/
/
/
/
. Ix . .
/
» Wl/ x >
Q xQ
P. X .
z

Figure 4.15
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Other possible shapes for which infinitely many solutions are easily
found are the equilateral triangle and the regular hexagon. Are there
any others? What shapes may a polygonal tile have so that yon can
cover a plane completely, and without overlapping, with identical
replicas of this tile?

ProBLEM 31. The n-gon of least perimeter which can be inscribed
in a given convex n-gon has the following property: two adjacent
sides of the minimal n-gon make equal angles with the side of the
given n-gon which contains their common vertex.

ProBLEM 32. Consider I‘ig. 4.16. The hexagon AP’\CP’,BP;, ob-
tained by reflecting P in each side of the triangle, has area 27 and
perimeter 2(PA + PB + PC). From the statement following Prob-
lem 21 we have: of all hexagons of area 27, the regular hexagon has
the least perimeter. Denote this perimeter by L. Then

2(PA + PB+ PC) = L.

Figure 4.16

By computing the perimeter L of a regular hexagon in terms of its

area 27, show that
L=4V~V3T.

ProsLeM 33. Of all triangles with a given area T, the cquilateral
triangle has the largest inscribed circle. Denote its radius by rg ; then

rg 2> T.

But the area of an equilateral triangle in terms of the radius of its

inscribed circle is
T =33 7% .
Therefore

PA+PB+PC>VV3T =2VV3.3V3rk =6re > 6r.
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ProBLEM 34. Theorem. Let S be a telrahedron, and construct three
triangular prisms which have a common laleral edge and which have for
their bases three faces of S, and of which all or none lie entirely outside
of S. Then, if one constructs a fourth triangular prism on the remaining
face of S whose lateral edges are translates of the common laleral edge of
the first three prisms, the sum of the volumes of the first three prisms s
equal to the volume of the fourth prism.

ProBLEM 35. Use the hint and Theorem 3 to obtain the inequality
a PA-b PB-c PC 2 (cps + bp.)(ap: + cps) (bps + aps),
and apply Theorem 8 to each factor on the right.

ProBLEM 36. We first consider a special case.
THEOREM. Let ABCD be a tetrahedron all of whose faces have equal
area, and let P be a point in its interior. Then

PA 4+ PB + PC + PD 2 3(pa + ps + pc + pa),

where pa, Pv, Pc, Pa are the distances from I’ to the faces. Equality
holds if and only if the tetrahedron is regular and I’ is ils cenler.

Proor. Let the common area of the faces be S. Using the gen-
eralized Pappus Theorem of Problem 34, we can show that

(1) PA-82> po-S + p:S + pa-S

in a manner analogous to that in the proof of the Erdos-Mordell
Inequality for triangles.

Observe that in proving (1) we did not make use of any properties
distinguishing one vertex or face of the tetrahedron from any other
vertex or face. Therefore, since we were able to prove the inequality
(1) which singled out the vertex A, we must be able also to prove the
corresponding inequalities involving the other three vertices. Once
we become aware that the left member of inequality (1) involves the
distance from P to the vertex A and that the right member involves
the distances from P to the three faces which meet at 4, and once we
understand our notation,T we can write down the other three in-
equalities:

t In our notation, we merely consider the four letters a, b, ¢, d and perform
all cyclic permutations; each time we capitalize the first letter which will dis-
tinguish the vertex treated in each inequality. Thus, we consider 4, b, ¢, d;
B,¢,d,a;C,d,a,b;D,a,b,c.
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(2) PB-S > p.-S + pa-S + pa S,
(3) PC-S 2 pa-8S + pa-S + po- S,
(4) E'S 2paS+pr+pcS

Adding corresponding members of all four inequalities above, we
obtain the desired inequality. |

If the tetrahedron is a regular one and if the point P is the center
of its circumsphere, then

PA 4+ PB+ PC + PD = 3(pa+ po + pc + pa).

However, what might seem to be the natural generalization of the
Erdos-Mordell Inequality, namely, the inequality

PA + PB+ PC + PD 2 3(ps + ps + pe + pa),

does not hold in general. In particular, it does not hold for the de-
generate tetrahedron illustrated in Fig. 4.17. Find a non-degenerate
tetrahedron for which it does not hold.

/\A

B / D B 1] C,D
THIS-/ TETRAHEDRON COLLAPSES INTO THIS~ TETRAHEDRON
Figure 4.17

One might now conjecture that

PA + PB + PC + PD > 2+/2[p. + p» + pc + padl.

This conjecture has been verified for all trirectangular tetrahedra
(three faces mutually perpendicular) and for all tetrahedra which
contain the centers of their circumscribing spheres. D. K. Kazarinoff
had a proof of the general result, but he refused to divulge it, perhaps
because it was too complicated. Can you find a proof?

One might also consider inequalities involving distances to edges
and vertices and distances to edges and faces. Can you make any con-
jectures? Can you prove any theorems?
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ProBrLem 37. If the quadrilateral is convex, the desired point is
the point of intersection of its diagonals. This is an immediate conse-
quence of the fact that the straight-line distance is the shortest

distance between two points. If ABCD is not convex and D lies inside
ABC, D is the desired point.

ProBLEM 38. Solution 1. Let the point P lie inside ABC, and move
P so that PC is constant (see Fig. 4.18). Then by the reflection
principle, PA + PB is a minimum when X APC = X% BPC. In this
case the mirrors, which are the tangents to the circle traced by P,
vary in position; for each mirror, P i1s the point of tangency, and
there is exactly one point on the circle at which the tangent mirror
reflects a ray issuing from A in such a way that the reflected ray
reaches B (see Fig. 4.19). “Whatever” property the minimizing
point P has with respect to C, it must have the same property with
respect to A and B as well. Therefore, we conclude that the angles
APC, BPC, and APB must all be equal at that point P the sum of
whose distances to the vertices A, B, and C is least. But this is pos-
sible only if no angle of the triangle is greater than 2x/3 (or 120°).

C

Figure 4.18 Figure 4.19

For example, if X4 > 120° and if X APB = X APC = 120° then
one of the triangles PAB and PAC must have a sum of angles greater
than 7 (or 180°), which is impossible. One can show that if one of the
angles of the triangle is at least 2x/3, then the vertex corresponding
to this angle is the point the sum of whose distances to the vertices
of the triangle is least. The minimizing point must lie somewhere on
a side of the triangle, since it cannot lie inside; further, one can easily
see that it must be at the vertex of the largest angle.

Solution 2. Let three holes, 4, B, and C, be made in a horizontal
table, and let three one-kilogram weights be hung below the table by
strings which pass through the holes and which are tied together in a
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knot P above the table (see Fig. 4.20). The point of equilibrium of
the knot is the desired point. This is because in equilibrium the
weights have descended so as to minimize their total potential energy,
that is, so that the sum AA’ 4+ BB’ + CC" is at a maximum. But

(A’A + AP) + (B'B + BP) + (C'C + CP)

is constant. Therefore, AP + BP + CP is least at equilibrium. Now,
the force in each of the three strings is equal, and three equal forces
can be in equilibrium only if they make equal angles with each other.
Hence, at equilibrium the angles between the strings at the knot
must be equal.

O |- - - TTT==

Figure 4.20

Another elegant solution of this problem, together with a simple
method of constructing the desired point P, is given in The Enjoymen!
of Mathematics, by H. Rademacher and O. Toeplitz, Princeton Uni-
versity Press (1957), page 34.

ProBLEM 39 (Posed by P. Bartfai, solution by G. Kalman). The
possible rhombi at A all have a vertex on the bisector of X A (see Fig.
4.21). The largest one of these has a vertex on BC. Thus there are
but three rhombi to consider. Let the area of the triangle be 7', let
the area of the rhombus ADEF be T., and let AF = z. Then

Te =T — [T(CDE) 4+ T(BEF)];

and because the ratio of the areas of two similar triangles is the same
as the ratio of the squares of the lengths of a pair of corresponding
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sides, we have

b b-=z _ be
But i hence, x_b+c
Therefore
_p_2bc
N (b+ )’
Similarly,
2ac 2ab
Tb—T(_(],+—C)2 and TC—T(_G‘,-*-—b)z.
Now, therefore,
_ 2¢T _ 2
Ta Tb - (a + 6)2(b + 0)2 (a b) (ab ¢ ))
_ 2aT _ o
Te — T:. = BT o T af (b —c¢)(be — a),
and
T, — T, 2bT (¢c — a) (ca — b).

= (¢ ¥ b)a + b

If a < b < e then ab < ¢*; and therefore T, > T, . Also, bc > &’;
hence, T. > T, . Thus the largest of Ty, T, and T is either T, or
T, . T. is greater than, equal to, or less than T, according as ac > b,
ac = b, orac < V. |}

A X F C—X B
Figure 4.21

The poser of this problem and the author of the above solution
were Hungarian high-school students,
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ProsrLEM 40. By the law of cosines,

2 2
S = (g) + b —abcosC, and s; = (g) + a* — abcos C.

Therefore
sa — 85 = 3(b* — a¥)

(see Fig. 4.22). By hypothesis b > a. Consequently si > st or
Sa > 8. Similarly, s > s..

Figure 4.22

We now consider the angle bisectors (see Fig. 4.23). We first
extend side BA to a point E such that AE = b. We then draw the
line-segment FKC and note that EC is parallel to AD. Since AEBC
is similar to AABD,

2b cos 14 _ fa

R ’A//Z

b
Figure 4.23
Therefore,
Thus
1 _ g, = 2elbe+a) cos 34 — ab + ) cos 3B]

(b+c)(c+ a)
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Clearly, the sign of f — fs is determined by the sign of the quantity
in brackets in the numerator. Since by hypothesis a < b, it is true
that X A < X B and that cos $4 > cos 4B. Also, b(c + a) > a(b + ¢)
since be > ac. Therefore fo > f5 . Similarly, f, > f.. |}

ProBLEM 41. Solution 1. Assume that AB is the longest side; that
is,¢ > a, ¢ > b. Let PH and CH’ be altitudes of the triangles APB
and ABC, and consider the similar triangles PC'H and CC'H’. Then

PC' _ PH

cC’ CH'

Figure 4.24

Moreover, since triangles PAB and ABC have the same base, the
ratio of the lengths of the altitudes PH and CH’ is the same as the
ratio of their areas. Thus

PH _ PC’ _ T(PAB)
CH' CC' T(ABC)
But CC’ < ¢ since AB is the longest side of A A BC. Therefore,
PC _ T(PAB)

c T(ABC) °
Similarly,
PA’ _ T(PBC) PR’ _ T(PCA)
c <TABO ™ & <T(4BC)
Hence,

c[T(PAB) + T(PBC) + T(PCA)]

PA’' + PB' + P(" < T(ABC)

or

¢T(ABC) _



122 GEOMETRIC INEQUALITIES

Solution 2. Hint. Draw lines A”B”, B”C"”,and A”C” through P
parallel, respectively, to the sides AB, BC, and AC (see Fig. 4.25).
Consider the triangles PA”C”, PA”B"”, and PC”B”. Show that
PA’ + PB’ + P(C’ s less than the sum of the longest sides of these
three triangles and that this sum is the length of the longest side
of AABC.

A“l C ] Bl"
Figure 4.25

Problems 40 and 41 were posed by Hungarian high-school students
and by Paul Erdds, also educated in Hungary.

ProBLEM 43. Consider Fig. 4.26. The triangle of least area has H
as the midpoint of its basec.

F
D A
Figure 4.26

Proor. Call this triangle CDE (see I'ig. 4.26). Let ABC he any
other allowed triangle, and assume that we have chosen the names
of our points in such a way that D lies between A and C. Construct
DF parallel to CE, intersecting AB at F. Then the triangles DFH
and BEH are congruent. Therefore

T(CAB) = T(CDE) 4+ T(DAF)
or

T(CAB) > T(CDE). |}



HINTS AND SOLUTIONS 123

ProBLEM 44. Hint. The point of tangency must be midway between
AB and CD.

Let EF be the tangent whose point of tangency is midway between
AB and CD. Let E'F’ be any other tangent, and let E'F’ intersect
EF at X (sce Fig. 4.27). Then T(EXE') < T(FXF') if X is closer
to AB than it is to CD. However, one must say a little more, as Fig.
4.28 shows.

A B8 E € A
X
C
D F' F C
Figure 4.27 Figure 4.28

ProBLEM 45. Suppose the sphere has unit radius. It is trivial
that S; = = and S; = 2. To find S, , let the four points be named
1, 2, 3, and 4, and consider the four possible distinct triples of these
points. Clearly, for each triple the sum S is less than or equal to S; ;
that is,

S(1,2,3) <8, S(2,3,4) < 8§s,

S8(1,2,4) <8, and S(1,3,4) < §;.
But
S(1,2,3) + 8(2,3,4) + 8(1,2,4) 4+ S8(1, 3,4) = 28(1, 2, 3, 4).
Therefore

28, <48,

or

Sy £ 28 = 4x.

Equality holds if and only if each of the four triples of the four given
points is in an extremal position, that is, if and only if the four points
are symmetric with respect to the center of the sphere. For example,
they might lie in pairs at opposite ends of two diameters.

It might be conjectured that, in general,

Sy = wk® and Sy = wk(k + 1),

since these are the values of S obtained by distributing 2k or 2k + 1
points as evenly as possible on opposite ends of a diameter of the
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sphere or in some other symmetric fashion. Because these values of
S are attained for some configurations of the points, we know that
S T
8. >Int or Z2>1I

— 4 n? — 4
If we repeat the reasoning by which we obtained S, from S; to esti-
mate S, in terms of S,—; , we find that since there are n distinct groups
of n points taken n — 1 at a time,

(n—2)8, <08,y or 8, < n

_n_2Su—l'

For example,

2

Ssgg(—)vr.

Therefore
n n—1 n n—1 n-—2

S"Sn—2'n—3s"_2sn—2'n—3 n—4S"_3S.“

an — Nn—-2)---5 S

“m=-2n—-3)n—-4 ---3""

or

< n(n3— 1) .

tn
:

Consequently,

siﬁg;’-’(l—l) for n=4,56,---.
n 3 n

x|

ProBLEM 46. The shortest chord which bisects the area of a triangle
is the base of an isosceles triangle whose vertex is the vertex of the
given triangle corresponding to the smallest angle. The longest such
chord has this vertex as one endpoint.

We first prove the theorem suggested as a hint,.

Let A (triangle ABC) and A’ (triangle A’B’C’) be the given
triangles of equal area and unequal legs, say a > b, o’ > b'. Since, by
hypothesis, X ACB = X A’C’'B’, we may denote each of these angles
simply by C. Suppose that A is the triangle with the smaller dif-
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ference between the lengths of the sides which meet at the vertex C,
namely, that

(1) a—-—b<a -V
Our proof will be complete when we have shown thate < ¢'.

Cl

B

Figure 4.20

Now observe that

2T(A) = absin C = 2T(A’) = a'b sin C,

so that
(2) ab = a'l.

From (1) it follows that

(a —b)" < (o = ¥)
or
o’ — 2ab + b < a” — 22’V + b

In view of (2), if we add 2ab to each member of the last inequality, it
becomes
(3) a’ + b < a® + b
We wish to prove that
¢c=AB <¢ = A'B’.
By the law of cosines,

c=a 4+ —2abcosC and ¢ = a” + b* — 2a'V cos C.
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Consequently, in view of (2),
¢ —c=a”+ b - (& + V).

It follows from the inequality (3) that the last expression is positive.
Therefore

2 2
¢ > ¢"; hence, ¢ > ¢,

as we set out to prove. |

We can now attack the original problem. The theorem we have
just proved tells us that the shortest area-bisecting chord is the short-
est of the three such transversals which are bases of isosceles triangles,
see Fig. 4.30(a). Denote the lengths of their bases by o', b’, and ¢’
where the base of length a’ lies opposite A4, etc. However, it may be
that these three triangles do not all exist; for example, for the tri-
angle in Iig. 4.30(b), there is no area-bisecting chord which is the
base of an isosceles triangle with vertex at A.

A

(a) (b)
Figure 4.30

It is true that if X.C is the smallest angle of AABC, then such an
isosceles triangle of area T'/2 having its vertex at C does exist. (We
shall call it A.) We shall prove the last statement in a moment.
First, assuming that the desired isosceles triangle A with base of
length ¢’ exists, we note that even if the other such isosceles triangles
do not exist, ¢’ must be smaller than the length of any other area-
bisecting chord. We show this as follows. The areas of the possible
isosceles triangles of area 7'/2 cut off AABC are

10" cot 1A, 1p” cot 3B, and 1lc” cot 3C.
If a>b>c¢ then XA > XB > X(, and
cot 34 < cot 3B < cot 1C.
If the three areas above are equal, this means that
a >b >c.
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Now if, for example, the isosceles triangle of area 7/2 and with
vertex at A does not lie inside of AABC, then by the theorem above,
all allowed triangles of area T/2 and with one vertex at A have bases
longer than a’ and hence longer than ¢’

It remains to demonstrate that ¢’ exists, namely, that an isosceles
triangle with one vertex at the smallest angle C and whose base is an
area-bisecting chord does, in fact, always exist. Let z be the length
of each leg of the isosceles triangle A with vertex angle C and with
area T/2. If we could show that x < b, then we would know that A
is the isosceles triangle whose existence we wanted to establish. This
is true because the inequality z < a would follow from the inequality
b < a and because the base of A would clearly intersect the sides
AC and BC.

To prove that z < b, note that

iT = tabsin C and 3T = 32 sin C,

so that
= ab
By the triangle inequality,
a <b+c
and by hypothesis,
c<b
Therefore
a < 2b;
hence,

2 <i2b=0b or z<b.

QOur proof is now complete. Of course, in the case of an isosceles tri-
angle with ¢ = b < a, the ‘“shortest” area-bisecting transversal is
not unique, and in an ecquilateral triangle there are three such
transversals.

Next we may ask: Which is the longest area-bisecting chord? The
same theorem we used to answer the ‘“shortest transversal question”
shows that the longest area-bisecting chord of a triangle must have
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one endpoint a vertex of the triangle. It follows that this chord is a
median of the triangle. Of the three possibilities, one can show by a
simple (not necessarily short) computation that the longest is the
one terminating in the shortest side. Hint. Let ABC be any triangle
with a > b > ¢. Let AA’, BB’, and C(’ be area-bisecting chords.
Show that

4 44" = 2¢ + 28 - o

and
4 CC"” = 2" + 22 — ¢
therefore
4(CC" — A4 = 3(a* = %) > 0,
from which the inequality
CC' > A4’

follows. Show similarly that CC’ > BB’

ProBLEM 47. The shortest chord is the base of an isosceles triangle
whose vertex is the vertex of the smallest angle of the given triangle;
the longest chord has one endpoint at this vertex.

Hint. First prove this:

TuaEOREM. Of two triangles ABC and A’B'C’ with X ACB = X A'C'B’

and which have a common sum of the lengths of their legs, that is,

a+b=d 4V,

the one with the smaller difference between the lengths of its legs has the
shorter base.

Proor. We use the same notation as in the solution to Problem 46;
we wish to prove that

¢ >c,
given that
(1) a+b=ad +V,
(2) a—-b<a -V

Now the condition (1) is equivalent to the equality
a”? + b* — (& + V') = 2(ab — a'}),
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and by the law of cosines, our desired result ¢’ > ¢ is equivalent to
the inequality

(3) 2(a't’ — ab) cos C < a” + b”* — (a® + ).
It therefore suffices to show that
2(a’t’ — ab) cos C < 2(ab — a'b’) = —2(a’t’ — ab)
or, equivalently,
(@'’ — ab)lcos C + 1] < 0.

Now, the inequality
a't’ —ab <0

can be deduced by squaring right- and left-hand members of (1) and
(2) and subtracting, while the inequality 1 + cos C > 0 isequivalent
to the statement X.C = =, which is necessary if we are to have a tri-
angle at all. Hence, (3) is indeed valid, and ¢’ > ¢. |}
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7.

INDEX OF NUMBERED THEOREMS

Ifa >band b > c,thena > c.
Ifa >bandc >d,thena +¢c > b + d.

Ifa >b>0andc 2 d > 0, then
(1) ac > bd (2) ac > be and (3) 1/a < 1/b.

Ifa >b > 0andif p > 0, then a® > b7;if p < 0, then a? < b7,
. For every positive integer n

2v/n +1—-2v/n < 1/A/n < 2vn — 2v/n — 1.

Ifa; >0 (# =1,---, n) and if @)-a2- --- -an = 1, then
> ra: 2 n, with equality holding if and only if a; = 1 for each 1.
Ifai >0 (¢ = 1,-.-,n) and if Y} [ a;i = nAd, then
ay-a - @, < A*with cquality if and onlyifa, = a2 = ---
= @y .

Ifa; >0 (@ =1,..-, n), then /a1 --- can < Y| ai/n

with equality holding if and only if @y = a; = --- = a,.

The Isoperimetric Theorem

(A) Of all plane figures with a given perimeter, the circle has the
greatest area.

(B3) Of all plane figures with a given area, the circle has the least
perimeter.

For Three-dimensional Space

(A) Of all solids with a given surface area, the sphere has the
greatest volume.

131
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(B) Of all solids with a given volume, the sphere has the least
surface area.

10. (A) Of all triangles with a common base and perimeter, the isos-
celes triangle has the greatest area.

(B) Of all triangles with a common base and area, the isosceles
triangle has the smallest perimeter.

10A’ If two triangles have the same base and the same perimeter, the
one with the smaller difference in the lengths of its legs has the
larger area.

11A. Of all triangles with a given perimeter, the equilateral triangle
has the greatest area.

11B. Of all triangles with a given area, the equilateral triangle has the
least perimeter.

12. Of all n-gons inscribed in a given circle, the regular n-gon has the
greatest area.

13. Of all quadrilaterals with a given area, the square has the least
perimeter.

14. A quadrilateral with given sides has the greatest area when it can
be inseribed in a cirele.

15. Of all quadrilateral prisms with a given volume, the cube has the
least surface area.

16. Given any n-gon which does not have all its sides of equal length,
one can construct another n-gon of a larger area, with the same
perimeter and with all sides of equal length.

17. Given an acute-angled triangle, the vertices of the inscribed tri-
angle with the smallest perimeter are the feet of the altitudes of
the given triangle.

18. (Erdds-Mordell) If P is any point inside or on the boundary of a
triangle ABC, and if p. , p» , and p. are the distances from P to the
sides of the triangle, then PA + PB + PC > 2(ps + v + P0),
with equality if and only if A ABC is equilateral and the point P
is its circumcenter.

19. (Pappus) Let ABC be any triangle. Let AA’C'C and BB”C"C be
any two parallelograms constructed on AC and BC respectively,
so that either both parallelograms are outside the triangle or both
are not entirely outside the triangle. Prolong their sides 4’C’ and
B”C” to meet in P. Construct a third parallelogram ABP”P’ on
AB with AP’ parallel to CP and AP’ = CP. The area of ABP"P’
is equal to the sum of the areas of the parallelograms A A’C’C and
BB"C"C.
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