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Preface

Diophantus, the “father of algebra,” is best known for his book Arith-

metica, a work on the solution of algebraic equations and the theory

of numbers. However, essentially nothing is known of his life, and

there has been much debate regarding precisely the years in which

he lived.

Diophantus did his work in the great city of Alexandria. At

this time, Alexandria was the center of mathematical learning. The

period from 250 bce to 350 ce in Alexandria is known as the Silver

Age, also the Later Alexandrian Age. This was a time when mathe-

maticians were discovering many ideas that led to our current con-

ception of mathematics. The era is considered silver because it came

after the Golden Age, a time of great development in the field of

mathematics. This Golden Age encompasses the lifetime of Euclid.
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The quality of mathematics from this period was an inspiration for

the axiomatic methods of today’s mathematics.

While it is known that Diophantus lived in the Silver Age, it is

hard to pinpoint the exact years in which he lived. While many refer-

ences to the work of Diophantus have been made, Diophantus himself

made few references to other mathematicians’ work, thus making the

process of determining the time that he lived more difficult.

Diophantus did quote the definition of a polygonal number from

the work of Hypsicles, who was active before 150 bce, so we can

conclude that Diophantus lived after that date. From the other end,

Theon, a mathematician also from Alexandria, quoted the work of

Diophantus in 350 ce. Most historians believe that Diophantus did

most of his work around 250 ce. The greatest amount of information

about Diophantus’s life comes from the possibly fictitious collection

of riddles written by Metrodorus around 500 ce. One of these is as

follows:

His boyhood lasted 1/6 of his life; he married after 1/7

more; his beard grew after 1/12 more, and his son was

born five years later; the son lived to half his father’s

age, and the father died four years after the son.

Diophantus was the first to employ symbols in Greek algebra.

He used a symbol (arithmos) for an unknown quantity, as well as

symbols for algebraic operations and for powers. Arithmetica is also

significant for its results in the theory of numbers, such as the fact

that no integer of the form 8n+7 can be written as the sum of three

squares.
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Arithmetica is a collection of 150 problems that give approximate

solutions to equations up to degree three. Arithmetica also contains

equations that deal with indeterminate equations. These equations

deal with the theory of numbers.

The original Arithmetica is believed to have comprised 13 books,

but the surviving Greek manuscripts contain only six.

The others are considered lost works. It is possible that these books

were lost in a fire that occurred not long after Diophantus finished

Arithmetica.

In what follows, we call a Diophantine equation an equation of the

form

f(x1, x2, . . . , xn) = 0, (1)

where f is an n-variable function with n ≥ 2. If f is a polynomial with

integral coefficients, then (1) is an algebraic Diophantine equation.

An n-uple (x0
1, x

0
2, . . . , x

0
n) ∈ Z

n satisfying (1) is called a solution

to equation (1). An equation having one or more solutions is called

solvable.

Concerning a Diophantine equation three basic problems arise:

Problem 1. Is the equation solvable?

Problem 2. If it is solvable, is the number of its solutions finite

or infinite?

Problem 3. If it is solvable, determine all of its solutions.

Diophantus’s work on equations of type (1) was continued by

Chinese mathematicians (third century), Arabs (eight through

twelfth centuries) and taken to a deeper level by Fermat, Euler,
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Lagrange, Gauss, and many others. This topic remains of great

importance in contemporary mathematics.

This book is organized in two parts. The first contains three

chapters. Chapter 1 introduces the reader to the main elementary

methods in solving Diophantine equations, such as decomposition,

modular arithmetic, mathematical induction, and Fermat’s infinite

descent. Chapter 2 presents classical Diophantine equations, includ-

ing linear, Pythagorean, higher-degree, and exponential equations,

such as Catalan’s. Chapter 3 focuses on Pell-type equations, serving

again as an introduction to this special class of quadratic Diophan-

tine equations. Chapter 4 contains some advanced methods involv-

ing Gaussian integers, quadratic rings, divisors of certain forms, and

quadratic reciprocity. Throughout Part I, each of the sections con-

tains representative examples that illustrate the theory.

Part II contains complete solutions to all exercises in Part I. For

several problems, multiple solutions are presented, along with useful

comments and remarks. Many of the selected exercises and problems

are original or have been given original solutions by the authors.

The book is intended for undergraduates, high school students and

teachers, mathematical contest (including Olympiad and Putnam)

participants, as well as any person interested in mathematics.

We would like to thank Richard Stong for his careful reading of

the manuscript. His pertinent suggestions have been very useful in

improving the text.

June 2010 Titu Andreescu
Dorin Andrica

Ion Cucuruzeanu
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Part I

Diophantine Equations





I.1

Elementary Methods for Solving

Diophantine Equations

1.1 The Factoring Method

Given the equation f(x1, x2, . . . , xn) = 0, we write it in the equiva-

lent form

f1(x1, x2, . . . , xn)f2(x1, x2, . . . , xn) · · · fk(x1, x2, . . . , xn) = a,

where f1, f2, . . . , fk ∈ Z[X1,X2, . . . ,Xn] and a ∈ Z. Given the prime

factorization of a, we obtain finitely many decompositions into k

integer factors a1, a2, . . . , ak. Each such factorization yields a system

of equations
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1(x1, x2, . . . , xn) = a1,

f2(x1, x2, . . . , xn) = a2,
...

fk(x1, x2, . . . , xn) = ak.

Solving all such systems gives the complete set of solutions to (1).

3T. Andreescu et al., An Introduction to Diophantine Equations: A Problem-Based Approach,
DOI 10.1007/978-0-8176-4549-6_1, © Springer Science+Business Media, LLC 2010
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We illustrate this method by presenting a few examples.

Example 1. Find all integral solutions to the equation

(x2 + 1)(y2 + 1) + 2(x − y)(1 − xy) = 4(1 + xy).

(Titu Andreescu)

Solution. Write the equation in the form

x2y2 − 2xy + 1 + x2 + y2 − 2xy + 2(x − y)(1 − xy) = 4,

or

(xy − 1)2 + (x − y)2 − 2(x − y)(xy − 1) = 4.

This is equivalent to

[xy − 1 − (x − y)]2 = 4,

or

(x + 1)(y − 1) = ±2.

If (x + 1)(y − 1) = 2, we obtain the systems of equations
⎧
⎨

⎩

x + 1 = 2,

y − 1 = 1,

⎧
⎨

⎩

x + 1 = −2,

y − 1 = −1,

⎧
⎨

⎩

x + 1 = 1,

y − 1 = 2,

⎧
⎨

⎩

x + 1 = −1,

y − 1 = −2,

yielding the solutions (1, 2), (−3, 0), (0, 3), (−2,−1).

If (x + 1)(y − 1) = −2, we obtain the systems
⎧
⎨

⎩

x + 1 = 2,

y − 1 = −1,

⎧
⎨

⎩

x + 1 = −2,

y − 1 = 1,
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⎧
⎨

⎩

x + 1 = 1,

y − 1 = −2,

⎧
⎨

⎩

x + 1 = −1,

y − 1 = 2,

whose solutions are (1, 0), (−3, 2), (0,−1), (−2, 3).

All eight pairs that we have found satisfy the given equation.

Example 2. Let p and q be two primes. Solve in positive integers

the equation
1
x

+
1
y

=
1
pq

.

Solution. The equation is equivalent to the algebraic Diophantine

equation

(x − pq)(y − pq) = p2q2.

Observe that 1
x < 1

pq hence we have x > pq.

Considering all positive divisors of p2q2 we obtain the following

systems:
⎧
⎨

⎩

x − pq = 1,

y − pq = p2q2,

⎧
⎨

⎩

x − pq = p,

y − pq = pq2,

⎧
⎨

⎩

x − pq = q,

y − pq = p2q,

⎧
⎨

⎩

x − pq = p2,

y − pq = q2,

⎧
⎨

⎩

x − pq = pq,

y − pq = pq,

⎧
⎨

⎩

x − pq = pq2,

y − pq = p,

⎧
⎨

⎩

x − pq = p2q,

y − pq = q,

⎧
⎨

⎩

x − pq = q2,

y − pq = p2,

⎧
⎨

⎩

x − pq = p2q2,

y − pq = 1,

yielding the solutions

(1 + pq, pq(1 + pq)), (p(1 + q), pq(1 + q)), (q(1 + p), pq(1 + p)),

(p(p + q), q(p + q)), (2pq, 2pq), (pq(1 + q), p(1 + q)),

(pq(1 + p), q(1 + p)), (q(p + q), p(p + q)), (pq(1 + pq), 1 + pq).
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Remark. The equation

1
x

+
1
y

=
1
n

,

where n = pα1
1 · · · pαk

k , has (2α1 +1) · · · (2αk +1) solutions in positive

integers.

Indeed, the equation is equivalent to

(x − n)(y − n) = n2,

and n2 = p2α1
1 · · · p2αk

k has (2α1 + 1) · · · (2αk + 1) positive divisors.

Example 3. Determine all nonnegative integral pairs (x, y) for

which

(xy − 7)2 = x2 + y2.

(Indian Mathematical Olympiad)

Solution. The equation is equivalent to

(xy − 6)2 + 13 = (x + y)2,

or

(xy − 6)2 − (x + y)2 = −13.

We obtain the equation

[xy − 6 − (x + y)][xy − 6 + (x + y)] = −13,

yielding the systems
⎧
⎨

⎩

xy − 6 − (x + y) = −1,

xy − 6 + (x + y) = 13,

⎧
⎨

⎩

xy − 6 − (x + y) = −13,

xy − 6 + (x + y) = 1.
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These systems are equivalent to
⎧
⎨

⎩

x + y = 7,

xy = 12,

⎧
⎨

⎩

x + y = 7,

xy = 0.

The solutions to the equation are (3, 4), (4, 3), (0, 7), (7, 0).

Example 4. Solve the following equation in integers x, y:

x2(y − 1) + y2(x − 1) = 1.

(Polish Mathematical Olympiad)

Solution. Setting x = u + 1, y = v + 1, the equation becomes

(u + 1)2v + (v + 1)2u = 1,

which is equivalent to

uv(u + v) + 4uv + (u + v) = 1.

The last equation could be written as

uv(u + v + 4) + (u + v + 4) = 5,

or

(u + v + 4)(uv + 1) = 5.

One of the factors must be equal to 5 or −5 and the other to 1

or −1. This means that the sum u + v and the product uv have to

satisfy one of the four systems of equations:
⎧
⎨

⎩

u + v = 1,

uv = 0,

⎧
⎨

⎩

u + v = −9,

uv = −2,
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⎧
⎨

⎩

u + v = −3,

uv = 4,

⎧
⎨

⎩

u + v = −5,

uv = −6.

Only the first and the last of these systems have integral solu-

tions. They are (0, 1), (1, 0), (−6, 1), (1,−6). Hence the final outcome

(x, y) = (u + 1, v + 1) must be one of the pairs (1, 2), (−5, 2), (2, 1),

(2,−5).

Example 5. Find all integers n for which the equation

x3 + y3 + z3 − 3xyz = n

is solvable in positive integers.

(Titu Andreescu)

Solution.

We rewrite the identity

x3 + y3 + z3 − 3xyz = (x + y + z)(x2 + y2 + z2 − xy − yz − zx)

as

x3+y3+z3−3xyz = (x+y+z) · 1
2

[
(x−y)2+(y−z)2+(z−x)2

]
(1)

and

x3 + y3 + z3 − 3xyz = (x+ y + z)3 − 3(x+ y + z)(xy + yz + zx). (2)

From (1) we see that the equation is solvable for n = 3k + 1

and n = 3k + 2, k ≥ 1, since triples of the form (k + 1, k, k) and

(k + 1, k + 1, k) are solutions to the given equation.

If n is divisible by 3, then from (2) it follows that x + y + z is

divisible by 3, and so n = x3 + y3 + z3 − 3xyz is divisible by 9.
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Conversely, the given equation is solvable in positive integers for all

n = 9k, k ≥ 2, since triples of the form (k − 1, k, k + 1) satisfy the

equation, as well as for n = 0 (x = y = z).

In conclusion, n = 3k + 1, k ≥ 1, n = 3k + 2, k ≥ 1, and n = 9k,

k = 0, 2, 3, 4, . . . .

Example 6. Find all triples of positive integers (x, y, z) such that

x3 + y3 + z3 − 3xyz = p,

where p is a prime greater than 3.

(Titu Andreescu, Dorin Andrica)

Solution. The equation is equivalent to

(x + y + z)(x2 + y2 + z2 − xy − yz − zx) = p.

Since x+y + z > 1, we must have x+y + z = p and x2 +y2 + z2 −
xy − yz − zx = 1. The last equation is equivalent to (x − y)2 + (y −
z)2 + (z − x)2 = 2. Without loss of generality, we may assume that

x ≥ y ≥ z. If x > y > z, we have x− y ≥ 1, y − z ≥ 1 and x− z ≥ 2,

implying (x − y)2 + (y − z)2 + (z − x)2 ≥ 6 > 2.

Therefore we must have x = y = z + 1 or x − 1 = y = z. The

prime p has one of the forms 3k + 1 or 3k + 2. In the first case

the solutions are
(

p+2
3 , p−1

3 , p−1
3

)
and the corresponding permuta-

tions. In the second case the solutions are
(

p+1
3 , p+1

3 , p−2
3

)
and the

corresponding permutations.

Example 7. Find all triples (x, y, z) of integers such that

x3 + y3 + z3 = x + y + z = 3.
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Solution. From the identity

(x + y + z)3 = x3 + y3 + z3 + 3(x + y)(y + z)(z + x)

we obtain 8 = (x+y)(y + z)(z +x). It follows that (3−x)(3−y)(3−
z) = 8. On the other hand, (3−x)+(3−y)+(3−z)−3(x+y+z) = 6,

implying that either 3−x, 3− y, 3− z are all even, or exactly one of

them is even. In the first case, we get |3− x| = |3− y| = |3− z| = 2,

yielding x, y, z ∈ {1, 5}. Because x+y + z = 3, the only possibility is

x = y = z = 1. In the second case, one of |3−x|, |3−y|, |3− z| must

be 8, say |3−x| = 8, yielding x ∈ {−5, 11} and |3− y| = |3− z| = 1,

from which y, z ∈ {2, z}. Taking into account that x+ y + z = 3, the

only possibility is x = −5 and y = z = 4. In conclusion, the desired

triples are (1, 1, 1), (−5, 4, 4), (4,−5, 4), and (4, 4,−5).

Example 8. Find all primes p for which the equation x4+4 = py4

is solvable in integers.

(Ion Cucurezeanu)

Solution. The equation is not solvable in integers for p = 2, for

the left-hand side must be even, hence 4 (mod 16), while the right-

hand side is either 0 (mod 16) or 2 (mod 16). The same modular

arithmetic argument shows that for each odd prime p, x and y must

be odd. The equation is equivalent to (x2 +2)2 − (2x)2 = py4, which

can be written as (x2−2x+2)(x2 +2x+2) = py4. We have gcd(x2−
2x+2, x2 +2x+2) = 1. Indeed, if d | x2−2x+2 and d | x2 +2x+2,

then d must be odd, and we have d | 4x. It follows that d | x; hence

we get d = 1. Because gcd(x2 − 2x + 2, x2 + 2x + 2) = 1, taking into

account that x2−2x+2 = a4 and x2+2x+2 = pb4 for some positive
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integers a and b whose product is y, it follows that (x− 1)2 + 1 = a4

and (x + 1)2 + 1 = pb4. The first equation yields a2 = 1 and x = 1;

hence the second gives p = 5 and b2 = 1. Therefore, the only prime

for which the equation is solvable is p = 5. In this case the solutions

(x, y) are (1, 1), (−1, 1), (1,−1), and (−1,−1).

Exercises and Problems

1. Solve the following equation in integers x, y :

x2 + 6xy + 8y2 + 3x + 6y = 2.

2. For each positive integer n, let s(n) denote the number of

ordered pairs (x, y) of positive integers for which

1
x

+
1
y

=
1
n

.

Find all positive integers n for which s(n) = 5.

(Indian Mathematical Olympiad)

3. Let p and q be distinct prime numbers. Find the number of

pairs of positive integers x, y that satisfy the equation

p

x
+

q

y
= 1.

(KöMaL)

4. Find the positive integer solutions to the equation

x3 − y3 = xy + 61.

(Russian Mathematical Olympiad)
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5. Solve the Diophantine equation

x − y4 = 4,

where x is a prime.

6. Find all pairs (x, y) of integers such that

x6 + 3x3 + 1 = y4.

(Romanian Mathematical Olympiad)

7. Solve the following equation in nonzero integers x, y :

(x2 + y)(x + y2) = (x − y)3.

(16th USA Mathematical Olympiad)

8. Find all integers a, b, c with 1 < a < b < c such that the number

(a − 1)(b − 1)(c − 1) is a divisor of abc − 1.

(33rd IMO)

9. Find all right triangles with integer side lengths such that their

areas and perimeters are equal.

10. Solve the following system in integers x, y, z, u, v:
⎧
⎨

⎩

x + y + z + u + v = xyuv + (x + y)(u + v),

xy + z + uv = xy(u + v) + uv(x + y).

(Titu Andreescu)

11. Prove that the equation x(x+ 1) = p2ny(y + 1) is not solvable

in positive integers, where p is a prime and n is a positive integer.
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12. Find all triples (x, y, p), where x and y are positive integers

and p is a prime, satisfying the equation

x5 + x4 + 1 = py.

(Titu Andreescu)

13. Find all pairs (x, y) of integers such that

xy +
x3 + y3

3
= 2007.

(Titu Andreescu)

1.2 Solving Diophantine Equations Using

Inequalities

This method consists in restricting the intervals in which the vari-

ables lie using appropriate inequalities. Generally, this process leads

to only finitely many possibilities for all variables or for some of

them.

Example 1. Find all pairs (x, y) of integers such that

x3 + y3 = (x + y)2.

Solution. Note that all pairs of the form (k,−k), k ∈ Z, are solu-

tions. If x + y �= 0, the equation becomes

x2 − xy + y2 = x + y,

which is equivalent to

(x − y)2 + (x − 1)2 + (y − 1)2 = 2.
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It follows that (x− 1)2 ≤ 1 and (y − 1)2 ≤ 1, restricting the inter-

val in which the variables x, y lie to [0, 2]. We obtain the solutions

(0, 1), (1, 0), (1, 2), (2, 1), (2, 2).

Example 2. Solve the following equation in positive integers

x, y, z :
1
x

+
1
y

+
1
z

=
3
5
.

(Romanian Mathematical Olympiad)

Solution. Taking symmetry into account, we may assume that 2 ≤
x ≤ y ≤ z. This implies the inequality 3

x ≥ 3
5 , and hence x ∈

{2, 3, 4, 5}.
If x = 2, then 1

y + 1
z = 1

10 with y ∈ {11, 12, . . . , 20}. It follows that

z = 10+ 100
y−10 and (y−10) | 100. We obtain the solutions (2, 11, 110),

(2, 12, 60), (2, 14, 35), (2, 15, 30), (2, 20, 20).

If x = 3, we have 1
y + 1

z = 4
15 with y ∈ {3, 4, 5, 6, 7}. We obtain the

solutions (3, 4, 60), (3, 5, 15), (3, 6, 10).

If x = 4, then 1
y + 1

z = 7
20 with y ∈ {4, 5}, and the solution is

(4, 4, 10).

If x = 5, then 1
y + 1

z = 2
5 and y = z = 5, yielding the solution

(5, 5, 5).

Example 3. Find all quadruples (x, y, z, w) of positive integers

for which

x2 + y2 + z2 + 2xy + 2x(z − 1) + 2y(z + 1) = w2.

(Titu Andreescu)

Solution. We have

(x+ y + z± 1)2 = x2 + y2 + z2 +2xy +2x(z± 1)+2y(z± 1)± 2z +1.
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It follows that

(x + y + z − 1)2 < w2 < (x + y + z + 1)2.

Hence x2 + y2 + z2 + 2xy + 2x(z − 1) + 2y(z + 1) can be equal

only to (x + y + z)2. This implies x = y therefore the solutions are

(m,m,n, 2m + n), m,n ∈ Z+.

Example 4. Find all solutions in integers of the equation

x3 + (x + 1)3 + (x + 2)3 + · · · + (x + 7)3 = y3.

(Hungarian Mathematical Olympiad)

Solution. The solutions are (−2, 6), (−3, 4), (−4,−4), (−5,−6). Let

P (x) = x3+(x+1)3+(x+2)3+· · ·+(x+7)3 = 8x3+84x2+420x+784.

If x ≥ 0, then

(2x + 7)3 = 8x3 + 84x2 + 294x + 343

< P (x) < 8x3 + 120x2 + 600x + 1000 = (2x + 10)3,

so 2x + 7 < y < 2x + 10; therefore y is 2x + 8 or 2x + 9. But neither

of the equations

P (x) − (2x + 8)3 = −12x2 + 36x + 272 = 0,

P (x) − (2x + 9)3 = −24x2 − 66x + 55 = 0,

has any integer roots, so there are no solutions with x ≥ 0. Next,

note that P satisfies P (−x − 7) = −P (x), so (x, y) is a solution

if and only if (−x − 7,−y) is a solution. Therefore there are no

solutions with x ≤ −7. So for (x, y) to be a solution, we must have
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−6 ≤ x ≤ −1. For −3 ≤ x ≤ −1, we have P (−1) = 440, not a cube,

P (−2) = 216 = 63, and P (−3) = 64 = 43, so (−2, 6) and (−3, 4)

are the only solutions with −3 ≤ x ≤ −1. Therefore (−4,−4) and

(−5,−6) are the only solutions with −6 ≤ x ≤ −4. Hence the only

solutions are (−2, 6), (−3, 4), (−4,−4), and (−5,−6).

Example 5. Find all triples (x, y, z) of positive integers such that
(

1 +
1
x

)(

1 +
1
y

)(

1 +
1
z

)

= 2.

(United Kingdom Mathematical Olympiad)

Solution. Without loss of generality we may assume x ≥ y ≥ z.

Note that we must have 2 ≤ (1 + 1/z)3, which implies that z ≤ 3.

If z = 1, then
(
1 + 1

x

) (
1 + 1

y

)
= 1, which is clearly impossible.

The case z = 2 leads to
(
1 + 1

x

)(
1 + 1

y

)
=

4
3
. Therefore

4
3 ≤

(
1 + 1

y

)2
, which forces y < 7. Since 1 +

1
x

> 1, we obtain

y > 3. Plugging in the appropriate values yields the solutions

(7, 6, 2), (9, 5, 2), (15, 4, 2).

If z = 3, then
(
1 + 1

x

) (
1 + 1

y

)
= 3

2 . Similar analysis leads to y < 5

and y ≥ z = 3. These values yield the solutions (8, 3, 3) and (5, 4, 3).

In conclusion, the solutions are all permutations of (7, 6, 2),

(9, 5, 2), (15, 4, 2), (8, 3, 3) and (5, 4, 3).

Example 6. Find all positive integers n, k1, . . . , kn such that

k1 + · · · + kn = 5n − 4

and
1
k1

+ · · · + 1
kn

= 1.

(Putnam Mathematical Competition)
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Solution. By the arithmetic–harmonic mean(AM–HM) inequality

or the Cauchy–Schwarz inequality,

(k1 + · · · + kn)
(

1
k1

+ · · · + 1
kn

)

≥ n2.

We must thus have 5n−4 ≥ n2, so n ≤ 4. Without loss of generality,

we may suppose that k1 ≤ · · · ≤ kn.

If n = 1, we must have k1 = 1, which works. Note that hereinafter

we cannot have k1 = 1.

If n = 2, then (k1, k2) ∈ {(2, 4), (3, 3)}, neither of which works.

If n = 3, then k1 +k2 +k3 = 11, so 2 ≤ k1 ≤ 3. Hence (k1, k2, k3) ∈
{(2, 2, 7), (2, 3, 6), (2, 4, 5), (3, 3, 5), (3, 4, 4)}, and only (2, 3, 6) works.

If n = 4, we must have equality in the AM–HM inequality, which

happens only when k1 = k2 = k3 = k4 = 4. Hence the solutions are

n = 1 and k1 = 1, n = 3 and (k1, k2, k3) is a permutation of (2, 3, 6),

and n = 4 and (k1, k2, k3, k4) = (4, 4, 4, 4).

Exercises and Problems

1. Solve in positive integers the equation

3(xy + yz + zx) = 4xyz.

2. Find all triples (x, y, z) of positive integers such that

xy + yz + zx − xyz = 2.

3. Determine all triples (x, y, z) of positive integers such that

(x + y)2 + 3x + y + 1 = z2.

(Romanian Mathematical Olympiad)
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4. Determine all pairs (x, y) of integers that satisfy the equation

(x + 1)4 − (x − 1)4 = y3.

(Australian Mathematical Olympiad)

5. Prove that all the equations

x6 + ax4 + bx2 + c = y3,

where a ∈ {3, 4, 5}, b ∈ {4, 5, . . . , 12}, c ∈ {1, 2, . . . , 8}, are not

solvable in positive integers.

(Dorin Andrica)

6. Solve in positive integers the equation

x2y + y2z + z2x = 3xyz.

7. Find all integer solutions to the equation

(x2 − y2)2 = 1 + 16y.

(Russian Mathematical Olympiad)

8. Find all integers a, b, c, x, y, z such that

a + b + c = xyz,

x + y + z = abc,

and a ≥ b ≥ c ≥ 1, x ≥ y ≥ z ≥ 1.

(Polish Mathematical Olympiad)
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9. Let x, y, z, u, and v be positive integers such that

xyzuv = x + y + z + u + v.

Find the maximum possible value of max{x, y, z, u, v}.
10. Solve in distinct positive integers the equation

x2 + y2 + z2 + w2 = 3(x + y + z + w).

(Titu Andreescu)

11. Find all positive integers x, y, z, t such that

⎧
⎨

⎩

xn + y = zn,

x + yn = tn,

for some integer n ≥ 2.

12. Find all pairs (x, y) of positive integers such that xy = yx.

13. Solve in positive integers the equation xy + y = yx + x.

14. Let a and b be positive integers such that ab+1 divides a2+b2.

Prove that a2+b2

ab+1 is the square of an integer.

(29th IMO)

15. Find all integers n for which the equation

(x + y + z)2 = nxyz

is solvable in positive integers.

(American Mathematical Monthly, reformulation)
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1.3 The Parametric Method

In many situations the integral solutions to a Diophantine equation

f(x1, x2, . . . , xn) = 0

can be represented in a parametric form as follows:

x1 = g1(k1, . . . , kl), x2 = g2(k1, . . . , kl), . . . , xn = gn(k1, . . . , kl),

where g1, g2, . . . , gn are integer-valued l-variable functions and

k1, . . . , kl ∈ Z.

The set of solutions to some Diophantine equations might have

multiple parametric representations.

For most Diophantine equations it is not possible to find all solu-

tions explicitly. In many such cases the parametric method provides

a proof of the existence of infinitely many solutions.

Example 1. Prove that there are infinitely many triples (x, y, z)

of integers such that

x3 + y3 + z3 = x2 + y2 + z2.

(Tournament of Towns)

Solution. Setting z = −y, the equation becomes x3 = x2 + 2y2.

Taking y = mx, m ∈ Z, yields x = 1 + 2m2. We obtain the infinite

family of solutions

x = 2m2 + 1, y = m(2m2 + 1), z = −m(2m2 + 1), m ∈ Z.

Example 2. (a) Let m and n be distinct positive integers. Prove

that there exist infinitely many triples (x, y, z) of positive integers
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such that

x2 + y2 = (m2 + n2)z,

with

(i) z odd; (ii) z even.

(b) Prove that the equation

x2 + y2 = 13z

has infinitely many solutions in positive integers x, y, z.

Solution. (a) For (i), consider the family

xk = m(m2 + n2)k, yk = n(m2 + n2)k, zk = 2k + 1, k ∈ Z+.

For (ii), consider the family

xk = |m2 − n2|(m2 + n2)k−1, yk = 2mn(m2 + n2)k−1,

zk = 2k, k ∈ Z+.

(b) Since 22 + 32 = 13, we can take m = 2, n = 3 and obtain the

families of solutions

x′
k = 2 · 13k, y′k = 3 · 13k, z′k = 2k + 1, k ∈ Z+;

x′′
k = 5 · 13k−1, y′′k = 12 · 13k−1, z′′k = 2k, k ∈ Z+.

Remarks. (1) Taking into account Lagrange’s identity

(a2 + b2)(c2 + d2) = (ac − bd)2 + (ad + bc)2,

we can generate an infinite family of solutions by defining recursively

the sequences (xk)k≥1, (yk)k≥1 as follows:
⎧
⎨

⎩

xk+1 = mxk − nyk,

yk+1 = nxk + myk,
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where x1 = m, y1 = n.

It is not difficult to check that (|xk|, yk, k), k ∈ Z+, are solutions

to the given equation.

(2) Another way to generate an infinite family of solutions is with

complex numbers. Let k be a positive integer. We have (m + in)k =

Ak + iBk, where Ak, Bk ∈ Z. Taking moduli, we obtain

(m2 + n2)k = A2
k + B2

k,

and thus (|Ak|, |Bk|, k) is a solution to the given equation.

Example 3. Find all triples (x, y, z) of positive integers such that

1
x

+
1
y

=
1
z
.

Solution. The equation is equivalent to

z =
xy

x + y
.

Let d = gcd(x, y). Then x = dm, y = dn, with gcd(m,n) = 1. It

follows that gcd(mn,m + n) = 1. Therefore

z =
dmn

m + n
,

which implies (m + n) | d, i.e., d = k(m + n), k ∈ Z+.

The solutions to the equation are given by

x = km(m + n), y = kn(m + n), z = kmn,

where k,m, n ∈ Z+.

Remark. (1) If a, b, c are positive integers with no common factor

such that
1
a

+
1
b

=
1
c
,
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then a + b is a square. Indeed, k = 1, a = m(m + n), b = n(m + n),

and hence a + b = (m + n)2.

(2) If a, b, c are positive integers satisfying

1
a

+
1
b

=
1
c
,

then a2 + b2 + c2 is a square. Indeed,

a2 + b2 + c2 = k2
[
m2(m + n)2 + n2(m + n)2 + m2n2

]

= k2
[
(m + n)4 − 2mn(m + n)2 + m2n2

]

= k2
[
(m + n)2 − mn

]2
.

Example 4. Prove that for each integer n ≥ 3 the equation

xn + yn = zn−1

has infinitely many solutions in positive integers.

Solution. An infinite family of solutions is given by

xk = k(kn+1)n−2, yk = (kn+1)n−2, zk = (kn+1)n−1, k ∈ Z+.

Example 5. Let a, b be positive integers. Prove that the equation

x2 − 2axy + (a2 − 4b)y2 + 4by = z2

has infinitely many positive integer solutions (xj , yj , zj), where (xj),

(yj), (zj) are increasing sequences.

(Dorin Andrica)

Solution. We will use the following auxiliary result:
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Lemma. If A,B are relatively prime positive integers, then there

exist positive integers u, v such that

Au − Bv = 1. (1)

Proof. Consider the integers

1 · A, 2 · A, . . . , (B − 1) · A (2)

modulo B. All these remainders are distinct. Indeed, if

k1A = q1B + r and k2A = q2B + r

for some k1, k2 ∈ {1, 2, . . . , B − 1}, then

(k1 − k2)A = (q1 − q2)B ≡ 0 (mod B).

Since gcd(A,B) = 1, it follows that |k1 − k2| ≡ 0 (mod B).

Taking into account that k1, k2 ∈ {1, 2, . . . , B − 1}, we have

|k1 − k2| < B. Thus k1 − k2 = 0.

It is not difficult to see that k · A �≡ 0 (mod B) for all k ∈
{1, 2, . . . , B − 1}. Hence at least one of the integers (2) gives

remainder 1 on division by B, i.e., there exist u ∈ {1, 2, . . . , B − 1}
and v ∈ Z+ such that A · u = B · v + 1. �

Remark. Let (u0, v0) be the minimal solution in positive integers

to equation (1), i.e., u0 (and v0) is minimal. Then all solutions in

positive integers to equation (1) are given by

um = u0 + Bm, vm = v0 + Am, m ∈ Z+. (3)
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Returning to the original problem, let us consider the sequence

(yn)n≥1, given by

yn+1 = by2
n + ayn + 1, y1 ∈ Z+. (4)

Clearly gcd(yn, yn+1) = 1, n ∈ Z+. From the above Lemma, there

is a sequence of positive integers (un)n≥1, (vn)n≥1 such that

yn+1un − ynvn = 1, n ∈ Z+.

From (4) we obtain

buny2
n + (aun − vn)yn + un − 1 = 0, n ∈ Z+. (5)

Regarding (5) as a quadratic equation in yn and taking into

account that yn ∈ Z+, it follows that the discriminant

Dn = (aun − vn)2 − 4bun(un − 1)

is a perfect square. That is,

v2
n − 2aunvn + (a2 − 4b)u2

n + 4bun = z2
n, n ∈ Z+.

It is clear that the sequences (un)n≥1 and (vn)n≥1 contain strictly

increasing subsequences (unj )j≥1, (vnj )j≥1, respectively. An infi-

nite family of solutions with the desired property is given by

(vnj , unj , znj ), j ≥ 1.

Remark. The left-hand side of the given equation, which we may

write as

(x − ay)2 − 4by(y − 1),

is the discriminant of the quadratic equation

byt2 + (ay − x)t + y − 1 = 0,
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with a new unknown t. Therefore, this discriminant is a perfect

square if the last equation has an integer root. (As we know, the

square root of a nonnegative integer is either irrational or an inte-

ger.) Rewriting the equation in the form

y(bt2 + at + 1) = 1 + xt,

we can see that the number t = 1 is a root if

y(b + a + 1) = 1 + x,

which is satisfied by infinitely many pairs of integers (x, y). In this

case, by routine computation, we get z = by − y + 1. Thus we have

found an infinite family of solutions

x = (a + b + 1)m − 1, y = m, z = (b − 1)m + 1, m ∈ Z+.

Example 6. Prove that the equation

2x + 1 = xy

has infinitely many solutions in positive integers.

Solution. It suffices to prove that 3k divides 23k
+ 1 for all k ≥ 0.

Indeed, for all k ≥ 1,

23k
+ 1 =

(
23k−1

)3
+ 1 =

(
23k−1

+ 1
)(

22·3k−1 − 23k−1
+ 1
)
.

The first factor can be written as (3 − 1)3
k−1

+ 1, and since

(−1)3
k−1

+ 1 = 0, it is divisible by 3k−1. The second factor is equal

to
(
23k−1

+ 1
)2 − 3 · 23k−1

, which is clearly divisible by 3. Hence
(

3k, 23k
+1

3k

)

, k ≥ 0, are all solutions to the given equation.
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Exercises and Problems

1. Prove that the equation

x2 = y3 + z5

has infinitely many solutions in positive integers.

2. Show that the equation

x2 + y2 = z5 + z

has infinitely many solutions in relatively prime integers.

(United Kingdom Mathematical Olympiad)

3. Prove that for each integer n ≥ 2 the equation

xn + yn = zn+1

has infinitely many solutions in positive integers.

4. Let n be an integer greater than 2. Prove that the equation

xn + yn + zn + un = vn−1

has infinitely many solutions (x, y, z, u, v) in positive integers.

(Dorin Andrica)

5. Let a, b, c, d be positive integers with gcd(a, b) = 1. Prove that

the following system of equations has infinitely many solutions in

positive integers: ⎧
⎨

⎩

ax − yz − c = 0,

bx − yt + d = 0.

(Titu Andreescu)
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6. Find all triples (x, y, z) of integers such that

xy(z + 1) = (x + 1)(y + 1)z.

7. Solve in integers the equation

x2 + xy = y2 + xz.

8. Prove that the equation

x3 + y3 + z3 + w3 = 2008

has infinitely many solutions in integers.

(Titu Andreescu)

9. Prove that there are infinitely many quadruples (x, y, z, w) of

positive integers such that

x4 + y4 + z4 = 2002w .

(Titu Andreescu)

10. Prove that each of the following equations has infinitely many

solutions in integers x, y, z, u:

x2 + y2 + z2 = 2u2,

x4 + y4 + z4 = 2u2.

11. Prove that there are infinitely many quadruples (x, y, u, v) of

positive integers such that xy + 1, xu + 1, xv + 1, yu + 1, yv + 1,

uv + 1 are all perfect squares.
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1.4 The Modular Arithmetic Method

In many situations, simple modular arithmetic considerations are

employed in proving that certain Diophantine equations are not solv-

able or in reducing the range of their possible solutions.

Example 1. Prove that the equation

(x + 1)2 + (x + 2)2 + · · · + (x + 2001)2 = y2

is not solvable.

Solution. Let x = z − 1001. The equation becomes

(z − 1000)2 + · · ·+ (z − 1)2 + z2 + (z + 1)2 + · · · + (z + 1000)2 = y2,

or

2001z2 + 2(12 + 22 + · · · + 10002) = y2.

It follows that

2001z2 + 2
1000 · 1001 · 2001

6
= y2,

or equivalently,

2001z2 + 1000 · 1001 · 667 = y2.

The left-hand side is congruent to 2 (mod 3), so it cannot be a

perfect square.

Example 2. Find all pairs (p, q) of prime numbers such that

p3 − q5 = (p + q)2.

(Russian Mathematical Olympiad)
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Solution. The only solution is (7, 3). First suppose that neither p

nor q equals 3. Then p ≡ 1 or 2 (mod 3) and q ≡ 1 or 2 (mod 3).

If p ≡ q (mod 3), then the left-hand side is divisible by 3, while

the right-hand side is not. If p �≡ q (mod 3), the right-hand side is

divisible by 3, while the left-hand side is not.

If p = 3, then q5 < 27, which is impossible.

If q = 3, we obtain p3−243 = (p+3)2, whose only integer solution

is p = 7.

Example 3. Prove that the equation x5 − y2 = 4 has no solutions

in integers.

(Balkan Mathematical Olympiad)

Solution. We consider the equation modulo 11. Since (x5)2 = x10 ≡
0 or 1 (mod 11) for all x, we have x5 ≡ −1, 0, or 1 (mod 11). So

x5−4 is either 6, 7, or 8 modulo 11. However, the quadratic residues

modulo 11 are 0, 1, 3, 4, 5, and 9, so the equation has no integral

solutions.

Example 4. Determine all primes p for which the system of equa-

tions ⎧
⎨

⎩

p + 1 = 2x2,

p2 + 1 = 2y2,

has a solution in integers x, y.

(German Mathematical Olympiad)

Solution. The only such prime is p = 7. Assume without loss of

generality that x, y ≥ 0. Note that p + 1 = 2x2 is even, so p �= 2.

Also, 2x2 ≡ 1 ≡ 2y2 (mod p), which implies x ≡ ±y (mod p), since
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p is odd. Since x < y < p, we have x + y = p. Then

p2 + 1 = 2(p − x)2 = 2p2 − 4px + p + 1,

so p = 4x− 1, 2x2 = 4x, x is 0 or 2, and p is −1 or 7. Of course, −1

is not prime, but for p = 7, (x, y) = (2, 5) is a solution.

Example 5. Prove that if n is a positive integer such that the

equation

x3 − 3xy2 + y3 = n

has a solution in integers x, y, then it has at least three such solu-

tions. Prove that the equation has no integer solution when n = 2891.

(23rd IMO)

Solution. Completing the cube, we obtain

x3 − 3xy2 + y3 = 2x3 − 3x2y − x3 + 3x2y − 3xy2 + y3

= 2x3 − 3x2y + (y − x)3

= (y − x)3 − 3(y − x)(−x)2 + (−x)3.

This shows that if (x, y) is a solution, then so is (y − x,−x). The

two solutions are distinct, since y − x = x and −x = y lead to

x = y = 0. Similarly,

x3 − 3xy2 + y3 = x3 − 3x2y + 3xy2 − y3 + 2y3 + 3x2y − 6xy2

= (x − y)3 + 3xy(x − y) − 3xy2 + 2y3

= (−y)3 − 3(−y)(x − y)2 + (x − y)3,

so (−y, x − y) is the third solution to the equation.

We use these two transformations to solve the second part of the

problem. Let (x, y) be a solution. Since 2891 is not divisible by 3,
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x3 + y3 is not divisible by 3 as well. So either both x and y give

the same residue modulo 3 (different from 0), or exactly one of x

and y is divisible by 3. Either of the two situations implies that one

of the numbers −x, y, x − y is divisible by 3, and using the above

transformations, we may assume that y is a multiple of 3. It follows

that x3 must be congruent to 2891 (mod 9), which is impossible,

since 2891 has residue 2, and the only cubic residues modulo 9 are

0, 1, and 8.

Example 6. Solve the equation

2x + 1 = x2y.

(31st IMO, reformulated)

Solution. The only solutions are (1, 3) and (3, 1). Indeed, let x =

3kd, with gcd(d, 3) = 1. Clearly, d is odd and 32k
d2 divides 23kd + 1.

But

(
2d
)3k

+ 1 =
(
2d·3k−1

)3
+ 1 =

(
2d·3k−1

+ 1
)(

22d·3k−1 − 2d·3k−1
+ 1
)

for all k ≥ 1, hence

2d·3k
+ 1 =

(
2d + 1

) k−1∏

j=0

(
22d·3j − 2d·3j

+ 1
)
. (1)

Because 22m − 2m +1 ≡ 3 (mod 9) for each odd m, it follows that

k−1∏

j=0

(
22d·3j − 2d·3j

+ 1
)

is divisible by 3k but not by 3k+1.

Taking into account that 32kd2 | 2d3k
+1, from (1) we get 3k | 2d+1.
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The case d = 1 yields k = 1, generating the solution (3, 1).

Because d is odd and gcd(d, 3) = 1, we have d ≥ 5 and d is

congruent to 1 or 5 (mod 6).

If d ≡ 1 (mod 6), then 2d + 1 ≡ 3 (mod 9), and if d ≡ 5 (mod 6),

then 2d + 1 ≡ 6 (mod 9). In both cases, 9 does not divide 2d + 1. It

follows that k = 0 or k = 1. For k = 0 and k = 1, d divides 2x+1. Let

p be the least prime factor of d. From p | 2x+1 it follows that 2x ≡ −1

(mod p). But from Fermat’s little theorem, 2p−1 ≡ 1 (mod p). Let

u be the order of 2 modulo p, that is, the least positive integer u

such that 2u ≡ 1 (mod p). From the minimality of u it follows that

u | p − 1. But from 2x ≡ −1 (mod p) we have 22x ≡ 1 (mod p),

and hence u | 2x. Because gcd(p − 1, d) = 1, we get gcd(u, d) = 1,

and u | 2 · 3k · d with k = 0 or k = 1 yields u ∈ {1, 2, 3, 6}. Taking

into account that 2u ≡ 1 (mod p), it follows that p divides one of

the numbers 1, 3, 7, and 63. But p is a prime greater than or equal

to 5, and hence p = 7. However, 7 does not divide 2x + 1, since

2x + 1 ≡ 2, 3, or 5 (mod 7).

Hence there is no prime p that divides d and 2x+1, and thus d = 1

and x = 3.

Exercises and Problems

1. Prove that the equation

(x + 1)2 + (x + 2)2 + · · · + (x + 99)2 = yz

is not solvable in integers x, y, z, with z > 1.

(Hungarian Mathematical Olympiad)



34 Part I. Diophantine Equations

2. Find all pairs (x, y) of positive integers for which

x2 − y! = 2001.

(Titu Andreescu)

3. Prove that the equation

x3 + y4 = 7

has no solution in integers.

4. Find all pairs (x, y) of positive integers satisfying the equation

3x − 2y = 7.

5. Determine all nonnegative integral solutions (x1, x2, . . . , x14) if

any, apart from permutations, to the Diophantine equation

x4
1 + x4

2 + · · · + x4
14 = 15999.

(8th USA Mathematical Olympiad)

6. Find all pairs (x, y) of integers such that

x3 − 4xy + y3 = −1.

(G.M. Bucharest)

7. Find all triples (x, y, z) of nonnegative integers such that

5x7y + 4 = 3z .

(Bulgarian Mathematical Olympiad)
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8. Prove that the equation

4xy − x − y = z2

has no solution in positive integers.

(Euler)

9. Prove that the system of equations

⎧
⎨

⎩

x2 + 6y2 = z2,

6x2 + y2 = t2,

has no nontrivial integer solutions.

10. Find all pairs (a, b) of positive integers that satisfy the equa-

tion

ab2 = ba.

(37th IMO)

11. Find all primes q1, q2, . . . , q6 such that

q2
1 = q2

2 + · · · + q2
6 .

(Titu Andreescu)

12. Prove that there are unique positive integers a and n such that

an+1 − (a + 1)n = 2001.

(Putnam Mathematical Competition)
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1.5 The Method of Mathematical Induction

Mathematical induction is a powerful and elegant method for proving

statements depending on nonnegative integers.

Let (P (n))n≥0 be a sequence of propositions. The method of

mathematical induction assists us in proving that P (n) is true for

all n ≥ n0, where n0 is a given nonnegative integer.

Mathematical Induction (weak form): Suppose that:

• P (n0) is true;

• For all k ≥ n0, P (k) is true implies P (k + 1) is true.

Then P (n) is true for all n ≥ n0.

Mathematical Induction (with step s): Let s be a fixed positive

integer. Suppose that:

• P (n0), P (n0 + 1), . . . , P (n0 + s − 1) are true;

• For all k ≥ n0, P (k) is true implies P (k + s) is true.

Then P (n) is true for all n ≥ n0.

Mathematical Induction (strong form): Suppose that

• P (n0) is true;

• For all k ≥ n0, P (m) is true for all m with n0 ≤ m ≤ k implies

P (k + 1) is true.

Then P (n) is true for all n ≥ n0.

This method of proof is widely used in various areas of mathe-

matics, including number theory. The following examples are meant
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to show how mathematical induction works in studying Diophantine

equations.

Example 1. Prove that for all integers n ≥ 3, there exist odd

positive integers x, y, such that 7x2 + y2 = 2n.

(Bulgarian Mathematical Olympiad)

Solution. We will prove that there exist odd positive integers xn, yn

such that 7x2
n + y2

n = 2n, n ≥ 3.

For n = 3, we have x3 = y3 = 1. Now suppose that for a given

integer n ≥ 3 we have odd integers xn, yn satisfying 7x2
n + y2

n = 2n.

We shall exhibit a pair (xn+1, yn+1) of odd positive integers such

that 7x2
n+1 + y2

n+1 = 2n+1. In fact,

7
(

xn ± yn

2

)2

+
(

7xn ∓ yn

2

)2

= 2(7x2
n + y2

n) = 2n+1.

Precisely one of the numbers xn+yn

2 and |xn−yn|
2 is odd (since their

sum is the larger of xn and yn, which is odd). If, for example, xn+yn

2

is odd, then
7xn − yn

2
= 3xn +

xn − yn

2

is also odd (as a sum of an odd and an even number); hence in this

case we may choose

xn+1 =
xn + yn

2
and yn+1 =

7xn − yn

2
.

If xn−yn

2 is odd, then

7xn + yn

2
= 3xn +

xn + yn

2
,

so we can choose

xn+1 =
|xn − yn|

2
and yn+1 =

7xn + yn

2
.
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Example 2. Prove that for all positive integers n, the equation

x2 + y2 + z2 = 59n

is solvable in positive integers.

(Dorin Andrica)

Solution. We use mathematical induction with pace s = 2 and

n0 = 1. Note that for (x1, y1, z1) = (1, 3, 7) and (x2, y2, z2) =

(14, 39, 42) we have

x2
1 + y2

1 + z2
1 = 59 and x2

2 + y2
2 + z2

2 = 592.

Define now (xn, yn, zn), n ≥ 3, by

xn+2 = 59xn, yn+2 = 59yn, zn+2 = 59zn,

for all n ≥ 1. Then

x2
k+2 + y2

k+2 + z2
k+2 = 592(x2

k + y2
k + z2

k);

hence x2
k + y2

k + z2
k = 59k implies x2

k+2 + y2
k+2 + z2

k+2 = 59k+2.

Remark. We can write the solutions as

(x2n−1, y2n−1, z2n−1) = (1 · 59n−1, 3 · 59n−1, 7 · 59n−1)

and

(x2n, y2n, z2n) = (14 · 59n, 39 · 59n, 42 · 59n), n ≥ 1.

Example 3. Prove that for all n ≥ 3 the equation

1
x1

+
1
x2

+ · · · + 1
xn

= 1 (1)
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is solvable in distinct positive integers.

Solution. For the base case n = 3 we have

1
2

+
1
3

+
1
6

= 1.

Assuming that for some k ≥ 3,

1
x1

+
1
x2

+ · · · + 1
xk

= 1,

where x1, x2, . . . , xk are distinct positive integers, we obtain

1
2x1

+
1

2x2
+ · · · + 1

2xk
=

1
2
.

It follows that

1
2

+
1

2x1
+

1
2x2

+ · · · + 1
2xk

= 1,

where 2, 2x1, 2x2, . . . , 2xk are distinct.

Remarks. (1) Note that

n−1∑

k=1

k

(k + 1)!
=

n−1∑

k=1

(k + 1) − 1
(k + 1)!

=
n−1∑

k=1

(
1
k!

− 1
(k + 1)!

)

= 1 − 1
n!

.

Hence
1
2!
1

+
1
3!
2

+ · · · + 1
n!

n − 1

+
1
n!

= 1

i.e.,
(

2!
1 ,

3!
2

, . . . ,
n!

n − 1
, n!
)

is a solution to equation (1) and all its

components are distinct.

(2) Another solution to equation (1) whose components are dis-

tinct is given by

(
2, 22, . . . , 2n−2, 2n−2 + 1, 2n−2

(
2n−2 + 1

))
.
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Indeed,

1
2

+
1
22

+ · · · + 1
2n−2

+
1

2n−2 + 1
+

1
2n−2(2n−2 + 1)

= 1 − 1
2n−2

+
2n−2

2n−2(2n−2 + 1)
+

1
2n−2(2n−2 + 1)

= 1 − 1
2n−2

+
1

2n−2
= 1.

(3) Another way to construct solutions to equation (1) is to con-

sider the sequence

a1 = 2, am+1 = a1 · · · am + 1, m ≥ 1.

Then for all n ≥ 3,

1
a1

+
1
a2

+ · · · + 1
an−1

+
1

an − 1
= 1. (2)

Indeed, from the recurrence relation it follows that

ak+1 − 1 = ak(ak − 1), k ≥ 1,

or
1

ak+1 − 1
=

1
ak − 1

− 1
ak

, k ≥ 1.

Thus
1
ak

=
1

ak − 1
− 1

ak+1 − 1

and the sum
1
a1

+
1
a2

+ · · · + 1
an−1

telescopes to
1

a1 − 1
− 1

an − 1
= 1 − 1

an − 1
.

Hence the relation (2) is verified.
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(4) If (s1, s2, . . . , sn) is a solution to

1
x1

+
1
x2

+ · · · + 1
xn

= 1

with s1 < s2 < · · · < sn, then (s1, s2, . . . , sn−1, sn + 1, sn(sn + 1)) is

a solution to
1
y1

+
1
y2

+ · · · + 1
yn+1

= 1

and all its components are distinct.

(5) For a > 1, the identity

1
a − 1

=
1
a

+
1
a2

+ · · · + 1
am

+
1

(a − 1)am

generates various other families of solutions. For example, from

1
2

+
1
3

+
1
6

= 1

and a = 7, we obtain the solution
(
2, 3, 7, 72, . . . , 7n−3, 6 · 7n−3

)
,

n ≥ 4, while from
1
2

+
1
3

+
1
7

+
1
42

= 1

we get
(
2, 3, 7, 43, 432 , . . . , 43n−4, 42 · 43n−4

)
, n ≥ 5. From the con-

struction above it follows that equation (1) has infinitely many fam-

ilies of solutions with distinct components.

(6) It is not known whether there are infinitely many positive

integers n for which equation (1) admits solutions (x1, x2, . . . , xn),

where x1, x2, . . . , xn are all distinct odd positive integers.

A simple parity argument shows that in this case n must be odd.

There are several known examples of such integers n. For instance,

if n = 9, we have

1
3

+
1
5

+
1
7

+
1
9

+
1
11

+
1
15

+
1
33

+
1
45

+
1

385
= 1;
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if n = 11,

1
3

+
1
5

+
1
7

+
1
9

+
1
15

+
1
21

+
1
27

+
1
35

+
1
63

+
1

105
+

1
135

= 1;

if n = 15,

1
3

+
1
5

+
1
7

+
1
9

+
1
15

+
1
21

+
1
35

+
1
45

+
1
55

+
1
77

+
1

165
+

1
231

+
1

385
+

1
495

+
1

693
= 1;

and if n = 17,

1
3

+
1
5

+
1
7

+
1
9

+
1
15

+
1
21

+
1
35

+
1
45

+
1
55

+
1
77

+
1

165
+

1
275

+
1

385
+

1
495

+
1

825
+

1
1925

+
1

2475
= 1.

Example 4. Prove that equation

1
x2

1

+
1
x2

2

+ · · · + 1
x2

n

=
n + 1
x2

n+1

is solvable in positive integers if and only if n ≥ 3.

(Mathematical Reflections)

Solution. For n = 1, the equation becomes

1
x2

1

=
2
x2

2

,

which has no solution, since
√

2 is irrational.

Consider next n = 2. Then the equation becomes

(x2x3)2 + (x1x3)2 = 3(x1x2)2.

For 1 ≤ i ≤ 3, write xi = 3niyi, where yi is not divisible by 3.

Without loss of generality assume that n1 ≥ n2. Then

32(n2+n3)((y2y3)2 + 32(n1−n2)(y1y3)2) = 32(n1+n2)+1(y1y2)2. (3)
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Because 1 is the only possible quadratic residue modulo 3,

(y2y3)2 + 32(n1−n2)(y1y3)2 ≡ 1 or 2 (mod 3).

Hence the exponents of 3 in the two sides of (3) cannot be equal.

Finally, consider n ≥ 3. Starting from 52 = 42 + 32, we get

1
122

=
1

152
+

1
202

by dividing by 324252. Multiplying by 1
122 , we get

1
124

=
1

122152
+

1
122202

=
1

122152
+
(

1
152

+
1

202

)
1

202

=
1

(12 · 15)2 +
1

(15 · 20)2 +
1

(20 · 20)2 .

Hence

(x1, x2, x3, x4) =
(
12 · 15, 15 · 20, 202, 2 · 122

)

is a solution for n = 3. Inductively, assume that (x1, . . . , xn+1) is a

solution to
1
x2

1

+ · · · + 1
x2

n

=
n + 1
x2

n+1

for some n ≥ 3 and arrive in this manner at

1
x2

1

+ · · · + 1
x2

n

+
1

x2
n+1

=
n + 2
x2

n+1

,

completing the proof.

Remark. For n = 1, we get the equation
√

2x1 = x2, and since
√

2 is irrational, there is no solution in this case. For n = 2, we have

x2
2x

2
3 + x2

1x
2
3 = 3x2

1x
2
2,

or equivalently, a2 + b2 = 3c2. We can assume that the numbers a, b,

and c are all different from zero and that they are relatively prime,
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meaning gcd(a, b, c) = 1. The square of an integer is congruent to 0

or 1 modulo 3, and hence both a and b are divisible by 3. Now, c is

also divisible by 3 and we get a contradiction.

For n = 3, we have at least one solution:

(x1, x2, x3, x4) = (3, 3, 6, 4),

that is,
1
32

+
1
32

+
1
62

=
4
42

.

For each integer n > 3, we can use the solution for n = 3 and get

1
32

+
1
33

+
1
62

+
1
42

+ · · · + 1
42

︸ ︷︷ ︸
n−3

=
4
42

+
n − 3

42
=

n + 1
42

.

Example 5. Prove that for all n ≥ 412 there are positive integers

x1, . . . , xn such that

1
x3

1

+
1
x3

2

+ · · · + 1
x3

n

= 1. (1)

Solution. We have

1
a3

=
1

(2a)3
+ · · · + 1

(2a)3
,

where the right-hand side consists of eight summands, so if the equa-

tion (1) is solvable in positive integers, then so is the equation

1
x3

1

+
1
x3

2

+ · · · + 1
x3

n+7

= 1.

Using the method of mathematical induction with pace 7, it

suffices to prove the solvability of the equation (1) for n =
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412, 413, . . . , 418. The key idea is to construct a solution in each

of the above cases from smaller ones modulo 7.

Observe that

27
33

= 1 and 27 ≡ 412 (mod 7),

4
23

+
9
33

+
36
63

= 1 and 4 + 9 + 36 = 49 ≡ 413 (mod 7),

4
23

+
32
43

= 1 and 4 + 32 = 36 ≡ 414 (mod 7),

18
33

+
243
93

= 1 and 18 + 243 = 261 ≡ 415 (mod 7),

18
33

+
16
43

+
144
123

= 1 and 18 + 16 + 144 = 178 ≡ 416 (mod 7),

4
23

+
16
43

+
36
63

+
144
123

= 1 and 4+16+36+144 = 200 ≡ 417 (mod 7).

Finally,

4
23

+
9
33

+
81
93

+
324
183

= 1 and 4 + 9 + 81 + 324 = 418.

Exercises and Problems

1. Prove that for all integers n ≥ 2 there are odd integers x, y such

that |x2 − 17y2| = 4n.

(Titu Andreescu)

2. Prove that for all positive integers n, the equation

x2 + xy + y2 = 7n

is solvable in integers.

(Dorin Andrica)

3. Prove that for each positive integer n, the equation

(x2 + y2)(u2 + v2 + w2) = 2009n
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is solvable in integers.

(Titu Andreescu)

4. The integer tk = k(k+1)
2 is called the kth triangular number,

k ≥ 1. Prove that for all positive integers n ≥ 3 the equation

1
x1

+
1
x2

+ · · · + 1
xn

= 1

is solvable in triangular numbers.

5. Show that for all n ≥ 6 the equation

1
x2

1

+
1
x2

2

+ · · · + 1
x2

n

= 1

is solvable in integers.

6. Prove that for all s ≥ 2 there exist positive integers x0,

x1, . . . , xs such that

1
x2

1

+
1
x2

2

+ · · · + 1
x2

s

=
1
x2

0

and x0 < x1 < · · · < xs.

7. Prove that for every positive integer m and for all sufficiently

large s, the equation

1
xm

1

+
1

xm
2

+ · · · + 1
xm

s

= 1

has at least one solution in positive integers x1, x2, . . . , xs.

8. Prove that for any nonnegative integer k the equation

x2 + y2 − z2 = k

is solvable in positive integers x, y, z with x < y < z.

(Titu Andreescu)
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9. Prove that the equation

x2 + (x + 1)2 = y2

has infinitely many solutions in positive integers x, y.

10. Solve in distinct positive integers the equation

x2
1 + x2

2 + · · · + x2
2002 = 1335(x1 + x2 + · · · + x2002).

(Titu Andreescu)

1.6 Fermat’s Method of Infinite Descent (FMID)

Pierre de Fermat (1601–1665) is famous for his contributions to

mathematics even though he was considered only an amateur mathe-

matician. Fermat received his degree in civil law at the University of

Orleans before 1631 and served as a lawyer and then a councillor at

Toulouse.

Fermat had an enormous impact on the world of mathematics

through his discoveries and methods. He was one of the first mathe-

maticians to use a method of proof called the “infinite descent.”

Let P be a property concerning the nonnegative integers and let

(P (n))n≥1 be the sequence of propositions,

P (n): “n satisfies property P .”

The following method is useful in proving that proposition P (n)

is false for all large enough n.

Let k be a nonnegative integer. Suppose that:

• P (k) is not true;
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• whenever P (m) is true for a positive integer m > k, then there

must be some smaller j, m > j ≥ k, for which P (j) is true.

Then P (n) is false for all n ≥ k.

This is just the contrapositive of strong induction, applied to

the negation of proposition P (n). In the language of the ladder

metaphor, if you know you can’t reach any rung without first reach-

ing a lower rung, and you also know you can’t reach the bottom

rung, then you cannot reach any rung.

The method described above is often called the finite descent

method.

Fermat’s method of infinite descent (FMID) can be formulated as

follows:

Let k be a nonnegative integer. Suppose that:

• whenever P (m) is true for an integer m > k, then there must

be some smaller integer j, m > j > k, for which P (j) is true.

Then P (n) is false for all n > k.

That is, if there were an n for which P (n) was true, one could

construct a sequence n > n1 > n2 > · · · all of which would be greater

than k but for the nonnegative integers, no such infinite descending

sequence exists.

Two special cases of FMID are particularly useful in the study of

Diophantine equations.

FMID Variant 1: There is no sequence of nonnegative integers

n1 > n2 > · · · .
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In some situations it is convenient to replace FMID Variant 1 by

the following equivalent form: If n0 is the smallest positive integer n

for which P (n) is true, then P (n) is false for all n < n0.

FMID Variant 2: If the sequence of nonnegative integers (ni)i≥1

satisfies the inequalities n1 ≥ n2 ≥ · · · , then there exists i0 such that

ni0 = ni0+1 = · · · .

Example 1. Solve in nonnegative integers the equation

x3 + 2y3 = 4z3.

Solution. Note that (0, 0, 0) is a solution. We will prove that there

are no other solutions. Assume that (x1, y1, z1) is a nontrivial solu-

tion. Since 3
√

2, 3
√

4 are both irrational, it is not difficult to see that

x1 > 0, y1 > 0, z1 > 0.

From x3
1 + 2y3

1 = 4z3
1 it follows that 2 | x1, so x1 = 2x2, x2 ∈ Z+.

Then 4x3
2 + y3

1 = 2z3
1 , and hence y1 = 2y2, y2 ∈ Z+. Similarly,

z1 = 2z2, z2 ∈ Z+. We obtain the “new” solution (x2, y2, z2) with

x1 > x2, y1 > y2, z1 > z2. Continuing this procedure, we construct

a sequence of positive integral solutions (xn, yn, zn)n≥1 such that

x1 > x2 > x3 > · · · . But this contradicts FMID Variant 1.

Example 2. Solve in nonnegative integers the equation

2x − 1 = xy.

(Putnam Mathematical Competition, reformulated)

Solution. Note the solutions (0, k), k ∈ Z+, and (1, 1). We will

prove that there are no other solutions by using FMID on the prime
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factors of x. Let p1 be a prime divisor of x and let q be the least

positive integer such that p1 | 2q − 1. From Fermat’s Little Theorem

we have p1 | 2p1−1 − 1, and therefore q ≤ p1 − 1 < p1.

Let us prove now that q | x. If it didn’t, then x = kq + r, with

0 < r < q, and

2x − 1 = 2kq2r − 1

= (2q)k · 2r − 1

= (2q − 1 + 1)k · 2r − 1

≡ 2r − 1 (mod p1).

It follows that p1 | 2r − 1, which contradicts the minimality of q.

Thus q | x and 1 < q < p1. Now let p2 be a prime divisor of q. It is

clear that p2 is a divisor of x and p2 < p1. Continuing this procedure,

we construct an infinite decreasing sequence of prime divisors of x:

p1 > p2 > · · · , in contradiction to FMID Variant 1.

Example 3. Find the maximal value of m2 + n2 if m and n are

integers between 1 and 1981 satisfying
(
n2 − mn − m2

)2
= 1.

(22nd IMO)

Solution. Note that (m,n) = (1, 1) satisfies the relation
(
n2 −

mn − m2
)2

= 1. Moreover, if m = n, then necessarily m = n = 1.

Also, if a pair (m,n) satisfies this relation and 0 < m < n, then

m < n ≤ 2m, and by completing the square we get

(n2 − mn − m2)2 = ((n − m)2 + mn − 2m2)2

= ((n − m)2 + m(n − m) − m2)2

= (m2 − m(n − m) − (n − m)2)2,
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which shows that (n − m,m) satisfies the same relation and 0 <

n − m ≤ m.

By FMID Variant 2, the transformation (m,n) 	→ (n−m,m) must

terminate after finitely many steps, and it terminates only when

m = n = 1. Hence all pairs of numbers satisfying the relation are

obtained from (1, 1) by applying the inverse transformation (m,n) 	→
(n,m + n) several times:

(1, 1) 	→ (2, 1) 	→ (3, 2) 	→ (5, 3) 	→ · · · .

The components of all such pairs are Fibonacci numbers Fn, where

the sequence (Fn)n≥0 is defined by

F0 = 0, F1 = 1 and Fn+1 = Fn + Fn−1, n ≥ 1.

Therefore, all pairs consist of consecutive Fibonacci numbers. The

largest Fibonacci number less than 1981 is F16 = 1597, so the answer

to the problem is F 2
15 + F 2

16 = 3524578.

Remark. In the first step of the previous solution we have used

the fact that if a Diophantine equation is quadratic in one variable

and we have a solution, then we can always get a second solution

by replacing the variable by the other root of the quadratic. This

observation is a useful idea in many other problems.

Example 4. Let (xn)n≥0 and (yn)n≥0 be two sequences defined

recursively as follows:

xn+2 = 3xn+1 − xn, x0 = 1, x1 = 4,

yn+2 = 3yn+1 − yn, y0 = 1, y1 = 2.

1. Prove that x2
n − 5y2

n = −4 for all nonnegative integers n.
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2. Suppose that a, b are two positive integers such that a2 − 5b2 =

−4. Prove that there exists a nonnegative integer k such that

xk = a and yk = b.

(Vietnamese Mathematical Olympiad)

Solution. We first prove by induction on k that for k ≥ 0, we have

(xk+1, yk+1) =
(

3xk + 5yk

2
,
xk + 3yk

2

)

.

For k = 0, (4, 2) =
(

3+5
2 , 1+3

2

)
, and for k = 1, (11, 5) =

(
12+10

2 , 4+6
2

)
.

Next, assume that our formula for (xk+1, yk+1) is true for k and

k + 1. Substituting the expressions for xk+2, xk+1, yk+2, yk+1 into

(xk+3, yk+3) = (3xk+2−xk+1, 3yk+2−yk+1), we find that (xk+3, yk+3)

equals
(

3
2
(3xk+1 − xk) +

5
2
(3yk+1 − yk),

1
2
(3xk+1 − xk) +

3
2
(3yk+1 − yk)

)

=
(

1
2
(3xk+2 + 5yk+2),

1
2
(xk+2 + 3yk+2)

)

.

This completes the induction step and the proof of our claim.

Remark. We remark that by linearity, xk+1 − (3xk + 5yk)/2 and

yk+1 − (xk + 3yk)/2 both satisfy the recurrence an+2 = 3an+1 − an

and both have a0 = a1 = 0; hence they are forever zero.

(1) We prove that x2
n − 5y2

n = −4 by induction on n. For n = 0

we have 1− 5 + 4 = 0. Now assume that the result is true for n. We

prove that it is true for n + 1. Indeed,

x2
n+1 − 5y2

n+1 =
(

3xn + 5yn

2

)2

− 5
(

xn + 3yn

2

)2

=
4x2

n − 20y2
n

4
= x2

n − 5y2
n = −4,
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as desired.

Remark. The sequences (xn)n≥0, (yn)n≥0 are defined by second-

order linear recurrences; hence their general terms have the form

α

(
3 +

√
5

2

)n

+ β

(
3 −√

5
2

)n

, n ≥ 0

For the first sequence we have α = 1+
√

5
2 , β = 1−√

5
2 , and for the

second, α = 1+
√

5
2
√

5
, β = −1−√

5
2
√

5
.

We obtain

xn =

(
1 +

√
5

2

)2n+1

+

(
1 −√

5
2

)2n+1

,

yn =
1√
5

⎡

⎣

(
1 +

√
5

2

)2n+1

−
(

1 −√
5

2

)2n+1
⎤

⎦ .

Using these two relations it is not difficult to verify that x2
n−5y2

n =

−4, n ≥ 0.

Note that xn = L2n+1 and yn = F2n+1, where (Fm)m≥1, (Lm)m≥1

are the well-known Fibonacci and Lucas sequences.

(2) Suppose, by way of contradiction, that a2
1 − 5b2

1 = −4 for

integers a1, b1 > 0, and that there did not exist k such that (xk, yk) =

(a1, b1).

Let (a2, b2) =
(

3a1−5b1
2 , 3b1−a1

2

)
. We argue that a2 and b2 are

positive integers. This is true if a1 and b1 are of the same parity,

a1 < 3b1, and 3a1 < 5b1. Note that 0 = a2
1 − 5b2

1 + 4 ≡ a1 − b1

(mod 2). Next, a2
1 = 5b2

1 − 4 < 9b2
1 implies a1 < 3b1. In addition,

there are no counterexamples with a1 = 1 or 2. Thus a2
1 > 5 and

0 = 5a2
1 − 25b2

1 + 20 < 5a2
1 − 25b2

1 + 4a2
1, i.e., 3a1 > 5b1.
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Using the condition a2
1−5b2

1 = −4, some quick algebra shows that

a2
2 − 5b2

2 = −4 as well. However,

a2 + b2 =
3a1 − 5b1

2
+

3b1 − a1

2
= a1 − b1 < a1 + b1

and (a2, b2) �= (xj , yj) for all j ≥ 0. Continuing this process, we

construct an infinite sequence of positive integers

a1 + b1 > a2 + b2 > a3 + b3 > · · · ,

in contradiction to FMID Variant 1.

Example 5. Solve in positive integers the equation

x2 + y2 + x + y + 1 = xyz.

Solution. We will prove first that z = 5. Let (x1, y1, z1) be a solu-

tion with z1 �= 5. Then x1 �= y1, for otherwise x1[x1(z1 − 2)− 2] = 1,

which is impossible if z1 �= 5.

We have

0 = x2
1 + y2

1 + x1 + y1 + 1 − x1y1z1

= (y1z1 − x1 − 1)2 + y2
1 + (y1z1 − x1 − 1) + y1

+ 1 − (y1z1 − x1 − 1)y1z1;

hence (x2, y2, z2) = (y1z1 − x1 − 1, y1, z1) is also a solution, since

x1(y1z1 − x1 − 1) = y2
1 + y1 + 1 > 0 implies x2 = y1z1 − x1 − 1 > 0.

Note that if x1 > y1, then x1 ≥ y1 + 1, and that

x2
1 > y2

1 + y1 + 1 = x1(y1z1 − x1 − 1) = x1x2.
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Hence x1 > x2. Continuing this construction, we obtain a sequence

of positive integral solutions (xk, yk, zk) with x1 > x2 > x3 > · · · , in

contradiction to FMID Variant 1.

This contradiction shows that the assumption z �= 5 is false, so

z = 5.

It is not difficult to see that both x and y are odd. Performing the

substitutions

u =
3x − 1

2
, v =

3y − 1
2

, (1)

the equation becomes

u2 − 5uv + v2 = −3. (2)

Clearly, (u0, v0) = (1, 1) is a solution to (2). Let (u1, v1) be another

solution with u1 > v1. Then

v2
1 + (5v1 − u1)2 + 3 = 5v1(5v1 − u1),

so (u2, v2) = (v1, 5v1 − u1) is also a solution to (2). From

(u1 − v1)(u1 − 4v1) = u2
1 − 5u1v1 + 4v2

1 = 3v2
1 − 3 ≥ 0,

it follows that u1 ≥ 4v1; hence v2 = 5v1 − u1 ≤ v1. Starting from

(u1, v1) we construct the solutions (u2, v2), (u3, v3), . . . with v1 ≥
v2 ≥ v3 ≥ · · · . According to FMID Variant 2, it follows that vk+1 =

5vk − uk and uk+1 = vk, k ≥ 1. Thus

uk = vk−1, k ≥ 1,

vk+1 = 5vk − vk−1, v0 = 1, v1 = 4.
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The sequence (vn)n≥0 is defined by a second-order linear recur-

rence; hence its general term has the form

vn = α

(
5 +

√
21

2

)n

+ β

(
5 −√

21
2

)n

, n ≥ 0.

In this case we have α = 3+
√

21
2
√

21
and β = −3−√

21
2
√

21
, and therefore

un =
1√
21

⎡

⎣
3 +

√
21

2

(
5 +

√
21

2

)n−1

− 3 −√
21

2

(
5 −√

21
2

)n−1
⎤

⎦ , (3)

vn =
1√
21

[
3 +

√
21

2

(
5 +

√
21

2

)n

− 3 −√
21

2

(
5 −√

21
2

)n]

, n ≥ 0.

Taking into account the relations (1), we obtain that all the solu-

tions to the given equation are
(

2un+1
3 , 2vn+1

3 , 5
)
, n ≥ 0, where un, vn

are defined by (3).

Exercises and Problems

1. Find all triples (x, y, z) of positive integer solutions to the equa-

tion

x3 + 3y3 + 9z3 − 3xyz = 0.

(Kürschák Mathematical Competition)

2. Find all integers x, y, z satisfying

x2 + y2 + z2 − 2xyz = 0.

(Korean Mathematical Olympiad)

3. Solve the following equation in integers x, y, z, u:

x4 + y4 + z4 = 9u4.
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4. Solve the following equation in positive integers:

x2 − y2 = 2xyz.

5. Determine all integral solutions to the equation

a2 + b2 + c2 = a2b2.

(5th USA Mathematical Olympiad)

6. (a) Prove that if there is a triple (x, y, z) of positive integers

such that

x2 + y2 + 1 = xyz,

then z = 3.

(b) Find all such triples.

7. Solve in positive integers x, y, u, v the system of equations
⎧
⎨

⎩

x2 + 1 = uy,

y2 + 1 = vx.

8. Find all triples (x, y, z) of positive integers that are solutions to

the system of equations
⎧
⎨

⎩

2x − 2y + z = 0,

2x3 − 2y3 + z3 + 3z = 0.

(Titu Andreescu)

9. Prove that there are infinitely many triples (x, y, z) of positive

integers such that

x2 + y2 + z2 = xyz.

(College Mathematics Journal)
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10. Find all pairs (a, b) of positive integers such that ab + a + b

divides a2 + b2 + 1.

(Mathematics Magazine)

11. Let a be a positive integer. The sequence (xn)n≥1 is defined

by x1 = 1, x2 = a, and xn+2 = axn+1 + xn for all n ≥ 1. Prove that

(x, y) is a solution to the equation

|x2 + axy − y2| = 1

if and only if there exists an integer k such that (x, y) = (xk, xk+1).

(Romanian Mathematical Olympiad)

12. Find all pairs (m,n) of nonnegative integers such that

(m + n − 5)2 = 9mn.

(42nd IMO USA Team Selection Test)

13. Let x, y, z be positive integers such that xy − z2 = 1. Prove

that there are nonnegative integers a, b, c, d such that

x = a2 + b2, y = c2 + d2, z = ac + bd.

(20th IMO Shortlist)

1.7 Miscellaneous Diophantine Equations

Many elementary Diophantine equations are not of the types des-

cribed in the previous sections. In what follows we present a few

examples of such equations.
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Example 1. Solve in positive integers the system of equations
⎧
⎨

⎩

x2 + 3y = u2,

y2 + 3x = v2.

(Titu Andreescu)

Solution. The inequalities

x2 + 3y ≥ (x + 2)2, y2 + 3x ≥ (y + 2)2

cannot both be true, because adding them would yield a contradic-

tion. So at least one of the inequalities x2 + 3y < (x + 2)2 and

y2 + 3x < (y + 2)2 is true. Without loss of generality, assume

that x2 + 3y < (x + 2)2. Then x2 < x2 + 3y < (x + 2)2 implies

x2 +3y = (x+1)2 or, 3y = 2x+1. We obtain x = 3k +1, y = 2k +1

for some nonnegative integer k and y2 + 3x = 4k2 + 13k + 4. For

k > 5, (2k+3)2 < 4k2 +13k+4 < (2k+4)2; hence y2 +3x cannot be

a perfect square. Thus we need only consider k ∈ {0, 1, 2, 3, 4}. Only

k = 0 makes y2 + 3x a perfect square; hence the unique solution is

x = y = 1, u = v = 2.

Example 2. Solve the equation

1 + x1 + 2x1x2 + · · · + (n − 1)x1x2 · · · xn−1 = x1x2 · · · xn

in distinct positive integers x1, x2, . . . , xn.

(Titu Andreescu)

Solution. Writing the equation in the form

x1(x2 · · · xn − (n − 1)x2 · · · xn−1 − · · · − 2x2 − 1) = 1
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yields x1 = 1 and

x2(x3 · · · xn − (n − 1)x3 · · · xn−1 − · · · − 3x3 − 2) = 2.

Because x2 �= x1, it follows that x2 = 2 and that

x3(x4 · · · xn − (n − 1)x4 · · · xn−1 − · · · − 4x4 − 3) = 3.

We have x3 �= x2 and x3 �= x1; hence x3 = 3. Continuing this

procedure (which amounts to a “finite induction”), we obtain

x1 = 1, x2 = 2, . . . , xn−1 = n − 1.

Finally, it follows that (n− 1)(xn − (n− 1)) = n− 1, i.e., xn = n.

Remark. Substituting into the equation yields the identity

1 + 1 · 1! + 2 · 2! + · · · + (n − 1) · (n − 1)! = n!.

Example 3. Solve in positive integers the equation

7x + x4 + 47 = y2.

Solution. If x is odd, then 7x + x4 + 47 ≡ 3 (mod 4), and since

there are no perfect squares of this form, there are no solutions in

this case.

Suppose that x = 2k, for some positive integer k. For k ≥ 4, we

have

(7k)2 < 72k + (2k)4 + 47 < (7k + 1)2.

Indeed, the left inequality is clear, and the right one is equivalent to

8k4 + 23 < 7k, which can be justified using mathematical induction.
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We need only consider k ∈ {1, 2, 3}. Only k = 2 yields a solution.

Thus x = 4, y = 52 is the unique solution.

Example 4. Let M be the number of integral solutions to the

equation

x2 − y2 = z3 − t3

with the property 0 ≤ x, y, z, t ≤ 106, and let N be the number of

integral solutions to the equation

x2 − y2 = z3 − t3 + 1

that have the same property. Prove that M > N .

(21st IMO Shortlist)

Solution. Write down the two equations in the form

x2 + t3 = y2 + z3, x2 + t3 = y2 + z3 + 1,

and for each k = 0, 1, 2, . . . , denote by nk the number of integral

solutions of the equation u2 + v3 = k with the property 0 ≤ u, v ≤
106. Clearly, nk = 0 for all k greater than l = (106)2 + (106)3. Now

a key observation follows:

M = n2
0 + n2

1 + · · · + n2
l and N = n0n1 + n1n2 + · · · + nl−1nl. (1)

To prove, for example, the second of these equalities, note that to

any integral solution to x2 + t3 = y2 + z3 +1 with 0 ≤ x, y, z, t ≤ 106

there corresponds a k (1 ≤ k ≤ l) such that

x2 + t3 = k, y2 + z3 = k − 1. (2)
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And for any such k, the pairs (x, t) and (y, z) satisfying (2) can be

chosen independently of one another in nk and nk−1 ways, respec-

tively. Hence for each k = 1, 2, . . . , l there are nk−1nk solutions of

x2 + t3 = y2 + z3 + 1 with x2 + t3 = y2 + z3 + 1 = k, which implies

N = n0n1 + n1n2 + · · · + nl−1nl. The proof of the first equality in

(1) is essentially the same.

It is not difficult to deduce from (1) that M > N . Indeed, a little

algebra shows that

M −N =
1
2
[n2

0 +(n0−n1)2 +(n1−n2)2 + · · ·+(nl−1−nl)2 +n2
l ] > 0,

since n0 �= 0 (in fact, n0 = 1).

Example 5. (a) Prove that there exist infinitely many triples

(x, y, z) of integers satisfying the equation

x3 + 2y3 + 4z3 − 6xyz = 1. (1)

(b) Determine, with proof, all of the integer solutions of (1).

(USA Proposal for the 38th IMO)

Solution. (a) Let s be the real cube root of 2 and ω = e2πi/3. Then

(1) may be rewritten, by factoring the left side, as
(
x + ys + zs2

)(
x + ysω + zs2ω2

)(
x + ysω2 + zs2ω

)
= 1. (2)

Let (x1, y1, z1) = (1, 1, 1), which clearly constitutes a solution of

(1). Then it is also clear that the triple (xn, yn, zn) defined by

xn + yns + zns2 =
(
x1 + y1s + z1s

2
)n

is also a solution of (1) for any n ∈ Z (and are such triples all

distinct).
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(b) The only solutions are those triples of the form (xn, yn, zn)

or (−xn,−yn,−zn) for some n ∈ Z. More precisely, we show that if

(x, y, z) is a solution of (1) with x + ys + zs2 > 0, then (x, y, z) =

(xn, yn, zn), where n is the unique integer such that

(1 + s + s2)n ≤ x + ys + zs2 < (1 + s + s2)n+1.

Define the new solution (u, v, w) by the relation

u + vs + ws2 = (x + ys + zs2)(1 + s + s2)−n,

so that 1 ≤ u + vs + ws2 < 1 + s + s2.

We have

1 ≥
(
u + vs + ws2

)−1

=
(
u + vsω + ws2ω2

)(
u + vsω2 + ws2ω

)

=
(
u2 − 2vw

)
+
(
2w2 − uv

)
s +
(
v2 − uw

)
s2

=
1
2

[(
u − vs

)2
+
(
vs − ws2

)2
+
(
ws2 − u

)2
]

,

and hence |u− vs|,
∣
∣
∣vs−ws2

∣
∣
∣,
∣
∣
∣ws2 − u

∣
∣
∣ are all less than or equal to

√
2.

If w ≥ 1, then u > ws2 − √
2 > 0 and v > ws − s−1

√
2 > 0,

so u + vs + ws2 ≥ 1 + s + s2, a contradiction. Similarly, assuming

w ≤ −1 yields u+ vs + ws2 ≤ −
(
1+ s + s2

)
, a contradiction. Hence

w = 0, yielding the inequalities

|u − vs|, |vs|, |u| ≤
√

2.

The second and third conditions imply −1 ≤ u, v ≤ 1, which

yields only the solutions (u, v, w) = (1, 0, 0) or (−1, 1, 0). The second
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solution does not satisfy the first condition, so (u, v, w) = (1, 0, 0)

and

(x, y, z) = (xn, yn, zn),

as desired.

Exercises and Problems

1. Prove that the equation 6
(
6a2+3b2+c2

)
= 5n2 has no solution

in integers except a = b = c = n = 0.

(Asian Pacific Mathematical Olympiad)

2. Determine a positive constant c such that the equation

xy2 − y2 − x + y = c

has exactly three solutions (x, y) in positive integers.

(United Kingdom Mathematical Olympiad)

3. Find all triples (x, y, z) of positive integers such that y is a

prime number, y and 3 do not divide z, and x3 − y3 = z2.

(Bulgarian Mathematical Olympiad)

4. Determine all triples (x, k, n) of positive integers such that

3k − 1 = xn.

(Italian Mathematical Olympiad)

5. For a positive integer n, prove that the number of integral

solutions (x, y) to the equation x2 + xy + y2 = n is finite and a

multiple of 6.
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6. Find all positive integers n such that there exist relatively prime

positive integers x and y and an integer k > 1 satisfying the equation

xk + yk = 3n.

(Russian Mathematical Olympiad)

7. Prove that for each prime p the equation

2p + 3p = qn

has no integer solutions (q, n) with q, n > 1.

(Italian Mathematical Olympiad)

8. Determine all pairs (a, b) of integers for which the numbers

a2 + 4b and b2 + 4a are both perfect squares.

(Asian Pacific Mathematical Olympiad)

9. A rectangular parallelepiped has integer dimensions. All of its

faces are painted green. The parallelepiped is partitioned into unit

cubes by planes parallel to its faces. Find all possible dimensions

of the parallelepiped if the number of cubes without a green face is

one-third of the total number of cubes.

(Bulgarian Mathematical Olympiad)

10. Find all integer positive solutions (x, y, z, t) to the equation

(x + y)(y + z)(z + x) = txyz

such that gcd(x, y) = gcd(y, z) = gcd(z, x) = 1.

(Romanian Mathematical Olympiad)





I.2

Some Classical Diophantine Equations

2.1 Linear Diophantine Equations

An equation of the form

a1x1 + · · · + anxn = c, (2.1.1)

where a1, a2, . . . , an, b are fixed integers, is called a linear Diophan-

tine equation. We assume that n ≥ 1 and that coefficients a1, . . . , an

are all different from zero.

We begin with the case n = 2. The main result concerning lin-

ear Diophantine equations is the following (see also the lemma in

Example 5 of Section 1.3).

Theorem 2.1.1. Let a, b, c be integers, a and b nonzero. Consider

the linear Diophantine equation

ax + by = c. (2.1.2)

T. Andreescu et al., An Introduction to Diophantine Equations: A Problem-Based Approach, 67
DOI 10.1007/978-0-8176-4549-6_2, © Springer Science+Business Media, LLC 2010
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1. The equation (2.1.2) is solvable in integers if and only if d =

gcd(a, b) divides c.

2. If (x, y) = (x0, y0) is a particular solution to (2.1.2), then every

integer solution is of the form

x = x0 +
b

d
t, y = y0 − a

d
t, (2.1.3)

where t is an integer.

3. If c = gcd(a, b) and |a| or |b| is different from 1, then a partic-

ular solution (x, y) = (x0, y0) to (2.1.3) can be found such that

|x0| < |b| and |y0| < |a|.

Proof. 1. If d does not divide c, then the equation is clearly not

solvable. If d divides c, then, dividing both sides of (2.1.2) by d
c , it

suffices to prove that d is a linear combination with integer coeffi-

cients of a and b. For this we use the Euclidean algorithm.

Suppose a = bq + r for integers a, b, r, and q. It is easy to see that

every common divisor of a and b is a common divisor of b and r, and

conversely. Clearly, if b | a, then gcd(a, b) = b. In general, we have

gcd(a, b) = gcd(b, r). These observations lead to a straightforward

calculation of the gcd of two numbers. To be systematic, we write

a = r−1 and b = r0 (assumed positive and a ≥ b):

r−1 = r0q0 + r1, 0 ≤ r1 < r0,

r0 = r1q1 + r2, 0 ≤ r2 < r1,

r1 = r2q2 + r3, 0 ≤ r3 < r2,

r2 = r3q3 + r4, 0 ≤ r4 < r3,

...
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This division process eventually terminates, since the remainders

get smaller and smaller,

r−1 > r0 > r1 > r2 > · · · ,

and yet remain nonnegative. In other words, some rn divides the

preceding rn−1 (and leaves a remainder rn+1 = 0).

We obtain

...

rn−2 = rn−1qn−1 + rn, 0 ≤ rn < rn−1,

rn−1 = rnqn.

From these,

rn =gcd(rn−1, rn) = gcd(rn−2, rn−1) = · · ·= gcd(r−1, r0) = gcd(a, b).

The above calculation of gcd(a, b) can be retraced to give gcd(a, b)

as an integer combination of a and b.

Define the integers xk and yk recursively by

xk = xk−2 − qk−1xk−1, x−1 = 1, x0 = 0,

yk = yk−2 − qk−1yk−1, y−1 = 0, y0 = 1.

In each of these steps, rk = axk + byk. In particular,

gcd(a, b) = rn = axn + byn.

It can be checked that (xi) and (yi) alternate in sign, |xn+1| =

b/ gcd(a, b), and |yn+1| = a/ gcd(a, b). It follows that |xn| < b and

|yn| < a unless n = 0 and q0 = 1, that is, unless a = b = 1.
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2. We have

ax + by = a

(

x0 +
b

d
t

)

+ b
(
y0 − a

d
t
)

= ax0 + by0 = c.

3. The result has already been proven in part 1. �

The central result concerning the general linear Diophantine equa-

tion (2.1.1) is the following:

Theorem 2.1.2. The equation (2.1.1) is solvable if and only if

gcd(a1, . . . , an) | c.

In case of solvability, one can choose n − 1 solutions such that each

solution is an integer linear combination of those n − 1 solutions.

Proof. Let d = gcd(a1, . . . , an). If c is not divisible by d, then

(2.1.1) is not solvable, since for any integers x1, . . . , xn, the left-hand

side of (2.1.1) is divisible by d and the right-hand side is not.

Actually, we need to prove that gcd(x1, x2, . . . , xn) is a linear com-

bination with integer coefficients of x1, x2, . . . , xn. For n = 2 this

follows from Theorem 2.1.1. Because

gcd(x1, . . . , xn) = gcd(gcd(x1, . . . , xn−1), xn),

gcd(x1, . . . , xn) is a linear combination of xn and gcd(x1, . . . , xn−1).

Then inductively gcd(x1, . . . , xn) is a linear combination of

x1, . . . , xn−1, xn. �

Example 1. Solve the equation

3x + 4y + 5z = 6.
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Solution. Working modulo 5 we have 3x + 4y ≡ 1 (mod 5), and

hence

3x + 4y = 1 + 5s, s ∈ Z.

A solution to this equation is x = −1 + 3s, y = 1 − s. Applying

(2.1.3), we obtain x = −1 + 3s + 4t, y = 1 − s − 3t, t ∈ Z, and

substituting back into the original equation yields z = 1 − s. Hence

all solutions are

(x, y, z) = (−1 + 3s + 4t, 1 − s − 3t, 1 − s), s, t ∈ Z.

For any positive integers a1, . . . , an with gcd(a1, . . . , an) = 1,

define g(a1, . . . , an) to be the greatest positive integer N for which

the equation

a1x1 + · · · + anxn = N

is not solvable in nonnegative integers. The problem of determin-

ing g(a1, . . . , an) is known as the Frobenius coin problem (it was he

who posed the problem of finding the largest amount of money that

cannot be paid using coins worth a1, . . . , an cents).

Example 2. (Sylvester, 1884) Let a and b be positive integers with

gcd(a, b) = 1. Then

g(a, b) = ab − a − b.

Solution. Suppose that N > ab − a − b. From (2.1.3) it follows

that the solutions to the equation ax + by = N are of the form

(x, y) = (x0 + bt, y0 − at), t ∈ Z. Let t be an integer such that

0 ≤ y0 − at ≤ a − 1. Then

(x0 + bt)a = N − (y0 − at)b > ab − a − b − (a − 1)b = −a,
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which implies x0 + bt > −1, i.e., x0 + bt ≥ 0. It follows that in this

case the equation ax + by = N is solvable in nonnegative integers.

Thus

g(a, b) ≤ ab − a − b.

Now we need only to show that the equation

ax + by = ab − a − b

is not solvable in nonnegative integers. Otherwise, we have

ab = a(x + 1) + b(y + 1).

Since gcd(a, b) = 1, we see that a | (y + 1) and b | (x + 1), which

implies y + 1 ≥ a and x + 1 ≥ b. Hence

ab = a(x + 1) + b(y + 1) ≥ 2ab,

and this contradiction shows that

g(a, b) ≥ ab − a − b.

Therefore g(a, b) = ab − a − b.

Remarks. (1) The case n = 3 was first solved explicitly by Selmer

and Beyer, using a continued fraction algorithm. Their result was

simplified by Rödseth and later by Greenberg.

(2) No general formulas are known for n ≥ 4. However, some upper

bounds have been proven. In 1942, Brauer showed that

g(a1, . . . , an) ≤
n∑

i=1

ai

(
di−1

di
− 1
)

,

where di = gcd(a1, . . . , ai). Erdős and Graham (1972) showed that

g(a1, . . . , an) ≤ 2an−1

[an

n

]
− an,
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and that
t2

n − 1
− 5t ≤ γ(n, t) ≤ 2t2

n
,

where

γ(n, t) = max
0<a1<···<an≤t

g(a1, . . . , an).

Suppose that the equation

a1x1 + · · · + amxm = n,

where a1, . . . , am > 0, is solvable in nonnegative integers, and let An

be the number of its solutions (x1, . . . , xm).

Theorem 2.1.3. (1) The generating function of the sequence

(An)n≥1 is

f(x) =
1

(1 − xa1) . . . (1 − xam)
, |x| < 1, (2.1.6)

that is, An is equal to the coefficient of xn in the power series

expansion of f .

(2) The following equality holds:

An =
1
n!

f (n)(0). (2.1.7)

Proof. (1) Using a geometric series, we have

1
1 − xak

= 1 + xak + x2ak + · · · , k = 1, . . . ,m;

hence

f(x) = (1 + xa1 + x2a1 + · · · ) · · · (1 + xam + x2am + · · · )
= 1 + A1x + · · · + Anxn + · · · .
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(2) Passing to the nth derivative, we obtain formula (2.1.7). �

Example 3. Find the number of pairs (x, y) of nonnegative inte-

gers such that

x + 2y = n.

Solution. From Theorem 2.1.3 it follows that the desired number

is

An =
1
n!

f (n)(0),

where

f(t) =
1

(1 − t)(1 − t2)
.

We have

f(t) =
1
2
· 1
(t − 1)2

− 1
4
· 1
t − 1

+
1
4
· 1
t + 1

hence

f (n)(t) =
1
2

(−1)n(n + 1)!
(t − 1)n+2

− 1
4

(−1)nn!
(t − 1)n+1

+
1
4

(−1)nn!
(t + 1)n+1

.

Thus

f (n)(0) =
(n + 1)!

2
+

n!
4

+
(−1)nn!

4

and

An =
1
n!

f (n)(0) =
2n + 3 + (−1)n

4
.

Exercises and Problems

1. Solve the equation

6x + 10y − 15z = 1.
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2. Let a, b, c be pairwise relatively prime positive integers. Show

that 2abc−ab−bc−ca is the largest integer that cannot be expressed

in the form xbc + yca + zab, where x, y, z are nonnegative integers.

(24th IMO)

3. Find the number of triples (x, y, z) of nonnegative integers such

that

x + y + 2z = n.

4. Determine the positive integer n such that the equation

x + 2y + z = n

has exactly 100 solutions (x, y, z) in nonnegative integers.

5. Let a, b, c, d be integers such that for all integers m and n there

exist integers x and y for which ax+ by = m and cx+ dy = n. Prove

that ad − bc = ±1.

(Eötvös Mathematics Competition)

6. Let n be an integer greater than 3 and let X be a 3n2-element

subset of {1, 2, . . . , n3}. Prove that there exist nine distinct numbers

a1, a2, . . . , a9 in X such that the system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a1x + a2y + a3z = 0,

a4x + a5y + a6z = 0,

a7x + a8y + a9z = 0,

is solvable in nonzero integers.

(Romanian Mathematical Olympiad)
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7. Let
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 + · · · + a1qxq = 0,

a21x1 + a22x2 + · · · + a2qxq = 0,
...

ap1x1 + ap2x2 + · · · + apqxq = 0,

be a system of linear equations, where q = 2p and aij ∈ {−1, 0, 1}.
Prove that there exists a solution (x1, x2, . . . , xq) of the system with

the following properties:

(a) xj is an integer for every j = 1, 2, . . . , q;

(b) there exist j such that xj �= 0;

(c) |xj | ≤ q for every j = 1, 2, . . . , q.

(18th IMO)

2.2 Pythagorean Triples and Related Problems

One of the most celebrated Diophantine equations is the Pythagorean

equation

x2 + y2 = z2. (2.2.1)

Studied in detail by Pythagoras in connection with the right triangles

whose side lengths are all integers, this equation was known even to

the ancient Babylonians.

Note first that if the triple of integers (x0, y0, z0) satisfies equation

(2.2.1), then all triples of the form (kx0, ky0, kz0), k ∈ Z, also satisfy

(2.2.1). That is why it is sufficient to find solutions (x, y, z) to (2.2.1)

with gcd(x, y, z) = 1. This is equivalent to the fact that x, y, z are

pairwise relatively prime.
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A solution (x0, y0, z0) to (2.2.1) with x0, y0, z0 pairwise relatively

prime is called a primitive solution. It is clear that in a primitive

solution exactly one of x0 and y0 is even.

Theorem 2.2.1. Any primitive solution (x, y, z) in positive inte-

gers to the equation (2.2.1) with y even is of the form

x = m2 − n2, y = 2mn, z = m2 + n2, (2.2.2)

where m and n are relatively prime positive integers such that m > n

and m + n is odd.

Proof. The integers x and y cannot both be odd, for otherwise

z2 = x2 + y2 ≡ 2 (mod 4),

a contradiction. Hence exactly one of the integers x and y is even.

The identity

(
m2 − n2

)2
+
(
2mn
)2

=
(
m2 + n2

)2

shows that the triple given by (2.2.2) is indeed a solution to the

equation (2.2.1) and y is even. Because x must be odd, we may

assume without loss of generality that m is odd and n is even.

Moreover, if gcd
(
m2 −n2, 2mn,m2 + n2

)
= d ≥ 2, then d divides

2m2 =
(
m2 + n2

)
+
(
m2 − n2

)

and d divides

2n2 =
(
m2 + n2

)
−
(
m2 − n2

)
.

Because m and n are relatively prime it follows that d = 2. Hence

m2 + n2 is even, in contradiction to m odd and n even. It follows

that d = 1, so the solution (2.2.2) is primitive.
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Conversely, let (x, y, z) be a primitive solution to (2.2.1) with y =

2a. Then x and z are odd, and consequently the integers z + x and

z − x are even. Let z + x = 2b and z − x = 2c. We may assume

that b and c are relatively prime, for otherwise z and x would have a

nontrivial common divisor. On the other hand, 4a2 = y2 = z2−x2 =

(z + x)(z −x) = 4bc, i.e., a2 = bc. Since b and c are relatively prime,

it follows that b = m2 and c = n2 for some positive integers m and

n. We obtain that m + n is odd and

x = b − c = m2 − n2, y = 2mn, z = b + c = m2 + n2. �

A triple (x, y, z) of the form (2.2.2) is called primitive. In order

to list all primitive solutions to equation (2.2.1), we assign values

2, 3, 4, . . . to m and then for each of these values we take those inte-

gers n that are relatively prime to m and less than m.

Here is a table of the first 20 primitive solutions listed according

to the above-mentioned rule. The last column refers to the area.

m n x y z area m n x y z area

2 1 3 4 5 6 7 6 13 84 85 546

3 2 5 12 13 30 8 1 63 16 65 504

4 1 15 8 17 60 8 3 55 48 73 1320

4 3 7 24 25 84 8 5 39 80 89 1560

5 2 21 20 29 210 8 7 15 112 113 840

5 4 9 40 41 180 9 2 77 36 85 1386

6 1 35 12 37 210 9 4 65 72 97 2340

6 5 11 60 61 330 9 8 17 144 145 1224

7 2 45 28 53 630 10 1 99 20 101 990

7 4 33 56 65 924 10 3 91 60 109 2730
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Corollary 2.2.2. The general integral solution to (2.2.1) is given

by

x = k(m2 − n2), y = 2kmn, z = k(m2 + n2), (2.2.3)

where k,m, n ∈ Z.

The immediate extension to equation (2.2.1) is

x2 + y2 + z2 = t2. (2.2.4)

The positive solutions (x, y, z, t) to (2.2.4) represent the dimensions

and the length of the diagonal of a rectangular box. We want to find

all situations in which these components are all integers.

Theorem 2.2.3. All the solutions to equation (2.2.4) in positive

integers x, y, z, t with y, z even are given by

x =
l2 + m2 − n2

n
, y = 2l, z = 2m, t =

l2 + m2 + n2

n
, (2.2.5)

where l,m are arbitrary positive integers and n is any divisor of

l2 + m2 less than
√

l2 + m2. Every solution is obtained exactly once

in this way.

Proof. The identity
(

l2 + m2 − n2

n

)2

+ (2l)2 + (2m)2 =
(

l2 + m2 + n2

n

)2

shows that the quadruple in (2.2.5) is a solution to equation (2.2.4)

and that y and z are even.

Conversely, note that at least two of the integers x, y, z must be

even; otherwise, t2 ≡ 2, 3 (mod 4), a contradiction. Suppose that

y = 2l, z = 2m for some positive integers l and m. Setting t−x = u,

we obtain

x2 + 4l2 + 4m2 = (x + u)2, or u2 = 4(l2 + m2) − 2ux.
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Therefore u2 is even, so u = 2n for some positive integer n. It

follows that x = l2+m2−n2

n and t = x + u = x + 2n = l2+m2+n2

n ,

where l,m, n are positive integers and n is a divisor of l2 + m2 less

than
√

l2 + m2.

It is not difficult to see that every solution (x, y, z, t) to (2.2.4)

with y and z even is obtained exactly once from the formulas (2.2.5).

Indeed, by (2.2.5) we have l = y
2 , m = z

2 , n = t−x
2 ; hence the integers

l,m, n are uniquely determined by (x, y, z, t). �

Theorem 2.2.3 not only states the existence of the solutions to

equation (2.2.4) but also gives a method for finding these solutions.

It is not difficult to see that in order to eliminate the solutions with

reversed unknowns we may reject the pairs (l,m) with l < m and

consider only those n for which x is odd. Hence we eliminate also

the solutions for which x, y, z, t are all even.

Here are the first 10 solutions obtained in this way.

l m l2 + m2 n x y z t

1 1 2 1 1 2 2 3

2 2 8 1 7 4 4 9

3 1 10 1 9 6 2 11

3 1 10 2 3 6 2 7

3 3 18 1 17 6 6 19

3 3 18 2 7 6 6 11

3 3 18 3 3 6 6 9

4 2 20 1 19 8 4 21

4 2 20 4 1 8 4 9

4 4 32 1 31 8 8 33
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Remarks. (1) A well-known way to produce “Pythagorean

quadruples” is

x = l2 + m2 − n2, y = 2lm, z = 2mn, t = l2 + m2 + n2,

where l,m, n are positive integers. It is also known that not all

quadruples are generated in this way; for instance, (3, 36, 8, 37) is

excluded. On the other hand, this family of solutions is quite similar

to the family of solutions to (2.2.1).

(2) The following formulas produce all Pythagorean quadruples of

integers:

x = m2 + n2 − p2 − q2,

y = 2(mp + nq),

z = 2(np − mq),

t = m2 + n2 + p2 + q2,

where m,n, p, q are arbitrary integers. For a proof that uses Gaussian

integers see Section 4.1.

(3) The equation

x2
1 + x2

2 + · · · + x2
k = x2

k+1 (2.2.6)

is the natural extension of (2.2.1) and (2.2.4). From a geomet-

rical point of view, the solutions (x1, x2, . . . , xk, xk+1) represent

the dimensions x1, x2, . . . , xk of a cuboid in R
k and the length

xk+1 of its diagonal, respectively. All positive integer solutions

(x1, x2, . . . , xk, xk+1) with gcd(x1, x2, . . . , xk) = 1 to the equation
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(2.2.6) are given by

x1 =
1
q

(
m2

1 + m2
2 + · · · + m2

k−1 − m2
k

)
,

x2 =
2
q
m1mk,

...

xk =
2
q
mk−1mk,

xk+1 =
1
q

(
m2

1 + m2
2 + · · · + m2

k−1 + m2
k

)
.

Here m1,m2, . . . ,mk are arbitrary integers and q > 0 is taken such

that gcd(x1, x2, . . . , xk) = 1.

(4) For k = 5, arguments involving spinors in physics produce

Pythagorean hexads:

x1 = m2 − n2,

x2 = 2(n0m1 − n1m0 + m3n2 − m2n3),

x3 = 2(n0m2 − n2m0 + m1n3 − m3n1),

x4 = 2(n0m3 − n3m0 + m2n1 − m1n2),

x5 = 2mn,

x6 = m2 + n2,

where m,n,m0,m1,m2,m3, n0, n1, n2, n3 are integers such that

mn = m0n0 + m1n1 + m2n2 + m3n3.

Example 1. (the “negative” Pythagorean equation) Solve in posi-

tive integers the equation

x−2 + y−2 = z−2. (2.2.7)



2.2 Pythagorean Triples and Related Problems 83

Solution. The equation is equivalent to

x2 + y2 =
(xy

z

)2
.

This means that z | xy and that x2 + y2 is a perfect square. Then

x2 + y2 = t2 for some positive integer t, and the equation becomes

t =
xy

z
. (2.2.8)

Let d = gcd(x, y, t). Then x = ad, y = bd, t = cd, where a, b, c ∈
Z+ with gcd(a, b, c) = 1. Equation (2.2.8) reduces to

z =
abd

c
. (2.2.9)

From the choice of t it follows that

a2 + b2 = c2; (2.2.10)

hence a, b, c are pairwise relatively prime. Then using (2.2.7), we

deduce that c | d, i.e., d = kc, k ∈ Z+. We obtain

x = ad = kac, y = bd = kbc, t = cd = kc2, z = kab.

Taking into account (2.2.10) and the formulas (2.2.2), we have

a = m2 − n2, b = 2mn, c = m2 + n2, where the positive integers

m and n satisfy the conditions in Theorem 2.2.1. The solutions to

equation (2.2.7) are given by

x = k
(
m4 − n4

)
, y = 2kmn

(
m2 + n2

)
, z = 2kmn

(
m2 − n2

)
,

where k,m, n ∈ Z+ and m > n.
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Remark. If a, b, c are positive integers satisfying

1
a2

+
1
b2

=
1
c2

,

then a4 + b4 + c4 is a perfect square. Indeed,

a2b2 = b2c2 + c2a2

and

a4 + b4 + c4 = a4 + b4 + c4 + 2a2b2 − 2b2c2 − 2c2a2 = (a2 + b2 − c2)2.

Example 2. Prove that there are no two positive integers such

that the sum and the difference of their squares are also squares.

Solution. The problem is equivalent to showing that the system of

equations ⎧
⎨

⎩

x2 + y2 = z2,

x2 − y2 = w2,
(2.2.11)

is not solvable in positive integers.

Assume, for the sake of contradiction, that (2.2.11) is solvable

in positive integers and consider a pair (x, y) such that x2 + y2 is

minimal. It is clear that gcd(x, y) = 1. Adding the equations of the

system yields

2x2 = z2 + w2; (2.2.12)

hence z and w have the same parity. It follows that z + w and z −w

are both even. Write (2.2.12) in the form

x2 =
(

z + w

2

)2

+
(

z − w

2

)2

.

Moreover, gcd
(
x, z+w

2 , z−w
2

)
= 1. Indeed, if

gcd
(

x,
z + w

2
,
z − w

2

)

= d ≥ 2,
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then d | x and d
∣
∣
∣
(

z+w
2 + z−w

2

)
= z. From the first equation in

(2.2.11) we then obtain d | y, in contradiction to gcd(x, y) = 1.

Applying Theorem 2.2.1, we get

z − w

2
= m2 − n2,

z + w

2
= 2mn,

or
z − w

2
= 2mn,

z + w

2
= m2 − n2.

Since 2y2 = z2 − w2, in either case we have

2y2 = 2(m2 − n2) · 4mn,

and hence

y2 = 4mn(m2 − n2).

It follows that y = 2k, for some positive integer k, and that

k2 = mn(m + n)(m − n). (2.2.13)

Since m and n are relatively prime and m + n is odd, the integers

m,n,m + n,m − n are also pairwise relatively prime; hence from

(2.2.13) we deduce that m = a2, n = b2, m+n = c2, and m−n = d2,

for some positive integers a, b, c, d. But a2 +b2 = c2 and a2−b2 = d2,

i.e., (a, b, c, d) is also a solution to the system (2.2.11). Moreover,

a2 + b2 = m + n < 4mn(m2 − n2) = y2 < x2 + y2,

in contradiction to the minimality of x2 + y2.

Example 3. Solve the following equation in positive integers:

x2 + y2 = 1997(x − y).
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Solution. The solutions are

(x, y) = (170, 145) and (x, y) = (1827, 145).

We have

x2 + y2 = 1997(x − y),
(
x + y

)2
+
((

x − y
)2 − 2 · 1997(x − y)

)

= 0

(
x + y

)2
+ (1997 − x + y)2 = 19972.

Since x and y are positive integers, 0 < x + y < 1997 and 0 <

1997− x + y < 1997. Thus the problem reduces to solving a2 + b2 =

19972 in positive integers. Since 1997 is a prime, gcd(a, b) = 1. By

Pythagorean substitution, there are positive integers m > n such

that gcd(m,n) = 1 and

1997 = m2 + n2, a = 2mn, b = m2 − n2.

Since m2, n2 ≡ 0, 1,−1 (mod 5) and 1997 ≡ 2 (mod 5), m,n =

±1 (mod 5). Since m2, n2 ≡ 0, 1 (mod 3) and 1997 ≡ 2 (mod 3),

m,n ≡ ±1 (mod 3). Therefore m,n ≡ 1, 4, 11, 14 (mod 15). Since

m > n, 1997/2 ≤ m2 ≤ 1997. Thus we need to consider only m =

34, 41, 44. The only solution is (m,n) = (34, 29). Thus

(a, b) = (1972, 315),

which leads to our solution.

Example 4. Find all quadruples (x, y, z, w) such that

x2 + y2 + z2 + xy + yz + zx = 2w2.
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Solution. Write the equation as

(x + y)2 + (y + z)2 + (z + x)2 = (2w)2.

From Theorem 2.2.3,

x + y =
l2 + m2 − n2

n
, y + z = 2l, z + x = 2m,

2w =
l2 + m2 + n2

n
,

where n | l2 + m2. It follows that all desired quadruples are

x = m − l +
l2 + m2 − n2

2n
, y = l − m +

l2 + m2 − n2

2n
,

z = l + m − l2 + m2 − n2

2n
, w =

l2 + m2 + n2

2n
,

where the positive integers l,m, n are chosen such that x, y, z are all

positive and 2n | l2 + m2 + n2.

Exercises and Problems

1. Prove that the system of equations
⎧
⎨

⎩

x2 + y2 = u2,

x2 + 2y2 = v2,

is not solvable in positive integers.

2. Let m and n be distinct positive integers. Show that none of

the numbers 2(m4 + n4), m4 + 6m2n2 + n4 is a perfect square.

3. Prove that the equation

x2y2 = z2
(
z2 − x2 − y2

)

has no solution in positive integers.
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4. Prove that the equation x2 + y2 =
(
a2 + b2

)
z2, where a and b

are nonzero given integers, has infinitely many solutions.

5. Find all quadruples (x, y, z, w) of positive integers such that

xy + yz + zx = w2.

6. Prove that there is no Pythagorean triangle whose area is a

perfect square.

7. Prove that the number of primitive Pythagorean triangles with

a given inradius r is a power of 2 if r is integer.

8. (a) Solve the equation x2 + y2 + z2 − xy − yz − zx = t2.

(b) Prove that the equation u2 +v2 +w2 = 2t2 has infinitely many

solutions in positive integers.

(Titu Andreescu and Dorin Andrica)

2.3 Other Remarkable Equations

2.3.1. Some Quadratic Diophantine Equations and Related

Problems

We begin by presenting a simple but useful equation that has nu-

merous applications.

Theorem 2.3.1. All integer solutions to the equation

xy = zw

are x = mn, y = pq, z = mp, w = nq, where m,n, p, q are integers

and gcd(n, p) = 1.

Proof. Write the equation as x
z = w

y and denote by n
p the corre-

sponding irreducible fraction. Then set

m =
x

n
=

z

p
and q =

y

p
=

w

n
. �
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Remarks. (1) For all positive integers x, y, z, w satisfying xy =

zw, the integer N = x + y + z + w is composite. Indeed,

xN = x2 + xy + xz + xw = x2 + zw + xz + xw = (x + z)(x + w)

and the conclusion follows.

(2) A special case is the equation xy = z2. All integer solutions

to this equation are x = km2, y = kn2, z = kmn, where k,m, n are

integers and gcd(m,n) = 1.

Example 1. If there are two distinct unordered pairs (x, y) of

positive integers satisfying the equation

x2 + y2 = n,

then n is composite.

Solution. Let (a, b) and (c, d) be two such solutions. Then a �= c

and a �= d. We may assume without loss of generality that a > c.

Then

(a + c)(a − c) = (d + b)(d − b),

so there are positive integers m,n, p, q such that

gcd(n, p) = 1

and

a + c = mn, a − c = pq, d + b = mp, d − b = nq.

Then

a =
1
2
(mn + pq), b =

1
2
(nq − mp),

and

4n = 4(a2 + b2) = (mn + pq)2 + (nq − mp)2 = (m2 + q2)(n2 + p2).
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Assume by way of contradiction that n is a prime. Then without

loss of generality, m2 + q2 = 2 or m2 + q2 = 4. In the first case

m = q = 1, implying a = d, a contradiction. The second case is

clearly impossible. Thus n is composite.

Remark. All integer solutions to the equation

x2 + y2 = z2 + w2

are

x =
1
2
(mn + pq), y =

1
2
(mp − nq),

z =
1
2
(mp + nq), w =

1
2
(mn − pq),

where m,n, p, q are integers.

We continue this section by examining the Diophantine equation

x2 + axy + y2 = z2, (2.3.1)

where a is a given integer. The Pythagorean equation is a special

case of this equation (a = 0).

Theorem 2.3.2. All integral solutions to (2.3.1) are given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x = k(an2 − 2mn),

y = k(m2 − n2),

z = ±k(amn − m2 − n2),

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x = k(m2 − n2),

y = k(an2 − 2mn),

z = ±k(amn − m2 − n2),
(2.3.2)

where m,n ∈ Z are relatively prime and k ∈ Q such that (a2 − 4)

k ∈ Z.

Proof. Note that the two families of solutions are given by the

symmetry of (2.3.1) in x and y.
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It is not difficult to check that the triples (x, y, z) in (2.3.2) satisfy

equation (2.3.1).

Conversely, we need to show that all solutions to (2.3.1) are of the

form (2.3.2). In this regard, note that equation (2.3.1) is equivalent

to

x(x + ay) = (z − y)(z + y). (2.3.3)

From Theorem 2.3.1 it follows that

x = np, x + ay = mq, z + y = nq, z − y = mp,

for some integers m,n, p, q.

The result is clear in the case y = z, which corresponds to x = 0

or x + ay = 0. In all other cases (2.3.3) is equivalent to

x

z − y
=

z + y

x + ay
=

n

m

for some nonzero integers m and n. The last relations lead to the

homogeneous system
⎧
⎨

⎩

mx + ny − nz = 0,

nx + (n − am)y − mz = 0,

whose solutions are

x =
an2 − 2mn

amn − m2 − n2
z, y =

m2 − n2

amn − m2 − n2
z.

We choose z = k
(
amn − m2 − n2

)
, where k ∈ Q, and get the

solutions (2.3.2). �

If k = p/q in lowest terms, then

q | gcd
(
an2 − 2mn,m2 − n2, amn − m2 − n2

)
,
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and hence

q | a
(
an2− 2mn

)
+2
(
m2 −n2

)
+2
(
amn−m2 −n2

)
=
(
a2 − 4

)
n2.

Since any prime dividing n cannot divide m2 − n2, it follows that

q | a2 − 4 or
(
a2 − 4

)
k ∈ Z.

Remarks. (1) Theorem 2.3.1 solves the third-degree Diophantine

equation

x2 + xyw + y2 = z2. (2.3.4)

The general solution is (x, y, z, w), where w = a, a ∈ Z and x, y, z

are given in (2.3.2).

(2) In a similar manner, we can prove that the equation

x2 + axy + by2 = z2 (2.3.5)

has infinitely many solutions, one family of which is
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = k
(
m2 − bn2

)
,

y = k
(
an2 − 2mn

)
,

z = ±k
(
amn − m2 − bn2

)
,

(2.3.6)

where m,n ∈ Z are relatively prime and k ∈ Q such that (a2−4b)k ∈
Z.

Generally, choosing k ∈ Z gives integer solutions, but not every

integer solution corresponds to an integral k. For instance, for a = 0

and b = −21 the family (2.3.6) is

x = k
(
m2 + 21n2

)
, y = −2kmn, z = k

(
21n2 − m2

)
,

but the triple (5, 1, 2) is not generated in this way. One reason is the

following: equation (2.3.5) is equivalent to

(2x + ay)2 −
(
a2 − 4b

)
y2 = (2z)2,
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and if a2 − 4b is not a perfect square, the ring Z

[√
a2 − 4b

]
is not

necessarily a unique factorization domain (see Section 4.1).

(3) Using the above remark we can construct an infinite family of

solutions to the Diophantine equation

x2 + uxy + vy2 = z2.

The solutions are (x, y, z, u, v), where u = a, v = b, a, b ∈ Z, and

x, y, z are given in (2.3.6).

(4) The solutions in positive integers to equation (2.3.1) can be

expressed as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = k
(
2mn + an2

)
,

y = k
(
m2 − n2

)
,

z = k
∣
∣
∣m2 + amn + n2

∣
∣
∣,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = k
(
m2 − n2

)
,

y = k
(
2mn + an2

)
,

z = k
∣
∣
∣m2 + amn + n2

∣
∣
∣

(2.3.7)

where m,n ∈ Z
∗
+ are relatively prime, k ∈ Q

∗
+ such that

(
a2−4

)
k ∈

Z, n > 0, 2m + an > 0, and |m| > n.

Aside from the case a = 0, for which we obtain the Pythagorean

equation, the following two cases are of particular interest:

The case a = 1. Equation (2.3.1) becomes

x2 + xy + y2 = z2. (2.3.8)

From (2.3.7) it follows that its positive integer solutions are given

by
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = k
(
2mn + n2

)
,

y = k
(
m2 − n2

)
,

z = k
(
m2 + mn + n2

)
,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = k
(
m2 − n2

)
,

y = k
(
2mn + n2

)
,

z = k
(
m2 + mn + n2

)
,

(2.3.9)
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where m,n ∈ Z
∗
+, m > n, are relatively prime and k ∈ Q

∗
+ such that

3k ∈ Z.

The solutions (2.3.9) give all triples of positive integers (x, y, z)

that are the side lengths of a triangle whose opposite angle to z is

120◦.

The case a = −1. Equation (2.3.1) becomes

x2 − xy + y2 = z2. (2.3.10)

Its positive integral solutions are given by
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = k
(
2mn − n2

)
,

y = k
(
m2 − n2

)
,

z = k
(
m2 − mn + n2

)
,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = k
(
m2 − n2

)
,

y = k
(
2mn − n2

)
,

z = k
(
m2 − mn + n2

)
,

(2.3.11)

where m,n ∈ Z
∗
+, m > n, are relatively prime and k ∈ Q

∗
+, such that

3k ∈ Z.

The solutions (2.3.11) characterize all triples of positive integers

(x, y, z) that are the side lengths of a triangle whose angle opposite

the side of length z is 60◦.

Example 1. Find all triples (x, y, z) of positive integers such that

x2 + xy + y2 = 492.

Solution. From the general form of the solutions in (2.3.9), the

problem reduces to finding all relatively prime positive integers m,n

with m > n, and k ∈ Q+ with 3k ∈ Z such that

k
(
m2 + mn + n2

)
= 49.
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In the following table we give all pairs (m,n) satisfying the in-

equality m2 + mn + n2 ≤ 49, where m > n.

m n m2 + mn + n2

2 1 7

3 1 13

4 1 21

5 1 31

6 1 43

3 2 19

4 2 28

5 2 39

4 3 37

5 3 49

If k = 1, from the above table we can see that m2 + mn + n2 = 49

holds if and only if m = 5 and n = 3. In this case we obtain the

solutions (x, y) = (39, 16) and (x, y) = (16, 39).

If k = 7 we obtain that m2 +mn+n2 = 7 if and only if m = 2 and

n = 1, yielding the solutions (x, y) = (35, 21) and (x, y) = (21, 35).

The cases k = 1
3 and k = 49

3 give m = n, which is impossible.

If k = 7
3 , then we get m = 4 and n = 1, giving solutions (x, y) =

(35, 21), (21, 35).

It is natural to ask in what situations the solutions (x, y) to equa-

tions (2.3.8) and (2.3.10) are perfect squares.

Theorem 2.3.2. All nonnegative integral solutions to the equation

x4 + x2y2 + y4 = z2 (2.3.12)
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are (x, y, z) =
(
k, 0, k2

)
, (x, y, z) =

(
0, k, k2

)
, k ∈ Z+.

Proof. We may assume that gcd(x, y) = 1. Then x and y have

different parities, for otherwise z2 ≡ 3 (mod 4). Suppose that y is

odd and minimal. Write the equation in the equivalent form

4z2 −
(
2x2 + y2

)2
= 3y4, (2.3.13)

or
(
2z + 2x2 + y2

)(
2z − 2x2 − y2

)
= 3y4.

We claim that gcd
(
2z+2x2+y2, 2z−2x2−y2

)
= 1. Indeed, assume

that d is a prime dividing both 2z+2x2 +y2 and 2z−2x2−y2. Then

d is odd and d divides both z and 2x2 + y2. From (2.3.13) it follows

that d | 3y. If d > 3, then d | y and d | 2x2, i.e., gcd(x, y) ≥ d, a

contradiction. If d = 3, it follows that 3 | z, and from (2.3.12) we

obtain 3 | (2x2 + y2), so 3 | y. Therefore 3 | x, and so gcd(x, y) ≥ 3,

a contradiction.

Hence, either 2z + 2x2 + y2 = a4, 2z − 2x2 − y2 = 3b4, y = ab or

2z + 2x2 + y2 = 3a4, 2z − 2x2 − y2 = b4, y = ab, where a and b are

both odd positive integers.

In the first situation,

4x2 = a4 − 2a2b2 − 3b4 ≡ −4 (mod 16),

a contradiction.

In the second case,

4x2 = 3a4 − 2a2b2 − b4 =
(
a2 − b2

)(
3a2 + b2

)
.

Since a and b are both odd, it follows that a2 − b2 = c2 and

3a2 + b2 = 4d2, for some positive integers c and d. Then a = p2 + q2,

b = p2 − q2, p, q ∈ Z+, and

p4 + p2q2 + q4 = d2,
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which contradicts the minimality of y.

Therefore y = 1, a = b = 1, and x = 0, yielding the solution

(0, 1, 1). Taking into account the symmetry in x and y, we also have

the solution (1, 0, 1), and the conclusion follows. �

Example 2. Solve in positive integers the system of equations
⎧
⎨

⎩

3u2 + v2 = 4s2,

u2 + 3v2 = 4t2.

Solution. Setting u = x+y and v = x−y, we obtain the equivalent

system ⎧
⎨

⎩

x2 + xy + y2 = s2,

x2 − xy + y2 = t2.

Multiplying the two equations gives

x4 + x2y2 + y4 = (st)2.

From Theorem 2.3.2 it follows that

(x, y, st) =
(
k, 0, k2

)
or (x, y, st) =

(
0, k, k2

)
,

yielding the solutions

(u, v, s, t) = (k, k, k, k), k ∈ Z+.

Theorem 2.3.3. All nonnegative integral solutions to the equation

x4 − x2y2 + y4 = z2 (2.3.14)

are (x, y, z) =
(
k, 0, k2

)
,
(
0, k, k2

)
,
(
k, k, k2

)
, k ∈ Z+.

Proof. We may assume that gcd(x, y) = 1 and that xy is minimal.

Write the equation as
(
x2 − y2

)2
+ (xy)2 = z2.
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Suppose first that x and y are not both odd. Then

x2 − y2 = a2 − b2, xy = 2ab,

for some positive integers a and b, with gcd(a, b) = 1. Let d1 =

gcd(x, b) and d2 = gcd(y, a). We have

x = d1X, b = d1B, y = d2Y, a = d2A, XY = 2AB.

Since gcd(X,B) = 1 and gcd(Y,A) = 1, it follows that

(X,Y ) = (2A,B) or (X,Y ) = (A, 2B).

Hence

x = 2d1A, b = d1B, y = d2B, a = d2A

or

x = d1A, b = d1B, y = 2d2B, a = d2A.

In the first case,

4d2
1A

2 − d2
2B

2 = d2
2A

2 − d2
1B

2,

i.e.,

d2
1

(
4A2 + B2

)
= d2

2

(
A2 + B2

)
. (2.3.15)

The condition gcd(a, b) = 1 implies gcd(A,B) = 1. Let gcd
(
4A2+

B2, A2+B2
)

= D. Then D |
(
4A2+B2−A2−B2

)
= 3A2, and since

A2 + B2 �≡ 0 (mod 3), it follows that gcd(D, 3) = 1; hence D | A2

and D |
(
A2 + B2 − A2

)
= B2. The condition gcd(A,B) = 1 now

implies D = 1, and from (2.3.15) we obtain

A2 + B2 = C2 and 4S2 + B2 = D2 (2.3.16)
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for some positive integers C and D.

We may suppose that B is odd, since if B were even, we could

set B = 2B1 and have a similar pair of equations. Hence from the

second Pythagorean equation in (2.3.16), B = p2 − q2, A = pq,

and p4 − p2q2 + q4 = C2. Also pq ≤ a ≤ xy/2, and so the method

of descent applies, since p and q are not both odd. It follows that

xy = 0, yielding the solutions
(
k, 0, k2

)
,
(
0, k, k2

)
, k ∈ Z+.

The other alternative gives

d2
1A

2 − 4d2
2B

2 = d2
2A

2 − d2
1B

2,

and so

d2
1

(
A2 + B2

)
= d2

2

(
A2 + 4B2

)
.

Now A = p2 − q2, B = pq, and pq ≤ b ≤ xy/2, and so the method

of descent applies to the product xy.

Suppose next that x and y are both odd. Then

xy = a2 − b2, x2 − y2 = 2ab, with gcd(a, b) = 1,

and so a and b are not both odd. Then

a4 − a2b2 + b4 =
(

x2 + y2

2

)2

.

Hence ab = 0, x = y, giving the solution
(
k, k, k2

)
, k ∈ Z+. �

Example 3. Prove that four distinct squares cannot form an arith-

metic progression.

Solution. Let the squares be a2, b2, c2, d2, arranged in increasing

order. Then

a2 + c2 = 2b2, b2 + d2 = 2c2.
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Because of these relations, we may assume without loss of gener-

ality that a, b, c, d are all odd. We have

a2
(
2c2 − b2

)
= d2

(
2b2 − c2

)
,

and so

2
(
a2c2 − b2d2

)
= a2b2 − c2d2.

Setting ac = x, bd = y, ab + cd = 2z, ab − cd = 2w, we obtain

x2 − y2 = 2zw, xy = z2 − w2,

yielding

x4 − x2y2 + y4 =
(
z2 + w2

)2
.

From Theorem 2.3.3 it follows that xy = 0 or x = y. The first

alternative is impossible. The second implies w = 0, so ab = cd,

which is in contradiction to a < b < c < d.

2.3.2. Some Higher-Degree Diophantine Equations

Theorem 2.3.4. The equation

x4 + y4 = z2 (2.3.17)

is not solvable in nonzero integers.

Proof. We need only consider x, y, z > 0. Assume that (2.3.17)

is solvable and let (x1, y1, z1) be a solution with z1 minimal. We

may suppose that gcd(x1, y1, z1) = 1, and taking into account that
(
x2

1, y
2
1 , z1

)
is a primitive Pythagorean triple, it follows that

gcd(x1, y1) = gcd(y1, z1) = gcd(z1, x1) = 1
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and that x1 and y1 are of different parities. Assume that x1 is odd

and that y1 is even. Note that

gcd
(
z1 − x2

1, z1 + x2
1

)
= 2. (2.3.18)

Indeed, if d |
(
z1 −x2

1

)
and d |

(
z1 +x2

1

)
, then d | 2z1 and d | 2x2

1.

But gcd(z1, x1) = 1 and z1 is odd, so d = 2.

Since y4
1 =
(
z1 −x2

1

)(
z1 + x2

1

)
, it follows that one of the numbers

z1 −x2
1 and z1 +x2

1 is divisible by 2 and not by 4, and that the other

is divisible by 8. Therefore y1 = 2ab and either

z1 − x2
1 = 2a4, z1 + x2

1 = 8b4 (2.3.19)

or

z1 − x2
1 = 8b4, z1 + x2

1 = 2a4, (2.3.20)

where in each case a is odd and gcd(a, b) = 1.

The situation (2.3.19) is not possible, because it would imply x2
1 =

−a4+4b4, giving 1 ≡ −1 (mod 4), a contradiction. Therefore we have

the second alternative, i.e., z1 = a4 + 4b4, with 0 < a < z1, and

4b4 =
(
a2 − x1

)(
a2 + x1

)
.

Since gcd(a, b) = 1, we have gcd(a, x1) = 1, and we see, as in the

proof of (2.3.18), that gcd
(
a2 − x1, a

2 + x1

)
= 2. Consequently,

a2 − x1 = 2x4
2 and a2 + x1 = 2y4

2,

where x2y2 = b. Setting a = z2, we obtain

x4
2 + y4

2 = z2
2 ,

with 0 < z2 < z1, which contradicts the minimality of z1. �
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Corollary 2.3.5. The equation

x4 + y4 = z4 (2.3.21)

is not solvable in nonzero integers.

The study of the equation

x3 + y3 = z3 (2.3.22)

is much more complicated and was first done by Euler.

Let m and a be integers such that m �= 0 and gcd(a,m) = 1. We

say that a is a quadratic residue modulo m if the congruence

x2 ≡ a (mod m)

is solvable. If p > 2 is a prime and gcd(a, p) = 1, we introduce the

Legendre symbol
(

a
p

)
by

(
a

p

)

=

⎧
⎨

⎩

1 if a is a quadratic residue,

−1 otherwise.

The following result due to Euler will be useful in what follows: If

p > 2 is a prime and gcd(a, p) = 1, then

a
p−1
2 ≡

(
a

p

)

(mod p).

Theorem 2.3.6. Let n be a positive integer. The Diophantine

equation

x2 + 3y2 = n

is solvable if and only if all prime factors of n of the form 3k − 1

have even exponents.
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Proof. We note that a prime p can be written in the form p =

x2 + 3y2 if and only if p = 3 or p = 3k + 1, k ∈ Z+. Indeed, we have

3 = 02 + 3 · 12. Assume p > 3 and p = x2 + 3y2. Then gcd(x, p) = 1

and gcd(y, p) = 1. Therefore, there exists an integer y′ such that

yy′ ≡ 1 (mod p). From the congruence x2 ≡ −3y2 (mod p) it fol-

lows that (xy′)2 ≡ −3 (mod p). We use the quadratic reciprocity

law (see Theorem 4.3.2). But gcd(xy′, 3) = 1 implies
(
−3
p

)
= 1, or

equivalently (−1)
p−1
2

(
3
p

)
= 1, i.e.,

(
3
p

)
= (−1)

p−1
2 .

From the quadratic reciprocity law we obtain

(
3
p

)(p

3

)
= (−1)

3−1
2

· p−1
2 = (−1)

p−1
2 .

Since
(

3
p

)
= (−1)

p−1
2 , we have

(p
3

)
= 1, i.e., p ≡ 1 (mod 3).

Conversely, consider p a prime of the form 3k + 1. Then there

exists an integer a such that a2 ≡ −3 (mod p). Moreover, there

exist integers x, y such that 0 < x, y <
√

p and p |
(
a2x2 − y2

)
. It is

clear that gcd(a, p) = 1, and if we set b = [
√

p], then (b + 1)2 > p.

There exist (b + 1)2 pairs (u, v) ∈ {0, 1, . . . , b} × {0, 1, . . . , b} and

(b + 1)2 integers of the form au + v, where u, v ∈ {0, 1, . . . , b}. It

follows that there exist pairs (u1, v1) �= (u2, v2) such that au1 +

v1 ≡ au2 + v2 (mod p). Assume u1 ≥ u2 and define x = u1 − u2,

y = |v1 − v2|. Therefore, 0 < x, y ≤ b <
√

p and ax + y ≡ 0 (mod p),

i.e., a2x2 − y2 ≡ 0 (mod p) (see also Theorem 4.4.3). We obtain

p |
(
a2 + 3

)
x2 −

(
3x2 + y2

)
, that is, 3x2 + y2 = lp, where l ∈ Z+.

From the inequalities 0 < x2 < p, 0 < y2 < p, it follows that

l ∈ {1, 2, 3}.
If l = 1, we have p = 3x2 + y2.
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If l = 2, the equality 2p = 3x2 + y2 is not possible, since in this

case the integers x, y have the same parity and we obtain 2p ≡ 0

(mod 4), a contradiction.

If l = 3, we have 3p = 3x2 + y2, and therefore y = 3y1 and

p = x2 + 3y2
1 .

Now let us note that if p ≥ 3 is a prime of the form 3k − 1 and

p | x2 +3y2, then p | x and p | y. Indeed, if p � x, we have gcd(p, x) =

1, so there exists an integer y′ with the property yy′ ≡ 1 (mod p).

From x2 ≡ −3y2 (mod p) it follows that (xy′)2 ≡ −3 (mod p), i.e.,
(
−3
p

)
= 1 and p ≡ 1 (mod 3), a contradiction.

To prove the result in Theorem 2.3.6, consider n = a2b, where b

is a square-free integer. It follows that b =
∏m

i=1 pi, where pi = 3 or

pi ≡ 1 (mod 3). Then pi = x2
i + 3y2

i and b = p1p2 · · · pm = x2 + 3y2,

since it is easy to see that if n1 = x2
1+3y2

1, n2 = x2
2+3y2

2, then n1n2 =

(x1x2+3y1y2)2+3(x1y2−x2y1)2. Finally, n = a2b = (ax)2+3(ay)2. �

Lemma 2.3.7. The Diophantine equation

x2 + 3y2 = z3 (2.3.23)

has solution (x0, y0, z0) with z0 odd and gcd(x0, y0) = 1 if and only

if there exist integers α, β such that α �≡ β (mod 2), gcd(α, 3β) = 1,

and

x0 = α
(
α2 − 9β2

)
, y0 = 3β

(
α2 − β2

)
, z0 = α2 + 3β2.

Proof. Let (x0, y0, z0) be a triple of integers satisfying the above

conditions. From the identity

α2
(
α2 − 9β2

)2
+ 3
(
3β
(
α2 − β2

))2
=
(
α2 + 3β2

)3
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it follows that (x0, y0, z0) is a solution to (2.3.23).

Since α �≡ β (mod 2) we obtain that z0 is odd. From gcd(α, 3β) =

1, it follows that

gcd
(
α, 3β

(
α2 − β2

))
= gcd

(
α,α2 − β2

)
= gcd

(
α,−β2

)
= 1

and that

gcd
(
α2 − 9β2, 3β

)
= gcd

(
α2, 3β

)
= 1.

Taking into account the condition α �≡ β (mod 2), we have

gcd
(
α2 − 9β2, α2 − β2

)
= gcd

(
− 8β2, α2 − β2

)

gcd
(
β2, α2 − β2

)
= gcd

(
β2, α2

)
= 1.

To prove the converse implication, we will use induction on the num-

ber of prime factors of z0, where the triple (x0, y0, z0) is a solution

to (2.3.23) such that z0 is odd and gcd(x0, y0) = 1.

If z0 = 1, we have x0 = ±1, y0 = 0, and α = ±1, β = 0. Consider

z0 > 1 and let p be a prime divisor of z0. So z0 = pt, where p and t

are odd. From the equality

(pt)3 = x2
0 + 3y2

0 ,

and using the relation gcd(x0, y0) = 1 and the result in Theo-

rem 2.3.6, it follows that p = 6k + 1 and there exist integers α1, β1

such that

p = α2
1 + 3β2

1 .

Since p is a prime and p = 6k + 1, we obtain gcd(α1, 3β1) = 1 and

α1 �≡ β1 (mod 2).
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From the above relation we get p3 = a2 + 3b2, where

a = α1

(
α2

1 − 9β2
1

)
, b = 3β1

(
α2

1 − β2
1

)
.

It is not difficult to see that a �≡ b (mod 2) and gcd(a, 3b) = 1. We

have

P 6t3 = p3z3
0 =
(
a2 + 3b2

)(
x2

0 + 3y2
0

)
= (ax0 + 3by0)2 + 3(bx0 − ay0)2

= (ax0 − 3by0)2 + 3(bx0 + ay0)2.

Also

(bx0 + ay0)(bx0 − ay0) = b2x2
0 − a2y2

0 = b2x2
0 −
(
p3 − 3b2

)
y2
0

= b2
(
x2

0 + 3y2
0

)
− p3y2

0 = b2z3
0 − p3y2

0

= b2p3t3 − p3y2
0 .

Therefore p3 | (bx0 + ay0)(bx0 − ay0). Since gcd(abx0y0, p) = 1, it

follows that the relations p | bx0 + ay0 and p | bx0 − ay0 cannot be

satisfied simultaneously.

Therefore, there exists ε ∈ {−1, 1} such that bx0−εay0 = p3d. We

obtain ax0 + 3εby0 = p3c, t3 = c2 + 3d2, and

x0 = ac + 3bd, y0 = ε(bc − ad).

If z0 has in its decomposition n prime factors, then since z0 = pt,

it follows that t has n − 1 prime factors. From gcd(x0, y0) = 1 we

obtain gcd(c, d) = 1. Taking into account that t is odd and that it

satisfies the induction hypothesis for n − 1, we obtain integers α2

and β2 satisfying the properties α2 �≡ β2 (mod 2), gcd(α2, 3β2) = 1,
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c = α2

(
α2

2 − 9β2
2

)
, d = 3β2

(
α2

2 − β2
2

)
and t = α2

2 + 3β2
2 . From the

above relations it follows that

z0 = pt =
(
α2

1+3β2
1

)(
α2

2+3β2
2

)
= (α1α2+3β1β2)2+3(α1β2−α2β1)2.

Writing

α = α1α2 + 3β1β2, β = ε(α2β1 − α1β2),

we obtain z0 = α2 + 3β2 and

x0 = α
(
α2 − 9β2

)
, y0 = 3β

(
α2 − β2

)
.

Finally, α−β ≡ α1α2 +β1β2− (α1β2 +α2β1) ≡ (α1 −β1)(α2 −β2)

(mod 2), so α �≡ β (mod 2). From gcd(x0, y0) = 1 it follows that

gcd(α, 3β) = 1. �

Theorem 2.3.8. Equation (2.3.22) is not solvable in nonzero in-

tegers.

Proof. Assume that (2.3.22) is solvable and let (x0, y0, z0) be a

solution with x0y0z0 �= 0 and |x0y0z0| minimal.

It is clear that two of the integers x0, y0, z0 are odd. Let us assume

that x0 and y0 have this property. Set

x0 + y0 = 2u and x0 − y0 = 2v,

and we can assume that u > 0.

We obtain x0 = u+v, y0 = u−v, and from (2.3.22) it follows that

2u
(
u2 + 3v2

)
= z3

0 . (2.3.24)

Since x0 is odd, we have that u and v are of different parities, i.e.,

u2 + 3v2 is odd. From gcd(x0, y0) = 1 we obtain gcd(u, v) = 1 and

gcd
(
2u, u2 + 3v2

)
= gcd

(
u, u2 + 3v2

)
= gcd

(
u, 3v2

)
= gcd(u, 3).
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Case 1. If gcd(u, 3) = 1, then from (2.3.24) it follows that

2u = t3, u2 + 3v2 = s3, and ts = z0.

From Lemma 2.3.7, we obtain that there exist integers α, β such

that gcd(α, 3β) = 1, α �≡ β (mod 2), and

s = α2 + 3β2, u = α
(
α2 − 9β2

)
, v = 3β

(
α2 − β2

)
.

Therefore, 2u = t3 = (2α)(α−3β)(α+3β). The factors 2α, α−3β,

α + 3β are pairwise relatively prime, so

2α = z3, α − 3β = X3, α + 3β = Y 3.

We obtain

X3 + Y 3 = Z3

and XY Z �= 0, i.e., (X,Y,Z) is a nonzero integral solution to

(2.3.22). Moreover,

|XY Z| = 3
√

|2α(α2 − 9β2)| = 3
√

2u = 3
√

x0 + y0

< | 3
√

x0y0| < |x0y0z0|,

which contradicts the minimality of |x0y0z0|.
Case 2. If gcd(u, 3) = 3, then u = 3u1, and from (2.3.24) it follows

that z0 = 3z1 and

2u1(3u2
1 + v2) = 3z3

1 . (2.3.25)

Taking into account that gcd(u, v) = 1, we obtain gcd(v, 3) = 1

and gcd
(
3u2

1 + v2, 3
)

= 1. From (2.3.25) it follows that u1 = 3u2,

u2 ∈ Z, and 2u2

(
3u2

1 + v2
)

= z3
1 .
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Since gcd
(
2u2, 3u2

1 + v2
)

= 1, we obtain

2u2 = m3 and 3u2
1 + v2 = n3,

where n is an odd integer.

Applying Lemma 2.3.7, it follows that there exist integers α, β

such that gcd(α, 3β) = 1, α �≡ β (mod 2), and v = α(α2−9β2), u1 =

3β(α2−β2). Therefore u2 = β
(
α2−β2

)
and m3 = 2β(α−β)(α+β).

Taking into account that the integers 2β, α − β, and α + β are

pairwise relatively prime, we obtain α − β = X3, α + β = Z3, 2β =

Y 3, for some nonzero integers X,Y,Z. It follows that

X3 + Y 3 = Z3

and

|XY Z| = 3

√∣
∣
∣2β
(
α2 − β2

)∣
∣
∣ <
∣
∣
∣

3
√

2u
∣
∣
∣ =
∣
∣
∣ 3
√

x0 + y0

∣
∣
∣ <
∣
∣
∣x0y0z0

∣
∣
∣,

which contradicts the minimality of |x0y0z0|. �

Remarks. (1) Equations (2.3.21) and (2.3.22) are special cases of

Fermat’s equation

xn + yn = zn, (2.3.26)

where n is an integer greater than 2 and x, y, z are nonzero integers.

Fermat’s last theorem states that equation (2.3.26) has no nonzero

integer solutions for x, y, z when n > 2.

Around 1630, Fermat wrote a note in the margin of a page of

Diophantus’s Arithmetica:

“I have discovered a truly remarkable proof which this margin is

too small to contain.”
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Fermat apparently had found a proof only for the case n = 4, but

when his marginal note was published, this theorem became famous,

capturing the attention of the mathematics world and remaining for

centuries the last of Fermat’s Theorems yet to be proved.

Through the years, many important mathematicians worked on

special cases and solved them affirmatively. We mention here Euler

(n = 3), Sophie Germain (n and 2n + 1 are primes, n < 100, and

x, y, z are not divisible by n), Dirichlet (n = 5, n = 14), and Lamé

(n = 7). Liouville and Kummer developed important mathematical

theories in their attempts to prove Fermat’s last theorem.

Using techniques based on Kummer’s work, Fermat’s Last The-

orem was proved true, with the help of computers, for n up to

4,000,000 by 1993.

In 1983, a major contribution was made by Gerd Faltings, who

proved that for every n > 2 there are at most a finite number of

relatively prime integers satisfying equation (2.3.26).

The proof of Fermat’s last theorem was almost completed in 1993

by Andrew Wiles, a British mathematician working at Princeton in

the USA. Wiles gave a series of three lectures at the Isaac Newton

Institute in Cambridge, England, the first on Monday, June 21, and

the second on June 22. In the final lecture on Wednesday, June 23,

1993, Wiles announced his proof of Fermat’s last theorem as a corol-

lary to his main results. His proof turned to be incomplete.

In October, 1994, Wiles sent a new proof to three colleagues, in-

cluding Faltings. All accepted the new proof, which was essentially

simpler than the earlier one.
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Pierre de Fermat died in 1665. Today we think of Fermat as a

number theorist, in fact as perhaps the most famous number theorist

who ever lived. It is therefore surprising to find that Fermat was in

fact a lawyer and only an amateur mathematician. Also surprising

may be the fact that he published only one mathematical paper in his

life, and that was an anonymous article written as an appendix to a

colleague’s book. But perhaps it is less surprising when we note that

there were no mathematical journals at the time, and most scientific

communication was carried on by private correspondance.

(2) Euler conjectured that the equation

xn + yn + zn = wn (2.3.27)

has no integral solution if n is an integer greater than or equal to 4.

In 1988, Noam Elkies gave the following counterexample:

26824404 + 153656394 + 187967604 = 206156734.

Subsequently, Roger Frye (1988) found the smallest solution to

(2.3.27):

958004 + 2175194 + 4145604 = 4224814.

Example 4. The equation

x4 − y4 = z2 (2.3.28)

is not solvable in nonzero integers.

Solution. We may assume that x, y, z > 0 and consider a solution

(x, y, z) with gcd(x, y) = 1 and x minimal. Then
(
y2, z, x2

)
is a

primitive Pythagorean triple, so we have the following two cases:
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Case 1: y2 = a2 − b2, z = 2ab, x2 = a2 + b2,

where a > b > 0 and gcd(a, b) = 1. It follows that

a4 − b4 = (xy)2

and a < x, contradicting the minimality of x.

Case 2: y2 = 2ab, z = a2 − b2, x2 = a2 + b2,

where a > b > 0 and gcd(a, b) = 1.

Since (a, b, x) is also a primitive Pythagorean triple, we may as-

sume that a is even and b is odd. Then a = 2p2 and b = q2 for some

positive integers p, q with gcd(p, q) = 1 and q ≡ 1 (mod 2). It follows

that

x2 = 4p4 + q4 and y = 2pq.

Hence
(
2p2, q2, x

)
is itself a primitive Pythagorean triple, and so

p2 = rs, q2 = r2 − s2

for some positive integers r, s with r > s and gcd(r, s) = 1.

Finally, r = u2, s = v2, for some positive integers u, v with

gcd(u, v) = 1. Then

u4 − v4 = q2

and u =
√

r ≤ p < 2p2 < x, which contradicts the minimality of x. �

Alternative Proof. We may assume that x, y, z > 0 and that

gcd(x, y) = 1. Write the equation as

(
x2 − y2

)(
x2 + y2

)
= z2.

It is not difficult to see that

gcd
(
x2 − y2, x2 + y2

)
= 1 or gcd

(
x2 − y2, x2 + y2

)
= 2.
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In the first case, we obtain the system
⎧
⎨

⎩

x2 + y2 = u2,

x2 − y2 = v2,

which, according to Example 2 in Section 2.2, is not solvable.

In the second case, we obtain
⎧
⎨

⎩

x2 − y2 = 8r2,

x2 + y2 = 2s2,

hence ⎧
⎨

⎩

s2 + (2r)2 = x2,

s2 − (2r)2 = y2,

which, by the same argument, is not solvable. �

Example 5. Solve in integers the equation

x4 + y4 = 2z2.

Solution. Without loss of generality, we may assume that

gcd(x, y) = 1.

Then x and y are both odd, and

z4 − (xy)4 =
(

x4 − y4

2

)2

.

From Example 4 it follows that xyz = 0 or x4 − y4 = 0, and so

x = y = z = 0 or x2 = y2 = z.

The solutions are
(
k, k, k2

)
, k ∈ Z.

Example 6. Solve in integers the equation

x4 + 6x2y2 + y4 = z2.
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Solution. Let (x, y, z) be a solution to the equation. Then

(2x)4 + 6(2x)2(2y)2 + (2y)4 = (4z)2.

Setting 2x = u + v, 2y = u − v, where u, v ∈ Z, we obtain the

equation

(u + v)4 + 6
(
u2 − v2

)2
+ (u − v)4 = 16z2,

which is equivalent to

u4 + v4 = 2z2.

From the previous example it follows that (u, v, z) =
(
k, k, k2

)
,

yielding the solutions (x, y, z) =
(
k, 0, k2

)
and (x, y, z) =

(
0, k, k2

)
,

k ∈ Z.

Remark. Another variant of this problem was given in the second

part of Problem 2 in Section 2.2.

Exercises and Problems

1. Let p be a prime. Find all solutions to the equation

a + b − c − d = p,

where a, b, c, d are positive integers such that ab = cd.

(Mathematical Reflections)

2. Let a, b, c be integers such that

gcd(a, b, c) = 1 and ab + bc + ca = 0.

Prove that |a + b + c| can be expressed in the form x2 + xy + y2,

where x, y are integers.
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3. Prove that the equation x2 + xy + y2 = 362 is not solvable in

positive integers.

4. Find all pairs of positive integers such that

x2 − xy + y2 = 727.

(Turkish Mathematical Olympiad)

5. We say that the positive integer z satisfies property (P) if z =

x2 + xy + y2, for some positive integers x and y. Prove that:

(a) if z satisfies property (P), then so does z2;

(b) if z2 satisfies property (P) with the additional condition that

gcd(x, y) = 1, then so does z.

(Dorin Andrica)

6. Solve in integers the equation x2 + 3y2 = 4z2.

7. Find all triples (x, y, z) of nonnegative integers satisfying the

equation x4 + 14x2y2 + y4 = z2.

(Ion Cucuruzeanu)

8. Solve in positive integers the equation

3x4 + 10x2y2 + 3y4 = z2.

9. Find all distinct squares a2, b2, c2 that form an arithmetic pro-

gression.

10. Solve in integers the equation xy
(
x2 + y2

)
= 2z2.

(Titu Andreescu)
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11. Find all integral triples (x, y, z) satisfying the equation

x4 − 6x2y2 + y4 = z2.

12. If a and b are distinct positive integers, then 2a(a2 + 3b2) is

not a cube.

13. Prove that equation x6 − y6 = 4z3 is not solvable in positive

integers.

(Titu Andreescu)

14. Prove that the system of equations
⎧
⎪⎨

⎪⎩

x + y = z2,

xy =
z4 − z

3
,

is not solvable in nonzero integers.

(Titu Andreescu)



I.3

In 1909, A. Thue proved the following important theorem:

Let f = anzn+an−1z
n−1+· · ·+a1z+a0 be an irreducible polynomial

of degree ≥ 3 with integral coefficients. Consider the corresponding

homogeneous polynomial

F (x, y) = ynf

(
x

y

)

= anxn + an−1x
n−1y + · · · + a1xyn−1 + a0y

n.

For a nonzero integer m the equation F (x, y) = m has either no

solution or only a finite number of solutions in integers.

This result is in contrast to the situation in which the degree of

F is 2, or n = 2. In this case, if F (x, y) = x2 − Dy2, where D is a

non-square positive integer, then for all nonzero integers m, either

the general Pell’s equation

x2 − Dy2 = m

has no solution or it has infinitely many integral solutions.

T. Andreescu et al., An Introduction to Diophantine Equations: A Problem-Based Approach, 117

Pell-Type Equations

DOI 10.1007/978-0-8176-4549-6_3, © Springer Science+Business Media, LLC 2010



118 Part I. Diophantine Equations

3.1 Pell’s Equation: History and Motivation

Euler, after a cursory reading of Wallis’s Opera Mathematica, mis-

takenly attributed the first serious study of nontrivial solutions to

equations of the form x2 − dy2 = 1, where x �= 1 and y �= 0, to John

Pell. However, there is no evidence that Pell, who taught at the Uni-

versity of Amsterdam, had ever considered solving such equations.

They should be probably called Fermat’s equations, since it was Fer-

mat who first investigated the properties of nontrivial solutions of

many important such equations. Nevertheless, Pell-type equations

have a long history and can be traced back to the Greeks. Theon

of Smyrna used x/y to approximate
√

2, where x and y are inte-

gral solutions to x2 − 2y2 = 1. In general, if x2 = dy2 + 1, then

x2/y2 = d+1/y2. Hence, for y large, x/y is a good approximation of
√

d, a fact that was well known to Archimedes. Archimedes’s prob-

lema bovinum took two thousand years to solve.

In Arithmetica, Diophantus asks for rational solutions to equations

of the type x2 − dy2 = 1. In the case d = m2 +1, Diophantus offered

the integral solution x = 2m2+1 and y = 2m. Pell-type equations are

also found in Hindu mathematics. In the fourth century, the Indian

mathematician Baudhayana noted that x = 577 and y = 408 is a

solution of x2−2y2 = 1 and used the fraction 577
408 to approximate

√
2.

In the seventh century, Brahmagupta considered solutions to Pell’s

equation x2 − 92y2 = 1, the smallest solution being x = 1151 and

y = 120. In the twelfth century, the Hindu mathematician Bhaskara

found the least positive solution to Pell’s equation x2 − 61y2 = 1 to

be x = 1766319049 and y = 226153980.
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In 1657, Fermat stated without proof that if d is positive and not

the square of an integer, then Pell’s equation x2 − dy2 = 1 has an

infinite number of solutions. For if (x, y) is a solution to x2−dy2 = 1,

then 12 = (x2 − dy2)2 = (x2 + dy2)2 − (2xy)2d. Thus, (x2 + dy2, 2xy)

is also a solution to x2 − dy2 = 1. Therefore, if Pell’s equation has a

solution, then it has infinitely many.

In 1657, Fermat challenged William Brouncker, of Castle Lynn in

Ireland, and John Wallis to find integral solutions to the equations

x2 − 151y2 = 1 and x2 − 313y2 = −1.

He cautioned them not to submit rational solutions because even

the lowest type of arithmetician could devise such answers. Wallis

replied with (1728148040, 140634693) as a solution to the first equa-

tion. Brouncker replied with (126862368, 7170685) as a solution to

the second.

In 1770, Euler showed that no triangular number other than unity

is a cube and none but unity is a fourth power. He devised a method,

involving solutions to Pell’s equations, to determine natural numbers

that are both triangular and square.

In 1766, Lagrange proved that the equation x2 = dy2 + 1 has an

infinite number of solutions whenever d is positive and not a square

of an integer.

The Diophantine quadratic equation

ax2 + bxy + cy2 + dx + ey + f = 0 (3.1.1)

with integral coefficients a, b, c, d, e, f reduces in its main case to a

Pell-type equation. We will sketch the general method of reduction.
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Equation (3.1.1) represents a conic in the Cartesian plane, so solving

(3.1.1) in integers means finding all lattice points situated on this

conic. We will solve equation (3.1.1) by reducing the general equation

of the conic to its canonical form. We introduce the discriminant

of the equation (3.1.1) as Δ = b2 − 4ac. When Δ < 0, the conic

defined by (3.1.1) is an ellipse, and in this case the given equation

has only a finite number of solutions. When Δ = 0, the conic given by

(3.1.1) is a parabola. If 2ae − bd = 0, then equation (3.1.1) becomes

(2ax + by + d)2 = d2 − 4af , which is not difficult to solve. In the

case 2ae− bd �= 0, by performing the substitutions X = 2ax+ by + d

and Y = (4ae − 2bd)y + 4af − d2, equation (3.1.1) reduces to X2 +

Y = 0, which is easy to solve. The most interesting case is Δ > 0,

when the conic defined by (3.1.1) is a hyperbola. Using a sequence

of substitutions, equation (3.1.1) reduces to the general Pell-type

equation

X2 − DY 2 = N. (3.1.2)

To illustrate the process described above, we will consider the

equation

2x2 − 6xy + 3y2 = −1

(Berkeley Math Circle 2000–2001 Monthly Contest #4, Problem 4).

Indeed, Δ = 12 > 0; hence the corresponding conic is a hyperbola.

The equation can be written as x2−3(y−x)2 = 1, and by performing

the substitutions X = x and Y = y−x, we reduce it to Pell’s equation

X2 − 3Y 2 = 1.
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3.2 Solving Pell’s Equation

We will present an elementary approach to solving Pell’s equation

due to Lagrange. Denote by (u0, v0) = (1, 0) the trivial solution to

the equation u2 − Dv2 = 1. The main result is the following.

Theorem 3.2.1. If D is a positive integer that is not a perfect

square, then the equation

u2 − Dv2 = 1 (3.2.1)

has infinitely many solutions in nonnegative integers, and the general

solution is given by (un, vn)n≥0,

un+1 = u1un + Dv1vn, vn+1 = v1un + u1vn, (3.2.2)

where (u1, v1) is the fundamental solution, i.e., the solution with v1 >

0 minimal.

Proof. First, we will prove that equation (3.2.1) has a fundamental

solution.

Let c1 be an integer greater than 1. We will show that there exist

integers t1, w1 ≥ 1 such that

|t1 − w1

√
D| <

1
c1

, w1 ≤ c1.

Indeed, considering lk = [k
√

D + 1], k = 0, . . . , c1, yields 0 <

lk − k
√

D ≤ 1, k = 0, . . . , c1, and since
√

D is an irrational number,

it follows that lk′ �= lk′′ whenever k′ �= k′′.

There exist i, j, p ∈ {0, 1, 2, . . . , c1}, i �= j, p �= 0, such that

p − 1
c1

< li − i
√

D ≤ p

c1
and

p − 1
c1

< lj − j
√

D ≤ p

c1
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because there are c1 intervals of the form
(

p−1
c1

, p
c1

)
, p = 1, . . . , c1,

and c1 + 1 numbers of the form lk − k
√

D, k = 0, . . . , c1.

From the inequalities above it follows that |(lj − li)− (j− i)
√

D| <

1
c1

, and setting |li− lj| = t1 and |j− i| = w1 yields |t1−w1

√
D| < 1

c1
,

and w1 ≤ c1.

Multiplying this inequality by t1 + w1

√
D < 2w1

√
D + 1 gives

∣
∣
∣t21 − Dw2

1

∣
∣
∣ < 2

w1

c1

√
D +

1
c1

< 2
√

D + 1.

Choosing a positive integer c2 > c1 such that |t1−w1

√
D| > 1

c2
, we

obtain positive integers t2, w2 with |t2 − w2

√
D| < 1

c2
and w2 ≤ c2.

As before, we get

|t22 − Dw2
2| < 2

√
D + 1 and |t1 − t2| + |w1 − w2| �= 0.

By continuing this procedure, we obtain a sequence of distinct

pairs (tn, wn)n≥1 satisfying the inequalities |t2n−Dw2
n| < 2

√
D+1 for

all positive integers n. It follows that the interval (−2
√

D−1, 2
√

D+

1) contains a nonzero integer k such that there exists a subsequence

of (tn, wn)n≥1 satisfying the equation t2−Dw2 = k. This subsequence

contains at least two pairs (ts, ws), (tr, wr) for which ts ≡ tr(mod|k|),
ws ≡ wr(mod|k|), and tswr − trws �= 0; otherwise ts = tr and ws =

wr, in contradiction to |ts − tr| + |ws − wr| �= 0.

Let t0 = tstr − Dwswr and let w0 = tswr − trws. Then

t20 − Dw2
0 = k2. (3.2.3)

On the other hand, t0 = tstr − Dwswr ≡ t2s − Dw2
0 ≡ 0(mod|k|),

and we see that w0 ≡ 0(mod|k|). The pair (t, w) where t0 = t|k| and

w0 = w|k| is a nontrivial solution to equation (3.2.1). We show now
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that the pair (un, vn) defined by (3.2.2) satisfies equation (3.2.1).

We use induction with respect to n. Clearly, (u1, v1) is a solution to

equation (3.2.1). If (un, vn) is a solution to this equation, then

u2
n+1 − Dv2

n+1 = (u1un + Dv1vn)2 − D(v1un + u1vn)2

= (u2
1 − Dv2

1)(u
2
n − Dv2

n) = 1,

i.e., the pair (un+1, vn+1) is also a solution to the equation (3.2.1).

It is not difficult to see that for all nonnegative integers n,

un + vn

√
D = (u1 + v1

√
D)n. (3.2.4)

Let zn = un + vn

√
D = (u1 + v1

√
D)n, n ≥ 0, and note that

z0 < z1 < z2 < · · · < zn < · · · .

We will prove now that all solutions to equation (3.2.1) satisfy

(3.2.4). Indeed, if equation (3.2.1) had a solution (u, v) such that

z = u + v
√

D is not of the form (3.2.4), then zm < z < zm+1 for

some integer m. Then

1 < (u + v
√

D)(um − vm

√
D) < u1 + v1

√
D,

and therefore

1 < (uum − Dvvm) + (umv − uvm)
√

D < u1 + v1

√
D.

On the other hand,

(uum − Dvvm)2 − D(umv − uvm)2 = (u2 − Dv2)(u2
m − Dv2

m) = 1,

i.e., (uum − Dvvm, umv − uvm) is a solution of (3.2.1) less than

(u1, v1), contradicting the assumption that (u1, v1) was the minimal

one. �
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Remarks. (1) The relations (3.2.2) could be written in the fol-

lowing useful matrix form:
⎛

⎝
un+1

vn+1

⎞

⎠ =

⎛

⎝
u1 Dv1

v1 u1

⎞

⎠

⎛

⎝
un

vn

⎞

⎠ ,

whence ⎛

⎝
un

vn

⎞

⎠ =

⎛

⎝
u1 Dv1

v1 u1

⎞

⎠

n⎛

⎝
u0

v0

⎞

⎠ . (3.2.5)

If ⎛

⎝
u1 Dv1

v1 u1

⎞

⎠

n

=

⎛

⎝
an bn

cn dn

⎞

⎠ ,

then it is well known that each of an, bn, cn, dn is a linear combination

of λn
1 , λn

2 , where λ1, λ2 are the eigenvalues of the matrix

⎛

⎝
u1 Dv1

v1 u1

⎞

⎠ .

Using (3.2.5), after an easy computation,

un =
1
2
[(u1 + v1

√
D)n + (u1 − v1

√
D)n],

vn =
1

2
√

D
[(u1 + v1

√
D)n − (u1 − v1

√
D)n]

(3.2.6)

(2) The solutions to Pell’s equation given in the form (3.2.4) or

(3.2.6) may be used in the approximation of the square roots of

positive integers that are not perfect squares. Indeed, if (un, vn) are

the solutions of equation (3.2.1), then

un − vn

√
D =

1
un + vn

√
D

;
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and so
un

vn
−

√
D =

1
vn(un + vn

√
D)

<
1√
Dv2

n

<
1
v2
n

.

It follows that

lim
n→∞

un

vn
=

√
D; (3.2.7)

i.e., the fractions un
vn

approximate
√

D with an error less than 1
v2

n
.

The main method of determining the fundamental solution to

Pell’s equation (3.2.1) involves continued fractions.

It is obtained by writing
√

D as a simple continued fraction:

√
D = a0 +

1

a1 +
1

a2 +
1
. . .

,

where a0 = �√D� and a1, a2, . . . is a periodic sequence of positive

integers. The continued fraction will be denoted by [a0, a1, a2, . . . ].

The kth convergent of [a0, a1, a2, . . . ] is the number

pk

qk
= [a0, a1, a2, . . . , ak]

with pk, qk relatively prime. Let a1, a2, . . . , am be the period for
√

D.

The least fundamental solution to Pell’s equation turns out to be

(x1, y1) =

⎧
⎨

⎩

(pm−1, qm−1) if m is even

(p2m−1, q2m−1) if m is odd

For example,
√

3 = [1, 1, 2, 1, 2, . . . ],

and so m = 2; then [1, 1] = 2
1 . We check 22 − 3 · 12 = 1, and clearly

(2, 1) is the least positive solution of x2 − 3y2 = 1. Next,
√

2 =
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[1, 2, 2, . . . ], and so m = 1 then [1, 2] = 3
2 . We check 32 − 2 · 22 = 1,

and again clearly (3, 2) is the least positive solution of x2 − 2y2 = 1.

We consider it useful to include a table containing the fundamental

solutions for D ≤ 103.

Example 1. Recall that tm = m(m+1)
2 denotes the mth triangular

number, m ≥ 1. Find all triangular numbers that are perfect squares.

Solution. The equation tx = y2 is equivalent to

(2x + 1)2 − 8y2 = 1.

The Pell’s equation

u2 − 8v2 = 1

has the fundamental solution (u1, v1) = (3, 1), and by formulas

(3.2.6) we obtain

un =
1
2
[(3 +

√
8)n + (3 −

√
8)n],

vn =
1

2
√

8
[(3 +

√
8)n − (3 −

√
8)n], n ≥ 1.

It follows that

2xn + 1 = un =
1
2

[
(
√

2 + 1)2n + (
√

2 − 1)2n
]
,

and hence

xn =

[
(
√

2 + 1)n − (
√

2 − 1)n

2

]2

.

Every odd x satisfying tx = y2 is itself a perfect square.

Example 2. Prove that there are infinitely many triples of con-

secutive integers each of which is a sum of two squares.

(Putnam Mathematical Competition)
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D u1 v1 D u1 v1 D u1 v1

2 3 2 38 37 6 71 3480 413

3 2 1 39 25 4 72 17 2

5 9 4 40 19 3 73 2281249 267000

6 5 2 41 2049 320 74 3699 430

7 8 3 42 13 2 75 26 3

8 3 1 43 3482 531 76 57799 6630

10 19 6 44 199 30 77 351 40

11 10 3 45 161 24 78 53 6

12 7 2 46 24335 3588 79 80 9

13 649 180 47 48 7 80 9 1

14 15 4 48 7 1 82 163 18

15 4 1 50 99 14 83 82 9

17 33 8 51 50 7 84 55 6

18 17 4 52 649 90 85 285769 30996

19 170 39 53 66249 9100 86 10405 1122

20 9 2 54 485 66 87 28 3

21 55 12 55 89 12 88 197 21

22 197 42 56 15 2 89 500001 53000

23 24 5 57 151 20 90 19 2

24 5 1 58 19603 2574 91 1574 165

26 51 10 59 530 69 92 1151 120

27 26 5 60 31 4 93 12151 1260

28 127 24 61 1766319049 226153980 94 2143295 221064

29 9801 1820 62 63 8 95 39 4

30 11 2 63 8 1 96 49 5

31 1520 273 65 129 16 97 62809633 6377352

32 17 3 66 65 8 98 99 10

33 23 4 67 48842 5967 99 10 1

34 35 6 68 33 4 101 201 20

35 6 1 69 7775 936 102 101 10

37 73 12 70 251 30 103 227528 22419
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Solution. The first triple is 8 = 22 + 22, 9 = 32 + 02, 10 = 32 + 12,

which suggests considering the triples x2 − 1, x2, x2 + 1.

Consider the Pell’s equation x2 − 2y2 = 1, whose solutions are

xn =
1
2

[
(3+2

√
2)n+(3−2

√
2)n
]
, yn =

1
2
√

2

[
(3+2

√
2)n−(3−2

√
2)n
]
,

n ≥ 1. The triples (x2
n − 1, x2

n, x2
n + 1) satisfy x2

n − 1 = y2
n + y2

n,

x2
n = x2

n + 02, x2
n + 1 = x2

n + 12, n ≥ 1.

Remark. In a similar way, we can prove that for any nonsquare

positive integer m ≥ 2 there are infinitely many (m + 1)-tuples of

consecutive positive integers each of which is a sum of m squares.

Indeed, the Pell’s equation x2−my2 = 1 has solutions (xn, yn)n≥0;

hence (x2
n − 1, x2

n, x2
n + 1, . . . , x2

n + m − 1) has the desired property

for all n ≥ 0.

Example 3. Prove that there are infinitely many quadruples

(x, y, z, t) of positive integers with no common divisor and such that

x3 + y3 + z2 = t4.

(Romanian Mathematical Olympiad)

Solution. Consider the identity:

[
13 + 23 + · · · + (n − 2)3

]
+ (n − 1)3 + n3 =

(
n(n + 1)

2

)2

and write it in the form

(n − 1)3 + n3 +
(

(n − 1)(n − 2)
2

)2

=
(

n(n + 1)
2

)2

.

It suffices to find positive integers n for which n(n+1)
2 is a perfect

square.
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Let us note that

(2n + 1)2 − 2(2x)2 = 1

can be achieved by taking the solutions (uk, vk) of the Pell equation

u2−2v2 = 1, where u1 = 3, v1 = 2, and uk, vk are obtained from the

identity

(u +
√

2v)k(u −
√

2v)k = (uk +
√

2vk)(uk −
√

2vk) = 1.

Remark. Consider the following identity:

(a + 1)4 − (a − 1)4 = 8a3 + 8a,

where a is a positive integer. Take a = b3, where b is an even integer.

From the above identity we obtain

(b3 + 1)4 = (2b3)3 + (2b)3 + [(b3 − 1)2]2.

Since b is an even number, b3 + 1 and b3 − 1 are odd, and it follows

that the numbers x = 2b3, y = 2b, z = (b3 − 1)2, and t = b3 + 1 have

no common divisor greater than 1.

Example 4. Prove that if m = 2 + 2
√

28n2 + 1 is an integer for

some positive integer n, then m is a perfect square.

(Kürshák Competition)

Solution. We start by finding those n for which m is an integer. The

pair
(

m
2 − 1, n

)
must be a solution of Pell’s equation x2 − 28y2 = 1;

whose fundamental solution is (x1, y1) = (127, 24); hence

m

2
− 1 + n

√
28 = (127 + 24

√
28)k
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for some positive integer k. Now we have

m = 2 + (127 + 24
√

28)k + (127 − 24
√

28)k = A2,

where A = (8 + 3
√

7)k + (8 − 3
√

7)k is an integer.

Remark. Another solution is as follows.

If 2
√

28n2 + 1 + 2 is an integer, then 28n2 + 1 = (2m + 1)2 for

some nonnegative integer m. Then 7n2 = m(m + 1), and since m

and m + 1 are relatively prime, it follows that either m = 7s2 and

m + 1 = t2, or m = u2 and m + 1 = 7v2. The second alternative is

not possible, because u2 − 7v2 = −1 does not have solutions, as can

be seen from Theorem 3.4.2. This also follows just by looking mod

7. Thus m + 1 = t2 and

2
√

28n2 + 1 + 2 = 2(2m + 1) + 2 = (2t)2.

Example 5. If m,n, p are positive integers such that

m + n + p − 2
√

mnp = 1,

then at least one of them is a perfect square.

(Titu Andreescu, Iurie Boreico)

Solution. Write the relation as

(m + n + p − 1)2 = 4mnp

and substitute a = 2m − 1, b = 2n − 1, c = 2p − 1. Then

(a + b + c + 1)2 = 2(a + 1)(b + 1)(c + 1),

which is equivalent to

a2 + b2 + c2 − 2abc = 1.
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Then

(a2 − 1)(b2 − 1) = (ab − c)2 and (b2 − 1)(c2 − 1) = (bc − a)2,

so there are nonnegative integers d, u, v such that
√

d �∈ Q and

a2 − 1 = du2, b2 − 1 = dv2, c2 − 1 = dw2,

|ab − c| = duv and |bc − a| = dvw.

Let (x1, y1) be the fundamental solution to Pell’s equation x2 −
dy2 = 1 and let s = x1+y1

√
d. Then according to (3.2.6), all solutions

to this equation are (xk, yk), k ≥ 0, where

xk =
1
2

(

sk +
1
sk

)

, yk =
1

2
√

d

(

sk − 1
sk

)

.

Hence

a =
1
2

(

sk1 +
1

sk1

)

, b =
1
2

(

sk2 +
1

sk2

)

, c =
1
2

(

sk3 +
1

sk3

)

for some nonnegative integers k1, k2, k3.

Suppose m ≥ n ≥ p. Then k1 ≥ k2 ≥ k3 and ab − c = duv,

implying

c = ab − duv

=
1
4

(

sk1 +
1

sk1

)(

sk2 +
1

sk2

)

− 1
4

(

sk1 − 1
sk1

)(

sk2 − 1
sk2

)

=
1
2

(

sk1−k2 +
1

sk1−k2

)

.

It follows that k3 = k1 − k2, and so at least one of the numbers

k1, k2, k3 is even. Suppose k1 is even. Then

m =
a + 1

2
=
[
1
2

(

s
k1
2 +

1

s
k1
2

)]2

.
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Remarks. (1) From the above proof it follows that all positive

integer solutions to the equation

x + y + z − 2
√

xyz = 1

are

x =
1
2

(

sk1 +
1

sk1

)

, y =
1
2

(

sk2 +
1

sk2

)

, z =
1
2

(

sk3 +
1

sk3

)

,

where s = u1 + v1

√
d, (u1, v1) is the fundamental solution to the

equation u2 − dv2 = 1,
√

d �∈ Q, and k1, k2, k3 are positive integers

such that one of them is the sum of the other two.

(2) Another solution is as follows.

Suppose there is a counterexample, and choose the counterexample

(m,n, p) with the least m + n + p. We may assume, without loss of

generality, that m ≥ n ≥ p.

Case (a). m > n + p − 1. The equation

(m + n + p − 1)2 = 4mnp

is a quadratic equation in m, with leading coefficient 1; hence it has

another integer solution

m′ = 4np − 2n − 2p + 2 − m =
(n + p − 1)2

m
,

from Viéte’s relations. Since m > n + p − 1, it follows that m′ < m

and, m′ is not a perfect square, since m is not. Then (m′, n, p) is a

counterexample with a smaller sum, contradiction.

Case (b). m = n + p − 1. By substituting we get

4(n + p − 1)2 = 4np(n + p − 1),
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so np = n + p − 1. It follows that (n − 1)(p − 1) = 0; hence either n

or p is 1, which is a perfect square, contradiction.

Case (c). m < n + p − 1. Consider the function

f(x) = (x + n + p − 1)2 − 4xnp

on the interval [1, n + p − 1). Its derivative is

2(x+n+p−1)−4np < 2(2n+2p−2)−4np = −4(n−1)(p−1) < 0

(since n > 1, p > 1, since n, p are not perfect squares). So f is strictly

decreasing, and then

0 = f(m) < f(n + p − 1) = 4(n + p − 1)2 − 4np(n + p − 1)

= −4(n − 1)(p − 1)(n + p − 1) < 0,

contradiction.

Example 6. Let m,n, p be positive integers such that

m + n + p − 2
√

mnp = 1.

Prove that at least one of the following is true

m | (n + p − 1)2, n | (p + m − 1)2, p | (m + n − 1)2.

(Titu Andreescu, Iurie Boreico)

Solution. From Example 5, at least one of the numbers m,n, p is

a perfect square, say p = q2. Then from

(m + n + p − 1)2 = 4mnp

it follows that (
m + n − 1

q
+ 1
)2

= 4mn;
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hence q | m + n − 1 and the conclusion follows.

Remarks. 1. If m and n are positive integers such that there is

a nonzero integer k for which

(m + n + k2)2 = 4(k2 + 1)mn,

then exactly one of the integers m and n is a perfect square.

2. An easier solution to this problem that proves more is to note

that the equation m + n + p − 2
√

mnp = 1 gives

(n + p − 1)2 = (m − 2
√

mnp)2 = m(
√

m − 2
√

np)2

= m[m − 2(m + n + p − 1) + 4np];

hence m | (n + p − 1)2, and similarly the other two assertions also

hold.

Exercises and Problems

1. Find all positive integers n such that n(n+1)
3 is a perfect square.

(Dorin Andrica)

2. Find all triangles having side lengths that are consecutive inte-

gers and area also an integer.

3. Prove that there are infinitely many triples (a, b, c) of positive

integers such that the greatest common divisor of a, b, and c is 1,

and a2b2 + b2c2 + c2a2 is the square of an integer.

4. Prove that there are infinitely many positive integers n such

that √2n� is a perfect square.

5. Prove that there are infinitely many triples (a, b, c) of integers

such that

a4 + b3 = c2
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and gcd(a, c) = 1.

6. Solve in positive integers the equation

x2 − 4xy + y2 = 1.

7. Let a0 = 0, a1 = 4, and an+1 = 18an − an−1, n ≥ 1. Prove that

5a2
n + 1 is a perfect square for all n.

8. Prove that if the difference of two consecutive cubes is n2, then

2n − 1 is a square.

9. Consider the system of equations
⎧
⎨

⎩

x + y = z + u,

2xy = zu.

Find the largest value of the real constant m such that m ≤ x
y for

any positive integral solution (x, y, z, u) of the system, with x ≥ y.

(42nd IMO Shortlist)

10. Prove that the equation x2 − Dy4 = 1 has no positive integer

solution if D �≡ 0, 3, 8, 15 (mod 16) and there is no factorization

D = pq, where p > 1 is odd, gcd(p, q) = 1, and either p ≡ ±1

(mod 16), p ≡ q ± 1 (mod 16), or p ≡ 4q ± 1 (mod 16).

3.3 The Equation ax2 − by2 = 1

In the present section we will study the more general equation

ax2 − by2 = 1, (3.3.1)

where a and b are positive integers. Taking into account the consid-

erations in Section 3.1, we have Δ = 4ab > 0; hence (3.3.1) can be

reduced to a Pell’s equation.
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Proposition 3.3.1. If ab = k2, where k is an integer greater than

1, then equation (3.3.1) does not have solutions in positive integers.

Proof. Assume that (3.3.1) has a solution (x, y), where x, y are pos-

itive integers. Then ax2 − by2 = 1, and clearly a and b are relatively

prime. From the condition ab = k2 it follows that a = k2
1 and b = k2

2

for some positive integers k1 and k2. The relation k2
1x

2 − k2
2y

2 = 1

can be written as (k1x − k2y)(k1x + k2y) = 1. It follows that

1 < k1x + k2y = k1x − k2y = 1,

a contradiction. �

We will call the equation

u2 − abv2 = 1 (3.3.2)

Pell’s resolvent of (3.3.1).

Theorem 3.3.2. Suppose that equation (3.3.1) has solutions in

positive integers and let (x0, y0) be its minimal solution, i.e., the one

with the least y0 > 0. The general solution to (3.3.1) is (xn, yn)n≥0,

where

xn = x0un + by0vn, yn = x0un + ay0vn, (3.3.3)

and (un, vn)n≥0 is the general solution to Pell’s resolvent (3.3.2).

Proof. We will prove first that (xn, yn) is a solution to equation

(3.3.1). Indeed,

ax2
n − by2

n = a(x0un + by0vn)2 − b(y0un + ax0vn)2

= (ax2
0 − by2

0)(u
2
n − abv2

n) = 1 · 1 = 1.

Conversely, let (x, y) be a solution to equation (3.3.1). Then (u, v),

where u = ax0x − by0y and v = y0x − x0y, is a solution to Pell’s
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resolvent (3.3.2). Solving the above system of linear equations with

unknowns x and y yields x = x0u + by0v and y = y0u + ax0v, i.e.,

(x, y) has the form (3.3.3). �

Remarks. (1) A simple algebraic computation yields the following

relation between the fundamental solution (u1, v1) to Pell’s resolvent

and the smallest solution (x0, y0) to equation (3.3.1), in case of solv-

ability:

u1 ± v1

√
ab =

(
x0

√
a ± y0

√
b
)2

,

where the signs + and − correspond.

(2) Using formulas (3.2.6), from (3.3.3) it follows that

xn =
1
2

(
x0 +

y0

a

√
ab
)(

u1 + v1

√
ab
)n

+
1
2

(
x0 − y0

a

√
ab
)(

u1 − v1

√
ab
)n

yn =
1
2

(
y0 +

x0

b

√
ab
)(

u1 + v1

√
ab
)n

+
1
2

(
y0 − x0

a

√
ab
)(

u1 − v1

√
ab
)n

(3.3.4)

Taking into account Remark 1, the above formulas can be written

as

xn =
1

2
√

a

[(
x0

√
a + y0

√
b
)2n+1

+
(
x0

√
a − y0

√
b
)2n+1

]

,

yn =
1

2
√

b

[(
x0

√
a + y0

√
b
)2n+1 −

(
x0

√
a − y0

√
b
)2n+1

]

.
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(3) The general solution (3.3.3) can be written in the following matrix

form:
⎛

⎝
xn

yn

⎞

⎠ =

⎛

⎝
x0 by0

y0 ax0

⎞

⎠

⎛

⎝
un

vn

⎞

⎠

=

⎛

⎝
x0 by0

y0 ax0

⎞

⎠

⎛

⎝
u1 abv1

v1 u1

⎞

⎠

n⎛

⎝
u0

v0

⎞

⎠ .

Example 1. Solve in positive integers the equation

6x2 − 5y2 = 1.

Solution. Its minimal solution is (x0, y0) = (1, 1). The Pell’s re-

solvent is u2 − 30v2 = 1, whose fundamental solution is (11, 2).

The general solution to the equation considered is xn = un + 5vn,

yn = un + 6vn, n = 0, 1, . . . , where (un, vn)n≥0 is the general solu-

tion to Pell’s resolvent, i.e., un+1 = 11un +60vn, vn+1 = 2un +11vn,

n = 0, 1, . . . , with u1 = 11, v1 = 2.

A closed form for these solutions can be found using the formulas

(3.3.4). We obtain

xn =
6 +

√
30

12
(11 + 2

√
30)n +

6 −√
30

12
(11 − 2

√
30)n,

yn =
5 +

√
30

10
(11 + 2

√
30)n +

5 −√
30

10
(11 − 2

√
30)n.

Example 2. Find all positive integers n such that 2n+1 and 3n+1

are perfect squares.

(American Mathematical Monthly)

Solution. Let 2n + 1 = x2 and 3n + 1 = y2. Multiply the first

equation by 3 and the second by 2 and subtract them to obtain

3x2 − 2y2 = 1. (3.3.6)
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The smallest solution to this equation is x = y = 1. Its Pell’s

resolvent is u2 − 6v2 = 1, with the fundamental solution (u1, v1) =

(5, 2). From Theorem 3.3.2, the general solution to equation (3.3.6)

is given by xm = um + 2vm, ym = um + 3vm, m ≥ 0, where

um =
1
2

[
(5 + 2

√
6)m + (5 − 2

√
6)m
]
,

vm =
1

2
√

6

[
(5 + 2

√
6)m − (5 − 2

√
6)m
]
.

We obtain

n = y2
m−x2

m = (um+3vm)2−(um+2vm)2 = vm(2um+5vm), m ≥ 0.

Example 3. Let a and b be square-free positive integers such that

both equations ax2 − by2 = ±1 are solvable. Prove that at least one

of a and b is 1.

Solution. Suppose au2 − bv2 = 1 and ax2 − by2 = −1 for some

positive integers u, v, x, and y. Clearly, gcd(a, b) = 1. Let z = uy−vx.

We have v2x2 = (uy − z)2, hence (bv2)(ax2) = ab(uy − z)2. Because

bv2 = au2 − 1 and ax2 = by2 − 1, we obtain (au2 − 1)(by2 − 1) =

ab(uy−z)2, that is, abu2y2−au2−by2 +1 = abu2y2−2abuyz+abz2.

It follows that au2 + by2 +abz2 −1 = 2abuyz. For m = au2, n = by2,

p = abz2, we get m + n + p − 1 = 2
√

mnp. Using the result in

Example 5 in Section 3.2, at least one of the integers m = au2,

n = by2, p = abz2 is a perfect square, that is, at least one of a, b,

ab is a square. Because a and b are square-free and gcd(a, b) = 1, it

follows that a = 1 or b = 1.
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Exercises and Problems

1. Prove that there are infinitely many quadruples (x, y, u, v) of

positive integers such that x2 + y2 = 6(z2 + w2) + 1, 3 | x, and 2 | y.

(Dorin Andrica)

2. (a) Find all positive integers n such that n + 1 and 3n + 1 are

simultaneously perfect squares.

(b) If n1 < n2 < · · · < nk < · · · are all positive integers satisfying

the above property, then nknk+1 + 1 is also a perfect square, k =

1, 2, . . . .

(American Mathematical Monthly)

3. Prove that there exist two strictly increasing sequences (an)

and (bn) of positive integers such that an(an + 1) divides b2
n + 1 for

all n ≥ 1.

(40th IMO Shortlist)

4. Let x and y be positive integers such that x(y +1) and y(x+1)

are perfect squares. Prove that either x or y is a perfect square.

(Titu Andreescu, Iurie Boreico)

3.4 The Negative Pell’s Equation

While Pell’s equation x2 − dy2 = 1 is always solvable if the positive

integer d is not a perfect square, the equation

x2 − dy2 = −1 (3.4.1)
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is solvable only for certain values of d. It is an equation of the form

ax2 − by2 = 1, where a = d, b = 1.

Next, we will find the solutions to equation (3.4.1) using the

method outlined in Section 3.3.

Equation (3.4.1) is known as a negative Pell’s equation. From The-

orem 3.3.2 the following result follows:

Theorem 3.4.1. Suppose that equation (3.4.1) has solutions in

positive integers and let (x0, y0) be its minimal solution. The general

solution to (3.4.1) is given by (xn, yn)n≥0, where

xn = x0un + dy0vn, yn = y0un + x0vn, (3.4.2)

and (un, vn)n≥0 is the general solution to Pell’s equation u2−dv2 = 1.

Remarks. (1) Using formulas (3.4.2) we obtain the solutions to

the negative Pell’s equation in explicit form:

xn =
1
2
(x0 + y0

√
d)(u1 + v1

√
d)n

+
1
2
(x0 − y0

√
d)(u1 − v1

√
d)n

yn =
1
2

(

y0 +
x0√
d

)

(u1 + v1

√
d)n

+
1
2

(

x0 − y0√
d

)

(u1 − v1

√
d)n.

(3.4.3)

(2) The matrix form of solution is
⎛

⎝
xn

yn

⎞

⎠ =

⎛

⎝
x0 dy0

y0 x0

⎞

⎠

⎛

⎝
un

vn

⎞

⎠

=

⎛

⎝
x0 dy0

y0 x0

⎞

⎠

⎛

⎝
u1 dv1

v1 u1

⎞

⎠

n⎛

⎝
0

1

⎞

⎠ .
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(3) The sequences (xn)n≥0 and (yn)n≥0 given by (3.4.2) or (3.4.3)

satisfy the identity

xn = [yn

√
d]. (3.4.4)

Indeed, x2
n−dy2

n = −1 implies (yn

√
d+xn)(yn

√
d−xn) = 1. Since

yn

√
d + xn > 1, it follows that 0 < yn

√
d − xn < 1; hence (3.4.4)

holds.

Theorem 3.4.2. Let p be a prime. The negative Pell’s equation

x2 − py2 = −1

is solvable if and only if p = 2 or p ≡ 1 (mod 4).

Proof. If the considered equation has a solution (x, y), then p |
x2 + 1. Hence either p = 2 or p ≡ 1 (mod 4).

For p = 2, x = y = 1 is a solution. We show that there is a solution

for each prime p = 4t + 1. A natural starting point is the existence

of an integral solution (x0, y0) to the corresponding Pell’s equation:

x2
0 − py2

0 = 1. We observe that x0 is odd: otherwise, y2
0 ≡ py2

0 ≡ 3

(mod 4). Thus in the relation

x2
0 − 1 = (x0 − 1)(x0 + 1) = py2

0,

factors x0 + 1 and x0 − 1 have greatest common divisor 2, and con-

sequently one of them is a doubled square (to be denoted by 2x2)

and the other one 2p times a square (to be denoted by 2py2). The

case x0 + 1 = 2x2, x0 − 1 = 2py2 is impossible because it leads to a

smaller solution of Pell’s equation: x2 − py2 = 1. It follows that

x0 − 1 = 2x2, x0 + 1 = 2py2,

and therefore x2 − py2 = −1. �
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In case of solvability, the main method of determining the funda-

mental solution to negative Pell’s equation (3.4.1) involves continued

fractions. The following table contains the fundamental solutions, in

case of solvability, for d ≤ 101.

d A B d A B d A B

2 1 1 37 6 1 73 1068 125

5 2 1 41 32 5 74 43 5

10 3 1 50 7 1 82 9 1

13 18 5 53 182 25 85 378 41

17 4 1 58 99 13 89 500 53

26 5 1 61 29718 3805 97 5604 569

29 70 13 65 8 1 101 10 1

Example 1. Show that the equation

x2 − 34y2 = −1

is not solvable.

Solution. The fundamental solution of Pell’s resolvent is (35, 6). If

the equation x2 −34y2 = −1 were solvable and had the fundamental

solution (A,B), then (A+B
√

34)2 = 35+6
√

34, i.e., A2+34B2 = 35

and 2AB = 6. But this system of equations has no solutions in

positive integers, and thus our equation is not solvable.

Example 2. Find all pairs of positive integers (k,m) such that

k < m and

1 + 2 + · · · + k = (k + 1) + (k + 2) + · · · + m.

(College Mathematics Journal)
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Solution. Adding 1 + 2 + · · ·+ k to both sides, we get 2k(k + 1) =

m(m + 1), which can be rewritten as

(2m + 1)2 − 2(2k + 1)2 = −1.

The negative Pell’s equation x2 − 2y2 = −1 has (1, 1) as its least

positive solution. From (3.4.2), its general solution (xn, yn) is given

by

xn = un + 2vn, yn = un + vn, n ≥ 0,

where

un =
1
2

[
(3 + 2

√
2)n + (3 − 2

√
2)n
]
,

vn =
1

2
√

2

[
(3 + 2

√
2)n − (3 − 2

√
2)n
]
, n ≥ 0.

Then

xn =
1
2

[
(1 +

√
2)2n−1 + (1 −

√
2)2n−1

]
,

yn =
1

2
√

2

[
(1 +

√
2)2n−1 − (1 −

√
2)2n−1

]
, n ≥ 1.

Since x2 − 2y2 = −1 implies that x2 is odd, x is of the form 2l + 1.

Then y2 = 2l2 + 2l + 1 implies that y is odd.

The desired pairs are

(k,m) =
(

yn − 1
2

,
xn − 1

2

)

, n ≥ 2.

Exercises and Problems

1. Find all pairs (x, y) of positive integers satisfying the equation

x2 − 6xy + y2 = 1.

(Titu Andreescu)
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2. Prove that there are infinitely many positive integers n such

that n2 + 1 divides n!.

(Kvant)

3. Let an =
[√

n2 + (n + 1)2
]
, n ≥ 1. Prove that there are infi-

nitely many n’s such that an − an−1 > 1 and an+1 − an = 1.

4. Let k be an integer greater than 2. Prove that

x2 − (k2 − 4)y2 = −1

is solvable if and only if k = 3.

5. Prove that if a2+1
b2

+ 4 is a perfect square, then this square is 9.

6. Find all pairs (m,n) of integers such that mn + m and mn + n

are both squares.

(Titu Andreescu, Iurie Boreico)





I.4

Some Advanced Methods for Solving

A field is a set k equipped with two commutative binary operations,

addition and multiplication, such that

• (k,+) is an abelian group under addition;

• every nonzero element of k has a multiplicative inverse, and

(k∗, ·) is an abelian group under multiplication, where k∗ =

k \ {0k};

• 0k �= 1k;

• the distributive law holds: (a + b)c = ac + bc for all a, b, c ∈ k.

Standard examples of fields are Q, R, C, Zp for p prime.

A commutative ring is just like a field except that not every

nonzero element need have a multiplicative inverse. Examples of

commutative rings are Z, Zn (the set of residues modulo n), k[x]

(the set of all polynomials with coefficients in the field k).

T. Andreescu et al., An Introduction to Diophantine Equations: A Problem-Based Approach, 147
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An element of a ring R with a multiplicative inverse is called a unit.

The set of units of R, denoted by R∗, is a multiplicative group under

the multiplication of R. For the previous examples of commutative

rings we have

Z
∗ = {−1, 1}, Z

∗
n = {â ∈ Zn : gcd(a, n) = 1}, k[x]∗ = k \ {0F }

for k a field.

A zero-divisor of a ring R is a nonzero element r ∈ R such that

rs = 0 for some nonzero s ∈ R. A commutative ring without zero-

divisors is called an integral domain. A few examples of rings with

zero-divisors are Zn for n not prime (for example in Z6, 2̂ · 3̂ = 0̂).

A noncommutative example is in M2(Q), where, for example,
⎡

⎣
1 −1

1 −1

⎤

⎦

⎡

⎣
1 1

1 1

⎤

⎦ =

⎡

⎣
0 0

0 0

⎤

⎦ .

Any element that is a unit of a ring will never be a zero-divisor.

Examples of integral domains are any field, Z, k[x] where k is any

field.

The ring R is called Euclidean domain (ED) if there exists a func-

tion λ : R − {0} → N
0 with the following property: for any two

a, b ∈ R, b �= 0, one can find some c, d ∈ R such that a = cb + d and

either d = 0, or λ(d) < λ(b).

For example, the rings Z and k[x] (k a field) are both Euclidean

domains: for λ take the absolute value in Z, or the degree of poly-

nomials in k[x].

An ideal I of a ring R is a subset of R closed under addition,

subtraction, and multiplication by elements of R: if x, y ∈ I and
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r ∈ R, then x + y, x − y, rx ∈ R. In other words, I is a subset of R

that is an R-module, called also an R-submodule. Further, an ideal I

is principal if it generated by one element as an R-module: for some

a ∈ I, I = {ra | r ∈ R}. We write I = (a).

In a Euclidean domain R every ideal is principal.

A ring R is a principal ideal domain (PID) if every ideal in it is

principal.

Thus, every ED is also a PID.

For a ring R, a, b ∈ R are associated if a = ub for some unit u ∈ R.

An element p ∈ R is irreducible if a | p implies that a is a unit or a

is associated with p. A nonunit p ∈ R is prime if p �= 0 and p | ab

implies p | a or p | b.

Note that irreducible and prime elements do not always coincide in

rings, but they do so in PIDs, where these notions can be translated

easily into the language of ideals.

We similarly defined greatest common divisors for two or more

elements of R. It is not true that these exist in arbitrary rings, but

they do in PIDs: if a, b ∈ R, then gcd(a, b) is an element d such that

(a, b) = (d).

Finally, two elements are relatively prime if gcd(a, b) = 1. In PIDs

this means that a and b generate the whole ring R.

In PIDs, the notions of prime and irreducible elements are equiv-

alent.

In a PID R, any increasing sequence of ideals eventually stabilizes.

Consequently, for any prime element p and any a ∈ R, a �= 0, there

is a unique nonnegative integer n such that pn | a but pn+1
� a.
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This n is called the order of p in a, denoted by n = ordpa. Note

that for any a, b �= 0, ordpab = ordpa + ordpb. Here follows the main

theorem of this section, stating that any every is a unique factor-

ization domain (UFD). For this, note that a PID can be thought

of as a disjoint union of subsets of associated elements. If one ele-

ment in a subset is prime, then all of its associates are also prime.

From each such subset consisting of prime elements we choose one

representative, and we denote the set of such representatives by S.

We have the following important result:

Theorem. Let R be a PID, and let S be a set of representatives of

all subsets of associated prime elements in R. Then for every a ∈ R,

a �= 0,

a = u
∏

p

pe(p),

where u is a unit in R, and the product is taken over all elements

p ∈ S. This factorization is unique up to the choice of S (up to

units), and the exponents are uniquely defined by e(p) = ordpa.

Note that ED ⇒ PID ⇒ UFD, but the opposite implications are

not true. It is hard to find counterexamples of rings that are PIDs

but not EDs. However, consider any ring of polynomials over any

field k in more than one variable: k[x, y]. This is evidently a UFD,

but is certainly not a PID: the ideal generated by the two variables

(x, y) is not principal. Further, do not get the wrong idea that all

rings are UFDs!

You will see some examples in Section 4.2.
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4.1 The Ring Z[i] of Gaussian Integers

A Gaussian integer is a complex number whose real part and imag-

inary part are both integers. The Gaussian integers, with ordinary

addition and multiplication of complex numbers, form an integral

domain, usually denoted by Z[i]. This domain cannot be turned into

an ordered ring, since it contains a square root of −1. Formally, the

set of Gaussian integers is

Z[i] = {a + bi | a, b ∈ Z}.

For α = a + bi in Z[i], set the norm of α to be

N(α) = a2 + b2,

which is a nonnegative integer. This norm is multiplicative (N(αβ) =

N(α)N(β)) and it gives a measure of the size of elements. For an

integer a ∈ Z, its norm is its square: N(a) = a2. In particular,

N(1) = 1.

Theorem 4.1.1. The units in Z[i] are 1, −1, i, and −i, namely

the elements of norm 1.

Proof. Because 1 · 1 = 1, (−1)(−1) = 1, and i(−i) = 1, these

four elements are all units in Z[i]. Conversely, if u is a unit in Z[i]

then uv = 1 for some v in Z[i]. Taking the norm of both sides yields

N(u)N(v) = 1. This last equation is in the positive integers, so N(u)

and N(v) both must be 1. Writing u = a + bi, we have a2 + b2 = 1.

The only solutions to this in integers are (a, b) = (±1, 0) and (0,±1),

which yield the four numbers 1, −1, i, and −i. �

A global way of writing the units in Z[i] is ik, k = 0, 1, 2, 3.
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Like Z, there is a division theorem in Z[i]. To measure the size of

a remainder under division, we use the norm:

Theorem 4.1.2. For any α and β in Z[i] with β �= 0, there are γ

and ρ in Z[i] such that

α = βγ + ρ, N(ρ) ≤ 1
2
N(β) < N(β).

Proof. The norm on Z[i] is closely related to the absolute value

on C: N(a + bi) = |a + bi|2. The absolute value on C is our way of

measuring distances in C, and we will take advantage of this.

In C, the farthest a complex number can be from an element of Z[i]

is 1/
√

2, since the center points of 1× 1 squares with vertices in Z[i]

are at distance 1/
√

2 from the vertices. Now consider the ratio α/β

as a complex number and place it in a 1 × 1 square having vertices

in Z[i]. Let γ ∈ Z[i] be the vertex of the square that is nearest to

α/β, so |α/β − γ| ≤ 1/
√

2. Multiplying through by |β|, we obtain

|α − βγ| ≤ (1/
√

2)|β|. Squaring both sides and recalling that the

squared complex absolute value on Z[i] is the norm, we obtain

N(α − βγ) ≤ 1
2
N(β).

Now set ρ = α − βγ. �

Remark. Unlike the situation in Z, the quotient and remainder

in Z[i] are not unique. For example, take α = 37+2i and β = 11+2i.

You can check that

α = β · 3 + (4 − 4i), α = β(3 − i) + (2 + 7i).

Here both remainders have norm less than N(β) = 125 (in fact,

less than 125/2). The proof of Theorem 4.1.2 explains geometrically
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why the quotient and remainder in Z[i] are not unique: α/β is closer

to two vertices in the 1× 1 square containing it than the length of a

(half-)diagonal of the square.

This lack of uniqueness in the quotient and remainder is not a

major drawback, since the main consequence of the division theorem,

such as Euclid’s algorithm and unique factorization, do not actually

use the uniqueness. The main thing is just having the remainder less

(by some measure) than the divisor, and that is what Theorem 4.1.2

says.

Corollary 4.1.3. The ring Z[i] has unique factorization, and in

fact is a principal ideal domain.

Proof. Every domain having a division theorem is a PID and a

UFD, by the same proof as in Z. �

Here are some examples of primes in Z[i]:

1 + i, 3, 1 + 2i, 1 − 2i, 7, 11, 2 + 3i, 2 − 3i.

Note that 2 and 5 are not here, because they are not prime in Z[i]:

2 = (1 + i)(1 − i) and 5 = (1 + 2i)(1 − 2i).

Example 1. Using properties of the ring Z[i] find all Pythagorean

triples.

Solution. An elementary approach was featured in Section 2.2.

Here we use the uniqueness of the prime factorization in Z[i].

Suppose that (x, y, z) is a solution to x2 + y2 = z2 with

gcd(x, y) = 1.
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Thus one of x and y is odd and hence z is odd. We can rewrite

x2 + y2 = z2 in Z[i] as

(x + iy)(x − iy) = z2. (1)

We claim that gcd(x + iy, x − iy) = 1. Indeed, let d ∈ Z[i] be

irreducible and let d divide x + iy and x − iy. Then d | 2x and

d | 2y. If d | 2, this contradicts the fact that z is odd. Hence d | x

and d | y. Take norms to conclude that N(d) | x2 and N(d) | y2.

But gcd(x, y) = 1. Hence x + iy and x − iy are relatively prime in

Z[i]. Hence x + iy = u(a + ib)2 for some unit u and a, b ∈ Z. Hence

x + iy = u(a2 − b2 + 2abi). By taking u = 1 we get x = a2 − b2,

y = 2ab and therefore z = a2 + b2. By taking other values of u we

get similar expressions for x, y, z.

Conversely, x = a2−b2, y = 2ab, and z = a2+b2 satisfy x2+y2 = z2

for all a, b ∈ Z. Thus we have found all the Pythagorean triples.

Example 2. Solve the equation

x2 + y2 = zn,

where n is an integer greater than 1 and x, y are relatively prime.

Solution. For n = 2, the solutions are the Pythagorean triples

discussed extensively in Section 2.2 and Example 1 above. For n ≥ 3

we use again the uniqueness of prime factorization in the ring Z[i].

We may assume that x and y are relatively prime and write the

equation as

(x + iy)(x − iy) = zn.

It follows that gcd(x + iy, x − iy) = 1 in Z[i]. Indeed, one easily

sees that gcd(x + iy, x− iy) divides gcd(2x, 2y) = 2. But in Z[i], the
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number 2 = −i(1+i)2 is up to units the square of the prime 1+i, and

if 1 + i divides both factors, then 2 | z and we get a contradiction

mod 8. Hence x + iy = (a + ib)n for some integers a and b with

a2 + b2 = z. Then x = An and y = Bn, where

An =
�n

2 �∑

k=0

(−1)k

(
n

2k

)

an−2kb2k,

Bn =
�n−1

2 �
∑

k=0

(−1)k
(

n

2k + 1

)

an−1−2kb2k+1,

and the general solution is given by triples

(
dnAn, dnBn, d2

(
a2 + b2

))
,

where a, b, d ∈ Z.

The following table contains the first few values of An and Bn up

to multiplication by an appropriate factor.

n An Bn

0 1 0

1 a b

2 a2 − b2 2ab

3 a3 − 3ab2 3a2b − b3

4 a4 − 6a2b2 + b4 4a3b − 4ab3

5 a5 − 10a3b2 + 5ab4 5a4b − 10a2b3 + b5

6 a6 − 15a4b2 + 15a2b4 − b6 6a5b − 20a3b3 + 6ab5

7 a7 − 21a5b2 + 35a3b4 − 7ab6 7a6b − 35a4b3 + 21a2b5 − b7

8 a8 − 28a6b2 + 70a4b4 − 28a2b6 + b8 8a7b − 56a5b3 + 56a3b5 − 8ab7

Remarks. (1) The integers u = a4 − 6a2b2 + b4 and v = a3b− ab3

cannot both be squares of nonzero integers. Indeed, if u = s2 and
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v = t2 for some nonzero integers s and t, then s4 + (2t)4 = u2 +

(4v)2 = (a2 + b2)4, contradicting Fermat’s last theorem (see also

Corollary 2.3.5).

(2) The integers u = a6 − 15a4b2 + 15a2b4 − b6 and v = 6a5b −
20a3b3 + 6ab5 cannot both be cubes of nonzero integers. Indeed, if

u = s3 and v = t3, then s6 + t6 = u2 + v2 = (a2 + b2)6, again

contradicting Fermat’s last theorem.

(3) In general, for n = 2m, the integers An and Bn cannot both

be the mth powers of nonzero integers.

Example 3. Solve the equation

x2 + 1 = yn,

where n is an integer greater than 1.

Solution. (V.A. Lebesgue) For n even, the equation has solutions

(0, 1) and (0,−1) only. For n odd, we may assume without loss of

generality that n is a prime p ≥ 3. Indeed, if n = q · k, where q is an

odd prime, we get an equation of the same type: x2 + 1 = (yk)q.

We will use the uniqueness of prime factorization in the Gaussian

ring Z[i].

Clearly, x is even and y is odd. We have (1 + ix)(1 − ix) = yp.

Moreover, the integers 1 + ix and 1 − ix are relatively prime in

Z[i]. Indeed, let z = gcd(1 + ix, 1 − ix), z = a + bi. We have z |
(1 + ix) + (1 − ix) = 2; hence z | 2. It follows that z · z | 4, i.e.,

a2 + b2 | 4. On the other hand, z | 1 + ix implies z | 1 − ix, so

a2 + b2 | 1 + x2. But x is even, so a2 + b2 is odd. Thus a2 + b2 = 1,

implying that z is a unit in Z[i].
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Because 1+ix and 1−ix are relatively prime, from (1+ix)(1−ix) =

yp it follows that 1 + ix = a(u + iv)p, where a is a unit and u and

v have different parities. Since p is odd, every unit is a pth power

and therefore we can drop the unit here; hence we can assume that

1+ ix = (u+ iv)p. Using the binomial expansion and identifying the

real parts, we get

1 = up −
(

p

2

)

up−2v2 +
(

p

4

)

up−4v4 − · · · ±
(

p

p − 1

)

uvp−1.

Hence u | 1, implying u = ±1, and so v is even. We obtain up ≡ 1

(mod 4), and since p is odd, it follows that u = 1. Dividing by v2 �= 0,

we get (
p

2

)

=
(

p

4

)

v2 −
(

p

6

)

v4 + · · · ±
(

p

p − 1

)

vp−3.

This is a contradiction, because the exponent of 2 in the left-hand

side is less than the exponent of 2 in the right-hand side. Indeed, for

k = 1, 2, . . . , we have
(

p

2k

)

v2k−2 =
p(p − 1)

2

(
p − 2
2k − 2

)
2v2k−2

(2k − 1)2k
.

In conclusion, for p ≥ 3, there are no solutions different from the

trivial (0, 1).

Example 4. Solve the equation

x2 + 4 = y3.

(Fermat)

Solution. Let x be odd. The equation can be written as (2+ix)(2−
ix) = y3. We will show that 2 + ix and 2− ix are relatively prime in

the ring Z[i]. Indeed, let z = gcd(2 + ix, 2 − ix), z = c + di. Then z
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divides (2+ix)+(2−ix) = 4 hence; z | 4. It follows that z ·z = c2+d2

divides 16. On the other hand, z | 2 + ix implies z | 2 − ix; hence

c2 + d2 | 4 + x2. But x is odd, so c2 + d2 = 1, implying that z is a

unit in Z[i].

Because 2+ix and 2−ix are relatively prime, from (2+ix)(2−ix) =

y3 it follows that 2 + ix = (a + bi)3 for some integers a and b.

Identifying the real and imaginary parts, we get a(a2 − 3b2) = 2 and

3a2b − b3 = x. The first equation gives a = ±1 or a = ±2, yielding

x = ±11 and y = 5.

If x is even, then y is even. Let x = 2u and y = 2v. The equation

becomes u2 + 1 = 2v3, i.e., (u + i)(u − i) = 2v3. Because gcd(u +

i, u − i) = 1 and 2 = (1 + i)(1 − i), using again the uniqueness of

prime factorization in Z[i], we obtain

u + i = (1 + i)(a + bi)3,

for some integers a and b.

Identifying the real and imaginary parts, we get

a3 − 3a2b − 3ab2 + b3 = u and a3 + 3a2b − 3ab2 − b3 = 1.

The last relation can be written as

(a − b)(a2 + 4ab + b2) = 1,

yielding the systems
⎧
⎨

⎩

a − b = 1,

a2 + 4ab + b2 = 1,
and

⎧
⎨

⎩

a − b = −1,

a2 + 4ab + b2 = −1.

The second system has no solutions. Indeed, one can observe that

a2 + 4ab + b2 = (a + 2b)2 − 3b2 ≡ 0, 1 (mod 3).
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The first system has integer solutions: (a, b) = (1, 0) and (a, b) =

(0,−1), yielding (x, y) = (2, 2) and (x, y) = (−2, 2).

Remark. The equation x2 + k = y3, where k is a nonzero integer,

is called Mordell’s equation (after L. Mordell (1888–1972)). Mordell

proved in 1922 that for every nonzero integer k, the equation only

has finitely many integral solutions. The study of this equation is

complicated and involves advanced methods. For instance, the inte-

gral solutions to x2 − 24 = y3 are (±4,−2), (±5, 1), (±32, 10), and

(±736844, 8158).

The result in Theorem 2.3.1 also holds in the ring Z[i], that is, the

solutions to the equation xy = zw are x = mn, y = pq, z = mp,

w = nq, where m,n, p, q ∈ Z[i] and gcd(n, p) = 1.

Example 5. If a, b, c, d are positive integers such that a2+b2 = cd,

then there are integers x, y, z, w, t such that

a = t(xz− yw), b = t(xw + yz), c = t(x2 + y2), d = t(z2 +w2).

Solution. Let t = gcd(a, b, c, d), a = ta1, b = tb1, c = tc1, and

d = td1. Then

a2
1 + b2

1 = c1d1,

which can be rewritten as

(a1 + b1i)(a1 − b1i) = c1d1.

From the remark above there are m,n, p, q ∈ Z[i] such that

a1 + b1i = mn, a1 − b1i = pq, c1 = np, d1 = mq. (1)

Because np and mq are positive integers, it follows that n = kp

and q = lm for some positive rational numbers k and l. On the other

hand, |mn| = |pq| implies |kmp| = |lpm| and k = l.
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Let u and v be relatively prime positive integers such that k = u
v .

Then

a1 + b1i =
u

v
mp, a1 − b1i =

u

v
pm, c1 =

u

v
pp, d1 =

u

v
mm.

This means that u | a, b, c, d and thus u = 1. We also have

a1 + b1i =
v

u
nq, a1 − b1i =

v

u
qn, c1 =

v

u
nn, d1 =

v

u
qq,

implying v | a, b, c, d and thus v = 1. Let n = x+ yi and m = z +wi,

where x, y, z, w ∈ Z. Then (1) yields

a1 = xz − yw, b1 = xw + yz, c1 = x2 + y2, d1 = z2 + w2

and thus

a = t(xz− yw), b = t(xw + yz), c = t(x2 + y2), d = t(z2 + w2).

Example 6. If a, b, c are positive integers such that ab = c2 + 1,

then a and b can be written as sums of two integer squares.

Solution. From the previous problem, there are integers x, y, z, t

such that

t(x2 + y2) = a, t(z2 + w2) = b, t(xz− yw) = c, t(xw + yz) = 1.

This implies t = 1 and a = x2 + y2, b = z2 + w2.

Remarks. (1) We can use the result above to prove in a simple

way the well-known fact that every prime p of the form 4k + 1 can

be written as a sum of two squares.

Indeed, by Wilson’s theorem,

−1 ≡ (p − 1)! = 1 · 2 · · · 4k = (2k)!(2k + 1)(2k + 2) · · · 4k
≡ (2k)!(−1)2k(p − (2k + 1))(p − (2k + 2)) · · · (p − 4k)

= (2k)!(2k)(2k − 1) · · · 1 = ((2k)!)2 (mod p).
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Hence

((2k)!)2 + 1 = ap,

for some positive integer a, and the conclusion follows.

(2) We can give another solution to Problem 8 in Section 1.4, that

is, to prove that the equation 4xy − x − y = z2 has no solutions in

positive integers. Indeed, from

(4x − 1)(4y − 1) = (2z)2 + 1

we get

4x − 1 = t(u2 + v2), 4y − 1 = t(s2 + w2), 2z = t(us − vw),

with t(uw + vs) = 1. Hence t = 1, 4x − 1 = u2 + v2, implying

u2 + v2 ≡ 3 (mod 4), a contradiction.

Example 7. Find all quadruples (u, v, w, s) satisfying the gener-

alized Pythagorean equation

r2 + u2 + v2 = s2.

Solution. Write the equation as

u2 + v2 = s2 − r2,

that is,

u2 + v2 = (s + r)(s − r).

Applying the result in a previous problem for a = u, b = v, c =

s − r, and d = s + r, we obtain

u = t(xz − yw), v = t(xw + yz),
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s + r = t(x2 + y2), s − r = t(z2 + w2).

For t = 2, this yields the solution

r = x2 + y2 − z2 − w2, s = x2 + y2 + z2 + w2,

u = 2(xz − yw), v = 2(xw + yz),

which is mentioned in Remark 2 after Theorem 2.2.3.

Exercises and Problems

1. Solve the equation

x2 + 4 = yn,

where n is an integer greater than 1.

2. Solve the equation

x2 + 9 = yn,

where n is an integer greater than 1.

3. Let p = 4m − 1 be a prime and let x and y be relatively prime

integers such that

x2 + y2 = z2m

for some integer z. Prove that p | xy.

(American Mathematical Monthly)

4.2 The Ring of Integers of Q[
√

d]

Let us consider the field

Q[
√

d] =
{
m + n

√
d : m,n ∈ Q

}
,
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where d is a nonzero square-free integer. An element ε ∈ Q[
√

d] is

called a unit if there exists ε1 ∈ Q[
√

d] such that εε1 = ε1ε = 1.

If μ ∈ Q[
√

d], μ = a + b
√

d, we will denote by μ the element

μ = a − b
√

d and will call it the conjugate of μ.

Let us denote by N : Q[
√

d] → Z the norm function: if μ = a+b
√

d,

then

N(μ) = a2 − db2 = μ · μ.

Proposition 4.2.1. (N is multiplicative) For all μ1, μ2 ∈ Q[
√

d],

N(μ1μ2) = N(μ1)N(μ2).

Proof. If μ1 = m1 + n1

√
d and μ2 = m2 + n2

√
d, then

μ1μ2 = (m1m2 + dn1n2) + (m1n2 + m2n1)
√

d

and

N(μ1μ2) = (m1m2 + dn1n2)2 − d(m1n2 + m2n1)2

= m2
1m

2
2 + d2n2

1n
2
2 − dm2

1n
2
2 − dm2

2n
2
1

= m2
1(m

2
2 − dn2

2) − dn2
1(m

2
2 − dn2

2)

= (m2
1 − dn2

1)(m
2
2 − dn2

2) = N(μ1)N(μ2).

Proposition 4.2.2. (the conjugate is multiplicative) For all

μ1, μ2 ∈ Q[
√

d],

μ1μ2 = μ1μ2.

Proof. If μ1 = m1 + n1

√
d and μ2 = m2 + n2

√
d, then

μ1μ2 = (m1m2 + dn1n2) + (m1n2 + m2n1)
√

d
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and

μ1μ2 = (m1m2 + dn1n2) − (m1n2 + m2n1)
√

d

= (m1 − n1

√
d)(m2 − n2

√
d) = μ1μ2.

Remark. Proposition 4.2.2 gives another proof of the fact that N

is multiplicative. Indeed,

N(μ1μ2) = (μ1μ2)(μ1μ2) = (μ1μ2)(μ1μ2)

= (μ1μ1)(μ2μ2) = N(μ1)N(μ2).

The important part of these algebraic preliminaries connected to

Diophantine equations pertains to the ring of integers of Q[
√

d]. In

this respect we have the following result.

Theorem 4.2.3. If d ≡ 2, 3 (mod 4), then the ring of integers

of Q[
√

d] is Z[
√

d] = Z + Z

√
d. If d ≡ 1 (mod 4), then the ring of

integers of Q[
√

d] is Z[(−1 +
√

d)/2] = Z + Z((−1 +
√

d)/2).

In the case of the ring R = Z[
√

d], the units ε are the elements

satisfying the relation N(ε) = ±1.

Indeed, if ε is a unit in R, then there exists ε1 ∈ R such that

εε1 = 1. Then from Proposition 4.2.1,

N(ε)N(ε1) = 12 − d02 = 1.

Since N(ε) and N(ε1) are integers, it follows that N(ε) = ±1.

Conversely, if N(ε) = ±1, then N(ε) = εε yields εε = ±1. If N(ε) =

1, then εε = 1, and if N(ε) = −1, then ε(−ε) = 1. Both cases show

that ε is a unit in R.

One of the main problems is to find all d for which the ring of in-

tegers of Q[
√

d] is a UFD. This problem was first solved for d < 0 by
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Kurt Heegner (Diophantine Analysis und Modulfunktionen, Mathe-

matische Zeitschrift, vol. 56, 1952, pp. 227–253) and independently

by Stark and A. Baker in 1966. For d < 0 the result is the following.

Theorem 4.2.4. The ring of integers in Q[
√

d] with d < 0 and

square-free is a UFD exactly when

d ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163}.

As an example, consider the ring Z[−√
5], which is the ring of

integers in Q[
√−5] because −5 ≡ 3 (mod 4). We have 21 = 3 · 7 =

(1+2
√−5)(1−2

√−5), two factorizations of 21 showing that Z[
√−5]

is not a UFD. Another example is

6 = 2 · 3 = (1 +
√−5)(1 −√−5).

Little is known about the UFD property of Q[
√

d] for d > 0. What

we know is that Q[
√

d] is a UFD for d = 2, 3, 5, 6, 7, 11, 13, 14, 17,

19, 21, 22, 23, 29, 33, 37, 41, 53, 57, 61, 69, 73, 77, 89, 93, 97.

In what follows we investigate Pell’s equation x2 − dy2 = 1 using

the results involving Z[
√

d]. Recall that for
√

d �∈ Q this equation

is always solvable and let (x1, y1) be its fundamental solution (see

Section 3.2).

Theorem 4.2.5. If z1 = x1 + y1

√
d is the minimal element of

Z[
√

d], with z1 > 1 and N(z1) = 1, then all elements z ∈ Z[
√

d] with

N(x) = 1 are given by z = ±zn
1 , n ∈ Z.

Proof. Suppose N(z) for some z > 1. There is a unique integer k

such that zk
1 ≤ z < zk+1

1 . Then z′ = z · z−k
1 satisfies 1 ≤ z′ < z1 and

N(z′) = N(z)N(z1)−k = N(z) = 1. From the minimality of z1, it

follows that z′ = 1; hence z = zk
1 , k ∈ Z. �
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Remarks. (1) If (x1, y1) is the fundamental solution to Pell’s

equation x2 − dy2 = 1, then all solutions in nonnegative integers

to this equation are given by

xn + yn

√
d = (x1 + y1

√
d)n, n = 0, 1, 2, . . . .

(2) The solution (xn, yn) can be expressed as

xn =
1
2
(zn

1 + zn
1 ), yn =

1
2
√

d
(zn

1 − zn
1 ),

where z1 = x1 − y1

√
d is the conjugate of z1 in Z[

√
d].

Concerning the negative Pell’s equation x2−dy2 = −1 (see Section

3.4), we can derive the following result.

Theorem 4.2.6. The equation x2 − dy2 = −1 is solvable if and

only if the equation z2 = z1 is solvable in Z[
√

d].

Proof. The “if” part is clear.

For the other implication, take the least z ∈ Z[
√

d], z > 1, that is a

solution to the equation N(z) = −1. As in the proof of Theorem 4.2.5

we deduce that 1 ≤ z < z1. But z2 < z2
1 is a solution to N(z) = 1,

and hence z2 = z1. �

Consider the general Pell’s equation N(z) = a, where a is a

nonzero integer. As in Theorem 4.2.5 we can show that all of its

solutions are obtained from its solutions z with 1 < z ≤ z1, where

z1 is the fundamental solution to Pell’s equation N(z) = 1. Thus it

is always sufficient to check finitely many values of z = x + y
√

d.

Moreover, there are simple upper bounds for x and y.

Theorem 4.2.7. If the equation x2 − dy2 = a is solvable in inte-

gers, then there is a solution z = x + y
√

d with

|x| ≤ z1 + 1
2
√

z1

√
|a|
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and the corresponding upper bound for y =
√

x2−a
d .

Proof. Let z′ be a solution to N(z) = a. There is an integer m

such that √

|a|
z1

≤ zm
1 z′ <

√
|a|z1.

Then z = zm
1 z′ = x + y

√
d is a solution to N(z) = a satisfying

2|x| =
∣
∣
∣z +

a

z

∣
∣
∣ ≤ max

t∈
�� |a|

z1
,
√

|a|z1|
�

∣
∣
∣
∣t +

|a|
t

∣
∣
∣
∣ =

z1 + 1√
z1

√
|a|,

where we used the fact that the convex function t 	→ t+
|a|
t

achieves

its maximum at the endpoints of the interval
[√ |a|

z1
,
√|a|z1

]

. �

For example, for the equation x2 − 7y2 = 2, the fundamental so-

lution to the corresponding Pell’s equation is z1 = 8 + 3
√

7. We can

found solutions z = x + y
√

7 to N(z) = 2 from the inequalities

x ≤ z1 + 1
2
√

z1

√
|a| =

9 + 3
√

7

2
√

8 + 3
√

7

√
2 = 3

and

y =

√
x2 − 2

7
≤
√

32 − 2
7

= 1.

The only such solution is 3 +
√

7. It follows that all solutions to

x2 − 7y2 = 2 are (xn, yn), where

xn + yn

√
7 = (3 +

√
7)(8 + 3

√
7)n, n = 0, 1, . . .

A general strategy for solving a certain type of Diophantine equa-

tions is summarized below.

Step 1. Represent the equation in the form:

(a1 + b1

√
d)(a1 − b1

√
d) = e · cn,
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where a1, b1, a2, b2, c, e ∈ Z, d ∈ Z, d < 0 and square-free, n ∈ N.

Preferably, e should be something simple, like a unit or a prime in

the ring of integers in Q[
√

d]. Some of the above numbers can be

constants, while others can be unknowns.

Step 2. If d happens to be one of the negative integers in The-

orem 4.2.4, we are in good shape. If not, check to see whether you

can factor different expressions (possibly on the “other side” of the

equation) so as to reduce to Theorem 4.2.4.

Step 3. Check d modulo 4 and use Theorem 4.2.3 to decide what

the ring of integers of Q[
√

d] looks like. From now on, you will work

either in Z[
√

d] or in Z[(−1+
√

d)/2], and all arguments about units,

primes, and factorization will be made in this ring, which we denote

by Ωd. By now, you should have determined that Ωd is a UFD, or

else this method won’t work.

Step 4. Determine all units of Ωd. The following theorem answers

this question in a more general setting, but you may want, instead of

memorizing it, to try to remember how to derive its result. Clearly,

Ω−1 = Z[i].

Theorem 4.2.8. Let d < 0 be a square-free integer, and let Ud

denote the group of units in Ωd. Then

1. U−1 = {1,−1, i,−i};

2. U−3 = {1,−1, ω,−ω, ω2,−ω2}, where ω = −1+
√−3
2 is a third

root of unity;

3. U−d = {1,−1} for d < −3 or d = −2.
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Step 5. Investigate whether an integer prime p ∈ Z remains prime

in Ωd, and if not, what its prime factorization is.

Step 6. Investigate whether (a1 + b1

√
d) and (a1 − b1

√
d) are

relatively prime, and if not, what their common divisors in Ωd can

be.

In a UFD, ab = cn, where a, b are relatively prime, implies a = u1c
n
1

and b = u2c
n
2 for some u1, u2 units in R and some elements c1, c2 ∈ R

such that u1u2 = 1 and c1c2 = c.

Example 1. The equation x3 − 2 = y2 has (3,±5) as its only

solutions in integers.

(Fermat)

Solution. Write x3 = u2 + 2 = (y +
√−2)(y +

√−2). Note that

y must be odd (otherwise y2 + 2 ≡ 2 (mod 4), and no cube is ≡ 2

(mod 4)). Now let δ = gcd(y +
√−2, y +

√−2). Clearly δ | 2
√−2

(the difference of these values); thus δ is a power of
√−2. On the

other hand, if
√−2 | (y±√−2), then it divides the product of these

factors, which is x3 = y2 + 2. But x is odd; hence
√−2 � δ.

We have seen that y +
√−2 and y +

√−2 are relatively prime and

that their product is a cube. Since Z[
√−2] is a UFD, this implies

that the factors are cubes up to units. Since the only units are ±1

and since these are cubes, it follows that y +
√−2 = (a + b

√−2)3.

Comparing real and imaginary parts, we obtain y = a3 − 6ab2 and

1 = 3a2b− 2b3. The last equation shows that 1 = b(3a2 − 2b2); hence

b = ±1 and therefore a = ±1. This shows that y = ±5 and x = 3.

Example 2. Solve in integers the equation

x2 + 8 = y3.
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Solution. We will prove that the only solution is (0, 2). For x even,

x = 2u, y is also even, y = 2v, and the equation becomes u2+2 = 2v3.

It follows that u = 2w, yielding 2w2 + 1 = v3. Using the uniqueness

of the prime factorization in Z[
√−2], we have

±(1 + w
√−2) = (a + b

√−2)3 (1)

for some integers a and b.

Identifying the rational parts, it follows that ±1 = a3 − 6ab2.

Hence a | 1; so a = ±1 and b = 0. Passing to norms in (1) we get

v3 = 1 + 2w2 = (a2 + 2b2)3; therefore v = a2 + 2b2. In this case we

get v = 1; hence y = 2 and x = 0.

For x odd, the equation is equivalent to

x2 + 16 = y3 + 23 = (y + 2)(y2 − 2y + 4),

and since y is also odd, one of the factors y + 2 and y2 − 2y + 4 is of

the form 4m + 3, contradicting the result in Theorem 4.4.2.

Example 3. Euler’s approach to Fermat’s last theorem for n = 3.

This case was completely solved in Section 2.3.2. We discuss here

Euler’s attempt to prove that the equation x3 + y3 = z3 has no

nontrivial solutions by using properties of the field Q[
√−3].

Euler started with gcd(x, y, z) = 1. If both x and y are odd, then

x+y and x−y are both even, say 2p and 2q, respectively, so x = p+q,

y = p − q, and

x3 + y3 = (x + y)(x2 − xy + y2) = 2p(p2 + 3q2).

Since x and y are odd and relatively prime, p and q must be

of opposite parities and relatively prime. And since x3 + y3 = z3,
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2p(p2 + 3q2) must be a cube. A similar argument yields the same

conclusion if z is odd and one of x and y is even.

At this point we want to show that both 2p and p2+3q2 are cubes.

If 3 � p, this follows easily by noting that 2p and p2+3q2 are relatively

prime; if 3 | p, then we must write p = 3s, and then rewrite

2p(p2 + 3q2) = 32 · 2s(3s2 + q2),

from which we infer that 32 · 2s and 3s2 + q2 are relatively prime.

Each must therefore be a cube.

Euler noted that one way in which both 2p and p2 +3q2 are cubes

is for p and q to have the forms

p = a(a − 3b)(a + 3b), q = 3b(a − b)(a + b) (1)

(a similar expression is found for s and q when p is a multiple of 3). If

this is indeed the case, then a and b must be relatively prime, because

p and q are relatively prime, and must have opposite parities. From

here one shows that 2a, a−3b, and a+3b must be pairwise relatively

prime. Because 2p = 2a(a− 3b)(a + 3b) is a cube, each of 2a, a− 3b,

and a + 3b must be a cube. Then (a − 3b) + (a + 3b) = 2a gives a

new solution to the Fermat equation, one with 2a < z3, setting up

the infinite descent and thus proving the result. A similar argument

is used when 3 | p.

At this point, of course, we need to show that the only way for

2p and p2 + 3q2 to be both cubes is for p and q to be expressible

as in (1). It is here that the argument presented by Euler fails (he

had, however, other results on quadratic forms that he could have

used to establish this claim about p and q). Euler factors p2 + 3q2 =



172 Part I. Diophantine Equations

(p + q
√−3)(p − q

√−3) and proceeds to work in Z[
√−3]. Because

(p + q
√−3) + (p − q

√−3) = 2p,

(p + q
√−3) + (p − q

√−3) = 2q
√−3,

any common divisor of (p + q
√−3) and (p − q

√−3) would be a

divisor of 2p and of 2q
√−3. One can show that both 2 and

√−3

are irreducible in Z[
√−3] (see the argument to follow). Since p and

q have opposite parities it follows that 2 does not divide p + q
√−3,

and from the fact that 3 � p one deduces that
√−3 does not divide

p + q
√−3 either. Accordingly, any common divisor of p + q

√−3 and

p − q
√−3 must in fact be a common divisor of both p and q, which

are relatively prime. Hence p+q
√−3 and p−q

√−3 have no common

divisors in Z[
√−3] other than 1 and −1. Because their product is a

cube, Euler concludes that each must be a cube, so in fact we have

p + q
√−3 = (a + b

√−3)3,

p − q
√−3 = (a − b

√−3)3

for some integers a and b. It now follows that

p + q
√−3 = a3 + 3a2b

√−3 − 9ab2 − 3b3
√−3

= (a3 − 9ab2) + (3a2b − 3b3)
√−3,

from which the desired equations (1) follow.

The problem, of course, is that hidden in that argument is an

assumption of unique factorization: we know that p − q
√−3 and

p + q
√−3 have no common divisors in Z[

√−3] (other than 1 and

−1) and that their product is a cube. If we have unique factorization
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into irreducibles in Z[
√−3], then we are able to conclude that each

factor must itself be a cube. But in fact we do not have uniqueness:

(1 +
√−3)(1 −√−3) = 4 = (2)(2),

and each of the numbers 2, 1 +
√−3, and 1 −√−3 is irreducible in

Z[
√−3]. Thus, Euler’s argument breaks down.

Let us show, for example, that 1 +
√−3 is indeed irreducible in

Z[
√−3]. Assuming the contrary, we have 1 +

√−3 = ab, for some

a, b ∈ Z[
√−3] that are not units. Then N(1 +

√−3) = N(a · b) =

N(a) ·N(b), and so 4 = N(a) ·N(b), implying N(a) = N(b) = 2. But

if, for instance, a = u + v
√−3, then u2 + 3v2 = 2, a contradiction.

Example 4. Let S be the set of positive integers of the form a2 +

2b2, where a and b are integers and b �= 0. Prove that if p is a prime

and p2 ∈ S, then p ∈ S.

(Romanian Mathematical Olympiad)

Solution. It is clear that p > 2, since 4 �∈ S. Because p is odd, from

p2 = a2 + 2b2 it follows that a is odd, b is even, and gcd(a, b) = 1.

From

(p − a)(p + a) = 2b2,

we get

p − a = 2mA, p + a = 2nB, (1)

where A and B are odd, m ≥ 1, n ≥ 1, and m + n is odd. By adding

the equalities (1) we obtain

2p = 2mA + 2nB = 2min{m,n}C,
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where C is again odd. It follows that min{m,n} = 1 and if one of

the two exponents is 1, the other one is an even number. We need

to consider two cases.

Case 1. m = 1, n = 2r with r ≥ 1. It follows that p − a = 2A,

p + a = 22rB, and so

p2 − a2 = 22r+1AB = 2b2.

From this we deduce 22rAB = b2. Also, from (1) it is easy to see

that gcd(A,B) = 1. Hence A and B are perfect squares: A = α2,

B = β2. Using (1) again we obtain

p − a = 2α2, p + a = 22rβ2. (2)

Adding the equalities (2), we get

p = α2 + 2(2r−1β)2.

Case 2. n = 1, m = 2s with s ≥ 1. Then p−a = 22rA, p+a = 2B,

and so

p2 − a2 = 2b2 = 22r+1AB.

Similarly, we obtain b2 = 2sAB, A = α2, B = β2, and finally

p = β2 + 2(2s−1α)2.

Remark. The problem comes from a well-known fact: the ring

Z[
√−2] is a UFD.

We know that the units in this ring are ±1. If p is a prime that is

not is S, then p is irreducible and hence a prime in the ring Z[
√−2].

Indeed, from

p = (a + b
√−2)(c + d

√−2)
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we obtain

N(p) = p2 = (a2 + 2b2)(c2 + 2d2),

and since p �∈ S,

a2 + 2b2 = 1 or c2 + 2d2 = 1.

It follows that, for example, a + b
√−2 = 1 and p is irreducible.

Now let

p2 = a2 + 2b2 = (a + b
√−2)(a − b

√−2).

Using the fact that p is a prime, it follows that p | a + b
√−2 or

p | a− b
√−2. This is a contradiction, because p | a and p | b implies

a = pa1, b = pb1, and p = a2
1 + 2b2

1.

Example 5. Let a > b > c > d be positive integers and suppose

ac + bd = (b + d + a − c)(b + d − a + c).

Prove that ab + cd is not a prime.

(42nd IMO)

Solution. The equation is equivalent to

a2 − ac + c2 = b2 + bd + d2.

We will work in the ring of integers of Q[
√−3] and use the follow-

ing result.

Lemma. Let u, v, w, s be nonzero elements of the ring of integers

of Q[
√−3] such that uv = ws. Then u = xy, v = zt, w = xz, and

s = yt for some integers x, y, z, t of Q[
√−3] with gcd(y, z) = 1.

Proof. We have u
w = s

v = y
z , where gcd(y, z) = 1.
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Then uz = wy; hence y | u, yielding u = xy and w = xz for some

integer x of Q[
√−3]. Similarly, z | v, and hence v = zt and s = yt,

for some integer t ∈ Q[
√−3]. �

The condition a2 − ac + c2 = b2 + bd + d2 translates as

(a − cw)(a − cw) = (b + dw)(b + dw),

where w is the primitive cubic root of unity −1+i
√

3
2 .

The lemma gives us the existence of x, y, z, t with gcd(y, z) = 1,

a− cw = xy, a− cw = zt, b+ dw = xz, b− dw = yt. Then a−cw
b+dw =

y

z
and a−cw

b+dw =
z

y
. On the other hand, a−cw = a − cw, b+dw = b + dw,

and a−cw
b+dw = y

z . So z
y = y

z . Since gcd(y, z) = gcd(y, z) = 1, we deduce

z = y. Then t = x, since xy = a − cw, ty = a − cw are conjugates.

The conditions now read a− cw = xy, a + cw = xy, b + dw = xy,

b − dw = yx. Routine computations yield

a =
xyw − xyw√

3i
, b =

xyw − xyw√
3i

, c =
xy − xy√

3i
, d =

xy − xy√
3i

.

Then ab + cd equals

− 1
3
(xyw − xyw)(xyw − xyw) − (xy − xy)(xy − xy)

= −1
3
yy(x2(w − 1) + x2(w − 1) =

1
3
N(y)

√
3i(x2w − x2w).

If x2w = u−v
√

3i
2 , then x2w − x2w = −√

3iv, so ab + cd = N(y)v.

Therefore if ab + cd is a prime, then either N(y) = 1 or v = 1.

Let us prove that N(y) > 1. We must analyze the cases y ∈
{1,−1, w,−w,w,−w}. Let us take them one by one: y = ±1 means

a = b, and y = ±w means b = c. Next, y = ±w means a + d = 0,

which is impossible, so indeed N(y) > 1. Finally, if v = 1, then set
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x = k+li
√

3
2 , so

x2w =
3l2 − k2 + 6kl −√

3i(k2 − 3l2 − 2kl)
8

,

so v = 1 means k2 − 3l2 + 2kl = (k + l)2 − 4l2 = 4, which is possible

only for l = 0 and k = ±2, which is impossible, since k and l must

be of the same parity.

Exercises and Problems

1. Find all pairs (x, y) of positive integers such that

13x + 3 = y2.

(Mathematical Reflections)

2. Solve the equation

x2 + 3 = yn,

where n is an integer greater than 1.

3. Solve the equation

x2 + 11 = 3n,

where n is an integer greater than 1.

4. Solve the equation

x2 + x + 2 = y3.

5. Let a and b be positive integers such that b = x2−dy2 for some

integers x, y, d with d = a2 − 1. Prove that if b < 2(a + 1), then b is

a perfect square.
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4.3 Quadratic Reciprocity and Diophantine

Equations

An integer satisfying gcd(a,m) = 1 is called a quadratic residue

modulo m if x2 ≡ a (mod m) for some integer x. Otherwise, it is

called a quadratic nonresidue modulo m.

For example, 2 is a quadratic residue modulo 7 because, for in-

stance, 32 ≡ 2 (mod 7), while 3 is a nonresidue modulo 7.

Let p be an odd prime. The Legendre symbol
(

a
p

)
is defined as

follows:

(
a

p

)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if a is a quadratic residue modulo p,

−1 if a is a quadratic nonresidue modulo p,

0 if p | a.

The basic properties of Legendre symbol are given in the following

theorem.

Theorem 4.3.1. Let p be an odd prime. Then

1. a
p−1
2 ≡

(
a

p

)

(mod p),

2.
(

ab

p

)

=
(

a

p

)(
b

p

)

,

3.
(

a2

p

)

= 1, a �≡ 0 (mod p),

4. a ≡ b (mod p) implies
(

a

p

)

=
(

b

p

)

,

5.
(−1

p

)

= (−1)
p−1
2 ,

6.
(

2
p

)

= (−1)
p2−1

8 .
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Proof. (1) Note that by Fermat’s little theorem, the polynomial

xp−1−1 has all the nonzero numbers mod p as roots mod p. Factoring

this as xp−1− 1 = (x(p−1)/2 − 1)(x(p−1)/2 +1), we see that p−1
2 of the

nonzero residue classes are roots of the first factor and hence have

a(p−1)/2 ≡ 1 (mod p), and the same number are roots of the second

factor and have a(p−1)/2 ≡ −1 (mod p). If a is a quadratic residue,

then a ≡ b2 (mod p) for some b and a(p−1)/2 ≡ bp−1 ≡ 1 (mod p).

Since there are p−1
2 quadratic residues mod p, these must be the only

elements with a(p−1)/2 ≡ 1 (mod p), and the quadratic nonresidues

must have a(p−1)/2 ≡ −1 (mod p). Thus in either case,
(

a

p

)

≡ a(p−1)/2 (mod p).

(2) From (1) we get

(ab)
p−1
2 ≡

(
ab

p

)

(mod p)

and

(ab)
p−1
2 = a

p−1
2 b

p−1
2 ≡

(
a

p

)(
b

p

)

(mod p).

Therefore
(

ab

p

)

=
(

a

p

)(
b

p

)

.

(3) We obtain from (2)
(

a2

p

)

=
(

a

p

)(
a

p

)

= 1.

(4) Follows directly from the definition.

(5) Follows from (1) with a = −1. �

The most important result about quadratic residues is Gauss’s law

of quadratic reciprocity.
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Theorem 4.3.2. Let p and q be distinct odd primes. Then
(

p

q

)(
q

p

)

= (−1)
p−1
2

· q−1
2 .

For a proof of this result we refer the reader to [HaWr].

Here are some immediate consequences of the law of quadratic

reciprocity. Let p and q be distinct odd primes. Then

1. if p ≡ q ≡ 1 (mod 4), then p is a quadratic residue modulo q

if and only if q is a quadratic residue modulo p.

2. if p ≡ 1 (mod 4) and q ≡ 3 (mod 4) or vice versa, then p is

a quadratic residue modulo q if and only if q is a quadratic

residue modulo p.

3. if p ≡ q ≡ 3 (mod 4), then p is a quadratic residue modulo q

if and only if q is a quadratic nonresidue modulo p.

We will show how quadratic residues can be used in the study of

certain Diophantine equations.

Example 1. Prove that x2−17y2 = 12 is not solvable in integers.

Solution. Looking modulo 17 we have x2 ≡ 12 (mod 17), while

by the facts about the Legendre symbol and the law of quadratic

reciprocity, we have
(

12
17

)

=
(

3
17

)(
4
17

)

=
(

3
17

)(
22

17

)

=
(

3
17

)

=
(

17
3

)

(−1)
3−1
2

· 17−1
2 =

(
2
3

)

= −1,

a contradiction.

Example 2. Let p and q be distinct primes, each congruent to 3

modulo 4. Then the equation

x2 − py2 = q
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has no integral solution.

Solution. Indeed, this equation is solvable only if q is a quadratic

residue modulo p and p is a quadratic residue modulo q. But this

is not possible, according to consequence (3) of the law of quadratic

reciprocity.

Example 3. The equation x2−3y2 = p has no solution in integers

when p = 2 or p = 3.

Solution. Looking modulo 3 at the equation x2 − 3y2 = 2, we get

x2 ≡ −1 (mod 3), a contradiction. Reducing the equation x2−3y2 =

3 modulo 4, we obtain x2 + y2 ≡ 3 (mod 4), a contradiction.

Exercises and Problems

1. For a prime p, the equation x2−3y2 = p has solutions in integers

if and only if p ≡ 1 (mod 12).

2. Let p be a prime of the form 4k + 3. Prove that exactly one of

the equations x2 − py2 = ±2 is solvable.

3. Let p be a prime of the form 8k + 7. Prove that the equation

x2 − py2 = 2 is solvable.

4.4 Divisors of Certain Forms

In this section we will discuss possible divisors of expressions of the

type a2 + b2, a2 + 2b2, and a2 − 2b2, where a and b are integers.

This method goes back to Fermat and Lagrange and has multiple

applications in the study of Diophantine equations.
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4.4.1 Divisors of a2 + b2a2 + b2a2 + b2

Theorem 4.4.1. Each odd prime divisor of a2 + 1 is of the form

4k + 1.

Proof. Suppose p | a2 + 1, where p = 4m + 3. Then a2 ≡ −1

(mod p), implying ap−1 = (a2)2m+1 ≡ −1 (mod p), contradicting

Fermat’s little theorem. �

Theorem 4.4.2. (1) Let a and b be relatively prime integers and

let p be an odd prime dividing a2 + b2. Then p ≡ 1 (mod 4).

(2) If p ≡ 3 (mod 4) is a prime divisor of a2 + b2, then p | a and

p | b.

Proof. (1) Assume p | a2 + b2, with p = 4m + 3. Hence a2 ≡
−b2 (mod p), implying a2m+1 ≡ (−b2)2m+1, that is, ap−1 ≡ −bp−1

(mod p). On the other hand, gcd(a, b) = 1 implies p � a and p � b,

and using Fermat’s little theorem again, we obtain 1 ≡ −1 (mod p),

a contradiction.

(2) If gcd(a, p) = 1, then gcd(b, p) = 1, and from Fermat’s little

theorem, ap−1 ≡ 1 (mod p) and bp−1 ≡ 1 (mod p). On the other

hand, if p = 4m + 3, from p | a2 + b2 we get a2 ≡ −b2 (mod p),

implying (a2)
p−1
2 ≡ (−b2)

p−1
2 (mod p), i.e., ap−1 ≡ −bp−1 (mod p).

We reach again 1 ≡ −1 (mod p), a contradiction.

Thus p | a and p | b. �

Remark. It is clear that statement (2) implies Theorem 4.4.1 and

statement (1) in Theorem 4.4.2.

Theorem 4.4.3. (Thue’s lemma). If n is an integer greater than

1 and a is an integer relatively prime to n, then n | ax± y for some

positive integers x and y less than
√

n and a choice of the signs +

and −.
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Proof. Assume that n is not a perfect square. Let t = �√n� + 1

and let S = {ax + y | 0 ≤ x, y ≤ t − 1}. Clearly, S has t2 elements.

Because t2 > n, from the pigeonhole principle it follows that there

exist two distinct elements in S, ax1 + y1 and ax2 + y2, such that

ax1 + y1 ≡ ax2 + y2 (mod n), x1 > x2, that is, a(x1 − x2) ≡ y2 − y1

(mod n). Now take x = x1 − x2 and y = |y2 − y1|. It is clear that

x and y are nonzero, since gcd(a, n) = 1. For this choice, it is clear

that n | ax ± y and 0 < x, y <
√

n. If n is a perfect square, then

set n = d2. In this case, if one of x and y is d, then the other is a

multiple of d and hence is also d. But then a = d± 1. For a = d− 1,

we take x = 1, y = d− 1, and the minus sign. For a = d + 1 we take

x = d − 1, y = 1, and the plus sign. �

In the study of certain Diophantine equations we use some of these

results as follows: if one side of the equation can be written as x2+a2

with gcd(x, a) = 1, while the other side has a divisor of the form

4k + 3, then the equation is not solvable in integers.

Example 1. Let n be an odd integer greater than 1. Prove that

the equation

xn + 2n−1 = y2

is not solvable in odd positive integers.

(Ion Cucurezeanu)

Solution. Write the equation as

xn + 2n = y2 + 2n−1.

The left-hand side of this equation has a prime divisor of the form

4k + 3. Indeed, if x is of this form, then at least a prime divisor
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of xn + 2n is of the form 4k + 3. If x is of the form 4k + 1, then

x + 2 divides xn + 2n and is of the form 4k + 3. In each case, since

gcd(y, 2
n−1

2 ) = 1 and y2+2n−1 has a prime divisor of the form 4k+3,

we get a contradiction to the result in Theorem 4.4.2.(1).

Example 2. Prove that the equation

x3 − x2 + 8 = y2

is not solvable in integers.

(Ion Cucurezeanu)

Solution. For x odd, write the equation as

(x + 2)(x2 − 2x + 4) = x2 + y2.

It is clear that gcd(x, y) = 1. If x = 4k + 1, then x + 2 = 4k + 3

has a prime divisor of this form that divides x2 + y2, impossible. If

x = 4k + 3, then x2 − 2x + 4 is of the form 4m + 3, and by the same

argument, we again get a contradiction.

For x = 2u, the equation becomes

2u3 − u2 + 2 = z2.

If u is odd, then the left-hand side is congruent to 3 (mod 4), and

so it cannot be a perfect square. If u is even, then the left-hand side

is congruent to 2 (mod 4) and again cannot be a perfect square.

Example 3. Solve in integers the equation

x5 − 4 = y2.

(Balkan Mathematical Olympiad)
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Solution. Looking mod 8 it follows that y and x are odd. Because

x divides y2 + 22, it cannot be of the form 4k + 3. Hence x = 4k + 1

and the equation can be written as

x5 + 25 = y2 + 62.

If 3 � y, we again reach a contradiction (x + 2 = 4k + 3 is a divisor

of y2 + 62 and gcd(y, 6) = 1).

If y = 3y1, then x5 + 25 = 32(y2
1 + 4). We will prove that if

d = gcd
(

x + 2,
x5 + 25

x + 2

)

,

then d | 5. Indeed, from the identities

a5 + b5 = (a + b)5 − 5ab(a2 + ab + b2)

and

a2 + ab + b2 = (a + b)2 − ab,

it follows that

a5 + b5

a + b
= (a + b)4 − 5ab(a + b)2 + 5a2b2.

For a = x and b = 2, d | a + b and d | a5+b5

a+b ; hence d | 5a2b2 =

5 · (2x)2. But gcd(x + 2, 2x) = 1, as x is odd, so gcd(d, (2x)2) = 1

and so d | 5. It follows that at least one of the numbers x + 2 and
x5+25

x+2 does not divide 3, and since both are congruent to 3 (mod 4),

y2
1 +4 has a prime divisor of the form 4k +3, contradicting Theorem

4.4.2.(1). In conclusion, the equation is not solvable in integers.

Example 4. Prove that for no integer n is n7+7 a perfect square.

(Titu Andreescu)
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Solution. For n even, n7+7 ≡ 3 (mod 4), so it cannot be a perfect

square. For n ≡ 3 (mod 4), n7+7 ≡ 2 (mod 4), so again it cannot be

a perfect square. For n ≡ 1 (mod 4), if n7 + 7 = q2, for some integer

q, then n7 +27 = q2 +112, so n+2 is a divisor of q2 +112, n+2 ≡ 3

(mod 4), and if gcd(q, 11) = 1, this contradicts Theorem 4.4.2.(1).

If q is divisible by 11, then q = 11q1 and n7 + 27 = 112(q2
1 + 1). We

will prove that if d = gcd
(
n + 2, n7+27

n+2

)
, then d | 7. Indeed, from

the identities

a7 + b7 = (a + b)7 − 7ab(a + b)(a2 + ab + b2)2

and

a2 + ab + b2 = (a + b)2 − ab,

it follows that

a7 + b7

a + b
= (a + b)6 − 7ab(a + b)4 + 14a2b2(a + b)2 − 7a3b3.

For a = n and b = 2, d | a + b and d | a7+b7

a+b ; hence d | 7a3b3 =

7 · (2n)3. But gcd(n + 2, 2n) = 1, since n is odd, so gcd(d, (2n)3) = 1

and so d | 7. It follows that at least one of the numbers n + 2 and
n7+27

n+2 does not divide 11, and since both are congruent to 3 (mod 4),

q2
1 + 1 has a divisor of the form 4k + 3, contradicting Theorem 4.4.1.

4.4.2 Divisors of a2 + 2b2a2 + 2b2a2 + 2b2

Theorem 4.4.4. An odd prime p can be written as p = a2 + 2b2

for some integers a and b if and only if p ≡ 1 (mod 8) or p ≡ 3

(mod 8).

Proof. If p = a2 + 2b2, then a2 ≡ −2b2 (mod p). Let b′ be an

integer for which bb′ ≡ 1 (mod p). Then (ab′)2 ≡ −2 (mod p), that
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is,
(
−2
p

)
= 1. It follows that
(−2

p

)

=
(−1

p

)(
2
p

)

= (−1)
p−1
2 · (−1)

p2−1
8 ;

hence
(
− 2

p

)
= 1 if and only if p−1

2 + p2−1
8 = 2k, for some integer

k. This is equivalent to (p−1)(p+5)
8 = 2k, which amounts to p ≡ 1

(mod 8) or p ≡ 3 (mod 8).

Conversely, suppose p ≡ 1 (mod 8) or p ≡ 3 (mod 8). Then
(
−2
p

)
= 1 and a2 ≡ −2 (mod p) for some integer a. Using Thue’s

lemma (Theorem 4.4.3), it follows that there exist integers x and y,

with 0 < x, y <
√

p, such that p | ax ± y for a choice of signs + and

−. Therefore p | a2x2 − y2, and so p | (a2 + 2)x2 − (2x2 + y2). But

p | a2 + 2, implying 2x2 + y2 = pk, k ∈ Z, and 0 < 2x2 + y2 < 3p,

yielding k ∈ {1, 2}.
For k = 1, we get p = 2x2 + y2 and we are done. For k = 2,

2p = 2x2+y2; hence 2 | y. Then we can write y = 2y, so p = x2+2y2,

and we are done again.

Remarks. (1) The result in the theorem above shows that each

prime p that is congruent to 1 or 3 modulo 8 is not irreducible in the

ring Z[
√−2].

(2) If p is a prime of the form 8k − 1 or 8k − 3 and p | a2 + 2b2,

then p | a and p | b.

Indeed, if p � a, then p � b and we can find an integer b′ such that

bb′ ≡ 1 (mod p). From a2 ≡ −2b2 (mod p), it follows that (ab′)2 ≡
−2 (mod p). Because gcd(ab′, p) = 1, we get

(
−2
p

)
= 1, yielding

p ≡ 1 (mod 8) or p ≡ 3 (mod 8), a contradiction.

We can use the above results in the study of certain Diophantine

equations as follows:
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If one side of an equation can be written as x2 + 2y2 with

gcd(x, y) = 1, while the other side has a prime divisor congruent

to −1 or −3 modulo 8, then the equation is not solvable in integers.

Example 1. Prove that the equation

x3 − 3 = 2y2

is not solvable in integers.

(Ion Cucurezeanu)

Solution. Write the equation in the equivalent form

(i) x3 − 1 = 2(y2 + 1),

(ii) x3 + 1 = 2(y2 + 2).

Note that both right-hand sides are not divisible by 8. Because x

is odd, we need to examine the cases x = 8k ± 1 and x = 8k ± 3.

If x = 8k + 1, the left-hand side of (i) is divisible by 8, a contra-

diction. The same is true for (ii) when x = 8k − 1.

If x = 8k ± 3, x2 − x + 1 is of the form 8m− 1 or 8m− 3, and has

a prime divisor of this form, so, according to Theorem 4.4.4, cannot

divide y2 + 2.

4.4.3 Divisors of a2 − 2b2a2 − 2b2a2 − 2b2

Theorem 4.4.5. An odd prime p can be written as p = a2 − 2b2

for some integers a and b if and only if p ≡ 1 (mod 8) or p ≡ −1

(mod 8).

Proof. Indeed, if p = a2−2b2, then a2 ≡ 2b2 (mod p). Let b′ be an

integer such that bb′ ≡ 1 (mod 8), so (ab′)2 ≡ 2 (mod p), yielding
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(
2
p

)
= 1. But

(
2
p

)

= (−1)
p2−1

8 ,

and we have
(

2
p

)
= 1 if only if p ≡ 1 (mod 8), or p ≡ −1 (mod 8).

Conversely, if p ≡ 1 (mod 8), or p ≡ −1 (mod 8), by Thue’s

lemma we can find positive integers x and y with 0 < x, y <
√

p

such that p | a2x2 − y2, where a is an integer such that a2 ≡ 2

(mod p). Hence p | (a2 − 2)x2 + 2x2 − y2, so p | 2x2 − y2. We obtain

0 < 2x2 − y2 < 2p, yielding p = 2x2 − y2. �

Remarks. (1) If p is a prime of the form 8k − 3 or 8k + 3, and

p | a2 − 2b2, then p | a and p | b.

(2) If p is a prime congruent to ±1 (mod 8), then the general Pell

equation x2 − 2y2 = p is solvable.

In order to prove the property in the first remark, suppose p � a.

Then p � b, and hence bb′ ≡ 1 (mod p) for some integer b′. It follows

that (ab′)2 ≡ 2 (mod p). Because gcd(ab′, p) = 1, we have
(

2
p

)
= 1;

hence p ≡ ±1 (mod 8), a contradiction.

We can use the result in Theorem 4.4.5 as follows:

If one side of an equation can be written as x2 − 2y2, with

gcd(x, y) = 1, while the other side has a prime divisor congruent

to ±3 (mod 8), then the equation is not solvable in integers.

Example 1. Consider the equation

8xy − (x + y) = z2.

Prove that:

(1) It is not solvable in positive integers.
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(2) The equation has infinitely many solutions in negative inte-

gers.

Solution. (1) Write the equation as

(8x − 1)(8y − 1) = 8z2 + 1

and assume that it is solvable in positive integers. Because 8x−1 ≥ 7,

it has a prime divisor of the form 8m − 1 or 8m − 3, and according

to Theorem 4.4.4, 8x − 1 cannot divide 2(2z)2 + 1, a contradiction.

(2) The triples (x, y, z), where

x = −1, y = −9n2 − 2n, z = −9n − 1,

where n is any positive integer, are negative integer solutions.

Exercises and Problems

1. Let p be a prime of the form 4k + 3. Prove that the system of

equations ⎧
⎨

⎩

(p − 1)x2 + y2 = u2,

x2 + (p − 1)y2 = v2,

is not solvable in nonzero integers.

2. Prove that the equation x2 + y2 = zn + 2n is not solvable if

gcd(x, y) = 1 and n is an odd integer greater than 1.

(Ion Cucurezeanu)

3. Prove that for any integer n greater than 1, the equation

xn + 2n = y2 + 2

is not solvable.

(Ion Cucurezeanu)



Part II

Solutions to Exercises and

Problems





II.1

Solutions to Elementary Methods for

Solving Diophantine Equations

1.1 The Factoring Method

1. Solve the following equation in integers x, y :

x2 + 6xy + 8y2 + 3x + 6y = 2.

Solution. Write the equation in the form

(x + 2y)(x + 4y) + 3(x + 2y) = 2 or (x + 2y)(x + 4y + 3) = 2.

We obtain the solutions (0,−1), (3,−2), (3,−1), (6,−2).

2. For each positive integer n, let s(n) denote the number of or-

dered pairs (x, y) of positive integers for which

1
x

+
1
y

=
1
n

.

Find all positive integers n for which s(n) = 5.

(Indian Mathematical Olympiad)

T. Andreescu et al., An Introduction to Diophantine Equations: A Problem-Based Approach, 193
DOI 10.1007/978-0-8176-4549-6_5, © Springer Science+Business Media, LLC 2010
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Solution. Let n = pα1
1 · · · pαk

k . From the remark in Example 2, it

follows that (2α1 + 1) · · · (2αk + 1) = 5. Hence k = 1 and α1 = 2.

Thus n = p2, where p is a prime.

3. Let p and q be distinct prime numbers. Find the number of pairs

of positive integers x, y that satisfy the equation

p

x
+

q

y
= 1.

(KöMaL)

Solution. The equation is equivalent to (x− p)(y − q) = pq. There

are four solutions:

(1 + p, q(1 + p)), (2p, 2q), (p + q, p + q), (p(1 + q), 1 + q).

Remark. For the equation

m

x
+

n

y
= 1,

where m and n are positive integers, denote by s(m,n) the number

of all solutions in positive integers. For any positive integer N > 1

denote by τ(N) the number of all its divisors. We have s(m,n) =

τ(mn) with the convention τ(1) = 0.

If n = pα1
1 · · · pαk

k , m = pβ1
1 · · · pβk

k , where some of the exponents

can be zero, it follows that

s(m,n) = (α1 + β1 + 1)(α2 + β2 + 1) · · · (αk + βk + 1).

4. Find the positive integer solutions to the equation

x3 − y3 = xy + 61.

(Russian Mathematical Olympiad)
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First Solution. Multiplying the equation by 27 and subtracting 1

from both sides, we obtain

(3x)3 + (−3y)3 + (−1)3 − 3(3x)(−3y)(−1) = 1642.

The left-hand side is of the form a3 + b3 + c3 − 3abc, and as we

have seen in Example 5, it factors as

(3x − 3y − 1)(9x2 + 9y2 + 1 + 9xy + 3x − 3y) = 2 · 823.

Since the second factor in the left-hand side is larger than the first,

taking into account that 823 is a prime and that 3x − 3y − 1 ≡ 2

(mod 3), it follows that 3x − 3y − 1 = 2 and that

9x2 + 9y2 + 1 + 9xy + 3x − 3y = 823.

The solution is (6, 5).

Second Solution. It is clear that x > y. Let x−y = d, so x = y+d.

The equation is equivalent to 3y2d+3yd2 +d3 = y2+dy+61. We get

(3d− 1)y2 + (3d2 − 1)y + d3 = 61. The last relation implies d3 < 61;

hence d = 1, 2, 3.

If d = 1, then 2y2 + 2y + 1 = 6, yielding y = 5 and x = 6.

If d = 2 and d = 3, then the equation in y has no integral solutions.

5. Solve the Diophantine equation

x − y4 = 4,

where x is a prime.

Solution. The equation is equivalent to x = (y2 + 2)2 − (2y)2, i.e.,

x = [(y − 1)2 + 1][(y + 1)2 + 1].
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If y �= ±1, x is a product of two integers greater than 1; hence it

is not a prime. The solutions are (5, 1), (5,−1).

6. Find all pairs of integers (x, y) such that

x6 + 3x3 + 1 = y4.

(Romanian Mathematical Olympiad)

Solution. Write the equation in the form (x3+1)2+(x3+1) = y4+1,

or equivalently, (2x3 + 3)2 − 4y4 = 5. We obtain the systems
⎧
⎨

⎩

2x3 − 2y2 + 3 = 1,

2x3 + 2y2 + 3 = 5,

⎧
⎨

⎩

2x3 − 2y2 + 3 = −1,

2x3 + 2y2 + 3 = −5,

⎧
⎨

⎩

2x3 − 2y2 + 3 = 5,

2x3 + 2y2 + 3 = 1,

⎧
⎨

⎩

2x3 − 2y2 + 3 = −5,

2x3 + 2y2 + 3 = −1.

The solutions are (0, 1), (0,−1).

7. Solve the following equation in nonzero integers x, y:

(x2 + y)(x + y2) = (x − y)3.

(16th USA Mathematical Olympiad)

Solution. The equation is equivalent to the following quadratic

equation in y:

2y2 + (x2 − 3x)y + 3x2 + x = 0.

This equation has integral solutions if and only if its discriminant

x(x + 1)2(x − 8) is a perfect square. It follows that x(x − 8) = z2 or

(x−4)2−z2 = 16. This leads to the equation (x−z−4)(x+z−4) = 16.
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We obtain x ∈ {−1, 8, 9}; hence the solutions are (−1,−1), (8,−10),

(9,−6), (9,−21).

8. Find all integers a, b, c with 1 < a < b < c such that the number

(a − 1)(b − 1)(c − 1) is a divisor of abc − 1.

(33rd IMO)

Solution. It is convenient to let a−1 = x, b−1 = y, and c−1 = z.

Then 1 ≤ x < y < z and xyz | (xy + yz + zx + x + y + z).

The idea of a solution is to point out that we cannot have xyz ≤
xy +yz+zx+x+y +z for infinitely many triples (x, y, z) of positive

integers. Let f(x, y, z) be the quotient of the required divisibility.

From the algebraic form

f(x, y, z) =
1
x

+
1
y

+
1
z

+
1
xy

+
1
yz

+
1
zx

we can see that f is a decreasing function in each of the variables

x, y, z. By symmetry and because x, y, z are distinct numbers,

f(x, y, z) ≤ f(1, 2, 3) = 2 +
5
6

< 3.

Thus, if the divisibility is fulfilled we can have either f(x, y, z) =

1 or f(x, y, z) = 2. So, we have to solve in positive integers the

equations

xy + yz + zx + x + y + z = kxyz (1)

where k = 1 or k = 2.

Observe that f(3, 4, 5) = 59
60 < 1. Thus x ∈ {1, 2}. Also f(2, 3, 4) =

35
24 < 2. Thus, for x = 2, we necessarily have k = 1. The conclusion

is that only three equations have to be considered in (1).
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Case 1: x = 1 and k = 1. We obtain the equation

1 + 2(y + z) + yz = yz.

It has no solutions.

Case 2: x = 1 and k = 2. We obtain the equation

1 + 2(y + z) = yz.

Write it in the form (y − 2)(z − 2) = 5 and obtain y − 2 = 1,

z − 2 = 5. It has unique solution: y = 3, z = 7.

Case 3: x = 2 and k = 1. We obtain the equation

2 + 3(y + z) = yz.

By writing it in the form (y − 3)(z − 3) = 11, we obtain y− 3 = 1,

z − 3 = 11. Thus, it has a unique solution: y = 4, z = 14.

From Case 2 and Case 3 we obtain respectively a = 2, b = 4,

c = 8, and a = 3, b = 5, c = 15. These are the solutions to the

problem.

9. Find all right triangles with integer side lengths such that their

areas and perimeters are equal.

Solution. Let x, y be the lengths of the legs and let z be the length

of the hypotenuse. Then z =
√

x2 + y2 by the Pythagorean theorem.

Equating the area and perimeter yields

xy

2
= x + y +

√
x2 + y2.

Multiply by 2, isolate the radical, and square. This yields

(xy − 2(x + y))2 = 4(x2 + y2),
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or

x2y2 − 4xy(x + y) + 4(x2 + y2 + 2xy) = 4(x2 + y2).

We have

x2y2 − 4xy(x + y) + 8xy = 0.

Clearly, we should divide out by xy, since it is never equal to zero.

We get

xy − 4x − 4y + 8 = 0.

Add 8 to both sides to make the left-hand side factor. We now

have

(x − 4)(y − 4) = 8,

and since the variables are integers, there are only finitely many

possibilities. The only solutions (x, y) are (6, 8), (8, 6), (5, 12), (12, 5),

which yield just two right triangles, namely the 6-8-10 and the 5-12-

13 triangles.

10. Solve the following system in integers x, y, z, u, v :
⎧
⎨

⎩

x + y + z + u + v = xyuv + (x + y)(u + v),

xy + z + uv = xy(u + v) + uv(x + y).

(Titu Andreescu)

Solution. Subtracting the second equation from the first yields

(x + y − xy) + (u + v − uv) = (x + y − xy)(u + v − uv),

or

[(x + y − xy) − 1][(u + v − uv) − 1] = 1,

which is equivalent to (1 − x)(1 − y)(1 − u)(1 − v) = 1. The last

equation has solutions (0, 0, 0, 0), (0, 0, 2, 2), (0, 2, 0, 2), (0, 2, 2, 0),
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(2, 0, 0, 2), (2, 0, 2, 0), (2, 2, 0, 0), (2, 2, 2, 2). The solutions (x, y, z, u, v)

of the system are: (0, 0, 0, 0, 0), (0, 0,−4, 2, 2), (0, 2, 0, 0, 2),

(0, 2, 0, 2, 0), (2, 0, 0, 0, 2), (2, 0, 0, 2, 0), (2, 2,−4, 0, 0), (2, 2, 24, 2, 2).

11. Prove that the equation x(x + 1) = p2ny(y + 1) is not solvable

in positive integers, where p is a prime and n is a positive integer.

Solution. We have p2n | x or p2n | x + 1; hence in any case p2n ≤
x+1. The equation can be written as (2x+1)2−1 = p2n(2y+1)2−p2n;

hence

p2n − 1 = p2n(2y + 1)2 − (2x + 1)2

= [pn(2y + 1) + (2x + 1)][pn(2y + 1) − (2x + 1)];

hence p2n − 1 > (2x + 1) · 1, contradicting p2n ≤ x + 1.

Remark. The conclusion does not remain true if the exponent of

p is not even. For example the equation

x(x + 1) = 23y(y + 1)

has solutions (x, y) = (15, 5) and (x, y) = (32, 11).

12. Find all triples (x, y, p), where x and y are positive integers

and p is a prime satisfying the equation

x5 + x4 + 1 = py.

(Titu Andreescu)

Solution. Clearly, (x, y, p) = (1, 1, 3) and (x, y, p) = (2, 2, 7) are

solutions. We have

x5 + x4 + 1 = x5 + x4 + x3 − (x3 − 1) = x3(x2 + x + 1) − (x3 − 1)

= (x2 + x + 1)(x3 − x + 1);
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hence we can write the equation as

(x2 + x + 1)(x3 − x + 1) = py

and let d = gcd(x2 + x + 1, x3 − x + 1). Then d divides

(x − 1)(x2 + x + 1) − (x3 − x + 1) = x − 2,

so d divides x2 +x−1− (x−2)(x+3) = 7. Hence d = 7 for x > 1, so

p = 7. It follows that for x > 2, x2+x+1 = 7a and x3−x+1 = 7b for

some integers a ≥ 2 and b ≥ 2. This means that 49 divides x2 +x+1

and x3 − x + 1, contradicting d = 7. Thus (1, 1, 3) and (2, 2, 7) are

the only solutions.

13. Find all pairs (x, y) of integers such that

xy +
x3 + y3

3
= 2007.

(Titu Andreescu)

Solution. Write the equation as

x3 + y3 + 3xy = 6021,

or equivalently,

x3 + y3 + (−1)3 − 3xy(−1) = 6020.

It follows that

(x + y − 1)(x2 + y2 + 1 − xy + x + y) = 6020,

which can be written as

(x + y − 1)[(x + y)(x + y + 1) + 1 − 3xy] = 22 · 5 · 7 · 43.
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Because

(x + y)(x + y + 1) + 1 − 3xy > x + y − 1,

out of the 24 factors of 6020, only 12 can be potential candidates for

x + y − 1.

Also, since 6020 ≡ 2 (mod 3), we can easily observe that only

when x + y − 1 ≡ 2 (mod 3) will we have integer solutions for xy.

This again reduces the number of possible candidates for x + y − 1,

now to only five, namely 2, 5, 14, 20, and 35. Examining each of

them, we find that only x + y − 1 = 20 gives integer solutions for

(x, y). Hence using x + y − 1 = 20, we find the solutions (3, 18) and

(18, 3). Both satisfy the given equation.

1.2 Solving Diophantine Equations Using

Inequalities

1. Solve in positive integers the equation

3(xy + yz + zx) = 4xyz.

Solution. The equation is equivalent to 1
x + 1

y + 1
z = 4

3 . Considering

x ≤ y ≤ z, it follows that 3
x ≥ 4

3 , i.e., x ≤ 9
4 . Therefore x ∈ {1, 2}.

Analyzing the two, cases we obtain the solutions (1, 4, 12), (1, 6, 6),

(2, 2, 3) and all their permutations.

2. Find all triples of positive integers (x, y, z) such that

xy + yz + zx − xyz = 2.

First Solution. Let u = x− 1, v = y − 1, w = z − 1. The equation

becomes u + v + w = uvw. We either have (u, v, w) = (0, 0, 0) or
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uvw �= 0. In the latter case the equation is equivalent to

1
vw

+
1

wu
+

1
uv

= 1,

which is of the type 1
m + 1

n + 1
p = 1. Assuming m ≤ n ≤ p, we

obtain the solutions (m,n, p) = (2, 3, 6), (2,4,4), (3,3,3). The last

two situations are not possible, since (uvw)2 = 32 and (uvw)2 = 27,

respectively. We obtain vw = 2, wu = 3, uv = 6, yielding uvw = 6,

and u = 3, v = 2, w = 1. The solutions (x, y, z) are (1, 1, 1) and

(4, 3, 2) and all permutations.

Second Solution. From the equation it follows that xy + yz + zx >

xyz; hence 1
x + 1

y + 1
z > 1. Assuming that x ≤ y ≤ z, from the last

relation we obtain 3
x > 1, that is, x ∈ {1, 2}.

If x = 1, then the equation becomes y + z = 2; hence y = z = 1,

giving the solution (1, 1, 1).

If x = 2, then the equation is equivalent to 2y+2z−yz = 2; hence

(y − 2)(z − 2) = 2, giving the solution (2, 3, 4).

3. Determine all triples of positive integers (x, y, z) that are solu-

tions to the equation

(x + y)2 + 3x + y + 1 = z2.

(Romanian Mathematical Olympiad)

Solution. The inequalities (x + y)2 < (x + y)2 + 3x + y + 1 <

(x + y + 2)2 imply (x + y)2 + 3x + y + 1 = (x + y + 1)2. It follows

that x = y = k ∈ Z+; hence all the solutions are (k, k, 2k + 1).

4. Determine all pairs of integers (x, y) that satisfy the equation

(x + 1)4 − (x − 1)4 = y3.
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(Australian Mathematical Olympiad)

Solution. We have (x + 1)4 − (x − 1)4 = 8x3 + 8x. Suppose

a pair (x, y) of integers is a solution and assume x ≥ 1. Then

(2x)3 < (x+1)4−(x−1)4 < (2x+1)3. Hence 2x < y < 2x+1, a con-

tradiction. Therefore for every solution (x, y), the integer x must be

nonpositive. Now observe that if (x, y) is a solution, then (−x,−y)

is also a solution; hence −x must be nonpositive. Therefore (0, 0) is

the only solution.

5. Prove that all the equations

x6 + ax4 + bx2 + c = y3,

where a ∈ {3, 4, 5}, b ∈ {4, 5, . . . , 12}, c ∈ {1, 2, . . . , 8}, are not

solvable in positive integers.

(Dorin Andrica)

Solution. The given conditions imply x6 + 3x4 + 3x2 + 1 < y3 <

x6 + 6x4 + 12x2 + 8, i.e., (x2 + 1)3 < y3 < (x2 + 2)3, which shows

that each of the considered equations is not solvable.

6. Solve in positive integers the equation

x2y + y2z + z2x = 3xyz.

Solution. Note that this is the equality case in the AM–GM in-

equality

x2y + y2z + z2x ≥ 3 3
√

(x2y)(y2z)(z2x).

Hence we must have x2y = y2z = z2x, which implies x2 = yz,

y2 = zx, z2 = xy, i.e., (x − y)2 + (y − z)2 + (z − x)2 = 0. The

solutions are (k, k, k), k ∈ Z+.
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7. Find all integer solutions to the equation

(x2 − y2)2 = 1 + 16y.

(Russian Mathematical Olympiad)

Solution. The solutions are (±1, 0), (±4, 3), (±4, 5). We must have

y ≥ 0. Since the right-hand side is nonzero, so then must be the

left hand side; hence |x| ≥ |y| + 1 or |x| ≤ |y| − 1. In either case,

(x2 − y2)2 ≥ (2y − 1)2, so (2y − 1)2 ≤ 1 + 16y, and hence y ≤ 5.

Trying all such values of y yields the above solutions.

8. Find all integers (a, b, c, x, y, z) such that

a + b + c = xyz

x + y + z = abc

and a ≥ b ≥ c ≥ 1, x ≥ y ≥ z ≥ 1.

(Polish Mathematical Olympiad)

First Solution. First we claim that at least one of bc and yz is less

than 3. If bc = 3, then b = 3, c = 1, a + b + c < 3a = abc; if bc > 3,

then abc > 3a ≥ a + b + c. Thus for bc ≥ 3, we have abc > a + b + c

and

3x ≥ x + y + z = abc > a + b + c = xyz ⇒ 3 > yz.

This proves our claim. Without loss of generality, suppose that

yz = 1 or 2.

If yz = 1, then y = z = 1. We have

abc = x + y + z = x + 2 = xyz + 2 = a + b + c + 2.



206 Part II. Solutions to Exercises and Problems

If c ≥ 2, then bc ≥ 4 and 4a ≤ abc = a + b + c + 2 ≤ 4a;

thus a = b = c = 2. We obtain the solutions (2, 2, 2, 6, 1, 1) and

(6, 1, 1, 2, 2, 2). If c = 1, then ab = a+ b+3. If b ≥ 3, then 3a ≤ ab =

a + b + 3 ≤ 3a ⇒ a = b = 3. We obtain the solutions (3, 3, 1, 7, 1, 1)

and (7, 1, 1, 3, 3, 1). If b = 2, we have a = 5 and obtain the solutions

(5, 2, 1, 8, 1, 1) and (8, 1, 1, 5, 2, 1). If b = 1, we have a = a + 4, which

is impossible.

If yz = 2, then y = 2, z = 1. We have

2abc = 2(x + y + z) = 2x + 6 = xyz + 6 = a + b + c + 6 ≤ 3a + 6.

If c ≥ 2, then 8a ≤ 2abc ≤ 3a + 6 ⇒ 5a < 6, which contradicts

the fact that a ≥ c. Thus c = 1, and 2ab = a + b + 7. If b ≥ 3, then

6a ≤ 2ab = a + b + 7 ⇒ a ≤ b/5 + 7/5, which contradicts the fact

that a ≥ b. If b = 2, then 4a = 2ab = a + 9 and a = 3. We obtain

the solution (3, 2, 1, 3, 2, 1). If b = 1, we have a = 8, repeating the

solution (8, 1, 1, 5, 2, 1).

Second Solution. Let

A = (ab − 1)(c − 1), B = (a − 1)(b − 1),

X = (xy − 1)(z − 1), Y = (x − 1)(y − 1).

Thus A,B,X, Y are nonnegative integers such that

A + B + X + Y = 4.

Clearly, neither of c and z can be greater than 2; that would force

either A or X to be greater than 4, and contradict the fact that

A + B + X + Y = 4.
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If c = 2, we have a, b ≥ 2 and A ≥ 3, B ≥ 1. Thus A = 3, B = 1,

X = Y = 0. This yields the solution (2, 2, 2, 6, 1, 1). Similarly, if

z = 2, we have (6, 1, 1, 2, 2, 2) as a solution.

Now we suppose that c = z = 1. We have A = X = 0 and

B + Y = 4. Without loss of generality, suppose that Y ≤ B, (i.e.,

Y = 0, 1, 2).

If Y = 0, we have B = (a − 1)(b − 1) = 4. This leads to the

solutions (5, 2, 1, 8, 1, 1) and (3, 3, 1, 7, 1, 1). By symmetry, we also

have the solutions (8, 1, 1, 5, 2, 1) and (7, 1, 1, 3, 3, 1).

If Y = 1, then x = y = 2 and B = (a − 1)(b − 1) = 3 ⇒ a = 4,

b = 2, but a + b + c = 7 �= xyz.

If Y = 2, then (x − 1)(y − 1) = (a − 1)(b − 1) = 2 ⇒ a = x = 3,

b = y = 2. We obtain (3, 2, 1, 3, 2, 1) as our last solution.

9. Let x, y, z, u, and v be positive integers such that

xyzuv = x + y + z + u + v.

Find the maximum possible value of max{x, y, z, u, v}.
First Solution. Suppose that x ≤ y ≤ z ≤ u ≤ v. We need to find

the maximum value of v. Since

v < x + y + z + u + v ≤ 5v,

then v < xyzuv ≤ 5v or 1 < xyzu ≤ 5. Hence (x, y, z, u) =

(1, 1, 1, 2), (1, 1, 1, 3), (1, 1, 1, 4), (1, 1, 2, 2), or (1, 1, 1, 5), which leads

to max{v} = 5.
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Second Solution. Note that

1 =
1

yzuv
+

1
zuvx

+
1

uvxy
+

1
vxyz

+
1

xyzu

≤ 1
uv

+
1
uv

+
1
uv

+
1
v

+
1
u

=
3 + u + v

uv
.

Therefore, uv ≤ 3 + u + v or (u − 1)(v − 1) ≤ 4. If u = 1, then

x = y = z = 1 and 4+v = v, which is impossible. Thus u−1 ≥ 1 and

v − 1 ≤ 4 or v ≤ 5. It is easy to see that (1, 1, 1, 2, 5) is a solution.

Therefore max{v} = 5.

Remark. The second solution can be used to determine the max-

imum value of max{x1, x2, . . . , xn} when x1, x2, . . . , xn are positive

integers such that

x1x2 · · · xn = x1 + x2 + · · · + xn.

10. Solve in distinct positive integers the equation

x2 + y2 + z2 + w2 = 3(x + y + z + w).

(Titu Andreescu)

First Solution. Without loss of generality, assume that x < y <

z < w. Then x ≥ 1, y ≥ 2, z ≥ 3, w ≥ 4.

We have

x2 + y2 + z2 + w2 = 3(x + y + z + w)

1 ≤ y − x, 9 ≤ 3z, 20 ≤ 5w.

Adding up the last relations yields

(x − 1)2 + (y − 2)2 + (z − 3)2 + (w − 4)2 ≤ 0;
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hence x = 1, y = 2, z = 3, w = 4.

All solutions to the given equation are (1, 2, 3, 4) and their permu-

tations.

Second Solution. Note that the Cauchy–Schwarz inequality (noting

that x, y, z, and w distinct precludes equality) gives

(x + y + z + w)2 < 4(x2 + y2 + z2 + w2) = 12(x + y + z + w);

hence x + y + z + w ≤ 11. This leaves only two possibilities if we

assume without loss of generality, that x < y < z < w, namely

(1, 2, 3, 4), which works, and (1, 2, 3, 5) which fails.

11. Find all positive integers x, y, z, t such that
⎧
⎨

⎩

xn + y = zn,

x + yn = tn,

for some integer n ≥ 2.

Solution. There are no solutions. From the first equation we get

xn = zn − y < zn, thus x < z or x + 1 ≤ z. The same equation gives

y = zn − xn ≥ (x + 1)n − xn =
(

n

1

)

xn−1 +
(

n

2

)

xn−2 + · · · > x,

i.e., y > x. Similarly, using the second equation one gets y < x,

contradiction.

12. Find all pairs (x, y) of positive integers such that xy = yx.

First Solution. Obviously, all the pairs (n, n), n ≥ 1, are solutions.

We explore whether there are any others. Assume, without loss of

generality, that x < y and let y = x + t for some integer t > 0. The

equation becomes

xx+t = (x + t)x or xt =
(

1 +
t

x

)x

< et < 3t.
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Thus x < 3. Since x is an integer, x = 1 or x = 2.

If x = 1, then y = 1.

If x = 2, we have 2y = y2, which has the solutions y = 2, y = 4.

For y > 4 an induction argument shows that 2y > y2. Thus, the

solutions are (n, n), n ≥ 1, (2, 4) and (4, 2).

Second Solution. Since f(t) = ln t
t is decreasing on [e,∞), we have

xy > yx if y > x ≥ e. This forces x = y or one of x and y (without

loss of generality x) to be 1 or 2, and we can follow the end of the

previous solution.

13. Solve in positive integers the equation xy + y = yx + x.

First Solution. Obvious solutions: (n, n), (1, n), (n, 1). Let x < y,

y = x + t for some integer t > 0. We have

xx+t + x + t = (x + t)x + x,

or

xt +
t

xx
=
(

1 +
t

x

)x

< 3t;

thus x < 3.

The situation x = 1 has already been taken care of. Let then x = 2.

The equation becomes

2t =
(

1 +
t

2

)2

− t

4
,

which admits t = 0 and t = 1 as solutions. For t ≥ 2 an induction

argument shows that

2t > 1 +
3t
4

+
t2

4
.

Now, for t = 0 we get x = y = 2, and for t = 1 we have x = 2, y = 3.

The solutions are (n, n), (1, n), (n, 1), (2, 3), (3, 2), n ≥ 1.
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Second Solution. The function f(t) = ln t
t is decreasing on [e,∞);

hence xy + y > yx + x if xy ≥ e. We get x = y or, without loss of

generality, x = 1, x = 2, x = 3, and we continue as in the previous

solution.

14. Let a and b be positive integers such that ab+1 divides a2+b2.

Show that a2+b2

ab+1 is the square of an integer.

(29th IMO)

Solution. Let (a, b) be a pair of integers satisfying the hypothesis.

Then (a, b) is a solution of the Diophantine equation

a2 − kab + b2 = k. (1)

If a = 0 or b = 0, then k is a perfect square. Hence we may consider

a �= 0 and b �= 0. In this case a and b have the same sign. Indeed, if

ab < 0, we obtain

a2 − kab + b2 > k. (2)

We may assume that a > 0, b > 0 and therefore k > 0. If a = b,

from (2 − k)a2 = k > 0 we deduce k = 1. Finally, we suppose that

a > b > 0 and let (a, b) be a solution of (1) with b minimal. It is

easy to see that (b, kb − a) is also a solution of (1). If kb = a, k is a

perfect square. Otherwise, kb − a > 0, because it has the same sign

as b. We claim that kb − a < b. Indeed,

kb − a < b ⇔ k <
a + b

b
⇔ a2 + b2

1 + ab
<

a

b
+ 1.

The last inequality follows from

a2 + b2

ab + 1
<

a2 + ab

ab + 1
<

a2 + ab

ab
=

a

b
+ 1.
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Therefore (b, kb−a) is a solution, which contradicts the minimality

of the solution (a, b). Hence k is a perfect square.

15. Find all integers n for which the equation

(x + y + z)2 = nxyz

is solvable in positive integers.

(American Mathematical Monthly, reformulation)

Solution. We will prove that n is one the numbers 1, 2, 3, 4, 5, 6,

8, and 9.

Let

F (x, y, z) = (x + y + z)2/(xyz).

Fix n and suppose n = F (x, y, z), with x ≤ y ≤ z and z minimal

for that choice of n. From

nxyz = (x + y + z)2 = (x + y)2 + 2(x + y)z + z2,

we infer that z | (x + y)2. If z > x + y, then (x + y)2/z < z and

F

(

x, y,
(x + y)2

z

)

=

(x + y)2

z2
(x + y + z)2

xy
(x + y)2

z

=
(x + y + z)2

xyz
= n.

Thus the minimality of z implies that x + y ≥ z. Now

n =
x

yz
+

y

xz
+

z

xy
+

2
x

+
2
y

+
2
z

≤ 1
z

+
1
x

+
(

1
y

+
1
x

)

+
2
x

+
2
y

+
2
z

≤ 7
x

+
3
z
.
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This implies that z = 1 (and n = 9) or that z ≥ 2 (and n ≤ 8). Thus

n ≤ 9.

We next prove that n �= 7. The inequality 7 ≤ 7/x+ 3/z prohibits

x ≥ 2. With x = 1, x + y ≥ z yields y ≤ z ≤ y + 1. When z = y we

have (1+2y)2 = 7y2, and when z = y+1 we have (2+2y)2 = 7y(y+1),

neither of which has an integer solution.

Finally, F (9, 9, 9) = 1, F (4, 4, 8) = 2, F (3, 3, 3) = 3, F (2, 2, 4) = 4,

F (1, 4, 5) = 5, F (1, 2, 3) = 6, F (1, 1, 2) = 8, and F (1, 1, 1) = 9.

1.3 The Parametric Method

1. Prove that the equation

x2 = y3 + z5

has infinitely many solutions in positive integers.

Solution. A family of solutions is given by

xn = n10(n + 1)8, yn = n7(n + 1)5, zn = n4(n + 1)3, n ∈ Z+.

2. Show that the equation

x2 + y2 = z5 + z

has infinitely many relatively prime integral solutions.

(United Kingdom Mathematical Olympiad)

Solution. We will use Lagrange’s identity (see Remark 1 in Exam-

ple 2) and the following two well-known results:

(1) There are infinitely many primes of the form 4k + 1.
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(2) Each prime of the form 4k+1 is representable as the sum of two

perfect squares (see the remark in the solution of Problem 12, Section

1.5, for a nice proof). Take any prime p of the form 4k +1. By (2), it

can be represented as the sum of two perfect squares. The same holds

for p4+1, and Lagrange’s identity shows that p5+p = p(p4+1) is also

representable as a sum of two perfect squares. Let p5 + p = u2 + v2.

Then x = u, y = v, z = p is a solution of the given equation. Since

p is a prime, x, y, and z are relatively prime. Now it suffices to note

that (see (1)) the primes of the form 4k + 1 are infinite in number.

Remarks. 1. The same argument holds for the equation

x2 + y2 = z2n+1 + z,

where n is a positive integer.

2. We can directly take x = a(a2 + b2)2 − b, y = b(a2 + b2)2 + a,

and z = a2 + b2 for relatively prime a and b.

3. Prove that for each integer n ≥ 2 the equation

xn + yn = zn+1

has infinitely many solutions in positive integers.

Solution. A family of solutions is given by

xk = kn + 1, yk = k(kn + 1), zk = kn + 1, k ∈ Z+.

4. Prove that the equation

xn + yn + zn + un = vn−1, n ≥ 2,

has infinitely many solutions (x, y, z, u, v) in positive integers.

(Dorin Andrica)
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Solution. Let (xk1 , yk1 , zk1) and (xk2 , yk2 , zk2) be two solutions to

the equation in Example 4. Then

xn
k1

+ yn
k1

= zn−1
k1

, xn
k2

+ yn
k2

= zn−1
k2

,

and by multiplying the last two relations we obtain

(xk1xk2)
n + (xk1yk2)

n + (yk1xk2)
n + (yk1yk2)

n = (zk1zk2)
n−1.

Hence a family of solutions is given by

(xk1xk2, xk1yk2 , yk1xk2 , yk1yk2 , zk1zk2),

where k1, k2 ∈ Z+.

Remark. One can simply take

x = a(an + bn + cn + dn)n−2, y = b(an + bn + cn + dn)n−2,

z = c(an + bn + cn + dn)n−2, u = d(an + bn + cn + dn)n−2,

and

v = (an + bn + cn + dn)n+1

for arbitrary integers a, b, c, d.

5. Let a, b, c, d be positive integers with gcd(a, b) = 1. Prove that

the system of equations
⎧
⎨

⎩

ax − yz − c = 0,

bx − yt + d = 0,

has infinitely many solutions in positive integers.

(Titu Andreescu)
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Solution. Using the lemma and the remark in Example 5, there

exist infinitely many pairs (un, vn), n ≥ 1, of positive integers such

that aun − bvn = 1. Then

xn = cun + dvn, yn = ad + bc, zn = vn, tn = un, n ∈ Z+,

are solutions of the system.

Remark. One can simply take y = 1, z = ax − c, and t = bx + d

for x large enough that this gives a positive z.

6. Find all triples of integers (x, y, z) such that

xy(z + 1) = (x + 1)(y + 1)z.

Solution. Writing the equation in the equivalent form

1 +
x + y + 1

xy
= 1 +

1
z

shows that xy
x+y+1 must be an integer. Let x + y + 1 = u. It follows

that x(u−x−1)
u ∈ Z, or equivalently, x(x+1)

u = v ∈ Z. All solutions are

given by

x = w, y = u − w − 1, z = w − v,

where u, v, w ∈ Z and v is any divisor of w(w+1) and u = w(w+1)/v.

7. Solve in integers the equation

x2 + xy = y2 + xz.

First Solution. The equation is equivalent to

y2 = x(x + y − z).

It follows that

x = mp2, x + y − z = mq2, y = mpq.
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The solutions are

x = mp2, y = mpq, z = m(p2 + pq − q2), m, p, q ∈ Z.

Second Solution. Write the equation in the form

x(x − z) = y(y − x).

Let d = gcd(x, y). Then x = dα, y = dβ, where gcd(α, β) = 1. It

follows that y − x = kα and x − z = kβ. Since gcd(α, β − α) = 1,

kα = y − x = dβ − dα = d(β − α) implies β − α | k. Setting

k = m(β − α), we obtain d = mα; hence

x = mα2, y = mαβ, z = m(α2 + αβ − β2), m, α, β ∈ Z.

8. Prove that the equation

x3 + y3 + z3 + w3 = 2008

has infinitely many solutions in integers.

(Titu Andreescu)

Solution. For each integer n, the quadruple

(10 + 60n3, 10 − 60n3, 2,−60n2)

is a solution to the given equation.

9. Prove that there are infinitely many quadruples of positive in-

tegers (x, y, z, w) such that

x4 + y4 + z4 = 2002w .

(Titu Andreescu)
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Solution. Note that 2002 = 34 + 54 + 64. A family of solutions is

given by

xk = 3 · 2002k, yk = 5 · 2002k, zk = 6 · 2002k ,

wk = 4k + 1, k ∈ Z+.

10. Prove that each of the following equations has infinitely many

solutions in integers (x, y, z, u) such that gcd(x, y, z, u) = 1 :

x2 + y2 + z2 = 2u2,

x4 + y4 + z4 = 2u2.

Solution. A family of solutions to the first equation is given by

(3m2 + 2mn − n2, 3m2 − 2mn − n2, 4mn, 3m2 + n2), m, n ∈ Z+,

gcd(m,n) = 1.

A family of solutions to the second equation is

(m + n,m − n, 2m, 3m2 + n2), m, n ∈ Z+, gcd(m,n) = 1.

Remark. Note that the equation

x4 + y4 + z4 = 2u4

has also infinitely many solutions with gcd(x, y, z, u) = 1. A family

of such solutions is given by
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x = a2 + 2ac − 2bc − b2,

y = b2 − 2ab − 2ac − c2,

z = c2 + 2ab + 2bc − a2,

u = a2 + b2 + c2 − ab + ac + bc,
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where a, b, c ∈ Z, gcd(a, b, c) = 1.

11. Prove that there are infinitely many quadruples of positive

integers (x, y, u, v) such that xy + 1, xu + 1, xv + 1, yu + 1, yv + 1,

uv + 1 are all perfect squares.

Solution. A family of solutions is

(n, n + 2, 4n + 4, 4(n + 1)(2n + 1)(2n + 3)), n ∈ Z+.

1.4 The Modular Arithmetic Method

1. Show that the equation

(x + 1)2 + (x + 2)2 + · · · + (x + 99)2 = yz

is not solvable in integers x, y, z, with z > 1.

(Hungarian Mathematical Olympiad)

Solution. We notice that

yz = (x + 1)2 + (x + 2)2 + · · · + (x + 99)2

= 99x2 + 2(1 + 2 + · · · + 99)x + (12 + 22 + · · · + 992)

= 99x2 +
2 · 99 · 100

2
x +

99 · 100 · 199
6

= 33(3x2 + 300x + 50 · 199),

which implies that 3 | y. Since z ≥ 2, 32 | yz, but 32 does not divide

33(3x2 + 300x + 50 · 199), a contradiction.

2. Find all pairs of positive integers (x, y) for which

x2 − y! = 2001.

(Titu Andreescu)
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Solution. For y greater than 5, y! is divisible by 9, so y! + 2001

gives the residue 3 (mod 9), which is not a quadratic residue. Hence

the only candidates are y = 1, 2, 3, 4, 5. Only y = 4 passes, giving

x = 45.

3. Prove that the equation

x3 + y4 = 7

has no solution in integers.

Solution. For any integers x, y we have x3 ≡ 0, 1, 5, 8, 12 (mod 13)

and y4 ≡ 0, 1, 3, 9 (mod 13). Thus x3 + y4 �≡ 7 (mod 13).

4. Find all pairs of positive integers (x, y) satisfying the equation

3x − 2y = 7.

Solution. Let us assume first that y ≥ 3. Reducing modulo 8, we

deduce that 3x must give the residue 7. However, 3x can be congruent

only to 3 or 1 (mod 8), depending on the parity of x. We are left

with the cases y = 1 and y = 2, which are immediate. The only

solution is x = 2, y = 1.

5. Determine all nonnegative integral solutions (x1, x2, . . . , x14), if

any, apart from permutations, to the Diophantine equation

x4
1 + x4

2 + · · · + x4
14 = 15999.

(8th USA Mathematical Olympiad)

Solution. We show that the congruence

x4
1 + x4

2 + · · · + x4
14 ≡ 15999 (mod 16)
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has no solution, which will mean that the given equation is also not

solvable. Indeed, if an integer n is even, then n = 2k for k ∈ Z, and

thus n4 = 16k4 ≡ 0 (mod 16). If n is odd, then

n4 − 1 = (n − 1)(n + 1)(n2 + 1) ≡ 0 (mod 16),

since the numbers n − 1, n + 1, and n2 + 1 are even and one of the

integers n− 1, n+1 must even be divisible by 4. This means that n4

is congruent to 0 modulo 16 for even n, and congruent to 1 modulo

16 for odd n. Therefore, if exactly r of the numbers x1, x2, . . . , x14

are odd, then

x4
1 + x4

2 + · · · + x4
14 ≡ r (mod 16).

Now 15999 = 16000− 1 ≡ 15 (mod 16), and since 0 ≤ r ≤ 14, the

congruence

x4
1 + x4

2 + · · · + x4
14 ≡ 15 (mod 16)

cannot have a solution, and thus neither can the given equation be

solvable.

6. Find all pairs of integers (x, y) such that

x3 − 4xy + y3 = −1.

(G.M. Bucharest)

First Solution. Multiply both sides of the equation by 27 and then

add 64 to each of them to obtain

27x3 + 27y3 + 43 − 4 · 27xy = 37. (1)

Using the algebraic identity

a3 + b3 + c3 − 3abc = (a + b + c)(a2 + b2 + c2 − ab − bc − ca),
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equation (1) is equivalent to

(3x + 3y + 4)(9x2 + 9y2 + 16 − 9xy − 12x − 12y) = 37. (2)

Since 37 is a prime and the second factor of the product in the

left-hand side equals

1
2

[
(3x − 3y)2 + (3x − 4)2 + (3y − 4)2

]
≥ 0,

it follows that 3x + 3y + 4 > 0; hence from (2), 3x + 3y + 4 = 1

or 3x + 3y + 4 = 37. The latter is not possible since it would imply

x+y = 11 and (3x−3y)2+(3x−4)2+(3y−4)2 = 2, which cannot hold

simultaneously (x and y have different parities; hence |3x−3y| ≥ 3).

Thus 3x + 3y + 4 = 1 and 9x2 + 9y2 + 16− 9xy − 12x− 12y = 37.

We obtain the solutions (−1, 0) and (0,−1).

Remark. Compare this solution to that of Problem 4, Section 1.1.

Second Solution. Let x+y = s and xy = p. The equation becomes

s3 − 3sp − 4p + 1 = 0, which is equivalent to

p =
s3 + 1
3s + 4

.

Since p ∈ Z, it follows that 27p ∈ Z, i.e.,

27s3 + 27
3s + 4

∈ Z.

This implies

9s2 − 12s + 16 − 37
3s + 4

∈ Z,

so 3s + 4|37. Hence 3s + 4 ∈ {−1, 1, 37,−37}, thus s ∈ {−1, 11}.
If s = 11, then p = 113+1

37 �∈ Z.

If s = −1, then p = 0 and we obtain the solutions (−1, 0), (0,−1).
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7. Find all triples (x, y, z) of nonnegative integers such that

5x7y + 4 = 3z .

(Bulgarian Mathematical Olympiad)

Solution. Either x or y is nonzero, and looking at the equality

modulo 4 or modulo 7, we conclude that z must be even (in the first

case it must be of the form 4k +2, in the second of the form 6k +4).

Set z = 2z1 and rewrite the equation as 5x7y = (3z1 − 2)(3z1 + 2).

The two factors are divisible only by powers of 5 and 7, and since

their difference is 4, they must be relatively prime. Hence either

3z1 + 2 = 5x and 3z1 − 2 = 7y or 3z1 + 2 = 7y and 3z1 − 2 = 5x.

In the first case, assuming y ≥ 1, by subtracting the two equalities

we get 5x − 7y = 4. Looking at residues mod 7, we conclude that

x is of the form 6k + 2; hence even. But then, with x = 2x1, we

have 7y = (5x1 − 2)(5x1 + 2). This is impossible, since the difference

between the two factors is 4, and so they cannot both be powers of

7. It follows that y = 0, and consequently x = 1, x = 2.

In the second case, again by subtracting the equalities we find that

7y − 5x = 4. Looking modulo 5, we conclude that y must be even,

and the same argument as above works mutatis mutandis to show

that there are no solutions in this case.

8. Prove that the equation

4xy − x − y = z2

has no solution in positive integers.

(Euler)
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Solution. The equation is equivalent to

(4x − 1)(4y − 1) = 4z2 + 1.

Let p be a prime divisor of 4x − 1. Then 4z2 ≡ −1 (mod p)

i.e., (2z)2 ≡ −1 (mod p). From Fermat’s little theorem, we obtain

(2z)p−1 ≡ 1 (mod p).

Hence

1 ≡ (2z)p−1 ≡ ((2z)2)
p−1
2 ≡ (−1)

p−1
2 (mod p),

and therefore p ≡ 1 (mod 4).

Thus any prime divisors of 4x−1 must be congruent to 1 (mod 4);

hence 4x − 1 ≡ 1 (mod 4), a contradiction.

9. Prove that the system of equations
⎧
⎨

⎩

x2 + 6y2 = z2,

6x2 + y2 = t2,

has no nontrivial integer solutions.

Solution. Suppose that the system has a nontrivial solution. Then,

dividing by the common divisor of x, y, z, t, we can assume that these

four numbers have no common factor. We add the two equations to

get 7(x2 + y2) = z2 + t2. The quadratic residues modulo 7 are 0, 1,

2, 4. An easy check shows that the only way two residues can add

up to 0 is if they are both equal to 0. Hence z = 7z0 and t = 7t0

for some integers z0 and t0. But then x2 + y2 = 7(z2
0 + t20), which,

by the same argument, implies that x and y are also divisible by 7.

Thus each of x, y, z, and t is divisible by 7, a contradiction. Hence

the system has no nontrivial solutions.
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10. Find all pairs (a, b) of positive integers that satisfy the equation

ab2 = ba.

(37th IMO)

First Solution. We show that the only solutions are (1, 1), (16, 2),

and (27, 3).

Let (a, b) be a solution to the equation, and let d be the greatest

common divisor of a and b. We can then write a = du and b =

dv, where u and v are relatively prime positive integers. The given

equation is then equivalent to

(du)dv2
= (dv)u. (1)

We compare the exponents in (1) by examining three cases.

Case 1. If dv2 = u, then (1) implies that u = v. Because u and v

are relatively prime, we have u = v = 1. Since dv2 = u, we find that

d = 1. Hence (a, b) = (1, 1), which is a solution.

Case 2. If dv2 > u, rewrite (1) in the form

ddv2−uudv2
= vu (2)

to see that udv2
divides vu. Because u and v are relatively prime, we

must have u = 1. Equation (2) then becomes

ddv2−1 = v. (3)

If d = 1, then from (3) we get v = 1, and the inequality dv2 > u

fails to hold. If d ≥ 2, then

ddv2−1 ≥ 22v2−1 ≥ 22v−1 > v for v = 1, 2, 3, . . . .
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This contradicts (3), so there are no solutions in this case.

Case 3. If dv2 < u, then d < u. Rewrite (1) as

udv2
= du−dv2

vu (4)

and note that vu divides udv2
. Because u and v are relatively prime,

it follows that v = 1, so (4) becomes

ud = du−d. (5)

As noted earlier, d < u, so the exponents in (5) must satisfy d <

u − d. Also, by (5), any prime divisor p of d is also a prime divisor

of u. Let α and β be the largest integers such that pα | u and pβ | d.

Then from (5), we have αd = β(u − d), and hence α > β. It follows

that d | u, so we have u = kd for some positive integer k, and in

addition, k ≥ 3 because u > 2d. Substituting u = kd into (5), we get

k = dk−2. (6)

If k = 3, then d = 3 and u = kd = 9. This yields the solution

a = 27, b = 3.

If k = 4, then d = 2, u = 8, a = 16, and b = 2.

If k ≥ 5, then dk−2 ≥ 2k−2 > k, so (6) is impossible for such k.

Second Solution. First note that if b = 1, then a = 1 and vice versa.

Hence we may suppose a, b > 1. Let r = a
b2

∈ Q
+. Then a = br and

r = br−2. Write r = p/q for relatively prime positive integers p and

q. Then
pq

qq
= rq = bp−2q.

If p ≥ 2q, then the right-hand side is an integer and hence q = 1,

i.e., r ∈ Z. In this case we get b = r1/(r−2). If r ≥ 5, then this gives
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1 < b < 2, a contradiction. Hence r = 3 and (a, b) = (27, 3) or r = 4

and (a, b) = (16, 2).

If p < 2q, then the right-hand side is the reciprocal of an integer

and p = 1. Hence b = aq and a2q = qa or a = q1/(2q−1). But this

gives 1 < a < 2 for all q ≥ 2. Thus we get no solutions in this case.

11. Find all primes q1, q2, . . . , q6 such that

q2
1 = q2

2 + · · · + q2
6 .

(Titu Andreescu)

Solution. Each square is congruent to 0 or 1 modulo 3 and clearly

q1 �= 3. Suppose that among q2, . . . , q6 there are 0 ≤ a ≤ 5 primes

not equal to 3. Then a ≡ 1 (mod 3), so a = 1 or a = 4.

If a = 1, then q2
1 = q2

2 + 4 · 32, so (q1 + q2)(q1 − q2) = 36. Because

q1 + q2 > q1 − q2, q1 + q2 can be only 9, 12, 18, or 36, and we see that

there are no solutions.

If a = 4, then q2
1 = q2

2 + q2
3 + q2

4 + q2
5 + 9. Because qi are primes,

their quadratic residues modulo 8 are either 1 (if qi is odd) or 4 (if

qi = 2). Clearly q1 �= 2, and suppose that among q2, . . . , q5 there

are 0 ≤ b ≤ 4 primes not equal to 2. Then b + 4(4 − b) + 9 ≡ 1

(mod 8), yielding 3b ≡ 0 (mod 8). Hence b = 0, and the solutions

(q1, q2, q3, q4, q5, q6) are (5, 2, 2, 2, 2, 3) and its permutations with 5

fixed.

12. Prove that there are unique positive integers a and n such that

an+1 − (a + 1)n = 2001.

(Putnam Mathematical Competition)
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First Solution. Suppose an+1−(a+1)n = 2001. Notice that an+1+

[(a + 1)n − 1] is a multiple of a. Thus a divides 2002 = 2 · 7 · 11 · 13.
Since 2001 is divisible by 3, we must have a ≡ 1 (mod 3); other-

wise, one of an+1 and (a+1)n is a multiple of 3 and the other is not,

so their difference cannot be divisible by 3. Now an+1 ≡ 1 (mod 3),

so we must have (a + 1)n ≡ 1 (mod 3), which forces n to be even,

and in particular at least 2.

If a is even, then

an+1 − (a + 1)n ≡ −(a + 1)n (mod 4).

Since n is even,

−(a + 1)n ≡ −1 (mod 4).

Since 2001 ≡ 1 (mod 4), this is impossible. Thus a is odd, and so

must divide 1001 = 7 · 11 · 13. Moreover,

an+1 − (a + 1)n ≡ a (mod 4), so a ≡ 1 (mod 4).

Of the divisors of 7·11·13, those congruent to 1 mod 3 are precisely

those not divisible by 11 (since 7 and 13 are both congruent to 1 mod

3). Thus a divides 7 · 13. Now a ≡ 1 (mod 4) is possible only if a

divides 13.

We cannot have a = 1, since 1 − 2n �= 2001 for any n. Thus the

only possibility is a = 13. One easily checks that a = 13, n = 2 is a

solution. All that remains is to check that no other n works. In fact,

if n > 2, then

13n+1 ≡ 2001 ≡ 1 (mod 8).

But 13n+1 ≡ 13 (mod 8), since n is even, contradiction. Thus

a = 13, n = 2 is the unique solution.
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Second Solution. We begin as in the previous solution and get that

a divides 2002 = 2 ·7 ·11 ·13. It follows a ≡ 1 (mod 3). Now an+1 ≡ 1

(mod 3), so we must have (a + 1)n ≡ 1 (mod 3), which forces n to

be even, and in particular at least 2.

Notice that an+1 +1− (a+1)n is a multiple of a+1 (since n+1 is

odd). Thus a+1 divides 2002. The only pairs of consecutive divisors

of 2002 are (1, 2) and (13, 14). Hence a = 1 or a = 13.

We cannot have a = 1, since a − 2n �= 2001 for every n. Thus the

only possibility is a = 13.

1.5 The Method of Mathematical Induction

1. Prove that for all integers n ≥ 2 there exist odd integers x, y

such that |x2 − 17y2| = 4n.

(Titu Andreescu)

Solution. For n = 2 we have x2 = y2 = 1. Suppose that for an

integer n ≥ 2, there exist odd integers xn, yn such that |x2
n−17y2

n| =

4n. We will construct a pair of odd integers (xn+1, yn+1) such that

|x2
n+1 − 17y2

n+1| = 4n+1.

Actually,
(

xn ± 17yn

2

)2

− 17
(

xn ± yn

2

)2

= 4(x2
n − 17y2

n), (1)

and precisely one of the numbers

xn + yn

2
and

xn − yn

2

is odd (since their sum is odd). If, for example, xn+yn

2 is odd, then

xn + 17yn

2
= 8yn +

xn + yn

2
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is also odd; hence in this case we can choose

xn+1 =
xn + 17yn

2
, yn+1 =

xn + yn

2
,

and from (1) we have

|x2
n+1 − 17y2

n+1| = 4|x2
n − 17y2

n| = 4 · 4n = 4n+1.

If xn−yn

2 is odd, we will choose

xn+1 =
xn − 17yn

2
, yn+1 =

xn − yn

2
, n ≥ 1.

2. Prove that for all positive integers n, the following equation is

solvable in integers:

x2 + xy + y2 = 7n.

(Dorin Andrica)

Solution. If n = 1, we have the solution x1 = 2, y1 = 1. Suppose

that there exist positive integers xn, yn satisfying

x2
n + xnyn + y2

n = 7n

and define xn+1 = 2xn − yn, yn+1 = xn + 3yn. Hence

x2
n+1 + xn+1yn+1 + y2

n+1 = 7(x2
n + xnyn + y2

n) = 7 · 7n = 7n+1.

3. Prove that for each positive integer n, the equation

(x2 + y2)(u2 + v2 + w2) = 2009n

is solvable in integers.

(Titu Andreescu)
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Solution. Because 2009 = 41·49, we seek solutions to the equations

x2 + y2 = 41n and u2 + v2 + w2 = 49n.

The first equation is a special case of Example 2 in Section 1.3

and so it is solvable in integers. For the second equation we find the

solution (2 · 7n−1, 3 · 7n−1, 6 · 7n−1).

4. The integer tk = k(k+1)
2 is called the kth triangular number,

k ≥ 1.

Prove that for all positive integers n ≥ 3 the equation

1
x1

+
1
x2

+ · · · + 1
xn

= 1

is solvable in triangular numbers.

Solution. We easily check that

1
t2

+
1
t2

+
1
t2

= 1,
1
t2

+
1
t2

+
1
t3

+
1
t3

= 1.

Thus, it suffices to assume that n ≥ 5. If n is odd, that is, n =

2k − 1, where k ≥ 3, then we have

1
t2

+
1
t3

+ · · · + 1
tk−1

+
k + 1

tk
=

2
2 · 3 +

2
3 · 4 + · · · + 2

(k − 1)k
+

2
k

= 2
[(

1
2
− 1

3

)

+
(

1
3
− 1

4

)

+ · · · +
(

1
k − 1

− 1
k

)]

+
2
k

= 1,

and the left-hand side is the sum of reciprocals of (k−2)+(k +1) =

2k − 1 = n triangular numbers.

If n is even, that is, n = 2k, where k ≥ 3, then we have, in case

k = 3, 6
t3

= 1, while in case k > 3,

2
t3

+
1
t3

+
1
t4

+ · · · + 1
tk−1

+
k + 1

tk
=

1
3

+
2

3 · 4 +
2

4 · 5 + · · · + 2
(k − 1)k

+
2
k

=
1
3

+ 2
[(

1
3
− 1

4

)

+
(

1
4
− 1

5

)

+ · · · +
(

1
k − 1

− 1
k

)]

+
2
k

= 1,
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and the left-hand side is a sum of reciprocals of (k − 1) + (k + 1) =

2k = n triangular numbers.

Remark. One can give an inductive solution with step 3 using

the identity
1
tk

=
2

t2k
+

2
t2k+1

.

5. Show that for all n ≥ 6 the equation

1
x2

1

+
1
x2

2

+ · · · + 1
x2

n

= 1

is solvable in integers.

Solution. Note that

1
a2

=
1

(2a)2
+

1
(2a)2

+
1

(2a)2
+

1
(2a)2

from which it follows that if (x1, x2, . . . , xn) = (a1, a2, . . . , an) is an

integer solution to

1
x2

1

+
1
x2

2

+ · · · + 1
x2

n

= 1,

then

(x1,x2, . . . , xn−1, xn, xn+1, xn+2, xn+3)

= (a1, a2, . . . , an−1, 2an, 2an, 2an, 2an)

is an integer solution to

1
x2

1

+
1
x2

2

+ · · · + 1
x2

n+3

= 1.

Therefore we can construct the solutions inductively if there are

solutions for n = 6, 7, and 8.



1.5 The Method of Mathematical Induction 233

If n = 6, we have the solution (2, 2, 2, 3, 3, 6), if n = 7, a so-

lution is (2, 2, 2, 4, 4, 4, 4), and if n = 8, we have the solution

(2, 2, 2, 3, 4, 4, 12, 12).

6. Prove that for all s ≥ 2 there exist positive integers x0, x1, . . . , xs

such that
1
x2

1

+
1
x2

2

+ · · · + 1
x2

s

=
1
x2

0

and x0 < x1 < · · · < xs.

Solution. If s = 2, then x0 = 12, x1 = 15, x2 = 20 is a solution,

since it is easy to verify that

1
122

=
1

152
+

1
202

.

We now assume that the assertion holds for some s ≥ 2, i.e., there

exist positive integers x0 < x1 < · · · < xs such that

1
x2

0

=
1
x2

1

+
1
x2

2

+ · · · + 1
x2

s

.

We set y0 = 12x0, y1 = 15x0, and yi = 20xi−1 for i = 2, 3, . . . , s+1.

It is easy to see that y0 < y1 < · · · < ys+1. Furthermore, we have

1
y2
0

=
1
x2

0

· 1
122

=
1
x2

0

(
1

152
+

1
202

)

=
1

152
· 1
x2

0

+
1

202

(
1
x2

1

+ · · · + 1
x2

s

)

=
1
y2
1

+
1
y2
2

+ · · · + 1
y2

s

+
1

y2
s+1

.

This completes the proof by induction.

7. Prove that for every positive integer m and for all sufficiently

large s, the equation

1
xm

1

+
1

xm
2

+ · · · + 1
xm

s

= 1
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has at least one solution in positive integers x1, x2, . . . , xs.

Solution. Let m be a given positive integer. For s = 2m, our equa-

tion has a solution in positive integers x1 = x2 = · · · = xs = 2.

Let now a be a given positive integer, and suppose that our equa-

tion is solvable in positive integers for the positive integer s. Thus,

there exist positive integers t1, t2, . . . , ts such that

1
tm1

+
1
tm2

+ · · · + 1
tms

= 1,

and since 1/tms = am/(ats)m, for x1 = t1, x2 = t2, . . . , xs−1 = ts−1,

xs = xs+1 = · · · = xs+am−1 = ats, we have

1
xm

1

+
1

xm
2

+ · · · + 1
xm

s+am−1

= 1.

Thus, if our equation is solvable in positive integers for a positive

integer s, then it is also solvable in positive integers for s + am − 1,

and, more generally, for s+(am−1)k, where k is an arbitrary positive

integer. Taking a = 2 and a = 2m − 1, we see that (for s = 2m) our

equation has a solution in positive integers for every integer of the

form 2m + (2m − 1)k + [(2m − 1)m − 1]l, where k and l are arbitrary

positive integers.

In what follows we will prove and use the following result:

Lemma. If a and b are two relatively prime positive integers, then

all integers n ≥ ab + 1 can be written in the form n = ax + by, for

some positive integers x and y.

Proof. Applying the result of the lemma in the solution to Example

5 in Section 1.3, it follows that there exist positive integers u, v such

that au − bv = 1. For n > ab we have anu − bnv = n > ab, and
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consequently,
nu

b
− nv

a
> 1.

Therefore there exists an integer t such that nv
a < t < nu

b . Let

x = nu − bt, y = at − nv. We have x > 0 and y > 0 and also

ax + by = a(nu − bt) + b(at − nv) = n. �

Clearly, the numbers 2m−1 and (2m−1)m−1 are relatively prime.

By the lemma above it follows that every integer ≥ (2m − 1)[(2m −
1)m − 1]+ 1 can be written in the form (2m − 1)k + [(2m − 1)m − 1]l,

where k and l are positive integers. Thus the equation is solvable for

all integers s ≥ 2m + (2m − 1)[(2m − 1)m − 1] + 1.

Remark. The lower bound for s we have found above is not the

best possible. For example, if m = 3, this bound is

23 + (23 − 1) · [(23 − 1)3 − 1] + 1 = 2403,

far larger than 412 obtained in Example 4.

8. Prove that for any nonnegative integer k the equation

x2 + y2 − z2 = k

is solvable in positive integers x, y, z with x < y < z.

(Titu Andreescu)

Solution. If k is even, say k = 2n, consider the identity

2n = (3n)2 + (4n − 1)2 − (5n − 1)2.

Since 3n < 4n − 1 < 5n − 1 for n > 1 and

0 = 32 + 42 − 52, 2 = 52 + 112 − 122,
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we are done with this case.

If k is odd, say k = 2n + 3, we use the identity

2n + 3 = (3n + 2)2 + (4n)2 − (5n + 1)2,

where for n > 2, we have 3n + 2 < 4n < 5n + 1. Since

1 = 42 + 72 − 82, 3 = 42 + 62 − 72,

5 = 42 + 52 − 62, 7 = 62 + 142 − 152,

we have exhausted the case k odd as well.

9. Prove that the equation

x2 + (x + 1)2 = y2

has infinitely many solutions in positive integers x, y.

Solution. Note that x1 = 3, y1 = 5 is a solution. Define the se-

quences (xn)n≥1, (yn)n≥1 by
⎧
⎨

⎩

xn+1 = 3xn + 2yn + 1,

yn+1 = 4xn + 3yn + 2,

where x1 = 3 and y1 = 5.

Suppose that (xn, yn) is a solution to the equation. Then

x2
n+1 + (xn+1 + 1)2 = (3xn + 2yn + 1)2 + (3xn + 2yn + 2)2

= (4xn + 3yn + 2)2,

since x2
n + (xn + 1)2 = y2

n. Therefore x2
n+1 + (xn+1 + 1)2 = y2

n+1, i.e.,

(xn+1, yn+1) is also a solution.
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10. Solve in distinct positive integers the equation

x2
1 + x2

2 + · · · + x2
2002 = 1335(x1 + x2 + · · · + x2002).

(Titu Andreescu)

Solution. We will prove that the only solution up to permutation

to the equation in distinct positive integers

x2
1 + · · · + x2

m =
2m + 1

3
(x1 + · · · + xm)

is x1 = 1, . . . , xm = m.

For this purpose we need the following result.

Lemma. If a1, a2, . . . is a sequence of distinct positive integers,

then for all n ≥ 1 the following inequality holds:

a2
1 + · · · + a2

n ≥ 2n + 1
3

(a1 + · · · + an).

(Romanian Mathematical Olympiad)

Proof. Without loss of generality, we may assume that 0 < a1 <

a2 < · · · .

Let us proceed by induction. For n = 1, a1 ≥ 1 implies

a2
1 ≥ 2 · 1 + 1

3
a1.

It suffices to prove that

a2
n+1 ≥ 2

3
(a1 + · · · + an) +

2n + 3
3

an+1,

or

3a2
n+1 − (2n + 3)an+1 ≥ 2(a1 + · · · + an).
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Since

2(a1 + · · ·+an) ≤ 2(1+2+ · · ·+an) = an(an +1) ≤ (an+1 − 1)an+1,

it is enough to show that

3a2
n+1 − (2n + 3)an+1 ≥ (an+1 − 1)an+1.

The last inequality is equivalent to an+1 ≥ n+1, which is evident. �

Without loss of generality, suppose that 0 < x1 < x2 < · · · < xm.

Then

x1 ≥ 1, . . . , xm ≥ m.

We have

x2
1 + · · · + x2

m =
2m + 1

3
(x1 + · · · + xm),

and by the lemma,

x2
1 + · · · + x2

m−1 ≥ 2m − 1
3

(x1 + · · · + xm−1).

It follows that

x2
m ≤ 2

3
(x1 + · · · + xm−1) +

2m + 1
3

xm.

Since xm−1 ≤ xm − 1, xm−2 ≤ xm − 2, . . . , x1 ≤ xm − (m − 1), we

also have

x1 + · · · + xm−1 ≤ (m − 1)xm − (m − 1)m
2

.

Then

x2
m ≤ 2(m − 1)

3
xm − (m − 1)m

3
+

2m + 1
3

xm,

or

x2
m − 4m − 1

3
xm +

(m − 1)m
3

≤ 0.

That is, (xm−m)
(
xm − m−1

3

) ≤ 0, and since xm > m−1
3 , it follows

that xm ≤ m, i.e., xm = m and x1 = 1, x2 = 2, . . . , xm−1 = m − 1.
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1.6 Fermat’s Method of Infinite Descent (FMID)

1. Find all triples (x, y, z) of positive integer solutions to the equa-

tion

x3 + 3y3 + 9z3 − 3xyz = 0.

(Kürschák Mathematical Competition)

Solution. Note that (0, 0, 0) is a solution. Suppose that (x1, y1, z1)

is another solution. If one of the components x1, y1, z1 equals zero,

then from the irrationality of 3
√

3 or 3
√

9 it follows that the other two

equal zero as well. Hence we may assume that x1, y1, z1 > 0.

A similar argument to that in Example 1 shows that x1 = 3x2,

y1 = 3y2, z1 = 3z2, where (x2, y2, z2) is also a solution. We obtain

in this way a sequence of positive integral solutions (xn, yn, zn)n≥1

with x1 > x2 > x3 > · · · , in contradiction to FMID Variant 1. Thus

the only solution is (0, 0, 0).

2. Find all integers x, y, z satisfying

x2 + y2 + z2 − 2xyz = 0.

(Korean Mathematical Olympiad)

Solution. The only solution to this equation is x = y = z = 0.

First, note that x, y, and z cannot all be odd, since then x2 +

y2 + z2 − 2xyz would be odd and therefore nonzero. Therefore

2 divides xyz. But then x2 + y2 + z2 = 2xyz is divisible by 4;

since all squares are congruent to 0 or 1 (mod 4), x, y, and z must

all be even. Write x = 2x1, y = 2y1, z = 2z1; then we have

4x2
1 + 4y2

1 + 4z2
1 = 16x1y1z1, or x2

1 + y2
1 + z2

1 = 4x1y1z1. Since the
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right-hand side is divisible by 4, x1, y1, z1 must again be even, so

we can write x1 = 2x2, y1 = 2y2, z1 = 2z2; plugging this in and

manipulating, we obtain x2
2 +y2

2 + z2
2 = 8x2y2z2. In general, if n ≥ 1,

x2
n + y2

n + z2
n = 2n+1xnynzn implies that xn, yn, zn are all even, so

we can write xn = 2xn+1, yn = 2yn+1, zn = 2zn+1, which sat-

isfy x2
n+1 + y2

n+1 + z2
n+1 = 2n+2xn+1yn+1zn+1; repeating this argu-

ment gives us an infinite sequence of integers x1, x2, x3, . . . in which

xi = 2xi+1, i ≥ 1. Therefore |x1| > |x2| > |x3| > · · · , which contra-

dicts FMID Variant 1.

3. Solve the following equation in integers x, y, z, u :

x4 + y4 + z4 = 9u4.

Solution. If u = 0, then necessarily x = y = z = 0, which is a

solution of the given equation. We will show that there are no other

solutions. Let us assume that the integers x, y, z, u satisfy the given

equation and that u �= 0; we set d = u4. If the number u were

not divisible by 5, then Fermat’s little theorem would give u4 ≡ 1

(mod 5), and we would have

x4 + y4 + z4 ≡ 4 (mod 5).

This, however, is impossible, since by Fermat’s little theorem the

numbers x4, y4, z4 are congruent to 0 or 1 modulo 5. Thus, u is

divisible by 5, i.e., u = 5u1 for an appropriate u1 ∈ Z, and we get

x4 + y4 + z4 ≡ 0 (mod 5),

which implies that x, y, z are divisible by 5, i.e., x = 5x1, y = 5y1,

z = 5z1 for appropriate x1, y1, z1 ∈ Z. Substituting this into the
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original equation and dividing by 54, we obtain

x4
1 + y4

1 + z4
1 = 9u4

1,

and thus x1, y1, z1, u1 satisfy the given equation, and

u4
1 =

u4

54
< u4 = d.

Continuing this procedure, we obtain the sequence u4
1 > u4

2 >

u4
3 > · · · , in contradiction to FMID Variant 1.

4. Solve the following equation in positive integers:

x2 − y2 = 2xyz.

Solution. We assume that some positive integers x, y, z satisfy the

given equation, and set d = xy. If we let d = 1, then x = y = 1 and

the equation would give z = 0, which is impossible. Hence d > 1.

Let p be some prime dividing d. Since

(x + y)(x − y) = x2 − y2 = 2xyz ≡ 0 (mod p),

we have x ≡ y (mod p) or x ≡ −y (mod p). In view of the fact that

the prime p divides the product xy, either x or y is congruent to 0

modulo p, and together x ≡ y ≡ 0 (mod p). Hence x1 = x/p and

y1 = y/p are positive integers, and

(px1)2 − (py1)2 = 2(px1)(py1)z,

from which, upon dividing by p2, we see that x1, y1, z satisfy the

given equation, and that

x1y1 =
x

p
· y

p
=

d

p2
< d.



242 Part II. Solutions to Exercises and Problems

In this way we obtain a decreasing sequence of positive integers

x1 > x2 > x3 > · · · , which is not possible.

5. Determine all integral solutions to

a2 + b2 + c2 = a2b2.

(5th USA Mathematical Olympiad)

Solution. We show, by considering the equation modulo 4 for all

possibilities of a, b, c being even or odd, that it is necessary that they

all be even. We can also take them to be all nonnegative. First, note

that for even and odd numbers, we have

(2n)2 ≡ 0 (mod 4) and (2n + 1)2 ≡ 1 (mod 4).

Case 1. a, b, c all odd. Then

a2 + b2 + c2 ≡ 3 (mod 4), while a2b2 ≡ 1 (mod 4).

Case 2. Two odd and one even. Then

a2 + b2 + c2 ≡ 2 (mod 4), while a2b2 ≡ 0 or 1 (mod 4).

Case 3. Two even and one odd. Then

a2 + b2 + c2 ≡ 1 (mod 4), while a2b2 ≡ 0 (mod 4).

Since the only possible solution is for a, b, c even, let a = 2a1,

b = 2b1, and c = 2c1. This leads to the equation

a2
1 + b2

1 + c2
1 = 4a2

1b
2
1, where a1 ≤ a, b1 ≤ b, c1 ≤ c.

Now 4a2
1b

2
1 ≡ 0 (mod 4), and each of a2

1, b
2
1, c

2
1 is congruent to 0 or

1 (mod 4). Hence a2
1 ≡ b2

1 ≡ c2
1 ≡ 0 (mod 4) and a1, b1, c1 are even,
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say a1 = 2a2, b1 = 2b2, c1 = 2c2. This leads to the equation

16a2
2b

2
2 = a2

2 + b2
2 + c2

2.

Again, we can conclude that a2, b2, c2 are all even, and the process

leads to

64a2
3b

2
3 = a2

3 + b2
3 + c2

3,

where a = 8a3, b = 8b3, c = 8c3. If we continue the process, we

conclude that a, b, and c are divisible by as high a power of 2 as

we want to specify, and hence the only solution of the equation is

a = b = c = 0.

6. (a) Prove that if there exists a triple of positive integers (x, y, z)

such that

x2 + y2 + 1 = xyz,

then z = 3.

(b) Find all such triples.

Solution. (a) Let (x, y, z) be a solution with z �= 3. Then x �= y,

for otherwise x2(z − 2) = 1, which is impossible, since z − 2 �= 1. We

have

0 = x2 + y2 + 1 − xyz = (x − yz)2 + y2 + 1 + xyz − y2z2

= (yz − x)2 + y2 + 1 − (yz − x)yz;

hence (yz − x, y, z) is also a solution, since x(yz − x) = xyz − x2 =

y2 + 1 > 0 implies yz − x > 0. Note that if x > y, then x2 >

y2 + 1 = x(yz − x). Hence x > yz − x, which shows that the newly

obtained solution is smaller than the initial solution in the sense that

x+y > (yz−x)+y. However, under the assumption that x �= y, this
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procedure can be continued indefinitely, which is impossible, since in

the process we construct an infinite decreasing sequence of positive

integers, violating FMID Variant 1. This contradiction shows that

there are no solutions if z �= 3.

(b) Clearly, (1, 1) is a solution to the equation

x2 + y2 + 1 = 3xy.

Let (a, b), a > b, be another solution. Then b2 + (3b − a)2 + 1 =

3b(3b − a), so (b, 3b − a) is also a solution. From

(a − b)(a − 2b) = a2 − 3ab + 2b2 = b2 − 1 > 0

it follows that a > 2b; hence 3b − a < b. So the new solution has a

smaller b. Descending, we reach a solution with b = 1, hence with

a2 +2 = 3a, in which case a = 1 or a = 2. It follows that all solutions

are obtained from (a1, b1) = (1, 1) by the recurrence

(an+1, bn+1) = (bn, 3bn − an).

Sequences (an)n≥1 and (bn)n≥1 satisfy the same recursion: xn+1 =

3xn − xn−1, x1 = 1, x2 = 2, which characterizes the Fibonacci num-

bers of odd index. Therefore, (an, bn) = (F2n+1, F2n−1), n ≥ 1.

The solutions are (1, 1), (F2n+1, F2n−1), (F2n−1, F2n+1), n ≥ 1.

Remarks. (1) Some variants of this problem have appeared in

various mathematical competitions and training exercises. We will

mention here the following:

Find all pairs (m,n) of positive integers having the property that

mn | (m − n)2 + 1.

(USA Mathematical Olympiad Summer Program)
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(2) The Diophantine equation

x2 + y2 + z2 = 3xyz

is known as Markov’s equation. The structure of its solutions is

quite complicated. Using the result in the problem, it follows that

(F2n−1, F2n+1, 1), n ≥ 1, and its permutations are solutions to this

equation, as well as the obvious solution (1, 1, 1).

7. Solve in positive integers x, y, u, v the system
⎧
⎨

⎩

x2 + 1 = uy,

y2 + 1 = vx.

Solution. Clearly x and y are relatively prime. We have

x2 + y2 + 1 = x(x + v) = y(y + u). (1)

It follows that x | x2 + y2 + 1 and y | x2 + y2 + 1; hence there is a

positive integer z such that

x2 + y2 + 1 = xyz. (2)

From Problem 6, it follows that z = 3 and that x = F2n−1 and

y = F2n+1 in some order. On the other hand, from (1) and from

x2 + y2 + 1 = 3xy we obtain

x + v = 3y, y + u = 3x,

hence u = 3x − y = 3F2n−1 − F2n+1 = F2n−3 and v = 3y − x =

3F2n+1 − F2n−1 = F2n+3.

The solutions are

(x, y, u, v) =(F2n−1, F2n+1, F2n−3, F2n+3),

(x, y, u, v) =(F2n+1, F2n−1, F2n+3, F2n−3),



246 Part II. Solutions to Exercises and Problems

where n ≥ 1 and F−1 = 1.

Remark. Other variants of this problem have appeared in various

mathematical competitions and training exercises. We will mention

here the following:

Prove that there are infinitely many pairs (a, b) of positive integers

such that a | b2 + 1 and b | a2 + 1.

(Tournament of Towns)

8. Find all triples (x, y, z) of positive integers that are solutions to

the system of equations
⎧
⎨

⎩

2x − 2y + z = 0,

2x3 − 2y3 + z3 + 3z = 0.

(Titu Andreescu)

Solution. Substituting z from the first equation into the second

yields

2(x3 − y3) − 8(x − y)3 − 6(x − y) = 0.

Because x �= y, this reduces to

−(x2 + xy + y2) + 4(x − y)2 + 3 = 0,

which is equivalent to x2 + y2 + 1 = 3xy.

Taking into account that x < y, from Problem 6 it follows that all

pairs (x, y) = (xn, yn) are (F2n−1, F2n+1), n ≥ 1, and

zn = 2(yn − xn) = 2F2n.

Hence all desired triples are (F2n−1, F2n+1, 2F2n)n≥1.
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9. Prove that there are infinitely many triples (x, y, z) of positive

integers such that

x2 + y2 + z2 = xyz.

(College Mathematics Journal)

Solution. It suffices to consider z = 3. We obtain the equation

x2 + y2 + 9 = 3xy. Taking x = 3u and y = 3v, the equation becomes

u2 + v2 +1 = 3uv. We have seen in Problem 6 that this equation has

solutions (u, v) = (1, 1), (F2n−1, F2n+1), and (F2n+1, F2n−1), n ≥ 1.

Hence an infinite family of solutions to our equation is given by

(x, y, z) = (3F2n+1, 3F2n−1, 3), n ≥ 1.

10. Find all pairs of positive integers (a, b) such that ab + a + b

divides a2 + b2 + 1.

(Mathematics Magazine)

Solution. Either a = b = 1 or a and b are consecutive squares.

The divisibility condition can be written as

k(ab + a + b) = a2 + b2 + 1, (1)

for some positive integer k. If k = 1, then (1) is equivalent to

(a − b)2 + (a − 1)2 + (b − 1)2 = 0,

from which a = b = 1. If k = 2, then (1) can be written as

4a = (b − a − 1)2,

forcing a to be a square, say a = d2. Then b − d2 − 1 = ±2d, so

b = (d ± 1)2, and a and b are consecutive squares.
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Now assume that there is a solution with k ≥ 3, and let (a, b) be

the solution with a minimal and a ≤ b. Write (1) as a quadratic

in b:

b2 − k(a + 1)b + (a2 − ka + 1) = 0.

Because one root, b, is an integer, the other root, call it r, is also

an integer. Since (1) must be true with r in place of b, we conclude

that r > 0. Because a ≤ b and the product of the roots, a2 − ka + 1,

is less than a2, we must have r < a. But then (r, a) is also a solution

to (1), contradicting the minimality of a.

11. Let a be a positive integer. The sequence (xn)n≥1 is defined by

x1 = 1, x2 = a, and xn+2 = axn+1 + xn for all n ≥ 1. Prove that

(x, y) is a solution to the equation

|x2 + axy − y2| = 1

if and only if there exists an index k such that (x, y) = (xk, xk+1).

(Romanian Mathematical Olympiad)

Solution. Let f(x, y) = x2+axy−y2. We have f(x1, x2) = f(1, a) =

1. Using mathematical induction, it follows that for any n ≥ 1,

(xn, xn+1) is a solution to the equation.

Consider (x, y) ∈ Z
∗
+ × Z

∗
+ a solution to the equation. From x2 +

axy−y2 = ±1 it follows that y(y−ax) = x2±1 ≥ 0, with equality if

and only if x = 1 and y = a. In this case, (x, y) = (x1, x2) and we are

done. Now assume y > ax. The pair (x(1), y(1)) = (y − ax, x) is also

a solution, since f(x, y) = ±1 implies f(y − ax, x) = ∓1. Moreover,

x+y ≥ x(1) +y(1) and y(1) ≥ ax(1). In this way we obtain a sequence
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of solutions (x(n), y(n))n≥1 such that y(n) − ax(n) ≥ 0 and

x + y ≥ x(1) + y(1) ≥ x(2) + y(2) ≥ · · · .

Applying FMID Variant 2, it follows that there exists a positive

integer k such that x(n) + y(n) = x(k) + y(k) for all n ≥ k. In this

case, for the solution (x(k), y(k)) we have y(k) = ax(k) and (x, y) =

(xk, xk+1).

12. Find all pairs of nonnegative integers (m,n) such that

(m + n − 5)2 = 9mn.

(42nd IMO USA Team Selection Test)

Solution. Note that the equation is symmetric in m and n. The

solutions are the unordered pairs

(5F 2
2k , 5F 2

2k+2), (L2
2k−1, L

2
2k+1),

where k is a nonnegative integer and {Fj}, {Lj} are the Fibonacci

and Lucas sequences, respectively, that is, the sequences defined by

F1 = F2 = 1, L1 = 1, L2 = 3 and the recurrence relations Fj+2 =

Fj+1 + Fj and Lj+2 = Lj+1 + Lj for j ≥ 1. Note that we amended

the Lucas sequence by considering L−1 = −1 and L0 = 2. Let g =

gcd(m,n) and write m = gm1 and n = gn1. Because 9mn is a perfect

square, m1 and n1 are perfect squares. Let m1 = x2 and n1 = y2.

The given condition becomes

(gx2 + gy2 − 5)2 = 9g2x2y2.

Taking the square root on both sides yields

g(x2 + y2) − 5 = ±3gxy,
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or

g(x2 + y2 ± 3xy) = 5.

If g(x2 + y2 + 3xy) = 5, then x2 + y2 + 3xy ≤ 5, implying that

x = y = g = 1 and (m,n) = (1, 1). Otherwise, g(x2 + y2 − 3xy) = 5

and g = 1 or 5. Fix g equal to one of these values, so that

x2 − 3xy + y2 =
5
g
. (1)

We call an unordered pair (a, b) a g-pair if (x, y) = (a, b) (or equiv-

alently, (x, y) = (b, a)) satisfies (1) and a and b are positive integers.

Also, we call an unordered pair (p, q) smaller (respectively, larger)

than another unordered pair (r, s) if p + q is smaller (respectively

larger) than r + s.

Suppose that (a, b) is a g-pair. View (1) as a monic quadratic in

x with y = b constant. The coefficient of x in a monic quadratic

equation (x− r1)(x− r2) equals −(r1 + r2), implying that (3b− a, b)

should also satisfy (1). Indeed,

b2 − 3b(3b − a) + (3b − a)2 = a2 − 3ab + b2 =
5
g
.

Also, if b > 2, note that

a2 − 3ab + b2 =
5
g

< b2.

It follows that a2 − 3ab < 0, and so 3b − a > 0. Thus if (a, b) is a

g-pair with b > 2, then, (b, 3b − a) is a g-pair as well. Furthermore,

if a ≥ b, note that a �= b, because otherwise −a2 = g > 0, which is

impossible. Thus, a > b and

a2 − 3ab + b2 =
5
g

> b2 − a2,
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which implies that a(2a− 3b) > 0 and hence a+ b > b+(3b−a) and

also 3b − a > b. Thus, (b, 3b − a) is a smaller g-pair than (a, b) with

b ≥ 3b − a.

Given any g-pair (a, b) with b ≤ a, if b ≤ 2, then a must equal

r(g), where r(5) = 3 and r(1) = 4. Otherwise, according to the

above observation, we can repeatedly reduce it to a smaller g-pair

until min(a, b) ≤ 2, that is, to the g-pair (r(g), 1). Beginning with

(r(g), 1), we reverse the reducing process so that (x, y) is replaced

by the larger g-pair (3x − y, x). Moreover, this must generate all g-

pairs, since all g-pairs, can be reduced to (r(g), 1). We may express

these possible pairs in terms of the Fibonacci and Lucas numbers;

for g = 1, observe that L2 = 1, L4 = 4 = r(1), and that

L2k+4 = L2k+3 + L2k+2 = (L2k+2 + L2k+1) + L2k+2

= (L2k+2 + (L2k+2 − L2k)) + L2k+2 = 3L2k+2 − L2k

for k ≥ 0. For g = 5, the Fibonacci numbers satisfy an analogous

recurrence relation, and F2 = 1, F4 = 3 = r(5). Therefore, (m,n) =

(L2
2k, L

2
2k+2) and (m,n) = (5F 2

2k , 5F 2
2k+2) for k ≥ 0.

13. Let x, y, z be positive integers such that xy − z2 = 1. Prove

that there exist nonnegative integers a, b, c, d for which

x = a2 + b2, y = c2 + d2, and z = ac + bd.

(20th IMO Shortlist)

Solution. Assume, by way of contradiction, that we have a triple

of positive integers (x0, y0, z0) with x0y0 − z2
0 = 1 such that there

are no integers a, b, c, d satisfying x0 = a2 + b2, y0 = c2 + d2, and
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z0 = ac + bd. We may further assume that 2 ≤ x0 ≤ y0 and that z0

is minimal (if we had x0 = 1, then x0 = 02 + 12, y0 = 12 + k2, and

z0 = 0 · 1 + 1 · k).

Starting with (x0, y0, z0) we construct another triple satisfying

xy − z2 = 1 in the following way: taking z = x + u, we ob-

tain xy − (x2 + 2xu + u2) = 1, or x(y − x − 2u) − u2 = 1.

Since u = z − x, we have y − x − 2u = x + y − 2z; hence

(x1, y1, z1) = (x0, x0 + y0 − 2z0, z0 − x0) is that triple. We check

now that x1, y1, z1 ≥ 1. Indeed, the inequalities

z2
0 = x0y0 − 1 < x0y0 ≤

(
x0 + y0

2

)2

imply that z0 < x0+y0

2 , i.e., y1 ≥ 1. Also, the inequality z2
0 = x0y0 −

1 ≥ x2
0 − 1 implies z0 ≥ x0 − 1.

If z0 = x0 − 1, then x0(y0 −x0 + 2) = 2, which is impossible, since

x0 ≥ 2 and y0 − x0 + 2 ≥ 2.

If z0 = x0, then x0(y0−x0) = 1, which is impossible, since x0 ≥ 2.

Therefore z1 = z0 − x0 ≥ 1.

Moreover, if we had x1 = m2 +n2, y1 = p2 +q2, and z1 = mp+nq,

then we would obtain

x0 = m2 + n2, x0 + y0 − 2z0 = p2 + q2, and z0 − x0 = mp + nq,

and hence

y0 = p2+q2+2z0−x0 = p2+q2+2mp+2nq+x0 = (p+m)2+(q+n)2

and z0 = m(p+m)+n(q+n), which contradicts our initial assumption

concerning the triple (x0, y0, z0).
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We obtained the positive integers triple (x1, y1, z1) satisfying all

properties at the beginning of the proof, with z1 < z0. This contra-

dicts the minimality of z0.

Remark. Choosing z = (2s)!, we will prove that each prime p of

the form 4s + 1 is representable as a sum of two perfect squares.

Indeed, from Wilson’s theorem it follows that (p − 1)! + 1 ≡ 0

(mod p), i.e., (4s)! + 1 = pr, for some positive integer r. But

(4s)! = (2s)!(4s + 1 − 1)(4s + 1 − 2) · · · (4s + 1 − 2s)

≡ (2s)!(−1)2s(2s)! ≡ ((2s)!)2 (mod p).

It follows that ((2s)!)2 = py − 1. Applying the result in the problem

for p = x and z = (2s)!, the property follows.

1.7 Miscellaneous Diophantine Equations

1. Prove that the equation 6(6a2 + 3b2 + c2) = 5n2 has no solution

in integers except a = b = c = n = 0.

(Asian Pacific Mathematical Olympiad)

Solution. Assume that a nontrivial integer solution (a, b, c, n) ex-

ists. We may assume that gcd(a, b, c, n) = 1, since any common di-

visor can be divided out. We have

6a2 + 3b2 + c2 =
5n2

6
.

Clearly 6 | n. If n = 6m, then

2a2 + b2 +
c2

3
= 10m2,
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and therefore 3 | c. If c = 3d, then

2a2 + b2 + 3d2 = 10m2.

For any integer x, we have x2 ≡ 0, 1, 4 (mod 8). Therefore

2a2 ≡ 0, 2 (mod 8),

b2 ≡ 0, 1, 4 (mod 8),

3d2 ≡ 0, 3, 4 (mod 8),

but

2a2 + b2 + 3d2 = 10m2 ≡ 0, 2 (mod 8).

Hence b2 and 3d2, and therefore b and d, are even. It follows that

c is even. Let b = 2r, c = 2s. Then from the original equation,

36a2 + 72r2 + 24s2 = 180m2,

and 36a2 is therefore divisible by 8. Therefore a is even, along with

b, c, and n, contradicting the coprimality assumption.

2. Determine a positive constant c such that the equation

xy2 − y2 − x + y = c

has exactly three solutions (x, y) in positive integers.

(United Kingdom Mathematical Olympiad)

Solution. When y = 1 the left-hand side is 0; hence we cannot

have three solutions. Thus we can rewrite our equation as

x =
y(y − 1) + c

(y + 1)(y − 1)
.
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The numerator is congruent to −1(−2) + c modulo (y + 1), and it

is also congruent to c modulo (y − 1). Hence we must have c ≡ −2

(mod (y + 1)) and c ≡ 0 (mod (y − 1)). Because c = y − 1 satisfies

these congruences, we must have c ≡ y − 1 (mod lcm(y − 1, y + 1)).

When y is even, lcm(y − 1, y + 1) = y2 − 1; when y is odd, lcm(y −
1, y + 1) = 1

2(y2 − 1).

Then, for y = 2, 3, 11, we have c ≡ 1 (mod 3), c ≡ 2 (mod 4),

c ≡ 10 (mod 60). Hence, we try setting c = 10. For x to be an

integer, we must have (y − 1) | 10 ⇒ y = 2, 3, 6, or 11. These

values give x = 4, 2, 2
7 , and 1, respectively. Thus there are exactly

three solutions in positive integers, namely (x, y) = (4, 2), (2, 3), and

(1, 11).

3. Find all triples (x, y, z) of positive integers such that y is a

prime number, y and 3 do not divide z, and x3 − y3 = z2.

(Bulgarian Mathematical Olympiad)

Solution. Rewrite the equation in the form

(x − y)(x2 + xy + y2) = z2.

Any common divisor of x − y and x2 + xy + y2 also divides both

z2 and (x2 + xy + y2) − (x + 2y)(x − y) = 3y2. Because z2 and 3y2

are relatively prime by assumption, x − y and x2 + xy + y2 must be

relatively prime as well. Therefore, both x − y and x2 + xy + y2 are

perfect squares.

Now writing a =
√

x − y, we have

x2 + xy + y2 = (a2 + y)2 + (a2 + y)y + y2 = a4 + 3a2y + 3y2
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and 4(x2 + xy + y2) = (2a2 + 3y)2 + 3y2.

Writing m = 2
√

x2 + xy + y2 and n = 2a2 + 3y, we have

m2 = n2 + 3y2,

or (m − n)(m + n) = 3y2, so (m − n,m + n) = (1, 3y2), (3, y2), or

(y, 3y).

In the first case, 2n = 3y2 − 1 and 4a2 = 2n − 6y = 3y2 − 6y − 1

is a square, which is impossible modulo 3.

In the third case, n = y < 2a2 + 3y = n, a contradiction.

In the second case, we have 4a2 = 2n−6y = y2−6y−3 < (y−3)2.

When y ≥ 10 we have y2−6y−3 > (y−4)2; hence we must actually

have y = 2, 3, 5, or 7. In this case we have a =
√

y2−6y−3

2 , which is

real only when y = 7, a = 1, x = y + a2 = 8, and z = 13. This yields

the unique solution (x, y, z) = (8, 7, 13).

4. Determine all triples (x, k, n) of positive integers such that

3k − 1 = xn.

(Italian Mathematical Olympiad)

Solution. The solutions are all triples of the form (3k − 1, k, 1) for

positive integers k, and (2, 2, 3).

The case of n = 1 is obvious. Now, n cannot be even, because then

3 could not divide 3k = (x
n
2 )2 + 1 (because no square is congruent

to 2 modulo 3). Also, we must have x �= 1.

Assume that n > 1 is odd and x ≥ 2. Then 3k = (x +

1)
∑n−1

i=0 (−x)i, implying that both x+ 1 and
∑n−1

i=0 (−x)i are powers

of 3. Because

x + 1 ≤ x2 − x + 1 ≤
n−1∑

i=0

(−x)i,
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we must have

0 ≡
n−1∑

i=0

(−x)i ≡ n (mod (x + 1)),

so that (x + 1) | n. Specifically, this means that 3 | n.

Writing x′ = x
n
3 , we have 3k = x′3 + 1 = (x′ + 1)(x′2 − x′ + 1).

As before, x′ + 1 must equal some power of 3, say 3t. Then 3k =

(3t − 1)3 + 1 = 33t − 32t+1 + 3t+1, which is strictly between 33t−1

and 33t for t > 1. Therefore we must have t = 1, x′ = 2, and k = 2,

giving the solution (x, k, n) = (2, 2, 3).

5. For a positive integer n, show that the number of integral solu-

tions (x, y) to the equation x2 + xy + y2 = n is finite and a multiple

of 6.

Solution. If (x, y) is an integral solution of x2 + xy + y2 = n, then

(−x,−y) is a different solution, so solutions come in pairs. If we

can show instead that solutions come in sixes (and that there are

only finitely many), we will be done. To see why solutions come in

sixes, we can use algebraic manipulation to rewrite x2 + xy + y2 as

a2 + ab + b2 for suitable (a, b) �= (x, y).

First note that for any solution (x, y), we have

2n = 2x2 + 2xy + 2y2 = x2 + y2 + (x + y)2 ≥ x2 + y2.

Therefore, any integral solution is one of the lattice points (points

whose coordinates are integers) on or inside a circle of radius
√

2n,

and so the number of integral solutions is finite.
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Now observe that

x2 + xy + y2 = (x + y)2 − xy

= (x + y)2 − x(x + y) + x2

= (x + y)2 + (x + y)(−x) + (−x)2.

Thus, if (x, y) is an integral solution of x2 + xy + y2 = n, then so

is (x+ y,−x). If we repeat this process with the new solution, we go

through a cycle of solutions,

(x, y), (x+y,−x), (y,−x−y), (−x,−y), (−x−y, x), (−y, x+y), (1)

after which we get back to (x, y). It can be checked directly that

since x and y cannot both be zero, all six solution in the cycle (1)

are different.

6. Find all positive integers n such that there exist relatively prime

positive integers x and y and an integer k > 1 satisfying the equation

xk + yk = 3n.

(Russian Mathematical Olympiad)

Solution. The only solution is n = 2. Let 3n = xk + yk, where x, y

are relatively prime integers with x > y, k > 1, and n a positive

integer. Clearly, neither x nor y is a multiple of 3. Therefore, if k is

even, xk and yk are congruent to 1 mod 3, so their sum is congruent

to 2 mod 3, and so is not a power of 3. If k is odd and k > 1, then

3n = (x + y)(xk−1 − · · · + yk−1). Thus x + y = 3m for some m ≥ 1.

We will show that n ≥ 2m. Since 3 | k, by putting x1 = xk/3 and

y1 = yk/3, we may assume that k = 3. Then x3 + y3 = 3n and
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x + y = 3m. To prove the inequality n ≥ 2m, it suffices to show

that x3 + y3 ≥ (x + y)2, or x2 − xy + y2 ≥ x + y. Since x ≥ y + 1,

x2 −x = x(x− 1) ≥ xy, and (x2 −x+ xy)+ (y2 − y) ≥ y(y − 1) ≥ 0,

and the inequality n ≥ 2m follows.

From the identity (x+ y)3 − (x3 + y3) = 3xy(x+ y) it follows that

32m−1 − 3n−m−1 = xy.

But 2m − 1 ≥ 1, and n−m− 1 ≥ n− 2m ≥ 0. If strict inequality

occurs in either place in the last inequality, then 32m−1 − 3n−m−1 is

divisible by 3, while xy is not. Hence n − m − 1 = n − 2m = 0, and

so m = 1, n = 2, and 32 = 23 + 13.

Remark. The inequality x2 − xy + y2 ≥ x + y can alternatively

be shown by noting that

x2 − xy + y2 − x − y = (x − y)2 + (x − 1)(y − 1) − 1 ≥ 0,

since (x − y)2 ≥ 1.

7. Prove that for each prime p the equation

2p + 3p = qn

has no integer solutions (q, n) with q, n > 1.

(Italian Mathematical Olympiad)

Solution. When p = 2, we have qn = 13, which is impossible.

Otherwise, p is odd and 5 | 2p + 3p. Because n > 1, we must have

25 | 2p + 3p. Hence

2p+(5−2)p ≡ 2p+
((

p

1

)

5 · (−2)p−1 + (−2)p

)

= 5p·2p−1 (mod 25),
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so 5 | p. Thus p = 5, but the equation qn = 25 + 35 = 52 · 11 has no

solutions.

8. Determine all pairs (a, b) of integers for which the numbers

a2 + 4b and b2 + 4a are both perfect squares.

(Asian Pacific Mathematical Olympiad)

Solution. If a = 0, then b must be a perfect square, and vice versa.

Now assume that both a and b are nonzero. Also observe that a2+4b

and a2 have the same parity, and similarly b2 + 4a and b2 have the

same parity.

If b is positive, then a2+4b ≥ (|a|+2)2 = a2+4|a|+4 so |b| ≥ |a|+1.

If b is negative, then a2+4b ≤ (|a|−2)2 = a2−4|a|+4 so |b| ≥ |a|−1.

Similarly, a > 0 ⇒ |a| ≥ |b| + 1 and a < 0 ⇒ |a| ≥ |b| − 1.

Assume without loss of generality that b > a. If a and b are posi-

tive, then from the inequalities above we have b ≥ a+1 and a ≥ b+1,

a contradiction.

If a and b are negative, then we have either a = b or a = b − 1.

For b ≥ −5, only (a, b) = (−4,−4) and (−6,−5) work. Otherwise,

we have (b + 4)2 < b2 + 4a < (b + 2)2, a contradiction.

Finally, if a is negative and b is positive, then we have both |b| ≥
|a|+ 1 and |a| ≥ |b| − 1. Then we must have |b| = |a|+ 1, and hence

a + b = 1. Any such pair works, because then a2 + 4b = (a− 2)2 and

b2 + 4a = (b − 2)2 are both perfect squares.

Therefore the possible pairs (a, b) are

(−4,−4), (−6,−5), (−5,−6),
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and

(0, n2), (n2, 0), (n, 1 − n),

where n is any integer.

9. A rectangular parallelepiped has integer dimensions. All of its

faces are painted green. The parallelepiped is partitioned into unit

cubes by planes parallel to its faces. Find all possible dimensions of

the parallelepiped if the number of cubes without a green face is one-

third of the total number of cubes.

(Bulgarian Mathematical Olympiad)

Solution. Let the parallelepiped’s dimensions be a, b, c. These

lengths must all be at least 3, or else every cube has a green face.

The given condition is equivalent to

3(a − 2)(b − 2)(c − 2) = abc,

or

3 =
a

a − 2
· b

b − 2
· c

c − 2
.

If all the dimensions are at least 7, then a
a−2 · b

b−2 · c
c−2 ≤ (75

)3 =
343
125 < 3, a contradiction. Thus one of the dimensions, say a, equals

3, 4, 5, or 6. Assume without loss of generality that b ≤ c.

When a = 3, we have bc = (b − 2)(c − 2), which is impossible.

When a = 4, rearranging the equation yields (b − 6)(c − 6) = 24.

Thus (b, c) = (7, 30), (8, 18), (9, 14), or (10, 12).

When a = 5, rearranging the equation yields (2b−9)(2c−9) = 45.

Thus (b, c) = (5, 27), (6, 12), or (7, 9).

Finally, when a = 6, rearranging the equation yields (b−4)(c−4) =

8. Thus (b, c) = (5, 12) or (6, 8).
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Therefore the parallelepiped may measure 4 × 7 × 30, 4 × 8 × 18,

4× 9× 14, 4× 10× 12, 5× 5× 27, 5× 6× 12, 5× 7× 9, or 6× 6× 8.

10. Find all positive integer solutions (x, y, z, t) of the equation

(x + y)(y + z)(z + x) = txyz

such that gcd(x, y) = gcd(y, z) = gcd(z, x) = 1.

(Romanian Mathematical Olympiad)

First Solution. It is clear that gcd(x, x + y) = gcd(x, x + z) = 1,

so x divides y + z, y divides z + x, and z divides x + y. Let a, b, and

c be integers such that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x + y = cz,

y + z = ax,

z + x = by.

If we consider a system of linear equations having a nonzero so-

lution, we get Δ = abc − 2 − a − b = 0, which is the determinant

of ⎛

⎜
⎜
⎜
⎝

1 1 −c

1 −b 1

−a 1 1

⎞

⎟
⎟
⎟
⎠

.

The Diophantine equation abc − 2 = a + b + c can be solved by

consider the following cases:

(1) a = b = c. Then a = 2 and it follows that x = y = z. Because

gcd(x, y) = gcd(y, z) = gcd(z, x) = 1, we get x = y = z = 1 and

t = 8, hence the solution (1, 1, 1, 8).

(2) a = b, a �= c. The equation becomes

a2c − 2 = 2a + c ⇔ c(a2 − 1) = 2(a + 1) ⇔ c(a − 1) = 2.
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If c = 2, it follows that x = y = z (which is case (1)). So c = 1

and, immediately, x = y = 1 and z = 2. So the solution is (1, 1, 2, 9).

(3) a > b > c. In this case, abc − 2 = a + b + c < 3a. Therefore

a(bc − 3) < 2. It follows that bc − 3 < 2 ⇒ bc < 5. We have the

following cases:

(i) b = 2, c = 1 ⇒ a = 3 and we return to case (2).

(ii) b = 3, c = 1 ⇒ a = 5. We obtain the solution (1, 2, 3, 10).

(iii) b = 4, c = 1 ⇒ 3a = 7, impossible.

Finally, the solutions are (1, 1, 1, 8), (1, 1, 2, 9), (1, 2, 3, 10) and

those obtained by permutations of x, y, z.

Second Solution. Without loss of generality we may assume x ≤
y ≤ z. If x = y, then since gcd(x, y) = 1, we must have x = y = 1.

Hence z | 2 and we get solutions (1, 1, 1, 8) and (1, 1, 2, 4). If x < y,

then y ≥ 2, and since gcd(y, z) = 1, we must have x < y < z. In this

case gcd(z, y + z) = gcd(z, x + z) = 1, so z | x + y and x + y < 2z.

Thus x + y = z. Since similarly y | x + z, this gives y | 2x + y and

y | 2x. Since gcd(x, y) = 1, we must have y | 2. Since x < y this

forces x = 1 and y = 2 and hence z | 3. Since this gives z = 3, we

have the solution (1, 2, 3, 10).





II.2

Solutions to Some Classical

Diophantine Equations

2.1 Linear Diophantine Equations

1. Solve the equation

6x + 10y − 15z = 1.

Solution. Working modulo 3, we have y ≡ 1 (mod 3); hence y =

1 + 3s, s ∈ Z. The equation becomes

6x − 15z = −9 − 30s,

or equivalently, 2x − 5z = −3 − 10s. Passing to modulo 2 yields

z ≡ 1 (mod 2), i.e., z = 1 + 2t, t ∈ Z and x = 1− 5s + 5t. Hence the

solutions are

(x, y, z) = (1 − 5s + 5t, 1 + 3s, 1 + 2t), s, t ∈ Z.
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2. Let a, b, c be pairwise relatively prime positive integers. Show

that 2abc−ab− bc− ca is the largest integer that cannot be expressed

in the form xbc + yca + zab, where x, y, z are nonnegative integers.

(24th IMO)

Solution. Step 1. The number 2abc−ab−bc−ca cannot be expressed

in the required form. Assume, for the sake of contradiction, that

2abc − ab − bc − ca = xbc + ycz + zab,

where x, y, z ≥ 0. Then

2abc = bc(x + 1) + ca(y + 1) + ab(z + 1),

where x + 1 > 0, y + 1 > 0, z + 1 > 0. It follows that a | bc(x + 1).

Since a is relatively prime to b and c, a divides x + 1; hence a ≤
x + 1. Using similar arguments, we obtain b ≤ y + 1 and c ≤ z + 1.

Thus 2abc = bc(x + 1) + ca(y + 1) + ab(z + 1) ≥ 3abc. This is a

contradiction.

Step 2. Every number N, N > 2abc−ab−bc−ca, can be expressed

in the form N = xbc + yca + zab.

First, observe that 2abc − ab − bc − ca + 1 > 0. Indeed,

1
abc

(2abc − ab − bc − ca + 1) = 2 − 1
a
− 1

b
− 1

c
+

1
abc

> 2 − 1
1
− 1

2
− 1

3
+

1
abc

> 0.

Going further, we have two situations. When N ≡ 0 (mod abc),

N = abcq, we may consider the combination N = (ab)cq+bc·0+ca·0,
which is of the required form.
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Suppose now that N �≡ 0 (mod abc). Since gcd(bc, a) = 1, the

congruence

xbc ≡ N (mod a)

has a solution x0, 0 < x0 < a. Similarly, the congruences

ycz ≡ N (mod b),

zab ≡ N (mod c),

have solutions y0, z0, respectively, 0 < y0 < b, 0 < z0 < c.

Let A = x0bc + y0ca + z0ab. Then

A ≡ x0bc ≡ N (mod a), A ≡ N (mod b), A ≡ N (mod c).

Since a, b, c are pairwise relatively prime, we obtain A ≡ N

(mod abc).

The number A is a combination of the required form. Since x0 ≤
a−1, y0 ≤ b−1, and z0 ≤ c−1, it follows that A ≤ 3abc−bc−ca−ab.

Also, since A ≡ N (mod abc), we may write N = A+kabc. We have

k ≥ 0, because N > 2abc − bc − ca − ab. Therefore

N = (x0 + ka)bc + y0ca + z0ab,

where x0 + ka ≥ 0, y0 ≥ 0, z0 ≥ 0.

Remark. This is in fact the Frobenius coin problem with n = 3

and coefficients bc, ca, ab.

3. Find the number of triples (x, y, z) of nonnegative integers such

that

x + y + 2z = n.
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Solution. From Theorem 2.1.3 we obtain that the desired number

is

An =
1
n!

f (n)(0),

where the generating function f is given by

f(t) =
1

(1 − t)(1 − t)(1 − t2)
.

We have

f(t) = −1
2
· 1
(t − 1)3

+
1
4
· 1
(t − 1)2

− 1
8
· 1
t − 1

+
1
8
· 1
t + 1

hence

f (n)(t) = −1
4
· (−1)n(n + 2)!

(t − 1)n+3
+

1
4
· (−1)n(n + 1)!

(t − 1)n+2

− 1
8
· (−1)nn!
(t − 1)n+1

+
1
8
· (−1)nn!
(t + 1)n+1

.

Thus

f (n)(0) =
(n + 2)!

4
+

(n + 1)!
4

+
n!
8

+
(−1)nn!

8

and

An =
1
n!

f (n)(0) =
2(n + 1)(n + 3) + 1 + (−1)n

8
.

4. Determine the positive integer n such that the equation

x + 2y + z = n

has exactly 100 solutions (x, y, z) in nonnegative integers.

Solution. Using the result in Problem 3, we obtain that the number

of triples (x, y, z) of nonnegative integers satisfying the equation x+

2y + z = n is

An =
2(n + 1)(n + 3) + 1 + (−1)n

8
.



2.1 Linear Diophantine Equations 269

If n = 2k, then An = (k + 1)2. It follows that k = 9 and that

n = 18.

If n = 2k +1, then An = (k +1)(k +2) and note that the equation

(k + 1)(k + 2) = 100 has no integral solutions.

5. Let a, b, c, d be integers such that for all integers m and n there

exist integers x and y for which ax+ by = m and cx+dy = n. Prove

that ad − bc = ±1.

(Eötvös Mathematics Competition)

First Solution. First, suppose that a = 0. Then we can express

any integer m in the form by, so that b = ±1, cx = n − dy, and c

divides n ∓ dm for all m and n, and so c = ±1 and ad − bc = ±1.

The argument is similar if any of b, c, and d are 0.

If abcd �= 0, let Δ = ad − bc. Suppose that Δ = 0. Then c
a = d

b .

Let their common value be λ. Then n = cx+dy = λ(ax+ by) = λm.

This means that n
m = λ for any integers m and n. This is of course

absurd. Hence Δ �= 0. We now solve ax + by = m and cx + dy = n

for x and y. We have x = dm−bn
Δ and y = an−cm

Δ . We are given that

for any integers m and n, x and y are also integers. In particular,

for (m,n) = (1, 0), x1 = d
Δ and y1 = − c

Δ are integers, and for

(m,n) = (0, 1), x2 = − b
Δ and y2 = a

Δ are integers. It follows that

x1y2 − x2y1 = ad−bc
Δ2 = 1

Δ is also an integer. The only integers whose

reciprocals are also integers are ±1. Since Δ is clearly an integer, we

must have Δ = ±1.

Second Solution. Taking m = 1 and n = 0 gives integers x1 and y1

with ax1 + by1 = 1 and cx1 + dy1 = 0. Similarly, taking m = 0 and

n = 1 gives x2 and y2 with ax2 + by2 = 0 and cx2 + dy2 = 1. Then
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we compute

(ad − bc)(x1y2 − x2y1)

= (ax1 + by1)(cx2 + dy2) − (cx1 + dy1)(ax2 + by2)

= 1 · 1 − 0 · 0 = 1.

Since these are integers, we must have ad − bc = ±1.

6. Let n be an integer greater than 3 and let X be a 3n2-element

subset of {1, 2, . . . , n3}. Prove that there exist nine distinct numbers

a1, a2, . . . , a9 in X such that the system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a1x + a2y + a3z = 0,

a4x + a5y + a6z = 0,

a7x + a8y + a9z = 0,

is solvable in nonzero integers.

(Romanian Mathematical Olympiad)

Solution. Label the elements of X in increasing order x1 < · · · <

x3n2, and put

X1 = {x1, . . . , xn2}, X2 = {xn2+1, . . . , x2n2},
X3 = {x2n2+1, . . . , x3n2}.

Define the function f : X1 × X2 × X3 → X × X as follows:

f(a, b, c) = (b − a, c − b).

The domain of f contains n6 elements. The range of f , on the

other hand, is contained in the subset of X × X of pairs whose sum

is at most n3, a set of cardinality

n3−1∑

k=1

k =
n3(n3 − 1)

2
<

n6

2
.
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By the pigeonhole principle, some three triples (ai, bi, ci) (i =

1, 2, 3) map to the same pair, in which case x = b1 − c1, y = c1 − a1,

z = a1 − b1 is a solution in nonzero integers. Note that ai cannot

equal bj , since X1 and X2 are disjoint and so on, and that a1 = a2

implies that the triples (a1, b1, c1) and (a2, b2, c2) are identical, a con-

tradiction. Hence the nine numbers chosen are indeed distinct.

7. Let ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 + · · · + a1qxq = 0,

a21x1 + a22x2 + · · · + a2qxq = 0,
...

ap1x1 + ap2x2 + · · · + apqxq =, 0

be a system of linear equations, where q = 2p and aij ∈ {−1, 0, 1}.
Prove that there exists a solution (x1, x2, . . . , xq) of the system with

the following properties:

(a) xj is an integer, for any j = 1, 2, . . . , q;

(b) there exists j such that xj �= 0;

(c) |xj | ≤ q for any j = 1, 2, . . . , q.

(18th IMO)

Solution. Let (y1, y2, . . . , yq) be a q-tuple of integers such that

|yj| ≤ p, j = 1, 2, . . . , q. Then the value of the left-hand side of

the rth equation is some integer between −pq and pq, since the co-

efficients are −1, 0, or 1. Thus

q∑

i=1

ariyi

can have at most 2pq+1 values, pq positive integer values, pq negative

integer values and the value 0. Now consider the p-tuple of all p left
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sides in our system. Since each can take at most 2pq + 1 values, at

most (2pq + 1)p distinct p-tuples can result. Each yj is an integer

between −p and p, so there are 2p + 1 choices for each yj, and since

there are q y’s in a q-tuple, we can make up a total (2p+1)q different

ordered q-tuples.

Now q = 2p, so the number of q-tuples (y1, . . . , yq) with |yj | ≤ p is

(2p + 1)q = (2p + 1)2p = [(2p + 1)2]p = [4p2 + 4p + 1]p,

while the number of p-tuples
⎛

⎝
q∑

j=1

a1jyj,

q∑

j=1

a2jyj, . . . ,

q∑

j=1

apjyj

⎞

⎠

they can generate is at most

(2pq + 1)p = (4p2 + 1)p.

Therefore there are more q-tuples (y1, . . . , yq) than there are value

sets, and by the pigeonhole principle, there are at least two distinct

q-tuples producing the same values of the left sides. Denote these

q-tuples by

(y1, y2, . . . , yq) and (z1, z2, . . . , zq). (1)

We claim that the q-tuple (x1, x2, . . . , xq) of differences yj − zj =

xj, j = 1, 2, . . . , q, is a solution of the problem satisfying properties

(a), (b), (c). To verify this claim, we first observe that
q∑

j=1

arjyj =
q∑

j=1

arjzj , r = 1, 2, . . . , p,

implies
q∑

j=1

arjxj =
q∑

j=1

arj(yj − zj) =
q∑

j=1

arjyj −
q∑

j=1

arjzj = 0.
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So the xi satisfy all p equations. Moreover, since yi and zi are

integers, so are their differences, and (a) is satisfied. The q-tuples

(1) are distinct, so not all xj are zero; thus (b) is satisfied. Finally,

since |yj| ≤ p and |zj | ≤ p, we see by the triangle inequality that

|xj| = |yj − zj | ≤ |yj | + |zj | ≤ 2p, so |xj | ≤ q; (c) also is satisfied.

2.2 Pythagorean Triples and Related Problems

1. Prove that the system of equations
⎧
⎨

⎩

x2 + y2 = u2,

x2 + 2y2 = v2,

is not solvable in positive integers.

Solution. Assume, for the sake of contradiction, that the system is

solvable and let (x, y, u, v) be a solution. Then

u2 − y2 = x2 and u2 + y2 = v2.

But this contradicts the result in Example 2.

2. Let m and n be distinct positive integers. Show that none of the

numbers

2(m4 + n4), m4 + 6m2n2 + n4

is a perfect square.

Solution. Suppose that 2(m4 + n4) = v2, for some v ∈ Z+. Then

(2mn)2 + (m2 − n2)2 = (m2 + n2)2

and

(2mn)2 + 2(m2 − n2)2 = v2,

in contradiction to the result in Problem 1.



274 Part II. Solutions to Exercises and Problems

Similarly, assuming that m4 + 6m2n2 + n4 = v2, for some v ∈ Z+,

we obtain

(m2 − n2)2 + (2mn)2 = (m2 + n2)2

and

(m2 − n2)2 + 2(2mn)2 = v2,

which also contradicts the result in Problem 1.

3. Prove that the equation

x2y2 = z2(z2 − x2 − y2)

has no solution in positive integers.

(Bulgarian Mathematical Olympiad)

Solution. Solving the given equation for z2, we find that the dis-

criminant of the resulting equation is x4 +6x2y2 +y4. By the second

result in Problem 2, this cannot be a perfect square, and we are done.

4. Prove that the equation

x2 + y2 = (a2 + b2)z2,

where a and b are nonzero given integers, has infinitely many solu-

tions.

Solution. Let x = au + bv and y = bu − av. Then

x2 + y2 = (a2 + b2)(u2 + v2)

and the equation becomes u2 + v2 = z2. We obtain

u = k(m2 − n2), v = 2kmn, z = k(m2 + n2),
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for some integers m and n, hence the solution

x = k(am2 + 2bmn − an2), y = k(bm2 − 2amn − bn2),

z = k(m2 + n2).

5. Find all quadruples (x, y, z, w) of positive integers such that

xy + yz + zx = w2.

Solution. The equation is equivalent to

(2x + y + z)2 = (y − z)2 + (2x)2 + (2w)2.

From Theorem 2.2.3 it follows that

y − z =
l2 + m2 − n2

n
, 2x = 2l, 2w = 2m,

2x + y + z =
l2 + m2 + n2

n
,

for some positive integers l,m, n, with n a divisor of l2 + m2.

Hence all solutions to the given equation are

x = l, y =
l2 − ln + m2

n
, z = n − l, w = m,

where l,m, n are positive integers such that n is a divisor of l2 + m2

with l < n < l + m2

2 .

6. Prove that there is no Pythagorean triangle whose area is a

perfect square.

Solution. Suppose, to the contrary, that such a triangle (a, b, c)

exists. Then

a2 + b2 = c2 and ab = 2d2,
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for some positive integer d. Without loss of generality we may assume

that a > b, since the case a = b cannot possibly occur because

2a2 = c2 is impossible. Hence

c2 + (2d)2 = (a + b)2 and c2 − (2d)2 = (a − b)2,

contrary to Example 2.

7. Prove that the number of primitive Pythagorean triangles with

a given inradius r is a power of 2, if r is integer.

Solution. Let a, b, c be the side lengths of a Pythagorean triangle

with inradius r, r ∈ Z+. Simple geometric considerations lead to the

relation
a + b − c

2
= r.

On the other hand, there exist positive integers m,n such that

m > n, gcd(m,n) = 1, m + n is odd, and

a = m2 − n2, b = 2mn, c = m2 + n2.

We obtain n(m − n) = r. Then the formula n(m − n) = r says

that m−n is an odd factor of r relatively prime to r/(m−n). Thus

m−n is determined by the set of odd prime divisors of r that divide

m − n. Any such set determines m − n and n, hence the primitive

Pythagorean triple. Thus the number of solutions is 2t, where t is

the number of odd primes dividing r, as claimed.

8. (a) Solve the equation

x2 + y2 + z2 − xy − yz − zx = t2.

(b) Prove that the equation

u2 + v2 + w2 = 2t2
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has infinitely many solutions in positive integers.

(Titu Andreescu and Dorin Andrica)

Solution. (a) The equation is equivalent to

(x − y)2 + (x − z)(y − z) = t2.

Let x − z = u and y − z = v. Then

(u − v)2 + uv = t2,

that is,

(t + u − v)(t − u + v) = uv.

Set
t + u − v

u
=

v

t − u + v
=

m

n
,

with gcd(m,n) = 1 and get the system of equations
⎧
⎨

⎩

(m − n)u + nv = nt,

mu − (m − n)v = mt.

For t = k(m2 − mn + n2), we obtain

u = k(2mn − n2) and v = k(2mn − m2),

for some rational number k such that u, v, t are integers.

All quadruples (x, y, z, t) satisfying the equations are given by

x = l + k(2mn − n2), y = l + k(2mn − m2),

z = l, t = k(m2 − mn + n2).

(b) Seeking quadruples (u, v, w, s) with u+ v +w = 0, we perform

the substitutions u = x − y, v = y − z, w = z − x. The equation
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reduces to the previous one; hence an infinite family of solutions in

nonzero integers is

u = k(m2 − n2), v = k(2mn − m2),

w = k(n2 − 2mn), t = k(m2 − mn + n2),

where k,m, n are chosen so that uvwt �= 0.

Passing to absolute values yields infinitely many solutions in pos-

itive integers.

2.3 Other Remarkable Equations

1. Let p be a prime. Find all solutions to the equation

a + b − c − d = p,

where a, b, c, d are positive integers such that ab = cd.

(Mathematical Reflections)

Solution. Substitute a = xy, b = zk, c = xz, d = yk, and without

loss of generality a ≥ b. Then

a + b − c − d = (x − k)(y − z) = p

yields x − k = 1, y − z = p or x − k = p, y − z = 1. So solutions for

quadruples (a, b, c, d) are quadruples

(xy, (y − p)(x − 1), x(y − p), y(x − 1)),

where x, y ∈ Z.

2. Let a, b, c be integers such that

gcd(a, b, c) = 1 and ab + bc + ca = 0.



2.3 Other Remarkable Equations 279

Prove that |a + b + c| can be expressed in the form x2 + xy + y2,

where x, y are integers.

(Mathematical Reflections)

Solution. Note that if a, b, c are integers such that ab = c2, then

there exist integers k,m, n with (m,n) = 1 such that a = km2, b =

kn2, c = kmn. Now ab+bc+ca = 0 is equivalent to (a+b)(a+c) = a2.

Therefore we have

a + b = km2,

a + c = ±kn2,

a = kmn,

where k ∈ Z. Since gcd(a, b, c) = 1, we get k = ±1. So

a + b + c = k(m2 − mn + n2),

or

|a + b + c| = (−m)2 + (−m)n + n2.

3. Prove that the equation

x2 + xy + y2 = 362

is not solvable in positive integers.

Solution. Assume that the equation x2 +xy +y2 = 362 is solvable.

Using formulas (2.3.9), we obtain

k(m2 + mn + n2) = 36;

hence m2 + mn + n2 is one of the numbers 1, 2, 3, 4, 6, 9, 12, 18, 36.

None of these numbers appear in the third column of the table in

Example 1.
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4. Find all pairs of positive integers such that

x2 − xy + y2 = 727.

(Turkish Mathematical Olympiad)

Solution. Given any solution to x2 − xy + y2 = 727, we can apply

the transformations (x, y) 	→ (y, y−x), then possibly (x, y) 	→ (y, x),

to obtain another solution (x, y) with y ≤ 0 ≤ x ≤ |y|.
We now find all such solutions with y ≤ 0 ≤ x ≤ |y|. Rearranging

the required equation gives

y2 − xy + x2 − 727 = 0.

Viewing this as a quadratic in y, we can apply the quadratic formula

to find that

y =
x ±√

2908 − 3x2

2
.

Hence 2908 − 3x2 must be a perfect square, and it is not divisible

by 3. Because 3x2 ≤ y2 − xy + x2 = 727, we further know that

2181 ≤ 2908 − 3x2 ≤ 2908, giving 46 <
√

2908 − 3x2 < 54. Testing

these possibilities, we find that only
√

2908 − 3x2 = 49 has an integer

solution x, yielding the unique solution (13,−18) of the desired form.

Thus, every solution can be transformed into (13,−18) by applying

the two maps described earlier. Hence, any solution is in the orbit

of (13,−18) or (−18, 13) under (x, y) 	→ (y, y − x), implying that all

the solutions to x2 − xy + y2 = 727 are

(18, 31), (31, 13), (13, 31), (31, 18).

5. We say that the positive integer z satisfies property (P) if

z = x2 + xy + y2,
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for some positive integers x and y. Prove that:

(a) if z satisfies property (P), then so does z2;

(b) if z2 satisfies property (P) and gcd(x, y) = 1, then so does z.

(Dorin Andrica)

Solution. (a) Since z = m2 +mn+n2, for some positive integers m

and n,m > n, it follows that z2 = q2 + qr + r2, where q = 2mn + n2

and r = m2 − n2.

(b) If z2 = x2 + xy + y2, with gcd(x, y) = 1, then from (2.3.9)

we deduce that x = 2mn + n2, y = m2 − n2, m > n, and z =

m2 + mn + n2, for some positive integers m and n.

6. Solve in integers the equation

x2 + 3y2 = 4z2.

Solution. Without loss of generality we may assume that

gcd(x, y) = 1.

Also, note that x and y cannot have different parity. It follows that

x and y are both odd. Setting x + y = 2a, x − y = 2b, a, b ∈ Z, the

equation becomes

a2 − ab + b2 = z2.

From (2.3.11) it follows that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a = 2mn − n2,

b = m2 − n2,

z = m2 − mn + n2,

or

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a = m2 − n2,

b = 2mn − n2,

z = m2 − mn + n2,

for some integers m,n.
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The general solutions are

(
k(m2 + 2mn − 2n2), k(2mn − m2), k(m2 − mn + n2)

)

and

(
k(m2 + 2mn − 2n2), k(m2 − 2mn), k(m2 − mn + n2)

)

where k,m, n ∈ Z.

7. Find all triples (x, y, z) of nonnegative integers satisfying the

equation x4 + 14x2y2 + y4 = z2.

(Ion Cucurezeanu)

Solution. Let (x, y, z) be a solution to the equation. Then

(2x)4 + 14(2x)2(2y)2 + (2y)4 = (4z)2.

Setting 2x = a + b, 2y = a − b, a, b ∈ Z+, a ≥ b, yields the

equivalent equation

(a + b)4 + 14(a2 − b2)2 + (a − b)4 = 16z2,

which reduces to

a4 − a2b2 + b4 = z2.

From Theorem 2.3.3 we obtain

(a, b, z) = (k, k, k2) and (a, b, z) = (k, 0, k2),

where k ∈ Z+. The solutions to the equation are

(x, y, z) = (k, 0, k2), (0, k, k2) and (x, y, z) = (l, l, 4l2),

where k, l ∈ Z+.
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8. Solve in positive integers the equation

3x4 + 10x2y2 + 3y4 = z2.

Solution. Write the equation in the form

(3x2 + y2)(x2 + 3y2) = z2.

It is not difficult to see that x and y have the same parity, for

otherwise z2 ≡ 3 (mod 4), which is not possible. We may assume

that gcd(x, y) = 1. Then gcd(3x2 + y2, x2 + 3y2) = 1, and so

3x2 + y2 = 4s2 and x2 + 3y2 = 4t2

for some positive integers s and t. Using the result in Example 2, we

obtain x = y = s = t = 1.

The general solution is

(x, y, z) = (k, k, 4k2), k ∈ Z+.

Solution 2. Since x and y have the same parity, set x = a + b,

y = a − b, z = 4c, where a, b, c ∈ Z+, a > b. Then

3(a + b)4 + 10(a2 − b2)2 + 3(a − b)4 = 16c2,

which reduces to

a4 + a2b2 + b4 = c2.

From Theorem 2.3.2, it follows that (a, b, c) = (k, 0, k2) or

(a, b, c) = (0, k, k2), k ∈ Z+.

The solutions are

(x, y, z) = (k, k, 4k2), k ∈ Z+.
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9. Find all distinct squares a2, b2, c2 that form an arithmetic se-

quence.

Solution. We have a2 + c2 = 2b2, so we may assume without loss

of generality that a and c are both odd.

Setting a = u + v, c = u − v, where u, v ∈ Z+, u > v yields

u2 + v2 = b2. Then
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u = 2mn,

v = m2 − n2,

b = m2 + n2,

or

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u = m2 − n2,

v = 2mn,

b = m2 + n2,

for some positive integers m,n, with m > n. The desired triples are

((m2 +2mn−n2)2, (m2 +n2)2, (m2 − 2mn−n2)2) where m,n ∈ Z+,

m > n.

10. Solve in integers the equation

xy(x2 + y2) = 2z2.

(Titu Andreescu)

Solution. Multiply both sides by 8 and write the equation in the

equivalent form

(x + y)4 − (x − y)4 = (4z)2.

From Example 6 it follows that x − y = 0, so the solutions are

(x, y, z) = (k, k, k2), k ∈ Z.

Solution 2. We may assume that x, y, z > 0 and gcd(x, y) = 1.

Write the equation as

2xy(x2 + y2) = (2z)2.
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The condition gcd(x, y) = 1 implies

gcd(2xy, x2 + y2) = 1 or gcd(2xy, x2 + y2) = 2.

In the first case, it follows that 2xy = u2 and x2 + y2 = v2, for

some positive integers u, v. We obtain the system
⎧
⎨

⎩

v2 + u2 = (x + y)2,

v2 − u2 = (x − y)2,

which is solvable only if x − y = 0 (see Example 2 in Section 2.2).

In the second case, we obtain the system
⎧
⎨

⎩

xy = u2,

x2 + y2 = v2,

which can be written in the equivalent form
⎧
⎨

⎩

(x + y)2 + (x − y)2 = (2v)2,

(x + y)2 − (x − y)2 = (2u)2,

and the same argument shows that x − y = 0.

11. Find all integral triples (x, y, z) satisfying the equation

x4 − 6x2y2 + y4 = z2.

Solution. We may assume that x, y, z > 0, x > y, and gcd(x, y) =

1. Write the equation as

(x2 − y2)2 − 4x2y2 = z2.

Then

(x2 − y2 + z)(x2 − y2 − z) = (2xy)2.
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We will show that gcd(x2 − y2 + z, x2 − y2 − z) = 2. We cannot

have both x and y odd, for then z2 ≡ −4 (mod 16). Let x be odd

and y even. Then z is odd and gcd(x2 − y2 + z, x2 − y2 − z) divides

2z, so it is 2. It follows that

x2 − y2 + z = 2a2, x2 − y2 − z = 2b2

for some positive integers a, b, with xy = ab and gcd(a, b) = 1. Then

x2 − y2 = a2 + b2, and so

(x2 + y2)2 = (a2 + b2)2 + 4a2b2.

We obtain

a4 + 6a2b2 + b4 = (x2 + y2)2,

and from Example 6, (a, b) = (k, 0) or (a, b) = (0, k), k ∈ Z.

The solutions are (x, y, z) = (k, 0, k2), (x, y, z) = (0, k, k2), k ∈ Z.

12. If a and b are distinct positive integers, then 2a(a2 + 3b2) is

not a cube.

Solution. Note that

2a(a2 + 3b2) = (a + b)3 + (a − b)3.

Hence if 2a(a2 + 3b2) = c3, then we obtain

(a + b)3 + (a − b)3 = c3.

By Theorem 2.3.8 it follows that the above relation is not possible.

13. Prove that equation x6 − y6 = 4z3 is not solvable in positive

integers.

(Titu Andreescu)
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Solution. Assume that the equation is solvable in positive integers

and let (x, y, z) be a solution. Then 2(x6 − y6) is a perfect cube;

hence

2(x2 − y2)
[
(x2 − y2)2 + 3(xy)2

]

is a perfect cube. But this contradicts the result in Problem 10.

14. Prove that the system of equations
⎧
⎪⎨

⎪⎩

x + y = z2,

xy =
z4 − z

3
,

is not solvable in nonzero integers.

(Titu Andreescu)

First Solution. Assuming that (x, y, z) is a positive integral solu-

tion to the given system, we have

x2 − xy + y2 = (x + y)2 − 3xy = z4 − (z4 − z) = z;

hence x3 + y3 = (x + y)(x2 − xy + y2) = z2 · z = z3, in contradiction

to the result in Theorem 2.3.8.

Second Solution. We have z4 = (x + y)2 ≥ 4xy = 4(z4 − z)/3, or

on rearranging, 4z ≥ z4. This means that z > 0 and 4 ≥ z3. Hence

z = 1, and we get xy = 0, a contradiction.





II.3

Solutions to Pell-Type Equations

3.1 Solving Pell’s Equation by Elementary

Methods

1. Find all positive integers n such that n(n+1)
3 is a perfect square.

(Dorin Andrica)

Solution. Let n(n+1)
3 = y2, which is equivalent to

(2n + 1)2 − 12y2 = 1.

The Pell’s equation x2 − 12y2 = 1 has (7, 2) as fundamental solu-

tion, and all its solutions are given by

xm =
1
2

[
(7 + 2

√
12)m + (7 − 2

√
12)m

]
,

ym =
1

2
√

12

[
(7 + 2

√
12)m − (7 − 2

√
12)m

]
.
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It follows that

2nm + 1 = xm =
1
2

[
(2 +

√
3)2m + (2 −

√
3)2m

]
, m ≥ 1;

hence the desired numbers are

nm =

[
(2 +

√
3)m − (2 −√

3)m

2

]2

= 3

[
(2 +

√
3)m − (2 −√

3)m

2
√

3

]2

,

m ≥ 0.

Remark. Note that all n with this property are of the form 3k2.

2. Find all triangles having side lengths consecutive integers and

area also an integer.

Solution. Let the sides be z − 1, z, z + 1. The semiperimeter s and

the area A are 3z
2 and A = z

√
3(z2−4)

4 , respectively. If A is an integer,

then z cannot be odd, say z = 2x, and z2−4 = 3u2. So 4x2−4 = 3u2,

which implies that u is even, say u = 2y. Then x2 − 3y2 = 1, which

has (2, 1) as fundamental solution. Therefore all positive integral

solutions are (xn, yn), where

xn =
1
2

[
(2 +

√
3)n + (2 −

√
3)n
]
,

yn =
1

2
√

3

[
(2 +

√
3)n − (2 −

√
3)n
]
, n≥1.

The sides of the triangles are 2xn − 1, 2xn, 2xn + 1, and the areas

are A = 3xnyn.

3. Prove that there are infinitely many triples (a, b, c) of positive

integers such that the greatest common divisor of a, b, and c is 1,

and a2b2 + b2c2 + c2a2 is the square of an integer.

Solution. Suppose a2b2+b2c2+c2a2 = d2, and rewrite the equation

as

d2 − (a2 + b2)c2 = a2b2.
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With a = 1, this reduces to

d2 − (b2 + 1)c2 = b2.

Now let b = 1 to obtain d2−2c2 = 1. This is a Pell’s equation, having

the fundamental solution (d1, c1) = (3, 2). The general solution of

this Pell’s equation is

dn =
1
2

[
(3+2

√
2)n+(3−2

√
2)n
]
, cn =

1
2
√

2

[
(3+2

√
2)n−(3−2

√
2)n
]
,

generating infinitely many triples (1, 1, cn).

4. Prove that there are infinitely many positive integers n such

that √2n� is a perfect square.

Solution. We consider the equation

x2 − 2y2 = 1,

with the fundamental solution (x, y) = (3, 2). By Theorem 3.2.1,

it has infinitely many positive integer solutions. For each of these

solutions, we have

2x2y2 = x4 − x2,

implying that

(x2 − 1)2 = x4 − 2x2 + 1 < x4 − x2 = 2x2y2 < x4,

or

x2 − 1 < xy
√

2 < x2.

Setting n = xy shows that n√2� = x2 is a perfect square.

5. Prove that there are infinitely many triples (a, b, c) of integers

such that

a4 + b3 = c2,
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and gcd(a, c) = 1.

Solution. To prove this, factor the equation

b3 = c2 − a4

as

b3 = (c + a2)(c − a2).

If a and c have opposite parity, the two factors on the right are

relatively prime, so there are integers m and n such that

m3 = c + a2, n3 = c − a2.

It follows that we have a solution if we can find integers a and c of

the form

c =
m3 + n3

2
, a2 =

m3 − n3

2
.

These values of a2 and c are clearly integers (since m and n are

both odd), so the only constraint on m and n is that they make a

an integer. There are several ways of constructing an infinite family

with this property. For example, if we restrict ourselves to “twin”

values of m and n, meaning that m = k+1 and n = k−1, the above

equation for a2 becomes

a2 − 3k2 = 1,

which is a Pell equation. By the usual method we have the funda-

mental solution (a1, k1) = (2, 1). All solutions (aj , kj) are given by

aj + kj

√
3 = (2 +

√
3)j, j = 1, 2, . . . ;
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hence

aj =
1
2

[
(2 +

√
3)j + (2 −

√
3)j
]
,

kj =
1

2
√

3

[
(2 +

√
3)j − (2 −

√
3)j
]
, j = 1, 2, . . . .

We obtain the triples (aj , (k2
j − 1), k3

j + 3kj), j = 1, 2, . . . .

6. Solve in positive integers the equation

x2 − 4xy + y2 = 1.

Solution. Substituting u = y − 2x, the equation becomes

u2 − 3x2 = 1.

The general solution (un, xn) is given by

un + xn

√
3 = (2 +

√
3)n.

We obtain

xn =
1

2
√

3

[
(2+

√
3)n−(2−

√
3)n
]
, un =

1
2

[
(2+

√
3)n +(2−

√
3)n
]
;

hence

yn = un + 2xn =
1

2
√

3

[
(2 +

√
3)n+1 − (2 −

√
3)n+1

]
.

Because of the symmetry, the equation also has the solution (yn, xn).

7. Let a0 = 0, a1 = 4, and an+1 = 18an − an−1, n ≥ 1. Prove that

5a2
n + 1 is a perfect square for all n.

Solution. Consider the Pell’s equation

x2 − 5y2 = 1,
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with the fundamental solution (9, 4). Its general solution is given by

xn + yn

√
5 = (9 + 4

√
5)n, n ≥ 0.

According to Theorem 3.2.1, sequences (xn)n≥0 and (yn)n≥0 satisfy

the recurrence relations

xn+1 = 9xn + 20yn, yn+1 = 4xn + 9yn, n ≥ 0,

with x0 = 1 and y0 = 0. Moreover, y1 = 4, and substituting 4xn =

yn+1 − 9yn into the first relation yields

1
4
(yn+2 − 9yn+1) = 9 · 1

4
(yn+1 − 9yn) + 20yn,

that is, yn+2 = 18yn+1 − yn, n ≥ 0.

Because sequences (an)n≥0 and (yn)n≥0 satisfy the same recurrence

relation and a0 = y0, a1 = y1, it follows that an = yn for all n.

On the other hand, 5a2
n + 1 = 5y2

n + 1 = x2
n, for all n ≥ 0.

8. Prove that if the difference of two consecutive cubes is n2, then

2n − 1 is a square.

Solution. Let

(m + 1)3 − m3 = 3m2 + 3m + 1 = n2.

Then

(2n)2 = 3(2m + 1)2 + 1,

so (2n, 2m + 1) is a solution of Pell’s equation

x2 − 3y2 = 1.

As shown already, we obtain

2n + (2m + 1)
√

3 = (2 +
√

3)l.



3.1 Solving Pell’s Equation by Elementary Methods 295

In order for n to be integral, l must be odd. It follows that

4n = (2 +
√

3)2k+1 + (2 −
√

3)2k+1.

Finally,

2n − 1 =
(1 +

√
3)2(2 +

√
3)2k + (1 −√

3)2(2 −√
3)2k − 4

4
= N2,

where

N =
1
2
((1 +

√
3)(2 +

√
3)k + (1 −

√
3)(2 −

√
3)k)

is an integer.

9. Consider the system of equations
⎧
⎨

⎩

x + y = z + u,

2xy = zu.

Find the largest value of the real constant m such that m ≤ x
y for

any positive integral solution (x, y, z, u) of the system, with x ≥ y.

(42nd IMO Shortlist)

Solution. Squaring the first equation and then subtracting four

times the second, we obtain

x2 − 6xy + y2 = (z − u)2,

from which (
x

y

)2

− 6
(

x

y

)

+ 1 =
(

z − u

y

)2

. (1)

The quadratic ω2 − 6ω + 1 takes the value 0 for ω = 3 ± 2
√

2,

and is positive for ω > 3 + 2
√

2. Because x/y ≥ 1 and the right side

of (1) is a square, the left side of (1) is positive, and we must have
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x/y > 3 + 2
√

2. We now show that x/y can be made as close to

3 + 2
√

2 as we like, so the desired valued of m is 3 + 2
√

2. We prove

this by showing that the term ((z − u)/y)2 in (1) can be made as

small as we like.

To this end, we first find a way to generate solutions of the system.

If p is a prime divisor of z and u, then p is a divisor of both x and

y. Thus we may assume, without loss of generality, that z and u are

relatively prime. If we square both sides of the first equation and

then subtract twice the second equation, we have

(x − y)2 = z2 + u2.

Thus (z, u, x − y) is a primitive Pythagorean triple, and we may

assume that u is even. Hence there are relatively prime positive in-

tegers a and b, one of them even and the other odd, such that

z = a2 − b2, u = 2ab, and x − y = a2 + b2.

Combining these equations with x + y = z + u, we find that

x = a2 + ab and y = ab − b2.

Observe that z−u = a2−b2−2ab = (a−b)2−2b2. When z−u = 1,

we get the Pell equation

(a − b)2 − 2b2 = 1,

whose fundamental solution is a − b = 3, b = 2.

This equation has infinitely many positive integer solutions a − b

and b, and both of these quantities can be made arbitrarily large. It

follows that y = ab−b2 can be made arbitrarily large. Hence the right
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side of (1) can be made as small as we like, and the corresponding

value of x/y can be made as close to 3 + 2
√

2 as we like.

10. Prove that the equation x2 − Dy4 = 1 has no positive integer

solution if D �≡ 0, 3, 8, 15 (mod 16) and there is no factorization

D = pq, where p > 1 is odd, gcd(p, q) = 1, and either p ≡ ±1

(mod 16), p ≡ q ± 1 (mod 16), or p ≡ 4q ± 1 (mod 16).

Solution. Let x, y > 0 be a nontrivial solution with minimal y. If

y is odd, then

Dy4 + 1 �≡ 0, 1, 4, 9 (mod 16),

and thus it is not a quadratic residue modulo 16. Thus y should be

even and x odd. Further, we have

x + 1 = 2pa4, x − 1 = 8qb4, y = 2ab,

or

x − 1 = 2pa4, x + 1 = 8qb4, y = 2ab,

where D = pq, gcd(p, q) = 1, and a is odd.

If p > 1, then

pa4 − 4qb4 = ±1.

If b is even, then p ≡ ±1 (mod 16), contradiction. If b is odd, then

p ≡ 4q ± 1 (mod 16), again false.

Thus p = 1 and

a4 − 4Db4 = ±1.

The equation a4 − 4Db4 = −1 has no solution modulo 4; thus

a4 − 1 = 4Db4. Then D = rs, b = cd, gcd(r, s) = 1, and

a2 + 1 = 2rc4, a2 − 1 = 2sd4.
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Thus c, r are odd, and we have

rc4 − sd4 = 1.

If r = 1, then c4 − Dd4 = 1 and y = 2acd, so there exists a solution

of our equation with d ≤ y/2, contradicting the minimality of y.

If r > 1, then d cannot be even because r �≡ ±1 (mod 16). But if

d is odd, then r ≡ s + 1 (mod 16), contradicting our assumptions.

Remark. In 1942, W. Ljunggren proved that the equation x2 −
Dy4 = 1 has at most two positive integer solutions if D > 0 is

not a perfect square. He also gave an algorithm that computes the

nontrivial solution when it exists.

3.2 The Equation ax2 − by2 = 1

1. Prove that there are infinitely many quadruples (x, y, u, v) of

positive integers such that x2 + y2 = 6(z2 + w2) + 1 with 3 | x and

2 | y.

(Dorin Andrica)

Solution. The equation 3r2 − 2s2 = 1 has minimal solution

(x0, y0) = (1, 1), and from Theorem 3.3.2 all its solutions are given

by

rn = un + 2vn, sn = un + 3vn, n ≥ 0,

where (un, vn)n≥0 is the general solution to Pell’s resolvent

u2 − 6v2 = 1.
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The quadruples (x, y, z, w) = (3rkrl, 2sksl, rksl, rlsk), k, l ≥ 0 have

the desired property. Indeed,

x2 + y2 − 6(z2 + w2) = 8r2
kr

2
l + 4s2

ks
2
l − 6r2

ks
2
l − 6r2

l s
2
k

= (3r2
k − 2s2

k)(3r
2
l − 2s2

l ) = 1 · 1 = 1,

and 3 | x, 2 | y.

Remark. The solution (3rk, 2sl, sk, rl) also works and it is easier

to check:

(3rk)2 + (2sl)− 6s2
k − 6r2

l = 3(3r2
k − 2s2

k)− 2(3r2
l − 2s2

l ) = 3− 2 = 1.

2. (a) Find all positive integers n such that n + 1 and 3n + 1 are

simultaneously perfect squares.

(b) If n1 < n2 < · · · < nk < · · · are all positive integers satisfying

the above property, then nknk+1 + 1 is also a perfect square, k =

1, 2, . . . .

(American Mathematical Monthly)

Solution. (a) If n + 1 = x2 and 3n + 1 = y2, then 3x2 − y2 = 2,

which is equivalent to the Pell’s equation

u2 − 3v2 = 1,

where u = 1
2 (3x − y) and v = 1

2(y − x). The general solution is

(uk, vk)k≥0, where

uk =
1
2

[
(2+

√
3)k+(2−

√
3)k
]
, vk =

1
2
√

3

[
(2+

√
3)k−(2−

√
3)k
]
, k ≥ 0;

hence

nk = x2
k−1 = (uk+vk)2−1 =

1
6

[
(2+

√
3)2k+1+(2−

√
3)2k+1−4

]
, k ≥0.
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(b) We have

nknk+1 + 1 =
{

1
6
[(2 +

√
3)2k+2 + (2 −

√
3)2k+2 − 8]

}2

, k ≥ 0.

3. Prove that there exist two strictly increasing sequences (an) and

(bn) of positive integers such that an(an + 1) divides b2
n + 1 for all

n ≥ 1.

(40th IMO Shortlist)

Solution. It suffices to find increasing sequences (an), (bn) of posi-

tive integers and a positive integer k such that b2
n + 1 = k(a2

n + an),

for all n ≥ 1. The last relation is equivalent to

k(2an + 1)2 − (2bn)2 = k + 4.

For k = 5, the equation

5x2 − y2 = 9

has infinitely many solutions. Indeed, (3, 6) is a solution and the

pairs (xn, yn), where

xn = 3un + 6vn, yn = 6un + 15vn, n ≥ 1;

and (un, vn) is the general solution to Pell’s equation u2 − 5v2 = 1,

satisfy the equation. Indeed,

5x2
n − y2

n = 5(3un + 6vn)2 − (6un + 15vn)2

= 9u2
n − 45v2

n = 9(u2
n − 5v2

n) = 9 · 1 = 9

for all n ≥ 0.
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It is clear that u2
n − 5v2

n = 1 implies un odd and vn even for all

n ≥ 0.

It follows that the sequences (an), (bn), where

an =
xn − 1

2
=

3un − 1
2

+ 3vn, bn =
yn

2
= 3un + 15

vn

2
, n ≥ 0,

contain only positive integers, are increasing, and an(an + 1) divides

b2
n + 1 for all n ≥ 0.

4. Let x and y be positive integers such that x(y + 1) and y(x+ 1)

are perfect squares. Prove that either x or y is a perfect square.

(Titu Andreescu, Iurie Boreico)

Solution. Suppose x = an2 and y = bv2 for some positive inte-

gers a, b, u, v, where a and b are square-free. Then au2(bv2 + 1) and

bv2(au2 + 1) are perfect squares, so there are positive integers s and

t such that

a(bv2 + 1) = (as)2 and b(au2 + 1) = (bt)2.

Then

as2 − bv2 = 1 and au2 − bt2 = −1.

From Example 3, a = 1 or b = 1 and the conclusion follows.

3.3 The Negative Pell’s Equation

1. Find all pairs (x, y) of positive integers satisfying the equation

x2 − 6xy + y2 = 1.

(Titu Andreescu)
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Solution. The equation is equivalent to

2(x − y)2 − (x + y)2 = 1.

Without loss of generality we may assume x ≥ y.

Performing the substitutions X = x+ y, Y = x− y, we obtain the

negative Pell’s equation

X2 − 2Y 2 = −1.

By Theorem 3.4.1, its general solution (Xn, Yn)n≥1 is given by

Xn = un + 2vn, Yn = un + vn,

where (un, vn)n≥1 is the general solution to the Pell’s resolvent u2 −
2v2 = 1, that is,

un =
1
2

[
(3 + 2

√
2)n − (3 − 2

√
2)n
]
,

vn =
1

2
√

2

[
(3 + 2

√
2)n − (3 − 2

√
2)n
]
.

We obtain

Xn = un + 2vn =
1
2

[
(1 +

√
2)2n+1 + (1 −

√
2)2n+1

]
,

Yn = un + vn =
1

2
√

2

[
(1 +

√
2)2n+1 − (1 −

√
2)2n+1

]
;

hence

xn =
1
2
(Xn + Yn) =

1
4
√

2

[
(1 +

√
2)2n+2 − (1 −

√
2)2n+2

]
,

yn =
1
2
(Xn − Yn) =

1
4
√

2

[
(1 +

√
2)2n − (1 −

√
2)2n
]
.

The sequence (Pm)m≥1 given by

Pm =
1

2
√

2

[
(1 +

√
2)m − (1 −

√
2)m
]
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is known as Pell’s sequence. It satisfies the recurrence relation

Pm+1 = 2Pm + Pm−1, P1 = 1, P2 = 2. Hence the solutions to our

equation can be written in the form

(xn, yn) =
(

1
2
P2n+2,

1
2
P2n

)

, (xn, yn) =
(

1
2
P2n,

1
2
P2n+2

)

, n ≥ 1,

where the second solution follows by the symmetry in x and y.

2. Prove that there are infinitely many positive integers n such

that n2 + 1 divides n!.

(Kvant)

Solution. The equation x2−5y2 = −1 has (2, 1) as its least positive

solution. So it has infinitely many positive solutions. Consider those

solutions with y > 5. Then 5 < y < 2y ≤ x, since 4y2 ≤ 5y2−1 = x2.

Therefore 2(x2 + 1) = 5y · 2y divides x!.

3. Let an =
[√

n2 + (n + 1)2
]
, n ≥ 1. Prove that there are infi-

nitely many n’s such that an − an−1 > 1 and an+1 − an = 1.

First Solution. First, consider n2 + (n + 1)2 = y2, which can be

rewritten as (2n + 1)2 − 2y2 = −1. This negative Pell’s equation has

infinitely many solutions (x, y) and each x is odd, say x = 2n + 1,

for some n. For these n’s, an = y and

an−1 =
[√

(n − 1)2 + n2
]

=
[√

y2 − 4n
]

implies n > 2 and

an−1 ≤
√

y2 − 4n < y − 1 = an − 1,

i.e., an − an−1 > 1.
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Also, for these n’s,

an+1 =
[√

(n + 1)2 + (n + 2)2
]

=
[√

y2 + 4n + 4
]
.

Since n < y < 2n + 1, we easily get

y + 1 <
√

y2 + 4n + 4 < y + 2, so an+1 − an = (y + 1) − y = 1.

Second Solution. If an = k ≥ 1 so that k2 ≤ n2+(n+1)2 < (k+1)2,

then 16(n + 1)2 ≥ 8k2 ≥ (2k + 1)2 so 4(n + 1) ≥ 2k + 1. Hence

(k + 1)2 ≤ n2 + (n + 1)2 + 4(n + 1) = (n + 1)2 + (n + 2)2. Thus

an+1 − an ≥ 1. Also one easily computes that lim
n→∞ an/n =

√
2.

Therefore there must be arbitrarily large n with an − an−1 > 1, but

this cannot hold for all large n, so there must be infinitely many

transitions back to difference 1.

4. Let k be an integer greater than 2. Prove that

x2 − (k2 − 4)y2 = −1

is solvable if and only if k = 3.

Solution. We will show that

u2 − (k2 − 4)v2 = −4 (1)

is not solvable if k �= 3. Assume the contrary and let (u, v) be a

solution. Then u and kv have the same parity. Consider x = u+kv
2 .

Then u = 2x − kv, and (1) becomes

x2 + v2 + 1 = xvk.

Since k �= 3, this contradicts the result in Problem 6(a) in Section 1.6.
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Assume now that for k �= 3, (1) has a solution (x, y). Multiplying

both sides by 4 yields

(2x)2 − (k2 − 4)(2y)2 = −4,

contradicting the above result concerning (1).

When k = 3, (1) becomes

x2 − 5y2 = −1. (2)

The minimal solution to (2) is (2, 1). From the general theory of

Pell-type equations it follows that all solutions to (2) are given by

(xn, yn), n ≥ 0, where

xn =
1
2

[
(1 + 2

√
5)(2 +

√
5)2n + (1 − 2

√
5)(2 −

√
5)2n
]
,

yn =
1
2

[(

2 +
1√
5

)

(2 +
√

5)2n +
(

2 − 1√
5

)

(2 −
√

5)2n

]

.

(3)

Remark. The equation x2 + y2 + 1 = kxy is solvable in integers

if and only if the quadratic equation

x2 − (ky)x + y2 + 1 = 0

in x has integral solutions. This means that if its discriminant

Δ = (ky)2 − 4y2 − 4 = (k2 − 4)y2 − 4

is a perfect square, then (1) is solvable. From Problem 6(a) in Section

1.6 it follows that the first equation is solvable only if k = 3, so (1) is

solvable only if k = 3. The same argument as in the previous proof

shows that if (1) is solvable only for k = 3, then the same is true for

the equation u2 − (k2 − 4)v2 = −4.
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5. Prove that if a2+1
b2

+4 is a perfect square, then this square is 9.

Solution. Let
a2 + 1

b2
+ 4 = k2

for some positive integer k. Then a2 + 1 = (k2 − 4)b2, that is, a2 −
(k2 − 4)b2 = −1. From the previous problem it follows that k = 3.

Remark. There are infinitely many pairs (a, b) with this property.

All of them are (a, b) = (xn, yn), where xn and yn are given by (3)

in the previous problem.

6. Find all pairs (m,n) of integers such that mn + m and mn + n

are both squares.

(Titu Andreescu, Iurie Boreico)

Solution. The pairs (0, k2) and (k2, 0) are trivial solutions. For

mn �= 0, m = ±aq2 and n = ±br2, for some positive integers q, r, a,

and b, where the signs + and − correspond. Then, as in the solution

to Problem 4 in Section 3.3, there are positive integers s and t such

that as2 − bt2 = ±1 and as2 − bt2 = ∓1, and from Example 3 in the

same section, it follows that a = 1 or b = 1. The problem reduces

to finding all pairs (x, y) of positive integers with x > 1 such that

(x2−1)(y2+1) is a perfect square. Such pairs exist if and only if there

are a square-free positive integer d and positive integers w and z such

that x2 − 1 = dw2 and y2 + 1 = dz2. Because the Pell’s equation

x2 − dw2 = 1 is solvable for each square-free positive integer d, this

boils down to the solvability in positive integers of the negative Pell’s

equation y2 − dz2 = −1.

Hence let D be the set of all square-free positive integers d for

which the equation y2 − dz2 = −1 is solvable in positive integers.
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Then for each such d let (y0(d), z0(d)) be its minimal solution. From

Theorem 3.4.1, the general solution to y2−dz2 = −1 is (yk(d), zk(d)),

yk(d) = y0(d)uk(d) + dz0(d)vk(d), zk(d) = z0(d)unkd) + y0(d)vk(d),

where (uk(d), vk(d)) is the general solution to the Pell’s equation

u2 − dv2 = 1.

It follows that all pairs (m,n) = (mk, nk) are

(dvk(d)2, yk(d)2), (−dzk(d)2,−uk(d)2),

and the other two symmetric pairs.





II.4

Solutions to Some Advanced Methods

in Solving Diophantine Equations

4.1 The Ring Z[i] of Gaussian Integers

1. Solve the equation

x2 + 4 = yn,

where n is an integer greater than 1.

Solution. For n = 2, the only solutions are (0, 2) and (0,−2). For

n = 3, we have seen in Example 4 that the solutions are (2, 2),

(−2, 2), (11, 5), and (−11, 5). Let now n ≥ 4. Clearly, for n even,

the equation is not solvable, since no other squares differ by 4. For

n odd, we may assume without loss of generality that n is a prime

p ≥ 5. Indeed, if n = qk, where q is an odd prime, we obtain an

equation of the same type: x2 + 4 = (yk)q.

For x odd we have (2+ix)(2−ix) = yp and gcd(2+ix, 2−ix) = 1 in

Z[i]. Using the uniqueness of the prime factorization in Z[i], it follows

T. Andreescu et al., An Introduction to Diophantine Equations: A Problem-Based Approach, 309
DOI 10.1007/978-0-8176-4549-6_8, © Springer Science+Business Media, LLC 2010
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that 2 + ix = (a + ib)p for some integers a and b having different

parities. Identifying the real and imaginary parts, we obtain

2 = 2p −
(

p

2

)

ap−2b2 + · · · + (−1)
p−1
2 pabp−1. (1)

It is clear that all terms in the above relation are even and a | 2.

Hence a = ±2, and from Fermat’s little theorem, it follows that a = 2

and b is odd. Relation (1) becomes

1 = 2p−1 −
(

p

2

)

2p−3b2 + · · · + (−1)
p−1
2 pbp−1. (2)

We will prove that b2 = 1. Indeed, if q | b for some odd prime,

from (2) it follows that 2p−1 ≡ 1 (mod q2). Using again Fermat’s

little theorem, we obtain q | p − 1. Indeed, since 2q−1 ≡ 1 (mod q),

there is a divisor s of q − 1 such that 2s ≡ 1 (mod q). Let s be the

least such divisor. We have s | q − 1 and s | p− 1. Moreover, 2sq ≡ 1

(mod q2); hence sq | p−1, i.e., q | p−1. If b2 �= 1, then the exponent

of q in each term (−1)k
(

p
2k

)
2p−1−2kb2k, k = 1, 2, . . . , p−1

2 , of (2) is

greater than the exponent of (2) in 2p−1 − 1, a contradiction. Hence

b2 = 1. Then 2 + ix = (2 ± i)p and |2 + ix| = |2 ± i|p, yielding

4 + x2 = 5p.

The relation (2) becomes

1 = 2p−1 −
(

p

2

)

2p−3 + · · · + (−1)p−1p. (3)

If p = 4m + 1, let p = 2αq + 1 with q odd. From (3) it follows that

1 ≡ p (mod 2α+1), a contradiction. Hence in this case the equation

is not solvable.
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Let p = 4m + 3, m ≥ 1. Assume p = 2βq + 3, with q odd. Using

again relation (3), we obtain

1 ≡ −p +
(

p

p − 3

)

4 (mod 2β+2);

hence p ≡ 3 (mod 2β+1), a contradiction.

Hence there are no solutions for p ≥ 5 and x odd.

If x is even, say x = 2u, then y is even, y = 2v. The equation

becomes u2 + 1 = 2p−2vp. Because p − 2 > 2, this equation is not

solvable, because 4 does not divide u2 + 1, so there are no solutions

for p ≥ 5 and x even as well.

Remark. The perfect squares in the sequence 5n − 2m, m,n ≥ 0

are 0, 1, 4, 9, and 121. Indeed, if n = 2k, k ≥ 1, the relation 5n−2m =

x2 is equivalent to (5k − x)(5k + x) = 2m, yielding 5k − x = 2α+1

and 5k + x = 2β+1 with α + β = m − 2, α < β. It follows that

5k = 2α + 2β and α must be 0. We obtain 5k = 1 + 2β . For k

even, we get (5
k
2 − 1)(5

k
2 + 1) = 2β, which is not possible. For k

odd, we have (1 + 4)k = 1 + 4
(k
1

)
+ 42

(
k
2

)
+ · · · = 1 + 2β ; hence

k + 4
(
k
2

)
+ · · · = 2β , yielding a contradiction for k ≥ 3. Hence k = 1,

β = 2, and x2 = 52 − 24 = 9.

Assume n odd. Then 5n ≡ 5 (mod 8). But for m ≥ 3, 55 − x2 =

2m ≡ 0 (mod 8), which is impossible. Hence m ∈ {0, 1, 2}. For m = 0

we get x2 + 1 = 5n, which, according to Example 1, is not solvable

for n ≥ 2. It follows that n = 1 and x2 = 4. For m = 1, we have

x2 +2 = 5n, which is impossible, as we tell by looking modulo 4. For

m = 2, x2 +4 = 5n. If n = 1, then x2 = 1. If n has a prime divisor p,

then n = pq, and so x2+4 = (5q)p. From the solution of the problem
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it follows that 5q = 5; hence q = 1 and n is a prime. We have seen

that n must be 3, so x2 = 121.

2. Solve the equation

x2 + 9 = yn,

where n is an integer greater than 1.

Solution. For n = 2, the only solutions are (0, 3), (0,−3), (4, 5),

(4,−5), (−4, 5), and (−4,−5). For n even, n ≥ 4, the equation is not

solvable. For n odd, we may assume without loss of generality that

n is a prime p ≥ 3. The argument is the same as in the previous

problem. We will prove that the equation is not solvable in this case.

Clearly, 3 does not divide x, for otherwise, 3 would divide
(

x
3

)2+1,

a contradiction. We will use again the uniqueness of prime factoriza-

tion in Z[i]. The equation can be written as (3 + ix)(3 − ix) = yp,

and since gcd(3 + ix, 3 − ix) = 1, it follows that 3 + ix = (a + bi)p

and y = a2 + b2, where a and b have different parities. Identifying

the real parts, we get

3 = ap −
(

p

2

)

ap−2b2 + · · · + (−1)
p−1
2

(
p

p − 1

)

abp−1. (1)

From (1) it follows that 3 ≡ ap (mod p). Then Fermat’s little

theorem gives ap ≡ a (mod p); hence we get that a | 3, so clearly

a = 3. Therefore, relation (1) becomes

1 = 3p−1 −
(

p

2

)

3p−3b2 + · · · + (−1)
p−1
2

(
p

p − 1

)

bp−1. (2)

That is,

3p−1−1 =
(

p

2

)

3p−3b2−
(

p

4

)

3p−5b4+· · ·−(−1)
p−1
2

(
p

p − 1

)

bp−1. (3)
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If p = 4m + 3, then from (3) it follows that b must be even. But

in this case, 3p−1 − 1 is divisible by 23 and not by 24, while b2 is

divisible by an even power of 2, a contradiction.

If p = 4m + 1, then from (3) we get again that b must be even.

Assume that p = 2μk + 1, where μ ≥ 1 and k is odd.

But 3p−1 − 1 = 32µk − 1 = (−1 + 4)2
µk − 1 = 2μ+2k − . . . , which

shows that 2μ+2 is the greatest power of 2 dividing 3p−1−1. Because

b is even, b = 2σq, where α ≥ 1 and q is odd. Then
(

p

2

)

b2 =
p(p − 1)

2
b2 = (2μk + 1)2μ−1k · 22αq2;

hence the greatest power of 2 dividing
(p
2

)
b2 is 2μ−1+2α. The parities

of the exponents μ + 2 and μ− 1 + 2α are different, a contradiction.

In all cases, we have shown the insolvability of the equation.

3. Let p = 4m − 1 be a prime and let x and y be relatively prime

integers such that

x2 + y2 = z2m

for some integer z. Prove that p | xy.

(American Mathematical Monthly)

Solution. Because gcd(x, y) = 1, x and y have different parities.

Indeed, they cannot both be odd, since in this case x2 + y2 ≡ 2

(mod 4), so x2 + y2 is not a perfect square. Hence z is odd. We will

use the uniqueness of prime factorization in Z[i]. The equation is

equivalent to (x + iy)(x − iy) = z2m. Let d = gcd(x + iy, x − iy).

Then d | (x+iy)+(x−iy) = 2x and d | (x+iy)−(x−iy) = 2iy; thus

d | 2x and d | 2y. From gcd(x, y) = 1 it follows that d | 2. On the

other hand, from (x+ iy)(x− iy) = z2m, we see that d | z2m. But z is
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odd; hence d must be a unit in Z[i], implying that x + iy and x− iy

are relatively prime. From the uniqueness of prime factorization we

get

x + iy = ik(a + ib)2m,

for some integers a and b and some k ∈ {0, 1, 2, 3}.
We have

(a + ib)4m = (a + ib)p+1 = (a + ib)p(a + ib)

≡ (ap + (ib)p)(a + ib) (mod p)

= (ap − ibp)(a + ib) (mod p),

and by Fermat’s little theorem we obtain

(a + ib)4m ≡ (a − ib)(a + ib) (mod p) = (a2 + b2) (mod p).

On the other hand, from x + iy = ik(a + ib)2m, it follows that

x2 − y2 + 2ixy = (−1)k(a + ib)4m;

hence

x2 − y2 + 2ixy ≡ (−1)k(a2 + b2) (mod p).

But p | u+ iv if and only if p | u and p | v. Thus p | 2xy, and since

p is odd, p | xy.

4.2 The Ring of Integers of Q[
√

d]

1. Find all pairs (x, y) of positive integers such that

13x + 3 = y2.

(Mathematical Reflections)
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Solution. We have

(4 −
√

3)x(4 +
√

3)x = 13x = (y −
√

3)(y +
√

3).

It is easy to see that Z[
√

3] is a Euclidean domain with the norm N

given by

N(a + b
√

3) = |a2 − 3b2|.

Hence Z[
√

3] is a PID and so a UFD.

Suppose there exists a prime p ∈ Z[
√

3] that divides both y −√
3

and y +
√

3. Then

N(p) | N(y +
√

3) = |y2 − 3| = 13x.

On the other hand, since p | 2
√

3, we have N(p) | N(2
√

3) = 12.

Then N(p) | (12, 13x) = 1, and so N(p) = 1, contradiction.

Hence (y − √
3, y +

√
3) = 1, and so y +

√
3 is an xth power. In

particular, since both 4−√
3 and 4+

√
3 are primes, then (4+

√
3)x =

y +
√

3, which after comparing coefficients of
√

3 in both sides yields

1 =
∑
(

x

2k + 1

)

3k4x−(2k+1) = x4x−1 + (terms ≥ 1).

Therefore x = 1.

2. Solve the equation

x2 + 3 = yn,

where n is an integer greater 1.

Solution. For n = 2 the solutions are (1, 2), (1,−2), (−1, 2), and

(−1,−2). For n even, n ≥ 4, the equation is not solvable, since no

other squares differ by 3. For n odd, n ≥ 3, we may assume that n
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is a prime p. Indeed, if n = qk, where q is an odd prime, we obtain

an equation of the same type:

x2 + 3 = (yk)q.

We will use the uniqueness of prime factorization in the ring of

integers of Q[
√−3]. According to Theorem 4.2.3, the integers in

Q[
√−3] are α+β

√−3
2 , where α and β are integers of the same parity.

Write the equation as

(x +
√−3)(x −√−3) = yp,

where y = α2+3β2

4 .

Clearly, x must be even, for otherwise, x2 + 3 ≡ 4 (mod 8), while

yp ≡ 0 (mod 8).

The equation x2 − x + 1 = y3 is equivalent to

(2x − 1)2 + 3 = 4y3,

that is,
(2x − 1) +

√−3
2

· (2x − 1) −√−3
2

= y3. (2)

Let

d = gcd
(

2x − 1 +
√−3

2
,
2x − 1 −√−3

2

)

.

Then

d |
(

2x − 1 +
√−3

2
− 2x − 1 −√−3

2

)

=
√−3.

Hence N(d) | N(
√−3), that is, d2 | 3. It follows that d = 1 or

d =
√−3. The second case requires x ≡ 2 (mod 3), which gives

3 | y3, but 9 � y3, a contradiction. Hence the only possibility is d = 1,

so the integers 2x−1+
√−3

2 and 2x−1−√−3
2 are relatively prime in R.
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Using the uniqueness of prime factorization in R, we get

2x − 1 +
√−3

2
= wk

(
α + β

√−3
2

)3

(3)

and
2x − 1 −√−3

2
= w6−k

(
α − β

√−3
2

)3

,

where w = −1+
√−3
2 and α2+3β2

4 = y.

Then gcd(x +
√−3, x −√−3) = 1 and

x +
√−3 = wk

(
α + β

√−3
2

)p

, x−√−3 = w6−k

(
α − β

√−3
2

)p

,

where w = −1+
√−3
2 . The first relation can be written as

x +
√−3 =

(
m + n

√−3
2

)p

, (1)

for some integers m and n of the same parity.

Indeed, for each k ∈ {0, 1, . . . , 5}, there is a positive integer s such

that wk = wsp. The choice of s depends on the residue of p modulo

6. If p ≡ 1 (mod 6), we take s = k, while for p ≡ 5 (mod 6) we take

s = 6 − k.

Taking the conjugate in (1), we obtain

x −√−3 =
(

m − n
√−3

2

)p

;

hence

2
√−3 =

(
m + n

√−3
2

)p

−
(

m − n
√−3

2

)p

.

Factoring the expression in the right-hand side as

Ap − Bp = (A − B)(Ap−1 + Ap−2B + · · · + ABp−2 + Bp−1),
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we get 2
√−3 = n

√−3 ·u, where u is an integer in Q[
√−3]. It follows

that 2 = n·u, and so N(2) = N(n·u) = N(n)·N(u), i.e., 4 = n2N(u).

Hence n | 2.

For n = ±1, from (1) we obtain

±2p =
(

p

1

)

mp−1 − 3
(

p

3

)

mp−3 + · · · + (−3)
p−1
2 . (2)

Looking modulo p, from Fermat’s little theorem we get

±2 ≡ (−3)
p−1
2 (mod p);

hence 4 ≡ (−3)p−1 ≡ 1 (mod p), so p = 3.

The equation becomes x2 + 3 = y3. This equation is not solvable

for y ≡ 1 (mod 4). Hence y ≡ 3 (mod 4) and x2 + 4 = y3 + 1 =

(y + 1)(y2 − y + 1), which is again impossible, since y2 − y + 1 is of

the form 4m + 3 and it cannot divide the sum of squares x2 + 4.

For n = ±2, m = 2a and (1) becomes

x +
√−3 = (a +

√−3)p,

so

1 =
(

p

1

)

ap−1 − 3
(

p

3

)

ap−3 + 9
(

p

5

)

ap−5 − · · · + (−3)
p−1
2 . (3)

Clearly, 3 � a, so a2 ≡ 1 (mod 3). From (3), we get 1 ≡ pap−1

(mod 3); hence p ≡ 1 (mod 3). Let p = 3u · 2q + 1, where 3 � q.

Looking at (3) modulo 3μ+2, we get

1 ≡ pap−1 +
p − 1

2
ap−3 (mod 3μ+2). (4)

Indeed, 3μ+2 | 9
(
p
5

)
and

3
(

p

3

)

=
p − 1

2
p(p − 2) =

p − 1
2

[(p − 1)2 − 1]

≡ −p − 1
2

(mod 3μ+2).
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We have

ap−1 = (a2)
p−1
2 = (1 + 3k)3

µq ≡ 1 + 3μ+1kq (mod 3μ+2).

Multiplying (4) by p−1
2 = 3μq and looking mod 3μ+2, we obtain

p − 1
2

ap−1 ≡ 3μq(1 + 3μ+1kq) ≡ 3μq (mod 3μ+2). (5)

On the other hand,

a2(pap−1 − 1) ≡ −p − 1
2

ap−1 (mod 3μ+2)

and

a2(pap−1 − 1) = (1 + 3k)[p(1 + 3k)
p−1
2 − 1] = (1 + 3k)[p(1 + 3k)3

µq − 1]

≡ (1 + 3k)p + (1 + 3k)p · 3μ+1kq − (1 + 3k) (mod 3μ+2)

≡ (1 + 3k)(p − 1) + pkq · 3μ+1 (mod 3μ+2)

≡ 3μ · 2q + 3μ+1 · 2kq + (3μ · 2q + 1)kq3μ+1 (mod 3μ+2)

≡ 3μ · 2q + 3μ+1(2kq + kq) (mod 3μ+2)

≡ 3μ · 2q (mod 3μ+2).

Using (5) we obtain

−3μq ≡ 3μ · 2q (mod 3μ+2);

hence 3μ+2 | 3μ+1q, i.e., 3 | q, a contradiction.

In conclusion, the equation is not solvable for n ≥ 3.

3. Solve the equation

x2 + 11 = 3n,

where n is an integer greater than 1.
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Solution. Looking modulo 13 we have the following table:

x 0 ±1 ±2 ±3 ±4 ±5 ±6

x2 0 1 4 9 3 12 10

x2 + 11 11 12 2 7 1 10 8

while 3n ≡ 1, 3, or 9 (mod 13), as n ≡ 0, 1, or 2 (mod 3), respec-

tively. It follows that n = 3k, for some positive integer k. Let y = 3k

and the equation becomes x2 + 11 = y3. It is clear that x is even.

Using the uniqueness of prime factorization in the ring of integers of

Q[
√−11], we get

x ±√−11 =
(

a + b
√−11
2

)3

,

where a and b are integers of the same parity.

Identifying the imaginary parts, we obtain ±23 = 3a2b − 11b3;

hence b | 23.

A short case analysis shows that the only solutions are b = ±1

and a2 = 1. Because y = a2+11b2

4 , it follows that y = 3, i.e., n = 3

and x = ±4. The solutions (x, n) are (4, 3) and (−4, 3).

4. Solve the equation

x2 + x + 2 = y3.

Solution. The equation is equivalent to

(2x + 1) +
√−7

2
· (2x + 1) −√−7

2
= y3.

But

gcd
(

2x + 1 +
√−7

2
,
2x + 1 −√−7

2

)

= 1.
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Indeed, if d is this gcd, then

d | 2x + 1 +
√−7

2
− 2x + 1 −√−7

2
=

√−7;

hence N(d) | N(
√−7), that is, d2 | 7. Using the uniqueness of the

prime factorization in the ring of integers of Q[
√−7], we obtain

2x + 1 +
√−7

2
=
(

a + b
√−7
2

)3

,

where a and b are integers of the same parity and a2+7b2

4 = y.

It follows that 3a2b − 7b3 = 4; hence b | 4.

Analyzing all possibilities (b = ±1,±2,±4), we get b = ±1 and

a2 = 1, yielding the solution y = 2, and so x = 2 or x = −3. The

solutions are (2, 2) and (−3, 2).

5. Let a and b be positive integers such that b = x2− dy2 for some

integers x, y, d with d = a2 − 1. Prove that if b < 2(a + 1), then b is

a perfect square.

Solution. Everything is clear for a = 1. For a ≥ 2, the fundamental

solution to Pell’s equation x2 − (a2 − 1)y2 = 1 is z1 = a +
√

d. From

the hypothesis, the equation N(z) = b has solution (x, y); hence,

according to Theorem 4.2.7, it also has a solution z′ = x′ + y′
√

d

with

|x′| ≤ z1 + 1
2
√

z1

√
b =

a + 1 +
√

d

2
√

a +
√

d

√
b

=

√

(a + 1 +
√

d)2

4(a +
√

d)
b =

√
(a + 1)b

2
< a + 1;

hence x′ ≤ a.

On the other hand,

y′ =

√
(x′)2 − b

d
≤
√

a2 − b

d
=

√

a2 − b

a2 − 1
< 1.
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It follows that y′ = 0 and b = (x′)2.

4.3 Quadratic Reciprocity and Diophantine

Equations

1. For a prime p, the equation x2 − 3y2 = p has solutions in

integers if and only if p ≡ 1 (mod 12).

Solution. From the previous problem, it suffices to take p ≥ 5. A

necessary condition for solvability is
(

3
p

)
=
(p

3

)
= 1. The second re-

lation means that p ≡ 1 (mod 3). Moreover, since 3 ≡ −1 (mod 4),

quadratic reciprocity tells us that
(

3
p

)
=
(p

3

)
if and only if p ≡ 1

(mod 4). Thus p ≡ 1 (mod 12).

Because 3 is a quadratic residue modulo p, we have 3+np = x2 for

some integers n and p. This is equivalent to np = (x +
√

3)(x−√
3).

It follows that p | x +
√

3 or p | x −√
3 in Z[

√
3]. But this is clearly

impossible; hence p factors nontrivially in Z[
√

3], the nontriviality

meaning that neither factor is a unit, so neither has norm ±1. Then

p = (s + t
√

3)(u + v
√

3),

and taking norms yields p2 = (s2 − 3t2)(u2 − 3v2). This implies

s2 − 3t2 = u2 − 3v2 = p or s2 − 3t2 = u2 − 3v2 = −p. The latter

is not possible, since looking mod 3, we get −p ≡ u2 (mod p). But

quadratic residues tell us that
(−p

3

)
=
(−1

3

) (p
3

)
= (−1) · 1, because

p ≡ 1 (mod 3), a contradiction.

2. Let p be a prime of the form 4k + 3. Prove that exactly one of

the equations x2 − py2 = ±2 is solvable.

Solution. Suppose the equations

x2 − py2 = 2 and u2 − pv2 = −2
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are both solvable. Then p | x2−2 and p | u2 +2, implying p | x2 +u2.

From Theorem 4.4.2 it follows that p | x and p | u, implying p | 2,

a contradiction. Hence at most one equation is solvable. Let (x1, y1)

be the fundamental solution to Pell’s equation u2−pv2 = 1. If x1−1

and x1 +1 are not relatively prime, then from (x1−1)(x1 +1) = py2
1

we get x1 ± 1 = ax2 and x1 ∓ 1 = pay2. Hence a(x2 − py2) = 2,

implying a = 2. It follows that x1 ± 1 = 2x2 and x1 ∓ 1 = 2py2,

which yields x2 − py2 = ±1. The situation x2 − py2 = 1 contradicts

the minimality of (x1, y1), while x2 = py2 − 1 is in contradiction to

the result in Theorem 3.4.2.

Hence x1 − 1 and x1 + 1 are relatively prime, so x1 ± 1 = x2

and x1 ∓ 1 = py2 for some positive integers x and y. It follows that

x2 − py2 = ±2.

3. Let p be a prime of the form 8k + 7. Prove that the equation

x2 − py2 = 2 is solvable.

First Solution. Let (u, v) be the fundamental solution to Pell’s

equation x2 − py2 = 1. We will prove that u is even and v is odd.

Indeed, if u is odd, then v is even, and from

u − 1
2

· u + 1
2

= p
(v

2

)2
and gcd

(
u − 1

2
,
u + 1

2

)

= 1

it follows that

u − 1
2

= pα2 and
u + 1

2
= β2 or

u − 1
2

= α2 and
u + 1

2
= pβ2

for some positive integers α and β. In the first case we get β2 −
pα2 = 1, contradicting the minimality of (u, v), while in the second

we obtain α2 − pβ2 = −1, contradicting the result in Theorem 3.4.2.
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Hence u is even and v is odd, so gcd(u − 1, u + 1) = 1. From

(u−1)(u+1) = pv2, we get u−1 = a2 and u+1 = pb2 or u−1 = pa2

and u+1 = b2, for some integers a and b. In the first case, pb2−a2 = 2;

hence a2 ≡ −2 (mod p). But
(−2

p

)

= (−1)
p−1
2

(
2
p

)

= (−1)(+1) = −1,

since p ≡ 7 (mod 8), a contradiction. In the second case, b2−pa2 = 2,

and we are done.

Second Solution. It is clear that p is of the form 4m+3. Using the

result in Problem 2, it suffices to show that the equation x2 − py2 =

−2 is not solvable. If this equation were solvable and (x, y) were a

solution, then we would have x2 ≡ −2 (mod p). But
(−2

p

)

= (−1)
p−1
2

(
2
p

)

= (−1)(+1) = −1,

since p ≡ 7 (mod 8), a contradiction.

Remark. In a similar way we can prove that if p is a prime of the

form 8k + 3, then the equation x2 − py = −2 is solvable.

4.4 Divisors of Certain Forms

1. Let p be a prime of the form 4k + 3. Prove that the system of

equations ⎧
⎨

⎩

(p − 1)x2 + y2 = u2,

x2 + (p − 1)y2 = v2,

is not solvable in nonzero integers.

Solution. Without loss of generality we may assume that

gcd(x, y) = 1.
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We have u2 + v2 = p(x2 +y2); hence p | u2 + v2. By Theorem 4.4.2

it follows that p | u and p | v. Then one gets p | x2+y2, contradicting

Theorem 4.4.2.

2. Prove that the equation x2 + y2 = zn + 2n is not solvable if

gcd(x, y) = 1 and n is an odd integer greater than 1.

Solution. Because gcd(x, y) = 1, it follows that z is odd, for oth-

erwise, 2n | x2 + y2, in contradiction to x2 + y2 ≡ 2 (mod 8).

The right-hand side of the equation has a prime factor of the form

4k + 3. Indeed, if z = 4m − 1, then zn + 2n is of the same form. If

z = 4m + 1, then z + 2 = 4m + 3 and it divides zn + 2n. In both

cases, x2 + y2 has a prime factor of the form 4k + 3, a contradiction.

(Ion Cucurezeanu)

3. Prove that for any integer n greater than 1, the equation

xn + 2n = y2 + 2

is not solvable.

(Ion Cucurezeanu)

Solution. Clearly, x is odd, for otherwise, y would also be even and

so we would have 0 ≡ 2 (mod 4), a contradiction.

If n is even, then

(y − x
n
2 )(y + x

n
2 ) = 2n − 2.

Because x and y are both odd, the left-hand side is congruent to 0

(mod 4), while the right-hand side is congruent to 2 (mod 4). Hence

n is odd.



326 Part II. Solutions to Exercises and Problems

If x = 4k+1, then working modulo 4 we get another contradiction.

If x = 4k − 1, then x = 8m − 1 or x = 8m + 3. In the first case,

working modulo 8 we obtain again a contradiction. In the second

case, x + 2 = 8k + 5 has a prime divisor of the form 8m − 3 or

8m − 1, contradicting the result in Remark 2.

Remark. A short way to get a contradiction is the following. After

we have proved that x and y are both odd, we reduce the equation

mod 4 and obtain 1 ≡ 3 (mod 4), which is not possible.
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bază pentru ecuaţia ax2 − by2 = 1 (Romanian), G.M. 2(1981),
52–54.

[AndreAndri4] Andreescu, T., Andrica, D., Condiţii ı̂n care
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Glossary

Arithmetic function

A function defined on the positive integers that is complex-valued.

Arithmetic–Geometric Means Inequality

If n is a positive integer and a1, a2, . . . , an are nonnegative real num-

bers, then
1
n

n∑

i=1

ai ≥ (a1a2 · · · an)1/n,

with equality if and only if a1 = a2 = · · · = an. This inequality is a

special case of the power mean inequality.

Associated elements

Two elements a and b of a ring R such that a = ub for some unit

u ∈ R.
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Base-b representation

Let b be an integer greater than 1. For any integer n ≥ 1 there is

a unique system (k, a0, a1, . . . , ak) of integers such that 0 ≤ ai < b,

i = 0, 1, . . . , k, ak �= 0 and,

n = akb
k + ak−1b

k−1 + · · · + a1b + a0.

Beatty’s theorem

Let α and β be two positive irrational real numbers such that

1
α

+
1
β

= 1.

The sets {�α�, �2α�, �3α�, . . . }, {�β�, �2β�, �3β�, . . . } form a parti-

tion of the set of positive integers.

Bernoulli’s inequality

For x > −1 and a > 1,

(1 + x)a ≥ 1 + ax,

with equality when x = 0.

Bezout’s identity

For positive integers m and n, there exist integers x and y such that

mx + ny = gcd(m,n).

Binomial coefficient (
n

k

)

=
n!

k!(n − k)!
,

the coefficient of xk in the expansion of (x + 1)n.
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Binomial theorem
The expansion

(x+y)n =
(

n

0

)

xn+
(

n

1

)

xn−1y+
(

n

2

)

xn−2y+· · ·+
(

n

n − 1

)

xyn−1+
(

n

n

)

yn.

Canonical factorization

Any integer n > 1 can be written uniquely in the form

n = pα1
1 · · · pαk

k and p1 < p2 < · · · < pk,

where p1, . . . , pk are distinct primes and α1, . . . , αk are positive inte-

gers.

Carmichael’s integers

The composite integers n satisfying an ≡ a (mod n) for any integer

a.

Ceiling function

The least integer that is greater than or equal to x is called the

ceiling of x and is denoted by x�.

Commutative ring

A set R equipped with two commutative binary operations, addition

and multiplication, such that (R,+) is an abelian group, 0R �= 1R,

and the distributive law holds ((a+ b)c = ac+ bc, for all a, b, c ∈ R).

Complete set of residue classes modulo n

A set S of integers such that for each 0 ≤ i < n there is a unique

element s ∈ S with i ≡ s (mod n).
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Congruence relation

Let a, b, and m be integers. We say that a and b are congruent modulo

m if m | a− b. We denote this by a ≡ b (mod m). The relation “≡”

on the set Z of integers is called the congruence relation.

Division algorithm

For any positive integers a and b there exists a unique pair (q, r) of

nonnegative integers such that b = aq + r and r < a.

Euclidean algorithm

Repeated application of the division algorithm:

m = nq1 + r1, 1 ≤ r1 < n,

n = r1q2 + r2, 1 ≤ r2 < r1,

...

rk−2 = rk−1qk + rk, 1 ≤ rk < rk−1,

rk−1 = rkqk+1 + rk+1, rk+1 = 0.

This chain of equalities is finite because n > r1 > r2 > · · · > rk > 0.

Euclidean domain

A ring R with the property that there exists a function λ : R\{0} →
N

0 such that for any two a, b ∈ R, b �= 0, one can find some c, d ∈ R

satisfying a = cb + d, where either d = 0 or λ(d) < λ(b).

Euler’s theorem

Let a and m be relatively prime positive integers. Then

aϕ(m) ≡ 1 (mod m).



Glossary 335

Euler’s totient function

The function ϕ defined by ϕ(m) = the number of all positive integers

n less than or equal to m that are relatively prime to m.

Fermat’s little theorem

Let a be any integer and let p be a prime. Then

ap ≡ a (mod p).

Fibonacci sequence

The sequence defined by F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1 for

every positive integer n.

Field

A set k equipped with two commutative binary operations, addition

and multiplication, such that:

1. (k,+) is an abelian group under addition;

2. every nonzero element of k has a multiplicative inverse, and

(k∗, ·) is an abelian group under multiplication, where k∗ =

k \ {0k};

3. 0k �= 1k;

4. the distributive law holds: (a + b)c = ac + bc for all a, b, c ∈ k.

Floor function

For a real number x there is a unique integer n such that n ≤ x <

n + 1. We say that n is the greatest integer less than or equal to x

or the floor of x and we write n = �x�.
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Ideal

A subset of a ring R closed under addition and subtraction and under

multiplication by elements of R.

Integral domain

A commutative ring without zero-divisors.

Irreducible element

An element p of a ring R such that a | p implies that a is a unit or

a is associated with p.

Gaussian integer

A complex number whose real part and imaginary part are both

integers.

Legendre symbol

Let p be an odd prime and let a be a positive integer not divisible

by p. The Legendre symbol of a with respect to p is defined by

(
a

p

)

=

⎧
⎨

⎩

1 if a is a quadratic residue mod p,

−1 otherwise.

Linear Diophantine equation

An equation of the form

a1x1 + · · · + anxn = b,

where a1, a2, . . . , an, b are fixed integers.
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Linear recurrence of order k

A sequence x0, x1, . . . , xn, . . . of complex numbers defined by

xn = a1xn−1 + a2xn−2 + · · · + akxn−k, n ≥ k,

where a1, a2, . . . , ak are given complex numbers and x0 = α0, x1 =

α1, . . . , xk−1 = αk−1 are also given.

Lucas sequence

The sequence defined by L0 = 2, L1 = 1, Ln+1 = Ln + Ln−1 for

every positive integer n.

Number of divisors

For a positive integer n denote by τ(n) the number of its divisors. It

is clear that

τ(n) =
∑

d|n
1.

Order modulo m

We say that a has order d modulo m, denoted by om(a) = d, if d

is the smallest positive integer such that ad ≡ 1 (mod m). We have

on(1) = 1.

Pell’s equation

The quadratic equation u2 −Dv2 = 1, where D is a positive integer

that is not a perfect square.
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Principal ideal

An ideal of a ring R generated by one element.

Principal ideal domain (PID)

A ring R with the property that every ideal in it is principal.

Prime element

A nonunit element p of a ring R, p �= 0, such that p | ab implies p | a

or p | b.

Pythagorean equation

The Diophantine equation x2 + y2 = z2.

Pythagorean triple

A triple of the form (a, b, c) where a2 + b2 = c2. All Pythagorean

triples are (m2 − n2, 2mn,m2 + n2), where m and n are positive

integers such that m > n and m + n is odd.

Quadratic residue mod m

Let a and m be positive integers such that gcd(a,m) = 1. We say that

a is a quadratic residue mod m if the congruence x2 ≡ a (mod m)

has a solution.

Quadratic reciprocity law of Gauss

If p and q are distinct odd primes, then
(

q

p

)(
p

q

)

= (−1)
p−1
2

· q−1
2 .

Unit

An element of a ring R with a multiplicative inverse.
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Wilson’s theorem

For any prime p, (p− 1)! ≡ −1 (mod p). So n is prime if and only if

(n − 1)! ≡ −1 (mod n).

Zero-divisor

A nonzero element r of a ring R such that rs = 0 for some nonzero

s ∈ R.
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