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EDITOR’S INTRODUCTION

THERE are fashions in mathematics as well as in clothes —
and in both domains they have a tendency to repeat them-
selves. During the second half of the nineteenth century
“Modern Geometry,” in the sense of the content of the pre-
sent book, aroused much interest and was prosecuted vigor-
ously by a considerable number both in England and on the
continent of Europe. Many beautiful new theorems were
proved, most of them by elementary methods. Toward the
end of the century this interest waned somewhat.

The present appears to exhibit a revival of this interest.
This is in large part due to the recognition of the value of this
new material as training for the prospective teacher of geom-
etry in our secondary schools. Here is indeed a discipline
which is a natural “sequel” to elementary geometry, a body
of propositions which may be derived by methods similar to
those used in the classical plane geometry and which has all
the attraction of novelty and inherent beauty. It is not sur-
prising, therefore, that an increasing number of colleges and
normal schools are introducing into their curricula courses in
this “Modern Geometry.”

It is not only as a textbook in such courses, however, that
the present book will be a valuable addition to our mathe-
matical literature. In view of the very modest demands it
makes on the previous training of the student, it may be ex-
pected to appeal to many teachers in secondary schools and
colleges whose interest and ambition lead them to seek to in-
crease their knowledge and appreciation of geometry. More-
over, many highly trained mathematicians will welcome it as
giving them the opportunity to fill a not uncommon gap in
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their previous study. The content of this book, in spite of its
elementary character, is by no means well known to mathe-
maticians in general,

Finally, the author has succeeded in incorporating a great
deal of material which is scattered through journals or is
otherwise not easily accessible, and this without impairing its
value as an elementary text. It should, therefore, be found
valuable also as a reference work.

J. W. Youne



PREFACE

Trrs book deals with the geometry of the triangle and the
circle, as developed extensively in the nineteenth century
by British and Continental writers. This geometry, based
entirely on the elementary plane geometry of Euclid or its
modern equivalent, is rapidly coming to its due recognition
as excellent material for college courses. Perhaps in no other
field is there so rich a harvest of geometric truth so directly
accessible to the student, with as little preliminary investment
of energy in the development of method and technique. The
student who is familiar with high school mathematics and
with the language of trigonometry is well qualified to reap
the full benefit of a course in this subject. For this reason,
such a course makes a strong appeal to the teacher or the
prospective teacher of mathematics in the secondary school; to
the general student who appreciates mathematics, especially
geometry, but is not attracted by the arduous algebraic diffi-
culties of analytic geometry; and to the mathematician who
finds frequent applications of this modern elementary geom-
etry in other fields of mathematics. Such relationships are
occasionally suggested or implied in the book; so that the
reader who is acquainted with higher geometry will frequently
recognize familiar theorems more or less effectually dis-
guised.

The study of the recent elementary geometry may be car-
ried on in various ways. Some of the writers have used freely
the projective methods of central projection and of anhar-
monic ratios; and another method of attack is the analytic,
making use of trilinear coérdinates. The point of view of this
book is that the subject matter deals exclusively with the ele-
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mentary concepts associated with congruent and similar
figures; that the synthetic projective or the analytic method of
treatment implies more elaborate basic concepts, invariant
with regard to the projective group of transformations; and
that it is more elegant and far more appropriate to use only
the Euclidean relations of congruence and similarity. Thus
a directness and unity of treatment is achieved, that seems to
be lost when the more powerful methods of higher geometry
are introduced. In the following pages, then, we shall confine
ourselves to the study of equal and similar figures, both in the
formulations and in the proofs of theorems.

It may be thought that the liberal use which we shall make
of circular inversion is a violation of this unity; but while it is
true that the geometer may regard inversion as a quadratic
Cremona transformation, it is equally easy and natural to de-
fine it in terms of similar figures and proportions, thus justify-
ing its introduction and use.

The material which appears in this book is for the most part
to be found in standard sources, many of them easily acces-
sible. The most important of these are the following:

SmMoN, Max: Ueber die Entwickelung der Elementargeometrie m
XIX Jahrhundert. Berlin, 1906.

(A summary, with very full bibliography, of the most im-
portant modern developments of geometry; very useful for ref-
erence.)

Casgy, JouN: A Sequel to Euclid. Dublin, 1881, 1888.

(Four editions of this famous work, the first issued in 1881,
were followed in 1888 by a fifth, which contained an 80-page
“supplementary chapter” treating of some of the Brocard ge-
ometry. After Casey’s death in 1891, a sixth edition, entitled
“Part I"” and without the supplementary chapter, was issued.
The fifth, therefore, is the most interesting edition of the book;
but since the material is all available elsewhere, the interest
in the book is mainly historical. The author is indebted to
Dr. R. C. Archibald for the loan of a copy of the comparatively
rare fifth edition.)
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LacuraN, R.: Modern Pure Geometry. London, 1893.
McCLELLAND, W. J.: Geometry of the Circle. London, 1891.
RusseLy, J. W.: Elementary Pure Geometry. Oxford, 1893.
DurgeLL, C. V.: Modern Geomelry. London, 1920.

GavrratLy, W.: Modern Geomelry of the Triangle. London, 1910.

(These books bear some resemblance to one another, dealing
with various aspects of geometry, usually by projective meth-
ods.)

CoorinGg, J. L.: A Treatise on the Geometry of the Circle and the
Sphere. Cambridge (England), 1914.

(Chapter 1 of this book is a survey of our field. The following
chapters treat the geometry of the circle and sphere analytically
and very fully, with many illuminating associations with the
elementary field.)

Funarmann, W.: Synthetische Beweise Planimetrischer Sdize. Berlin,
1890.
EmMeRIcH, A.: Die Brocard’schen Gebilde. Berlin, 1891.

(Two valusble German treatises. The second deals with the
Brocard geometry, in part by analytic methods; the first is
freely quoted in the present text.)

AvrsHrLLER-CoURT, N.: College Geomelry. Richmond, 1923.

(A recent and successful American text with which we expect

to enter into friendly competition.)

An attempt has also been made to explore the very large
number of journal articles, as well as less familiar books, and
to incorporate in the text the most important results to be
found in these sources. Since our book is not intended as an
exhaustive treatise, but as an introduction to this very exten-
sive field, the hundreds of more elaborate researches to be
found in the periodicals find here little place.! While the

1 Among the most important contributors to the geometry of the triangle
must be named Dr. John 8. Mackay, of Edinburgh, the first President of the
Edinburgh Mathematical Society. Dr. Mackay was an enthusiastic worker
in this field, and during the first twenty years of the existence of the Society
he published in its Proceedings some thirty-five articles varying from brief
notes to long monographs on the most important configurations related to
the triangle. His historical researches also were of the greatest value, as will
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subject matter of this book lays little claim to originality, and
the original contributions of the author are of no great impor-
tance, he has devoted himself to the weaving of the material
into an organic unity and to the strengthening, simplification,
and clarification of the proofs. If the reader feels an ssthetic
satisfaction in the unity and harmony of the arrangement and
the interrelation of the various parts to one another, the
author will have been successful.

Perhaps the chief contribution of the book to the advance-
ment of the art of geometry is the concept and the method of
proof designated, for lack of a better name, as that of ‘“di-
rected angles.” The advantages of this method, already indi-
cated in articles in The American Mathematical Monthly some
years ago, can be appreciated only by full acquaintance with
it, and one may hope that it will find its way into general use.
Besides its power as a method of proof, it furnishes a valuable
form of statement for certain fundamental theorems, which
would otherwise require several statements for different
cases. Such characteristic theorems as 75, 186, and 238 have
hitherto been haltingly and equivocally formulated in some of
the texts; but their full significance stands out clearly when
expressed in this symbolism. This new and rigorous method
is submitted for the consideration of all geometers.

Undoubtedly the book offers more material than can be
treated in the usual semester course. In the dilemma be-
tween omission of material and brevity of proof, the author
has leaned toward the latter alternative; thus comparatively
few theorems are proved in complete detail, and the amount
of original work left for the student to complete is indeed
extensive. At the same time, it is believed that the logical
sequence is clear throughout, so that the reader will seldom be

be seen later. The student who has completed the present work and desires
to pursue further studies in the same field can hardly make better progress
than by reading the articles of Mackay; in these, moreover, he will find full
bibliographical references.
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puzzled by any real difficulty. It is expected that the reader
will supply proofs of all theorems and corollaries not proved
in the text; and hints are supplied where needed. Careful
drawings are also of the greatest importance; and it is ex-
pected that the student will draw figures to illustrate the
more important theorems.!

It is believed that teachers will find it possible to select
material for a course of any length in accordance with their
personal tastes, without impairing the unity of the work as
a whole. The pivotal chapters, essential to any study of the
subject, are: I, I, ITI, VII-XI, and the indicated portions of
IV, V, and XII. Neither the geometry of circles (V, VI) nor
the Brocard geometry (XII, XVI, XVII, XVIII) should be
slighted; and Chapter XIV while not indispensable, gives a
valuable insight into the essence of earlier chapters.

The author takes this opportunity to express his debt to
Professor J. L. Coolidge, of Harvard University, in whose
course in the Geometry of the Circle he was first introduced to
this domain; and whose kindly and genial interest has been
sustained during the preparation of this work. At the same
time it should be made clear that Professor Coolidge is to be
exonerated of any direct culpability for this production.

The thanks of the author are also due to Professors J. W.
Young (the editor of the series) and B. H. Brown, both of
Dartmouth College, for their painstaking reading of the
manuscript and for many valuable suggestions; and to Pro-
fessor R. C. Archibald, of Brown University, for a number of
equally useful suggestions.

1 See 14, page 10.
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MODERN GEOMETRY
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CHAPTER 1
INTRODUCTION

1. Prerequisites. It is assumed that the reader is ac-
quainted with the elementary algebra and plane geometry
ordinarily taught in American high schools, and with the
simplest principles of trigonometry. Some familiarity with
the standard theorems of plane geometry is assumed, and the
reader may do well to review this subject before undertaking
the work before us. Simple algebraic methods of reduction
and manipulation will frequently be used; and the expression
of geometric relationships will frequently be simplified by
introducing the trigonometric functions, and occasionally
by utilizing the most elementary identities connecting them.
Indeed, some high-school courses in mathematics introduce
as much trigonometry as is essential to our needs, and the
study of geometry is greatly facilitated by the free use of
algebraic and trigonometric methods. No further acquaint-
ance with mathematics than this will be assumed, though the
reader who is acquainted with higher geometry will fre-
quently perceive the bearing of this work on other fields of
geometry.

In the present chapter we set forth a number of general
principles, methods, and points of view which will be adopted
throughout the work. The more advanced student of
mathematics will find little that is novel in these principles,
while the reader to whom they are new will encounter no
serious difficulty with them.
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POSITIVE AND NEGATIVE QUANTITIES

2. When we have occasion to deal with a geometric quan-
tity that may be regarded as measurable in either of two
directions, it is often convenient to regard measurements in
one of these directions as positive, the other as negative.
A familiar example is the thermometer scale. Again, in
measuring distances along an east-west road, we may attach
to all eastward distances the positive sign, and to those west-
ward the negative sign. Then the resulting distance and
direction from the starting point, achieved by combining two
or more journeys on the road, whether in the same direction
or not, is found by taking the algebraic sum of the numbers
that represent the journeys. Similar examples will suggest
themselves; the essential principle is that the combination
of the quantities is represented by the algebraic addition of
their measures, as defined in the following paragraph.

The most important instance of this principle is that of
distances along a straight line. If A and B are any two
points, AB means the distance from A to B, and BA the
distance from B to A. One of these will be represented by a
positive number, the other by the same number with the
negative sign. For any three points A, B, C on a line, we
have then the following important relations:

AB+ BA=10
AB+ BC= AC
AB+ BC+CA=0
BC= AC— AB

It may be noted that the last three are alternative versions
of the same fact. Special attention is to be given to the last,
which expresses the directed distance between two points in
terms of their distances from a fixed point of reference A.
This suggests a useful method, whereby distances among the
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points of a line may be thus expressed, and relations among
them may be established by means of algebraic relations.
If the distances from a point O of the line ABC...are
given by

a= 0A, b= OB, etc.,
then A B is represented by (b — a), and so on. For example:

3. Euler's Theorem. For any four points A, B, C, D
of a line,
AB-CD+ AC-DB+ AD-BC=0
For(b—a)(d—c)+ (c—a)(b—d)+ (d— a) (c—b)
=bd—ad—bc+ ac+ete. =0

4. With regard to angles, it is the accepted convention that
angles measured in the direction opposite to the motion of the
hands of a clock shall be taken as positive, and angles measured
clockwise shall be negative. 'With this understanding, we have
such relations as

£LABC+ £CBD = £ ABD

regardless of the relative positions of the lines BA, BC, BD.

It is sometimes advisable to attach a sign to the distance
from a point to a fixed line. In this case the custom is to
attach arbitrarily the positive sign to the distance to the line
from every point on one side, the negative sign from the
other. It is customary to designate as positive the perpen-
diculars to the sides of a triangle from points within the
triangle.

5. It is usual to regard an area as a signless or essentially
positive quantity; but sometimes it is desirable to attach
signs to areas. When an area is determined as the product
of two (directed) lengths, we may adopt as its sign the alge-
braic sign of this produet. Another method is to consider
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the two directions in which the boundary of an area may be
described. If the circuit is traversed in a positive or counter-
clockwise direction, the area shall be taken as positive; and
if it is traversed in a clockwise direction, the area is negative.
In our work, however, we shall hardly find these distinctions
necessary.

6. Ratio of segments. In accordance with the foregoing,
the ratio of two segments of a line will be positive or nega-
tive, according as the segments extend in the same or in
opposite directions. We now consider two fixed points
A, B, and any other point P on the line AB; we define the
segments cut by P on AB as the signed distances PA and
PB;and the ratio in which P cuts AB, as PA/PB. We see
tha.t this ratio is independent, in magnitude and sign, of the
choice of unit length and of positive direction on the line;
and that it is negative for all positions of P between A and B,
and positive when P is outside the segment AB. Let us now
suppose a point P to trace the whole line through A and B,
and consider the variation of the ratio

PA

r==

PB

When P is far away in the direction BA, r is slightly less than
one. As P approaches nearer to A, r passes through all
values from one to zero; as P passes through 4, and moves
toward B, r becomes zero and then passes through all
negative values, becoming —1 at the mid-point of AB. As
P approaches B, r passes through numerically larger and
larger negative values. After P has passed through B, the
ratio is positive and very large; and finally, as P moves off
in the direction of A B extended, the ratio decreases to the
limiting value 1.

We see then that for every point of the line except B, a
value of the ratio is determined; and conversely, that every
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value of r except +1 determines a point on the line. This
may be formulated and proved algebraically:

7. Theorem. If A and B are any two points and k any
number different from -1, there exists one and only one point

on the line for which the ratio PA/PB equals k.
Proof: let AB=a, PA==x
then PB=PA+ AB=z+a
Then the desired relation is

—— x —
PB a+z

&

k

Solving for z, we get

(1-k)z=ak
which yields a unique value of z except, as aforesaid, when
k=1

POINTS AT INFINITY

8. It frequently happens that a theorem deals with a point
determined as the intersection of two lines of a figure. In
the special case that the two lines in question are parallel,
the theorem will have no meaning. In order to eliminate
such exceptional cases, we adopt artificially a fiction that
parallel lines have in common a point, which may be called
a point at infinity.

Consider two lines, one of which is held fast, while the
second is rotated about one of its points (other than the point
of intersection). As the lines approach the position of
parallelism, the point of intersection moves farther and
farther off; when the lines become actually parallel, the point
of intersection has disappeared. Thus arises the familiar
phrase “parallel lines meet at infinity,” which in the popular
mind is invested with esoteric significance, as implying that
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there is an actual point, perhaps at a distance greater than
can be conceived, where the parallels really meet. Of
course, nothing could be farther from the fact; the proper
statement is that the lines do not meet at all, and the phrase
quoted is entirely meaningless.

For the very reason that the sentence has no intrinsic
meaning, we are free to attach to it any meaning that we
wish, and to use it with that interpretation. Such an ex-
tension of the meaning of a word or a phrase is a common
custom in Mathematics,* and other instances will occur a
little later. We have then the following definition.

9. Definition. The statement that two or more lines inter-
sect, or meet at a point, or are concurrent, shall be interpreted
as meaning either of two things: either there is a point
through which all the lines pass, or else they are all parallel.
Two or more parallel lines shall be said to have a common
point at infinily, or to intersect at infinity.

A point at infinity, as such, we do not define; the state-
ment that two or more lines have a common point at infinity
shall merely be interpreted as another way of saying that
the lines are parallel.

The most usual application of this definition is to the
following situation. In a theorem a line is required to pass
through the point of intersection of two given lines; if in a
particular case these two lines become parallel, the other linc
shall be parallel to them. In other words, if a theorem asserts
that three lines are concurrent, it shall be deemed to be true
when the lines are parallel.

10. We may formulate and interpret the following sup-
plementary definitions and propositions:

* “*That’s a great deal to make one word mean,’ Alice said in a thoughtful

tone.
“*When I make a word do a lot of work like that,’ said Humpty Dumpty,
‘T always pay it extra.””
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a. All points at infinity lie on a straight line called the line
af infinity.
b. If P is the point at infinity on line A B, then

PA/PB=1 (cf. 6,7)

(Let the reader state carefully the interpretation of each
of these definitions, and establish the following propositions.)

¢. On any line there is one and only one point at infinity.

d. Two lines in a plane determine a single point.

e. Two points in a plane, finite or infinite, determine a sin-

gle line.

11. As a simple instance of the value of this point of view,
let us recall a theorem from plane geometry.

Theorem. The bisector of an exierior angle of a triangle
divides the opposite side externally in the ratio of the adjacent
sides.

This theorem ceases to have any meaning when the ad-
jacent sides are equal, unless we adopt some such special
convention as that just established. With this convention
it remains valid, for the bisector of the angle meets the oppo-
site side at infinity, and therefore divides it in the ratio +1,
which is precisely the ratio of the adjacent sides. Again,
it can be proved that the three points where the bisectors of
the exterior angles of a triangle meet the opposite sides are
in general collinear. By virtue of our conventions, this
statement is equally valid for an isosceles or even an equi-
lateral triangle. The reader will study this situation care-
fully, and verify these conclusions.

12. We introduce at this time certain other generaliza-
tions, and extensions of definitions, which will be useful.
In general, a circle can be drawn through three points, but
an exception arises when the points are on a straight line.
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In order to reduce the two cases to one, we extend the defi-
nition of the word circle so as to admit straight lines to the
fellowship of circles. That is, by the word circle we may
mean either a proper circle, with center and radius, according
to the usual definition, or a straight line. In the latter case,
the center is represented by the point at infinity in the direc-
tion perpendicular to the line; and the reciprocal of the radius
is replaced by the value zero. It is permissible, and some-
times useful (asin 118) to treat as a circle the combination of a
straight line and the line at infinity.

Another special or limiting type of circle is the null-circle,
whose radius is zero. We agree that any point may be re-
garded as a circle whose center is at the point, and whose
radius is zero. The wording of a theorem, and the context,
will usually make it clear whether we are restricted to proper
circles, or whether either special type may be admitted to
consideration.

NOTATION
13. In the study of the triangle, a standardized notation
conduces to clearness and economy of statement. We shall
deal always with a scalene triangle unless otherwise specified.
(The modification of a theorem that is often necessary when
the triangle becomes a right or an isosceles triangle will usu-
ally be obvious without specific formulation.)

Let A;, A, A; designate the vertices of the triangle;
a3, Gz, a, the lengths of the sides 4,43, A3A1, A1Az;
o, as, a3, the angles;
O the center and R the radius of the circumscribed
circle;
0y, Oz, O0s, the feet of the perpendiculars on the sides

from O, the mid-points of the respective sides 4243,
ASA}IJ AlAﬁ;
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H,, H,, Hy, the fect of the altitudes, perpendicular to
the sides from the opposite vertices 4,, As, As;

H the orthocenter, or point of intersection of the
altitudes;

Fia. 1

Ry, by, hs, the lengths of the altitudes;
m,, mg, Mg the lengths of the medians 4,01, A;0:, A50s;
M the median point, or intersection of the medians;
s the half sum of the sides;
A the area;
X1, Xz, X3, when associated with a point X, usually
the feet of the perpendiculars on the sides from X;
I the center and p the radius of the inscribed circle;
letters will be assigned to other points as they are introduced.
Exercise. Prove thal the perpendicular biseclors of the sides

of a triangle meel at a point; also the angle bisectors; also the
medians; also the altitudes.

(Proofs of these theorems are to be found in any Plane
Geometry; see also 219.)
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14. Drawing. It is highly desirable that the reader make
complete and accurate drawings of all important theorems.
Such drawings, especially in cases where the figure is at all
complicated, are far more instructive than printed diagrams.
The student should provide himself with ruler and compasses
and with a pair of draughtsman’s triangles; and should learn
the use of these triangles for the construction of parallels and
perpendiculars. The only constructions required in this book
are those which can be effected with ruler and compasses, but
much time is saved by the use of triangles or other special in-
struments for the frequently recurring constructions. (Where
a mere approximation can be as accurate as the standard
method of construction, the former should be used. For ex-
ample, to draw a tangent to a circle from an outside point, or a
common tangent to two circles, the best and most economical
method is to lay the ruler carefully in the position of tangency,
and at once draw the line. The point of tangency is found by
laying a triangle on the ruler and locating the foot of the per-
pendicular to the tangent from the center of the circle.)

In the study of the triangle, frequent drawings will be
necessary. It will be found rather difficult to draw offhand a
triangle which is neither right-angled nor isosceles. The best
procedure is to draw first the circumseribed circle, and to in-
scribe the triangle in this circle. 'We can control the shape of
the triangle by means of the distances of the sides from the
center of the circle.

Exercise. In a circle of about three inches radius, draw
a triangle A,4,4,, whose sides A;A; and A;A, are respec-
tively about § inch and 1} inch from the center. This will
be a scalene triangle. Using triangles, draw the perpen-
diculars 00y, 00, 00, to the sides from the center O of
the CirCIE. DraW alSO t.he altitudes A]H:[, AgH?., Aa.Hra, and
determine their point of intersection H. Find also the
point M of intersection of the medians A,0,, 4:0,, 4:0;.
Extend 00, 00,, 00; to meet the arcs of the circle at
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P,, P, P;; and draw the angle bisectors AP, AsP,, AsPs.
Thus locate the incenter I, and draw the inscribed circle.

Find the center of the circle through H,, H., H;; and
draw this circle.

15. The following theorems of the triangle may be estab-
lished without difficulty. Formula a is deduced at once from
the figure, and from it we derive b and d directly. Equation
¢ is a combination of two or three standard theorems of
elementary geometry, including the Pythagorean theorem,
and also appears as the trigonometric law of cosines. Equa-
tions ¢ and f are usually derived in geometry texts, while g
is a simple combination of ¢ and d.

a. h=asinas=asinaz

a .
b. 4 _ % _ % _9p (law of sines)

sina; SMaz SiNas
c. o’ = &’ + a? — 2 a3 cos ax (law of cosines)
d. A=Lah=1aagsina
. . . o
= 2R? sin o, $in oy SN ag = {:”Ta‘“= ps
2

€. h1=a\/8(s—a]_) (s_ﬂ'ﬂ;) (s~a3)

1. A=Vs(s—a) (s— a) (s— a)
@t + af— o)’

4A
It is to be borne in mind that any proposition in which the
subscripts do not appear symmetrically may be repeated with
the subscripts advanced in cyclic order, and thereby be made
to apply to any of the sides and angles of the triangle.

g. COCC!1=

Exercise. Give complete proofs of formulas a—g.

DIRECTED ANGLES

16. We now proceed to a specialization of the definition
of angle in a form that is found to be highly useful throughout
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the work.* The symbol £ will be used, as hitherto, to denote
the angle defined in the usual way, while the directed or
oriented angle about to be defined will be designated by the
symbol X .
Definition. The directed angle from a line 1 to a line U,
denoted by X 1, V', is that angle through which I must be ro-
tated in the positive direction in order to become parallel to,
or to coincide with I'. Similarly, X A BC, the directed cmgle
from AB to BC, is that angle through which the line AB,
taken as a Whole must be rotated about B in the posmve
direction in order to coincide with BC.

From the definition it follows that directed angles are
equivalent when they differ by 180° or multiples thereof.
The magnitude of X. A BC may be equal to that of £ ABC,
or of its supplement. If ABC is a triangle described in the
positive or anticlockwise direction, it may be seen that the
directed angles X ABC, X. BCA, X CAB are equal to the
respective exterior angles of the triangle, while the interior
angles are X CBA, X ACB, %. BAC.

17. Addition of directed angles is defined as follows:

2h b+ X b= 241
Ah, b+ X, L=2%h1;
where [; is a line such that X. b, b= X s, L

18. As immediate consequences of these definitions we
have the following rules of operations with directed angles:

Theorems.

a. Xh, L+ XL L=0or180°

b. If Ly 7s parallel to Iy’ and 1, to l', then

Xh,L=XU1

and similarly if the corresponding lines are perpendicular.

* Johnson: * Directed Angles in Elementary Geometry,” American Mathe-
matical Monthly, vol. XXIV, 1917, p. 101; * Directed Angles and Inversion,

with a proof of Schoute's Theorem,” ibid., p. 313; “The Theory of Similar
Figures,” ibid., vol. XXV, 1918, p. 108,
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¢. For any four lines we have the following ideniaty:
Ah, b+ X b L= Xh L+ Xh b

For Ab b= %hb+ Xl b
and Xl lL=Xb L+ XL L
d. Three poinis A, B, C are collinear of and only if
X ABC=0

or, an alternative and equivalent, if for any fourth point D,
%X ACD = % BCD
e. If AB, AC are the equal sides of an isosceles triangle

ABC, then
% ABC = X% BCA

and conversely.
f. For any four points A, B, C, D,
X ABC+ X CDA = X BAD + % DCB

19. We come now to the fundamental theorem of directed
angles, which lends to the method its great usefulness.

Theorem. Four poinis A, B, C, D, lie on a circle if and

only if
X ABC= X ADC

Let us recall that angles inscribed in the same arc are equal,
and conversely. Also, angles inscribed in opposite arcs of a
circle are supplementary; in other
words, the opposite angles of a con- D,
vex quadrilateral are supplement-
ary if and only if the vertices are
concyclic. These two well-known

theorems may be amalgamated into 4 c
one general theorem, namely: if

four points A, B, C, D are on a cir- \/
cle, the angles £ ABC and £ ADC D,

are equal or supplementary, accord- Fic. 2
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ing as B and D are on the same side of BC, or on opposite
sides; and conversely. Now let us note that if B and D
are on the same side of AC, with £ ABC = £ ADC, then it
follows that X. ABC = 4. ADC; and conversely. But if B
and D are on opposite sides of AC, and Z ABC and Z ADC
are supplementary, still X ABC = X ADC; and conversely.
This establishes the theorem for the cases when the points
are not collinear; and finally, we have already seen that if and
only if
X ABC= X ADC=0

will the four points be on a line. Hence in all cases the
equation
X ABC= % ADC

is a necessary and sufficient condition that the four points lie
on a circle (in the extended sense of the word).
Corollary. If A and B are fixed points, the locus of a point P
{401' which X APB has a constant value is a circle through
and B.

In conclusion, it may be remarked that the use of directed
angles is by no means essential to the study of geometry.
The method will be found to simplify and clarify to a re-
markable degree many of our theorems and proofs, so that
a single statement and proof will cover a situation that other-
wise demands consideration of numerous cases, with less con-
cise and exact formulations. The following chapters use the
system freely; a good example of its advantages will be found
at the beginning of Chapter VII, where an important and sim-
ple theorem is proved both by the usual methods and with
the use of this device. However, we can always translate
any statement which is in terms of directed angles back into
the familiar language, merely by remembering that when two
directed angles are asserted to be equal, the angles in the
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figure bounded by the same lines are actually equal or sup-
plementary, according to the direction in which they are
described. But it is this very uncertainty, and the conse-
quence that in different figures the situation will be different,
that impels us to introduce directed angles. Under this sys-
tem it is a matter of indifference how the angles are actually
related to each other; and the conclusions follow, independent
of the accidental variations in the arrangement of the figure.



CHAPTER II
SIMILAR FIGURES

20. This chapter is devoted to a study of the relations of
two similar figures in a plane. We recall that it is proved
in elementary geometry that if all corresponding angles * of
two figures are equal, all corresponding lines are propor-
tional and the figures are similar. We shall discuss first two
similar figures whose corresponding sides are parallel, and
shall prove that the lines through all pairs of corresponding
points are concurrent at a point called the homothetic center
of similitude. In the more general case, when two similar
figures lie in a plane but corresponding sides are not parallel,
there exists a center of similitude, or self-homologous point,
which occupies the same homologous position with reference
to the two figures. The properties of this point are de-
veloped below in sufficient detail to be useful later, and the
special case of two circles is given the attention that it merits.

21. We consider first the problem of similar figures in
what is called homothetic position, namely with homologous
lines parallel and with the connectors of homologous points
concurrent (Fig. 3).

Theorem. Let a point O and a figure ABC . . . be given,

and let each of the lines OA, OB, OC ... be divided in a

constant ratio k at A’, B, C'. . . . Then the figure A'B'C’ . ..

18 directly similar to ABC...with corresponding sides

parallel.

For we see at once that any two corresponding triangles,
such as OAB and 0’ A’ B’, are similar; therefore correspond-
ing lines are parallel, and are proportional in the ratio k.

* That is, the angles of all triangles formed by drawing all possible cor-
responding lines.
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It may be remarked that the given figure need not be
rectilinear. For example:

Theorem. The locus of the mid-points of the lines connect-
ing a fived point with the points of a circle is a second circle
of half the radius of the first. Corresponding radii are paral-
lel, and if tangents are drawn at corresponding points they are
parallel.

F1c. 3

22. As another extension, we may note that the point O
of the first theorem need not lie in the plane of the figure
ABC. ... We may formulate the following theorems.

Theorem. If O s a point outside the plane of the figure A BC
... and if each of the lines OA, OB, OC be cut in a given
ratio k at A', B, ', ... then A’, B, C' .. .lie in a plane
parallel to ABC . . . and the two figures are similar. Con-
versely, any plane parallel to the given plane cuts these rays in
a figure similar to the given figure; and again, if similar figures
lie in parallel planes with sides parallel, the connectors of
corresponding points are concurrent,

23. Continuing the discussion of the figures in a single
plane, we see that if any two homologous points are con-
nected, it is easily proved by similar triangles that the con-
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nector passes through O. This point is called the homothetic
center, or center of similitude, and the ratio k is called the
ratio of similitude of the two figures. This ratio may have
any value, positive or negative; if it is positive, homologous
points are on the same side of O and homologous lines are
drawn in the same direction, while if it is negative, O sep-
arates each pair of homologous points and corresponding
lines extend in opposite directions. In the former case, the
center of similitude is said to be exfernal, and in the latter
case internal.
24. Definitions. Two figures are said to be directly similar,
when all corresponding angles are equal and are described
in the same sense of rotation. Two figures are inversely
similar when all corresponding angles are equal but are de-
scribed in opposite senses. In particular, if corresponding
lines are equal, the figures are called congruent or symmetri-
cally congruent respectively.

Two figures are said to be homothetic to each other, if the
connectors of corresponding points are concurrent at a point
which divides each connector in the same ratio. The rela-
tion between homothetic figures is called expansion.

Theorem. Conversely, if two figures are similar, with cor-
responding sides parallel, they are homothetic; that 18, there
is a center of similitude O, through which pass the connectors
of all pairs of corresponding points.

The proof by means of similar triangles is immediate.
As before, there are two cases, according as homologous
parallel lines extend in the same or in opposite directions.
An exceptional case arises when the figures are congruent
with homologous lines extending in the same direction, for
then all connectors of corresponding points are parallel, and
the center of similitude is at infinity.

95. Two circles may be regarded as homothetic to each
other in two ways.
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Theorem. If in two non-concentric circles we draw radii
parallel and in the same direction, the line connecting their
exirematies passes through a fixed point on the line of centers,
which divides that line externally in the ratio of the radii.
If parallel radii are drawn in opposite directions, the line
joining their extremities passes through the point which
divides the line of centers internally in the ratio of the radiz.

Definition. These two points, which divide the line of
centers of two circles externally and internally in the ratio
of the radii, are called respectively the external and internal
center of similitude of the circles, or the external and the in-
ternal homothetic center.

Corollary. If the two circles have direct common tangents,
these pass through the external center of similitude; and if the
transverse common langents exist, they pass through the
internal center of similitude.

Corollary. From a point of intersection of two circles, the
lines to the centers of similitude bisect the angles between the
radii of the circles.

26. Homologous and antihomologous points. The extrem-
ities of parallel radii of two circles are called homologous
with regard to the center of similitude collinear with them.
Two points that are collinear with a center of similitude,
but are not homologous, are said to be antthomologous with
regard to that center of similitude.

That is, a line through a center of similitude cuts the
circles in four points; to either point on one circle one of the
points on the other circle is homologous, the other is anti-
homologous.

The concept of homologous and antihomologous points
on two circles is a decidedly useful one, and we pause to
develop it in somewhat fuller detail.

27. Theorem. Two pairs of antthomologous points form
wnversely similar triangles with the homothetic center. Thal
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is,szithmgardtoacerwerof similitude C, P and Q are
antihomologous respectively to P' and Q' then triangles CPQ
and CQ' P’ are inversely similar.

Fia. 4

Let O, O’ be the centers of the circles; let two lines through
the center of similitude C be CPP'P" and CQQ'Q”, so that
O’ P and 0'Q" are respectively parallel to OP and OQ; then
P’ and @ are antihomologous to P and Q respectively.
Evidently PQ and P"Q'’ are parallel, arcs PQ and P"Q"
are similar and measure equal angles. Hence

2‘— CPQ = 4 CPHQH - 4 PJ‘Q?QH —_ 4 P'Q’C,
4.PQC =X PNQHC‘ = 4 P"PIQ! = Zﬂ.CP'Q',

showing that the triangles are inversely similar, since corre-
sponding elements are in reverse order.

98. Theorem. The product of the distances from a homo-
thetic center to two antihomologous points 18 constant.

For in the above figure, we have in the similar triangles
CP-CP = CQ-C¢

and if P moves, while @ is held fast, the product CP-CP
remains constant.

29. Theorem. Any two pairs of poinis, antihomologous
with regard to a center of similitude, are on a circle.
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For the equations in the proof of 27 are equivalent to
X P'PQ= X PQQ

which shows (19) that P, P, Q, @ are on a circle. This can
be simply established later in another way, by virtue of 42.

30. Theorem. The tangents to two circles at antihomologous

points make equal angles with the line through the points.

For the tangents at P and at P’ are parallel, while those
at P"” and P’ make equal angles with PC.

Corollary. The line joining two antihomologous points, and

the tangents at those points, form an isosceles triangle. Con-

versely, if two equal tangents are drawn to two circles from
an oulside point (45) the points of contact are antthomologous.

SIMILAR FIGURES IN GENERAL

81. We now proceed to consider the more general question
of the relations to each other of two directly similar figures
in a plane. We recognize four fundamental operations on a
figure, associated with the concept of similarity, namely:

a. translation, or a shiding motion whereby every point of

the figure moves the same distance in the same direction;

b. rotation of the figure about a fixed point;

c. expansion with regard to a fixed center of similitude (24);

d. reflection with regard to a line, which is the same as turn-

ing the figure over on this line as an axis.

It is obvious that if these operations are performed any
number of times on a figure, the resulting figure will be
similar to the original, directly or inversely according as the
number of reflections is even or odd; and the ratio of simili-
tude of the last to the first figure is precisely the product of
the ratios of the expansions that have taken place. By
rotations and translations, a figure is carried into a con-
gruent figure; and by a reflection, into a symmetrically
congruent figure. Conversely, if two figures are similar,
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they can be made to coincide by a series of these operations;
for example, by a translation that causes a point A to fall
on the corresponding point A’, followed by a rotation and
an expansion. Our present purpose is to reduce this last
statement to its lowest terms; and our result will be that in
general two directly similar figures can be made to coincide
by a combination of an expansion with respect to a certain
point, and a rotation about the same point.

32. Definition. For the time being, we will use the word

homology to designate a rotation about a point, accompanied

by an expansion with regard to that point. As special cases,
mere rotation and mere expansion are included in the defini-
tion.

Theorem. Any segment AB can be carried into any seg-

ment A’ B’ in one and only one way by an operation which s

either a translation or a homology.

Special case 1: If AA'B’B is a parallclogram, a translation
along AA’ and BB’ achieves the result.

Special case 2: If AB and A’B’ are parallel, but A4’ and

BB’ intersect at C,

mﬂ a suitable expansion

- with regard to C as

' homothetic center will

bring AB to fall on
A’'B'.

General case: 1Let AB
intersect A’B’ at P,
and let none of the
four points coincide
with P. Let the circles
through A4, A’, P and
B, B’, Pintersect again
at a point O. We see at once that triangles OA B and OA’B’
are directly similar; for X.0AB = X0A'P = X0A'B’, etc.
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Hence if we rotate OAB about O until 4 falls on 0A’, and
then expand with regard to O as center until A falls on 4’,
the line A B will fall on the line A’B’.

If one of the given points, say B, coincides with P, we use
instead of the circle BPB’ the circle through B’ which is
tangent to AB at B. The proof then holds without modifi-
cation. Again, it may happen that the two circles are tan-
gent at P, so that O and P coincide; which means that A A’
and BB’ are parallel.

Theorem. If two figures are known to be directly similar,
and two points of one coincide with the homologous points
of the other, the two figures coincide throughout.

In itself this is trivial, but in combination with the pre-
ceding theorem, it leads to our principal result, namely:

33. Theorem. If two figures are congruent, there exists
either a single rotation or a single translation that brings the
one to coincide with the other. If two figures are directly
similar but mot congruent, there exists a unique homology
that transforms the one into the other.

Definition. The center of the homology or the rotation
is called the center of similitude of the figures; the angle of
rotation and the ratio of expansion are called the angle of
simalitude and the ratio of similitude respectively.

Construction. To locate the center of similitude, we draw
circles, each passing through a pair of homologous points

and the intersection of any homologous lines through them.
Every such circle passes through the center of similitude.

34. If any point has the properties of a center of simili-
tude, it is the point O thus determined; therefore the center of
similitude for transforming the first figure to the second is
also the center of similitude for the reverse operation.

Theorem. In two directly similar figures, the center of
simalitude is homologous to itself; and conversely a point
which is self-homologous is the center of similitude.
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This theorem often makes it easy to determine the center
of similitude of two figures.

86. Asan interesting interpretation of the foregoing theory,
we may consider the properties of maps. If two maps of the
same plane region are superposed, the same side up, on a
plane, then by our theorems there will be one and only one
point whose representations in the maps will coincide. If
the maps are on the same scale, either may be rotated about
this point so that they may be made to coincide; except in
the one case that the self-corresponding point is at infinity,
when one map can be made to coincide with the other by
moving it parallel to itself. If they are on different scales,
the self-corresponding point is necessarily a finite point
(though of course it may fall far outside the boundaries of the
actual maps); and the triangle formed by this self-correspond-
ing or double point with any pair of corresponding points is
of constant form.

86. A few illustrations and applications follow. In later
chapters we shall have frequent occasion to make use of the
center of similitude or self-homologous point of similar
figures.

a. Theorem. If a triangle is of fized form, and one verlex
remains fized, while a second traces any figure, the third traces
a simalar figure, with the center of similitude at the fived point.
b. Theorem. If two directly similar figures are inscribed

in the same circle, they are congruent, and their cenler of
similitude s the cenler of the circle.

c. Theorem. The triangle whose verlices are at the mid-
points of the sides of a given triangle is homothetic to the lai-
ter, with ratio of similitude — } and with the center of simali-
tude at the median point M.

d. Corollary. What conclusion is drawn from the fact that

the altitudes of the smaller triangle are concurrent at the
center of the circumscribed circle of the original triangle?
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37. From the point of view of 31, two circles may be
regarded as similar to each other in an infinite number of
ways, with any points on the respective circles chosen as
homologous. More definitely, we may think of similar poly-
gons inscribed in the circles; and as one of the polygons
rotates about the center of its circle, the center of similitude
will occupy various positions, whose locus we now seek.
Evidently in any position of the two figures, the distances
from the center of similitude to the centers of the circles are
in a constant ratio, that of the radii of the circles. Hence
if the circles are equal, the locus in question is the perpen-
dicular bisector of the line of centers.

Theorem. The locus of the centers of similitude of two non-

concentric circles is a circle having as diameter the line joining

the two homothetic centers (25).

Obviously the locus passes through the homothetic centers.
Let the circles be O(r) * and O’(r’), the homothetic centers
E and I;and let P
be any position of
the center of simili-
tude. Now we know

that NG/ A
OP 1 U
P— ’

Fic. 6

P

But E and I divide

the segment OO’ externally and internally in the ratio »/r’;
hence in triangle PO(O’, PE and PI divide OO into segments
proportional to PO and P0’, and are therefore the bisectors
of the angles at P. But the bisectors of supplementary
adjacent angles are necessarily perpendicular to each other.
Hence EPI is a right angle, and P lies on a circle with EJ
a3 diameter, as was to be proved.

* That is, the circle whose center is O and radius r.
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In the special case of equal circles, E is at infinity and the
circle becomes a straight line, as above indicated.

Definition. The circle whose center lies on the line of cen-
ters of two given circles, and whose circumference divides
that line internally and externally in the ratio of the radii,
is called the circle of similitude of the circles.

Each point of this circle is the center of a homology with re-
gard to which the given circles correspond. Therefore the cir-
cle is the locus of a point whose distances from the centers are
proportional to the radii, and also the locus of a point whence
the circles subtend equal angles. If the given circles are equal,
the circle of similitude is a straight line; if either circle is a
line, the circle of similitude does not exist; if either is a null-
circle, but not both, the circle of similitude coincides with the
null-circle. Two concentric circles have a single center of
similitude, their common center.

38. Inversely similar figures. The theory of inversely
gimilar figures which is analogous to the foregoing is by no
means so general in applicability to the problems of geometry.
For that reason we content ourselves with a mere outline of
the main facts, leaving details and proofs to the reader who
is interested.*

Given two symmetrically congruent figures in a plane, there
exists a definite axis, such that either figure can be made to co-
incide with the other by a reflection with regard to this axis, to-
gether with a translation along the same axis.

In terms of maps, this is to say that if two copies of the
same map are superposed, facing each other, there is always
a line having the property that one map can be folded over
on this line as axis and then slid along the same line, so that
it will come to coincide with the other.

* A fairly satisfactory discussion is given by Lachlan, Modern Pure Geom-
elry, p. 134.
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Given two inversely similar figures, not on the same scale,
there exist two mulually perpendicular azes of similitude,
whose point of intersection ¢s called the center of stmilitude. If
one figure is reflected with regard to either axis, and then sub-
Jjecled to a homology with regard to this center, it comes to co-
incidence with the other.

Exercise. Prove that if two figures are inversely similar, the
bisectors of the angles between corresponding lines are parallel
to two fized directions, the directions of the axes of similitude.

Exercise. Prove and amplify the statement that the net
effect of two successive reflections is the same as that of a ro-
tation about the point of inlersection of the axes. What is
the angle of the rotation? Is it possible to choose two axes
with regard to which the combined reflections will be equiva-
lent to a given rotation?

Exercise. Give complete proofs of the following proposi-
tions of this chapter, which are left unproved in whole or in
part: 21, 22, 24, 25 (theorem and two corollaries), 30, 36
(four parts), 38.



CHAPTER III
COAXAL CIRCLES AND INVERSION

89. This chapter is devoted to the study of systems of
circles. We introduce first, by means of some familiar
theorems of elementary geometry, the so-called power rela-
tion. The extended study of this relation leads us to the
radical axis of two circles, and then to the properties of coaxal
systems. We turn then to the very important theory of
circular inversion and establish its essential principles. The
present chapter contains so much of the theory as is needed
in the study of the triangle, while in Chapter V some of the
further developments of the same topics are carried out in
more detail.

40. First of all, we reéstablish two standard theorems of
elementary geometry, which we recast and combine into a
single theorem in a form suited to our purposes.

B

Fia. 7

Theorem. If lines are drawn from a fixed point to intersect
a fixed circle, the product of the distances from the fixed point
to the points of intersection is constant.*

* In the geometry texts, this theorem is usually separated into cases, ac-

cording as the fixed point is inside or outside the circle, and stated in such
forms as the following: (a) if two chords of a circle intersect, the segments
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For let P be the given point, either inside or outside the
circle. Let PAB and PCD be two lines meeting the circle
at A, B and C, D respectively. Then in every case, homol-
ogous angles of triangles PAD and PBC are measured by
the same arcs; the triangles are similar, and

PA-PB= PC-PD
as was to be shown.

Corollary. If the radius of the circle is , ils center at O, the
constant product PA- PB i3 equal to

p=0P -1

Definition. The power of a point P with regard to a circle
with center O, radius 7, is the quantity OP* — 7°.

41, The reader will establish the following properties of
the power, which depend directly on the foregoing theorem
and definition.

Theorem. If the point P is outside the circle, its power with
regard to the circle is positive, and equal to the square of the
tangent to the circle from P. If P is on the circle, the power
is zero. If P is within the circle, the power is negative; it
may be interpreted as the product of the segments of the
diameter through P: (OP+7) (OP — 1), or as minus the
square of the half-chord through P perpendicular to OP.

The chord of a circle through an interior point P, perpen-
dicular to OP and therefore bisected at P, is called the mini-
mum chord for P, being the shortest chord that can be
drawn through P. Certain power relations are neatly ex-
pressed in terms of the tangent to the circle when the point
lies outside, and in terms of the minimum chord when it is
inside.
are inversely proportional; (b) if a tangent and a secant are drawn toa circle,

the tangent is & mean proportional between the whole secant and the external
segment.
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42. Theorem. Conversely, if two lines AB and CD meet
at P, and if
PA-PB= PC-PD

not merely numerically but algebraically, then A, B, C, D

are concyclic.

For by 40 a circle through three of the points must pass
through the fourth; if the circle through A, B, C cuts PC at
DY, then PA-PB = PC-PD’; hence D and D’ coincide.

43. For the sake of completeness, we define the power of
a point with regard to a null-circle as the square of the dis-
tance from the point to the null-circle. When a circle de-
generates into a straight line, the power of a point cannot
be satisfactorily defined. (It is easily established, however,
that in this case the ratio of the power to the diameter of the
circle approaches, and in the limit is represented by the per-
pendicular from the point to the line.

For let O be the center of a circle, as before; r its radius, and
let a line OP meet the circle at M and N. Then

p=0P'—r*= PM-PN
P _ PN oy

If now M remains fixed, while O and therefore N recede
indefinitely on the line PNOM, the limiting form of the
circle is that of the straight line through M perpendicular to
PM. But the limit of the ratio p/2r is obviously PM.
Hence, in dealing with power theorems, if the limiting case
where a circle reduces to a straight line is to come into con-
sideration, we must state our theorems in terms of the ratio
of power to diameter.)

44. Theorem. The locus of a point having power k with

regard to a fixed circle of a radius r is a concentric circle of

radius V¥ L &, provided that r* + k > 0.
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45. The fundamental theorem concerning the power rela-
tion is the following:

Theorem. The locus of a point having equal power with

regard to two given non-concentric circles 18 a certain line

perpendicular to their line of centers. If the circles intersect,

this is the line through their points of intersections.

P

01 LU
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Let the circles be Cy (1), Cz (r2). Let P be any point whose
powers with regard to the circles are equal; and let PL be the
perpendicular from P to the line of centers C,C.. Then,
denoting CiL by di, CoL by dy, C:C2 by d, we have by hy-
pothesis

ﬁf —n'= 13—022 - 1“22
PL*+d?—nl=PL*+d’— 7
whence dl— dt =l — 1
But dl - dg =d
whence by division

2 2
n —T

di+dy= d
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Solving these equations simultaneously, we find

& 2__ .2 2__ .2
g=dFrn=n L d4n’—n
2d 2d

By inspection, these results are independent, of P; hence for
all positions of P under the hypothesis, L is a fixed point.
That is to say, P lies on the line perpendicular to CiCy at L.

Conversely, since the above proof is reversible, any point
on this line has equal power with regard to the two circles.
It is obvious in several ways that this line is the common
chord when the two circles intersect.

Corollary. The distances from the centers of the circles to
the line are given by

O = (/Tézz + ?‘12 - 7'22 CTlézg + ?‘22 — 7‘12
! 26C: 2 GGy

Definition. The line which is the locus of a point having
equal power with regard to two circles is called the radical
azris otp the circles. The radical axis of two concentric cir-
cles is defined as the line at infinity.

Any two circles have a radical axis. That portion of the
radical axis which is exterior to the circles is the locus of a
point from which the tangents to the circles are equal; and
the portion within the circles, if any, is the locus of a point
whose minimum chords (41) in the two circles are equal.
Such a point is the center of a circle whose common chord
with either of the given circles is a diameter of itself.

46. Theorem. The radical azes of three circles, taken in
pairs, are concurrent.

CgL =

For, the point in which any two radical axes intersect has
equal power with regard to all three circles, and therefore lies
on the third radical axis. The theorem is evidently still valid
in the various special cases, namely if one or more of the
circles be null, or if two of them be concentrie, or if their
centers be collinear.
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Definition. The point of concurrence of the radical axes of
three circles is called the radical center. If it lies outside
the circles, it is the single point from which tangents to
them are equal.

47. Problem. To construct the radical axis of two circles.

Fic. 9

If the given circles intersect at accessible points, the radical
axis is the line through these points. If this is not the case,
we draw any convenient circle, cutting one circle at P, Q and
the other at R, S. Then the point of intersection of PQ and
RS is the radical center of the three circles, and is a point on
the desired radical axis, A second point may be found in
like manner.

48. Definition. The angle between two intersecting circles

is defined as the angle formed by the tangents at either

point of intersection, or, equally, as the angle between the
radii at either point.

A case of particularinterest arises when the circles intersect
at right angles.

Definition. Two circles are said to intersect orthogonally,

or to be mutually orthogonal, when their angle of intersection

is a right angle. In this case the tangent to either at a
point of intersection passes through the center of the other.
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A number of corollaries follow at once from the definition:

a. If 11 and ry are the radii of two circles, d the distance be-
tween their centers, the condition for orthogonality s

?‘12 + 1‘22 = dz
b. One circle and only one can be drawn orthogonal to a
given circle, with its center at a given external point.
c. A circle can be drawn orthogonal to a given circle, through
two given poinis thereof.
d. The center of one of two orthogonal circles lies on the cir-

cumference of the other, only if the former is a null-circle or
the latter is a straight line.

49. Theorem. The locus of the center of a circle orthogonal
lo two given circles is that portion of the radical aris which
8 exterior to the circles.

For we have noted that from a point on this portion of the
radical axis, the tangents to the circles are equal.

Corollary. Three circles have one and only one common
orthogonal circle, whose center is at their radical center, pro-
vided this point lies outside the circles.

Corollary. Any point of the common chord of two intersecting
circles is the center of a circle, which has as diameters its com-
mon chords with each of the given circles; these are also the
maenimum chords of the latter (41). Similarly, if the radical
center of three circles lies within the circles, their minimum
chords through this point are diameters of a circle whose center
18 at the radical center.

COAXAL CIRCLES
50. Definition. A system of circles, each two of which
have the same line as radical axis, is called a coazal system.
We will consider the properties of such a system.
First, it is evident that the centers of the coaxal circles are
on a line perpendicular to the common radical axis, say at a
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point L. It is then necessary and sufficient that L have the
same power with regard to all the coaxal circles; if C' (r) is one
of these circles, LC* — 7° must be a constant for all the circles
of any coaxal system.

51. Case I. Let this power be a positive quantity c®
Then since LC is necessarily greater than r, no circle of the
system meets the radical axis. We may assign to r any value
and determine the center C; or we may assign to LC any
value not less than ¢, and determine the value of v. Thus
there is a circle of the system with any assigned radius, and
there is one with its center at any point of the line of cen-
ters except the points within the segment KK’, where
LK = K'L=c¢. Let us consider the circle L (c) on KK’ as
diameter. It appears that every circle of the coaxal system
is orthogonal to this circle, since LC? = ¢+ . Hence:

Fic. 10

Theorem. A coazal system of the first type conststs of all
circles whose centers are on a given line and which are or-
thogonal to a given circle whose center is on this line. The
circles of the system can be drawn by drawing tangents to the
given circle from poinits on the line of centers, and using these
tangents as radiz of the required circles. In a coaxal system
of type 1, there are two null-circles, the extremities K, K' of
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the diameter of the fized circle. These points are called the

limiting points of the coaxal system.

52. Case II. If the constant power is a negative number
—d?, then each of the circles must cut the radical axis at a
distance d on either side of L; for the equation

[C*+d =7

shows that the radius is the hypotenuse of a right triangle
whose sides are LC and d.

Theorem. A coaxal system of the second type consists of all

circles through two fized points.

Every point on the line of centers is the center of one
circle of the system, and with any assigned radius r there
are two circles of the system, provided r is greater than d.

b3. Case ITI. If the constant power is zero, we have evi-
dently the system of circles tangent to the radical axis at L.

For the sake of completeness, we define a fourth type of
coaxal system, namely that of all circles with a common
center; the radical axis being the line at infinity. As a fifth
type, the reason for whose inclusion will appear as we pro-
gress, we mention the set of straight lines through a point,
including as a further specialization a set of parallel lines.

b4. Summary. Coazal systems are of five types:
I. A set of non~intersecting circles whose cenlers are
collinear and which are orthogonal to a fized circle.
II. A set of circles through two fixed points.

III. A set of circles having a common tangent af a fixed
point.

IV. A set of circles with a common center.
V. A set of concurrent lines.

Theorem. Any two given circles are members of one and
only one coazal system.
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56. Theorem. A circle orthogonal to two fized circles is
orthogonal to each circle coaxal with them.

For the center of such a circle is on the radical axis of the
fixed circles; and its radius is equal to the tangent from the
center to each circle. But this tangent is the same for all
circles coaxal with the fixed circles, and hence the same circle
is orthogonal to them all.

Theorem. The circles orthogonal to two circles constitute a
coazxal system.

Corollary. Two given circles determine two coazal systems,
one consisting of all the circles coaxal with them, the second of
all circles orthogonal to them. Each circle of either system is
orthogonal to every circle of the other; the radical axis of either
system is the line of centers of the other. If one system is of
type I, the other is of type 11, and the limiting points of the
one are common lo the circles of the second. If either is of
type I11, the other is of the same type; if the one consists of
concentric circles, the other comsists of radiating lines; and
finally, there may be two mutually perpendicular sels of
‘parallel lines.

Definition. Two coaxal systems whose members are mu-
tually orthogonal are called conjugate.

566. Problem. To construct the conjugate coaxal systems

determined by two given circles.

In the general case, it is sufficient to locate the points
K, K’ which are common to the circles of one system. If
the given circles do not intersect, any circle orthogonal to
them intersects their line of centers at K and K’. Then the
one system consists of circles through these points; and
tangents to any circle of this system, extended to meet the
line KK’, are radii of circles of the other system.

Problem. To construct the circle of a coaxal system which
passes through a given point.
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Theorem. If a circle belongs to neither of two conjugate

coaxal systems, there is not more than one circle of either

system orthogonal to it.

The proof, and the construction of the circle, depend on
the determination of the radical center of the circle with
either of the coaxal systems.

Theorem. There are in general two members of a coazal

system tangent to a given line or to a given circle.

The construction involves the circle of the conjugate sys-
tem which is orthogonal to the given line or circle.

67. Theorem. In a coazal system of the second type, each
circle is the locus of a point from which the common chord of
the circles subtends a constant angle.

That is, if we have the system of circles through two
points K, K’, then as a point P moves on any chosen circle
of the system, the angle KPK’ is obviously constant.

There is a somewhat analogous theorem for the coaxal
system of the first type, for which we now establish some
preliminary theorems.

58. The following important locus theorem is based on
standard theorems of elementary geometry, and sometimes
appears as an exercise in the school texts.

Theorem. If a point moves so that its distances from two
Jfized points are in a constant ratio, the locus is a circle whose
cenler is collinear with the given points.
This theorem has already been proved for a special case
(37). If the constant
ratio is 1, the locus is
obviously the perpendic-
ular bisector. Otherwise,
4 DWW R C i let A, B be the given
F. 11 points, and let P be such

P
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a point that PA/PB has a given value k different from 1.
Let PM and PN bisect the angles formed by AP and BP;
then M and N divide A B in the ratios — k and k respectively.
Hence as P changes its position, M and N are fixed points.
But since MPN is a right angle, it follows that P describes
a circle on the segment A B as diameter.

The following corollaries are established without difficulty:

E o —

B

a. MA=-—ﬁA MB=k+1AB
NA=-F_AB NB=—_ 4B
1-k 1—k
b. The radius of the circle is
_ k
r—k——g_IA_E

¢. The distance from A to its center C is
k?
A= 4B

d. The distance from the mid-point D of AB lo the center of
the circle is
=  EB+1

e. The tangent to the circle from D is precisely  AB, what-
ever the value of k.

_ _K=2K+1
For 2= DC?— 1% = 01y AB
f. Therefore whatever the value of k, the circle is orthogonal
to the fixed circle on A B as diameter; in other words, the cir-
cles derived by assigning different values to k are members of
a coazal system having A and B as limiting points.

69. Theorem. Conversely, if A and B are two poinis
which divide a diameter MN of a circle externally and in-



40 COAXAL CIRCLES AND INVERSION

ternally in the ratios =+ k, then the dislances from a moving
point P of the circle to A and B are in the constant ratio k.

The result can be stated also in the following form:

Theorem. If one side of a triangle and the ratio of the other
two sides are given, the locus of the third vertex is a certain
circle whose cenler 1s on the extension of the given side.

For a given triangle this theorem defines three circles,
known as the circles of Apollonius. These will be studied in
Chapter XVII.

The circle of similitude of two circles is a special case of the
foregoing; and it appears that the circle of similitude is a
member of the coaxal system whose limiting points are the
centers of the given circles. That the circle of similitude is
also coaxal with these circles can be most easily proved
later (115).

60. The foregoing results lead us to a general theorem con-
cerning coaxal circles, namely:

Theorem. In a coaxal system of the first type, each circle

18 the locus of a point whose distances from the limiting points

are in o constant ratio k.

This was established in 58 f. It may be noted that in
conjugate coaxal systems with basal points K, K’, each cir-
cle of one system is the locus of points for which X. KPK’ is
constant, while each circle of the other is the locus of points
for which the ratio PK/PK’ is constant.

Corollary. If a line segment ¢s divided externally and inter-

nally in ralios numerically equal, the circle having the points

of division as extremities of a diameter is a member of the
coazal system whose limiting points are the extremilies of the
given segmendt.

Corollary. The locus of a point from which two collinear

segments AB, BC subtend equal angles is a circle passing

through B.
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61. The following theorems establish some interesting
associations between the homothetic centers and anti-
homologous points of two circles on the one hand, and the
radical axis on the other.

a. Theorem. If P and Q, and R and S, lying respectively

on two circles, are antihomologous with regard lo the same

homothetic center, the secants PR and QS intersect on the

For we proved (28) that the four points lie on a circle;
whence as in 47,

b. Theorem. If either homothetic cenler of two circles is
known, the radical azis can be constructed with ruler only.

c. Theorem. Tangents to two circles at antihomologous
points intersect on the radical azis.

For by 30 two such tangents are equal.

d. Theorem. Conversely, from a point on the exlerior por-
tion of the radical azis, four equal tangents to two circles can
be drawn. The points of contact are antthomologous, two
pairs with regard to either center of similitude of the circles.
In other words, if a circle is orthogonal to two given circles,
the points of intersection are antihomologous in this fashion.

e. Theorem. If radii are drawn to two circles al anti-
homologous points, and extended to intersect, their point of in-
tersection is the center of a circle tangent to the given cir-
cles at the given points. Conversely, if a circle is tangent to
two others, the points of conlact are antthomologous, and the
tangents at these poinds intersect on the radical axis.

62. Exercises. Besides the following corollaries and ex-
ercises, the reader is to complete the proofs which have
been omitted or merely sketched in the text, viz: 41, 44,
47, 48, 49, 61, b5, 66, 68, 59, 60, 61.

a. Theorem. On each side of a triangle, or its extension, a
pair of poinds are marked, in such a way that each two
pairs lie on a circle. Then all siz points lie on one and the
same circle.
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For if there were three distinct circles, their three radical
axes, which are the sides of the triangle, would be concurrent.
An alternative statement is:

b. Theorem. Given three lines, and on each a pair of points

such that a circle passes through each two pairs; then either

the three lines are concurrent or the six points lie on one circle.

As a special case, if the points of any pair are coincident,
the circle is tangent to the corresponding line.

c. Theorem. Two intersecting circles ABX and ABY are

orthogonal if and only if

X AXB+ % AYB=90°.

d. Theorem. If d s the distance between the centers of two

circles, L their common chord, r and v’ their radii, they are or-

thogonal if and only if
ld=2r".

e. Theorem. If a line is drawn through an intersection of

two circles, meeting the circles again at P and Q respectively,

the circles with centers at P and Q, each orthogonal to the
other circle, are orthogonal to each other.

f. Theorem. If AB is a diameter of a circle, and if any two

lines AC and BC meet the circle again at P and Q, respec-

tively, then the circle CPQ is orthogonal to the given circle.

g. Theorem. The radical aves of a fized circle with the

members of a coazul system are concurrent.

h. Theorem. If two coazal systems have a circle in common,

they are orthogonal to a circle, or else cut a certain circle in

diametrically opposite points (cf. 49, corollaries).

i. Problem. Investigate the properties of the system of

circles which are orthogonal to one fized circle.

Henri Poincaré, in Science and Hypothesis, conceives a
universe contained within a great sphere, in which the laws
of temperature expansion and of refraction are such that the
dimensions of objects vary as they move to various dis-
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tances from the center of the sphere; and that the shortest
path between two points, that is to say the path that can be
described in the least time, is not a straight line, but the arc
of a circle orthogonal to the boundary sphere. To the in-
habitant of such an universe, it appears infinite in extent; a
circle orthogonal to the boundary appears as a straight line.
A little consideration will make it clear that the geometry
of this universe is in many respects the same as our elementary
geometry, and in some fundamental respects very different;
the sum of the angles of a triangle is less than two right angles,
and in a plane (for instance, a plane through the center of the
sphere) it is possible to draw through a point infinitely many
lines not intersecting a given line. The recent advances in
physics have indicated that our own universe can be best
understood in terms of some such basis as that of Poincaré’s
fanciful domain.

INVERSION

63. We now investigate the important geometric trans-
formation known as inversion.

Definition. Given a circle ¢, whose center is O and radius
r not zero; if P and P’ lie on a line through O, and

OP-0OP' = 1,
then P and P’ are said to be inverse to each other with re-
gard to the circle c. The relation between the points, or
the operation of determining either when the other is given,
is called énversion.
From this definition a number of immediate consequences
can be read off.

Theorem. Every point in the plane except the center O of
the circle of inversion has a unique tnverse. The relalion s
reciprocal; that is, if P’ is the inverse of P, then P is the in-
verse of P'.  With each point exterior to the circleis associaled
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an interior point. Each point on the circle of inversion is ils
own tnverse, and every self-inverse point is on this circle.

It is evident from the foregoing, that to any figure in the
plane corresponds a second figure, such that corresponding
points of the two figures are mutually inverse. Our problem
is to ascertain the mutual relations of two such figures; and
especially, those properties of the one figure which remain
unchanged in the inverse figure.* We shall find that every
circle or straight line is transformed by an inversion into a
circle or straight line, and that the angle of intersection of
any two curves is transformed into an equal angle reversed in
direction. Because of these two important invariant rela-
tionships, the transformation of a figure by inversion is
exceedingly useful in geometric investigation.

64. Special cases and conventions. Because we have
agreed to regard straight lines as one kind of circles, we

augment our definition of inversion as follows:

The inverse of a point P with regard to a straight line
AB is the reflection of P with regard to A B; in other words,
the point P’ such that AB is the perpendicular bisector of
PP'.

(For let P and P’ be inverse with regard to a circle O (r);
let OPP’ cut the circle at C. We have

OP-0OP' = r%;

or (r+CP) r+CP) =+
Hence r (CP+CP')=— CP-CP'
op+ 0P - - L CF

T

* We shall, however, in spite of all temptations, refrain from the use of the
formidable word anallagmatic, which is Greek for invariant, and is used with
the meaning ‘' unchanged by inversion.”
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Now let P and C remain fixed in position, while O is re-
moved to a great distance. The circle approaches as limiting
from a straight line perpendicular to PP’ at C; and CP+CP’
approaches the limit zero. Hence the above definition; when
the circle of inversion is replaced by a straight line, inverse
points are equidistant from this line on a perpendicular to it.)

On the other hand, inversion with regard to a null-circle
is neither feasible nor useful.

Some geometers find it desirable to define as an inversion
the transformation determined by the equation

OP-OP = —¢
the circle of inversion being imaginary, with radius ¢ v/= 1.
Since we are avoiding the use of imaginary numbers, we shall
achieve such a transformation as this by an inversion fol-
lowed by rotation of the figure through 180°, which yields
the same result.

Another convention which is associated with the study of
inversion we merely mention in passing. In an earlier chap-
ter, we introduced ideal elements at infinity, and perhaps
their use has already been justified. Now in the geometry
of inversion, we see that there is a single point whose inverse
does not exist, namely the center of inversion; and as a point
recedes to a great distance in any direction, its inverse ap-
proaches the center. In the geometry of inversion, therefore,
it is usual to sacrifice the line of points at infinity which is
so useful in other fields, and adopt the convention of a single
point at infinity, the inverse of the center of the circle of
inversion. However, in this book we shall not find it neces-
sary to adopt this point of view. It is true that our points
at infinity have no inverses; but we shall presently ascertain
the fate, under an inversion, of a set of parallel lines, and we
shall assume that only the finite plane is affected by an in-
version. When the inverse of a point is mentioned, it is to
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be understood that this point may not be at infinity nor at
the center of inversion.
We proceed to establish simple practical constructions for
the inverse of a given point.
65. Theorem. If a point P is outside the circle of inversion
O (1), its inverse P’ is the intersection of OP with the line con-
necting the points of contact of the tangents to the circle from P.

A

B
Fic. 12

For let the tangents be PA, PB; and let A B meet OP at P'.

Then triangles 4 P'O and PAO are similar, and
OP'-OP = OA*®
which establishes P and P’ as inverse points.

Theorem. Conversely, if P is inside the circle, and AB is

the chord perpendicular to OP, the tangents to the circle at

A and B meet at the inverse point.

66. Besides these obvious constructions, we have the fol-
lowing, effected with compass alone, and perhaps the most
convenient in actual practice. A construction with ruler
alone will be given later (139).

Theorem. Let P be any point distant from O more than § r.

Let the circle P (PO) cut the circle of inversion at X and Y,

and let the circles X (X0) and Y (YO) meet at O and P’
Then P’ is the inverse of P.

The proof, by means of similar triangles, is easy.
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Exercise. Show how to find the inverse of a point P with
compasses only, in case the circle P (PO) does not intersect
the circle of inversion. (It will be seen that in this case the
construction, while theoretically possible, is not useful in
practice.)

Fic. 13

67. A simple mechanism for effecting inversion is suggested
by the following theorem.

Theorem. If ABCD is a rhombus, and O is equidistant
j‘r:dn its opposite vertices A and C, then O, B, D are collinear,
a

OB-OD = DA*— AB’
C

AN,
L

A
Fic. 14
For OB-0D = (0X + XB) (0X — XB)
- 0X*— XB* = 0X* + XA*— (XB*+ X4%)
= 0A’- AB
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The Peaucellier cell or inversor consists essentially of four
equal rods forming a rhombus A BCD, and two longer equal
rods OA and OC. All the vertices are freely turning joints,
and O is attached to the drawing table. Pencils may be
attached at Band D. By virtue of the theorem just proved,
in whatever manner the linkage is moved, the points B and D
will remain inverse with regard to a fixed circle whose center
is O and whose radius is (OA® — OB®?!. This circle can be
drawn by flattening the rhombus so that B and D coincide.
Other mechanical inversors have been devised, but this ap-
paratus, invented in 1867 by a French army officer, Peaucel-
lier, is the simplest in theory. The student is urged to con-
struct a model with simple materials, such as strips of card-
board or light wood, connected with brass eyelets or rivets.

68. Theorem. If P and Q are any points, P’ and Q' their

tnwerses, the triangles OPQ and OQ'P’ are inversely similar.

For the angles at O are common to the triangles, and the
including sides are proportional.

a. Coro) . Any two pairs of inverse points lie on a cirtle

Orthogom the cz‘gcle ofp:'zrzwers{ion. P

As before, since
OP-OP' = 0Q-0Q' = r*
the four points lie on a circle, with
regard to which the power of O is 7*;
whence it follows that this circle is
orthogonal to the circle of inversion.

b. Corollary. The distance between two poinis, and that
between the inverse points,* are conmected by the equation

Fia. 15

PQ =QP ——
r=Q OP-0Q

* It is to be kept clearly in mind that the points of the line-segments PQ
and P'Q’, except these points themselves, are not mutually inverse.
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For in the similar triangles,

R
PO=QP o5 = P 55 55

c. For any four points and their inverses,

PQ-R’S _ PQ-RS

PS-RQ ~ PS-kQ
d. Exercises. Establish the foregoing results in case any
of the points, as P and Q, are collinear with the center of

inversion. Formulate the analogous theorems for the case
that the circle of inversion is a straight line.

69. We are now ready to consider the highly important
problem of subjecting to an inversion a circle or a straight
line. Taking the simplest case first:

Theorem. A straight line passing through the center of

inwersion s tnverse lo ilself.

Corollary. Any pair of mutually inverse points divide the

diameter of the circle of inversion internally and externally in

ratios numerically equal.

70. Theorem. The inverse of any straight line not passing

through the center of inversion is a circle through that center;

and conversely.

For let OA be the perpendicular from the center O to the
straight line AB. We havc seen that triangles OAB and
OB'’A’ are inversely similar. Hence as B moves on line AB,
triangle OA’B’ is a variable right triangle on the fixed hypote-
nuse OA’, and the locus of B’ is a circle on OA’ as diameter.

71. Theorem. The inverse of ¢ circle not passing through

the center of inversion is a circle; the center of inversion is a

center of similitude of the mutuclly inverse circles, and any

pazr of inverse points are antihomologous.

(It is to be noted, however, that the centers of two mutu-
ally inverse circles are not, in general, inverse points.)
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For let any line through O cut the given circle at P and Q,
so that the power of O with regard to the circle is

t=0P-0Q

Also, if P’ is the inverse of P, and r the radius of inversion,
OP-OP' =1
e oP
Dividing, we have 00 7

We interpret this last equation as showing that when @
describes the given circle, the point P’ on the moving line 0Q
divides that line in the constant ratio 7*/¢. Hence (21, 26) P’
describes a circle simultaneously with Q, and the center of
inversion O is a homothetic center for these homologous mov-
ing points. It follows at once that on these two circles P and
P’ are antihomologous points (cf. also 28). The center O is
the external or the internal center of similitude of the two
inverse circles, according as ¢ is positive or negative; that is,
as O lies outside or within the given circle.

Corollary. If a circle is orthogonal to the circle of inversion,

its points are mutually inverse, and the circle as a whole is

unchanged by the inversion.

Theorem. If the radius of the given circle is R, and the
power of O with regard to it is t (not zero), then the radius R’
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of the inverse circle and the power t' of O with regard to it, are
given by

2
?r
For if the line through the centers of the circles cuts the

given circle in P and @, whose inverses are P’ and Q' respec-
tively, then

¢ =

= r
R'=R 3

.
OQ"'aI—_-,(TQ-
—oP-og -~ L_L)_,_PQ_
QP’'=0P' - 0Q r(D_P (E) f@_w

Corollary. It is always possible to invert two circles into
equal circles. (Sec further 129.)

72. To the Peaucellier inversor, as already described, we
may add one more bar, hinged at one end to B and attached
at the other end to the table. Thereby B will be constrained
to describe a circle, and the inverse point D will simultane-
ously describe a circle. In particular, if the center of inver-
sion O lies on the circle described by B, then D will traverse
a straight line. It is worthy of note that the usual processes
of drawing a straight line presuppose the existence of a
straight edge already constructed. Until the invention of the
Peaucellier inversor there was perhaps no solution of the
problem of constructing a straight line ab initio, but the
inversor furnishes a neat solution of this problem.

73. From the foregoing theorems we derive easily the
second fundamental property of inversion.

Theorem. The tangents to two mutually inverse circles al
corresponding poinis are equally inclined to the line passing
through the points and the center of inversion.
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For the mutually inverse points are antihomologous; and
we noted in 30 that the tangents to two circles at antihomolo-
gous points make equal angles with the line joining the points.

74. Theorem. The angle between the inverses of two circles

equals the angle between the original circles, but is described

#n the opposite direction.

For such an angle is the sum or difference of the angles
which the respective tangents make with the line joining the
mutually inverse points of intersection.

This very important theorem can be cstablished in various
ways; as for instance by applying 75 to a secant PQ of 2
curve, then letting the secant approach tangency. The theo-
rem can thus be generalized to show that any two curves in-
vert into curves intersecting at equal angles; in other words,
the transformalion is tnversely conformal. '

Theorem. If two circles are orthogonal, their inverses are also
orthogonal. A self-inverse circle or straight line is orthogonal
to the circle of inversion.

75. The following theorem expresses in simple form a
highly useful relation involving the angles of mutually in-
verse figures; indeed, both the fundamental properties of
inversion which we have established can be based on it.

Theorem. If P’,Q’, R’ are respectively the inverses of three
points P, Q, R, and O s the center of inversion, then

X PQR+ X P'Q'R' = X POR
For X PQO = X OP'Q' = X P'OQ'+ % OQ'P' (18, 68)
and similarly
X 0QR= X Q'R'0= X R'Q0+ X QOR’
Adding,
X PQO+% OQR =% R'QO0+% OQ'P' +X P'OQ + X QOF’

Combining and transposing, we have the result as stated.
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An alternative statement:
X P'Q'R'= X POR+ X RQP

Fi. 17

In either form, the equation gives the relationship between
the angles of mutually inverse triangles. It shows, for in-
stance, that two such triangles cannot be inversely similar,
and can be directly similar only when each is inscribed in a
circle concentric with the circle of inversion. This result
follows also from 68 b.

76. Theorem. For any four points and their inverses,
X POR+ X RSP= X P'S'R' + X R'Q'P’
This equation, in connection with 19, furnishes an immedi-
ate proof that the inverse of a circle is a circle.

77. We now formulate a number of theorems which follow
easily from the fundamental properties of inversion, and
which will be needed frequently hereafter. Other theorems
of somewhat lesser applicability will be found in Chapter V.
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Theorem. If a circle passes through two mutually inverse
points, it is orthogonal to the circle of inversion, and its points
are inverse in pairs.

For if P and P’ are inverse with respect to the circle O (r),
and if any circle through P and P’ is cut by a line through O
in Q and @', then

OP-OP' = 0Q-0Q = 1*
78. Theorem. If each of two intersecting circles is orthog-

onal to a third, their poinis of intersection are mutually in-
verse with regard to the third circle.

79. Theorem. The circle of inversion is coaxal with any two
mulually inverse circles. If the circles do not inlersect, the
limiting poinis of the coaxal systemm are inverse poinis.

For if a circle cuts the circle of inversion, its inverse cuts
it at the same points, and therefore the three are coaxal. If
neither of two inverse circles meets the circle of inversion, we
draw several circles orthogonal to one of them and to the
circle of inversion. Since orthogonal circles invert into
orthogonal circles (74) the effect of the inversion is that each
of these circles is orthogonal to the second circle. Now these
auxiliary circles constitute a coaxal system; and the two given
circles and the circle of inversion will therefore be members of
the conjugate coaxal system. The limiting points of the
latter will be the points common to the system of orthogonal
circles.

Corollary. The circle of inversion ts coaxal with any pair

of inverse points regarded as limiting poinis. Hence (60) the

distances from two fized inverse poinis to a point moving on
the circle of inversion are in a constant ratio.

This last statement may also be deduced from 68 b.

Corollary. If any circle of a coazal system is taken as circle
of inversion, the circles of the system are interchanged in pairs.
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80. Theorem. If two points are inverse with regard to a
circle, and the whole figure is inverted with regard to another
circle, in the resulting figure the points are inverse with regard
to the circle.

That is, if P and @ are inverse with regard to circle ¢, and
the inverses of these with regard to a circle b are P/, @, ¢/, we
are to prove that P’ and @’ are inverse with regard to ¢’. We
draw any two circles j and k through P and Q; then they are
orthogonal to ¢, and their inverses ' and k¥’ with regard to b
are orthogonal to ¢’. Therefore the intersections P’ and Q’
of j and k are inverse with regard to c'.

This theorem may be interpreted as showing that “the
property of inverseness is invariant under inversion.” That
is, if two mutually inverse figures, together with their circle
of inversion, are subjected to an inversion, the resulting
figures are mutually inverse.

81. The following theorems, indicating what changes and
simplifications of a figure can be effected by inversion, are
established at once. Further questions of the same sort will
be discussed later (129-131).

a. Any two pairs of poinis on a circle can be interchanged by
an inversion, provided their commeciors intersect outside the
circle; that is, provided they do not separate each other.

The same theorem in the latter form holds when the four
points are on a line.

b. Two or more circles through a point may be inverted into
straight lines, taking the common point as center of inver-
sion; and conversely, the straight lines of a plane can be
wnwerted into the totality of circles through a point.

¢. Two or more circles, tangent at a poind, will be inverted
into parallel lines if the center of inversion is at the point of
tangency,; and conversely.

d. Two circles that do not intersect will be inverted into con-
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centric circles, if either limiting point of their coaxal system

18 taken as center of inversion.

Summarizing the foregoing, two conjugate coaxal systems
of the first and second type respectively will be transformed,
by an inversion whose center is one of the fixed points of the
systems, into a set of concentric circles and a set of lines radi-
ating from the common center. This center is the inverse of
the second fixed point. Thus the properties of coaxal sys-
tems may be derived by inversion from those of the special
limiting coaxal systems of types IV and V (54).

Two conjugate coaxal systems of the third type, each con-
sisting of circles tangent to a common radical axis at a point,
may be transformed by inversion into two mutually perpen-
dicular sets of parallel lines. In 585, this figure was noted as
one of the special types of conjugate coaxal systems.

82. Theorem. The inverse of the center of a given circle is
the same as the inverse of the center of inversion with regard
to the circle inverse to the given circle.

That is, if circles k¥ and ¥’ are inverse with regard to a
circle ¢, whose center is O; and if A is the center of k, then
A’, the inverse of A with regard to c, is the same as the in-
verse of O with regard to ¥'.

For let us draw a set of straight lines through A; being
orthogonal to k, they invert (with regard to c) into 2 set of
circles through O and A’ and orthogonal to k’; whence O and
A’ are inverse with regard to k'.

Corollary. To construct the inverse of a given circle by locat-

ing its cenler, find the inverse of the cenler of inversion with

regard to it, and then invert this point with regard to the circle
of inversion.

Exercise. Modify the foregoing statements to apply to the

case that the circle of inversion becomes a straight line. We

recognize that two figures inverse with regard to a straight
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line are symmetrically congruent; and it may be possible
to prove theorems concerning two mutually inverse figures
by transforming their circle of inversion to a straight line.

Exercise. If two circles are orthogonal, the tnverse of either
center with regard to the other circle is the mid-point of the
common chord.

Exercise. Complete the proofs of all propositions in the
latter half of this chapter, viz: 63, 65, 66, 69, 71 (corol-
laries), 76, 78, 79 (corollaries), 81.



CHAPTER IV
TRIANGLES AND POLYGONS

83. The present chapter is an assemblage of various theo-
rems concerning triangles, quadrilaterals, and other polygons,
all of which can be established at once on the basis of the fa-
miliar elementary geometry and the results that have thus far
been obtained. Considerable portions of this chapter, as well
as most of Chapters V and VI, may be omitted without de-
stroying the sequence. The reader who is desirous of pro-
ceeding at once to the general theory of the triangle, without
delaying for material which, however interesting, is irrelevant
to the main purpose, will read sections 84-92, 95-101, 104 q,
and then pass on to Chapter V.

84. We have first a theorem which is highly useful in the
study of the triangle, because of the various forms which it
assumes and the different corolla-
ries which can be at once deduced
from it.

Theorem. If P,isany point excepl

As of the side Ay As of a triangle

A1 Az As, then
Ay I; Ag mg _ ﬂg sin Z P1A1Ag

Fio. 18 PiAs  AAssin £ PiA Ay

For by the law of sines (16 b)

Pids _ sin £ PiA14; AAs  sin £ APiAs
A_l-:'iﬂ sin AAIPIAg ms sin Z Pl.AlAg

Sinee also gin Z A]PlAg = gin / A1P1A3
the theorem follows at once by combining these equations.

4,

and
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Corollary. If AP, and A\ are so drawn that angles

AgAlP]_ ﬂﬂd Q}A]_As are egual, then
P, As-Q,As _ (Aﬁz)g
ms'm A;‘ls

85. Theorem. If Py, Py, Ps are on the sides AxAs, As4,,
A:_Ag, mpﬁd’i”dy, (f trwﬂgle AlAgAs,
PiAy- PyAs PsA; _ sin £ PiArAs-sin £ PyAsAs-sin £ PiAsh,
ms‘mrms 8in AP[A]_AB'Sin APQAzAl'SiIl LPsAsAg
That is to say, the product of the ratios in which the sides of the
triangle are divided equals the corresponding product for the
sines of the angles subtended at the opposite vertices.

86. Theorem. If Py, Q: are any poinis on AsAs, the *“double
ratio” composed of the ratio of the ralios in which they divide
Ag As equals the corresponding double ratio for the sines of the
angles subtended at A,
[’;l_Ag . Qljg - Bill yd P1A1A2 . sin LQ]AlAE
PAs QiAs sin £ PyA1As sin Z Q1A As
Theorem. If three lines, concurrent at O, are cut by a
transversal at A, B, C, and by another at A’, B, C’, then
AB A'B'_ OB OB
AC A"C" oOC oC
87. Theorem. If four concurrent lines meet one transversal
at Al: Aﬁ: AB! A41 a"d aﬂOﬂl&T at Bl) B2! BB, B‘h theﬂ’
AiAs A4 _ BBy Bibs
A Ay A Ay, BB, BB,
This fundamental theorem of projective geometry is an
immediate consequence of 86.

Definition. The double ratio, or ratio of the ratios of the
distances of two pairs of points on a line, as discussed above,
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is called the cross-ratio or anharmonic ratio of the four points.
In the particular case that its value is — 1, we see that each
pair of points separate the other pair internally and ex-
ternally in the same ratio; they are said to separate one
another harmonically, or to constitute a harmonic set of
points. Again, the cross-ratio or anharmonic ratio of four
concurrent lines is the double ratio, as given in 86, of the
sines of the angles between them. It is equal to the cross-
ratio of the points in which the lines are cut by any trans-
versal. Four concurrent lines form a harmonic set, when
their cross-ratio is — 1.

88. Projective geometry. Let us consider two planes, gen-
erally not parallel, and a point O which is not in either plane.
From the points of one plane, lines may be drawn through O,
cutting the second plane. Thus any figure in the first plane
is “ projected” into a figure in the second plane. Projective
geometry may be defined as the study of those properties
of a figure which are unaltered by such projections, and such
properties are called projective. For instance, we see that in
general projective figures are not similar; properties involving
ratios and angles are not projective properties of a figure.
On the other hand, any relationship involving concurrence of
lines and collinearity of points is projective.

The theorems of the last three sections have established the
fact that the cross-ratio of four points on a line is pro-
jectively invariant, and is equal to the corresponding double
ratio for the sines of the angles between the projecting rays.
This is fundamental in projective geometry.

We shall not explore the domain of projective geometry,
except occasionally to survey it from the frontier which it
shares with our field. We owe the concept of the line at
infinity to projective geometry; but for the most part, since
the familiar relations of distances, angles and ratios are not
invariant in that study, we have little in common with it.
Occasionally, as in Chapter XIII, we shall note theorems
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which are projective in nature; and the concept of a harmonic
set of points or lines will sometimes be useful to us.

QUADRANGLES ARND QUADRILATERALS

89. Let us establish a few definitions and conventions con-
cerning polygons, especially quadrilaterals.

Definitions. A simple quadrangle or quadrilateral is a closed
polygon with four vertices and four sides. The connectors
of the pairs of vertices not already connected are the two

diagonals.

A complete quadrangle is the figure determined by four
points in general position, and their six connectors. Two
connectors not having in common any one of the given
points are called opposite; there are three such pairs, and
the points of intersection of opposite connectors are called
A complete quadrilateral is the figure composed of four lines
in general position, and their six points of intersection.
There are three pairs of opposite poinis, whose connectors
are the three diagonals.

Theorems concerning the complete quadrilateral and
quadrangle will appear from time to time. One famous
theorem of the quadrilateral follows below, after the proof of
a lemma on which its proof is based.

90. Theorem. (Euclid, I, 43.) If through any point of a
diagonal of a parallelogram we draw lines parallel to the sides,
the parallelograms not containing segments of that diagonal
are equal in area, and conversely.

That is, if through X, a point of the diagonal AC of paral-
lelogram ABCD, we draw lines parallel to the sides of the
parallelogram, the areas BX and DX are equal. For the
diagonal AC bisects each of the areas AC, AX, XC; whence
the result by subtracting equals from equals.



62 TRIANGLES AND POLYGONS

Conversely, if two lines parallel to AB and BC meet at X, ,
making areas BX and XD equal, then X lies on AC.

This old theorem, used by Euclid as a first step in the com-
parison of areas, and leading up to his proof of the theorem of
Pythagoras, has been generally dropped from the modern
geometries. It can be made useful occasionally, as for in-
stance in problems of construction relating to equal areas.
It yields easily a proof of the following well-known theorem.

91. Theorem. The mid-points of the diagonals of a com-
plete quadrilateral are collinear.

Denoting the four lines of the complete quadrilateral by
ABC, AB'C’, A'BC’, A'B'C, the three diagonals are AA,
BB', CC’. We draw construetion
lines parallel to two of the four
lines, and letter as in the figure.
‘Then applying the theorem of 90:

area AA’ = area A'R
area AA' = area A'P
Hence area A’R = area A'P,

Fia. 19 and therefore A’ is on the diag-

onal NS. Thus the mid-points

of AA’, AN, and AS are collinear. But AS and CC’ bisect

each other, as do also AN and BB’. We have therefore
proved that the mid-points of AA’, BB, CC’ are collinear.

Later (268) we shall establish this theorem again, showing

further that the three circles on AA’, BB’, and CC' are

coaxal, and proving other theorems about the four triangles

formed by the four lines.

THE THEOREM OF PTOLEMY

92. Theorem. If a quadrangle is inscribed in a circle, the
product of the diagonals equals the sum of the products of the
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opposite sides. Conversely, if A
the sum of two opposite connect- D
ors of four points equals the sum

of the products of the other pairs,

the four points ie on a circle.

Both theorems can be proved p o
almost simultaneously. Let A, Fic. 20
B, C, D be any four points,
whereof B, C, D are not collinear. On AB construct the tri-
angle ABE, directly similar to DBC. Thus,

BD-AE = AB-DC

Further, —_— = = and ZABD = L EBC

go that triangles ABD and EBC are also similar, and
BD-EC = BC-AD
Adding, BD (AE+ EC) = AB-CD+ AD-BC
Now, E will lie on AC if and only if
% BAE = X BAC = % BDC

which is true if and only if A, B, C, D are concyclic. That is,
if the four points are concyclic,

AE+ EC= AC
and in all other cases,

AE+ EC> AC

Accordingly, the sum of the products AB-CD+ AD-BC
will equal or exceed AC-BD according as 4, B, C, D are or
are not concyclic.

The foregoing proof is inapplicable if and only if the four



64 TRIANGLES AND POLYGONS

points are collinear; and we proved in 8 that the equation
holds for any four collinear points.

Second proof: as before, let A, B, C, D be any four points;
taking D as center of inversion, let the inverses of A, B,Cbe
respectively A’, B’, C'. Now A’, B’, ¢’ will be collinear if
and only if A4, B, C, D are on a circle. If this condition is
satisfied,

A'B'+BC'+(CA4'=0
But we recall 68 b and make the substitution for cach of these
lengths:

iB—"— B0 CA—"— -0
—_— = + —— =
Da-DBE~ " DB-DC DC-DA
Clearing of fractions,

AB-CD = AC-DB = AD-BC =0
an equation which is true if and only if the four points are
on a circle.

93. Numerous theorems of geometry and trigonometry can
be deduced as consequences of the theorem of Ptolemy.

a. Noting that 2R sin ¢ represents the length of a chord in a
circle of radius R, whose central angle is 2¢, the addition
Jormulas of trigonometry may be derived at once from the
theorem of Ptolemy:
sin(a+b) = sin a cos b+ cos a sin b, etc.
b. If ABC is an equilateral triangle, and P lies on the arc BC
of the circle through A, B, C, then
PC= PA+ PB
¢. If D is on the arc BC of the circumscribed circle of an
esosceles triangle ABC, with AB = AC, then
PA AB

}");ﬂ'}?(—_j = ﬁ’ a constant ratio.
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d. If P is on the arc AB of the circle circumscribed about a
square ABCD, then

PA+ PC _FD

PB+ PD PC
e. If P lies on the arc A B of the circle circumscribed about a
regular hexagon A BCDEF, then

PD+ PE = PA+ PB+ PC + PF

J- If P lies on the arc AB of the circle circumscribed to a
reguler pentagon ABCDE, then

PC+ PE=PA+ PB+ PD

Such theorems can
be spun on indefinitely.
We close the group
with a somewhat more
elaborate theorem, in-
volving the sides and
principal diagonals of a
hexagon inscribed in a
circle.

g. Theorem.* Letthe

opposite sides of a

convex hexagon in-

scribed in a circle be
a,a’;b,b;ec;and

let the diagonals be e,

1, g (so chosen that a,
o', and e have no common vertex, nor have b, V', f), then

efg = aa’e + bb'f + cc’g + abe + a’b’c’
Let the hexagon be LMNPQR, with LM, MN, etc., in

order, denoted by a, V', ¢, @', b, ¢’'; then NR, LP MQ, are

#* Fuhrmann, Le., p. 61.
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respectively e,f, g. DGBlgﬂatre ITV} AF_Q’ Q_‘L] W by Ty Yy 2y U
respectively. Then

Vf+ ac= ux and cg+ a't’ = uy
Multiplying by b and ¢’ respectively and adding, we get
cc'g + bb’f + abe+ a'b'c’ = u (bz + c'y)

=uez=euz= e (fg— aa’)

which leads to the desired formula. This theorem may be
regarded as an extension of the theorem of Ptolemy to the

hexagon.
94, Theorem. For any four poinis A, B, C, D
AC’-BD* = AB’-CD’ + AD"- BC*
— 2AB-BC-CD-DA cos (5. ABC+ X CDA)

This generalization of the theorem of Ptolemy is proved by
the same method used in the inversion proof of that theorem.
If we state the law of cosines for the three points 4’, B, (',

A'C" = A’B”+ B'C" — 2 A’B'-B'C'-cos LC'B'A,

then subject the figure to an inversion whose center is D, and
replace each of the lengths by its equivalent, we have at once
the formula as given.

95. There are some interesting questions associated with
the ratios of the distances of a point from three fixed points.
It is a natural procedure to fix the position of a point by
giving its distances, or the ratios of its distances, from the
vertices of a fixed triangle. This determination, however, is
not unique.

Theorem. There are at most two points in the planc whose

distances from three fixed poinis are proportional to given
numbers.
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For let A,, As, Az be the given points, and let a point P be
sought, such that

PA,: PA2: PAs=p1: p2: s

where p1, p2, ps are given numbers, .

The locus of a point P, moving so that PAs/PA3z = pa/ps,
we have seen in 68 to be a circle of the coaxal system whose
limiting points are Az and A;. Similarly, the locus of a point
P for which PA3/ PAy = py/pyis a circle coaxal with Az and A;;
and so for PA; and PA,. But all three of these circles are
orthogonal to the circle A1 4243, and there are three cases:

If no two of the three circles intersect, there is no point
satisfying the given conditions. If two of the circles inter-
sect, the third must pass through the points of intersection.
These two points, which are the solutions of the problem, are
therefore mutually inverse with regard to the circumseribed
circle 414243, Similarly, if two of the circles are tangent,
the third is tangent to them at the same point, and this point
is the only solution of the problem and lies on the circle
A1 404,

The inquiry next suggests itself, for what values of the
ratios p; : p; 2 p3 do such points exist?

Theorem. There exist two points P, P’, the ralios of whose
distances from three given points A,, Az, Az are proportional
to three given numbers_pi, p», P3, if and only if the three
products py-A,A3, py-AsAy, ps-ArA; have the property that
the sum of any two of them is less than the third; that s, that
these three products are the sides of a possible triangle. If
the sum of two of these products equals the third, then there is
one such point, situated on the circle A1AsA3; and conversely.

That the inequality holds when the points P, P’ exist, is a
consequence of Ptolemy’s theorem, as also the fact that when
there is a single point on the circumcircle the equation is
satisfied. The converse theorem, that when the inequality
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is given we can establish the existence of the points P, P’ is
not easy at this stage. Using 68 b, ¢, in conjunction with the
proof of the foregoing theorems, we can with considerable
labor show that the condition that two of the circles intersect
is precisely as stated in the present theorem. We shall, how-
ever, a little later be able to establish these results in a simple
and elegant manner (205, 206).

96. From one of the less familiar theorems of elementary
geometry we can derive a number of theorems.

Theorem. The sum of the squares of two sides of a triangle

equals half the square of the third side, plus twice the square of

the median on the third side,
@' +a’=4a’ +2m’

This theorem, which is given in the school textbooks, is
proved by applying 14 ¢ to the triangles A,4:0; and A,430,
(figure 1) and adding the resulting equations. The theorem
suggests the following immediate consequences.

a. The length of any median is given by the formula:

m’=3}Qa’+2a’ —a’)

b. m® +m’ +ms' = § (@’ + @’ + a5)

c. MA’+ MAY +MAS =} (@’ + '+ a)

97. Theorem. The locus of a point which moves so that the

sum of the squares of its distances from two fixed poinis 23

constant is a circle whose center is midway between the fixed

points.

For in 96 q, if 022 + asg is constant, as well as a;, then m,
is constant, and the point moves on a circle of radius mu.

Theorem. In a simple quadrangle, the sum of the squares of

the four sides is equal to the sum of the squares of the dmg_'o-

nals, plus four times the square of the line joining the mid-

points of the diagonals.
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For if ABCD is a quadrangle, and E and F are the mid-
points of the diagonals AC, BD, then AF is a median of
triangle ABD, and CF of triangle BCD. Hence

AB'+ AD’ = ¥ BD*+ 2 AF'
BC*+CD*=4BD'+2CF

As we add these two equations, we note that EF is a median
of triangle ACF, so that

AP+ CF' = y AC*+ 2 EF*
whence the result:
AB*+ BC*+ CD*+ DA*= AC*+ BD*+ 4 EF

Corollary. In a parallelogram, the sum of the squares of the
sides equals the sum of the squares of the diagonals; and con-
versely, if a quadrilateral has this property, it is a parallelo-
gram.

Theorem. In a complete guadrangle, the sum of the squares
of any two opposite connectors, plus four times the square of
the conmector of their mid-points, equals the sum of the squares
of the other four connectors.

Theorem. The sum of the squares of the siz connectors of a
complete quadrangle is equal to four times the sum of the
squares of the three connectors of mid-points of opposite sides.

98. We continue with similar elaborations of some other
simple leitmotifs.

Theorem. The difference between the squares of two sides of
a triangle equals twice the product of the third side by the pro-
jection of the median on that side,
@’ —a’ = 2a- HO:
Corollary. With due regard for signs,
ay-OyHy + a2 O;Hz + a3-OsHs = 0
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Corollary. If ¢1 represents the angle which the median
Jorms with the side on which it rests,

aﬂﬂma32
cobdr=—3x
whence col ¢y + cof 2 + col p3= 0

99. Theorem. The square of the bisector of an angle of a
triangle equals the product of the adjacent sides, minus the
product of the segmenis in which the bisector divides the
opposile sides.

Corollary. The length of the bisector of angle A, is given by

2
[
h' = aa (l— ——~—)
(az + a5)*
100. Some of the foregoing theorems are special cases of a
general theorem due to Apollonius (third century B.c.).

Theorem. If P, is a point dividing the side AsAs of @
triangle AyA2As in the ratio — m/n, then

may’ + nag’ = (m+ n) 4P,2 + m PiAs® + n PAs
For @’ = A\P° + A3P)° — 2 PiAs- A1P; cos £ A1P1As
a5’ = APy’ + PAs" — 2 PiAs- AP cos £ AP A,

A, Multiplying by m and n respectively
and adding, we eliminate the terms
involving the cosine, and obtain the
result as stated.

Replacing P,A4; and P, A; by thei

Ag H, K Az P ac::g 1z &0 PIA; Y their
Fic. 22 values i AsAs and min AzAs,

and transposing, we have another form:

2_ M 4 z2__Mm n 2
IBT)'-111'1,+1".'.aﬂ-|-1m+~1ﬂ.m3 m+1n.7f:»1.-+-1n.a1
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101. Theorem. The product of two sides of a triangle is
equal to the product of the altitude on the third side by the
diameter of the circumscribed circle.
The theorem, given in all geom-
etries, is easily proved by similar
triangles; it lends itself to a sur-
prising number of variations. 0

A H, As

A

a. Corollary. 2R= -Ts;
1
Cl.

al@a's_ 10203 (cf.lﬁd). Fre. 23

agan, E=- 2 alh1_ 4A

b. Theorem. If two chords are drawn from a point P on a
circle, their product equals the diameter of the circle multiplied
by the perpendicular from P on the line joining their extrem-

wlies.

¢. Theorem. The distance from a point on a circle to a fized

chord, multiplied by the diameter of the circle, equals the prod-

uct of the distances from the point to the ends of the fized
chord.

d. Theorem. The distance between two poinis on a circle is

a mean proportional between the diameter of the circle and the

icular from either point on the tangent to the circle at
the other point.

This is a limiting case of the previous theorem, or may be
proved directly.

e. Theorem. Let the siz connectors of four points on a circle

be drawn. The products of the perpendicular distances from

any other point on the circle to the three pairs of opposite con-
nectors are equal.

For such a product equals the product of the distances from
the point to the four given points, divided by the square of the
diameter. This theorem, in turn, suggests some further
generalizations.
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J. Theorem. Let A A;A;... A, be an even number of
points on a circle. Denote by dy» the length of the perpendic-
ular from a fized point P of the circle to the connector A;As,,
and so on. Then if we form a product of 4 n of the d’s, so
that each subscript appears once and only once, all such pro-
ducts have the same value.

As a further extension, we may make some of the A’s
coincide, whereupon some of the d’s become perpendiculars
to the tangents to the circie at certain vertices of the remain-
ing polygon. We are thus led to a complicated theorem con-
cerning the perpendiculars to the sides of a polygon and to the
tangents at as many of its vertices as we please. Without
making any effort to state the theorem in its generality, we
note the following case of special interest:

g. Theorem. If a polygon is inscribed in a circle, and a
second polygon s circumscribed by drawing tangents to the
circle at the vertices of the first, the product of the perpendic-
ulars on the sides of the first, from a point of the circle, equals
the product of the perpendiculars from the same point to the
sides of the second.

102. Theorem. The algebraic sum of the perpendiculars

Jrom any point to the sides of a regular polygon of n sides is

constant, and equal to n times the apothem.

(The signs are so attached to these perpendiculars that for
a point inside the polygon they are all positive.)

Let a denote each of the equal sides, h the apothem; and
let hy, ks, . . . hn be the perpendiculars from a point P to the
sides. Then the area of the polygon is given by

$nha =} (ahy+ aho+ ...+ ahy,)
so that at once nh =k + ho+ ...+ by,

a. For example, the sum of the perpendiculars from any point
to the sides of an equilateral triangle equals the altitude; of a
square, twice the side of the square; and so on.
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b. Theorem. The sum of the perpendiculars from the vertices
of a regular polygon to any line tangent to the circumscribed
circle is equal to n times the radius.

This follows from the preceding theorem, by virtue of the
fact that the perpendiculars on two tangents to a circle, each
from the point of tangency of the other, are equal.

c. Theorem. The algebraic sum of the perpendiculars to any

line dfmm the vertices of a regular polygon is equal to n times

the distance from the center to the line.

For if we draw a tangent to the circle parallel to the given
line, we may apply the previous theorem.

d. Theorem. The sum of the squares of the distances from

any point on a circle to the vertices of a regular polygon o n

sides inscribed in the cirele is constant, and equal to 2n R,

For let A;As.. A, be the regular polygon, and P any
point on the circumscribed circle. Let the tangent be drawn
at P, and denote the perpendicular to this tangent from
Ay by 1. Then by 101 d,

PAl= 2 Rp, etc.
But as above, the sum of the p’s equals nE.
Hence PAl+ PAs’+...+PA, =2R(pi+p+ ..+ pn)
=2n

Corollary. The sum of the squares of the distances from a
pointonacimletothemid-q)oiﬂisofthesidesofamgular
inscribed polygon of n sides, a being the length of the side
and R the radius of the circle, is

2 nR® -} nd’
This follows at once by application of 96.

Corollary. The sum of the squares of all the connectors of the
vertices of a regular polygon of n sides enscribed in a circle
is n?R2.
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For if we apply d, placing P at each of the n vertices in
turn, and add the resulting equations, we shall have counted
each connector twice, and we shall have the sum 2 n2RZ.

103. a. Theorem. The distance between two points, and the
distance between their inverses, are proportional to the perpen-

diculars from the center of inversion to the two lines.

For the two pairs of inverse points form with the center of
inversion two similar triangles, in which the perpendiculars
in question are homologous altitudes.

b. Theorem. If the lengths of the sides of a polygon in-
scribed in a circle are ay, @, . . . an, and if the perpendicu-
lars on these lines from any point P of the circle are py, ps,
++ « Dn, then with signs properly chosen

a |, o on
—+—=+...+F=0
P Pn
For an inversion with regard to P carries the vertices of
the polygon into collinear points. In the inverted figure all
the p’s are equal, and

a'+a'+...0,/=0
c. Theorem. 1If py, ps, Ps are the perpendiculars to the sides

gjl'e;:-triangle Jrom any point P, and hy, hy, hy the altitudes,

For

104. We continue with a number of unrelated theorems,
dealing mainly with circles. To a considerable extent the
proofs are left to the reader.
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a. Theorem. If three equal circles pass through a point, the
circle through their other three intersections is equal to them.

This theorem and the corollaries which follow are estab-
lished by means of the radii of the circles drawn to the various
points of intersection,
which form several par-
allelograms. Hence:

Corollary. In this
figure, the four points
of intersection of the
circles form a figure
congruent to that of the
four centers, with sides
parallel and extended
in reverse directions.

Corollary. In either
of these congruent fig-
ures, the line joining
any lwo points is per-
pendicular to that join-
ing the other two. Fic. 24
(Ct. 260.)

Corollary. By an inversion, any three lines tangent to the
circle of inwersion and the circle circumscribed to their triangle,
are transformed into equal circles.

b. Theorem. Let two circles with centers at O and O’ inter-
sect at P and Q. Let AB be a diameter of the first, and let
AP and BP meet the second circle at A’ and B’ respectively.
Then A’B’ is a diameter of the second circle; the angle be-
tween AB and A'B' equals the angle of intersection of the cir-
cles, namely OPQ’; the point of intersection X of ABand AB’
lies on the circle 0QO'.

¢. Theorem. Let the four common tangents to two mutually
external circles be drawn. The points of contact of the di-
rect tangents, those of the transverse tangents, and the in-
tersections of direct with transverse tangents, lie respectively
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on circles whose common center is the point midway belween
the centers of the given circles.

d. Theorem. Through one of the common points of two cir-
cles a variable line is drawn. Its length between the vari-
able points of intersection with the circles is proportional to
the sine of the angle which it makes with the common chord.
Corollary. The longest such line is perpendicular to the com-
mon chord; and lines equally inclined to the latter are equal.
e. Theorem. If a variable tangent to a circle meets two Sized
parallel tangents AB and BQ at P and Q respectively, then
PQ subtends a right angle at the center of the circle, and the
A p  radius is @ mean proportional
between AP and BQ.

This result can perhaps be uti-
lized as a convenient construction

0 for proportional lines. Further:
Corollary. The segments cut on
parallel tangents to a circle by a
B Q variable tangent are inversely pro-
Fia. 25 portional.

Similar theorems of the sort are not unusual.

J. Theorem. Let ABC be an isosceles triangle, D the mid-
point of the base BC; let P and Q be chosen on AC and AB
respectively, so that GB-CP equals BD; then PQ is tan-
gent Lo a fired circle whose center is D and which touches
AB and AC.

g. The following, which is not so simple, is interesting on
account of the famous names associated with it. It is at-
tributed to Fermat, and the earliest proofs which we have
are due to Euler and to Simson. The proof given is that
of Fuortes.*

Theorem. On one side of a segment AB, a semicircle is
drawn. On the other, a rectangle ABDC is constructed, with

* GHornale di matematiche, 1869; see further Simon, Le., p. 88. The intrinsic
importance of this theorem is not evident.
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altitude AC equal to the side of the square inscribed in the

circle, viz. AB/vV2. If now from any point P of the
semicircle, PD and PC are drawn, cutiing AB at E and F

respectively, then
AE'+ BF* = AP’
Proof: If PA and PB are extended to meet CD at M, N
respectively, we have
CN*=CD*+ DN’ +2CD-DN
But triangles AMC and NBD are similar, hence
MC-DN = AC-BD = AC" = } AB’
CD’=2AC*=2MC-DN
Adding MD?,
MD* +CN® = MD*+ DN*+ 2 CD-DN + 2 MC-DN
- MD'+ DN*+ 2 MD-DN = MN’
But AF, FE, EB are proportional to MC, CD, DN, hence the
desired result.

h. Theorem.* Let ABC be an isosceles triangle, with

AB = AC. With any points P and Q on AB as cenlers,
draw circles p, ¢ passing through B; and with centers R,
S lying on AC, draw circles r, s passing through C. Let
p and r meet at X and Y, qand sat Z and W.

If PR and QS meet at a poini T, then T is the center of a
circle passing through X, Y, Z, W; if PR and QS are par-
allel, X, Y, Z, W lie on a line perpendicular to them.

This theorem, apparently difficult, is easily proved by
means of the power relation. For if the perpendiculars to
AB and AC at B and C meet at D, then DB and DC are
equal tangents to the four circles, and these four circles are

* Affolter, Math. Annalen, vi. 1873, p. 596.
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orthogonal to the circle D (DB). Hence any two pairs of

their intersections lie on a cirele orthogonal to this circle; and

it is easy to see that T is the center of such a circle.
Interesting corollaries and special cases may be noted.

105. Theorem. Through P, the mid-point of a chord 1 of a
circle, let any chords AB and CD be drawn. Then AC and
BD cul  at equal distances from P, as do also AD and BC.

This simple appearing theorem is surprisingly difficult to
prove. It is a special case of a rather more general theorem,
which we may state and prove at once.

Theorem. Given a complete quadrangle inscribed in a circle;
tf any line cuts two opposite sides at equal distances from the
center of the circle, it cuts each pasr at equal distances from
the center.

Proof: * Let 4, B, C, D be on a circle with center 0, and
let AB, CD, AC,
BD, AD, BC
meet a line XY
a't E’ E’? F’ F’)
G, @’ respective-
ly. Let P be the
foot of the per-
pendicular from
Oto XY. If now
OE = OF’, which
Fia. 26 is the same ag

PE = PE', we

are to prove PF = PF’ and PG = PQ. Drawing A4’ a
chord of the circle parallel to XY, we see that AA’E'E is
an isosceles trapezoid; by equal angles we find that F', E,

*This proof is due to Mackay, Proceedings of Edinburgh Math. Society,
IIT, 1884, p. 38; the theorem is the point of departure of a remarkable article
by A. L. Candy, Annals of Math., 1896, p. 175. The reader who is acquainted
with projective geometry will recognize s familiar theorem on involutions.
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A’, D lie on a circle, so that angles EAF and F'A’E are equal,
and triangles EAF and E’A’F’ are congruent.

106. Theorem. Let AB and A’B’ be parallel but not equal,
and let AA’ meet BB’ ot P, and AB’ meet A'B at Q.

PA' PB m
Let ey
PA PB n
{71} B:_
Then A£=~—Q=—m—-

For triangles ABQ and B’A’Q are similar, hence
AQ_BQ_m
QB QA n
whence the desired result by composition. This theorem is a
lemma for the following rather more interesting one.

Theorem. Given in the plane k + 1 points, 4, A, . .. Ak,
P, and a fraction m/n. If we construct a broken line
PP\P.P; . . . Pi, laying off PP, along PA, and equal to m/n
of it; then each successive segment toward one of the A’s, with
multipliers in harmonic progression, viz:

. m _— M 5= 55 m
PP, = — PA;, P\P: = P\Asz, PPs = Pads, etc.,
n m+n 2m+n

then the same point P is the end of the broken line, in whatever
order the points Ai, As, . .. Ag are taken.

If there are only two points the preceding theorem estab-
lishes the result. If there are more than two, any change of
order can be effected by a succession of interchanges of pairs
of A’s, no one of which affects the result.

107. We close the chapter with a few theorems concerning
areas.
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Theorem. Two triangles whose vertices lie on the sides of @

given lriangle at equal distances from their mid-points are
equal in area.

That is, if P, and ¢4 lie on the side Az A3 of triangle 4,424,

A, so that AQP]. = QlAs, and if Pg, Qz,

P;3, Q; are similarly placed, then

area PP, P; equals area Q1Q:Qs.

B For let AP1= Qids = my,
43P = Q?‘il = Mg,
AP3 = QA2 = mg
Ay B [} Ag
Fia. 27 Since the areas of two triangles

having & common angle are pro-
portional to the products of the including sides,

area APyPy= MM A ke
(21071

But PyPyP; = A— A1PyP3— A P3Py — AP P;

_ A[l— (a2 —mg) ms _ (az— mg) M1 (@1 — mo)my
203 azay aas

—+— +
ay ag ag Qadsz gy aas
Working out the area of Q1Q:Q; by exactly the same method,
we obtain the same formula for it.

A case of special interest, which will arise again later
(276, 476 fi.), occurs when the three sides are divided in the
same ratio.

108. Theorem. If trwngl’e P1P2P3 s enscribed in AlﬂgAa,'

and if PyQ, 28 drawn parallel to AsA,, meeting A143 at @,

etc., then triangles PPz P; and QQ:Q; have equal areas. In
particular, if Py, Ps,Ps are collinear, and if P, elc., are
drawn as before, then Q,, Qz, Qs are collinear.

=A[1— m ™ ma)+mzvns Mg | My
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109. Theorem.* If the sides of a convexr quadrilateral in-
scribed in a circle, taken in order, are a, b, ¢, d, and if s denotes
half the perimeter, the area of the quadrilateral is given by

F=+V(s—a) (s—b) (s—¢)(s—4d)

It is to be noted that this is an extension of a familiar
result; if we take d = O, we
have the common formula for c
the area of a triangle.

Proof: let the figure be
ABCD, where AB = q, etc.
If it is a rectangle, the proof
isimmediate. If not,let BC

and AD meet at E, outside D\_d/'\A

the circle. Denoting CE by Fia. 28
x, DE by y, we have

area CDE=1V (z+y+¢) (x+y—c) @—y+c) (—z+y+o)
But triangles ABE and CDE are similar, and

area ABE a_z
area CDE ¢

Treating this proportion by division, in other words sub-
tracting each side of the equation from unity,

area ABCD ¢ — o’
area CDE ¢

Further, we have the proportions

z_y—d y _z—b

]
c a c a

* This and the following theorems, dealing primarily with the problem of
the area of a simple quadrangle inscribed in a circle, are taken, with one or
two exceptions, from Fuhrmann, Lc., pages 756-78. They seem to be less
well known than they merit.



82 TRIANGLES AND POLYGONS
Adding these and solving for =+ y, we may obtain

c

z+y+c= (a+b+d—o)

c—a

Similar expressions for £+ y — ¢, ete., are found at once.
Substituting and reducing, we find

mcug=c,," NV(E—a)(s—b) (s—¢) (s—d)
—a

whence the desired result.

Extension. It can be proved that for any convex quad-
rilateral having sides a, b, ¢, d, and the sum of one pair of
opposite angles equal to 2 u, the area A is given by

A= (s—a) (s—b) (s—¢) (s — d) — abed cos® u

We shall not take up the proof, as it involves long and rather
unpleasant trigonometric reductions. From this formula it
is immediately clear that of all the quadrilaterals that can be
formed with four given lines as sides, the largest is that one
inscribed in a circle; a fact that is of course demonstrable by
more elementary methods. The elementary texts, however,
overlook the necessity of proving the existence of such a cyclic
quadrangle. We now proceed to furnish a proof * that there
exists a quadrangle whose sides are equal to those of a given
quadrangle, and whose vertices lie on a circle.

Problem. To construct a cyclic quadrangle, given the lengths
of the sides in order.

Let a, b, ¢, d be four given lengths; and suppose that the
completed figure is ABCD, with AB=a, BC=b, CD =,
DA =4d. Draw CM so that £DCM = £ CAB, meeting

* McClelland, Le.
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AD at M. Then triangles CDM and ABC are similar; and
DM, being a fourth proportional to the given lines a, b, ¢, can
be constructed from the data bf the problem.

The construction, then, is effected by laying off segments
ADequal tod,and DM equal

be
to . Now we can deter-

mine two loci for the point c;
first, CD shall be equal to c,
hence we construct a circle
of radius ¢ about the known
point D. Second, since

AC a

CM ¢
a locus for c is a circle which can be constructed (68). By a
long algebraic computation which presents no difficulty, we
find that these two circles intersect, provided each of the four
lines is less than the sum of the other three; in other words,
provided that any quadrilateral whatever is possible with the
given sides. It follows that the point C can be located, and
we have the solution, which is essentially unique.

110. Suppose now that we have the same four lines, in a
different order. We observe that the quadrilateral may be
inscribed in the same circle that we have just found. And
since the solution is unique, we may make the following
statements:

Theorem. Given four lengths, a, b, ¢, d, each of which 3s less
than the sum of the other three. In any one of the three pos-
sible cyclic orders, they may be taken as the sides of a cyclic
quadrangle in one and only one way. The three quadrangles
thus determined are not in general similar; but their circum-
scribing circles are equal, and the three quadrangles have the
same area, namely
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F=+/(s—a)(s—b) (s—c) (s— d),

where s=1(a+b+c+d).

Any two of the three quadrangles have a diagonal of one equal

to a diagonal of the other.

111. The last remark is suggestive. The six diagonals of
the three quadrilaterals are equal in pairs. Let us designate
by e the line which separates a and d from b and ¢; by f, that
which separates a¢ and b from ¢ and d; and by g that which
separates @ and cfrom band d. With reference to these three
lines, we have a remarkable theorem.

Theorem. Let a quadrilateral be inscribed in a circle of
radius R, and let its three diagonals, in the sense of the fore-
going paragraph, be e, f, g. Then the area of the quadrilateral

8
efg
F =L
4R

The proof is based on the known formula (15 d) for the
area of the triangle; the areas bounded by q, b, f and by ¢, d, f
(fig. 29) are respectively

_af _cdf
Fi=yr ™ =R
Adding, and applying the theorem of Ptolemy,

_J _Ju
F‘m(“’b“d) 4R

Corollary. Weincidentally obtain formulas for the lengths
of the diagonals in terms of the sides:
fi= (ac+ bd) (ad + be)

(@b + cd)

f 9 __e
For Fwﬁ(ab+¢d)=4R (ac+ bd) ik (ad + be)

, elc.
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whence
S act+bd J ad+ b _
g ab+ecd e ab+cd eg = ab+ cd

Multiplying together these three, we obtain at once the re-
sult. From these expressions for e, f, and g, we may in turn,
with the aid of 109, work out a formula for R in terms of
the sides.

Exercise. Furnish complete proofs of all propositions in
the chapter whose proofs are omitted in whole or in part,
viz: 85, 86, 87, 93, 94, 96 (including corollaries), 97, 98, 99,
101 (including corollaries), 102, 103, 104, 108.



CHAPTER V
GEOMETRY OF CIRCLES

112. In Chapter III we have studied the essentials of the
geometry of the circle, with especial emphasis on the proper-
ties of coaxal circles and of the inversion transformation.
In the present chapter we carry somewhat further the same
studies. We add to our stock of working methods some addi-
tional tools nearly as important as those introduced in the
earlier chapter. These methods will not be extensively used
in the sequel, and the reader may without serious embarrass-
ment omit Chapters V and VI entirely, passing at once to the
geometry of the triangle in Chapter VII. It isstrongly recom-
mended, however, that the following portions be read; 113-
117, 126-133. Chapter VI is a further study in circles and is
in no sense prerequisite for the later work.

The first portion of this work is based on an important
theorem of Casey relating to coaxal circles; from this central
theorem we are led to consider several interesting extensions.
In the theory of inversion, we next develop the properties of
the “circles of antisimilitude ” with regard to which two given
circles are mutually inverse. We pass to a brief discussion of
poles and polars, a topic intimately related to inversion, and
finally to a special form of inversion in space, known as stereo-
graphic projection.

113. The following theorem, due to Casey, is an open
gesame to a number of theorems and developments.

Theorem. The difference of the powers of a point with
regard to two non-concentric circles is twice the product of the
distance between their centers by the distance from the point to
the radical azis of the circles (45, 98).
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The proof closely resembles that of the radical-axis theo-
rem (45). Let the given circles be Ci(ry), Cz(r2), P the given
point, PQ and PP’ the perpendiculars from P to the radical
axis LQ and the line of centers CiC:LP’ respectively. We
have then

Q P

[ 78 W oA

F1c. 30

Difference of powers = PCi’ — r> — PCy® + 1o
= PC*— (CiC: + PCY* — i+ 15°
=200 PC1— G0 — i + 15
=2 CiC2P’C1+ 2 C1Ce-C,L (46)
=2 C1_Cz'm
Corollary. The locus of a point, the difference of whose

powers with regard to two circles is constant, is a straight line
parallel to their radical axis.

Corollary. If a point moves on a circle, its power with regard
to a second circle is proportional to its distance from the radical
azis of the two circles. (The factor of proportionality is
eq1;18.1 1);0 twice the distance between the centers of the
circles.

This is the same as the foregoing theorem, when the power
with regard to one of the circles is zero.

114. Theorem. If a point moves on one circle of a coazal
system, the ratio of its powers with regard to two other circles
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of the system is constant, and is equal to the ratio of the dis-
tances between the corresponding centers.

Let the three coaxal circles be ¢, ¢1, ¢:; and let P be any
point of ¢. Denoting the perpendicular from P to the radical
axis by PQ, and the power of P with regard to any circle ¢ by
P(c), we have

P(c) =0, P(a) =2 PQ-CC:, P(c)=2PQ-CC:
whence immediately
P(c) _ CCy
P(c2) CC.
as was to be proved.
115. Theorem. Conversely, the locus of a point whose

powers with regard to two fized circles are in a constant ratio
18 a circle coazal with them.

For let P be any position of the point satisfying the condi-
tion; and let X be the center of the circle which is coaxal with
the given circles and passes through P. Then

P(a) =2CiX-PQ, P(e)=20CX-PQ

P) _ CX
P(cy) CX

The left-hand member is constant by hypothesis; hence X is a
fixed point of C1Cq, and P is always on the same circle of the
coaxal system.

As a special case, we have already noted that if a point
moves on a circle of a coaxal system its distances from the
limiting points of the system are in a constant ratio.

Theorem. The circle of similitude of two circles is coaxal
with them. (Cf. 37, 59.)

116. The theorem of Casey, as stated, is not applicable to

so that
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concentric circles. We have the following substitute, which
enables us to establish the theorems of 114 and 116 for con-
centric circles.

Theorem. The difference between the powers of a point with

regard to two concentric circles equals the difference of the
squares of the radiz, and is everywhere constant.

Theorem. The locus of a point whose powers with regard to
two concentric circles are in a constant ratio, s a circle con-
centric, i.e., coaxal with them.

We proceed to some applications of this group of theorems.

117. Theorem. If AP, BQ, CR are the tangents to a circle
K from three points A, B, C, the circle through A, B, C is
tangent to K if and only if

AB-CR+ AC-BQ+BC-AP=0

We recognize this as of the same form as Ptolemy’s theo-
rem; when K is a null-circle this theorem reduces to that of
Ptolemy. In the next
chapter we shall have a
further generalization
concerning the common
tangents to four circles
(172).

Proof : designating by
J the circle through
the points 4, B, C, we
first assume that this
circle is tangent to K at
a point L. Hence we
may regard L as a null-
circle and the three
cireles J, K, L are mem-
bers of a coaxal system of the third type. Therefore, by 113,
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second corollary, as a point moves on J its powers with regard
to K and L are in a constant ratio:

AP=c- AL, BQ=c¢BL, CR=cCL
But A, B, C, L are concyclic. Supposing that B is opposite
L, we have by Ptolemy’s theorem
BL-AC = AL-BC+ CL-AB
Multiplying through by ¢ and substituting, we have
BQ-AC = AP-BC+ CR-AB

as was to be shown. Conversely, we shall now assume that
this equation is true, and prove that the circles are tangent.
The locus of a point X, such that

AX AP

CX CE
is & circle (B8); this circle cuts the circle A BC once on each
side of AC. Let M be the intersection opposite to B;

then AM _ cM

A

=t

<]

By Ptolemy’s theorem,
BM-AC= AM-BC+CM-AB

Substituting, BM-AC = t-AP-BC+ t-CR-AB
Comparing this with the equation of the hypothesis, we see
that .

BM = t-BQ
so that B is also a point on the same circle ACM. That is,
the circle through A, B, C is coaxal with K and the null-circle

M. But M ison the circle ABC, hence the coaxal system is of
the third type, and all its members are tangent at M.
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118. Theorem. The tangents to two circles at any four col-

linear points intersect at four points on a circle coazal with

the given circles.

For let a line cut a circle at P and Q, and a second circle at
R and S. Let the tangents to the circles at P and R, for
instance, meet at A; then the ratio of the tangents to the
circles from A is

E: sin Z APQ
AR sin LARS

Since the tangents to either circle make equal angles with the
secant, it follows that for the four points this ratio has a con-
stant value, so that by 115 the points are on a circle coaxal
with the given circles.

A special case occurs when the line goes through a center
of similitude of the circles; two of the points of intersection
are at infinity, and the other two are on the radical axis.

Theorem. If tangents are drawn to two circles from a mov-
ing point on a circle coazal with them, the line through the
points of tangency culs the circles in chords having a constant
ratio. In particular, if a line cuts two circles in equal chords,
the tangenis at the points of intersection meet on the circle
of similitude, and conversely.

119. The theorems of Poncelet concerning polygons in-

seribed and circumscribed to circles furnish an interesting ap-
plication of the foregoing power theorems.

Lemma. If the vertices of a complete quadrangle are on a

circle, a transversal that cuts two opposite sides at equal angles

cuts each pair at equal angles.

Let A, B, C, D lie on a circle, and let a line XY cut the
circle at X and Y and meet AB and CD at equal angles at P
and @Q respectively. Then
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X AB, XY= % XY,CD
But X BD, AB= X.CD, AC
Adding, X BD, XY = X XY, AC
as was to be proved.
Lemma. If a line
makes equal angles
with the opposite sides
of a cyclic guadrangle,
a circle can be drawn
tangent to each pair
where this line meets
them; and these three
circles are coazxal with
the given circle.

Since the members of

\b
\_/’/ c each pair make equal
angles with the trans-
Fic. 32 versal, a circle can be
drawn tangent to them
at the intersections. Consider now two of these circles; we
have the tangents to these circles at collinear points, as in
118; hence the intersections of these tangents, namely 4, B,
C, D, lie on a circle coaxal with the two circles before us. It
follows that the four circles are coaxal.
120. Theorem. If a quadrangle inscribed in a fized circle
moves 8o that two opposite sides remain tangent to a fived
circle, any pair of opposite sides are tangent in each position
to some circle coazal with the two fixed circles.
121. Theorem. If a triangle moves continuously with its
vertices on one circle of a coazal system, while two of its sides
continuously touch other fized circles of the system, then the
third side touches a fized circle of the system.*
* As this theorem is ordinarily stated, without the stipulation of continu-
ity, it is not true. If we postulate that the triangle be inscribed in a circle

while two of the sides are tangent to other circles, then the third side is tan-
gent to one or the other of two different circles.
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Let A,A:4; and BiB:B; be two positions of a triangle
inseribed in a cirele ¢ of a coaxal system, while 4142 and B,B;
are tangent to a circle ¢;, 4145 and B,B; to a circle c;, We
wish to prove that A;A; and B:B; are tangent to another
circle ¢; of the same coaxal system. Consider the quadrangle
A,B,A;B;; since two of its opposite connectors are tangent
to a circle, so also are another pair, namely A;B; and A;Bs.
Similarly, AiB: and AsB; are tangent to a circle of the
gystem. Now in a coaxal system there are generally two
circles tangent to a given line, as 4,B,; and we have to de-
termine whether the circle ¢’ which touches A1B; and A2B,
is the same as ¢/, which touches A,B; and A3Bs, or distinet.
By the principle of continuity we can show that they are
identical. For let BiB:B; move continuously into A;A4243;
then ¢’ and ¢’ both move continuously into the given circle ¢,
while 4,B; and A»B; move into the positions of the tangents
to ¢ at A, and at A respectively. The tangent to c at 4, is of
course tangent also to a second circle ¢ of the coaxal system,
which is on the opposite side of the radical axis. As B, moves
into the position A, there are always two circles of the coaxal
gystem tangent to A,B;; one of them moves into the limiting
position ¢, the other into ¢. But both ¢’ aand ¢"” move into ¢,
not into €, hence these two are at all times identical.

Hence we have a circle of the system touching A;B; and
AsBs. Therefore, by the same argument used before, there is
a circle ¢; tangent to A24; and B:Bs;. But AsA; is a fixed
line, and as BxB; moves continuously it can be tangent to
only one fixed circle. This completes the proof.

122. Theorem. If a polygon moves with its vertices on a
fized circle, and if each of its sides with one exception is known
to touch a fized circle of a coazal system including the first
circle, then the remaining side touches a fized circle of the sys-
tem, and each of the diagonal connectors touches a circle of the
system.



9 GEOMETRY OF CIRCLES

This is an immediate consequence of the foregoing theorem.
Whenever two lines from a vertex are known to touch circles
of the system, the line joining their extremities also touches a
circle.

In particular, it may happen that all the sides of the poly-
gon touch one and the same circle. We then have the follow-
ing theorem.

Theorem. If two circles are so related that a polygon can be

inscribed to one and circumscribed to the other, then infinitely

many polygons can be so drawn, and each diagonal of the
variable polygon is tangent to a fized circle.

123. The problems relating to a triangle inseribed to one
circle and circumseribed to another will be considered in due
order in 207. At this time we may consider briefly the quad-
rilateral so construeted.

Theorem. If a moving chord of a circle subtends a right angle
at a fized point M, the mid-point of the chord and the foot of
the perpendicular on it from M trace one and the same circle;
the point of intersection of the tangents at the ends of the chord
also traces a circle; and the three circles are coazxal, with M as
one limiting point of the system.

Forlet AB be the moving chord, O its mid-point, H the foot
of the perpendicular; and let the tangents to the given circle at
A and B meet at P. Then

OM = OA = BO
OM* = — OA-OB

and the powers of O with regard to the given circle and the
null-circle M are in a constant ratio — 1, whence O moves
on a circle coaxal with these two. Also by similar triangles,

HM’=— HA-HB,
and H is always on the same circle. Finally, O and P are
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inverse points with regard to the circle, hence the locus of
P is another circle of the same system.

124. Theorem. If a quadrilateral is circumscribed about a
circle, its vertices lie on another circle if and only if the lines
joining the points of contact of opposite sides are mutually
perpendicular.

For let the sides of a quadrilateral 4;A2A434; be tangent
to a circle ¢ at By, B, Bs, Bs;if B1Bs and B, B, are mutually
perpendicular at a point M, then each of the chords B, Bs,
B,Bs, BsB,, BsB; subtends a right angle at M, and by the
previous theorem A1, 4z, As, A, lie on a circle. Conversely, if
these four points are assumed to lie on a circle, we can easily
prove by equal arcs that B, Bs and B;B; meet at right angles.

Corollary. If two circles are so situated as to admit a quadri-

lateral inscribed in one and circumscribed to the other, they

admit infinitely many; any point of the first circle may be

taken as a verlex.

For under these circumstances, wherever the point A, islo-
cated, if the tangents 418 and A,B, are drawn, then BiB;
will subtend a right angle at M.

125. Theorem. If r and p are the radii of two circles admat-
ting in- and circumscribed quadrilaterals, and d the distance
between their centers, then

R T B
=t +d? o

For let the line of centers cut the first circle in A, and As;
let the sides of the quadrilateral A, AsA3A4 be tangent to the
second circle at B, Bs, Bs, Bi, so that B:B; and B:B; are
perpendicular to the line of centers OC, say at D and E.
Then, since A;A243 is a right angle, B,O is perpendicular to
B;0, and triangles ODB; and B.EO are congruent.
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But -OT)-S + 171?12 = 92
hence OD’ + OF* = o*
P’ P’
. D= _
Since O r1d and OF —

we get the desired equation after reducing,

CIRCLES OF ANTISIMILITUDE

126. Definition. A circle of antisimilitude of two circles is
a circle with regard to which they are mutually inverse.

We have already proved that the center of inversion is a
center of similitude for any two mutually inverse cireles, and
that corresponding points on these circles are antihomologous.
Hence two given circles have at most two circles of antisimili-
tude, which in all cases are coaxal with them. In order that
a center of similitude of two circles may be the center of a
cirele of antisimilitude, it is necessary and sufficient that the
constant product of the distances to antihomologous points
be a positive number; then this number is the square of the
radius of inversion. Viewing all the cases, we are enabled to
state the following results.

127. Theorem. Two intersecting circles have two circles of
antisimilitude, passing through the points of intersection and
mutually orthogonal, with their centers at the centers of simali-
tude of the given circles. Two non-infersecting or tangent cir-
cles have a single circle of antisimilitude, which is coazal with
them and whose center is the external or the internal center of
similitude, according as the circles are mutually external or one
18 inside the other.

128. If the given circles are transformed by inversion into

concentric cireles or straight lines, we may deduce the results
just given by referring to the simpler figure.
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Theorem. Two concendric circles have a single circle of
antisimilitude, which is concentric with them and whose
radius is the mean proportional of their radii. Two inter-
secting straight lines have two circles of antisimilitude, their
angle bisectors, which are mutually orthogonal.

129, Theorem. Any fwo circles can be transformed by
tnwersion info equal circles.

It is sufficient to place the center of inversion on either
circle of antisimilitude; the latter then inverts into a straight
line, and circles inverse with regard to it are equal and sym-
metrical.

Theorem.* Given three circles, there exist not more than
eight points, any one of which being taken as center of inver-
sion, the transformed circles are equal. There may, however,
be no such points.

The result will be achieved if the center of inversion is an
intersection of circles of antisimilitude of any two pairs of the
given circles. Through such a point obviously passes a circle
of antisimilitude of the third pair. In the most favorable
case, when all the circles intersect and there are three pairs of
circles of antisimilitude, those of any two pairs will intersect
in eight points; on the other hand, it may well happen that no
two circles of antisimilitude intersect. This occurs, for in-
stance, if one circle be very large, while the others are rela-
tively small and at a great distance from the first and from
each other.

This negative result is highly regrettable, for it would be a
real advantage to be able in all cases to invert three given
circles into equal circles. In the special case that the given
circles are concurrent, this transformation is always possible.

Corollary. There exist at most eight centers of inversion,

* Incorrect versions of this theorem are frequent; ef. Lachlan, p. 223, and
Casey, p. 90. The statement enunciated by McClelland, p. 246, is correct.
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with regard to which three given circles invert into circles with

any chosen radii. There may, however, be no such point.

130. Theorem. There exists in general an inversion by

which the inverses of three given points are vertices of a triangle

stmilar to a second given triangle.

Suppose triangles ABC and PQR are given, and it is de-
sired to effect an inversion of A, B, C into three points
A’, B’, C' such that triangle A’B’C’ is similar to PQE; then
by 76, the center of inversion O is determined by the equations

% AOB = % ACB+ X PRQ
% BOC = % BAC+ %.QPR

as the intersection of two circles, the former through A and B,
the latter through B and C. (See, however, 75, remarks.)

Corollary. Any two triangles may be so placed that their
vertices are mutually inverse with regard to a circle.

131. Theorem.* Any four poinis not on a circle may be
inverted into the vertices and orthocenter of a triangle.

To prove this theorem, we first consider the circles of anti-
similitude of three circles ABC, ABD, ACD through a point
A. If we invert these three circles into straight lines, B'C”,
B'D’, C'D’, the circles of antisimilitude are transformed into
the bisectors of the angles of triangle B'C’D’. These angle
bisectors are concurrent at four points, therefore in the original
figure the six circles of antisimilitude are concurrent at four
points. Now let one of these points be taken as a center of
inversion. The three circles of antisimilitude through it are
transformed into straight lines, hence the circles ABC, ABD,
ACD are transformed into equal circles. Whence as indi-
cated in 104 the intersections 4", B”, C"", D" of these equal

* Concerning this and the following theorems, cf. Johnson, *“On the Circles

of Antisimilitude of the Circles determined by Four Given Points,” American
Mathematical Monthly, XXX, 1923, p. 250.
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circles have the property that any one is the orthocenter of
the triangle of the other three.

132. Theorem. Any four poinis can be inverted into the
vertices of a parallelogram.

If the four points are not on a circle, we consider, as before,
the circle through each three of them, and the circles of anti-
similitude of these four circles. Besides the four points al-
ready determined, where these are concurrent, the circles of
antisimilitude of ABC and ADC will meet those of ABD and
CBD at four other points. (Consideration of the figure as
simplified by inversion will demonstrate the real existence of
these intersections.) If such a point is taken as center of in-
version, the resulting circles will be equal in pairs and their
intersections will be vertices of a parallelogram.

Theorem. Any four points on a circle can be inverted into

the vertices of a rectangle.

Let A and C separate B and D on a circle. The circles or-
thogonal to the given circle, the one at A and C and the other
at B and D, will intersect at two points X and ¥. Let X be
a center of inversion, then the circles ACX and BCX invert
into lines intersecting at ¥’, and the given circle into a circle
orthogonal to them, with its center therefore at ¥’. Hence
A’C’ and B'D are diameters, and the figure is a rectangle.

133. Some of the foregoing theorems, and others of the sort,
are intimately related to the following general theorem.

Theorem. If two polygons are inscribed in the same circle,
and the connectors of corresponding vertices are concurrent at
a point C, the inverse of either polygon with regard to C as
center of inversion is homothetic to the second polygon.

For as we saw in the proof of 71, the mutually inverse points
are antihomologous on the given circle and itsinverse. Hence
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the points here in question are homologous, with C as homo-
thetic center.

Numerous applications of this theorem are obvious. The
form of the triangle inverse to a given triangle is at once de-
termined when the center of inversion is specified. In the
proof of the second theorem of 132, if either X or ¥ be con-
nected with the four given points, the connectors meet the
circle again at the vertices of a rectangle. As another appli-
cation, we may consider the harmonic quadrangle.

Definition. Any quadrangle whose vertices arc inverse to
those of a square is a harmonic quadrangle.

Theorem. A cyclic quadrangle is harmonic if and only o

the products of its opposite sides are equal.

For this is a property of a square, and of no other rectangle;
and by 68 c the property is unchanged by an inversion.

Theorem. Lines from the vertices of a square through any
point cut the circumscribed circle in the vertices of a harmonic

quadrangle.

POLES AND POLARS

134. The theory of poles and polars belongs properly to the
domain of projective geometry, and can hardly be adequately
treated by elementary methods. But in view of its rather
close association with inversion we give it some brief consider-
ation.

Definition. If two points are inverse with regard to a cir-
cle, the straight line through the second which is perpen-
dicular to the line of the points is called the polar of the
first with regard to the circle. The point is called the pole
of the line.

135. The following properties are immediate consequences
of the definition.
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Theorem. Every point except the cenler of inversion has a
definite polar, and any line not passing through the center has
a pole. The polar of a point on the circle of inversion is the
tangent to that point, and the pole of a tangent is the point of
contact; in no other case does a polar pass through its pole.
If a point is outside the circle, its polar ts the line joining the
points of contact of the tangents from it to the circle. The an-
gle between two lines equals the angle subtended at the cenler
of inversion by their poles.

For completeness, the pole of the center of inversion is
defined to be the line at infinity; and the pole of any diam-
eter of the circle of inversion is the point at infinity in the
direction perpendicular to it.

136. Theorem. If a point lies on the polar of a second, the
second is on the polar of the first.

For let Q lie on the polar of P; and denote the inverses of
these points by Q’ and P’, the center of inversion by O. Then
the polar of P is perpendicular to OPP’ at P’, and OP'Q is a
right triangle. But triangles OP'Q and OQ’P are similar,
hence P is on the perpendicular to OQ' at @', which is the
polar of Q.

Hence, if several points are collinear, their polars are con~
current; and if several lines are concurrent, their poles are col-
linear. The pole of the line joining two points is the poini of
intersection of the polars of the points.

137. Theorem. If secants are drawn to a circle through a

fized point, the point of intersection of the tangents where any

secant meets the circle lies on the polar of the given poini.

That is, if through a fixed point A we draw a line meeting
the circle at P and @, the tangents at P and @ meet at a point
T on the polar of A. For the polar of 7 is the line PQ; and
since PQ passes through A, then T lies on the polar of A.

Exercise: State and prove the converse theorem.
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138, Definition. Two points, each of which lies on the
polar of the other, are called conjugate points with regard
to the circle; and two lines, each of which passes through
the pole of the other, are called conjugate lines.

Theorem. If the line joining two conjugale points meets the
circle, either pair of points divides the other externally and
wnternally in the same ratio; that is, any two conjugate points,
with the points where their line meets the circle, form a har-
monic set (87). Conversely, any two points which divide har-
monically a secant of a circle are conjugate with regard to it.*
Let O be the center of the circle, P and Q any conjugate
points. Let PQ cut the circle at X and ¥, and let the circle
XYO cut OP at R.
Then triangles OXP
and ORX are similar,
X and therefore R is the
\n inverse of P, RQ is its
© polar, and PRQ is a
right angle. In tri-
angle XYR, RP bi-
sects the exterior angle
Fic. 33 R; therefore RQ,
which is perpendicular
to it, bisects the interior angle. We know, however, that the
bisectors of an angle of a triangle divide the opposite side in
the ratio of the adjacent sides, and therefore P and Q divide
XY internally and externally in the same ratio, as was to be

proved.

Corollary. The locus of the harmonic conjugates of a given
point with regard to the infersections of the circle of reference
with variable secants through the point, is the polar of the point.

139. Theorem. If from a fixed point two secants are drawn

* This is a projective theorem, and most proofs depend on projective prin-
ciples. The above gimple proof is adapted from Lachlan (p. 152).

Y.
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to a circle, and their extremities are connected in pairs, the
opposite connectors intersect on the polar of the point.

From A let lines APQ and ARS be drawn to a circle; let
PS meet QR at Y, and PR meet QS at Z. We wish to prove
that ¥ and Z are on the polar of A.

b

tn
=)
-8

Fic. 34

A simple proof of this theorem can be based on Chapter
VIII (cf. 226); the following proof, though apparently for-
midable, is a straightforward application of 84.

Let YZ meet APQ at M, and ARS at N. It is sufficient
to show that

Wp__AP , NE__AR
MQ AQ NS 4S8
We have by 84
EP=ZFsinAMZP YQ _ ZQsin LYZQ
MG Z0sn 2MZQ *"° YR ZRsin ZYZR
ZP _ SPsin ZQSP YE SEsin ZPSR

7R~ SRsn Z0SE ™™ Y0 SQsin ZP3Q
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Combining and canceling,
MP SP sin Z PSR

MQ  3Qsin ZQSR
But similarly, by direct application of 84
AP SPsin ZPSR
AQ 8Qsin LQSR

whence the desired result for M at once. The same method
may be applied at once to N. Hence MN is the polar of A.

Corollary. The polar of a point with regard to a circle can
be constructed with ruler only, by means of a complete quad-
rangle inscribed in the circle.

140. Problem. To draw the tangents to a circle from an
outside point.

We draw the polar by the method indicated above, and the
tangents are the lines from the given point to the intersections
of circle and polar. This construction with the ruler only is
frequently used in practice.

141. Theorem. The circle having as extremities of a diam-
eler two points conjugate with regard to a given circle is orthog-
onal to the latter. Conversely, if two circles are orthogonal,
the extremities of any diameler of ome are comjugate with
regard to the other.

Corollaries. a. If P is a fixed point of a given circle, the
polars of P with regard to all circles orthogonal to the given
circle pass through the fixed point diametrically opposite to P.
b. The distance between two conjugate points is twice the
tangent to the circle from the point midway between them.

c. The polars of a fixed point with regard to the circles of a
coazal system pass through a second fixed point; the two
points are extremities of a diameter of a circle orthogonal to
the circles of the coazxal system.
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d. The square of the distance between two conjugale poinis
equals the sum of the powers of the points with regard to the
circle.

142. Theorem (Salmon). The distances from the cenler of
a circle to any two points are proportional to the distances from
each point to the polar of the other.

Let O be the center of the circle, A and B any points, A’ and
B’ their inverses, A P and BQ the perpendiculars on the polars
B'P and A’Q. If we drop the perpendiculars A4, and BB,
on OB and OA respectively, then we have similar triangles,
and

Again, since A, B, A’, B’ are concyclic,

04 _ OB’
OB 04’
Combining these proportions,
04 _ 0B -0A_ AP
OB 0A'—0A BQ
as was to be shown. From this theorem a number of mildly
interesting consequences can be derived.

143. Definitions. Two triangles are conjugate with regard
to a circle when the vertices of the one are the respective
poles of the sides of the other. The relation is evidently
reciprocal. A triangle is self-conjugate with regard to a cir-
cle, if each of its vertices is the pole of the opposite side.

Theorem. A triangle self-conjugate with regard to a circle is
constructed by taking one vertex arbitrarily, the second on the
polar of the first, and the third at the point of intersection of
the polars of the first two.
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Theorem. If a complete quadrangle is inscribed in a circle,
the diagonal points, or intersections of opposite connectors, are
vertices of a self-conjugate triangle.

Theorem. The allitudes of a self-conjugate triangle pass
through the center of the circle.

This follows at once from the definitions.

STEREOGRAPHIC PROJECTION

144. The transformation known as stereographic projection
is a simple relationship of the points of a plane to those of a
sphere, whereby any figure of the plane is transferred to the
surface of the sphere. Because of the direct relation of this
transformation to that of inversion, and the consequent pres-
ervation of many properties of the figure, we shall outline itg
essential principles.

Definition. Given a sphere and a plane tangent to it, the
point of the sphere diametrically opposite to the point of
contact is taken as center of projection; a point of the
sphere and a point of the plane shall be said to correspond
by stereographic projection if they lie on a line through the
center of projection.

We designate the point of contact of sphere and plane as the
south pole S of the sphere, the center of projection as the north
pole N, the center of the sphere O and its diameter a.

145. Theorems. Every point of the sphere except the north
pole N has a corresponding point in the plane, and to every
finite point in the plane corresponds a point of the sphere.
Straight lines through S correspond to meridians of the
sphere, and circles about S to circles of latitude. In particu-
lar, to the egquator of the sphere corresponds a circle in the
plane, whose radius 1s a.

If we adjoin to the finite plane a single point at infinity, as
was suggested in 64, then this point corresponds to N, and
the correspondence is without exception.
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Considered as an actual map of the sphere on the plane, the
projection furnishes a satisfactory representation of a limited
region; in fact, stereographic projection is one of the most
frequently used methods of construction of geographic maps.

146. Theorem. If P and P’ are any corresponding points
onthssp!wremdtheplanerespedz’vdy,andudmwwsthe
angle PNS,

NP =acosu, NP'=asecu, SP=asinu, SP'=atanu

Corollary. If P and Q are symmetrically placed with regard
to the equator of the sphere, the projected poinis P’ and Q' in
the plane are inverse with regard to the circle S (a) which s the
map of the equator.

Q P’ 5
Fic. 35

For if £ PNS and Z QNS are complementary, so that NP
equals SQ, etc., then

SP' = atan 2 PNS, SO’ =atan ZQNS,
SP'-8Q' = o

This theorem furnishes a strikingly interesting interpreta-
tion of inversion. To perform an inversion, we first project
a figure stereographically on a sphere; then interchange the
hemispheres by reflection with regard to the equatorial plane,
and project stereographically back into the plane.
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Corollary. Any two_corresponding points P, P' are col-
linear with N, and NP-NP' = o°.

147. Theorem. A stereographic projection is precisely a
space inversion with regard to a sphere whose center is N and
whose diameter is a.

We may define and discuss inversion with regard to a sphere
by closely imitating the corresponding theory in the plane.
Two points are inverse with h regard to a sphere O (q) if they
are collinear with O, and OP-OP’' = a®. The inverse of s
sphere is a sphere, with the special case that a plane corre-
sponds to a sphere through the center of inversion. A sphere
orthogonal to the sphere of inversion is unchanged by the
transformation. The reader will find it interesting to carry
out these analogies in detail.

Now the stereographic projection evidently is just this type
of transformation, for NP-NP' = a>. The given plane is
transformed into the given sphere, point by point. From
this we may deduce the essential invariant properties of a
figure when it is projected on a sphere.

148. Theorem. A straight line in the plane transforms into

a circle through the cente* of projection, and conversely.

For the projecting rays lie in a plane through A in either
case.

Theorem. A circle in the plane projects stereographically

into a circle of the sphere, and conversely.

For let a proper circle be given in the plane. Determine
the stereographic projection P’ of any point P of the circle;
and consider the sphere Q passing through the circle and the
point P’. Since the sphere passes through two mutually in-
verse points with regard to the sphere N (a), it is orthogonal
to that sphere. It follows that the given circle transforms into
a curve lying on the sphere Q, and also on the stereographic
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sphere. But the intersection of two spheres is a circle. Con-
versely, this proof is at once reversible.

149. Theorem. The angle between two lines in the plane

equals the angle between their stereographic projections.

For the lines AB, AC in the plane transform into circles
NA'B’, NA'C'. The tangents to these circles at N are paral-
lel to AB and AC respectively; and the circles intersect at
equal angles at N and A’. Hence the angle at A’ equals the
given angle at A.

We see then that a stereographic projection transfers a
plane figure to a figure on a sphere, and conversely; that angles
and circles are preserved, just as in a plane inversion; that a
certain inversion in the plane is represented by a simple reflec-
tion of the sphere with regard to its equator; and that the
transformation itself is a space inversion of the plane into the
sphere, with respect to another sphere.

Exercise. Give complete proofs of the following proposi-
tions in this chapter: 116, 118, 120, 122, 127, 128, 133, 135,
136, 137, 140, 141, 143, 145, 146, 147.



CHAPTER VI
TANGENT CIRCLES

150. In this chapter* we apply the general principles which
we have been developing, to the specific problems of systems
of tangent circles. To fwo circles there are infinitely many
tangent circles, and the first part of the chapter is devoted to
the study of these systems of circles, and to a number of inter-
esting configurations associated with them. We then con-
sider various aspects of the problem of Apollonius, to con-
struct a circle tangent to three given circles. This famous
problem has a finite number of solutions, not exceeding eight.
The next problem is that of four circles; if four given circles
are tangent to a circle, they must satisfy a special condition.
The nature of this condition was discovered by J. Casey, and
is worked out carefully. The chapter closes with a brief con-
sideration of circles intersecting at constant angles, and at
equal angles.

161. Definitions. Two circles are said to be externally tan-

gent, when they lie on opposite sides of the tangent at their

point of contact; infernally tangent, when on the same side.

If a circle is tangent to two others, we distinguish between
the case that it has like contacts of either type, and the case
that it is internally tangent to one and externally tangent to
the other.

162. Theorem. Two circles are externally tangent if the
distance between their centers equals the sum of their radii;
internally tangent, if it equals the difference.

* As previously indicated, this chapter is not prerequisite for later work
and may be omitted without impairing the sequence.
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163. Theorem. If two tangent circles are subjected to an
inversion, the type of tangency ts unchanged, except when the
center of tnversion is inside one circle but outside the other.
164. Theorem. If a circle has like contact with two circles,
the poinis of tangency are collinear with the external homo-
thetic center of the two circles; if unlike contact, with the
internal center. In either case, the common tangents inlersect
on the radical axis of the two circles.

This is mercly a restatement of 61 e.

165. We now propose to study in detail the system of circles
tangent to two given circles. Several cases are obviously un-
like in detail, according as the given circles do or do not inter-
sect. In every case, we simplify the figure by inversion.

First, let us assume two fixed circles that do not intersect,
and invert them into concentric circles. Then we recognize
two sets of tangent circles, all the circles of each set being
equal. Those of one set lie between the concentric circles and
have unlike contact with them, while those of the other set en-
circle the smaller of the given circles and have internal contact
with both. The circles of the first set are all orthogonal to a
circle concentric with the given circles, and at every point of
this circle two of them are tangent to each other. The circles
of the second set have no common orthogonal circle, but cut a
fixed circle diametrically (49). Each circle of the second set
actually intersects all the circles of that set. We refer to
these two sets of circles as the direct and the iransverse system
of tangent circles respectively. From their properties as just
described we can by an inversion deduce the properties of the
tangent circles to the original circles.

Theorem. The circles tangent to two non-intersecling circles
consist of two systems, the direct and the transverse system.
There is one circle of each system through any chosen poini
of the region of the plane between the given circles; no circle of
the direct series separates the given circles, while every circle
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of the transverse system does so. If the circles are mutually
external, the direct system consists of circles having like con-
tact, and the transverse system of those having unlike conlact;
if one is within the other, the reverse is true. There is a com-
mon orthogonal circle to the direct system, bui not to the trans-
verse.

166. If the given circles intersect, we may invert them into
intersecting straight lines. The tangent circles then consist of
two series, with their centers on the bisectors of the angles
formed by the two lines. The two sets of circles are indis-
tinguishable except that the center of inversion lies in one of
the angles, and two of the circles in this angle pass through
that point.

Thus in the original figure:

Theorem. The circles tangent to two intersecting circles
consist of two systems, one of which, called the external series,
consists of all circles having like contact, including the tangent
lines; the other, the internal, consists of all having unlike con-
tact with the given circles. Efither system has a common
orthogonal circle, coaxal with the given circles; and the circles
of the system are tangent to one another along this common
orthogonal circle.

By similar reasoning, we see that the circles touching two
giwen circleswhich are tangent to each other consist of two series,
namely the circles coaxal with them and another series having
the properties of the systems just described.

157. Referring to the inverted figures now and then for
inspiration, we are able to make the following assertions about
these systems of tangent circles.

Theorem. In every case, the circles tangent to two given
circles fall into two series, according as they have like or unlike
contact with the given circles. The points of contact with one
another of the circles of any series lie on a circle of antisimili-
tude of the given circles. If a circle coaxal with the given
circles cuts the circles of a tangent series, it cuts them all at a
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constant angle. Any circle orthogonal to the given circles cuts
them in four points which are points of tangency of a chain of
SJour tangent circles belonging alternately to the two series
(cf. 81 d). The points of contact of any two members of the
same serves are concyclic. An inversion which exchanges the
given circles either leaves unchanged every circle of a tangent
8eries, or inferchanges them in pairs. A circle of antisimali-
tude is orthogonal to all the circles of one series.

If care is not used in distinguishing the series of tangent

circles, difficulties may ensue. For example:

Theorem. If two circles touch two others, and belong to the
same series, the radical axis of either pair passes through the
corresponding center of similitude of the other pair.*

The proof is easy.

STEINER CHAINS

168. A Steiner chain of circles is a series of circles, finite in

number, each tangent to two fixed circles and to two other

circles of the series.

Given two non-intersecting circles, if we start with any
circl> of their direct tangent system, draw a second circle of
the same system tangent to the first, a third tangent to the
second, and so o3, it is possible but not inevitable that eventu-
ally the nth circle is tangent to the first. If this occurs, the
circles are said to constitute a Steiner chain.

169. Theorem. A Steiner chain transforms by inversion

into a Steiner chain; in particular, any Steiner chain can be in-

verted into a chain of circles tangent to two concentric circles.

We therefore derive all the propertics of Steiner chains from
the properties of the simplified figure, in which the given
circles are concentric.

In the three fullowing articles, theorems designated a relate

* Casey (Sequel to Euclid, p. 85) serenely omits to specify that the circles
belong to the same tangent system, and his theorem is therefore false.



114 TANGENT CIRCLES

to the simplified figure, and those designated b to the general
figure. Let O be the common center and r, 7’ the radii of two
concentric circles between which there is a Steiner chain; and
let C, Cy, r1, 75, be the centers and the radii of two circles into

which these two are inverted.

160. a. Theorem. Any set of circles tangent to the given
circles, such as a Steiner chain, may be rotated through any

angle about O.

b. Theorem. If two circles admit a Steiner chain, they
admit an infinite number, and any one of the direct tangent

circles is a member of one chain.

161. a. Theorem.
The common tan-
genis to the cir-
cles of the Stein-
er chain pass
through O, and
make equal angles
with one another.

b. Theorem. In
the general figure,
let K and L be the
limiting points of
the coazxal system
determined by the
given circles. (In
other words, one
of these points is
the center of in-
version, and the
other is the in-
verseof 0.) Then

a circle can be drawn through K and L, orthogonal to the given
circles, and tangent to any two adjacent circles of the Steiner
chain at their point of contact. These circles make equal angles

with each other at K and L.
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162. a. Theorem. Two concentric circles admit a Steiner
chain of n circles, encircling the common center m times, if the
angle subtended at the center by each directly tangeni circle
ts commensurable with 360°, £ TOT" = 360°-m/n.

b. Theorem. A criterion for two nom-concentric circles to
admit a Steiner chain is that the angle subtended at K or I,
by each tangent circle (as between the orthogonal circles
mentioned in 161 b) shall be commensurable with 360°. As
before, if the angle is 360°-m/n, the Steiner chain consists
of n circles, overlapping m times.

163. a. Theorem. The angle subtended at O by any directly
tangent circle equals the angle at the intersection of two trans-
versely tangent circles whose centers are collinear with O.

For the radii of the direct and the transverse tangent cir-
cles are respectively 4 (r — 7) and 4 (r -+ #*), while their dis-
tances from O to their centers are respectively 4 (» + 7*) and
3(r — /). Congruent triangles are obvious.

b. Theorem. Instead of the angle named in 162 b we may
take the equal angle between two circles of the transverse tan.-
gent series to the two given circles, whose poinis of contact
are on a circle orthogonal to the latter. (Cf. 167.)

164. We state without proof the following theorem of
Steiner.

Theorem.* If the number of circles in a Steiner chain is
even, any opposite pair of its members touch the given circles at
points of a circle orthogonal to the latter. Such a pazr of cir-
cles are themselves the base circles of another Steiner chain,
among whose members are the two given circles; if the charac-
teh;i:tz'c numbers of the two chains (162) are m, n and m!, n',
4

* For proof and references see Coolidge, Geometry of the Circle, pp. 31-34.
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THE ARBELOS

165, Definition. If A, B, C are three collinear points, the

figure bounded by semicircles on AB, BC, CA, all on the

same side of the line, is called the Arbelos or Shoemaker’s

Knife.

It has some distinctly amusing properties, which were
worked out in detail by no less a person than Archimedes.*
We content ourselves with a summary of the principal results,
leaving proofs for the most part to the reader.

G

A F D C E B
Fia. 37

Let C lie between A and B, and let the perpendicular to
ABC at C meet the large circle at @; let the direct common
tangent to the circles on AC and BC touch these circles at 7'
and W respectively, and intersect CG at S; and denote AC,
BC, AB by 27y, 213, 2.

a. Arc AGB = arc ATC + arc CWB.

b. GC* = TW* = 4ryry; CG and TW bisect each other at S,
which is therefore the center of a circle through C, G, T, W.

¢. The area of the arbelos equals the area of the circle having
CG and TW as diameters.

d. The lines GA and GB pass respectively through T and W.
* The most complete modern treatment is that of Mackay, Proceedings

Edinburgh Math. Sociely, 111, 1884, p. 2; other references are given by Simon,
le., p. 7.
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e. If circles are inscribed in each of the curvilinear triangles
ACG, BCG, these circles are equal, the diameter of either being

AC-BC _mn
AB r

Let the first circle touch C@, and ares AC and AB, at L, M,
N respectively, and let QL be a diameter. Then because M
and N are centers of similitude, AL and CQ meet at M, and
AQ and BL at N. Extend AN to meet CQ at Y, then the
altitudes of triangle ABY meet at L; BY and QC are parallel,
being perpendicular to AL. Then

QL_QY _CB
AC AY AB
whence the result.
J. The common tangent to the two circles at M passes through
B. (For L, N, A, C are concyclic.)

g. It can be shown by a long computation that the smallest
circle that is tangent to and circumscribes the two circles of (e)
18 equal to the circle on CG, and therefore equal in area to the
arbelos.

h. Theorem of Pappus. I'n the arbelos let us consider a chain
of circles ¢y, o, . . . all tangent to the circles gn AB and AC;
¢, shall be tangent to the circle on BC, c; to ¢;, and so on.
Then if rn represents the radius of cn, hn the distance from its
center to ACB,

bn=2n Tn
The proof depends on an inversion with 4 as center. The
series of circles are carried into equal circles tangent to two
parallel lines; and the result is based on proportions.
THE PROBLEM OF APOLLONIUS

166. We come next to one of the famous problems of geome-
try, associated with the name of Apollonius, namely:
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To construct the circle or circles tangent to three given circles.

It will be assumed that the given circles are not coaxal.
(We observe that for three coaxal circles there is no solution
except when the coaxal system consists of tangent circles.)
The contact of the required circle with each of the given
circles may be external or internal; hence we anticipate that
there will in general be eight circles satisfying the conditions
of the problem. Consideration of the various possibilities
shows us that in some cases there will actually be eight solu-
tions, while in other cases there are none.

We first analyze the problems by methods similar to those
used by Apollonius, but making use of more modern termi-
nology; then we shall consider a simpler modern solution.

167. We first note that if two circles are internally tangent,
and their radii are both increased or decreased by the same
amount, the resulting circles are still tangent. Likewise, if
two externally tangent circles are modified by adding to one
radius the amount subtracted from the other, the new circles
are tangent. Consequently, if the radius of a circle is changed,
while the radii of all circles tangent to it are increased or de-
creased correspondingly, the resulting circles are tangent.

Theorem. The problem of Apollonius is equivalent to the
problem of constructing a circle through a giwen point and
tangent to two given circles.

For let it be required to construct a circle tangent in as-
signed ways to three given circles; say, for definiteness, ex-
ternally tangent to all three. If such a circle exists, let its
radius be increased by the radius of the smallest given circle,
while the radii of the three given circles are simultaneously de-
creased by the same amount. Then the required circle passes
through a known point and touches two known auxiliary
circles.

168. Theorem. A circle having assigned conlacts with two
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given circles and passing through a given point passes also

through a second poini. Hence the problem of constructing

such a circle is equivalent to that of constructing a circle

through two given points and tangent to a fized circle.

For let the required circle be tangent to the given circles at
S and T;let A be the given point. We know (61 ¢, 154) that
the line ST passes through a center of similitude of the given
circles C; and if CA meets the required circle again at A’, then

CA-CA'=CS8-CT

Therefore A’ is a fixed point which can easily be determined.
If the product is positive, there is a circle of antisimilitude of
the given circles with center at C, and A’ is the inverse of A
with regard to this circle.

169. Problem. To construct a circle through two given

points, and tangent to a given circle. (Cf. B6.)

Let A, A’ be the given points, c the given circle. Draw any
circle through A, A’ and meeting ¢ at P, Q; and let PQ meet
AA’ at 0. Then the power of O with regard to the circle
equals OA-OA’. Drawing tangents to ¢ from O, the points of
tangency are also points of tangency for the required circles.
We have thus reduced the problem to that of drawing a circle
through three known points.

170. The foregoing solution yields two circles, and therefore
two solutions of the original problem, which are paired by
virtue of having unlike contacts with each of the three given
circles. We obtain the four pairs of solutions by the four dif-
ferent possibilities in 167; according as we increase the radii
of the two larger circles by the amount of the radius of the
smallest, diminish both, or increase one and diminish the
other.

171. For extensive references to the modern elaborations of
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this and related problems, one may consult the bibliography
of Simon.* Of the numerous solutions, the best known and
neatest is the following, due to Gergonne. This construction,
like the more elementary one already considered, yields the
required circles in pairs, the members of each pair having un-
like contacts with the given circles.

Construction.  Determine the siz homothetic centers of

similitude of the given circles; these lie three by three on four

lines. We determine the poles of one of these lines with regard

to the three circles; and connect these poles with the radical
center of the circles. If
these connectors meet the
respective circles, the
three pairs of intersec-
tions are the poinis of
tangency of two of the
required circles.

Let the given circles
be ¢, ¢, c3, their centers
Oy, Oz, O5. Let us con-
sider a pair of the re-
quired tangent circles,
say those which have
like contacts with the
three given circles.
Designating these by ¢
and ¢, the points of tan-
gency by Py, Ps, P, @,
X X, X3 s, Qs respectively, and

Fia. 38 the external centers of
similitude of the given
circles by X;, X, X; respectively, we recall first that PoP;
and Qs pass through Xj, and that P,, P; and Q;, Qs are pairs
of antihomologous points;
* L.c., pp. 97-105.
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X\P;- XiPs = XiQe X1Qs

Tt follows that X lies on the radical axis of ¢ and ¢; and simi-
larly for X; and X;. Thus these three centers of similitude
are collinear.

Next, we observe that the given circle ¢; has unlike contacts
with ¢ and ¢; hence the line joining the points of contact P;Q;
passes through the internal center of similitude of ¢ and &.

But this same point is the radical center of the three given
circles. For an inversion with regard to their cojmmon or-
thogonal circle (or if necessary an inversion followed by a ro-
tation through 180°) leaving the three given circles in place,
exchanges the circles ¢ and é. Hence PiQ:, P2Q», PsQ:s pass
through the radical center R.

Finally, the tangents to ¢, at P; and @y meet on the radical
axis X;XgXa; that iB, the pole of PlQl ison X}_XgXa. It fol-
lows that the pole of X;X,X; with regard to ¢, is on the line
PyQ;.

Hence the construction: to determine P;Q;, we first deter-
mine the line X;X,X;, and its pole with regard to ¢;; and also
the radical center R. ‘The line from R to the pole cuts ¢; in the
points P, 1 and Ql.

By similar argument we find that each external center of
similitude is collinear with two internal centers; the poles of
the three lines thus determined are connected with the same
radical center R, to find the points of contact of the other
three pairs of tangent circles. If it happens that a set of
lines from R fail to meet the respective circles, the corre-
sponding tangent circles do not exist.

CASEY'S THEOREM

172. Theorem. Four circles ¢, ¢, €3, ¢ are tangent lo a
circle or straight line, if and only if

by = bt = tulps =0
where by, for instance, 1s a common tangent to ¢, and c,.
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The remarkable theorem here loosely stated was first given
by John Casey,* but in incomplete form; for he establishes
only that when four circles touch a circle, this equation is true.
The converse theorem, which is the more important in the
applications, has frequently been proved under various re-
strictions.f We notice that the theorem may be regarded
as an elaboration of the theorem of Ptolemy. (Cf. 92, 117.)

173. Before proving the theorem of Casey, we establish the
following lemmas.

Theorem. The quotient of the square of the length of the
direct common tangent to two circles, divided by the product
of the radii, ts unchanged when the circles are subjected to an
inversion, provided the center of inversion lies inside both
circles, or outside both. The same is true of the transverse
common tangent; in other words, if n, v, are the radii of two
circles, and t; and b2 their direct and tmns;.'erse common tan-
gents respectively, each of the quantities :%, ?—f% s tnvariant
12 1y
with regard to an inversion whose center 7s inside both cir-
cles or outside both.§

* Sequel to Euclid, p. 102.

{ Bee, for instance, Lachlan, l.c., pp. 244-51. We shall follow with some
modifications a method of proof ascribed by Lachlan to H. F. Baker.

§ It must be noted that if two circles are subjected to an inversion whose
center is inside one and outside the other, the above theorem is not valid.
If the two circles, and therefore the inverse pair, do not intersect, then one
pair has four common tangents, and the other pair has none, so that the
theorem cannot even be stated. On the other hand, if the given circles in-
tersect, each pair has direct common tangents, but the theorem is not true
of these tangents. Casey (l.c., VI, 9) does not notice this failing case, and

2

erroneously states without qualification that the fraction :% is unchanged
2

1
by an inversion. It is possible to circumvent the difficulties that arise in this
situation, by setting up the formulas for the squares of common tangents

by = CCs — (n— "2)2, ?122 =CiCs — n+ 7'2)2

and choosing names for these which will still be admissible when they are
negative and the common tangents therefore non-existent. Then, in the
case which causes trouble, these two expressions are interchanged. The
theorems as stated in the text, however, are sufficient for our purpose.
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Let the given circles be Cy(ry), Ca(r2), and let C1C; cut the
circles at Py, @i, Ps, @y, 5o that PiQ; and P3Q; are in the same
direction as C;C;. Then if d = C,Cy,

-1
S

F1a. 39

PiQ: Q:\P; _ (@+n+r) d-—n—mn)_ @ — (n+ )

ITQ:-E_Qz 2r1°2r 4 i1y
ﬁ!'m — (d+ n— ?"g) (d— r+ ?’g) _ a2 - (?'1—' 'a"'g)2
m-m 211°2 1y 4 11y

These numerators, if positive, represent respectively the
square of the transverse and of the direct common tangent.

Next, if any circle orthogonal to the given circles cuts them
(in the same order as Py, @, P2, @) at Ry, Sy, Ry, Sy, then

mm - P;QE'Q-L_Pm, R_lﬁzm — ﬁe‘@l—Qﬂ
RS RS: P PiQy RS RS: P Pls
For by an inversion we can exchange the circle R1S1R2S,
with the line PiQ,P:Q.; and these fractions are invariant
(68 ¢).
Now let the given circles be transformed by inversion into
!(ry"), Co'(r'); and let Ry, Sy, Rs, S: be carried into Ry, 8Y,
R, 8y'. Then

Emz _ mm _ }E_l’»‘_g-:’." IWR:!' t_lﬂ

,2
arm B BS: RSl RS An'm
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and similarly for #;. (It can be shown that if the center of in-
version is inside one circle and outside the other, the order of
Ry, 8, R, &' is not the same as that of Ry, S;, R,, Sy; so
that &, and #, are interchanged, with some changes in sign.)

174. We proceed to a proof of the Casey criterion.

Theorem.* Let four circles ¢y, ¢, cs, ¢ be tangent to a circle k;
and etther none of them surround k, or all of them do so. Let
Ty denote the direct common tangent to ¢, and ¢, when these
have like contact with k, and the transverse if they have unlike
contact with k. Then if the points of contact of ¢, and ¢,
separate those of c; and cs on k,

Tlang + Tme - TuTgs = 0

First, we take a center of inversion on the circle k, thereby
transforming it into a straight line and the four circles ¢, o,
Cs, C4, into circles tangent to this line. Since the center of in-
version is inside all four circles or outside all four, the type of
contact is in no case changed. If the points of contact on this
line are A4,, A;, As, A4, we have at once

AAs AsAs+ A As- ArAy — A1As A3As =0

But 4,4; is the common tangent T, in the inverted figure.
We therefore divide each member of this equation by the
product of the square roots of the radii of the circles, apply
173, and clear again of fractions, whence the equation as
stated in the theorem.

176. Exercises. a. The invariants of 173, when the given
circles inlersect, represent respectively the square of the sine
and the square of the cosine of half their angle of intersection.
(Invert the circles into intersecting lines.)

* It does not appear that most of the writers have stated the exact limita-
tions on the validity of this theorem. Casey, Lachlan, and others, do not
sufficiently restrict it; while Coolidge unnecessarily limits its scope by stipu-
lating that the circles be mutually external. It will be evident that the
theorem as here given includes all the crses where the tangents in question
exist; in other words, all the cases in which the formula can be stated in terms
of real numbers.
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b. When four given circles are tangent to a null-circle their

common tangents sabisfy the Casey equalion.

(By inverting the circles into straight lines the Casey equa-
tion is transformed into a trigonometric identity.)

176. When four circles are tangent to a circle, as in the fore-
going theorem, there are three possible cases, according as all
the circles are on the same side of k, three on one side and one
on the other, or two on each side; and accordingly, all six of
the tangents in the Casey equation, or the three which touch
three of the circles, or one pair only, will be direct tangents,
while the rest will be transverse. We incorporate this con-
clusion into the statement of the converse theorem:

Theorem. If certain common tangents to four circles

€1, Cs, C3, C4 Salisfy an equation of the form

ThTs %+ T1aTos = TuTlez=0

then these circles are tangent to a circle k, as follows:

(a) if all the T’s are direct common tangents, then k has like
contact with all the circles.

(b) i the T’s from one circle are transverse, while the other
three are direct, then this one circle has contact with k un-
Like that of the other three.

(c) if the given circles can be so paired that the common
tangents to the circles of each pair are direct, while the other
four are transverse, then the members of each pair have like
contact with k.

The proof involves several steps. We begin by diminishing
the radius of the smallest circle, say ¢, to zero, while simul-
taneously increasing or decreasing each of the other radii by
the same amount, so that all six of the common tangents are
unchanged in length and direction. Under each of the
hypotheses (a), (b), (c) this can be done, and the point Cy,
which replaces the fourth circle, will be exterior to the other
three transformed circles.
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We now perform an inversion with C; as center and any
convenient radius B. In accordance with 173, we have

7172
Tep=Ty .
12 12 rl'?‘g' ete
’ Rﬂ
Also, by 71, LI 3 Whence Ty=R L’,
T3 T:u T3

Substituting in the given equation, we have, after cancel-
lation,
Te'+ To'+ Ty’ =0

where either all three are direct tangents, or one is direct and
the other two are transverse. If we now again diminish the
smallest of the three circles to a point Cy’, changing the other
radii simultaneously, we have only to show that Cy’ is on the
common tangent to the surviving circles, ¢;”” and ¢,””. Let PQ
be a common tangent to these circles whose length is T,'; and
lay off PS equal to T}y’ so that by the equation, QS equals Ty’
The locus of a point from which the tangent to either circle
has the given value is a circle concentric with it; and these two
circles intersect once on each common tangent. Therefore
either S or the symmetrical point on the other tangent is the
point Cy'; therefore ¢/, &', ¢i’ are tangent to a line; therefore
the original circles are tangent to a circle.

177. An alternative form of the criterion is based on the
interpretation suggested in 176. We content ourselves with
suggesting the possibilities:

Theorem. If four circles ¢y, o, cs, ¢, intersecting at angles
wn, efc., have like conlacts with a circle k, then

. W . w4 . W1y . ey . WK . Wog
8N = 8N = = SN —- §IN - £ §iN —— SN —= = ()
2 2 2 2 2 2

When some of the contacts are unlike, the corresponding terms
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are cosines; and conversely, if such an equalion holds the
circles are tangent to a fifth circle.

178. We shall not claborate the possible applications of this
theorem; one may consult Lachlan (l.c.), where will be found
a more complete treatment of all these problems, together
with references to the original memoirs of Larmor and others.
We suggest a few immediate corollaries.

a. Theorem. Two pairs of circles, mutually inverse with

regard to a circle, have four common tangent circles.

b. Theorem. The four circles which are tangent to three
given non-concurrent lines are touched by a circle.

In this case we can easily determine the lengths of the com-
mon tangents in terms of the sides of the triangle, and show
that the Casey equation is satisfied. Moreover, by applica-
tion of 117 and using the mid-points of the sides of this
triangle, we may show that the circle through the mid-points
of the sides is tangent to the four circles in question. This
famous theorem is the subject of Chapter XI, and may be
studied in detail there.

c. Theorem of Bart. The circles tangent to three given
circles (cf. 166) have the property that certain fours of them
are tangent to still other circles. Specifically, any one of the
eight circles, and the three others that have like contact with two

of the given circles and unlike with the third, are tangent to a

circle.

We shall follow Casey’s proof of this theorem, which evi-
dently does not pretend to be entirely adequate nor to cover
all cases.

Let the given circles be a1, as, as; let ¢ be any tangent circle,
and ¢, ¢, ¢z any three others, so that ¢, and ¢;, for instance,
have unlike contacts with @, and like contacts with a; and a;.
Then denoting direct tangents by ¢, transverse by i, since all
four circles touch a1,
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tiotas = tistos + Tualis
and @,  boly = bty + buds
and @3, tiuln = bola+ bistu
Combining these equations, the result is
botas = tisty + tualas
which establishes the existence of a circle having like contacts
with ¢;, s, €3, and the opposite contact with c,.

Thus each of the eight tangent circles determines s new
circle, called a Hart circle, which touches it and has unlike
contact with three others; in other words, the eight circles
are tangent to the three given circles, and, also, four by four
to eight others, the Hart circles.

We may add that they are also tangent four by four to six
other circles, of a different type. For we recall that the eight
are paired by virtue of being mutually inverse with regard to
the common orthogonal circle of a;, @y, a3; any circle orthog-
onal to the latter, and tangent to two of the eight which are
not paired, will be tangent also to their inverses.

CIRCLES INTERSECTING AT GIVEN ANGLES

179. Our study of orthogonal circles and tangent circles
suggests the more general problems of circles intersecting at
given angles or at equal angles. We shall very briefly con-
sider some of the more obvious possibilities.

In order to make our statements definite, we specify as the
angle between two intersecting circles the angle between their
radii at either point of intersection. The angle is signless and
is determined by its cosine, namely:

i

2 e
where 71 and r; are the radii of the circles and d is the distance
between their centers.

cos g =
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180. Theorem. Given two non-concentric circles Cy(r;) and
Ca(r2), where C1C, = d; let any circle C(r) cut these at angles 6,
and 6; respectively, and let h be the perpendicular from C on
the radical azis of the given circles. Then

7 (71 €08 61— 72 €08 62) = d-h

1"12+i‘2—-6TC"2 re + 1 — GO
For cos g =—7—; p = ————————
2nr 2 ror

Clearing of fractions, subtracting, and applying 113, we have
the result.

Exercise. Extract various theorems from the formula just
given, including some of the results below; also results con-
cerning orthogonal circles.

If the given circles are concentric, the foregoing theorem is
meaningless, since the radical axis is at infinity. We have the
following substitute theorem, which may be proved as an
exercise:

Theorem. If a circle of radius r cuts two concentric circles
whose radii are ry and 13, at angles 6; and 6, respectively, then

7(ry cos 0y — 72 cos 05) = }(ri’ — 72°)

181. In order to consider the properties of those circles
which cut two given circles at constant angles, we may depend
on the formula of 180. It is more enlightening, however, to
simplify the figure by inversion, transforming two intersecting
circles into straight lines and two non-intersecting circles into
concentric circles. We can set down at once the following
results.

Theorem. The system of circles culting two fized circles at

given angles are cut at a fized angle by any circle coazal with

the fized circles which meets them ot all.

Theorem. The circles culting two infersecting circles at
given angles have a common orthogonal circle. The circles
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cutting two mon-intersecting circles at constant angles have

either a common orthogonal circle or a circle cutting them all

diametrically. In either case, the circle in question is coazal
with the given circles.

Theorem. In general, the circles which cut two given circles

at given angles are tangent to two fized circles coazal with

the given circles; but these two circles may be non-existent

(imaginary).

182. We may discuss the problem of constructing a circle
which cuts three given circles at given angles. Disregarding
all considerations of real and imaginary, we see that the re-
quired circles are orthogonal to three fixed circles, coaxal with
respective pairs of given circles. Ahey are also tangent to
three pairs of fixed circles of the same coaxal systems. We
see intuitionally that there will generally be two solutions,
representing circles cutting the given circles at the given
angles or at the supplements of all three, and the solution can
be made to depend on that of the problem of Apollonius.

Another problem is that of circles which cut given circles
at equal but unspecified angles. Just as three given circles
have in general one common orthogonal circle, so in the light
of the foregoing there is one circle cutting three given circles
at angles equal to a given angle, and another cutting them at
the supplementary angle. It follows that there is in general
one circle cutting four given circles at equal angles.*

Exercise. In this chapter theorems are left unproved, and

proofs are to be completed by the reader, in the following

sections; 162157, 169-163, 165, 175, 178, 180, 181.

#* For fuller treatment of these topics, one may consult Lachlan, chap. XV;
Coolidge, chaps. I, 1I, IIL



CHAPTER VII
THE THEOREM OF MIQUEL

183. We now begin the systematic study of the triangle,
and of the numerous points, lines, and circles associated with
it. Except for a very few theorems known to the ancients,
the development of this subject has taken place almost en-
tirely in the nineteenth and twentieth centuries. We shall
attempt a broad outline of the central and most important
theorems, with fairly numerous applications; but we can by no
means hope to exhaust the field, which has been the subject of
hundreds of researches and published papers.

In the present chapter, the central theorem is a remarkably
simple one, whose significance seems not to have been fully
appreciated. We shall find it to be the source of many the-
orems of wide applicability.

184. Theorem. If a point s marked on each side of a

triangle, and through each vertex of the triangle and the

marked points on the adjacent sides a circle is drawn, these
three circles meet at a point.

It is, of course, understood that the marked points may lie
on the extensions of the sides. If in particular one of them
is at a vertex of the triangle, the circle through two coincident
points is drawn tangent to the line on which they lie.

Let the tria.ngle be AlAgAs; the marked pomt.s Pl, Pg, P3
on A As, A3A,, A1A; respectively. We are to prove that the
circles A1 PyP;3, As P3Py, A3P1 P> meet at a point. Since this
theorem furnishes an excellent illustration of the advantages
of the notation of directed angles, we shall give the proof in
two forms.

For a first proof, let us take the marked points on the sides
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of the triangle rather than their extensions, as shown in the
figure. Also let the point of intersection P of two of the

Fia. 40

circles, A1 P;P; and A, P3P, lie within the triangle. Then at
once

£ P3PP3=180°— o

ZL P3PP; = 180° — o,

Combining these, we easily see that
£ PyPP; = 180° — a3

which shows that P, P;, P;, A; are concyclic.

Now this, which is the standard proof, is obviously inade-
quate. For we cannot assume, in general, that P will fall
inside the triangle, and the angles considered in the proof may
therefore be either supplementary or equal; so that a com-
plete proof will necessitate the consideration of many different
cases. 'This difficulty is obviated by adopting the convention
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of directed angles; with that method, a single proof covers all
possible cases.
For as before, let P denote the point common to the circles

A3 P2 P;, A;P3P,, then

X PPy,A, = X PP3A,, and X PP;A;= X PP, A (19)
That is to say,

X PPy, a;= % PP3, a; and X PP;, a3= X PPy, 4

Hence 4PP2,GQ=4PP1’(11’
That iB, 4. PP2A3= 4 PPlAs

which proves (19) that P, P;, P;, A; are on a circle.

The source of this theorem is doubtful. It was explicitly
stated and proved by A. Miquel in 1838, though its truth was
probably recognized much earlier. It has not received from
most writers the attention that it deserves, but we shall make
it the cornerstone of our geometric structure. For the sake of
definiteness, the theorem will be called the Miquel theorem,
the point P will be called the Miquel point for the triad P, P, P;
with respect to triangle A;4,A5, Py P»P; is a Miquel triangle
of P, and the circles are Miquel circles.

186. Theorem. The lines from the Miquel point to the

marked points make equal angles with the respective sides.

This is a by-product of the proof of the main theorem.

186. Theorem. The angles of the figure satisfy the equation

4. AgPAa = ZS_ AgAlAs + 4 P2P1Ps
For
X AsPAs= X AsPPi+ X PiPAs= X AsP3Pi+ X P1P2 A,
But
X AP3Py+ X P1PpAs = X A1As P3Py + X P1P,, A A
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= X A4, A1As+ X P\ P,, P,P;
= &_ AgAle + Z{. PgP]Ps

as was to be shown. This formula is fully as important and
as useful to us as the main theorem; though not given by
Miquel we shall call it the Miquel equation because of its close
association with that theorem. Its resemblance to the fun-
damental angle theorem of inversion (75) will suggest to the
reader some possible theorems; these will be developed later.

187. Theorem. Conversely, if P is a fized point in the
plane of triangle A1A24s, it is possible to determine in an
infinite number of ways a Miguel triangle for P.

For we may start by drawing from P any set of lines making
equal angles with the sides; or by passing any circle through P
and one of the vertices.

If from any point P we draw three lines which make equal
angles with the sides of a triangle, and which may be thought
of as a rigid system rotating about P, their intersections with
the corresponding sides trace out all the possible Miquel
triangles of P.

188. Theorem. All the Miguel triangles of a given point P

are directly similar, and P is the center of stmilitude or

self-homologous point in every case (33).

For if P,P.P; is any Miquel triangle of a fixed point P, it
follows at once from 186 that the angles of triangle Py PPs
are fixed in magnitude and direction also

ﬁ. PzPsP = 4P2A1P = 4A3A1P
showing that P is self-homologous.

Corollaries:

a. The centers of any set of Miquel circles-are vertices of a
triangle similar to the given triangle.
b. If two or more directly similar triangles are drawn with
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homologous vertices on the respective sides of a given triangle,

they have the same Miquel point, which is their center of

simalitude.

¢. If corresponding vertices of several directly similar triangles

are collinear, they have a common cenler of stmilitude.

d. If three circles are concurrent af a point, it ¢s possible to

start at any point of one of the circumferences, and draw a

triangle whose vertices lie on the circles and whose sides pass

through the corresponding intersections; and aoll triangles
thus drawn are similar.

This may be proved directly, or by inversion; if we apply
an inversion to the original theorem (184), the result is the
theorem before us.

If we take any of the seven points A,, Az, 43, Py, Ps, P3, P
of the original figure as center of inversion, we derive another
figure like the original. If, however, we take a center of in-
version not related to the figure, we obtain a generalization
of the theorem whereby the sides of the original triangle are
replaced by arcs of circles passing through a fixed point. In
other words, the theorem of Miquel is equivalent to the
following:

e. If the circles A1 As B3, Ay A3B,, AsA1B; are concurrent af a

'pmnt O, the circles A1BgBa, AngBh AsBlBg are concurrent
at a point P.

THE PEDAL TRIANGLE AND CIRCLE

189, Definition. The pedal triangle of a point with regard
to a triangle is that triangle whose vertices are the feet of
the perpendiculars from the point to the sides of the given
triangle. The circle circumscribed about the pedal triangle
is called the pedal circle.

Obviously the pedal triangle is one of the Miquel triangles
of a point; and it need hardly be added that it is the most

important one. Evidently the form of the pedal triangle of a
given point is determined by 1886.
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190. Theorem. The sides of the pedal triangle of a point P

are.

A_lp'al ete

PPy = A,P sin o, = op ot

For P,P; is a chord of the circle on A, P as diameter; and in
that circle the angle inscribed in arc P,P; equals a;.

Fig. 41

Corollaries:

a. The sides of any Miguel triangle of a point are propor-
tional to the products of the corresponding sides of the given
triangle and the distances from the opposite vertices to the
given poind.

b. The only point whose Miquel triangles are similar to the
given triangle in the sense P1PyPy ~ A;AsA; is equidistant
Jrom th(.)e vertices of the triangle, and therefore is the circum-
cender 0.

c. If the form of a triangle to be inscribed in a given triangle
i3 given, the position of the Migquel point is determined either
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by 186 or by 190 a. In the latter case it may be either of
two points, as seen in 956; the Miquel triangles of these two
points are inversely simslar. (Cf. 201.)

SIMSON LIRE

191. A case of special interest arises when the pedal
triangle of a point reduces to a straight line; in other words,
when the feet of the perpendiculars from a point are col-
linear. We have at once the following theorem:

Theorem. The Miguel point of any set of collinear points
on the sides of a triangle is on the circumscribed circle; and
conversely, any Migquel triad for a point on the circumscribed
circle are collinear.

For in the equation of 186, if X T271Ts = 0, then

4 AgTAs = 4 A2A1A3
and conversely. In particular (figure 41):

192. Theorem. The feel of the perpendiculars to the sides

of a triangle from a point are collinear, if and only if the

point is on the circumscribed circle of the triangle.

Definition. The line through the feet of the perpendicu-

lars to the sides of a triangle from a point of its circumecircle

is called the pedal line, or Simson line, of the point with re-
gard to the triangle.

Historical. In the nineteenth century it was generally
supposed that this theorem was due to Robert Simson (1687-
1768), and his name was attached to the line. It has been
shown, however, by that diligent investigator J. S. Mackay *
that the theorem is not to be found in any of Simson’s writ-
ings, nor is there any evidence that it was known to him.
Mackay finds that the error originated in a careless statement
of the French geometer Servois, who referred to ““le théoréme

* Proceedings of Edinburgh Math. Society, IX, 1890, pp. 83-91; see also Muir,
tbid., 111, 1884, p. 104.
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suivant, qui est, je crois, de Simson.” Later, in his treatise
on projective geometry, Poncelet reproduced the ascription
without the qualifying phrase, and thus perpetuated the
error. The theorem was first discovered in 1797 by one Wil-
liam Wallace; its history is given in detail in the paper of
Mackay. Following Mackay’s example, some geometers
have discarded the familiar term “Simson line,” and desig-
nated the line as the “Wallace line”’; undoubtedly the non-
committal “pedal line” would be in many ways preferable,
but we shall adhere to the traditional term. Many theorems
about these lines will be established first and last; a few obvi-
ous properties will be suggested at this time.

The theorem of Ptolemy can be proved at once as a corollary,
using the formula of 190.

193. Theorem. The Simson line of any vertex is the altitude
through that vertex; that of the point diametrically opposite
o a verlex s the corresponding side.

194. Theorem. If T1T,T; is the Simson line of a point T
of the circumscribed circle, then triangles TT, T, and T AsA,
are directly sipilar.

For the angles at T are equal, and the including sides are
proportional:
X WTT,= X A Az;A, = X A,TA,
TT: sin X A,A;T  sin X AT _ AT
TT: sin % A;AsT  sin X A AT AT
Corollaries:

a. ﬁ:-fﬁﬁ = mz'ﬁ"z: ms'ﬁs
b Wx'ma= ﬁ'ﬂ‘ml — ﬁs'mﬂ
’ a a as

c. X + £+ = _0

F_T: TT: TT;s
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195. Theorem. The projection of any side of a lriangle
on the Simson line of a point equals the distance between the
feet of the perpendiculars from the point to the other two sides.

For the projection of A24; on the line T, 75T is
EA; cos X AT Ts=aysin X TAT3= a; 8in 4 TAzA,
which by 190 is also precisely the length of T,T5.

196. The general theorem, that when three collinear points
are marked on the sides of a triangle their Miquel point is on
the circumcircle of the triangle, may be expressed in the
following striking form.

Theorem. The circumscribed circles of the four triangles

formed by four lines in general position are concurrent.

For if we fix the attention on one of the triangles, the fourth
line marks a point on each of its sides, and the Miquel circles
are merely the circumcircles of the other three triangles.
Since the marked points are collinear, these circles are con-
current at a point of the first circle. Again:

197. Theorem. Given four lines in general position; there

is one and only ome point from which the feet of the per-

pendiculars to the lines are concurrent, and this poini is the
common point of the four circumcircles.

The line containing the feet of the perpendiculars from this
common point is called the Simson lire of the complete
quadrilateral.

Exercise. Prove that the centers of the four circumcircles

also lie on a circle passing through their common poind.

198. Theorem.* The aréa of the pedal triangle of a point P

is proportional to the power of P with regard to the cir-

cumcircle:
F = 3 (R*— OP?) sin o sin as, sin a3 = (R—;-EQ—E)A

*The rest of the chapter may be omitted at the option of the reader.
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Let Ay P meet the circumcircle at Bs; then
X AsPAs= X PoaP\Py+ X AsA1Ag= X AsByAs+ X ByAsP
whence X PP\ Py = X ByAzP
Now  F = area P,P\P; =} P.P;- PP; sin £ P,P,P;
= } P\P,- P\P; sin £ B;AsP
= 4 PA; sin a3- PA, sin ay-sin £ BpAgP

sin £ B, AP PR
gin Z AngAs PZ;
whence F = *I_)“AQ'P-Eg sin LAngAs-ain ag'ﬂill g
= }(R* — OP®) sin o,-sin ay-sin oy
Corollaries:
a. The locus of a point whose pedal triangle has a given area
18 a circle concentric with the circumcircle; of points within
the circle, the circumcenter has the greatest pedal triangle.

But
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b. The area of the pedal triangle of a point on the circum-
circle is zero.
c. The radius of the pedal circle of a point P is given by
e AP-A,P-AP
2(R*— OP)
For one of the formulas for the area of a triangle (15 d) gives
PP P;Py-P,Py
4r
But P,P; = A,P sin a,, ete.; making these substitutions and
replacing the area by the value given above, we have the result
at once.

199. Theorem. If the lines A, P, A2P, A3P are exlended to

meet the circumcircle at By, Bs, Bs respectively, then triangle

ByB:B; is directly similar to the pedal triangle of P wnth

respect to A1 A2As.

For X B:B1 A, = X By A Ay = X PP, FP;; ete.

Is the point P self-homologous in these similar triangles?
(Cf. 244 ¢.)

200. Theorem. If a given triangle is subjected to an inver-

sion, the resulting triangle is directly similar to the pedal

triangle of the center of inversion with regard io the given

triangle.

For if the triangle B;B;B;is inverse to A3 AsAg with regard
to a circle whose center is C, we have by 76

X ByB1Bs+ % A3 A As= X AsCAs

Again, if C1C:Cs is the pedal triangle of C with regard to
A1AzAs,

areaPngPs=

X AsCAs= X As A As+ X CoCiCs

whence triangles B;B:Bs and C,CyCs are directly similar.
(Cf. also 183.)
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201. Theorem. If two points P and P’ are inverse with
respect to the circumscribed circle of a triangle A;AsAs, their
pedal triangles are inversely similar.

We know 75 that if O is the center of the circle,
X A PA;+ X A,P'A; = b4 A0A;=2 y. 8 Az A A,

Blltr 4 AgPAs = ZS, A2A1As + Z‘, P2P1P3,
X AP A= X A A A+ b. 8 Py P/ Ps

whence 4 PgPlPa + ZS. Pg"Pl"Pa’ =0

202. Theorem. In this figure the distances from P and P’
Lo the vertices of the triangle are proportional.

For by similar triangles (ef. 95) we prove at once that
OP R P4, P4, PA;

R OP P4 P, P4,
203. Theorem. The points in which the perpendicular
bisector of a side of a triangle meets the other sides are inverse
with regard to the circumcircle.
204. Theorem. If a set of four points is subjected to an
inversion, the pedal triangle of one with regard to the triangle
of the other three is inversely similar to the corresponding
pedal triangle in the inverse figure.
This remarkable result is derived easily from 75 and 186.

205. Problem. To determine a point P whose pedal triangle

P, P, P3with regard to a given triangle A, Ay A; shall be similar

to a given triangle C1CsCs3.

Assuming that PyP,P;sis to be directly similar to C;C2Cj,
the position of P is uniquely determined by the equations

ﬂ. AgPAs = 2$. A2A1A3 + ZS. (,‘201(,'3, ete.

In practice, the simplest construction is to connect any
points Dy and D; on A;A3 and AsA; respectively; then con-
struct triangle DyD;D; similar to CyC2Cs. Let A3;Ds; meet
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A1 A, at Qz; and draw QxQ; and QsQ; parallel to Dz Dy and D3 D,.
Since Q:Q:Q; is similar to C;CCs, its Miquel point will be the
desired point P.

206. From another point of view, this problem is equiva-
lent to that of finding a point whose distances from the ver-
tices of the triangle are in given ratios (95). The distances
from the vertices of the triangle to a point P are determined
when the form of the pedal triangle is given. For

Conversely, if the ratios PA;: P4, :PA; are given, then the
ratios P,P; : PsPy : P,Ps can be determined; a Miquel triangle
can be inscribed, and the point P can be found as in the fore-
going. In this case there are two possible positions of P,
according as Py P;P; is directly or inversely similar to C;C2Cs.
This agrees with the result found in 95, and we can now not
only observe the solution of the problem there stated, but we
can state exactly the conditions under which the problem can

be solved.
Theorem. There can be found two points P, P’ whose dis-
tances from three given points Ay, As, As are proportional
to given lengths py, Ps, P, provided that the products p- Az As,
o~ AsAy, pa- A1As can be made the sides of a triangle. These
points are inverse with regard to the circumcircle of A1Az4s.
We conclude this chapter with a number of exercises and
simple applications.
207. Theorem (Mannheim, Educ. Times, 1890). In the
Miquel figure (184), let any three concurrent lines A1M, A:M,
AsM, meet the respective Miquel circles at X1, Xz, X3, then
X1, Xy Xs, M, Plicona circle.
For 4PX1M= 4PP2A1, ete.

% PX,M = % PX,M = % PX;M = X PP, o



144 THE THEOREM OF MIQUEL

208. The foregoing proof fails when M is at infinity. We
may prove independently:

Theorem. If parallel lines through the vertices meet the
corresponding Miquel circles at Y1, Y, Ys, then these points
are on a line through the Miguel point P.

209. Theorem. Conversely, if any circle through P cuts the
Miq‘uel C'ifd&? al Xh X2’ XB) fe-?}?ecﬁvdy, tkeﬂ. AIXla A2X2u
A3 X3 meet at a point M on the circle; and if any line through
P cuts the circles at Yl, Yg, Ys, then AlYl, AzYz, AsYs are
par GM-

210. Theorem. Ifthe perpendiculars to the sides of a triangle
from a point on the circumcircle are extended to meet the
circle again, the inlersections form a triangle congruent to
the given triangle.

211. Theorem. If three circles meet at a point concyclic
with their centers, their other intersections are collinear.

212. Theorem. Given a line and a point P not on it.
Through points Ay, As, As, . . . of the line, draw lines A,X,,
AﬂXﬂ’ AgXa PR perpemimdar respeciwely to PA], PAg,
PAs, . . .. The circle circumscribed about any triangle whose
sides are three of these lines A1X,, AsXs, AsXG, . . . including
the given line itself, passes through P.

Exercise. Complete the proofs of all unproved proposi-
tions in this chapter, namely: 185, 187, 188 a-¢, 190 a-c,
193, 194 a-c, 197, 198 q, b, 203, 204, 205, 207-212.



CHAPTER VIII
THEOREMS OF CEVA AND MENELAUS

213. Many of the most interesting theorems of the triangle
are concerned with sets of lines, one through each vertex of
the triangle, which are concurrent. Obvious examples are the
medians, the altitudes, and the angle bisectors. Other theo-
rems deal with sets of points, one on each side of the triangle,
which are collinear. In the present chapter we set up general
criteria as to the concurrence of such triads of lines, or the col-
linearity of such triads of points. Asimmediate consequences
of these theorems we shall notice some results already estab-
lished; and a large number of further theorems will be deduced.

214. Theorem. If three lines from the vertices of a triangle

are concurrent at P, and meet the opposile sides at Py, P;, P
respectively, then

Py Py Py _
ms‘mrmz

A

Fia. 43

Through A; draw MN parallel to As4s; let it meet AP at
M, AsP at N. Then by similar triangles,

Pd, AM PA,_AA, PA,_AN

PA; AN’ PA, AM' PA, A4
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Multiplying,

mz'ma‘mx _ AxAs —

PI_AS' P;?ln- mz AQ2

It is evident that the sign is necessarily negative, since for

any position of P an odd number of the ratios will be negative.
The proof is valid for every position of P, provided P, P, P;
are actual points. If one or more of them be at infinity, we re-
place the corresponding ratio or ratios by + 1, as explained in
10, and the proof is easily adapted to this case. Again, P
itself may be at infinity; that is, the theorem is valid for a set
of parallels through the vertices of a triangle. This theorem
furnishes an excellent illustration of the advantages of the
convention as to points at infinity; without this convention,
it would resolve into a number of cases, requiring separate
proofs, and with embarrassing exceptions.

215. Theorem. Conversely, ¢f P1, P2, P3 are so chosen on
the sides of a triangle that

Py PiAy Py _ _
PAs-PA;- P;A,
then the lines A1 Py, A:P;, A3P; are concurrent.

For in the first place if no two of these three lines meet, the
three are concurrent at infinity, and the theorem is proved.
Otherwise, let A,P; and A,P, meet at P; then let AsP and
A1A; meet at Q;. Then by 214,

Iﬂr%-@?& - —
PiAs PoAy QsA;

-1

whence

F_

P:A, QA
and therefore P; coincides with Qs. Thus APy, AP, AsPs
are concurrent at P.
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216. Combining these two results, we have the famous

Theorem of Ceva. A necessary and sufficient condition that
lines from the vertices of a triangle Ay A3 A3 to points Py, P, Ps
on the opposite sides be concurrent s that

Py PiAs Pody _
ms' ﬂl - ITsZz B
or, what is the same thing (85):
sin £ PyAyAs-sin £ PyAqAg-sin £ P3AzA, -
sin £ PiA As-stn £ Py AsA,-sin Z P3AzA,
217. A familiar version of this theorem is:

Theorem. Three concurrent lines from the vertices of a
triangle divide the opposite sides in such fashion that the
product of three non-adjacent segments equals the product of
the other three.

218. Related to the foregoing theorem is that of Menelaus:

Ay

-1

Fia. 44

Theorem. Three points Py, P, P on the sides of a triangle
A A2 A3 are collinear if and only if

Py Py Py _
ms'ml‘mz
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Suppose first that the points are collinear. Let perpendicu-
lars be dropped to the line from A,, As, As, and denote their
lengths by b, Iz, s respectively. Then, signs disregarded, we
have

Pids L BAy b Bdy b
P, &' PRA L' Pd b

so that the product of the ratios is either + 1 or—1. But a
line must cut internally either two sides of a triangle, or none;
therefore in every case the product of the ratios is positive.
There are a few special cases, which present no difficulties; and
the converse is proved by the indirect method used in 215.

Corollary. As before, we have the alternative form

sin Z P1A1A2- sin 2 PgAzAa' sin £ PsA;A;_ _
sin 2 P1A1A3' S‘I:ﬂr Z PgAzAl‘ sin 2L PaAaAz -

and the familiar enunciation:

Any line cuts the sides of a triangle so that the product of

tgree non-adjacent segments equals the product of the other
three.

Historical. Menelaus of Alexandria (not to be confused
with him of Sparta), who discovered this theorem, flourished
about 100 B.Cc., and wrote on geometry and trigonometry.
His theorem was forgotten until it was rediscovered by Gio-
vanni Ceva, an Italian hydraulic engineer and mathematician,
who published both theorems in 1678.

219. Numerous well-known theorems are immediate conse-
quences of these general theorems; additional theorems may
be obtained with equal ease.

a. The medians of a triangle are concurrent.
b. The altitudes are concurrent.
¢. The bisectors of the interior angles are concurrent.

1
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d. The bisector of any interior angle and those of the other
two exterior angles, are concurrent.

e. The exterior angle bisectors meelt the opposite sides in
collinear points.

J. The bisectors of two inlerior angles and the third exterior
angle, meet the sides in collinear points.

g- gafl 8 a point “halfway around the triangle” from A,

80
A Az + AP = PAs + 434,
and ?;f Pg and P3 are sz'mzlar!y IOG&tGd,. then A]P], Agpg,
A3P; are concurrent. (Nagel point, 291 b, 361.)
For we easily find that PiA; = s — a3, PiAs = as — s, ete.

220. Theorem. If three concurrent lines AP, AP, AP
meet the opposite sides of a %lg at Py, P, P;; and if
P3P3 meels Ag.t'la at Ql; then P1 Ql divide AzAs s'ntemally
and externally in the same ratio, or Py, Qy, As, A; are a har-
monic set of points (87).
ms-PIAa-F’iL _
Py Pyhs Py

mg'ms'ml = 1
Qi4s P,A1 P;A:

For -1,

while

hence

1413 1413
Other versions of the same relation:

221. Theorem. In a complete quadrangle A:A3P:Ps, any
connector, as Az As, is divided harmonically by the diagonal
point lying on it, namely Q,, and the point Py where it is cut
by the line through the other diagonal points A, and P.

222, Theorem. In a complete quadrilateral whose sides are
AyAs, ArAs, AzA,, PiQ,, the line connecting a vertex A, with
a point of intersection P of two diagonals cuts an opposite
side As A0y harmonically (at P,).
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These two theorems are important in projective geometry.
223. .Theorem. If A1P1, Ang, A3P3 are concurrent at P,
and if PyP;, P3Py, P\P; meel AsAs, Asd,, AyA; atQy, Qs Qs
respectively, then Q, @z, Qs are collinear.

This follows at once from 220. The line ©,Q:Q; is called
the trilinear polar of P.

224, Theorem. With the same hypotheses the lines A,P,

AsQs, A¥Q; are concurrent at a point P'.

Thus with any point P of the plane, not on any side of the
triangle, there are associated three points P’, P”, P'"’; the
four points usually have interesting common properties. A
familiar example consists of the points of intersection of the
bisectors of the angles of a triangle.

Corollary. The perpendiculars to the sides of the triangle

from the four associated points P, P, P", P""’ are proportional

in numerical value, but differ as to signs.

225. Theorem. Given two fixed lines AM and AN and a

point B not on either; let any two lines through B cul

AM at M and M’ and AN at N and N’ respectively. Then
MN’ and M'N meet at a point X
whose locus is a straight line through
A. Moreover the line BX is cut har-
mongcally by AM and AN.

This follows at once from 220,
identifying the triangle AMN
with A;4:4; and B with €; it is
easily proved that every line
through B is cut harmonically by
the three lines from 4.

Thusevery point not on either of
two lines has a line polar with re-
Fia. 46 gard to the two lines (cf. 138, 139).

298. Theorem. If aline ByB;is parallel to A2As;, and A3 By
meels A3B; at P, then A P bisects A2A3 and BaBs.

A
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This may be regarded as a special case of the foregoing

theorem; it is proved immediately by Menelaus’s theorem.
Theorem. The line joining the mid-points of the parallel
sides of a trapezoid passes through the point of intersection
of the diagonals, and also that of the non-parallel sides.

227. Theorem. If a circle culs the sides of a Iriangle at
Xl, Yl, Xz, Yz, Xs, Ys, and Z:fA1X|, AgXa, A3 X; are concur-
rent, then A1 Y,, A2 Y,, Az Y3 are concurrent.

For X142 Y142 = X343 Y34, ete.
228. Theorem. If two triangles A;AsAs and ByB,Bs are

inscribed in the same circle, and if AyB,, A3B,, A3B, are con-
current, then, disregarding signs,

A,B;- A3Bs- A3B, -
A;B;- A;By- A3B,

On account of possible ambiguity of sign, the converse of
this theorem is not true; and the theorem may not be used, as
some geometers have used it, to prove the concurrence of lines.

CENTERS OF SIMILITUDE OF THREE CIRCLES

229, We recall that the homothetic centers of similitude of
two circles divide the line of centers internally and externally
in the ratio of the radii. If then we have three circles, whose
centers form a triangle, the following properties of the centers
of similitude are derived at once from the theoremsof Ceva and
Menelaus (cf. also the analysis of 171). Among these are the
rather simple theorems which excited the wonder and admira-
tion of Herbert Spencer.*

a. The external centers of similitude of three circles are col-
linear.

b. Any two internal centers of similitude are collinear with
the third external one.

* Cf. American Math. Monthly, xxvix, May, 1921, p. 229.
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c. If the center of each circle is connected with the internal center
of similitude of the other three, the connectors are concurrent.
d. If one center is connected with the internal center of the
other two, the others with the corresponding external centers,
the connectors are concurrent.

230. Theorem. The mid-points of the diagonals of a com-

plete quadrilateral are collinear.
Ol’
B
LANNY i3
L Q
A BY P o
Fio. 47

This theorem has already been proved; but, as may well be
supposed, a simple proof can be derived from the theorem of
Menelaus. The following form of the proof is due to Hillyer.*

With the usual notation, let the middle points of BC, CA’,
A’Bbe P, Q, R respectively. If QR cuts AA’ at L, RP cuts
BB’ at M, and PQ cuts CC’ at N, our task is to prove L, M,
N collinear, since these are clearly the middle points of the
respective diagonals. We have the following proportions:

IQ_4C, NE_FX, NP_CB
LR AB MP BC NQ (4’
#* Durell, Modern Geometry, p. 85.
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But since A B’C’ is a transversal cutting the sides of triangle
A’BC, the product of the right-hand members is + 1; and if
the product of the left-hand members is + 1, then the points
L, M, N on the sides of triangle PQR are collinear.

ISOGONAL CONJUGATES

231, We now introduce a relationship by means of which
the points of the plane of a triangle are associated in pairs. To
every point there corresponds a conjugate point; and among
the pairs of partners we shall later find some of the points in
which we are most interested.

Definition. If two rays through the vertex of an angle
make equal angles with its sides, they are said to be isogo-
nal. In other words, two rays are isogonal with regard to
an angle if they are symmetrical with regard to the bisector
of that angle.

Fic. 48

Each line through the vertex of an angle has a definite
isogonal; each angle bisector is self-isogonal. The funda-
mental theorem of isogonals is the following:
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2382, Theorem. If three lines from the vertices of a triangle

are concurrent, their isogonals are also concuirent.

The proof is an immediate application of the theorem of
Ceva. If A;P;and A,Q are isogonal in triangle 414,43, then

sin LA?A]P] _ sin LQ]A]Aa ete
sin Z AsA Py sin ZQA A
Definition. Two points P, @ in the plane of a triangle
A, A4 such that
4 AgAlp = &.QAIA&
X A3A:P = X QAxA,,
X A AP = 4QA3A2
are tsogonally conjugate with regard to the triangle.
233. Exercise. By virtue of the foregoing theorem every
point in the plane, in general, has a definite isogonal con-
jugate. Choose points at random in the plane, and by
freehand sketching find the position of the isogonal conju-
gate of each. For example, trace the position of a point,
as its isogonal conjugate traces a straight line; a circle;
especially a circle through two vertices of the triangle.
Show that the isogonal conjugate of any point on a side
of the triangle is at the opposite vertex; and as a movin
point approaches a vertex from any direction, its isogona/
conjugateapproachesalimiting position on the oppositeside.

234. Theorem. The isogonal conjugale of a point on the

circumcircle is at infinity; and conversely.

For if P ison the circumecirele, and the isogonals of 4, P and
A2P meet the circle at Py’ and P’ respectively. Then by
definition, arcs A3P and Py’ A, are equal, and so on. Hence
we easily prove by equal arcs that 4, Py’ and A, P, are parallel.
Conversely, we easily prove that the isogonals of a set of paral-
lels through the vertices are concurrent at a point on the cir-
cumcircle.

In general, then, the points of the plane are paired off into
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isogonal conjugates; but the partner of each point of the eir-
cumecircle is at infinity, and each vertex is polygamous with
all the points of the opposite side. Every point not on the
circle nor on any side of P’
the given triangle itself
has an actual conjugate;
in particular, each of the
four points of intersee-
tion of the angle bisec- %
torsis its own conjugate;
and these are the only
self-conjugate points. 49
236. Theorem. The
distances to the sides of
an angle, from pointson
isogonal rays, are in- 3
versely ) . Fia. 49
_In figure 48, we prove at once by similar triangles that
PP;-PP; = QQ:-QQ;. The corollary is of some importance:
Corollary. The perpendiculars to the sides of a triangle from
isogonal conjugate points are inversely proportional,
1 = P2z = Pags-
236. Theorem. The feet of the perpendiculars from two
isogonally conjugate points lie on a circle; that is, tsogonal
conjugates have a common pedal circle, whose cenler is mid-
way between them.
For if the pedal triangles of two isogonal conjugates P and
Q (figure 48) are P1PyP; and ,Q:Q;, we have

APy _ cos L PAsPy _ cos £QsAQ AQs
,Ag_,Ps CcOo8 é.PAzPs cos LQ1A2Q A_ﬁl

whence

A;pl'Aml = ATPSA@
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and each two pairs of points are concyclic. It follows by 62 a
that the six points lie on one and the same circle. The center
of the common pedal circle is evidently midway between the
two points. For a point on the circumcircle we see that there
is, properly speaking, no pedal circle (191) and no isogonal
conjugate.

237. Theorem. The sides of the pedal triangle of a point

are perpendicular to the connectors of the corresponding ver-

tices with the isogonal conjugale.

That is, if P and @ are isogonal conjugates, 4,Q is perpen-
dicular to P;P;. For (figure 48) let these lines meet at R,
then since A4,, P,, P;, P lie on a circle,

X RP3A, = % P,PA,
Also

X PAP; = p. 4 P;A;R
so that the triangles A,P:P and A,RP; are directly similar,
and R is a right angle.

238. We have a fundamental angle formula for isogonal
conjugates, similar to the formulas for inversion (75) and for
Miquel points (186).

Theorem. If P and Q are isogonal conjugales,

X APAs+ X AQA;= X Az A14;
(If both points are within the triangle, this is equivalent to

2 APAz+ £ AQA; = 180°+ a,.)
For X AP, PAs= X AP, a4+ X a1, PAs
X% AsQ, QAs = X AsQ, a1+ X a1, Q4s
= X a3, A2P+ X PA; a
(from the definition of isogonals)
Adding, X A;PAs+2% AsQAs=X as,0:+ X a1,a0= X A2A1 45
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Corollary. If a point traces a circle through two vertices of
the triangle, so that X. A;PAj; is constant, then its isogonal
conjugate traces another circle through the same two points.

239. Theorem. If any circle cuts the sides of a triangle at
Pl,Ql, Pg, Qg, Ps,Qa z’nany Ofdﬁ?', then

% PoPiPs+ % QQiQs+ X A2 A1 A3 =0

For X. PP\ Ps= X PyQ.Py= X Azdy, A1Ac+ % ArAs, PO,
= X AsA1A2 + % QQiQ:

Corollary. In particular, these equations characlerize the

pedal triangles of any two isogonal conjugale points P and Q.

240. Theorem. If any circle cuts the sides of a triangle, al

Py, Qy, Py, Qe, Ps, Qs, the Miquel points P and Q of the triads

PP, P; and Q@Q:Q; are isogonal conjugates.*

For we have
p. 9 AQA; = X A A As+ 2‘-Q2Q1Q3
X AsPAsy= X AsA1As+ X PaP1Ps
X% AsPAs+ X A:QAs = X AsA 14,
+ [% PoPi P+ % Qii@s + X Asd 44

But we have just seen that the sum inside the bracket is zero,
hence we have the conditions that P and @ be isogonal conju-
gates,

X A PA; + X AQA; = X Az A A, ete.

ISOTOMIC CONJUGATES AND OTHER RELATIONS
241. Another relation very similar to that of isogonal con-
jugates, but far less important, is defined by the following
theorem.
Theorem. If three lines from the vertices of a triangle, and
concurrent at P, meet the opposite sides at Py, Py, Py re-

* Lachlan, Le., p. 133, 9, 10; Gallatly, Le., p. 110; Barrow, American Math.
Monthly, 1913, p. 251.
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spectwely; and if we cut off AsQy, AsQs, A\Qs equal respec-
tif)ely to PlAs, PgAl, PsAz, then AIQI, AQQQ, Ang are con-
current at a point Q, called the isotomic conjugate of P.

The proof, based on the theorem of Ceva, is obvious.

242. Theorem. There are four points, each of which is
sotomically self-conjugate; namely the median point M, and
each of the points of intersection of lines through the vertices
parallel to the opposite sides. (Cf. 277.)

243. Theorem. If a lLine cuts the sides of a triangle at
Pl, Pz, Ps, and E:f the zsogcmals Of A1P1, Ang, A8P3 are
A\Qh, Ay, A3Qs, then @, @, Qs are collinear; and if By, R,
Rs are isotomic to Py, Py, Py on the respective sides, they are
also collinear.

244. A few additional theorems and exercises in isogonals
and isotomics are suggested.

a. The product of the ratios in which two isogonals Jrom a
given vertex of a triangle cut the opposite side is constant, and
equal to the ratio of the squares of the adjacent sides (84),

mz_mzz A1A2 ’
PA; Qs \A44s

b. If a given point is reflected with regard to the sides o a
given triangle, the center of the circle through the reflections is
the isogonal conjugate of the given point (236).

¢. We saw in 199 that if two triangles are inseribed in a
circle and lines connecting their vertices meet at a point P,
either is similar to the pedal triangle of P in the other.
Show further that P, referred to one of the similar triangles,
8 homologous to its isogonal conjugate in the other.

d. An altitude of a triangle and a radius of the circumcircle
Jrom the same vertex are isogonal.

e. The product of the lengths of two isogonals from a vertex
of a triangle, the one measured to the opposite side and the
other to the circumcircle, is equal to the product of the includ-
ing sides.
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As special cases of this theorem we may notice the theo-
rems of 101 and (with a little manipulation) 99.

f. Construct a triangle, if one side is on a given line, the other
sides pass through given points, and two other given points are
isogonal congugales.

MISCELLANEOUS EXERCISES

245. Thmrm. Let A1P1, Ang, AsPs be concurrent at P.
Let PyQs be drawn parallel to as, PoQs parallel to ay, and P,
to a,. Then AQh, AsQs, Asls are concurrent.

Similaﬂy 'E-f Ple s parallel to az, etc., then AlRl; AgRg, Ang
are concurrent, at a point R.

In the same figure, if M is the point of inlersection of the
medians, AP, A:M, AQ are concurrent; AP, AsR, AsM
are concurrent; and so on.

I")h'}e)lies P1P2P3, Q]_QzQ:;, R]_RQR:{ have egual areas. (Cf.
107.

246. By applying the theorems of Ceva and Menelaus to
the triangle 0,0.0s, whose vertices are the mid-points of the
sides, we may obtain a multiplicity of theorems, of which the
following are typical:

If three concurrent lines are drawn from the vertices of the
given triangle to meet the opposile sides, and the mid-points of
these connectors are joined to the mid-points of the sides, the
Iines so drawn are also concurrent.

If P,, P,, P; are collinear points on the sides of a triangle, the
mid-points of the lines A\Py, AsPs, AsPs are also collinear.
Through the mid-points of the sides, let lines be drawn parallel
to three given concurrent lines through the vertices. These are
concurrent, and the two points of concurrence are homologous
in the similar triangles AyAsAs, 010:0s, 80 that the line join-
ing them is trisected by the median point M.

247. We may deal in the same way with any triangle
P, P, P; inscribed in the given triangle. For instance:

If AlPl; Ang, A3P3 are concurrent at P, and ‘BI Xl, XQ, Xa
are the m?:d-points Of PgPs, P;;Pl, P1P2 respectively, then
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AIXI; Ang, Angtl?'e concurrent. (Uﬁe 84) AISO O],Xl, OQXZ,
0,X; are concurrent.

More generally, if Y\, Y,, Y3 are any points on PPy, P3P,
PPy, such that P\Y,, P,Y5, P3Y; are concurrent, then AY,,
AgY,, A3Y; are concurrent,

Exercise. Give the complete proofs of the unproved pro-
positions in this chapter, in the following sections: 219,
221-228, 229, 235, 239, 241-244, 245-247.



CHAPTER IX
THREE NOTABLE POINTS

248. This chapter deals with the properties of three of the
notable points associated with the triangle, whose history
extends back to the ancient Greeks. These points, which are
somewhat intimately related to one another, are the circum-
center O, the intersection of the perpendicular bisectors of
the sides of the triangle, and center of the circumscribed
circle; the orthocenter H, the intersection of the altitudes; and
the median point M, the intersection of the medians. The
notation has already been explained (13). It is true that the
inscribed circle and its center were also known to the ancients;
but their properties are best discussed separately and are the
subject of Chapter X.

249. We observe first that the median point M is always
within the triangle, and trisects each median. If all angles
of the triangle are acute, the orthocenter and circumcenter
are also within the triangle; but if angle A, is obtuse, the
orthocenter lies outside the triangle on the extension of alti-
tude H,A,, while the circumcenter is on the extension of 00,
beyond AsAs. In a right triangle the orthocenter is at the
vertex of the right angle, while the circumcenter is the mid-
point of the hypotenuse.

250. Theorem. The angles subtended at the circumcenter by
the sides are double the angles of the triangle:

LAOA; =2 oy, L A00 = ay;
except that if A, is obtuse,
L AOA;= 2(180° - o)), A00; = 180° — a1
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In any case,
p. 9 A0As =24 As A A, X A 00, = X A A1 As

These formulas may be derived directly from the figure, or
deduced from 186. The equation last given is the most useful
form.

Hy

Fia. 50

251. Theorem. The points H, and H; lie on the circle
drawn on A.A; as diameter, and also on the circle on A\H as
diameter.

252. From the foregoing theorems we can derive a number
of formulas, expressing the values of the various angles and
lines in the figure.

a. AAlAgff = LAlAsH = 00° — oy, that iS,
4A1A2}I+ 4 Az,AlAg = 900
b. % A;HHy = % AsArAy

C. X A]fngs =X A\HH; = p. 8 AsAgAl
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d. p. 9 HH1H3= 2$.HA2A1= 2$_A1A3H=' ﬁ.HngH
e. oflh = a3 cos oy; AH = 2R cos ey

I m1=3008a1; m2+ﬂ822432

g- HH,= 2R cos o cos as;

h1= A11{1= GeSiﬂaa=Gsséﬂaz

2b63. Translating into words some of these relations, we
have the following propositions:

a. Theorem. The circumcenter O and the orthocenter H are

1sogonal congugates.

b. Theorem. Triangles AAsAs and A\HoH; are inversely

similar.

c. Theorem. The circumcenter O is the orthocenter of its own

pedal triangle.

d. Theorem. The altitudes and sides of the given triangle

bisect the interior and exterior angles of the triangle H HyHs.

e. Theorem. The radius A0 is perpendicular to HoHs.

f- Theorem. The circles on A:As and AH as diameters

are orthogonal to each other at Hs and H,.

For if HyT is tangent to the circle on A;H as diameter,
X AHsT = X A HHy = X AzAsH;

so that if 7' is on AzAs, H3AsT is an isosceles triangle. It
follows that 7 is at 0,. (Cf. 627.)

2b4. Theorem. Tha segment of an altitude from the ortho-

center to the side equals ils extension from the side to the cir-

cumcircle; if AH is extended to meet the circumcircle at Hy'

thﬁﬂ m 1'I = EF 1-

For at once triangles H H A; and H,H,'A; are proved con-
gruent. In other words, the reflections of H with regard to
the sides lie on the circumcircle.

256. Theorem. The products of the segments of the respec-
tive altitudes are equal,
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HAy HH,= HA» HH: = HAs- HHs

Several proofs are obvious. The constant product repre-
sents the power of H with regard to each of the circles on the
sides as diameters; or half the power of H with regard to the
circumcircle, in the light of 264; or trigonometrically we find

th-fTﬁ;=2Rcosm-2RcoSag-cosas=4Rgcos ) COS arg COS a3

Corollary. HA,-HH,= }(a’+ o’ + a”) — 4 R?
For HA,-HH, = 04;' - O’
being the power of H with regard to the circle 0y (0145).

But O + 1 AzAs" = 3 (HA:' + HAS) (96)
and HA;® = 4R — A1AJ, ete.

266. Theorem. A chord of the circumcircle, perpendicular
to one side of the triangle at an extremily, is equal to the seg-
ment from the ortho-
4 center to the vertex op-

posite this side.

Forif AzP,, perpen-
dicular to A; 4;, meets
the circumecircle at P;,
then AqP, is a diame-
ter of the circle, and
AgA, P, is also a right
angle; Py A, is parallel
to HA;, a.nd P]A]HA;
is a parallelogram.
Hence its opposite
Sldﬂﬂ P lAa and AIH
are equal.

Fic. 51

Corollary. AH = 200,.
For AP, = 20,0; this may also be seen directly from
252¢, f.
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257. Theorem (Euler). The circumcenter, orthocenter, and
median point of a triangle are collinear, and the last trisects
the line joining the other two: 20M = MH.

For if A101 and OH meet at X, triangles A;HX and
0,0X are similar, being mutually equiangular. But

AH = 200,
therefore A X=2X0,, HX = 2X0

showing that X trisects the median and is the median point.
This well-known theorem has already been foreshadowed; we
see, indeed, that M is the center of similitude of the directly
similar triangles A;424s and 010,05, whose orthocenters are
respectively O and H. Other properties of the Euler line
OMH will be indicated from time to time.

258. The Nine Point Circle. Since O and H are isogonal
conjugates, it follows (236) that they have a common pedal
circle; in other words, the feet of the altitudes and the mid-
points of the sides lie on a circle. The center of this circle is
midway between O and H; its radius is half that of the cir-
cumcircle, and it passes also through the mid-points of A; H,
AgH, Az;H. Tt is called the nine point circle, and has such
striking properties as to deserve a separate chapter. We
therefore postpone until Chapter XI further investigation of
this circle, which would otherwise be appropriate at this time.

ORTHOCENTRIC SYSTEMS

269. Definition. An orthocentric system is a set of four
points, one of which is the orthocenter of the triangle of
the other three.

Theorem. In an orthoceniric system, each point is the ortho-
center of the triangle of the other three.

For if H is the orthocenter of triangle 44,43, the altitudes
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oftriangle AzAsH are precisely AgHs, Ang, A1H1, and these
obviously are concurrent at A;.

By this theorem, the four points are endowed with equal
rank. Any three points
not in a line therefore
determine an orthocen-
tric system; and the
four points will be dis-
tinct except when three
of them are vertices of a
right triangle. In that
case the fourth coincides
with the vertex of the
right angle; in all other
cases, one point falls
within the triangle of
the other three, one of
the four triangles is
acute and the other

Fic. 52 three are obtuse.

260. Theorem. The four circumcircles of an orthocentric

system are egqual.

For we have proved that HH, and H,H,’' are equal; there-
fore triangles A2A3H and AsAzHy' are congruent, and their
circumscribed circles are equal. In other words:

Theorem. The circle through two vertices and the ortho-

center is equal to the circumcircle.

The converse theorem was discussed in 104, where it was
established that the intersections of four equal circles con-
stitute an orthocentric system.

261. Theorem. The centers of the circumcircles of an ortho-

ceniric system form another orthocentric system congruent to
the first. (Cf. 104 a.)
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For the centers Oy, O:', Oy’ of circles A;4;3H, etc., are the
reflections of O with regard to the sides. Hence 00y is twice
00,, and therefore equal
and parallel to A,H; and
so for all the connectors.
Thus each of the con-
nectors of the four points
0, 0/, O, Oy is equal
and parallel to the cor-
responding connector of
H, Ay, As, As.

Corollary. The connec-

tors of corresponding members of the two figures are concurrent,
and bisect one another, at the mid-point F of OH. The twelve
other connectors, as A10:', HOY, elc., are all equal to R, and
are parallel to the three fized directions A,0, A0, As0.

Fic. 53

This figure may be regarded as the picture, or plane pro-
jection, of a solid figure, namely a parallelepiped held in such
a position that the projections of its edges are equal. Then
homologous points of the two orthocentric systems represent
diagonally opposite points of the solid, and the twelve con-
nectors the edges. The special case of an equilateral triangle
and its center corresponds to a cube projected on a planc per-
pendicular to one diagonal.

262. Theorem. The sum of the squares of any non-adjacent
pair of connectors of an orthocentric system equals the square
of the diameter of the circumcircle (262 f).

263. Another characteristic property of orthocentric sys-
tems is suggested by the fact already noted that A;H and

AyAs are diameters of two orthogonal circles. We propose
the

Problem. To construct a triangle, given the base A;As and
the feet of the corresponding altitudes H, and Hs.
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It is obviously necessary and sufficient that the points H,
and H, lie on the circle whose diameter is A;A;. If this con-
dition is satisfied, then A>H; and A3H; will intersect at a
definite point A;, and AoH; and A3H; at a point H. Then H
is evidently the orthocenter of A;A4,43, and we have an ortho-
centric system. Moreover, the circle on A,H as diameter is
orthogonal to the first circle. Thus we have the converse
theorem (cf. 62 f):

Theorem. If two circles intersect orthogonally at P and Q,
and A B is adiameler of the one, let AP and BQ meet at C, AQ
and BP at D. Then CD is a diameter of the second circle
perpendicular to AB, and A, B, C, D are an orthocentric
system. In other words, the extremilies of mutually perpen-
dicular diameters of two orthogonal circles form an orthocen-
tric system.

264. An interesting property of the orthocenter is that of
all triangles inscribed in a given acute triangle, the one having
the minimum perimeter is the pedal triangle H;H,H; of the

4 Orthocenter. For this theorem
we need the following lemmas:
Theorem. If the sides of a
triangle are three non-concur-
rent angle bisectors of a second
triangle, the vertices of the latter
are feet of the altitudes of the
) (ol first.

The proof is immediate in
either of the two possible

B cases.

Fio. 54 Theorem. The shortest path
Jjoining two given points an one side of a line, and meeting this line,
18 a broken line whose parts make equal angles with the given line.

The proof is obvious from the figure; this is a familiar
exercise in elementary geometry.
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Theorem. Of all triangles inscribed ina given acute triangle,
the triangle Hy HoHy has the minimum perimeler.

For * if P],PgPs is mscnbed in A;AzAa, and P1P2 and P]_Pa
do not make equal angles with A;A43, then if ¢ is so located
that P,Q; and P:Q; do make equal angles with A543, we have
perimeter PpPsQ; less than that PP Pi. Thus if a triangle
of minimum perimeter exists, its sides make equal angles with
the sides of the given triangle, and must, as shown above, be
the triangle H,H,Hs. It is evident intuitionally that a mini-
mum exists when the triangle has three acute angles; if it hasa
right or obtuse angle, say at 4,, the degenerate pedal triangle
of Ay has a less perimeter than any proper inscribed triangle.

266. Theorem. If two triangles are inscribed in the same

circle, on a common base, the line joining their orthocentersis

equal and parallel to the line joining their vertices.

For if the t.ria.ngles are AlAzAs and A]_’Az.As, W]th ortho—
centers H and H’, we have seen that

A_LE =2 661 = A1 H'
so that A;HH'A,’ is a parallelogram.

Corollary. If four points are on a circle, forming four tri-
angles, the orthocenters of these triangles form a figure con-
gruent to that of the given points, with corresponding lines
parallel and in opposite directions; the conneclors of each of the
given points with the orthocenters of the other three, are con-
current and bisect one another at a point midway between the
centers of the circles.

This remarkable figure will be the subject of further study
in a later chapter (417). It may be noted that when four
points constitute an orthocentric system, the centers of their
circles constitute a congruent figure; on the other hand, when

* The proofs of this theorem in some of the texts are open to grave criti-
cism. OQur proof follows that of Russell, Lc., p. 138.
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four points are on a circle, their orthocenters constitute a
congruent figure.

266. We introduce a solid figure which has interesting
bearings on the properties of the orthocenter.

Theorem. Let a semicircle be drawn on each altitude of an
acute triangle as diameter, in planes perpendicular to the
plane of thetriangle. These circles are concurrent at a point P
in the perpendicular to the plane at H. Further, a right
angle is subtended at P by each side, each altitude, and by any
line from a vertex to the opposile side.

For H has equal powers with regard to the three circles
on the altitudes as diameters, hence the chords of these circles
perpendicular to their diameters are equal. Obviously any
altitude subtends a right angle at P. To show that the same
is true of a side, we compute A,P* and A;P, and find that
their sum is A;45%; hence Ay PA; is a right triangle. If then
A, P is perpendicular to 4;P and to AsP, it is perpendicular
to their plane. Since the lines PA,, PA,, PA; are mutually
perpendicular, we may visualize the figure as a piece cut from
a corner of a cube by an oblique plane. Conversely:

Theorem. If three mutually perpendicular planes are cut by
an oblique plane, the projection on the latter of the common
point of the three planes is the orthocenter of the triangle
Jormed.

267. It has been proved in 91 and in 230 that the mid-
points of the diagonals of a complete quadrilateral are on a
line. We may now re-establish this theorem, with some
further extensions.

Theorem. The orthoeenter of a triangle is a radical center for
all circles, each of which passes through the extremities of an
altitude; vn other words, if B,, By, Bs, are any points on the
respective sides of a triangle, the circles on Ay By, A By, A3Bs,
as diameters have H as radical center.
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This is merely another restatement of 255.

Theorem. If three collinear points By, By, B; are marked on
the sides of a triangle, the circles on A;By, AsBs, A3B; as
diameters are coazal.

For in the first place, the orthocenters of triangles A1424;,
AyByB;, A;BsB,, A3B;B; do not coincide. We have noted
that H, the orthocenter of A;A243, is a radical center for the
three circles. But consider triangle A;B;Bs; on its sides we
have points B, Az, As; and its orthocenter H' has equal
power with regard to the circles on A;B), BAs, Bsd; as
diameters. Thus continuing, the three circles have as radical
centers the orthocenters of the four triangles, and thercfore
they are coaxal and the orthocenters lie on their radical axis.

268. At one volley, thercfore, we have brought down the
two following theorems, each a worthy prize:
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Theorem of Gauss and Bodenmiller. The circles on the
diagonals of a complete quadrilateral as diameters are coazal,
Theorem. The orthocenters of the four triangles of a com-
plete quadrilateral are collinear on the radical azis of the afore-

said circles.

269. Definition. Two transversals PQ and RS to two lines
APR and AQS are said to be antiparallel with regard to

those lines if they make equal
angles with them in the sense

X APQ= X RSA4;
in other words, if the triangles
APQ and ASR are inversely
similar.
a. Theorem. Two lines are anti-
parallel with regard to the sides of
an angle, if and only if they make
the same angle in opposile senses
with the bisector of that angle.
b. Theorem. If PQ and RS are
andiparallel with regard to PR and
QS, then the latter are antiparallel
with regard to the former.

c. Theorem. W?ith the foregoing

hypothesis, P, Q, R, and S lie on a circle; and conversely.
270. a. Theorem. The line joining the feet of two altitudes

of a triangle is antiparallel to
the third side.

b. Theorem. The tangent to
the circumcircle at a vertexr is
antiparallel to the opposite side.
¢. Theorem. The sides of the
pedal triangle of H are parallel
to the tangents to the circumcircle
at the vertices.

d. Theorem. Theradiusof the
circumcircle at a vertex is per-

Fia. 57
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pendicular to all lines antiparallel to the opposite sides; in

particular, each side of triangle H\H,Hj is perpendicular to

the corresponding radius. (Cf. 260, 261.)

271. The Median Point. The properties of the median
point are not so interesting as those of the orthocenter. We
will consider a few of its theorems, and will discuss briefly
certain other points which are somewhat analogous to it.

272. Theorem. Each median divides the triangle info two
equal areas; all the medians together divide it inlo six equal
parts, and the lines from the median point to the vertices divide
the whole inlo three equivalent triangles.

Corollary. The perpendiculars from the median point to
the sides are inversely proportional to the sides,
- Ly 2 = l - l * _];
PP P g
For a;p1 = azp = asps = §A
273. Theorem. The distance from M to any line is equal to
one third the algebraic sum of the distances from the vertices to
the same line.
For if we denote the perpendiculars to a line XY from the
points A;, Az, As, M, Oy by dy, ds, ds, d, d' respectively, we
have by simple proportions

d=di+ §(d —dy), d'=1%(d+ ds)
whence d=}(d+ do+ d)

Corollary. If a line is so drawn that the algebraic sum of
distances from the vertices of a triangle is zero, il passes
through the median point. All lines for which this sum has a
constant value are tangent to a circle about M.

274, Definition. In the interest of uniformity, we define
as the median point of three points A, B, C on a line that
point M for which

MA+MB+MC=0
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In consequence of the foregoing definition, if P is any point
of the line A BC,

PM = }(PA+ PB+ PC)

Also M trisects the segment from any one of the given points
to the point midway between the other two; and it satisfies
273. This property represented by 273 associates the
median point with the physical concept of center of gravity,
and shows that the center of gravity of three equal weights
at the vertices of a triangle is at M. This will be discussed
further in Chapter XV.

276. Theorem. The sum of the squares of the distances from
a point to the vertices of a triangle equals three times the square
of the distance from the point to the median point, plus the sum
of the squares of the distances from the latter to the vertices.
That is, for any point P,

P._A12+ PAS+ P_Asg = MA+ MAS + M?if + 3P’

4,
O,
2 \0, Ag
Fic. 58
We have 1_3212 + ?Tfiz” = %032 + sz (96)

2P0 + PAs" = 3PM° + 20,M* + AM* (100)
so that PA,*+ PA,*+ PAs* = 3PM* + }as” + ims® + ¢ my’
Again, m° = }(2a’ + 2a.® — as®) and MAs = §ms,
whence finally the result as stated.
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Corollary. The median point is that point in the plane for
which the sum of the squares of the distances to the vertices of
the triangle is minimum; and the locus of a point for which
this sum has a constant value is a circle about the medioan
point M. Also

M- Rt ta
9
276. Theorem. If the vertices of a triangle lie on the sides of
another, and divide them in a fized ratio, the triangles have the
same median point. (Cf. 107, also 477 ff.)

Let Bl, Bg, Ba lie on the sides of AlAz.Aa, so that

BiA: _ B4 _ B A, _m

BiAs B_-z._‘Ax BA: n
We locate a point X; on A;A4; so that X As = A,B,, then
ByX, is parallel to 4,4, and B3X, to A;A3; therefore A;B;
and B:X, are equal and parallel.
Now connect 01 and Ps, the re-
spective mid-points of B;X; and
ByB;. We have 04P; parallel to
X1B,, and equal to half of it;
therefore it is parallel to B3A,
and equal to half of it; so that £ > X: 2,
A0, and B;P; trisect each other
at M, as was to be shown.

This proof, which is essentially that of Fuhrmann, can be
reversed, yielding the converse theorem:

Theorem. If a triangle is inscribed in another, so that their

median points coincide, the vertices of the former divide the

sides of the latter in equal ratios.

277. Exmedians. Through each vertex of a triangle there
is a line, whose properties resemble closely those of the
median. Such a line is called an exmedian, and we have a
number of theorems concerning medians and exmedians.
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Definition. The line through a vertex of a triangle, par-

allel to the opposite side, is called an ezmedian. The point

of intersection of two exmedians is called an exmedian
point.

It may be noted that this is a case of the general theorem
of 224. Another illustration of the latter is furnished by the
bisectors of the angles, and it will be desirable to note not only
the similarity of the properties of medians and exmedians, and
of the median point and exmedian points, but the resem-
blances between the configuration of medians and exmedians
as a whole, and that of the angle bisectors.

Theorem. Through each exmedian point passes the median
Jfrom the opposite vertex. The perpendiculars from a point on
an exmedian to the adjacent sides are tnversely as the lengths
of the sides, and the perpendiculars from an exmedian point on
the three sides are tnversely as the lengths of those sides. A
median divides the opposile side in the ratio — 1, an exmedian
in theratio+ 1. A median is divided by the median point in
the ratio — %, and by an ermedian point in the ratio + 1.
The triangles whose bases are the sides of the given triangle,
and whose vertices are at an exmedian point, are equal in area.
Finally, of M’ is the exmedian point opposite A,, and P is
any point,

PAS+ PAs:— PAl= P_Mﬁ+m22+Ma2_M12

THE POLAR CIRCLE

278. Definition. The polar circle of a triangle is the cir-
cle whose center is the orthocenter, and whose radius is
given (266) by

v = HA,-HH,= HA.- HH. = HAs- HH;
=—4R COSay* COSag* COSag = w}(afz +a” + 032) —4F
It follows that the polar circle has real existence only when

the triangle has an obtuse angle; and we can at once establish
the following theorems for an obtuse triangle:
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H

H, H, Ay
Fic. 60

Theorems. With regard to the polar circle, each vertex and
the foot of the corresponding altitude are inverse; each side is
the polar of the opposite vertex. The inverse of a side is the
circle having as diameler the line from the opposite vertex to
the orthocenter. The circle on any side of the triangle as di-
ameter 18 unchanged by the inversion, and is therefore orthog-
onal to the polar circle. More generally, any circle passing
through a vertex and the foot of the altitude from that vertez; in
other words, a circle having as diameter a line from the vertex to
the opposite side, is unchanged by the inversion and is orthog-
onal to the polar circle. The inverse of the circumcircle with
regard to the polar circle is the nine point circle (258).

279. Theorem. The given triangle is self-conjugate with re-
gard to its polar circle (143); and conversely. a circle is the
polar circle of every self-congugate triangle.

280. In an orthocentric system, three of the four triangles
formed are obtuse; if, for example, A;4,4; is an acute tri-
&Dglﬁ, H its orthocenter, the tria.ngles AgAsH N AaAlH N
A14,H have real polar circles with centers respectively at
Ay, A, As.

Theorem. Any two polar circles of an orthocentric system
are orthogonal.
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For if r» and 7; arc the radii of the polar circles whose cen-
ters are at A, and Aj; respectively, then

7’ = ApHy1 AzAs, 13" = AzH1 AsAz = HiAs A2As
e+ r5* = (AHr + HiAs) A2As = A4S
which is the condition for orthogonality.

Theorem. The radical azis of any two polar circles is the
altitude from the third vertex.

281. For the moment let us assert the existence of “imag-
inary circles”’; such a circle shall have a real center and the
square of its radius shall be negative. Then, as in the fore-
going, the triangles of an orthocentric system have four polar
circles, three real and one imaginaty, and any two of the four
are orthogonal. Conversely, if four circles are mutually
orthogonal, their centers are an orthocentric system, except
in the degenerate case about to be mentioned. An interesting
theorem about such a system is:

Theorem. If inversion is performed with regard successively

to each of four mutually orthogonal circles, every point returns

to its original position.

For let us simplify the figure, transforming two of the four
circles into mutually perpendicular straight lines. It will be
seen that the other two are then concentric about the point of
intersection of these lines, with radii 7. and 7s;, such that
roo+ 752 =0. Then the theorem is easily proved for this
special figure, and therefore it is true for the general figure.

282. Let us consider the polar circles of the triangles de-
termined by four lines, no two of which are perpendicular.
We see that at least two of these triangles will be obtuse,
and that all four may be obtuse. We consider one of the
triangles, say A’B’C’, on the respective sides of which are
three collinear points A, B, C. We have seen that the polar
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circle of A’B'C’ is orthogonal to the circles on 44’, BB’, CC’
as diameters; hence we have additional light on the theorems
of 267.

Theorem. The polar circles of the triangles of a complete
quadrilateral constitute a coazal system conjugate to that of the
circles on the diagonals.

283. Exercises. We close the chapter with a group of
miscellaneous theorems and exercises.

a. The perpendicular bisector of HyH3 passes through O,.

b. The lines from the mid-points of HoHs, etc., perpendicular
respectively to A2 As, elc., are concurrent,

c. If the point of concurrence of three lines from the vertices of
a triangle is also the Miquel point of the points in which the
lines cut the opposite sides, then the lines are necessarily the
altitudes.

d. If the altitudes of an acute triangle are extended to meet the
circumcircle, the hexagon having these three chords as diago-
nals has twice the area of the triangle.

284. If the base A24; of a triangle, and the radius R of the
circumcircle, are given, the locus of the third vertex is
evidently a circle of radius R, passing through the points
Ag and As.

a. In this figure, what is the locus of the orthocenter: of the
median point?

b. Again, if the vertex Ay and the directions of A1 Az and A, As
are given, as well as the length R, the locus of O is a circle of
radius B with center at A,. In this case, what is the locus of
H? and so on.

c. If Hy, H,, Hs are given in position, then A,, As, As can be
found. Are they uniquely determined ?

d. If 0y, O, O; are given, the triangle is uniquely determined;
the same is true if Hy, O,, O are given; but if three such points
as Hs, Hs, Oy are given, no solution is possible unless Oy is
equidistant from Hy and H; (cf. a) in which case the triangle
18 indelermenate, each vertex lying on a certain circle.
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285. a. If avariable triangle is inscribed in a fized circle on a
fized base A243, the line HyHs s tangent to another fired tircle.

For it is a chord of fixed length in the fixed circle on 4245 as
diameter.

b. In an orthocentric system, the median points of the four tri-
angles also constitute an orthocentric system homothetic to the
given one in the ratio 1:3.

c. If parallel lines are draun through the vertices of a triangle,
they meet the circumcircle in poinis which are vertices of a
triangle symmetrically congruent to the given triangle.

d. If two directly congruent triangles are inscribed in the same
circle, the corresponding sides intersect in three points which
are vertices of a triangle directly similar to both; the center
of the circle is the common Miquel point, and also the ortho-
center of the new triangle.

For if A,A; meets B;B; at C, ete., then we see easily that
A, By, Ca, Cs, O are concyclic, and O is the Miquel point.
But we know one Miquel triangle of O, namely its pedal
triangle, which is similar to A1424; with O as its orthocenter.

e. If lines are drawn through the vertices of a triangle, making
equal angles with the opposite sides, their triangle is stmilar
to the given triangle, with ils circumcenter at H.

f- If the diagonals of a simple quadrangle ABCD inlersect al
K, the centers of the circles ABK, BCK, CDK, DAK form
a parallelogram whose sides are parallel to the diagonals of
the quadrangle.

Conversely, if PQRS is a parallelogram, and K any point,
the circles with centers at P,Q, R, S, passing through K,
meet successively al four points A, B, C, D such that AC
and BD meet at K.

g. If the sides of a triangle are a fixed tangent and a variable
tangent to a given circle, and the chord of contact, the locus
of the orthocenter is a circle equal to the given circle, with its
center al the point of tangency of the fixed tangent.

For we show that the perpendicular from the circumcenter
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of the triangle to the variable tangent equals half the given
radius, and apply 256.

286. The following theorems of Hagge * offer no difficulty.

Given three concurrent lines from the vertices of a triangle to
the opposite sides, and circles on these as diameters; if lines
through H and perpendicular to these concurrent lines meet
the respective circles, the six infersections lie on a circle whose
center is the point of concurrence P,

In the same figure, let the same lines through H cut the circles
drawn on the sides of the triangle as diameters; the six inter-
sections lie on a circle, whose center, with reference to triangle
A142A3, is homologous to the position of P in triangle A, AsAs.
The circles on the concurrent lines meet the circles on the sides
as diameters in siz points of a circle.

Exercise. In this chapter the following propositions are
left unproved entirely or in part, and the proofs are to be
completed by the reader: 260-253, 265, 262-264, 266, 269,
270, 272, 276, 277, 278, 279, 283-86.

* Zeitschrift fiir Math. und Nat. Unterricht, 39, 1908, p. 1.



CHAPTER X
INSCRIBED AND ESCRIBED CIRCLES

287. This chapter is a study of the points of intersection of
the bisectors of the angles of a triangle, and of the circles
whose centers are at these points and which are tangent to the
sides of the triangle.*

We are aware that the bisectors of the interior angles of a
triangle are concurrent at a point I, called the incenter,
which is equidistant from the sides of the triangle; the radius
of the incircle, or inscribed circle, whose center is at the
incenter and which touches the sides, shall be designated by p.
Similarly the bisector of any interior angle, and those of the
exterior angles at the other vertices, are concurrent at a point
outside the triangle; these three points are called excenters,
and the corresponding tangent circles excircles or escribed
circles. The excenter lying on 4, is denoted by J’, and the
radius of the escribed circle with center at J’ is p;- We use X;
to denote the point where the interior bisector 4;1J’ meets
AgAs, and Y, for the intersection of the exterior bisector
A J"J" with A2As.

288. Some of the theorems concerning incenters and ex-

centers can be derived at once from the results of the last
chapter.

Theorem. The incenter and excenlers of a triangle are an
orthocentric system ; conversely, the vertices and orthocenter of a
triangle are the incenter and excenters of the triangle whose
vertices are the feet of the altitudes (263 d).

289. We know that 4,X,; and A,Y; are perpendicular to
* Paragraphs 209-307 may be omitted without impairing the sequence.
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each other; X; and Y, divide A34; in the ratio of 4,4, to
AA;. The following angle relations can be established
without difficulty:

LDLII;=180°— a1= as + a3

LLLI;=% LIgIIa=90°-—-92—1= az-;“‘

£ A Is = 90° — % = £ A LI,
o
LILI= 3

o)

LA1X1A2=¢:,+%=180°— =3

LTA0= “’; «

Z AT A; =90° + %

with similar equations for each of the excenters, mutatis
mutandis. In particular,
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LI = m
2

290. The segments on the sides of the triangle determined
by the points of tangency of the inscribed and escribed circles
are simply expressed in terms of the half sum of the sides, s.
Namely, neglecting algebraic signs:

s = A= Bli= AT = BT = A= AT

§— = mn = A_I_Is = A;_Ism = A J/" = Agl" = 1{372”

§—m;:= A-;Ts = Ajl = A_sjl' = A gy = AJy = AJS"

s—az= Asl; = LIy = A" = A" = Ads = ATy

These may be obtained algebraically, by virtue of the

theorem that tangents to any circle from an external point
are equal. For instance, if

x= Ade= Ails, y= Aols= Aly, 2= A1 = Ail»

wehave y+z=a;,, z+tz=a, z+y=as
which yield, when solved simultaneously,

2z=m+ a3 — q, ete.

Corollaries:
Ejln =@y = J?-_fl’"’ Il_Jlml = gy = mln
T;n_fl' = Qg— Ga, J].”Jl”’ = @ + aB;

Oil1 = % (a2 — ag), OJy = % (az + ag)
291. Geometric corollaries:
a. The lines from the vertices to the poinis of contact of the in-
scribed circle meet in a point (Gergonne point).
b. The lines from the vertices to the internal points of contact of

the respective escribed circles meet at a point (Nagel poin,
see 361).

c. The points of Gergonne and Nagel are isotomic conjugales.
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d. More generally, the lines connecting the vertices with the
points of contact of the inscribed and escribed circles are con-
current three by three at eight points, four pairs of isotomic

conjugates.

e. The perpendiculars to the sides of the triangle at these same
points of contact are concurrent at the in- and excenters, and

also at four other points.

These new points are the circumcenters of the orthocentric

system of the in- and excenters.

f. If By, B, B; are the excenters of triangle A1A243, CiCeCs
those of B1ByB;, and so on; show that the triangles of this
series tend to become more and more nearly equilateral.

(Express each angle as a sum 60° &=z, and apply the last

equation of 289).

292. We designate by P; the point where the bisector 4,7

meets the circumcircle,
namely the mid-point of
arc AzA;3; and by @ the di-
ametrically opposite point
where the exterior bisector
A J"J" meets the circle.

Theorem. The circle on
1J' as diameter passes
tfmmgh Az and Aa,‘ ils cen~
terisat Py, and its radiusts
5]

= i 2
= 2R sin 5

Tr=

o

2 cos —2'

For evidently IA; J’ and
IA; J' are right angles, and
the circle on IJ’ as diameter
passes through A, and A,.
But the center of the circle,

Fig. 62
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being on 1J’, is also on the perpendicular bisector of As4s;,
and therefore is at P;. The formulas for the radius are im-
mediate.
Theorem. The circleon J""J" as diameler passes through A,
and Aj; its center is at @y, and its radius

P=_9 =2R cos 2
. 0 2
Sin —

2
Corollary. These two circles are orthogonal.

293. It will be noted that these circles are the same as were
discussed in 261, with reference to the orthocentric system
J'J"J"'1I. Numerous consequences are evident.

= o o O
a. IJ'= a,/cos 5 = 4Rsing
b. AT = IT sin AsA.I = AR se'n-“zﬂ se'n%‘,
= 7 ﬂ‘ g jﬂ_ﬂ ) ﬂ
P 438‘1?%28@?123‘;132
c. PI'= PX,- P4, OI}=0.X-0H,
d. YI_II'XTI-I’ = m'xlﬂl

For XiI-X\J'= X4z X14, = X14,- X1 Py

294. Problem. To construct a triangle, given O, I, J' in
position.
295. Theorem.* Theradii of the circumscribed and inscribed

circles, and the distance d between their cenlters, are connected
by the equation
R*—d=2Rp

1 11
o E—d'R+d »

* For the early history of this important theorem, see Mackay, Proceedings
of Edinburgh Math. Socieiy, V, 1886-87, p. 62.
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Either of these equations can be derived algebraically from
the other; we shall establish the first. We see at once (figure
62) that triangles Q1 P14, and A,I]; are similar, hence:

QPy-ITs = PAs Ail
which gives at once
2Rp=AI-PI=R'-&
Similarly, if d, is the distance from O to the excenter J',

1 1 1
E—aTR+d =

By suitable conventions as to signs, these two propositions
may be regarded as equivalent forms of the same theorem.
The converse theorem, that if two circles satisfy an equation
of this form, then a triangle may be inscribed in the one and
circumseribed to the other, may be established with a little
difficulty from the same figure, but we propose to use an
alternative method based on inversion.

296. Theorem. If an inversion is performed with regard to

the incircle of a triangle, the sides and the circumcircle are

transformed into equal circles of diameter p; the inverse of A2As
is the circle on II, as diameter, and that of the circumcircle is
the circle through the mid-points of the sides of triangle I IIs.

For Al and A;I; are tangent to the incircle, therefore the
inverse of A, is the mid-point of IoI3. It may be noted that
the circle through these mid-points is the nine point circle
(268) of triangle I II; (see also 104a). By virtue of the
formula for the radius of a circle inverse to a given circle (71),
the converse of 296 is a corollary of this theorem.

297. Theorem. If two circles, O (R) and I(p), are so situ-~

ated that
R*— OI'=2Rp

2Rp = di"— R,
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then a triangle can be drawn with s vertices on the first circle

and ils sides tangent to the second; and that in an infinite

number of ways, with any point of the first circle as a vertez.

We effect an inversion with regard to the second circle, and
let the first be transformed into a circle with center O’ and
radius R’. Then by 71,

2
Y
or- 2k

whence by hypothesis, R’ = $p. Let A’ be any point on this
new circle; let the circles of diameter p, passing through I and
A’, cut the circle at B’ and C’ and be tangent to the circle I
(p) at Z and Y. Then we show easily that A, B, ' are
mid-points of the sides of a triangle XYZ inscribed in the
circle I (p); and that I, A’, B’, C’ constitute an orthocentric
system. Reverting to the original figure, we have three lines
tangent to the circle I (p) at X, Y, Z, and intersecting at
three points 4, B, C on the original circle O (R).

Corollary. If two circles admit a triangle inscribed to one

and circumscribed to another, they admit an infinite number.

The similarity of the equations given above to that of 125
should be noted. .

In a problem of construction, if two of the lengths R, p, OI
are given, we may use the above relation to find the third,
and draw the two circles. Then the triangle can usually be
constructed. Again, the equation shows that the radius of
the incircle is always less than half that of the circumcircle,
except in an equilateral triangle.

Theorem. If XY is a diameter of the incircle perpendicular

to OI, the perimeter of triangle OXY is equal to the diameter

of the circumcircle.

298. Many of the relations subsisting among the various
parts of the triangle may best be expressed by algebraic

R
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equations and formulas. This is especially true of the radii
of the inscribed and escribed circles. We have already noted
& number of such equations of simple type; and it will be of
interest at this time to enumerate some others whose deriva~

tion is not especially difficult.*
— B 4Rsin D sin 2 sin D
a. p—s-4Rsm2mn28m2 (16 d, 293 b)
— b8 4R sin cos L cos B
m—s_al—4Rszn2coszcos2
b. 11,1 1.
n P2 P3P
c. pt+mtm=4R+p
A
For pr+ p2+ ps— preducestos(s__ af)lf:ff AT
10203
d. Bo =4,
1,1, 1 1 1 1 1
e. h1+hﬂ+hsrp_m+pz+ps’
1 1,1 1 1,1 1 1_2
n kTR m n Mk
1_a
For B 2A,etc.

# The reader who wishes to pursue this subject further will be amply grati-
fied by two papers of Mackay, * Formulas Connected with the Radii of the
Tncircle and the Excircles of a Triangle,” Proceedings of Edinturgh Math.
Society, 12, pp. 86-105, 13, 103-04; ** Properties Connected with the Angular
Bisectors of a Triangle,” ibid.. 13, pp. 37-102. Both these papers contain
numerous verbal theorems, but both consist largely of formulas of the sort
given in the text; the first contains some fifteen solid pages of such formulas,
the second over twenty-five. A similar list, but not so well constructed, isa
little book by Schroeder (Das Dreieck und seine Beruhrungskreise). Marcus
Baker (Annals of Mathematics, 1, p- 134) gives a list of 110 formulas for the
area of a triangle.
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A 00, + 00,+ 00;= R+ p
For applying Ptolemy’s theorem to 00,430, ete.,

Bp_ 50..% %,
5 B m2+(ﬂ o) ele.

Also  sp=3}(00:-a1+ 00y + 00s- az)
Adding, we may divide out a common factor s.

g- A" = ppipaps

h. OI* + OJ” + OJ"* + OJ"* = 12 R? (295)
. . . . . 0100y

7. Thepmveroflwﬁkregm'dtothemcumrdewal_l_ s+ s

299. In 1822, Karl Wilhelm Feuerbach (1800-1834), a
teacher in the Gymnasium at Erlangen, Germany, published
& small book * containing a remarkable collection of theorems
on the triangle. The chief fame of this work rests on the well-
known theorem bearing the name of the author, but even
without this theorem, it would have been an exceedingly
valuable contribution to the geometry of the triangle. In-
deed, there is nothing to indicate that the author was
especially impressed with the theorem alluded to, or that he
regarded it as any more important than the rest of his work.

The book consists mainly of proportions and other algebraic
relations among the various dimensions of the triangle,
especially among the distances associated with the circum-
center, orthocenter, incenter, and excenters. Many of the
results which we have already given were included by him; we
quote a few others of his most striking formulas.

a. pps+ papr + pros = 8°

p(e2ps + pap1 + pip2) = 8 A = pipaps
plpr+ ;2 + ps) = @mas+ asay + @105 — &°

* Eigenschaften einiger merkwurdigen Punkte des geradlinigen Dreiecks, und
mehrerer durch sie bestimmien Linien und Figuren. (Nurnberg, 1822.)
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o+ pp2+ pps+ p2t+ post papy = aza3 + 0301 + @102
paps+ papy+ pp2— por— per— pes= (0’ + &’ + as))
These are easily proved by transformation of 298 a.
b. The perimeter of triangle HyHy Hs i 2A/R.

For p = @y €os &1+ Gz €08 a3+ a3 COS O3
2 2 2 2

— 8A 2A

gl tm A =28

2 410205 amme; R

c. The distance between the feet of the perpendiculars from Hy
to A As and A;A; equals half the perimeter p.
d. The product of the three altitudes is pA.

e. a12+agg+a32+Aj11+m+m=12Rz (Cf. 2562f)
f. AH+ AH + AH=2p + 2R (298 f)

or cosay + cosan + cosaz = 1+%

g. By introducing the radius r of the circle inscribed in the
triangle H,H,H;, Feuerbach establishes a number of re-
markably simple formulas (see also 324):
r= HH; cosa; = 2R cosey cosaz cosag
A;H-HH, = 2Rr
area H\HH; _ 1
A R
o+ o+ o’ = 4rR+ 8’ (Cf. 265)
h. Finally combining the last equation with that of e,
AR+ LH + AH = 4R’ — 4Rr

800. The principle of transformation. In such develop-
ments as those of the last few pages, a theorem about the
inscribed circle of a triangle suggests an analogous theorem
about each excircle, and vice versa. In some cases we have
stated and proved the related theorem; but the precise
method of formulation is not clear except in the simplest
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cases. This problem has been the subject of considerable
study, and a set of general rules for transforming equations
has been established. We will, without discussing the sub-
ject in detail, briefly state these rules.*
Denoting by b, b, I the lengths of the bisectors of the interior
angles, by Ny, Ny, \s those of the exterior angles;: let all other
letters have their usual meaning. If then we make the follow-
ing substitutions in any triangle formula, we obtain a valid
formala.
Replace a1 @ o s s—a; s—a; §—a;
by @ —a —a —(s-a) -s s—a s—a
Replace p pp p» p R
by m p —p —pm -R
Replace h h hy o a as A
by —h h hy —oy 180~c» 180—a3 —A
Replace 1 L L N N N
by “h N N =N L -
Quantities not listed may be similarly accounted for. This
scheme should be verified by the reader, by experimenting
with the formulas of the preceding sections, and elsewhere.

301. Theorem. In a triangle, the outer common tangents to
the excircles form a triangle whose incenter coincides with the
circumeenter of triangle J'J"'J", and the radius of whose in-
circle is

r=2R+p=%4(p+ m+ p2+ ps) (Cf.298¢)

We omit the proof, which is long and dull. The theorem is
noteworthy as being equivalent to a theorem in a Japanese
geometry of about 1820; it was more recently rediscovered in
Europe.t

* Mackay, Proceedings of Edinburgh Math. Society, XII, p. 87; Lemoine,
Bulletin Soc. Math. de France, X1X, p. 133; Proceedings of Edinburgh Math.

Society, XIII, p. 2; Lueas, Nouvelles Correspondances Matk., I1, p. 384; ibid.,
IIIL, p. 1.

T Mathesis, 1896, p. 192; 1898, p. 203; 1911, p. 208.
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Exercise. Apply the principle of transformation (300) to

this theorem.

302. Another theorem of Oriental origin may be noted
here. According to T. Hayashi, it was the ancient custom of
Japanese mathematicians to insecribe their discoveries on
tablets which were hung in the temples, to the glory of the
gods and the honor of the authors. The following theorem
is known to have been thus exhibited in 1800.*

Theorem. Let a convex polygon, inscribed in a circle, be

divided into triangles by diagonals from one vertex. The sum

of the radii of the circles inscribed in these triangles is. the
same, whichever vertex is chosen.

It is evident that if the theorem can be proved for a quad-
rangle, it can be proved by induction for any polygon. A
proof for the quadrangle can be based on 298 f.

303. Theorem. (Feuerbach). If the incenters of triangles

AHyHs, A2H3Hy, AsH H; are X, X,, X; respectively, then

X2 X3 is equal and parallel to I,13; Xy, X2, X; are the reflec-

tions of I with regard to the sides of triangle I Io1;.

For let X,Y be perpendicular to As4;; then, since we
know that triangles 4;4,4; and A,H,H; are similar, in the
ratio 1 : cos a, and that I and X are homologous points, and
also I3 and ¥;

A,

Aod;
It follows that I;Y is perpendicular to A;A;, and therefore
passes through X,. In other words, I,X;, I3X,, I1; are per-
pendicular to A;A;; and similarly for the other sides. It is
then easy to establish the fact that II, X, I, for example, is
a rhombus.

304. Theorem. The chords joining points of contact of the
* Mathesis, 1906, p. 257.

~

= COB ag
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inscribed circle are parallel to the corresponding exterior bi-
sectors. Similarly, the chords of contact of an escribed circle
are parallel respective’y to the exterior bisector of the opposite
angle and the interior bisectors of the other two angles.

Corollary. The pedal triangle of the incenter or an excenler is
similar and homothetic to the triangle of the other three points.

305. Theorem. Triangles P, PPy (292) and J'J""J'" are
homothetic, with I as center of similitude, ratio 2:1.

The incenter I is the orthocenter of P1PaPs.

Triangles P,P,P3 and I,1,13 are also homothetic.

806. The radical azes of the in- and excircles are the bisectors
of the angles of triangle 010:0;.

807. Exercises. Some miscellaneous exercises will con-
clude the chapter.

a. If AB and AC are fized lines, and XY any transversal, the
bisectors of angles AXY and AY X meet in a point P, whose
locus consists of the bisectors of the angle BAC.

b. If in triangle A1A2As, A\M and AN are perpendicular to
Aol and Azl, MN is parallel to AsA;.

c. If a triangle of given perimeter has one fized angle, the third
side touches a fized circle.

d. If the sides of a triangle are three of the common tangents to
two given circles, the circumcircle of the triangle passes through
the point midway between the centers of the circles. The four
circumcircles of a complete quadrilateral composed of the four
tangents to two circles, are concurrent at the same poind.

Exercise. Complete the proofs of the following: 288, 289,
290, 291, 292, 293, 294, 297, 298, 299, 302-307.



CHAPTER XI
THE NINE POINT CIRCLE

308. We continue the study of the triangle with a consid-
eration of the so-called Nine Point Circle briefly mentioned
in 268, and after a survey of its more elementary properties
we discuss at length the famous theorem of Feuerbach. Let
us first state again the definitive theorem for the circle.

Fic. 63

Theorem. The circle whose center F is midway between the
circumcenler and the orthocenter, and whose radius s half that
of the circumcircle, passes through nine notable points, namely
the feet of the altitudes, the mid-points of the sides, and the mid-
points of the segments from the orthocenter to the vertices.

Denoting the mid-points of A;H, A;H, AsH by Cy, Cs, Cs
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respectively, we wish to prove Cy, C, Cs, Hy, Hs, H3, O1, O, O3
lie on a circle whose center is the point F midway between
0 and H, and whose radius is $ B. We can establish the
existence and the properties of this circle in numerous ways;
perhaps the following is the most elementary.

First, 0405C2Cs is a rectangle, and therefore 0;Cz and O3Cs
are equal and bisect each other; say at X. Then X is the
center of a circle through Oy, Cy, Oy, C2, 0s, Cs. But C1 HiO1
is a right angle, and therefore H, lies on the circle as well; and
similarly for H, and Hz. The center X therefore lies on the
perpendicular bisector of O1H1, which bisects OH, and X is
therefore at F, the mid-point of OH. The radii CiF and
A;0 are evidently parallel, and C1F equals half of 4,0.

The nine point circle of the triangle is sometimes designated
as Euler’s circle, and frequently, by Continental writers, as
Feuerbach’s. That the discovery of this circle is not to be
attributed to Euler, as had been commonly supposed, was
established by the indefatigable Mackay.* The erroneous
imputation to Euler, curiously enough, seems to have been
the result of somewhat the same kind of error as in the case
of the Simson or Wallace line (192). As a matter of fact, the
theorem can hardly be said to have been discovered at any
one time; apparently it “just growed.” It is implied in
problems which appeared in English journals in 1804 and
1807; and was perhaps first explicitly stated by Poncelet, in
1821. Feuerbach discovered it independently and published
it, with new and important properties of the circle, in 1822.F

309. Other methods of proof, involving the results estab-
lished in the preceding chapters, will bring out further prop-
erties of the circle.

* “History of the Nine-point Circle,” Proceedings of Edinburgh Math.
Society, XI, 1892, p. 19.

+ For detailed information as to the history of the theorem, cf. Mackay, Le.;

Simon, Le., pp. 125-30; J. Lange, Geschichie des Feuerbach'schen Kreises,
Berlin, 1894,
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Since O and H are isogonal conjugates they have, as pointed
out in 268, a common pedal circle whose center is midway
between them. That is, the pedal circle of the orthocenter
passes through the mid-points of the sides. But in triangle
AgM, the orthocenter is Al, its peda,] triangle is Hle.Hs,
and therefore the cirele through H,, H,, H; bisects A:H and
AsH. Thus:

Theorem. The four triangles of an orthocentric system have
a common nine point circle.

310. Another approach is by way of similar figures. If the
lines from the orthocenter H to each of the nine points in
question are extended to double length, we easily see (264,
260) that the extremities lie on the circumcircle. Hence

Theorem. The external cenler of similitude of the circum-
circle and the nine point circle is the orthocenier. In other
words, the nine point circle bisects any line from the ortho-
cenler to a point on the circumcircle.

Theorem. The internal center of similitude is the median

point M.

This is obvious, since the internal center must trisect FO.
Again, we recognize M as the homothetic center of the similar
triangles A;A;A3 and 0,0:0;, and the circumcircle of the
latter is the nine point circle under discussion.

311. We have shown that it is proper to speak of the nine
point circle of an orthocentric system.

Theorem. The nine point circle of the incenter and excenters
of a triangle is the circumcircle.

Theorem. The circumcircle of a triangle bisects each of the
connectors of the incenter and the excenters (292).

Theorem. The sum of the powers of the vertices with regard
to the nine point circle is } (a" + @’ + az°).
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For the power of each vertex may be expressed by either
of two formulas, and therefore by half their sum,

Power of Ay = }(m- A Hs+ a3° A, Hs)

Adding these three expressions, we obtain the result given.
Corollary. FA+ FA,’+ FAs'+FH =3R* (298 h)
312. Theorem. All trianglesinscribed in a given circle, and
h{zﬁeng a given point as orthocenter, have the same nine point
circle.

313. Problem. To construct a triangle, given the circum-

circle, a point A, on it, and the orthocenier H.

Discuss completely, and ascertain the conditions under
which there will be a solution.

314. It is interesting to note the large number of triangles
closely related to the given triangle, which all have the same
nine point circle. For example, if a triangle is so drawn that
the feet of its altitudes are at the points Oy, Oz, O3, then its
nine point circle is the same as that of the given triangle.
Such a triangle may be constructed by taking as sides three
of the bisectors of the angles of 0:0:0;. The new triangle
may in turn be replaced by a third, and so on; we get an un-
limited sequence of triangles having a common nine point
circle, and incidentally, equal circumcircles. If, for instance,
we repeatedly take as sides of the new triangle the exterior
bisectors of the angles, the triangles of the sequence tend more
and more nearly to the form of an equilateral triangle (291 f)
circumscribed to the fixed circle.

Again, we may take the feet of the altitudes of any triangle
as mid-points of the sides of a new triangle having the same
nine point circle. We may, moreover, use the triangle C,C.Cs
in the same way; and by combining these various devices in
any order, we see that there are an unlimited number of
associated triangles having the same nine point circle,
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316. We have an interesting coaxal system of circles includ-
ing the circumcirele, the nine point circle, and the polar circle.

Theorem. The lines connecting the feet of the altitudes meet
the opposite sides in collinear points.
H

H,

5 | g

Tas Z W DX

o
Fic. 64

This is a special case of 223; the line, being the trilinear
polar of the orthocenter, is called the polar azis of the triangle.
If AsAz meets HxH; at X, then

X\He XiHs = X142 XhAs.

The polar axis of a right triangle is defined as the tangent
to the circumcircle at the vertex of the right angle; let the
reader show that this is consistent with the general case.

316. Theorem. The polar axis is the radical azis of the cir-
cumcircle and the nine point circle H,H; Hy; it vs therefore
perpendicular to the Euler line OH. The coazal system 1s of
the first, second or third type, according as the triangle is acute,
obtuse, or right.

317. Theorem. The circle on HM as diameler is @ member
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of the coaxal system; it is the circle of similitude of the circum-
circle and the nine point circle (115).

818. Theorem. The polar circle (if it exists) is a member of
the same system, being a circle of antisimilitude (128) for the
circumcircle and the nine point circle.

819. Theorem. The circle through the poinis of inlersection
of the tangents to the circumcircle at A, Ay, Agis a member of
the coaxal system, being inverse to the nine point circle with
regard to the circumcircle.

THE THEOREM OF FEUERBACH

320. Theorem. The nine point circle of a triangle is tangent

to the inscribed circle and to each of the escribed circles.

This is perhaps the most famous of all theorems of the
triangle, aside from those known in ancient times. We have
already mentioned that it was first stated and proved by
Feuerbach in his classic memoir, in 1822. A few years later,
it was discovered independently and stated without proof,
by Steiner; and in the last hundred years it has many times
been rediscovered.

Of the numerous proofs which have been contributed to the
history of this theorem, none is really simple. Though all
proofs are necessarily based on the same underlying prin-
ciples, there are several essentially distinct methods of ap-
proach. We shall consider a few typical proofs, each of which
will furnish a somewhat different aspect of the theorem, and
will add to our appreciation of its beauty.

321. A proof which in itself is simple and direct can be
based on the rather difficult theorem which was established
in the optional portion of Chapter V, in 117. The theorem
in question was obviously devised in the first place for this
present purpose. Paraphrased to fit the present problem, it
states that the circle through three points 0y, 0., O; will be
tangent to a given circle I (p) if the tangents to the latter
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from the points, namely 0,11, 01z, Osl5, and the distances
among the three points themselves, satisfy the equation

Oul1- 0403 + O512- 0501 + 0313 0,02 = 0

Now by 290 ml =3(a — (Is), ete.,
and 0.0; = 1 ay, ete.

Substituting these values we have at once an identity; thus
proving that the incircle is tangent to the nine point circle.
By a slight modification we can establish a proof for the
excircles.

322. The following proof is designed to be as simple as
possible, in the sense of demanding a minimum of prerequisite
knowledge. The
procedure consists
of determining a
point common to
the circles in ques-
tion, and showing
that they have
there a common
tangent. At best,
the details will
not be easy; they
are worked out in
the following se-
quence of lemmas.

Lemma 1. Assuming that ox>as, the line OiT, tangent to
the nine point circle ab Oy, makes the angle az — as with the
base AgAa.
For Z AsOlT =4 AsO],Og - £ 0201T

= £ AgAsA; + £ 0:00, = a3 — €3
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Lemma 2. If X, denotes, as before, the point of intersection
of the base A2A; and the angle bisector A, and if from X, we
have X, P tangent to the incircle at P and X,P' tangent to the
excircle J' at P’ then PX,P’ is a straight line parallel to O,7.

For the transverse common tangents to the incircle and
excircle meet at X, on their line of centers;

4A1X1P= AAQXIAIE %1+as
L PX A3=180°— L A X A — LA X\ P=ay—ay
Lemma 3. If the line O,P meets the incircle again at Q, then

Q s also on the nine point circle.
For OP-0,Q= O:I," = 0.X,-0,H, (293 ¢)

Thus P, Q, X, H, are concyclic, and we have
% OQH, = % PX,0,= ag— oz = X TO,, As4;
Therefore, since O, T is a tangent to the nine point circle, and
X OQH,= X TO, H,
it follows that Q is on the nine point circle.

Lemma 4. The two circles intersecting at Q, the incircle and the
nine point circle, have there the same tangent.

For two tangents to a circle make equal angles with the
chord of contact. Since the tangent to the incircle at P and
the tangent to the nine point circle at O are paralle], the tan-
gents to the two circles at Q make the same angle with O, PQ,
and therefore coincide.

Thus we have not only established the theorem that the
incircle and the nine point circle are tangent, but we have a
simple construction for the point of tangency. As before,
the proof can be applied with slight changes to the excircles.

This proof resembles somewhat the earliest purely geo-
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metric proof of the theorem, published by J. Mention * in
1850, previous proofs having been based on algebraic meth-
ods. Mention’s proof includes some of the foregoing prin-
ciples, and some of those utilized in the next proof.

323. We now outline a proof which establishes the theorem
by inversion for any two of the tangent circles simultane-
ously. For the
sake of definite-
ness, we will con-
gider the two es-
cribed circles with
centers at J” and
J". Three of the
common tangents
to these two cir-
cles are the sides
of the triangle.
We locate the
fourth; then we take as circle of inversion the circle with
center at Oy, orthogonal to the two escribed circles, and show
by a computation which is simpler than it looks, that the
inverse of the nine point circle with regard to this circle is
the fourth common tangent. Since the escribed circles are
unaltered by the inversion, this completes the proof.

Lemma 1. The circle with center Oy, radius \}(ag+ as), is
orthogonal to the escribed circles at Jy"" and Jy'"".

Lemma 2. The fourth common tangent to the escribed circles
culs A1A; at Zz, and A1A: at Zs, so that

ZzAy= A A, Z3A = A14s
For the exterior angle bisector J”A,J" is an axis of sym-

* Nouvelles Annales de Math., 9, p. 401.
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metry for the four common tangents, and AsA4; is the given
direct common tangent.

Lemma 3. If 0,0, and 0,0; are extended to meet Z,7Z; at Se
and Sa, then

0.0 0:8: = 0,05 015s = } (@ + @)’

For, recognizing that 0,0,S; is parallel to A;A4.Z;, we have
from similar triangles

0:8: _ Z;0:
AZy  Z.A,
or 055, = az (a3 + 4 az)
as
2 2
OB = 08 +3ap= 2T 2%% 4 s _ (@2+05)

2a 2 2q3

Lemma 4. The inverse of the tangent line SyZ,Z3Ss with regard
to the circle Oy(OvJ1") is the circle through 01,02,0s; that is, the
nine point circle.

For the radius of inversion is #, by 290; and thus

O, 8; and O, S; are pairs of inverse points.

Lemma b. Since the line S:ZyZ3S; is tangent to the excircles,
and these are unchanged by the inversion, the inverse of the line,
the nine point circle, is also tangent to the excircles.

324. Another type of proof consists in computing the dis-
tance between the center of the nine point circle and the
incenter or an excenter, and showing that it actually equals
the sum or the difference of the corresponding radii. This
was the process used by Feuerbach, whose treatment of the
subject, as we have said, was mainly algebraic. The proof of
Feuerbach is based on the following steps, each of which he
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establishes by main strength. Denoting by r the radius of
the circle inscribed in the pedsl triangle H,H-Hj3,

OI'= R*—2Rp (Cf. 295)
IM=2p"—-2Rr
OH'= R*—4Rr

FI'=y(O’+ HI')-FH*
=}E ~ Rpt+p'= (4R p)?

as was to be proved. Another proof, establishing the same
formula by somewhat more strictly geometric methods, is
given by Harvey.* Unfortunately, the derivation of this
result seems necessarily to be at best very roundabout, and
we shall omit the details.

Enough has been said to indicate the diversity of the pos-
sible methods of proving this difficult theorem, and the lack
of any simple proof. In a later chapter we shall consider a
series of more general theorems, bringing out some further
and more significant aspects of the situation (401 fi.).

326. We may note a few corollaries and extensions.

Theorem. The four triangles of an orthocentric system de-
termine sizteen inscribed and excribed circles. These are all
tangent to the common nine point circle of the system.

All the tangent circles of the triangles discussed in 314 are
tangent to the nine point circle.

Theorem. A circle tangent to any three non-concurrent an-

gle bisectors of the three angles of a triangle is tangent to the

circumcircle of the triangle.

We have determined the condition that a triangle can be
inscribed in one given circle and circumscribed to another;
and have seen that if one such triangle exists, there are an in-
finite number. The centers of the nine point circles of such

* Proceedings of Edinburgh Math. Society, V, 1887, p. 102.
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triangles are at a constant distance from I and therefore lie on
& circle; and the nine point circles are all equal and therefore
are tangent to two fixed circles.

The locus of the orthocenters of such triangles is a circle;
the locus of the median points is a circle; and the three locus
circles have their centers on OI, with O as a common homo-
thetic center.

326. We may now study further the properties of Simson
lines in a triangle, and establish simple relations associating
them with the nine point circle. Further theorems about
these lines will be developed at length in Chapter XIV.

_m

<

F1a. 67

Theorem. The Simson line of any point on the circumcircle

is perpendicular to the isogonals of the rays from the vertices

to the given point.

We know already that these isogonals are parallel (234);
but we have proved also (237) that for any point P of the
plane, the isogonals of 4,P, A,P, A;P are respectively per-
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pendicular to P»P;, P3P;, P1P;; and in the case before us,
these are segments of one and the same line.

Corollary. The Simson lines of diametrically opposite
points of the circumcircle are mutually perpendicular. More
generally, the angle between the Simson lines of two points
equals the angle inscribed in the arc of the circumcircle between
the poinis.

Corollary. The triangle formed by the Simson lines of three

points is simalar to the triangle of the points.

Corollary. There is a single point of the circumcircle whose

Simson line is parallel to a given line. The construction for

this point consists of drawing the perpendiculars from the

vertices Lo the given line; the isogonals of these are concurrent at
the desired point.

327. Theorem. The Simson line of any point of the circum-

circle bisects the line joining the point to the orthocenter, and

meets there the nine point circle.

There seems to be no simple proof of this important theorem.
Our proof (following Casey) consists in extending an altitude
(fig. 68) A,H to meet the circumcircle at H,’; then if PH,’
cuts the base AzA; at L, and the Simson line at X, we show
that the Simson line is parallel to HL, and bisects PL, at X.

First, since P, P, P;, A; are on a circle, we have

X P,P\P= 2$.P2A3P= p. 8 AHYP= li.P],PHl'

and triangle XPP, is isosceles, PX = XP;. In other words,
X is the mid-point of the hypotenuse of right triangle PP,L,.
We have seen (2564) that HH, = H,H,’; hence

4HL1H1= 4H1L1H1'= 4P1L1P= &.XP]L]_

and HL, is parallel to P;X. Therefore the Simson line P,.X
bisects PH at S.
Finally, we have noted that the mid-point of every segment
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F,
Ay P
8
a2
H)
X
A Hl L‘l pl As
g B
Fic. 68

HP from the orthocenter to the circumcircle is on the nine
point circle; hence 8 is on the latter circle.

328. Theorem. The Simson lines of two diamelrically op-
postte points of the circumcircle inlersect at right angles on the
nine point circle.

For if PQ is a diameter of the circumcircle, and if the mid-
points of HP and HQ are S and T, then ST is, as we have
just seen, a diameter of the nine point circle. But also the
Simson lines of P and @, as we have just seen, pass through
S and T respectively, and are perpendicular to each other.
Hence their intersection is on the nine point circle.

329. Theorem. If the perpendicular from a point P of the
circumcircle to any side A2As of the triangle is extended to
meet the circumcircle at Py, then APy’ is parallel to the Sim-~
son line of P.
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For X PP,P,= X PAsP; = X PP,A,
which shows that P;P; and P,’A, are parallel.

330. We have proved (268) that the orthocenters of the
triangles formed by four lines are collinear, and (197) that
the circumcircles of the four triangles meet in a point whence
the feet of the perpendiculars to the four lines are collinear.

Theorem. The Simson line and the line of orthocenters of a

complete quadrilateral are parallel, and the Simson line lies

mudway between the line of orthocenters and the common point

of the circumcircles.

For the line from this point to any orthocenter is bisected by
the Simson line.

331. Theorem. If four points are on a circle, there is a point
through which pass the nine point circles of the four triangles,
and the Simson line of each point with regard to the triangle of
the other three.

For if we join each point to the orthocenter of the triangle
of the other three, the four connectors have a common mid-
point (265). By 327, each of the Simson lines and nine point
circles passes through this point. This very suggestive the-
orem is generalized and extended in 400.

332. Theorem. Let four fived points on a circle determine

Jour triangles. Then any point of the circle determines Sfour

Stmson lines, one for each triangle; the feet of the perpendicu~

lars from the point to these four lines are collinear.

For let A;A24;A4 be any quadrangle inscribed in a circle,
and P any other point on the circle. If Py, denotes the foot of
the perpendicular from P to A,4s,, etc., then the Simson line
of P with regard to 4,4,4; is P33P Pys; and so on. We
designate this line by 1, and the foot of the perpendicular
from P on it by T,.

Now the triangle whose sides are I, b, I, and vertices are
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P, P2y, Ps is inscribed in the circle drawn on A4P as diame-
ter. The Simson line of P with regard to this triangle passes
through T, T2, and T3, which are therefore collinear. Obvi-
ously the fourth point 7 must lie on the same line.

333. Theorem. If a line through the orthocenter H culs the
sides of a triangle at Ly, Ly, Ls, then Hy'Ly, X2’ Lo, Hy'La, the
reflections of the line with regard to the sides of the triangle, are
concurrent at a point P
of the circumcircle
whose Simson line is
parallel to the line
IyLoLs.

This is a by-product
of the proof of 327.

Conversely:
Theorem. If any
point of the circumcircle

be connected with the
points Hy', Hy', Hy', the
connectors meet the cor-
responding sides al
three points collinear
with H ; this line is par-
allel to the Simson line
Fre. 69 of the given point.

334. Theorem. If PQ is a diameter of the circumcircle, and
if the perpendiculars from P and @ to their respective Simson
lines meet at R, then R is on the circumcircle and its Simson
line is parallel to PQ.

836. Theorem. If from any vertez of a triangle, perpendicu~
lars are drawn on the interior and exterior bisectors of the other
angles, the feet of these perpendiculars are on @ line, which bi-
sects the adjacent sides of the triangle.

336. Theorem. Of the arcs intercepted on the mine point
cg:;rle between the Simson lines of two points, one is double the
other.
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That is, if A, B are on the circumcircle, and A’, B’ are the
mid-points of AH and BH respectively; and if the Simson
lines of A and B cut the nine point circle at A’,Candat B, D
respectively; then one of the arcs CD is double one of the
arcs A'B’.

For arc A’B’ is similar to arc AB; and also the angle be-
tween the Simson lines, which is equal to the angle inscribed
in this arc, is measured by the sum or the difference of A’B’
and CD.

337. Numerous questions concerning Simson lines suggest
themselves. For example, how many Simson lines are there
through a given point? Under what conditions are the Sim-
son lines of three points concurrent? We shall briefly sum-
marize some of the further properties of these interesting
lines.*

Theorem. Through the intersection of any two Simson lines

there passes a third; thus the points of the circumcircle are as-

sociated in threes, any two points determining a third partner.

Let P and Q be any points of the circumcircle; since their
Simson lines are not parallel, let them intersect at S. Extend-
ing HS by its own length to H’, and denoting by R the ortho-
center of PQH’, we prove that R lies on the given circle
A14243PQ. (For X PRQ = % QH'P, which equals the angle
between the Simson lines of P and Q, since these are parallel
respectively to H’P and H'Q; and therefore equals X PA,Q.)
Similarly we prove that the Simson line of R is parallel to
RH’, and passes through S. By such methods, we can obtain
without difficulty all the following results (see further 406).

338. Theorem. Given a triangle A1 A2 A5 and two points P,
Q of s circumcircle; there exists a third point R of the circle,
such that the Simson lines of P, Q, and R are concurrent.
The point of concurrence is midway between the orthocenters of

* See, for instance, Beard, Educational Times Reprint, 11, 20, p. 109,
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triangles A1A243 and PQR, and the Simson lines of A1, Az,
A; with respect to triangle PQR are concurrent at the same
point S. Tolocate R, HS is extended by its own length to H';
then R is the orthocenter of triangle PQH’. The Simson line
of each of the points P, Q, R is perpendicular to the line joining
the other two. Conversely, if P is any point of the zircum-
circle, and QR a chord perpendicular to the Simson line of P,
then the Simson lines of P, @, and R are concurrent.

339. Problem. 7o determine the Simson line or lines of a

given triangle, which pass through a given poind.

We have seen (326) how to solve this problem when the
given point is at infinity. In general, however, it cannot be
solved by elementary methods. Analytically it can be shown
that all the Simson lines are tangent to a certain curve with
three equidistant cusps (hypocycloid) which is circumseribed
about the nine point circle. Through a point outside this
curve there is one Simson line, and through an interior point
there are three.

Exercise. Draw the Simson lines of a large number of
points, and observe this hypocycloid curve.

Exercise. (Sanjana, Educational Times Reprint, I1, p. 3.)
If P,Q, and R are on the circumcircle, with QR parallel to the
Simson line of P, then PR and PQ are parallel respectively to
the Simson lines of Q and R. The triangle whose sides are the
Simson lines is similar to PQR and similarly placed; deter-
mine the locus of the center of similitude as QR moves parallel
to the fized Simson line of P.

Exercise. Complete all indicated proofs in this chapter,
gely: 310-313, 316-319, 325, 326, 331, 333, 334, 335,

, 339.



CHAPTER XII

THE SYMMEDIAN POINT AND OTHER
NOTABLE POINTS

340. In the foregoing chapters we have discussed the prop-
erties of the best known of the notable points, lines, and
circles of the triangle. Another whole system, associated
with the name of Brocard, is deserving of detailed study, and
will be taken up in Chapters XVI, XVII, and XVIII. This
configuration is to some extent independent of that which we
have studied; but a liaison is furnished by the symmedian
point, which we now propose to study, and which bears im-
portant relations both to the configuration of orthocenter,
circumcenter, and median point, and to that which is based on
the Brocard points. After discussing the most interesting
properties of this point, we devote the latter part of the
chapter to some other notable points of secondary importance.

341. Definition. The line isogonal to any median of a tri-
angle is called a symmedian. The point of concurrence of
the symmedians, the isogonal conjugate of the median
point, is called the symmedian point K.

This point has various names; by French and British writ-
ers it is usually called Lemoine’s point, and by German,
Grebe’s. While both Lemoine and Grebe have contributed
to our knowledge of the point, neither was the first discoverer,
and the neutral descriptive term seems preferable. According
to a thorough study by Mackay,* the point was not discov-
ered at any one time, but gradually came into prominence by

* “Early History of the Symmedian Point,” Proceedings of Edinburgh
Math. Sociely, XI, 1892-93, p. 92,
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the recognition of its vari-
ous properties by different
investigators.

342. Theorem. The per-
pendiculars on the sides of
the triangle from the sym-~
median point are propor-
tional to the lengths of the
sides (235, 272). Conversely,
the only point within a tri-
angle from which the lengths
of the perpendiculars to the

A sides are proportional to the
Fic. 70 lengths of the sides is the
) symmedian point.

2A
a’+a’+as
For we may write KK1 = ca1, KKz = ca, KK; = caz and
determine ¢ from the equation

2 A = ay- KKy + ap-KKs + a5 KK = ¢ (0 + @’ + a5)

343. Theorem. A line through a vertex of the triangle and
tangent to the circumcircle is isogonal to the line parallel to the
opposite side of the triangle (exmedian). From a point on the
tangent, the perpendiculars to the sides of the angle are pro-
portional to the lengths of those sides.

844. Definition. The tangents at the vertices of the tri-
angle to the circumcircle are called exsymmedians (277).

Theorem. Any two exsymmedians and the third symmedian
are concurrent at @ point, an exsymmedian point (cf. 224).
The perpendiculars from an exsymmedian point K’ to the
sides are proportional to the lengths of the sides (235);

COI’O“&I'Y- K__Kl =a

KR = g — e
o ta —a
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Theorem. A symmedian divides the opposite side internally,
and an exsymmedian divides it externally, in the ratio of the
squares of the adjacent sides (244 a or 84).

Obviously any theorem
concerning the symmedian
point can be paralleled by a
theorem concerning each ex-
symmedian point.*

346. Theorem. A Iine

parallel to a symmedian,

and terminated by the ad-

Jacent sides, is bisected by

median.

346. Theorem. A Iline

aniiparallel to a side of a

triangle is bisected by the K

symmedian from the corres- Fa. 71

ponding verlex. ’

For if we turn the figure over on itself, the symmedian
becomes a median, and the antiparallel becomes parallel to
the opposite side.

Corollary. The lines joining the vertices of a triangle to the
mid-points of the corresponding connectors of the feet of the
altitudes are concurrent at the symmedian poini.

This yields a convenient practical construction for K.
Another, based on 344, follows; still others are given in 451
and 4562.

347. Construction. If the tangents to the circumcircle at A,
Ag, Agmeet at .K', K", K'", then AIK?' AgK", AK" arecon.
current al the symmedian point K.

* An extensive treatment of the symmedians is that of Mackay, “Sym-
medians of a Triangle and their Concomitant Circles,” Proceedings of Edin-
burgh Math. Society, XIV, 1896, pp. 37-103.
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Theorem. The Gergonne point of a triangle (291 a) is the
symmedian point of the triangle whose vertices are the points of
contact of the inscribed circle.

348. Theorem. The symmedian point of a right triangle is
the mid-point of the altitude on the hypolenuse.

349. Theorem. The pointin the plane, for which the sum of
the squares of the distances to the sides of a triangle is a mini-

mum, is the symmedian point K.

This is one of the earliest known properties of the sym-
median point; indeed, this sort of thing occupied much of the
attention of the early geometers (cf. 264, 275). The easiest
proof is algebraic.

For any six quantities whatever, the following identity can
be established by actually performing the multiplications.

(a2 + a5 + a?) (@ + ° + 2) = (@1 + a2 + aszs)”
4 (095 — 0522)* + (0571 — 123)” + (0122 — 0a71)”

Now let @i, @, as designate the sides of the triangle,
71, Z2, *3 the signed perpendiculars from any point; then
(@121 + 222 + a373) represents twice the area of the triangle,
and is constant. Since every term is positive or zero, we
shall have z;>+ z2° + 75 a minimum when the last three
terms are zero, that is, when

Tp:XelTz = Q120203
The required point is therefore either the symmedian point
or an-exsymmedian point.

By comparing the formulas for the respective perpendicu-
lars (342, 344), we see that the symmedian point furnishes
the required minimum, viz:

4 A

i 2 2 2 __
KR+ KK:' + KKs T ok +
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3560. Theorem. The symmedian point is the median point of

its own pedal triangle.

For if the median 4,0, is extended by its own length to 4,
(figure 70), triangles KK,K; and AsA;A, have correspond-
ing sides perpendicular each to each (237) and are therefore
similar. If KK; meets K,K; at Ky’, then KK’ is homol-
ogous to A30; in these similar figures, and K’ is the mid-
point of KyK;. Thus KKy’ is a median of triangle K KK,
and K is its median point.

Theorem. Conversely, if through the vertices of a triangle

lines are drawn perpendicular to the medians, the median point

of the given triangle is the symmedian point of the new triangle.

Corollary. The symmedian point is the only point which is

the median point of its own pedal triangle.

Theorem. Similarly, an exsymmedian point is an exmedian

pownt of its own pedal triangle.

That is, if K’ is an intersection of two of the tangents to the
circumeircle, K’ is one vertex of a parallelogram whose other
vertices are also those of its pedal triangle.

361. Theorem. Of all triangles inscribed in a given triangle,

that for which the sum of the squares of the sides is a minimum

18 the pedal triangle of the symmedian point.

For let X, Xz, X, be any points on A;As, Asdy, A14.
respectively; let P be the median point of X:1X:2X;, and let
PPy P; be the pedal triangle of P. If perchance P, Py, P
coincide respectively with X;, X, X;, then P is the sym-
median point K. In every other case,

PP’ + PP + PP’ < PX:’+ PX: + PXs?
But we saw in 349 that if K is the symmedian point,
KR\ + KR:’ + KKs’ < PP;® + PP + PPy
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Now in each of the triangles K;K.K; and X, X»X;, we may
apply 96 ¢, whence the result.

Theorem. If the symmedians meet the circumcircle at Ly,
La, Ls, then K is also the symmedian point of triangle LiLsLa.
(199, 244 c, 350)

The triangles A1A2As and I Ly Ls, having the same circum-
circle, symmedians, and symmedian point, are called co-
?yng)nedian triangles. We shall later consider them again
476).

Exercise. If squares are constructed externally on the sides
o a triangle, the sides parallel to those of the given triangle
{:Epamanglesimmtoﬂwlaw,mmKaamofﬁ_

Problem. Given a vertex of a triangle, the directions of the
sides through it, and the symmedian point, to construct the
triangle.

THE ISOGONIC CENTERS*

852. The next points to occupy our attention are the
isogonic centers, which have the property that from either of
them the angles subtended by the sides are 60° or 120°. They
are determined by the following theorem.

Theorem. If equilateral triangles A2 AsPy, AzA1Pz, A142Ps

are constructed externally to the given triangle, then APy,

AsP,, AsP; are equal; they are concurrent at a point R, and
y. % AsRAz= 4A3RA1 =X AiRA, = 120°

For triangles A;A2P; and P; A3 A3 are congruent; Ag is their
center of similitude, and the angle between corresponding
lines is equal to P;A24s, or 60°. Thus A;P; and AgP; are
equal, and if they meet at R, then

X AsRA;= X% AP A1 Pr= X A Az, AP = X AP A,

#*The rest of this chapter may be omitted without embarrassment, with
the exception of 3568-358, which will be used later.
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whence it follows that R is the intersection of the circles
A2A3P,, A;A;P;.  Since the circle A;A3P; passes through
this point also, therefore A;P» passes through R, as was to be

]
Fia. 72

proved. We see that X A;RA; is 120°, rather than 60°,
because triangles A; 4,43 and PyA,A; are described in oppo-
site directions, and

p. 4 AzRAs =X AzPlAa = 120°

The point B will fall within the triangle, and the angles sub-
tended by the respective sides will actually be 120°, except
when one of the given angles exceeds 120°. In this case R is
outside the triangle, and the shorter sides subtend angles of
60°.
Similarly:
Theorem. Ifeguﬂateml ‘1‘?:(!119183 AzA;P 1', AaAlpz', A1A2P 3'
are constructed internally on the sides of a non-equilateral
triangle, then A\Py, AxPy’, AsPy' are equal, and meel at a
point R’, whence the sides subtend equal angles,
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X AsR'Ag= X AsR'Ay = % A R'As = 60°

The proof resembles that of the preceding theorem. For a
triangle having no angle of 60° and only one angle greater
than 60°, R’ lies outside the triangle, opposite this angle.
If, however, there are two angles greater than 60°, R’ is
opposite to the third angle, and outside the triangle. (For
an equilateral triangle there is no point R’; but if a scalene
triangle changes its form so as to become equilateral, R’
approaches a limiting position which may be anywhere on
the circumcirele. Let the reader investigate.)

The points R and R’ are the only ones at which each side
of the triangle subtends angles of 120° or 60°. There are
other points from which two sides subtend such angles; what
are they?

363. Theorem. The algebraic sum of the distances from an

2sogonic center to the vertices of the triangle equals the length

of the equal segments from the laiter to the vertices of the
equilateral triangles:

a. In case R isinside the triangle, A1 P, = AR+ AR+ AR

b. If As>120°, A\Py= AiR+ AR — AR

c. If R’ is opposite to As, APy = AR’ — AR’ — AR

For R is on the circle P1A;A;, hence by 93 b

PR = A4,B+ AR

354. a. Theorem. Trwngles A}Pspz', Alps'Pz, AlAzAa are
congruent. Corresponding lines meet at angles of 60°,

b. Theorem. A;P, and APy’ meet on the circumcircle.

c. AP+ AP =o'+ a2’ + a5 (986)
AP’ — AP =4V3A (98)
d. AP = 3o + o’ + @) +2V3 A

AP = Ha' + o’ + as’) — 2V3E A
(Nicholas Fuss, 1796)
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e. Further study of the circles circumscribed about the
equilateral triangles A;AsP;, A2A3PY, ete., is suggested.
If the centers of these circles are Q, @', elc., then triangles
Q:1Q:Qs and Q,"Q:'Qy’ are equilateral, with the median point M
as common center. The isogonic centers R’ and R are respec-
t‘iﬂdy on the circles Q1Q2Q3 and Ql’ 2’Q3’.

356. We consider next a property of the isogonic center B
which lends it a singular historic interest. This point was
indeed the first notable point of the triangle discovered in
more recent times than that of Greek mathematics. In the
seventeenth century, Fermat proposed to Torricelli the prob-
lem of determining a point whose distances from three fixed
points should have the minimum sum. The practical appli-
cation of this problem is obvious. Torricelli solved the
problem, and thus discovered the point E. His solution was
published in 1659 by his pupil Viviani. The elegantly simple
analysis of the problem which follows is due to Steiner.

Theorem. If A;A»As1sairiangle having no angle as great as

120°, the point the sum of whose distances from the vertices of

the triangle is the isogonic center R.

If we connect either isogonic center with the vertices, and
draw lines through the latter perpendicular to the con-
nectors, we form an equilateral triangle X,X>X;. It is clear
that the isogonic center will be inside the triangle XX, X,
only if it is the point R and is within the given triangle.

Now the algebraie sum of the perpendiculars from a mov-
ing point to the sides of a fixed equilateral triangle is con-
stant; if the point is outside the triangle, the numerical sum
is greater than the algebraic sum. Now let S be any point in
the plane, except R, and denote by sy, sz, 83 the perpendiculars
on Xng, X3X1, X1X2 from S. Then

s1+ s+ s3= RA:+ RA>2+ RA4s
according as S is inside or outside triangle X, X:X;.
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In any case, SA = 81, SAs = s, SA;s = 53,
and therefore

SA,+ SA;+ SA; > RA,+ RA:+ R4,

Similarly, the triangle X:X>X3 s the largest equilateral

triangle that can be described in the positive sense with its

sides passing through the vertices of the given triangle.

If any angle of a triangle exceeds 120°, the vertex of this
angle is the solution of Fermat’s problem.

The isogonal conjugates of the isogonic centers are called
the isodynamic points, and will be taken up in detail in chap-
ter XVIIL.*

366. The theorems concerning the isogonic centers are
susceptible of some generalization. We shall state without
proof a number of theorems, beginning with the most general
and indicating several forms of modification. The proofs
depend on the theorem of Ceva.

Theorem.} From eachvertex of a triangle let a pair of isogonal
rays be drawn, each associated with one of the adjacent sides of
the angle. Let the rays associaled with each side meet at a
point, which is then connected with the opposite vertex. The
three connectors are concurrent. That s, if % AzA; X, =
X X3A1A2= ¢1, X A1A2X3 = X X14sA3= ¢o, X A2A3X; =
4X2A3A1= qbs, then A1X1, A 2y AaXs meel at a 'p(md. P,
Jfrom tgyMch the perpendiculars to the sides of the triangle are
given

em e S 8inde | sings
PP Sin(ar— ¢1)  sinaa— o)~ sinas — bs)
In the particular case that

é1+ ¢2+ ¢ = 180°
the triangles constructed on the sides are similar, in the sense
AIAng ~ X]AzAs ~ AIXSAB

* A detailed treatment of the isogonic centers is given by Mackay, Proceed-
tngs of Edinburgh Math. Society, XV, 1897, pp. 100-18.
t Fig. 73 illustrates this theorem for the special case of 8567.
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If AiXy, AsXs, AsXs meet ot P, the circumcircles of the
three triangles also pass through P; the angles formed at P are
equal to the given angles ¢1, ¢z, ds; the lengths A:1X1, AsXo,
A3X; are proportional to the altitudes of these triangles.

8b67. Specializing the original theorem in another manner
we are led to the following. The theorems relating to the
isogonic centers are cases of these theorems; other cases will
present themselves in the Brocard geometry.

Theorem. If similar isosceles triangles are drawn in similar

position, with the sides of the given triangle as bases, the lines

connecting their verlices with the opposite vertices of the tri-
angle are concurrent. If ¢ is the given base angle, the dis-
tances from the point of concurrence to the sides are given by
1 1
PP Sin(en — ¢)  sin{aa— ¢)  sin(as— ¢)

Conversely, if the perpendiculars from a poini are propor-

tional to such expressions as these, the point determines such a

set of similar isosceles triangles.

This theorem is an immediate consequence of the theorem
of Ceva. BSpecial cases are: ¢ = 0, the median point;
¢ = 90°, the orthocenter; ¢ = o, the vertex A;; ¢ = 60° or
120°, the isogonic centers; and so on. It is instructive to
sketch the figure for varying values of ¢, and determine the
locus of the point of concurrence.

358. Theorem. If triangles A2 A3X,, A3 A1 X, A1A2 X3 are

directly similar and similarly placed, the median poini of

X1X2X3 coincides with that Of AlAzAg.*

Let X,0: be extended by its own length to X;’, so that
A X1 43Xy is a parallelogram. Then triangles A;AA4s,
X2 X1’ Ag, X3A2Xy' are similar, having in each ease a pair of
equal angles and the including sides proportional. Then by
proportions we prove that A X,= XXy, A4,X;= XX/,
and A;X;X{'X;is a parallelogram. Thus A;X;’ and X, X;

* Note that this theorem does not assume that the similar triangles are
isosceles nor that A,X,;, A:Xs, A3X; are concurrent.
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bisect each other, say at Z. Next, two medians A,0; and
X1Z of triangle A:X,X,’ trisect each other at M, since 4,0,

F1a. 73

is also a median of
AlAgAa; but Xlz is
also a median of
X]XQX;, andtherefore
the median point of
the latter is also at M.

A trigonometric
proof may be built up
by expressing the per-
pendiculars from X,
X5,X; to some one
gide, say AA; in
terms of the angles of
the triangle and the
angles X;A24; and

X1A34,; by manipulation of trigonometric expressions it is
easily proved that the sum of these perpendiculars is equal
to A;H}, so that their average equals M M;.

Corollary. If X,X,X; are collinear, their line passes through
the median point.

369. Theorem. From each vertex of a triangle let a pair of
isogonal rays be drawn. If no three of these are concurrent,
they intersect at twelve points besides the vertices. These
twelve points are isogonally conjugate in pairs; each verter of
the given triangle may be connected with two pairs of them by
new lines. These new lines inlersect by threes in eight other
points, which are four pairs of isogonal conjugates.

This figure will amply repay extensive study. For in-
stance, we find that the lines connecting the six pairs of
isogonal conjugates meet by threes at four points, and those
connecting the last named four pairs of isogonal conjugates

are concurrent,
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360. Antipedal triangles. The method used in the proof
of 365 suggests an interesting generalization.

Definition. If any point is connected with the vertices of a
triangle, the lines through the vertices and perpendicular to
these connectors are the sides of a triangle called the antipedal
triangle of the point with regard to the given triangle.

It is evident that the given triangle is the pedal of the point
with regard to this antipedal triangle, whence the name.
Thus any theorem concerning pedal triangles suggests a
theorem on antipedal triangles.*

Theorem. The antipedal triangle of a point on the circum-
circle reduces to a point, also on the circumcircle.

Theorem. The antipedal triangle of a point is homothetic to
the pedal triangle of its isogonal conjugate.

THE NAGEL POINT
361. We have already alluded (291) to the point of Nagel,
defined as the intersection of the lines from the vertices of
the triangle to the points of contact of the opposite eseribed
circles. We now establish some of its interesting properties.

Theorem. The median point M, the incenter I, and the
Nagel point N are collinear, and MN = 2IM. (Cf. 267.)
We first consider right triangles A; HJ," and IT,0,.

- A J— 2A

Li=p=—, AiH1=—, 1101=‘%(ﬂa—0/a)
8 ax

8 (az — a3)

j?mlﬁs—ae“x‘h_ff1=
ax

JiH _AH: 23
Therefore on "Il &
* See further Gallatly, l.c., Chap. VII.
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Ay
/]
I
0
A
Al\ H L Oy J1 / 3
Fig. 74

so0 that the right triangles are similar, and I0; is parallel to
A;N. By application of 84 and 290 we find that

1171'=£
Eﬁ ax

so that AN is 270,. Hence A;0; and IN trisect each
other at M.

362. Theorems. HN is parallel to OI, HN = 210.

If 8 is the mid-point of IN, then OyS s parallel to A,I, and
therefore is a bisector of the angle 010:0;. Thus S is the in-
center of triangle 010,0s.

The centers of similitude of the circles inscribed in triangles
AlAgAs and 010203 are M and N.

363. Theorem. The lines from the vertices of the triangle to
the Nagel point pass through the respective points of tangency
of the wncircle of triangle 0,0:0;.

Theorem. The incenler is the Nagel point of 0:0:05.

364. The circle inseribed in triangle 0,0.0; is called the
P-circle or Spieker circle,* and has some properties curiously
parallel to those of the nine point circle. We have just located
its center S as the mid-point on TN, and seen that the four

* Spieker, Grunerts Archiv, 51, 1870, pp. 10-14.
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points N, S, M and I are placed similarly to H, F, M and O.
Also the lines from A;, As, A3 to N pass through the re-
spective points of contact of the Spieker circle

Fic. 75

865. Theorem. The Spieker circle is also inscribed in the

triangle whose vertices are midway from the Nagel point to

the vertices of the triangle. Specifically, if P1P:Ps are the

mid-points of AiN, AN, AsN, then PyPs, 10, NI, meet at

a point where the Spieker circle is tangent to P3Ps.

ObViOUS]y triangles AlAzAa and P1P2P3 are simi]ar, in the
ratio 2:1, with N as homothetic center; hence the incircle of
the second is precisely the Spieker circle. Also the lines N1,
ete., pass through the points of contact of the latter, and are
there bisected. Finally, IOy is parallel to A,NJy, and
bisects I.Jy' at Oy; hence it passes through the mid-point
of ILN.

366. Theorem. The Spicker circle is inscribed in two con-
gruent triangles 0,0:0; and PyP:Ps; the points of contact of
corresponding sides of these triangles are diametrically op-
posile poinis.

Thus we see that whereas the nine point circle is half the
size of the circumcircle, with M as a center of similitude, and
has six notable diameters, so the Spieker circle is half the size
of the incircle, with M as a center of similitude, is tangent to
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six notable lines at notable points, and thus has six notable
diameters.

367. Definition. The Fuhrmann Triangle (Spiegeldreieck™®)
of a triangle is the triangle whose vertices are the reflec-
tions, with regard to the sides, of the mid-points of the
outer arcs of the circum-
circle. 'The circle pass-
ing through these points
is called the Fuhrmann
circle.
As before, we denote
the mid-points of arcs
Az Ay, AgAy, A Asby P,
P21P3;50t*ha't'AIsI)P1
la, are collinear; and the
diametrically opposite
points by @y, @2, Qs. If
the reflections of Py, Ps,
P; with regard to the
respective sides are Ry,
F1a. 76 IE‘Z; R‘G!

then R0, = O\P1= {0 tan %.

368. Theorem. AHR\(, is a parallelogram, end HR; is

perpendicular to the angle bisector Al P;.

For QiR1=200:= AH (256); and therefore HR, is
parallel to A4:Q;, which bisects the external angle.

369. Theorem. NH is a diameler of the Fuhrmann circle.

First we extend NO; to meet the bisector A IP; at Ny'.
By virtue of the proof of 361, Oy is the mid-point of NN/,
and NP;N1'R, is a parallelogram. Therefore RN is parallel

* Fyhrmann, lc., p. 107.

iy

iy
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to Ail, whereas we have seen that HR; is perpendicular to
it. We thus have RE; on the circle whose diameter is HN.

370. Theorem. Triangles P1P:P;and RiR:Rs are inversely
simalar.
For R,H is parallel to P, P, etc., and we have

a. R]_RgRs = 4 R1HR3 = ﬁ. PgPs, P]Pz = ﬁ. PngP}_

871. Theorem. The Fuhrmann circle cuts each altitude at a

distance 2 p from the vertex.

For on the altitude A,H;, let us cut off A;7: equal to 2 p;
then since

2A=a1-AH, = 2ps

I{;ﬁ_@_ AN
we have v AP (361)

showing that 71N is parallel to A:A; and HT\N is a right
angle.

372. Theorem. Tmngles A1Az Az and T1T.Ts are in-

versely stmdlar.

We thus have eight notable points on this interesting circle.
Many other remarkable properties are worked out by the
discoverer.

In conclusion, we may note that while our attention has
been confined to the figures associated with the incircle, there
exist corresponding configurations bearing the same relations
to the excircles. That is, there exist three “ ex-Nagel-points”’
having properties like those of the Nagel point, and each
giving rise to a Spieker circle and a Fuhrmann circle. The
more detailed investigation of these figures will be found well
worth while.

Exercise. Of the following theorems in this chapter, left to
be proved by the student in whole or in part, some will be
found more difficult than those of earlier chapters; 342-348,
351, 353, 354, 366, 357, 359, 360, 362, 363, 366.



CHAPTER XIII
TRIANGLES IN PERSPECTIVE

373. In this chapter * we consider briefly a number of
theorems of a projective nature; that is, theorems relating to
the concurrence of lines and the collinearity of points, but not
to distances, angles, or ratios. We discuss the relationship
of perspective figures, and establish the fundamental theorem
of Desargues. Various applications of this theorem, followed
by a brief study of the quadrilateral, lead us finally to the
famous theorem of Pascal concerning the hexagon inscribed
in a circle.

Definition. Two figures in a plane are said to be in per-
spective with each other, when and if: (a) the lines joining
corresponding points are concurrent at a point called the
center of perspective; and (b) the points of intersection of
corresponding lines are on a line called the azis of per-
spective.

We have already considered a special case under this defini-
tion, namely that of similar figures whose corresponding
sides are parallel. In this case the axis of perspective is the
line at infinity, and the center of perspective is the homo-
thetic center. The existence of figures in perspective in the
more general case is established by the following theorem.

874. Theorem of Desargues. If two triangles have a center

of perspective, they have an azis of perspective.

Let triangles A14245 and B1B;B; be 50 placed that 4, B;,
AzBi, AsBs meet at a point O, and let AgAs and BzBs meet at

* Any parts or all of Chapters XIII, XIV, XV may be omitted without im-
pairing the sequence of later chapters. The present chapter, however, con-
tains several famous theorems.
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C1, A3A; and B;B, at Cg, AjAs and B1B:; at C;. 'The proof
that C,, C; and C3 are collinear is easily effected by the

F1a. 77

theorem of Menelaus. First we consider the line B;C. B, as
a transversal of triangle 4;04;

B0 -CiAs B _
BiAs-CoA1- B0
- B0 -Cids- BiAs
_——— 1
Similarly By CyAr BiO
B0 -Cids» Bds
e e e |
and Bids Cids B0
Combining these equations and canceling, we have
mz'@s‘mla_ 1
CiAs-CoAs- oA

which shows that C;, Cs, C; are collinear.

875. Theorem. Conversely, if two triangles have an axis of
perspective, they have a center of perspective.
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With the same notation, we assume that Cy, Cs, C3 are on a
line, and show that A;B;, A;B,, A;B; are concurrent. Con-
sider triangles A;B:C; and A3B;Cy; they have C; as center of
perspective, and therefore by the preceding theorem they
have an axis of perspective. In other words, the line through
Az and B; passes also through the point of intersection of
A1B; and A3 Bs, which is just what we wished to prove.

Evidently there are various special cases, when some of the
lines are parallel. The proofs are easily modified for these
cases, and hereafter we shall not distinguish them.

We see then that two triangles will be in perspective when
they have either a center or an axis of perspective. For figures
other than triangles, we may easily establish the following
general statement.

376. Theorem. Given a center of perspective O, an axis of

perspective p, a figure ABC . . ., and a point A’ on OA, there

exists, and can be constructed with ruler only, a figure in per-

spective with the given figure, in which A’ corresponds to A.

To find the corresponding point B’ to any point B, let AB
meet p at M, and draw M A’, meeting OB at B’. Then by
Desargues’ theorem, the point corresponding to any other
point C is definitely and uniquely determined.

377. Theorem. If three triangles have a common center of

perspective, their three axes of perspective are concurrent.

Let the tria.ngles be X1X2Xs, Y1Y2Ys, Z]ZQZs, so that
X]lel, XzYzZ?, and X3Y323 are concurrent Stra.ight. HDGS.
We shall denote any side of a triangle by a small letter,
the same as that of the opposite vertex. Then consider the
triangles whose sides are s, y», 2, and z;, ys, 2. Correspond-
ing sides meet at the collinear points X, Y3, Z;; hence lines
joining corresponding vertices are concurrent. But the line
joining the intersection of z, and ¥ with that of z; and Y is
the axis of perspective of X;X,X; and Y,Y:¥;; and so on.
Thus the three axes are concurrent.
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378. Theorem. Similarly, if three triangles are in perspec-

tive two by two, and on a common axis of perspective, their

centers of perspective are collinear.

The proofs of this and the various converse theorems
present no difficulty.

879. The application of the theorem of Menelaus to the
points of intersection of the sides of two triangles yields a
general formula which can be applied in a number of ways to
special cases. Given two triangles, 414243 and B1B;By; let
AzAs be cut by BzBs at Pl, by BsBl at Ql, and by Ble at Rl;
and let the intersections on Asd; and A;A: be similarly
designated. Then on the line B;B; are the intersections
Py, Rs, Qs with A24;, AsA;, A14z respectively.

Theorem. For any triangles A1A243 and ByB;Bs,
Pidy PAs PAy Qs QuAsQsdr Rid»-RoAs ReAr _ |
Pids PoAyPsAz Qids QA1 QsAs Rids RoAr-Rsde
This formula is obtained at once by applying the theorem
of Menelaus to each of the transversals PiR.Qs, etc., multi-
plying, and rearranging.
880. Corollary. Triangles A1A:As and ByB;B; are in per-
spective in the sense that A1Bi, A2B,, AsBs are concurrent, if
and only if
Qﬂz'Qz_fis'ml — mg'ml‘Mz
Qds QA1 QAr  Rids Rads- Rids
For it is necessary and sufficient that P, Pz, Ps be col-
linear; that is, that
Pids PAs Py _
PiAs- PA1- P3As
If, in the equation of 379, two of the fractions are equal to
1, the third has the same value, hence the following theorem:
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881. Theorem. If two triangles are in perspeclive in two
ways, they are in perspective tn three ways. That 3s, if AzBs,
Ath AlB_o_ are conctmr'ent, and AaBQ, A1Bs, AzBl are concur-
rent, then A\B,, A:B,, A3B; are concurrent.

382. The last theorem can be thrown into a somewhat
different form, as follows:

Theorem. Let P and Q be any points in the plane of triangle
A14:4As.  Let AsP and AsQ meet at By, AsP and AQ at B,
AP and AsQ at Bs. Then A,B,, A:B,, A3Bs are concurrent
at a point R.

If AsQ and AP meet at Cy, and so on, the triangles A; A2 A4,
and C,C;C; are likewise, obviously, in perspective. More-
over, it can be proved that B;B:;B; and C;C;C; are in per-
spective, and that these three centers of perspective are
collinear. The figure should be drawn in full; it will repay
detailed study.

383. If lines AA’, BB’, CC’' meet at a point O, these six
points can be assorted into pairs of triangles in four different
ways, such as A BC with A’B'C’, A'BC with AB'C’, and so
on. Each pair determines an axis of perspective. Now the
six pairs of lines, such as BC and B'C’, intersect in six points,
and these must lie three by three on the four axes of perspec-
tive. In other words:

Theorem. If AA’, BB, CC’ are concurrent, the intersec-
tions of corresponding connectors, as A B with A'B’, AC’ with
A'C, etc., lie by threes on four lines, and therefore are vertices
of a complete quadrilateral. Similarly, if three pairs of lines
meet at collinear points, the lines through corresponding inter-
sections of these lines are the sides of a complete quadrangle.

384. Theorem. Each triangle whose sides are three of the
lines of a complete quadrilateral is in perspective with the
diagonal triangle of the quadrilateral.
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For the two triangles have as axis of perspective the fourth
line of the complete quadrilateral.

Corollary. Let each point of intersection of two diagonals of a
complete lateral be commected with the two remaining
vertices of the quadrilateral. The sixz connectors are concur-
rent by threes at four points, and therefore are the lines of a
complete quadrangle. Thus with every complete quadrilateral
there is associated a complete quadrangle having the same
diagonal triangle; and conversely. Through each point of the

ilateral, there is one side of the quadrangle. Each tri-
angle of the quadrangle is in perspective with one triangle of
the quadrilateral and the diagonal triangle, the common cenler
of perspective being the fourth vertex of the quadrangle and the
azis of perspective the fourth line of the quadrilateral.

885. Theorem of Pas-
cal. If a hexagon ts !
inscribed ina circle, the
intersections of oppo-
gite sides are collinear.
That s, if siz poinis,
P,Q,R, P',Q, F' lie
on a circle tn any order,
the intersections of PQ’
with P'Q, QR' with
Q'R, RP' with R'Pare &7 ) i A,
on a line.

Q' By

Let PQ', QR', REF',
extended if mnecessary,
be the sides of triangle
B1B.Bs, and P'Q, 'R,
R’ P the sides of triangle B,

AiAsAs. Then Fic. 78
Qﬁl- R—-Al = PT‘il-ml, and mmﬂaﬂy for Ag and As.
Multiplying the three equations, and separating,
Q_As'm:;'mj_ — P’ZrQ’?&s-‘E’L
QAs-EA,-PA; P’As QA R'Ax
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whence by direct application of 380, the triangles A; 4,4, and
B:B;B; are in perspective. Their axis of perspective is the
line whose existence we wished to prove.

386. This famous theorem was discovered by Blaise Pascal
in 1640, when he was only sixteen years old. From the point
of view of elementary geometry, it is not especially significant,
since the converse is not true. It is a special case of the fol-
lowing more general theorem: the intersections of opposite
sides of a hexagon are collinear, if and only if the vertices
of the hexagon lie on a curve of the class known as conic
sections. Only if it is known that five vertices are on a
circle, can we assert that the sixth will be on the circle, and the
theorem is therefore of
limited application. In
the field of projective
geometry, on the other
hand, this theorem has
considerable  impor-
tance.

We will state with-
out proof some further
properties of the fig-
X «ure. If six points are
marked on a circle, we
may draw connectors
80 as to form a hexagon (not necessarily a convex hexagon)
in many different ways; sixty, in fact. Every such hexa-
gon determines a Pascal line, and these lines are easily seen
to be all distinct. The fifteen connectors of the six given
points intersect at forty-five other points; and through each
of these there are four of the ixty Pascal lines. The Pascal
lines meet also by threes at twenty other points, called
Steiner points, one on each line; and again by threes at sixty
other points, Kirkman points, three to a line. The twenty
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Steiner points lie by fours on fifteen other lines, and the sixty
Kirkman points by threes on twenty other lines. These
statements will serve to indicate the almost boundless possi-
bilities in this innocent-looking theorem.*

887. Related to the theorem of Pascal is that of Brianchon
(1806):

Theorem. If a hexagon is circumscribed about a circle, the

connectors of opposile vertices are concurrent.

The simplest proof is based on the method of polar recipro-
cation (134). We consider an auxiliary figure, in which we
have found the pole of every line of the given figure, and the
polar of every point. In the given figure, six lines are tangent
to the circle; in the auxiliary figure, six points lie on the circle.
A vertex of the original hexagon yields a side or connector of
the new hexagon, and vice versa. The theorem of Pascal for
the auxiliary figure, translated back to the given figure, is
precisely the theorem of Brianchon.

The theorem can be proved by direct methods, without
the use of poles and polars,t but the proof is roundabout and
in no way instructive.

Like the theorem of Pascal, that of Brianchon is a special
case of a more general theorem, and the converse is not true.
It admits of generalizations and extensions parallel to those
which we have suggested for the theorem of Pascal.

388. Theorem of Pappus. If the vertices of a hexagon fall

alternately on two lines, the intersections of opposite sides are

collinear.

That is, if PQR and P'Q’R’ are two lines, the sides PQ’ and
P'Q, QR’ and Q'R, RP’ and R'P of the hexagon PQ'RP'QR’
meet at collinear points.

* For full treatment see Lachlan, l.c., p. 113.
t Cf. Lachlan, Lc., p. 116.
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For the triangles whose sides are PQ’, QR’, RP’, and P'Q,
Q'R, R'P have two axes of perspective, namely PQR and
P'Q'R’; they have therefore a third axis of perspective.

This theorem suggests the same sort of extensions as sug-
gested in 386; and a “dual” set of theorems as well.

389. Some theorems, apparently unrelated to the theorem
of Pascal, may be proved by means of it. A few examples
may be noted.

Theorem. From two vertices of a triangle, A1A>As, let inter-
secting lines AsP and AgP be drawn. Let Py and P; be the
Jeet of the perpendiculars from P on
A,y A1As and A,A; respectively; and X,
Xs the feet of the perpendiculars from
Ayon Ay P and A3 P respectively. Then
P X5, P3 X5, and A2A3 are concurrent.
This result is established at once
by applying the theorem of Paseal to
the hexagon 4,P;X;PX,P,A,, which
is inscribed in the cirele drawn on 4; P
as diameter.
390. Theorem. Given a triangle
F1a. 80 A1A243, and a line through a point P,
meeting the sides at X1, X», X3
tively. Let ALP meet the circumcircle at Ry; etc. Then X1R,,
XaR, X3R; are concurrent at a point on the circumcircle.

For if R:1X; meets the circumcircle at Ty, we may apply
Pascal’s theorem to hexagon A;R;T1R;A;A34,, and we find
that B,X; passes also through 7). And similarly for R;X;.

The converse theorem, which is an immediate consequence,
may be thrown into the following form.

891, Theorem. Let two triangles be inscribed in the same
circle and in perspective. The lines connecting any point of
the circle to the vertices of one triangle meet the corresponding
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sides of the other triangle in three points that are collinear with

the center of perspective.

392, Theorem. If P and @ are isogonal conjugates, P1P;P3

and Q:Q2Qs their pedal triangles, and if PiQs and PiQy meet

at X, elc.; then XI, Xg, Xz lie on PQ.

For the center of the common pedal circle is at K, the mid-
point of PQ; and PP, meets QiR at a point Py’ on the circle.
Applying Pascal’s theorem to the hexagon QiP,Py'Q:P1Py,
we find that P, R, X, are collinear.

Exercise. In this chapter the following sections contain

theorems to be proved by the student: 378, 879, 881, 384,
387, 389, 391.



CHAPTER XIV
PEDAL TRIANGLES AND CIRCLES

393. In this chapter we consider a remarkable group of
theorems concerning the pedal triangles and circles and the
nine point circles in the figure determined by four points.
These results lead us naturally to a reconsideration of the
theorem of Feuerbach, and to some generalizations of that
theorem. We end the chapter with a brief account of the
orthopole of a line with regard to the triangle.

394. The first group of theorems deals with a complete
quadrangle. If four points are given, the pedal triangles of
each with regard to the triangle of the other three are similar;
the pedal circles of the points and the nine point circles of the
triangles, are concurrent at a single point.*

Let four given points 4;, A2, A3, A4 be not concyclic nor
orthocentric. We shall denote the foot of the perpendicular
from A; to A A3 by Pyy; and so on. The mid-point of the line
Az Az shall be My, and so on. This apparently awkward
symbolism will quickly justify itself. The pedal triangle of A4,
with rega.rd to triangle A AxA; is P41P42P43 and the nine
point circle of triangle A;A4;A4; passes through the feet of
the altitudes, Pu, Pa, Py and the mid-points of the sides,
Mz, M3y, My,.

896. Theorem. The pedal triangles in a complete quad-

rangle are directly similar in the sense

Py P3Py~ Py Poy Ppg~ Py P3; Pio~ Py Po Py

* The theorems of this section, though undoubtedly of much earlier origin,
were assembled in 1912 by Happach, Zeitschrift fiir Math. und Nal. Unter-
richt, 43, p. 175. We have modified and sghortened the proofs.
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This is an immediate consequence of the fundamental
Miquel equation (186):

X PyuPypPy= X AsAiA+ X A AsAs
% PyP3 Py = X AyAsAs+ X ArA A,

Fi1c. 81

showing that these angles of two pedal triangles are equal.
But in either right hand member we may transpose (18f);

4 A2A1A4+ ﬁ_ Aq,AgAg = 4 A1A2As+ z- A8A4AI

showing that angles X Py Py Poy and X Py PyuPy are also
equal to the two just named. Similarly for the other angles
of the pedal triangles.

The cyclic symmetry of the arrangement of the subscripts
is not immediately obvious. But if we label the vertices of a
tetrahedron 1, 2, 3, 4; then if the tetrahedron rests with one
vertex upward, corresponding to the point whose pedal
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triangle is under consideration, the other three vertices will
lie in positive order as named in the theorem.

396. Theorem. The nine point circles of the four triangles
are concurrent.

Let the circles M M 13Mas and MosMoM 3, meet again at X.
Then X My XM= X MuMMo= X AsA24:
X Moz X Moy = % MpsMaMos= X AsA24,
Adding, % MpXMay= % AiAsAr = X MpMuMx

so that X lies on the circle through Mg, M4, Mss, which is the
nine point circle of 4;424,.

897. Theorem. The pedal circles of each of the four potnis
with regard to the triangle of the other three are also concurrent
at X.

That is, for instance, P, P13, Py, X are concyclic.
For &P24XP21=4P24XM%+4M23XP21
= X PosMsMos + % MosMss Py
= % A1 Az A1As + X A2 Ay, Asds
= X AAsA1 + % A143A4
= X Py PyuPy (396)

398. Theorem. The second intersection of the pedal circles of
two points lies on the line joining the other two.

Consider, for instance, the circles P P13P14 and P3Py Py,
which intersect at X and at a second point Y. Then

X PyuY1uPy= % PuY X+ % XYuPa
= X PuPpX + X XPuPy
= % PyPy, PuPu+ % PuXPr
Now X is on the nine point circle of 4;A434,, and we find that
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A Py XPpy=2% A1AsA,s (262 d)
Also
X PyPpy, PuPy= % PP, AsA; + X AgAs, PPy
=2X A;AzA,
Hence X PuYuPy=0

and the point ¥y lies on Py Py, which is the same as Az A;.

CB!'OllﬂJ'y. The pedal trwngles P12P13P14 and PaaP.mP.u
are in perspective at Y1a; that is, PPy, P3Py, and Py Py,
pass th?'o‘ugh Yu.

For X Py Y Pu= X P,PyPy
% PyYyuPy=X PyPyuPy

and we have proved the right-hand members equal in the
similar pedal triangles.

Theorem. The center of similitude of the pedal triangles s
the point X.

399. Theorem. The isogonal conjugate of A with regard to
A14:A3 and that of A with regard to AsAsA, lie on the per-
pendicular to AsAs at Yy, and are equally distant from Yy
(231, 236). The quadrangle of the four isogonal conjugates,
namely of each point with regard to the triangle of the other
three, is similar to that of the circumcenters of the four triangles.

400. The foregoing theorems require some modification
when the four given points are on a circle. Some of the
analogous theorems have been proved already; the others can
be established without difficulty.

a. If Ay, A,, As, Ay are four pointsona circle, the segments on

the respective Simson lines are congruent in the sense indi-
caled in 395, namely:

PPy = PyPy= PyuPy = PPy, etc.
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b. The four nine point circles are congruent and meet in a
point X through which pass the four Stmson lines. (Cf.331)

c. Any two Simson lines make equal angles with the line join-
ing the other two poinis.
d. The segments measured from X on the Simson lines are

equal by fours,
XPu= XPu=XPxu= XPg, elc.,

and the twelve feet of the perpendiculars lie by fours on three
circles concentricat X (N. Anning). The connectors PuPa,
P],sPﬂ, PuPaarepamHel

e. The isogonals, with regard to any triangle, of the lines to
the fourth point are perpendicular to the Stmson line of that
point.

401. The theorem of Feuerbach would appear to be an easy
consequence of 396. The argument in the following form is
due to Fontené.*

Let P and Q be isogonal conjugates with regard to a
triangle 414243, and hence have the same pedal circle. If
this eircle meets the nine point circle of the triangle at X and
Y, then it is evident that the nine point circles of the four
triangles whose vertices are 4y, As, As, P pass through X, and
those of A;, Az, Az, @ through Y. Now, in particular, let
P and Q coincide; then the two sets of triangles are one and
the same, and X and Y are coincident. In other words, the
pedal circle of the incenter or an excenter is tangent to the
nine point circle.

But this proof is not quite sound. For we have no simple
defense against the objection that possibly in the general
case, when P and Q are distinct, all the nine point circles pass
through one of the points, say X, while the other is without
significance. More careful study of these problems leads us

* Nouvelles Annales, 1905, p. 260.
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to some new and valuable theorems. We make a new begin-
ning and approach the problem from a different angle.*

402. Theorem. If the sides of the pedal triangle of a point P

meet the corresponding sides of triangle 0:0,0; at Xy, X0, X3

respectively, then PyX1, Py Xy, PyXs meet at a point L common,
tothecirclesolonaafuiPngPa. TM&,L%SWQ}'W
inlersections of the nine point circle of A1AsAgsand the pedal

circle of P.

For let OP meet the circle on 4,0 as diameter at Ly. Let
the reflection of P 1 with regard to 0203 be P]_", so that A P 1‘I
and P,Py are respec-
tively parallel and per-
pendicular to A,A4,.

Now Al, 0, Og, Os, L1

are concyeclic; and also

A-l, P, Pz, Ps, L1 and

Py’ lie on a circle drawn E 0
on AP as diameter.
The feet of the per- A
pendiculars from I, to “ A O i
AyPy, APy, P3Py, 0,0, Fia. 82

are collinear; therefore L; is on the circumcircle of triangle
O; P X,

We next prove with some difficulty that L,, X;, and P
are collinear. Since Py’ is on the circle drawn on A;P as

diameter,
X PPy = X PYPP; = X 0,03,A1P3 = X X,05P;
But we have shown that O;, P;, L,, X; are on a circle; hence

B a

* These theorems were given by Fontené, with different proofs (Nouvelles
Annales, 1905, p. 504; 1906, p. 55); these direct proofs were supplied by
Bricard (ibid., 1906, p. 59). The central theorem, 404, however, has been
independently discovered by others: Weill, ibid., 1880, p. 259: McCay,
Transactions of the Irish Royal Academy, XXIX, p. 310; Griffiths, Educg-
tiongl Times, 1857,
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X X0:P; = % XInP;
so that p. 4 P/LiP; = p. 9 X114P;

and therefore Py, Ly, X; are on a line. We now turn a part
of the figure over on O;0; as axis. A, turns over to Hy, O
and Os remain in place; hence the circle through these points,
namely the circle on A0 as diameter, turns over into the nine
point circle. Py’ turns over into P,. Hence if L be the
reflection of L, it lies on the nine point circle and also on
X, P, the reflection of the line L, X Py'.
Next, L lies also on the pedal circle of P, since

ﬁl'm= X_l-lsl"ml = X—J"ﬂ'ﬁa

Thus if PzP; meets 0;0; at X, then P X, passes through an
intersection of the nine point and pedal circles. That the
three lines P1X1, P2Xs, P3X; pass through the same point
of the nine point circle depends directly on 333; since the line
OP passes through O, the orthocenter of 010:0s. This com-
pletes the proof.

403. Thus any point P determines a point L on the nine
point circle, through which pass the pedal circles and the
pine point circles of the quadrangle A14243P, according
to 396 and 397. From the proof we see that two points P
and Q actually determine distinct points on the nine point cir-
cle, unless they are collinear with the circumcenter O, when they
determine the same point L. This completes the proof of the
theorem of Feuerbach above, and at the same time furnishes
some generalizations.

404. Theorem. If a point moves on a fized line through the
circumecenter, ils pedal circle passes through a fized point on
the nine point circle.

405. Theorem. The pedal circle of a point is tangent to the
nine point circle, if and only if the point and ils isogonal con~
jugate lie on a line through the erthocenter.

Corollary. The theorem of Feuerbach is merely a special case
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of this theorem, since the incenter, or any one of the excen-
ters, is its own isogonal conjugate.

Construction. If a line through the circumcenter is given, the
corresponding point on the nine point circle may be found by
drawing the reflections of the line as shown in the proof of 403;
or by virtue of the fact that it is the intersection of the Stmson
lines of the points where the line cuts the circumcircle.

406. Another approach to these same problems is based
on the so-called orthopole, which was extensively studied by
Neuberg, Soons, Gallatly, and others. This treatment is
given at some length by Gallatly,* and we will content our-
selves with a survey of the leading results.

Theorem. If perpendiculars are dropped on any line from
the vertices of a triangle, the perpendiculars to the opposite
sides from their feet are concurrent at a point called the ortho-
pole of the point.

As a line moves parallel to itself, the locus of the orthopole is a
line perpendicular to the given line. The orthopole of a line
which meets the circumcircle is the point of intersection of the
Simson lines of the points where the line cuts the circle. In
other words, a Simson line is the locus of the orthopole of the
lines through the point. If a line passes through the circum~
cenler, ils orthopole lies on the nine point circle.

If a line culs the circumcircle at P and Q, the lines from the
vertices of the triangle perpendicular to this line may be ex-
tended to the circumcircle; from these points perpendiculars
are drawn to the opposite sides. These are concurrent at a
point B of the circumcircle. From the feet of the perpendicu~
lars to PQ, the perpendiculars to the opposite sides are con-
current at the orthopole S. The Simson lines of P, Q, R all
pass through S, which is the orthopole of each of the lines PQ,
PR, QR. (Cf. 337 fi.)

The orthopole of a line has the same power with regard to the
pedal circles of all points on the line.

(This includes 404 as a special case, when the power is
zero.)
* Modern Geomelry of the Triangle, chap. VI.



CHAPTER XV
SHORTER TOPICS

407. In this chapter we introduce first the physical con-
cepts of center of gravity and resultant of forces, and estab-
lish a number of geometric theorems based on these statical
methods. We then consider several groups of theorems for
triangles and quadrangles, many of which are left to be
worked out fully by the reader.

STATICAL THEOREMS

408. The notion of center of gravity is a familiar one, and
may be made definite for the purposes of geometry as follows.

Definition. Given a number of points in a plane, and a
weight at each; let the weight at P; be m;, and so on. Let
two intersecting lines be chosen, and let the distance from
P, to the first be d; and to the second dy’. Then the point
whose distances from these lines are given by

d=m1d|+ﬂl2d2+ ...... ‘|"’mmdn
mt+mt ..., +mn
&= md +mad + ... ... + mady’
mtm+...... +my

is called the center of gravity of the system.

409. It can be proved at once that the perpendicular from
the center of gravity to any other line is given by a like
formula. In geometric theorems, we usually consider equal
weights, and speak of the center of gravity of a set of points
as that point whose distance from any line is the average of
the distances to the given points from the same line. The
center of gravity of a straight line segment is taken as its
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mid-point, and that of a triangular area at the centroid. In
dealing with centers of gravity, any system of weights may be
replaced by a single weight equal to their sum and placed at
their center of gravity.

410. Theorem. The cenler of gravity of the vertices of a

triangle s the median point.

The proof illustrates well the method. Let equal unit
weights be placed at the vertices of the triangle; then two of
them may be replaced by a weight 2 at the point midway
between them. The center of gravity of the system of this
weight and the third unit weight is evidently on the median,
and trisects it.

411. Theorem. The center of gravity of four points consti-

tuting an orthoceniric system is al the center of the common

nine point circle.

Several easy proofs are obvious, and the theorem suggests
the following:

Theorem (Beltrami). The center of gravity of the incenter
and excenters of a triangle is af the circumcenter.

Theorem. The connectors of mid-points of opposite sides of

a quadrangle, and the connector of the mid-points of the diago-

nals, have @ common mid-point, which is the center of gravity

of the four points.

Theorem. If a triangle s divided by a median, the triangles

formed are equal in area; the center of gravily of the original

triangle bisects the line joining the centers of gravity of the half-

triangles.

412, Theorem. The center of gravity of the perimeter of a

triangle (as when a piece of wire is bent into triangular form) is

al the center of the Spieker circle (364).

For the weight of each side may be replaced by a weight at
its mid-point, proportional to its length. Then in triangle
010:0;, we have weights at the vertices proportional to the
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opposite sides, and the center of gravity is easily seen to be at
the incenter of that trisngle.

413. Theorem. If the sides of a triangle are divided propor-
tionauyatPth,Pa,sothat
APy _ AP, _ AP, _P
PAs PA, PA: ¢
the center of gravity of triangle P\PyPs is at M.  (Cf. 358)
For let equal weights be placed at Py, Pz, Ps. Let each be
divided into parts proportional to p and ¢, and these parts
placed at the extremities of the corresponding sides. Then
the center of gravity of the system is unchanged; but since
we now have equal weights at A,, Az, and As, the center of
gravity is at M.
Exercise. Maodify this proof to apply to the case that the
sides are divided externally.
Similarly:
414. Theorem. If points are marked on each side of a tri-
angle equidistant from the mid-points, so that
APy = QuAs, AsP = QoA1, A\Ps = QsAs, then

(@) triangles PyPyP;, Qi@:Qs are equal in area (107).

(b) the line joining their median poinis is bisected at M.

415. Theorem.* IfX]_, Xg, X__;a,"a?'e Dﬂ_l_f__h-_e S’l:deﬂzAa, AgAl,

A1A; of a triangle, so that AsX, = A3X, = A\X;, then the

locus of the center of gravity of triangle X1X2Xs is a line

through M.

For it is easy to show by the methods used above that the
centers of gravity of any two such triangles are collinear with
M. Various possible generalizations suggest themselves, but
we have sufficiently demonstrated the possibilities of the
method.

* M. d’Ocagne, Mathesis, 1887, p. 265.




RESULTANT OF VECTORS 251

416. The process of addition of vectors, or composition of
forces by the so-called parallelogram law, suggests a number
of interesting geometric theorems. If two forces or velocities
are represented by direction and magnitude by lines issuing
from a point, their resultant is defined as the quantity repre-
sented by the diagonal of the parallelogram having these lines
as two of its sides.

Theorem. Three or more forces at a point have a unique and
definite resultant, in whatever order they are combined.

Theorem (Sylvester). The resultant of three equal forces

0A,, OA2, OAs, acting in any directions at a point O, is the

Jorce represented by OH, where H is the orthocenter of tri-

angle AlAzAs.

For with our usual notation, the resultant of O Az and 04,
is 00y = 200,. But 00/ isequal and parallel to A.H (256),
and therefore OO0/HA, is parallelogram, whose diagonal
OH is the desired resultant. More generally:

Theorem. If PA,, PA,, PA;areany three forcesin a plane,

acting at a point P, and ©f M is the median point of triangle

A1AzAg, the resultant of the forces is 3 PM.

The proof is left as an exercise. This and numerous similar
theorems may be found in an article by Alison.*

THE CYCLIC QUADRANGLE

417. It has been established in 266 that if four points
Ay, As, A;, Ay lie on a circle; and if H,, H;, Hs, H; are the
orthocenters of triangles A2 A3 A4, ete., then figures 4142434,
and H,H:Hz;H; are congruent, with corresponding sides
parallel and in opposite directions, so that A,H,, A2H;, ete.,
all have a common mid-point P. Further (400, 327), the
nine point circles of the four triangles 4,424, etec., all pass

* * Btatical Proofs of Some Geometrical Theorems,” Proceedings of Edin-
burgh Mathematical Society, IV, 1886, p. 58.
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through P, as does the Simson line of each of the points
A;, Aq, As, A, with regard to the triangle of the other three.
And moreover, since A, is the orthocenter of Hy;H3H,, etc.,
it is evident that the nine point circles and Simson lines of
H\H,H3H, also pass through P. Yet again, A, is the ortho-
center of each of the triangles Ay A3Hy, AosH3As, HoA3Ay; and
similarly for As, As, A.. We may combine all these into the
following

Theorem. Let Ay, As, As, A4 be four points on a circle, H,,
Hj, Hs, H, the orthocenters of triangles AsAsA,, ete.  If from
the eight points we choose four with different subscripts, three
Jrom one set and the fourth from the other, they form an ortho-

cendric system. There are eight such systems. On the other

Mﬂwgchooseaﬂthe_pointsofmset,orﬁqoﬁmwc@set,

with all different subscripts, we have four points on a circle.

There are four pairs of such circles; thus the eight points lie

by fours on eight equal circles.

Evidently all these systems have in common the point P.
Thus, for instance, the Simson line of any one of the eight
points with regard to the triangle of any three others con-
cyclic with it passes through P.

418. Theorem (Weill). The Simson line of As with regard

to triangle A,A3As 7s the same as that of H, with regard to
ﬁ'iﬁﬂgk H 1A2A3.

For each passes through P, and also through the inter-
section Of A4H1 With AgAn.

Corollary. Thissame line enacts eight different réles; namely,
it s the Simson line

of Aq with regard to AyAsAs; of Hy with regard to HyHoHj
Of Hl ” » on A2A3H4_.' Of Al »” ” ” HszA;
Of H2 r»” 1 3] AﬂHd.Al;dAe » » ” H 4 Hl
ost » ” ” HqA]_Ag,’ Oan »” »” n A4H1H2



THE THEOREM OF MORLEY 253

and thus the thirty-two possible Simson lines in the eight con-
cyclic systems fall together by eights into four distinct lines.

419. Theorem. Similarly the nine point circles of the eight

orthocentric systems are concurrent ai P; and, since they are

equal, their centers are on a circle with center at P. These
eight centers form a figure similar to that of the A’s and H’s, in

the ralio 1:2.

The reader may prove that the pedal circle of any one of
the eight points (4) and (H) with regard to the triangle of
any three others passes through P. It may be seen that there
are in all 280 such circles; but that actually many of them
are not distinet. After ascertaining how many have been
accounted for already, the others should be investigated.

THE THEOREM OF MORLEY
420. Theorem. If thelrisectors of the angles of a triangle are
drawn so that those adjacent to each side intersect, the inter-
sections are vertices of an equilateral triangle.

Let the trisectors adjacent to A2A; be A2P; and A3Py, ete.;
it is to be proved that P,P;P; is an equilateral triangle.

Extend A-P; and AP to meet at L. Draw the incircle of
triangle A;A:L, whose center is obviously Ps. Let Q and R
denote its points of contact on LA; and LA, respectively,
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and let P3R meet A,4; at K, and P3Q meet A;A; at N; let
the tangent from K to the circle touch it at P, and meet A,L
at F.

PiR=RK, PP=1}PK,
ZPPK=60°, /£ P;KP = 30°
Also  ZQP;R=180°— ZQLR = 120°— } a3
Hence % FNQ= LFPQ=1/QP,P
=} (LQP;R — 60°) = 30° — } as
Again, Z P;NK = £ P;KN =3} Z QLR =30° + } as.
LFNK=3a;, LFEN=}%a

so that F, K, As, N are concyclic. Therefore F coincides
with P, and the tangent to the circle from K passes through
P,

Similarly the tangent from N to the same circle passes
through P;. Now the figure P;NK is symmetrical, and NP,
and KP, are symmetrically placed; hence it is easy to see
that arc PP, equals arc P;R; but angle PP;R, and therefore
angle P]Png, equals 60°.

421. This theorem has been generalized by Taylor and
Marr.* Their principal result is as follows:

Theorem. Each angle of a triangle has siz trisectors; with
each interior angle trisector are associated the two lines making
angles of 120° with . These trisectors infersect in twenty-
seven points which lie siz by siz on nine lines; and these lines
are :;1” three sets of parallels, making angles of 60° with one
another.

422, Another theorem of the same type is given by Fuhr-
mann (Lc., p. 50).

* Proceedings of Edinburgh Math. Society, XX XTI, 1914, pp. 119-50. The
clever proof given above is ascribed by these authors to W. E. Philip.
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Theorem. If four points are on a circle, the incenlers of the

four triangles form a rectangle whose sides are parallel to the

lines connecting the middle points of opposite arcs; and these
connectors pass through the center of the rectangle.

Let A, B, C, D lie on a circle in order, and let a, b, ¢, d be
the incenters of triangles BCD, CDA, DAB, ABC; let the
mid-points of arcs AB, BC, CD, DA be M, N, P, Q.

Now the circle with center Q, radius QA = QD, passes
through b and ¢ (292); and also DcM, AbP are straight lines.

Hence X bAD = X beD
But X bAD= X PAD= X PMD
hence X beD = X PMD, and be is parallel to M P.

Thus bc and ad are parallel to M P, and ab and cd to NQ.
But these are perpendicular, and therefore abed is a rectangle.
Moreover, NQ is perpendicular to a chord be of a circle whose
center is Q, and therefore bisects the chord bc. Thus the
intersection of the lines MP and NQ is the center of the
rectangle.

More generally:

Theorem. The sizteen incenters and excenters of the tri-

angles whose vertices are four points on a circle, are the inter-
iicrtims of two sets of four parallel lines, mutually perpendicu-

423. The following theorems were stated by Steiner with-
out proof; and we shall follow this august example. Part of
the proof offers no difficulty, but the complete proof (as sup-
plied by Mention) is long and difficult.*

Theorem. In a complete quadrilateral the bisectors of the

angles are concurrent at sizteen points, the incenters and ex-
centers of the four triangles. These points are the intersec-

* Steiner, Collected Works, I, p. 223; Mention, Nouvelles Annales, 1862,
p. 16; p. 65,
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tions of two sets of four circles each, which are members of con-
Jugate coaxal systems. The azes of these systems inlersect at
the point common to the circumcircles of the quadrilateral.

CIRCLES OF DROZ-FARNY

424. The first of the following theorems was given by
Steiner, as usual without proof. The proof, and the exten-
sions which follow, are due to Droz-Farny (Mathesis, 1901,
p- 22).

Theorem. If any circle with center at H cuts the lines 0,04,
0301, 010y, at Py, @i, Py, Qu, Ps, Qs respectively, then
ATP1=H2=A;P3=MI=AE2:£@

Let X be any point on 0,05, and 7} the mid-point of A,H,.
Then we have

AX'= AR+ HX*+ 2 4LH-HT,
= HX*+ AH (A,H + 2 HTy)
=HX*+ AH-HH,
But A,H-HH,= A,H-HH,
= M'I_{ﬁs
Hence points on 0,05, 050y, 0,0.,
4, equidistant from H, are also equi-
Fio. 84 distant from A4,, As, As respec-
tively; and conversely.

425. Theorem. Conversely, if equal circles are drawn about
the vertices of a iriangle, they cut the lines joining mid-points
of the corresponding sides in siz points lying on a circle whose
center is at the orthocenter.

Corollaries. a. If ris the radius of the equal circles about Ay,
Ag, A3, and Ry the radius of the circle about H , then (cf. 255)

RE=4R*’+,°— Y@’ + o’ + asd)
b. If circles equal to the circumcircle are drawn about the ver-
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tices of a triangle, they cut the lines joining mid-points of the
adjacent sides in poinis of a circle with center H, and radius

R = 5R"— } () + &’ + a5)

426. a. Theorem. Let circles be drawn with centers af the

feet of the altitudes, and passing through the circumcenter; they

cut the corresponding sides in siz points on a circle whose

center is H.

For if, as usual, F denotes the mid-point of OH, the center
of the nine point circle, and if the circle with center H; and
radius H,0 cuts As Az at P, and Py, then

HP’= HHY' + H\O" = 2 HiF’ + } OH" (96)
andsince H,F = H,F = H3F, we have HP, = HP; = HP;.

b. Theorem. Circles about the mid-points of the sides, and

passing through H, cut the sides in six points lying on a cir-

cle whose center is O, equal to the circle of the foregoing the-
orem.

For let S; lie on A;A4;, so that 0.8, equals 0,H; then we
have

O_Sl2 = DT)Iz + mlz = 0_012 + O_lﬁr
= ()_012'1'01_312 + HH: = HO:+ HH = HP:®

¢. Corollary. The circles of the two foregoing theorems are
equal to that of 425 b.

For  0S’=00"+0H
= 00" +1 @ A4H +2 40" — A,As") (96 a)
But A,H =400, = 4(R* — 4,0°) = 4 (R* — 1 &), etc.,
whence we get on substituting,
08® = 5 R* — } (a,” + @2” + a5°), as before.
d. Theorem. The circle whose center is H, and radius
VR — 4(a + o’ + a)
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passes through twelve notable points, two on each of the sides
and two on each of the lines joining mid-points of the sides.

427. By a generalization of the foregoing, we have:

Theorem. Taking as centers the feet of the perpendiculars
from a point to the sides of a triangle, circles are drawn passing
through the isogonal congugale of the point. These circles cut
the sides on which they are drawn, in $ix points lying on a
circle whose center is the given point; and the circles thus
drawn about a pair of isogonal conjugate points are equal.

PARALOGIC TRIANGLES
428, Theorem. At the points where a line cuts the sides of a
triangle A1A2As, perpendiculars to the sides are drawn, form-
ing a triangle BiByB; similar to the given triangle. The two
triangles are also in perspective; one point of tnfersection of
their circumcircles is the center of similitude, the other is the
center of perspective. The circumcircles meet orthogonally.
The triangles are obviously similar, since homologous
angles are equal. They are in perspective because corre-
sponding lines meet at collinear points; thatis, the given line is
the axis of perspective. Let this line be X;X,X3, so that
AsA; and B, B; meet at X, etc.; and let A, Bz meet A;Bs at P.
Then

Zg.XlAgP-: 4X1X3,Bg, 4PA3X1 = 483X2X1
X ApPAs= A X3B1 X2 = % A2A143

and P lies on the circle A14;4;. Similarly P is also on the
B-circle.

Again, consider the Miquel point of X1X,X3 with regard
to either of the triangles. The circle 4,X,X3 is evidently the
same as the circle B,X; X3; hence the two triads of Miquel
circles coincide, the Miquel point must be common to the
two triangles, and it lies on each of the circumcircles. It is
obvious that this point is the center of similitude of the
triangles.
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Generalization. This theorem and proof can be at once
extended to the case that lines are drawn from collinear
points X;, X5, X; on the sides of a triangle, making any equal
angles with these sides. A second triangle is formed, similar
to the first; and the angle between the circumcircles equals the
given angle. For a given line X,X,X;, but with varying
angles, the center of similitude is always the same, but the
center of perspective moves along the circle 4;4,4;. On
the other hand, if X;X,X; is moved parallel to itself, and
perpendiculars are drawn for each of its positions, the figure
A1 X, X3B, will be of constant form, the locus of B; will be a
line through A,; hence P is a fixed point, and B,, B,, B; lie
on A1P, A;P, A3P respectively. It follows easily that the
Simson line of P is parallel to X;X,X;.

From these theorems, first noticed by Steiner, some quite
elaborate results have been developed; for instance, the
theorem of Sondat that the axis of perspective bisects the line
joining the two orthocenters.*

429. The following theorems, due to A. Gob,t are left as
excrcises. As the theorems are stated, it is assumed that the
triangle is acute; some slight modification is necessary for an
obtuse triangle, while for a right triangle the theorems have
no meaning. Some of these results have already been noticed.

Let the tangents to the circumcircle of triangle AyAsAs form
triangle Py Py P; whose tncircle is the circle A1 A243.

a. Triangles P,P,P; and H,H.H; are homothetic; and in
this simzlitude, O corresponds to H.

g.ng’herefore the center of similitude X lies on the Euler line,

XH HH, 2R cos acos a3
X0 0P, R sec oy

* See further Simon, Le., p. 172, for references.
1 Mathesis, 1889 supplement.

= 2 €05 oy €08 ap COS a3
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¢. The circumcenter of triangle P1PyP;, denoted by O, also
lies on the Euler line. (Cf. 315.)
For it is homologous to F, the circumcenter of HyH,Hj.
,p, d. Triangles PiPP; and
HYH,'H;' are homothetic, and
their homothetic center Y lies
on OH.
e. The excenters of triangle
P\P.P; are vertices of a tri-
angle @1QxQ; whose sides are
I to those of the given
triangle; O is its orthocenter,
and the center of similitude
s X.
f. Thepedal triangle of H with
regard to H],Hz Hs 8 homo-
thd?;C to AIAgAa. The cenler
of similitude ¢s at the same
point X.

We get many additional
theorems by reversing these
results. We may take, for instance, P, P,P; as fundamental
triangle, and the results stated yield interesting properties
of the incircle. Again, it is especially interesting to take
H\H,H; as fundamental triangle. Then H is the incenter,
and P, P, P; is formed by tangents to the circumcircle at the
middle points of the arcs. The possibilities of the figure will
be more fully apparent after extensive study.

430. Power of a triangle. The following curious relations
are due to a Spanish geometer, Duran Loriga.*

Definitions. We define the total power of a triangle as half
the sum of the squares of the sides,

P=3(a’+ &'+ a)
* Mathesis, 1895, p. 85.

B
Fi1c. 85
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and the partial power of a triangle with regard to any ver-
tex as

1= 3(a’ + a’ — &)

Theorems. ¢. = 0203 CO8 o

b. P=p+p+p

c. P2+;,'313+p?.2+;::r32=a1"-¥-aé‘+a‘al
d. A= }Vpips+ pspr+ papn

e. P18 the power of A, with regard to the circle on AyA3 as
diameter; or wz'thiegard to the circle on either AzH or AsH as
diameter; py = A Hs Ay ds.

I 1Py

Co8 oy

g. Prian ay = ps tan ax = p3tan az

h. If a side of the triangle is given, and the value of any one

of these powers, the locus of the third vertex is a circle or a

straight line.

431. The following properties of the triangle, due to
Schroter, are proved in detail by Fuhrmann. Most of the
proof is decidedly difficult unless the methods of projective
geometry are used; but it is recommended that the reader
draw the complete figure, check all the statements, and try
to discover additional relations. The resources of the figure
seem well-nigh inexhaustible.

In triangle AlﬁgAa, let OgHa meet O3H2 at Xl, elc.; let 0203
meet HoH; at Yl, elc.; let Ay Az meet YoYsat Z,,etc. Then:

X4, Xy, and Xs lie on the Euler line OH. (Cf. 392.)

A1Yy, AgY,, AsY; are parallel to each other and perpendicu-
lar to OH.

Ay, X,, Y, Y3 are collinear, elc.
FYy is perpendicular to Y,Y;, elc,

=amnu=4AR
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0,Y), 0;Y,, 0sY;5 are concurrent at a point P of the nine
point circle.

H\Yy, H.Y,, H3Y3 are concurrent at a point P’ on the nine
point circle.

The points Z1, Za, Z3 lie on the line PP'.

If H\P and O,P' meet at V), elc., then Y1 Vi, Y2Va, Y3V3
are concurrent at a point of the line PP'. Also V, lies on
A X, ete.

Xy, Vs, V3 are collinear; efc.

Exercise. The following sections of this chapter furnish op-
portunity for original proofs by the reader: 409, 411, 414,
415, 416, 418, 419, (421), (423), 425, 427, (428), 429, 430,
(431). The complete proofs of the sections given in par-
entheses are perhaps more difficult than the others.



CHAPTER XVI
THE BROCARD CONFIGURATION

432. The geometry which constitutes the subject matter
of this and the following chapters is relatively modern, being
almost entirely the product of the past fifty years. The
structure, which is to a considerable extent independent of
that which we have already erected, is founded on the prop-
erties of two remarkable points related to a triangle, called
the Brocard points. These were first noticed as early as
1816, by Crelle, and at about the same time Jacobi and other
prominent mathematicians discovered some of their proper-
ties. Interest in these researches, however, was not sus-
tained, and the results were soon forgotten.

In 1875 the study of the iriangle received an invigorating
impulse by the rediscovery by H. Brocard, a French army
officer, of the points which bear his name. They attracted
more general attention and interest at this time, and it has
been estimated that before 1895 over six hundred studies of
this field of geometry were published in Europe. Among the
prominent investigators were Brocard, Neuberg, Lemoine,
McCay, and Tucker; and it is gratifying that each of these
names is perpetuated by association with some notable circle
or line in the triangle.*

* Perhaps the most satisfactory treatise is that of Emmerich, Die Bro-
card'schen Gebilde (Berlin, 1891). This is practically a compendium of the
Brocardian geometry of those loci which are straight lines and circles; it has
further a brief but valuable bibliography. and important historical notes.

Another text which treats the subject at length is that of Fuhrmann
already frequently cited, Synthetische Beweise Planimetrischer Sitze (Berlin,
1890). This treatment is divided into two parts; in additicn to the points,
lines, and circles associated with the Brocard points, there is a study of some
loci which are not elementary and are best approached by analytic methods.

Another analytic treatment of many of these topics is to be found in
Casey’s Treatise on the Analytical Geometry of the Point, Line, Circle, and
Conic Sections (Longmans, Green, 1885).
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In this chapter we study the various points, lines, and cir-
cles which are associated with the geometry of Brocard. We
take first the properties of the Brocard points themselves, a
pair of isogonal conjugate points lying on the circle which has
as diameter the segment from the circumecenter to the sym-
median point. On this circle, the Brocard circle, lie also the
vertices of two remarkable triangles, also known by the name
of Brocard. Some attention is given to a set of circles called
the Tucker circles, which are closely related to the Brocard
points, and one of which is their common pedal circle. Brief
mention is made of the Tarry and Steiner points, followed by
consideration of various other triangles simply related to the
given triangle, and having the same Brocard angle.

THE BROCARD POINTS

433. Theorem. In any triangle A1AsA; there is one and
only one point , such that

Fic. 86

LQAAs= £LQAA3 = L QA4 =w
and one point ', such that
LVYAA = L VA A= £ QA A= o'
These two points are called the Brocard points of the triangle.
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If a point  exists, consider the circle A,4:9; since angle
QA:A; equals the angle QA4,4; inseribed in arc QA4,, it fol-
lows that A24; is tangent to the circle. In other words the
point © is common to three known circles, each tangent to a
side of the triangle at a vertex, and passing through a second
vertex.

Denoting by ¢; the circle tangent to 4,4, at A,, and pass-
ing through Aj3, ete., the circles €1, ¢, ¢; are at once proved to
be concurrent; this is, in fact, a limiting case of the theorem
of Miquel. The point of intersection is necessarily inside the
given triangle, and the point @ is thus completely deter-
mined.

Similarly, @' is the intersection of three circles ¢!/, ¢, ¢,
where ¢, touches A1 A4; at A; and passes through A,.

Corollary. £ A;QA; = 180°— o3, 2% A2QA3 = X As434,
L Agﬂ’Ag = 1800 - O, 4 AsQ'Az = 4 AsAzA]_

Problem. To construct either Brocard point of a given
triangle.

First solution: draw the circles ¢, ¢, ¢, ¢/, &, ¢&'.

Second solution: if A,P is parallel to A;A4; (277) and 43P
is tangent to the circumcircle (344) then the circle A,4;P is
c1, and its intersection with AP is © (Fig. 87).

For 4 A]ASP = Zs.AlAgﬁs_, 4PA1A3 = 4 AzAgAl
whence 4 AgPAl = ﬁ. AsAlAg = ﬁ. AsgAl

and by the corollary above, © is on the circle 4,4;P. Fur-
ther, by definition,
X QAxA3 = X QA3A: = X QPA,,

and A, Q, P are collinear. A similar construction yields the
second point &'; from these constructions we deduce a for-
mula of fundamental importance.
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.Cl
Qs }
H, 0, Ay K
Fic. 87
434. Theorem.

cot » = cot w’ = cot ay+ cot az+ cot a3

Let H; and P, be the feet of the perpendiculars to As4;
from A, and P respectively. Since Z PAzd; = w

- AP _ Al + H\As | AP

PP, AH, AH PP
= got A1A2H1 + cot A1A3H1 + cot PA;,P]
= cot as 4 cot a3+ cot o

cot w

Theorem. The Brocard points are isogonal conjugales.

We distinguish @ and @' as the positive and negative
Brocard points respectively; w is called the Brocard angle,
and the lines 4,0, 4,2, etc., will be called Brocard rays.

2 2 2

435. Theorem. cot w = “lt“’% 159)

The following relations can be established by trigonometric
methods. The similarity of the formula just given to that
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of 15 g suggests what will be more clear as we progress, that
the Brocard angle of a triangle takes rank as of equal im-
portance with the angles of the triangle themselves.

_ 1+ cos oy cos ag COS a3

T sin oq SIN og SIN a3

a. col w

. 2 .2 .2
_Sin o+ s ap+ SN o
2 sin [+3] sin [+7] sin o3

_ oy 8itn ap+ ap Sin op + Gz SN oy
@y €08 a1 + @y €08 oz + a3 €OS a3

2 2
b. eS¢ @ = €8¢ o + escian + csctas
2A

c. $in w =

z_2 z_ 2
\/ﬂzzasz-i- aza; + a; ag

436. If we denote the intersections of 4,2 and A, with
AsAz by W1 and W', respectively, we easily derive the follow-
ing useful results.

a. LA19W3 = i, LWaQAz = ag, LAQQW] = a9

a; .
b. Agﬂ = - 8 8N w
SN ay
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c.

d.
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A2 o  sin(es— w)

E=a@= 81N @ (15%)
Widi | msine  _ (9)’ )
Wid, @18 (as— w) ag

437. Problem. To construct a triangle, given one side, an
adjacent angle, and the Brocard angle.

A

Ag

If a3 and ware the given angles,
AzAs the given side, we draw
triangle A;A3;Q with base angles
@ and a3 — w; and lay off 434X
equal to a3. The required point
A; lies on A3X, and also on a

b

1

Q circle tangent to A2 45 at A3 which

~ A, passes through Q. If this circle
Fia. 89 meets AsX at Al and Alf, there
are two solutions A;4:43; and

Ay’ AzA;, which are at once proved to be inversely similar
triangles. We shall later (481) see what conditions must be
satisfied in order that a solution may exist.

Theorem. If two triangles have the same Brocard angle,
and an angle of one equal to an angle of the other, they are

simalar.

438. We now establish some relations between the Brocard
points and the symmedian point, and the properties of the

pedal triangles of the former.
Theorem. The distances from the symmedian point K to
the sides of the triangle are
KR, = 247202, o, (342, 435)

439. Theorem. A Brocard ray, a median, and a symmedian
are concurrent. Specifically, A1, A3K, and AsM meet af a
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point; similarly, A\, AsM, and AsK med af a point, and
the two points are isogonal conjugates. (344, 436 d, 214)

Theorem. Similarly, a Brocard ray, an exmedian, and an
exsymmedian are concurrent; cf. 433, problem.

440. Theorem. If Wy, Wo, W5, WY/, Wo!, W4/, are the feet
of the Brocard rays, and V1, V3, Vs those of the symmedians,
then W]Vg 8 pm'aﬂel to AlAg, and I’VlIlr Vs to AlAs, elc.

441, Theorem. The pedal triangles of Q@ and Q' are similar
to the given triangle in the sense

ArA2As ~ L ~ 'Y’

The respective cenlers of stmilitude are Q and Q'; the angles

of similitude are 90° — w and w — 90° respectively, and. the

ratio of similitude in each

case 8in w.

For since Ai, Q, &, Q3 are
on a circle, we prove by equal
angles that triangle Q% is
similar to triangle QA43A,,
and so on. Thus A;4243 and
Q€ are composed of simi-
lar triangles similarly placed,
with © self-homologous. The
ratio of similitude and the angle of similitude are given by the
homologous lines 42 and 9.

Theorem. The pedal triangles of Q and Q' are congruent in
the sense <y = Q"M

442, Theorem. Conversely, if a triangle PyP;Ps inscribed
in a given triangle A A2A3 is similar to it in the sense
PP\ Py ~ AlAgAs, the Miguel point is at Q@ and s the cen-
ter of similitude; and similarly for Q.

443. Theorem. 0 is parallel to AsAs, and Q'Q s anti-
parallel to AsAs.
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These are proved by means of equal inscribed angles in the
common pedal circle.

444. Theorem. The radius of the pedal circle of @ and &
18 B sin w, and its center Q is the mid-point of Q.
446. Theorem. The triangle OQL' is isosceles,
00 = 0%, Q0% =20
For in the similar figures 4;4243 and 0.2, O and @ are

homologous points, and QOQ is a right triangle with angle O
equal to w. Similarly for triangle ©'0Q.
4486. Further results may be obtained by the use of an
auxiliary triangle.
Theorem. If the Brocard rays A\Q, AsQ, A:Q meet the
circumcircle again at By, Bs, B, respectively, the triangles
A A2A; and BBy B are congruent. Qs the negative Brocard

point of BiByBs.  Further QO is an isosceles triangle, and
£ Q0% is a positive angle 2 w.

For (figure 88) the arcs A,By, A;B;, A3B; are equal and in
the same direction, each subtending the positive angle 2 w at O.
And p. 4 QBlBa =X AaAgQ = w,

447. a. Each of the triangles whose bases are sides of the hex-
agon AyByA; By A3 By, and whose common vertex is Q is similar
to the given triangle:

A142A3 ~ QB A, ~ B A2 ~AQB;, etc.
b. The power of Q with regard to the circumcircle is
A2 B0 = A By AB: = A1Bi’ = (2R sin w)’.
c. Hence 00 =09 = RV1 - 4sin®
Q' =2RsinwV1—4sn’e

d. The Brocard angle of a triangle is never greater than 30°.
If it has this value, the triangle is equilateral.
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THE TUCKER CIRCLES

448. We now investigate a remarkable system of circles,
namely the circles circumscribed about the Miquel triangles of
the Brocard points (187, 240, 442). These are found to have
some interesting properties, and several of them are worthy of
special attention. At the same time they bring us fuller knowl-
edge of the Brocard points.

449. The Cosine circle or Second Lemoine circle is defined by
the following theorem:

Theorem. If lines are drawn through the symmedian point
K, antiparallel to the sides, their extremities lie on a circle
whose center s at K.

&

Ay Qs 4 Ag
Fic. 91

We know that K bisects any line antiparallel to a side;
hence if the line antiparallel to a, meets a; at Py and a; at @,
etc., we have KP, = KQ,. But, moreover, triangle KP;Qs is
isosceles with base angles «y; thus the six distances from K
are equal.

Corollaries. Q.P; is parallel to A2As, and Q:P3 and Py

are equal. The chords P:Qs, PsQi, Pi&Q: are proportional to

the cosines of the angles of A1A:As; hence the name cosine
circle. P2P3 isperpendécufartoAgAs; hencetmngles P1P2Pa
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and AAsA; are dirvectly similar, with corresponding sides
perpendicular. Hence the Miquel point of P1PyP; is at Q,
which is also the positive Brocard point of PP, P; and the
center of similitude. (This can be proved directly by draw-
ing the circles ¢, ¢, ¢; in triangle PiP,P;.) The ratio of
similitude of P1PsP3and A, A:A3 s tan w. In these similar
figures, the circumcenters O and K are homologous. Hence
KOQ is a right triangle;
o LOGK =90°, LKOQ= w;

and the radius of the cosine circle is
R tan w.

460. Theorem. Similarly, the tri-
angles Q1Q:Qs and A1 A A; are similar,
with Q' as cenler of similitude and cor-

0 O responding sides perpendicular. Tri-
angles P1P; P; and Q1Q,Q; are congru-
ent. Hence OKQ and OKSY are sym-

Fic. 92 melrically congruent right triangles,

on the common hypotenuse OK. In

other words, the Brocard points are symmetric as to OK on the
circle drawn on OK as diameter. This is called the Brocard

circle.
oo _ RV1—-4sin’w
€08 w €o8 w
OK=0K= 0 tan w

Corollary. If W' is the negative Brocard point of P1PyPs, W

the positive one of QiQ:Qs, and Y, Z the respective symmedian

poinis of these triangles, YZ is parallel to Q', K 1s the mid-

point of YZ, and WW'SYQ is a rectangle whose center is K.

4b61. K is the center of each of three rectangles inscribed
in the triangle, such as P;Q;Q,Ps. If rectangles are inscribed
in a triangle with their bases in one side, the locus of their
centers is a straight line. Hence the line joining the mid-point
of any side to the mid-point of the altitude on that side passes
through the symmedian point K.

OK =
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This suggests another simple construction for K. Still
another is based on the converse of the principal theorem,
namely:

452, Theorem. If three diameters of a circle terminate in the
sides of atruungle, the circle is the cosine circle of the triangle,
and its center is the symmedian point K.

Hence to draw a triangle and its symmedian point simul-
taneously, we draw any three diameters P1Q:, P:Qs, PsQ; of a
circle; and draw P:Qs, P3Q), PiQ: as the sides of triangle
A;A3A3. Then the given circle is the cosine circle of 4,4243,
and its center is the symmedian point.

453. Another important circle, the circle of Lemoine, is
defined by the following theorem:

Theorem. Let lines be drawn through the symmedian
point, parallel to the sides of the triangle. They meet the
adjacent sides in six points lying on a circle whose center Z
18 the mid-point of KO.

Let the line parallel to a; cut az at P;, and g3 at Q2; ete.
First, Py, is antiparallel to a;, since 4,Q,K P, is a parallelo-
gram, and A;K bisects PiQy; 4,
but a line bisected by a sym-
median is antiparallel to the &
opposite side. Hence each of
the lines PiQ:, P:Q., P3Q; is

£
. Q b
equal to the radius of the co- 0
sine circle. Now let F; be the ) T
A! T’g Qa As

mid-point of PyQi, and Z that
of OK. Then FiZ is parallel
to A;0 and equal to half of it;
it is therefore, like A0, perpendicular to the antiparallel line
PQy.  If r denotes the radius of the cosine circle,

ZQ’ = F.Z'+ FQ = } R+ 17,

Fic. 93
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which is the same for all six points Py, @i, Ps, @2, P3, Qs.
Hence all are on a circle about Z, with radius

%W= Rszecw

454. The Lemoine circle divides any side into segments pro-
portional to the squares of the sides:

AP : PoQs : Q345 = 032 tar’: @’ (344)

The chords cul from the sides by the Lemoine circle are pro-
portional to the cubes of the sides.

The last result is obtained by treating the previous propor-
tion by composition. Because of this relation, the circle is
called by English writers the triplicate-ratio cirele.

455. The triangles P1P:P; and Q1Q:Qs are congruent, and
simalar to the given triangle in the ratio 1:(2 cos w); the re-
spective centers of similitude ore Q, Q'; the angle of similitude
18 w. The length of each of the equal antiparallels PyQh,
Py, PQs is R tan w.

466. The two Lemoine circles are representative and
especially interesting members of the system known as
Tucker circles; and we now discuss these circles from several
points of view.

Theorem. Let three equal lines Pi@Qy, P:Qo, P:Qs be drawn
antiparallel to the sides of a triangle, so that any two, say
PyQ, and Pis, are on the same side of the third line, as
APy A3. Then PyQ:P:Q: is an isosceles trapezoid; PiQs,
P\Qs, P, are parallel to the respective sides. The mid-points
Ch, Cs, Cs of the antiparallels are on the respective symmedians
and divide them proportionally; and if T divides KO in the
same ratio, TCy, TC,, TCs are parallel to the radii OA,, OAs,
OA; and equal. Since the antiparallels are perpendicular to
the symmedians, they are equal chords of a circle with center
T, which passes through the siz given points. This circle is
a Tucker circle.



THE TUCKER CIRCLES 275

We see at once that the lines PyQ, and PiQ; make with
A3 A3 angles equal to ay, and are equal; hence they are sides
of an isosceles trapezoid. We know also that a symmedian
bisects any antiparallel, and therefore Cy, C3, C3 are on the
symmedians. But CyC; is parallel to PsQ, and to A24s, and
therefore divides 4:K and A3;K proportionally. If

IT1= 'ﬁzzﬁs 2@_6
KA, KA: KA; KO
the right triangles C,P,T, CiQ:17, etc., are congruent, with
TCi=cR, PCi=Cigi=(1—c¢) Rtanw (450)

Hence the radius of the Tucker circle is R V¢ + (1 — ¢)? tan® w.
For any value of ¢, positive or negative, there is a Tucker
circle.

457. Other methods of describing the Tucker circles are
suggested by the various propertics. Namely:

Theorem. Starting with any point on a side of a triangle,
we may describe a closed hexagon whose sides are alternately
parallel and antiparallel to the sides. The antiparallels will
be equal, and the six points lie on a Tucker circle. Or, if
lines are drawn parallel to the sides of a triangle and distant
Jrom them proportionally to the lengths of the sides (in the
proper sense), their extremities are poinis of a Tucker circle.

Theorem. Tmngle PP P; is similar to A]_AgAs, with Q as
center of similitude; the angle of similitude @ between cor-
responding lines, and the ratio of similitude, are given by

tan&-——-lﬁctan _@__—_sinw
c “ 9755 sin (w+ 6)
For 4P2P1P3= Zs_P2Q1P3= 4.A2A1A3

so that the triangles are similar. By 33 the center of simili-
tude is the point of intersection of the circles AyP\P;, APy P,
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A3z P3 P;, which is a fixed point, the Miquel point. But in one
case, that of the cosine circle, we know that this point is at Q.
The other relations are easily worked out. Similarly:

Triangle 10Q:Qs is similar to A1A2As, with Q' as center of
similitude; the ratio of similitude is the same, and the angle
of similitude is — 8. Triangles PiP;P3 and QiQ.Qs are
congruent.

458. Theorem. If the three lines QA;, QAs, QA3 rolate
as a rigid system about Q, and iniersect the sides A1 A2, AzAs,
AzA, respectively at Pi, Py, P3; while Q' A;, Q'Ap, Q'As
rotate through the same angle 8 about Q' in the opposite
direction, mecting A1As, Az Az, A2 A, respectively at @y, Qz, Qs;
then triangles P1PP; and Q1Q:Qs are congruent, and similar
to the given triangle in the ratio shown above; the vertices of
the triangles lie on a circle whose center lies on OK, and this
circle has the properties given for Tucker circles. The locus
of the megative Brocard point of P1P,P; is 'K, that of the
positive Brocard point of QiQ:Qs 1s UK, while the locus of the
symmedian point of either triangle is perpendicular to OK
at K

We notice that the common pedal circle of © and & s a

Tucker circle, as are also the Lemoine circles, and the circum-

circle Of A1A2A3.

Evidently the common pedal circle is the smallest of the
Tucker circles, and all others are equal in pairs.

459. Coaxaloid circles. In the similar figures A,4,4500Q
and P, P.P;TQ, homologous lines O and 7Q are propor-
tional to the radii of the circles. Hence if 7 is the radius of
that one of the Tucker circles whose center is T,

R __
r= o TQ
that is, » bears a constant ratio to 7Q. If r were equal to
T2, we should have a set of coaxal circles through the points
Q, €. Thus:
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Theorem. The Tucker circles of a triangle are derived from
coazal circles through the common points Q and @ by increas-
ing the radius of each by the constant multiplier, R/OQ. If
the circles of a coaxal system are changed by multiplying
each radius by a constant, the resulting system of circles
is called a coazaloid system. Its properties are treated at
length by Third (601). The Tucker circles are a representa-
tive coaxaloid system.

460. The Taylor circle is another interesting member of the
system of Tucker circles.

Theorem. If from the fool of each altitude lines are drawn

perpendicular to the adjacent sides, their feet lie on a circle,

which s a Tucker circle.

For if HiP; and HyQ, are perpendicular to A;As and A1 A
respectively, the figures A;H;HH,; and A.P:HQ; are simi-
lar; Py is parallel to HoHj, and we easily find that

PiQ: = 2R sin o; sin az sin a3
so that the three antiparallels are equal.

Theorem. The line P\Q: bisects HiHs and HyHs, and in an
acute triangle

P@Q: = 4 (FHs + Hifli + ) (Feuerbachy).

The center of the Taylor circle is the incenter or an excenter
of the triangle whose vertices are the mid-points of HoHs,
HsH,, HiH,; that is, it is the center of the Spieker circle of
HH:H3; and the lines connecting these mid-points with the
center of the circle are perpendicular to the sides of the given
triangle.

THE BROCARD TRIANGLES AND BROCARD CIRCLE

461. In this section we establish the existence of two
notable triangles, both inscribed in the Brocard circle.
We recall that A;Q and A;Q" make the angle  with AgAs;
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let their point of intersection be Bj, and let B; and B; be
similarly found. Then B1B;B; is the First Brocard Triangle.

Theorem. The triangles B1AsAs, BoAsA;, B3A1As are tsos-
celes and similar with base angles w.  The sum of their areas
s A.
ITOI=-%a1tanm=l_{_R—1 (438).
Hence KB, is parallel to AyA3.  The triangle B\B:Bs is in-
seribed in the Brocard circle drawn on OK as diameter. Tri-
angles A1A24; and ByB;B; are inversely similar.

F1c. 94

We see that KB,0 is a right angle; and therefore B; is on
the circle on OK as diameter, as are also B; and B;. Moreover,
4. BgBlBa = 4_ BgKBs = Zg. BQK, Bg.K = 4_ A3A1A2

462. The first Brocard triangle is in perspective with the

given triangle, A1Bi, A:xB:, A3B; being concurrent at a

point D.

This may be proved in several ways; for instance, as a case
of 357. Again, the triangles are twice in perspective at 2 and
@', and therefore (381) triply in perspective. Finally, the
line K B; passes through the points P; and @, of the Lemoine
circle, and the Lemoine and Brocard circles are concentric.
Hence A;K and A;1B; are isotomic, and the point D is the
isotomic conjugate of K.
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463. The Brocard points are determined by two triads of
circles which we designated (433) as ¢, etc. Let the two
circles ¢;, ¢’ tangent at A; to A,As and A,A43, and passing
respectively through As;, As, meet again at C;; then the
triangle C',C2Cs is the Second Brocard Triangle.

Fi1c. 95

Theorem. L ACiArz= £ A1C14;=180— oy
LAC\Az= 2 qy.

Tkat %S 4 AzClAI = 4 A1C1A3 = ﬁ_ AzAlAa,
A AC1A3 =2 b8 A A1As.

Hence the point Cy lies on the circle A2A50. Triangles
A1 A2Cr and A3AyCh are direcily similar in the ratio ag/as. The
perpendiculars from Cy to A1A2 and A;A;3 are proportional to
those sides (being homologous altitudes), and C; lies on the
symmedian A K. OC, is perpendicular to A1 K (by means
of the equation X OCi4, = X 0C1A;+ % A,C1A,). Ci is
the mid-point of the chord of the circumcircle from A, through
K. Eachvertex of the second Brocard triangle lies on the Bro-
card circle. (For OC, is perpendicular to C;K).

464. Theorem. The median point of the first Brocard
triangle is at M (858).



280 THE BROCARD CONFIGURATION

465. Theorem. The Brocard triangles are in perspeclive
at M.

For M is the common median point of the inversely similar
triangles A1 A2A; and B1B,B;;

4_BaBlM = 4MA1A3 = 4A2AIK= 4 B}KCl

= 4 BaBIC[
so that By, C\, M are collinear.

466. Further properties of this figure may be worked out
in abundant detail: *

The lines connecting the mid-poinis of the sides of B1B:Bs with
tk_os_e of 4_142_113 meet at a point R which is on DM (462),
MR = }DM. Moreover, R is the mid-point of QQ'. M s
the median point of triangle QQU'D. DH s parallel to OK,
DH = 2 OR. If Z is the cenler of the Brocard circle, and H'
the orthocenter of the first Brocard triangle, H' is the infer-
section of ZM and HD. HH' and KO are equal and paral-
lel; the common mid-point of OH and KH' is the center F of
the nine point circle.

467. Problem. To consiruct a triangle having a given

triangle as its first Brocard iriangle.

The solution depends on the fact that any triangle is in-
versely similar to its first Brocard triangle. We locate the
Brocard points of the given triangle, also its first Brocard
triangle; then by similarity we locate on the circumcircle of
the given triangle the Brocard points of the required triangle.
The vertices of the latter can then be found at once.

468. Theorem. In a scalene triangle, the symmedian point
lies on the arc of the Brocard circle which is between the
largest and the smallest of the angles of the first Brocard
triangle.

Suppose aq < a2 < a3, and let A24; be horizontal, with A,

* Cf. Fuhrmann or Emmerich. The reader is not expected to prove these
results,
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at the left. Then the whole symmedian lies to the left of 00,
(344) and thus KB, is drawn toward the right. Hence KBy
isin the direction A3As, KB; in the direction A;A43, and KB;
in the direction A.A;. Hence

ya BlKBz = a3, L BgKBs = O,
AB1KBS = 180°— az = a1+ a3
and K is opposite to Bs.

THE STEINER POINT AND THE TARRY POINT
469. Theorem. If lines are drawn through the vertices of a
triangle parallel to the corresponding sides of the first Brocard
triangle, they meet at a point on the circumcircle (Steiner
point *).

Fic. 96

We may at the same time prove the more general theorem:
Lines through the vertices of a given triangle, and parallel to
the corresponding sides of a triangle inwersely similar to it, are
concurrent on its circumecircle.

* Steiner (Collected Works, 2, p. 689) considered this point from a different
aspect.
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For if A1A;A; and B1B:Bs are inversely similar, and 4.8
and AsS are parallel respectively to B:B; and B3B;, then

Zi_ Al.SAg = 4_ BzBsB]_ = 4_ A1A3A2

K lies on the circumcircle of A;A2A3, and Aj3S is parallel to
B, B;.

470. Theorem. The symmedian point K is the Steiner
point of the first Brocard triangle.

471, Theorem. The lines through the vertices of a triangle,
perpendicular to the corresponding sides of the first Brocard
triangle, are concurrent at a point called the Tarry point, T,
diametrically opposite to the Steiner point on the circumcircle.
The circumcenter is the Tarry point of B1B;Bs.

472. Theorem. The Simson lines of S and T are respec-
tively parallel and perpendicular to OK. (326)

Additional properties. The Tarry point lies on the line
ZMH' (466), the Euler line of triangle BiB:Bs. The
diameter ST passes through the point D; the isogonal con~
jugate D' of D lies on OK, and is harmonic to R, so that the
tangents to the Brocard circle at Q and Q' meet at D'. T, H,
D' are collinear.

SOME RELATED TRIANGLES

473. We now consider briefly certain triangles associated
with a given triangle, which have the same Brocard angle.

Theorem. A triangle can
be constructed whose sides are
equal and parallel to the me-
dians of a given triangle.

If O; P is equal and parallel
to A20: and in the same direc-
tion, then PA30; is such a
triangle. Tt is called the me-
dian triangle of A1A4243, and
its sides are given by 96 q,
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m=3V2a’+ 24 — a, ete.

Corollary. The median triangle of the median triangle is
simalar to the given triangle, in the ratio 3/4. The area of the
median triangle PA30; is 3/4 A.

474. Theorem. The median triangle has the same Brocard
angle as the given triangle.

For if w is the Brocard angle of the median triangle,
m’ +my’ +mg’ _ }(Ba’+3a’ + 34"
4 A 4-3A

Exercise. Show that the only triangle similar to its median
triangle in the sense A1As Az ~ M1MoMs is equilateral.

475. We have already proved (361) that if the symmedians
of a triangle are extended to meet the circumcircle at
Py, P;, P, then K is also the symmedian point of P;P2P;.
Therefore PiP,P; and A;A;A; known as cosymmedian
triangles, have the same Brocard circle, and obviously the
same second Brocard triangle. Moreover, from 4560 we may
see that the Brocard angle is known when R and OK are
known, which establishes the result that Py P;P;and A; 424,
have the same Brocard angle, and therefore that their Bro-
card points coincide.

cot w = (435)

Theorem. FEither of two cosymmedian triangles is similar

to the median triangle of the other.

For we know (199) that P,PP; is similar to the pedal
triangle K;K:K; of K;but K is the median point of KKK,
(850), hence the medians of P;P,P; are proportional to KK,
KK,, KK, which in turn (842) are proportional to a,, as, a.

Corollary.  Cosymmedian triangles have the same circum-
circle, and a common symmedian point as center of per-
spective; they have the same Brocard points, Brocard angle,
and second Brocard triangle.
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476. Theorem. If points divide the sides of a given triangle
in equal ratios, they are vertices of a triangle having the same
Brocard angle as the given triangle.

If the sides are divided at
By, Bz, B in the ratio— m/n,
where we take m + n = 1,
then A281 = ma, B1A3 =
nay, ete.; it is to be proved
that B;B:B; has the Brocard
angle w. The proof is long
but straightforward. Ex-
pressing the lengths BaBs,
etc., by means of the law of
cosines, we find the Brocard angle of B;B:Bs by the formula

_ BB+ BB+ BB
4 area B 18233
which after some reduction reduces to

(e + as® + as®) (1 — 3 mn)
4A (1— 3mn)

r

cot w

or cot w (43b).

Exercises, In the foregoing figure, let AxB, meet A3Bs at

R;, etc.; then triangle RiR;Rs has the Brocard angle w, as

does also the triangle whose sides are A1By, A2B;, AsBs.

The method consists in expressing the ratios of various
lines and areas in terms of m and #n, and eventually showing
that Aj, As, As divide the sides of triangle RyR,R;3 in equal
ratios.

4T7. Let us recall the two triads of c-circles which touch
the sides of the triangle at the vertices and pass through the
Brocard points. Let the circles ¢; and ¢;” which are tangent
to AqAs at Ag and Aj respectively, and pass through 41, meet
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again at Dy; etc. Then the vertices A1A243;, the Brocard
points, the second Brocard triangle, and the D-triangle,
account for all the intersections of the c-circles. We sum-
marize the properties of the triangle D;D2D3, which can be
demonstrated without difficulty.

Theorem. X A;Di1As= X A3A1A,, and Dy lies on the cir-
cle through As, A3, H. Dy is on the median A0y, and is
the foot of the perpendicular from H on the median.* The
circle drawn on HM as diameler passes through Dy, Ds, Ds;
and triangle DyDoDs is inversely similar to the median
triangle. D, s the reflection with regard to A2 Aj; of the point
where the symmedian AK culs the circumcircle. Correspond-
ing vertices of D1D.D; and of the second Brocard triangle are
isogonal conjugates. The pedal triangles of Dy, D>, D3 are
isosceles; that of Dy has base angles equal to oy or its supple-
ment.

478. The centers of the c-circles are vertices of two inter-
esting triangles. Let U,, Us,, U; be the centers of ¢;, ¢, ¢3;
and Vi, V, Vi of o, &', ¢'. Thus U, is the intersection of
the perpendicular bisector of A;4; with the perpéndicular to
A4, at A;; and so on.

Theorem. Triangles UUUs and A1A2A; are similar,
with Q as cenler of similitude. The negative Brocard point
of UiU,Us is at 0. V1VoV; is similar to A1A24s, and its
Brocard points are O and Q. U UUs and V1VoV; are
congruent, and their center of similitude is the center of the
Brocard circle. The centers of circles through U U,Us and
ViVa V3 respectively lie equidistant from O on a line parallel
to Q. The center of the Brocard circle is their common
symmedian point. Triangles UsU Uy and V,V3V, are in
perspective at O, hence corresponding lines meet at concurrent
points; these points are on OK. (For U,U, is the perpen-
dicular bisector of 42, and V;V3 that of A4,Q’'; their inter-
section therefore is equidistant from © and Q'.) The sides
of the two triangles meel the Lemoine circle where it cuts the
sides of the given triangle.

* Note the analogy; €, is the foot of the perpendicular from O on the sym-

median (463).
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Exercise. The reader of this and the following two chap-
ters will recognize that no sharp distinction is made between
proved theorems and those whose proofs are left as exercises.
However, opportunity for original work is to be found in
the following sections, of which those in parenthesis are
somewhat more difficult: (435), 436, 437-444, 447, 449, 450,
454, 455, 457, 458, 460, 462464, (466), 467, 470, 471, (472),
475-478.



CHAPTER XVII
EQUIBROCARDAL TRIANGLES

479. In this chapter we consider systems of triangles hav-
ing a common Brocard angle. First, the triangles on a given
base with a given Brocard angle give rise to the Neuberg
circles. Then we obtain all the triangles in a plane having
the same Brocard angle, by a simple projection in space. A
consideration of the circles of Apollonius leads to the study
of the Brocard angle of the pedal triangle of a point; and thus
to the solution of the problem of the locus of a point whose
pedal triangle has a given Brocard angle.

THE NEUBERG CIRCLES

480. Theorem. The locus of the vertex Ax of a triangle on a
given base A;A3 and with a given Brocard angle v s a circle
on either side of AsA;, from whose center Ny the base AzA;
subtends the angle 2 w; the radius of the circle is

v= G_; Veot’ w — 3. 4
For let A;A:A; be a triangle with Bro-
card angle w. We denote the angle 4,0,0
by z and, as before, A,0;, by m,; then

hh=mcoszx, 2A=am cosz.
Now al+ o+ a> =4 A cot w (435)
also 022+ aaz =g 012 +2 7?7/12 (96) Ag
whence £ a>+ 2my® = 2 aymy cos z cot o Fia. 99

We now throw this equation into the form of the law of
cosines (15 ¢) introducing v = O,N, = % cot w, and v as given

above. The equation may be rewritten
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[45] alg alz
m’—2m (—2- cot w) cos =+ vy cot’ w= 1 (cot® w— 3)
or md + u® — 2mu cos z = v°

showing that A,N: equals », which is constant when a; and w
are given.

The three circles determined by this theorem, each passing
through a vertex of a given triangle, are called the Neuberg
circles my, s, mg of the triangle. Each is the locus of the
vertex of a triangle on the opposite side and having the given
Brocard angle. Some of their properties are immediately
obvious.

Theorems. The power of Az or Az with regard to the circle
m is AzAss (being AzNi —v°). The median point of
trwngle NINQNS isat M (358), and AlNl, AgNz, AaNa are
concurrent (357).

(Actually the point of concurrence is the Tarry point, so
that the tangents to the Neuberg circles at the respective
vertices are concurrent at the Steiner point.)

481. Theorem. If the value of the Brocard angle w ts given,
the largest possible value, 8, and the smallest, &', of any angle
of the triangle are given by

cot%=cotw— Vocot” w — 3, cot%zcotw+ Vicot" w— 3
For if O,ON; cuts the Neuberg circle at @, and P,, then

AsQ1As = 8, and A2PA; = 8’. By trigonometric methods
we have further:

cot5="%(cotw—2V coft w—3),
cot 8" =} (cot w+ 2 Vool & — 3),
sin & sin 8’ = 3sin® w,
cos & cos ' = Bsin? w— 1
For example, if cot w = 1.75, w = 29° 44’ 42", the angles of
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the triangle are between limits which are approximately 53° 7/
and 67° 23’. In this case OK =31 R; Q' = & R.

482. Theorem. If an angle a of a triangle is given, the
mazimum possible Brocard angle is given by

3 a, 1 a
cotw—étaﬂ§+§cot§

483. Theorem. On one side of a given line as base it is pos-

stble to construct six triangles directly or inversely similar to

a _given scalene triangle; their vertices lie on their common

Neuberg circle.

Let triangles A1A24;, A2A3B;, A3C1 Az be directly similar,
and let Dy A3As, A3 Ay Ey, AoF) Az be inversely similar to them.
Then since the six triangles have the same
Brocard angle, A,, By, Cy,Dy, E;, F, lie on
the Neuberg GiIGlC. AlSO AlEl, BlFl, C]Dl
pass through A,, and A,F,, B,D,, C\E,;
through A3; thatis, the sides of the hexagon
AE\C1D\ByFy pass alternately through
the fixed points A; and A;. Triangles
A10181 and D1F1E1 are similarto A1A2A3.
IngAlandAlemeetatX, AgBlaﬂdAsEl
at Y, and A:C; and A;F; at Z, triangles
AzAgX, AgAs Y, AsASZ are isosceles,
with base angles a, a1, a3 respectively.

An exceptional case arises when the triangles are isosceles.

If A2 APy and A3 AQ, areisosceles triangles, so that Py and @,

are on Q,N 1,and X‘ Ay Pymeets the circleat Ry, AsR, is tangent

to the circle and gAsRl s ‘?:SOSCGIGS, AgAa = A:;Rl.

484. Theorem. The Neuberg circle m is orthogonal to the
circles with centers A and As, radii equal to AsAs. Hence
the Neuberg circles on a given base, for different values of w,
are a coazxal system each of whose limiting points L, L' forms
with AsAs an equilateral triangle.
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486. Theorem. If the vertex A, of a triangle describes the
Neuberg circle m, its median point describes a circle whose
radius zs one-third that of the Neuberg circle. Such a circle is
called a McCay circle; the three McCay circles of a given
triangle are concurrent at the median point M.

These circles will be treated in the next chapter.
Exercises. The angle between 010 and a tangent to the Neu-
berg circle m from O, is given by cos ¢ = V3 tan w.

The distances from the circumcenter to the Neuberg centers
are proportional to the cubes of the sides: N1O = a’/4 A.

_NO, NO | N0,
a az ag
N0-N,0-N:0 = R’

VERTICAL PROJECTIONS

Hence col w

486. We have seen in the foregoing section one method of
grouping the triangles that have the same Brocard angle.
Another aspect of the problem is based on a parallel projec-
tion from one plane to another. We find that if all equilateral
triangles in a plane are projected
into a second plane by lines per-
pendicular to the latter, the result-
ing triangles will have equal Bro-
card angles.

For convenience of expression
we shall speak of a horizontal plane
and an oblique plane making an
angle ¢ with it. By a projection
, we shall understand a vertical pro-
4 jection by means of rays perpen-

Fia. 101 dicular to the horizontal plane.

Obviously a straight line of either

plane projects into a straight line in the other plane, and a
circle into an oval curve (ellipse).
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If a line of length a in the oblique plane is parallel to the
line of intersection I of the two planes, its projection in the
horizontal plane is parallel to I and equal to a; if perpendicu-
lar, the projection is also perpendicular to I, and its length
is @ cos ¢. The formulas for the direction and length of an
oblique line are easily written.

If a triangle in the oblique plane has area D, the area of its
projection is D cos ¢; by combination and the method of
limits, we obtain the same formula for areas bounded by
polygons and curves.

If two figures in either plane are similar, the corresponding
figures will generally not be similar, except when the given
figures are homothetic. On two corresponding lines, how-
ever, corresponding segments are proportional.

487. Theorem. If two equilateral triangles of the oblique
plane, described in the same direction, are projected into the
horizontal, the resulting tri- A
angles have the same Bro- !
card angle. \

For let A1A2A3 and BlBng C: +—Cs
be the equilateral triangles, M
and N their centers. If lines Az<
through M, parallel respec- Z
tively to NB]_, NBz, NBs, O
meet AgAa, AgAl, A]_Ag at A3
Cl, Cz, Ca, triangles B;Bng
and CiC:C; are homothetic.
Obviously Cy, Cs, Cs divide
AzAs, As.Al, .A].Ag in equa.l
ratios. Let the projections of
all these points in the hori-
zontal plane be denoted by
primes. Then ByBy'B;’ and

V'Cy'C;"  are  homothetic;
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Cl,, Cg', Cs' divide Ag'Aa', Aa’A 1', Al’Ag' in equal ra.tios, and
therefore (476) C\'Co’Cs’ and Ay'Aq"AS have the same Bro-
card angle. Therefore A,’4s"4," and By By'Bs' have the
same Brocard angle w.

Corollary. The Brocard angle o depends only on the
angle ¢ between the planes, viz.:

V3 1
w£w~~2(cos¢+cos¢)

For consider, in particular, an equilateral triangle having
one side a parallel to I. It projects into an isosceles triangle
whose base is a, and whose altitude isg 3 cos ¢. Then
its equal sides are given by
3

4

2
b’=%+ cos’ ¢

whence

@+ +E_§al(l+cos’e) V31teodd
4A’ V3 a? cos ¢ 2 cos¢

Corollary. When w is given, we find a single value for cos ¢
between 1 and 0, namely:

cot w=

cos¢=%(ootw—v‘ col? w — 3)

Hence it is possible, by proper choice of ¢, to progect equi-
lateral triangles into triangles having as Brocard angle any
given angle less than 30°; there is for any o only one value of
¢,and£tmnbecmsmwduﬁhrulerandmmpass.

486. Theorem. Any iriangle in a horizontal plane can be
projected vertically into an equilateral triangle in an oblique
plane; in other words, any triangular prism can be cut by a
plane in an equilateral triangle.
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For let w be the Brocard angle of the given triangle, A its
area; and denote by d the side of the required equilateral
triangle. We find

dg=i3£-(cot w— VGOt’w—3)

Taking as center the vertex A, of the largest angle of the
given triangle, let a sphere of radius d cut the other two edges
of the prism at points P, and P; on the same side of the hori-
zontal plane. Then A,P,P; is equilateral, as can be verified
by direct computation.

Our result may then be stated as follows: All equilateral
triangles in the oblique planes that make a fized angle with
the horizontal plane, project into the latter plane in triangles
that have a constant Brocard angle; and conversely, all
triangles with that Brocard angle can be so derived. If a
single equilateral triangle in the oblique plane is rotated about
any poind, the projected ériangle takes on all possible forms of
triangles with the specified Brocard angle.

489, Theorem. If the vertices of one triangle lie on the sides
of another, and divide them in equal ratios (476) they may
be projected simultaneously into equilateral triangles. Con-
versely, if two triangles described in the same direction have
the same Brocard angle, a triangle directly similar to either
can be inscribed in the other, dividing its sides in equal ratios.

For we may project the given triangles into equilateral
triangles, in oblique planes which will not generally be par-
allel, but will make with the horizontal the same angle ¢;
then we revolve one of them about a vertical axis until they
are parallel, the original triangle moving congruent to itself in
the horizontal plane. We may then inscribe in one equi-
lateral triangle another which is homothetic to the second, and
divides proportionally the sides of the first. The same situa-
tion holds in the non-similar triangles in the horizontal plane.
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Corollary. The triangles whose vertices divide in_equal
ratios the sides of a given triangle constitute all the different
forms of triangle having the same Brocard angle.

THE CIRCLES OF APOLLONIUS AND ISODYNAMIC POINTS *

490. We have already seen (59) that the locus of a point P
whose distances from the vertices As and As of a triangle are
proportional to A1A4» and A;4s, is a circle through A, which
has as a diameter on AsA; the line between the extremities X1
and Y of the bisectors of angle A;. In a triangle there are
three such circles, called the circles of Apollonius. We shall
designate them by ki, ks, ks; their centers, on the respective
sides of the triangle, by Ly, Lz, Ls.

Theorem. The center Ly is the intersection of the side Az As
with the tangent to the circumcircle at Ay the circles of Apol-
lonius are orthogonal to the circumcircle.

Fic. 103

(23}

For LL1A1X1 =/ A1X1A2 = a3+ '2"', LL1A1A2= o3
The center Ly is the pole of the symmedian A, K with regard
to the circumcircle.

For if the tangents at As and A; meet at T1, AT is the
* The theory of poles and polars (134 fi.) is used in this section.
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symmedian. The polars of A; and T, are respectively A1,
and AsAjz; hence the pole of the line is L.

The centers Ly, Ly, Ly are collinear on the line polar of K with
regard to the circumcircle; this line is perpendicular to the
Brocard azis OK, and is the radical azis of the circumeircle
and the Brocard circle. It is called the Lemoine line, and is
also the trilinear polar of K with regard to A, A, As.

The circles of Apollonius are coazal; their radical azxis is the
Brocard line OK, and they intersect at two points of this line
which are inverse with regard to the circumeircle.

491. Theorem. The circle of Apollonius ky is the locus of a
pointwhose pedal triangle is isosceles in the sense PLP, = P,Ps.
For PPy = PA; sin a3 (190)
and P,P; and P,P; are equal if and only if
P4, _sinay _ A4,
PA; sina: AAs

Theorem. More generally, if two points P, Q are inverse
with regard to the circle ki, their pedal triangles are inversely
stmilar in the sense PyP,P; ~ Q@:Qs; and conversely.

For A; and A; are inverse with regard to ki; hence P, Q,
Az, Az are concyclic, and X A,PA; = % AQA;.

Hence X P, P, P, 3= X QQQ;Q;; (186)
Agajn, by 75, 2‘.A1PA2+ ZS_ AlQAs = Zi_AlLlAs, whence
by 186 again, X PyP;P,= X QsQ:Q:; and similarly

X P1P:P3= X Q:Q:Q.

Conversely let the pedal triangles of P and Q be similar in
this sense, and let R be the inverse of P with regard to the
circle %;; then Q and R have similar pedal triangles and
therefore coincide.

492. Definition. The Isodynamic Points of a triangle are
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the points S, S’ common to the circles of Apollonius.
They are inverse with regard to the circumcircle, on the
iroca.rd line OK, and equidistant from the Lemoine line

Theorem. The distances from either isodynamic point to
the vertices are inversely proportional to the sides.
:‘gl:s_orem.. The pedal triangle of either isodynamic point s
ForS, % 8158 =60°; forS', % $1"Ss"Ss" = 120°.
This theorem follows from 491 or from 180. Hence
X% A2SA3= X A3 A1A3+60°, X AxS'Az=X% A A1 Ag+120°

If the lines from the vertices through an isodynamic point
ﬂMWBt ;ke circumcircle at Xl, Xz, Xa, then X1X2X3 s eqw?—
al.

Theorem. An inversion with regard to either isodynamac
point as center transforms the given triangle info an equi-
lateral triangle. (200)

493. Theorem. The isodynamic points are the isogonal
conjugates of the isogonic centers. (354 ff.)

For if T is the isogonal conjugate of S,

ﬁ_ AgSAs-i- 4 AzTAs = 4. AzA[Ag, 4 AgTAa = 1200; ete.

Theorem. The vertices of the D-triangle (4T7) lie on the

respective circles of Apollonius.

494, Theorem. The vertex Cy of the second Brocard triangle

is the inverse of O with regard to the circle k.

For we saw (463) that C, is the mid-point of the symmedian
chord of the circumeircle. But this line is the polar of O with
regard to k;.

Corollaties. Hence the pedal triangles X, X;Xs, Y1Y2Ys,

Z:Z27Z3 of Cy, Cs, Cs are inversely similar to the given triangle,

in the following senses:
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A1 A Az ~ X1X3X2 ~ YsYsYI ~ Zﬂzlzs-

There are six points on the Brocard circle whose pedal triangles
are similar to the original triangle, and are described in the
same sense, namely O, Q, &, C, és, Cs. For the first three
the similarity s direct, for the others it is inverse. The triads
of poinds are inverse with regard to the circles of Apollonius.
Thus the triangles 0QQ' and C\CyCs are triply in perspec-
tive; OC, QCy, Q'Cs pass through Ly, and so on. Therefore
the triangles have three axes of perspective, which are con-
current at a point P of OK ;
OK

OF 1+3tan®w
The circles of Apollonius are orthogonal to the Brocard circle.
The circumcircle, the Brocard circle, the Lemoine line, and
the isodynamic points belong to a coaxal system, orthogonal
to the circles of Apollonius.
We shall call these circles the Schoute coaxal system.

495. The inverse of each of these siz points with regard to the
circumcircle also has the property that its pedal triangle is
similar to the given triangle, but vs inscribed in the opposite
sense. Hence there are eleven poinis whose pedal triangles
are similar to the given triangle, sixz on the circumcirele and
five on the Lemoine line.

496. The generalization of the foregoing result is fairly
obvious.

Since any two points inverse with regard either to the
circumcircle or to a circle of Apollonius have similar pedal
triangles, any chosen point may be successively inverted with
regard to these circles, to the following effect:

Theorem. In general, there are twelve points whose pedal
triangles with regard to a given triangle have a given form.
They lie siz by six on two circles of the Schoute system, which
are mutually inverse with regard to the circumcircle; and the
siz poinis on either circle constitule two triangles triply in
perspective, and mutually inverse with regard to each of the
circles of Apollongus.
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THE CIRCLES OF SCHOUTE

497. We next inquire as to the locus of a point whose pedal
triangle has a constant Brocard angle. It turns out, as sug-
gested by the theorem just given, that this locus is a circle of
the Schoute coaxal system.

Theorem. If O is the center of an equilateral triangle C1C:Cs,
the Brocard angle of the pedal triangle of any point P depends
only on the value of OP;

R*+ 0P
colw= ‘\/é-R-—-——s — 6:[32
For P,P; = C,P sin 60°, hence
PiPs*+ PiPi*+ PiPy' = $ (CiP* + CoP’ + CP)
= $(0C,*+ 0C:*+ 0Cs" +3 PO")  (276)
=4 (R*+ 0P
Again, by 198,

area P,PyP;= 4 (R*— OP?) sin® 60°=

3‘?(132-6?2)

Hence the result, by 436.

Corollary. The locus of a point whose pedal triangle with
regard to an equilateral triangle is described in a given
direction and has a given Brocard angle, is a circle concentric
with the triangle.
498. Theorem. In any triangle, the locus of a point whose
pedal triangle has a constant Brocard angle and is described
in a given direction, is a circle of the Schoute system; that is, a
circle coaxal with the circumeircle and the Brocard circle.
First, let an inversion be performed with an isodynamic
point S’ as center, leaving the second isodynamic point S in
place. The given triangle inverts into an equilateral triangle
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with S as center (492); the circles of Apollonius invert into
lines through S, and the Schoute circles into circles concentric
about S. But by 204, if a triangle and a point are subjected
to an inversion, the pedal triangle of the point with regard to
the triangle is inversely similar to the corresponding pedal
triangle in the inverse figure. Now in the inverted figure,
each Schoute cirele is by 497 the locus of a point whose pedal
circle has a constant Brocard angle; and since this property
remains unaltered by an inversion, it is also valid in the
original figure.*

GENERALIZATIONS

499. Many attempts have been made, with varying suc-
cess, to generalize the Brocard geometry. The theory of
similar figures which is discussed in the next chapter is evi-
dently a generalization of certain parts, but there we find no
obvious analog for the Brocard points. We summarize very
briefly one or two other forms of generalization.

Theorem.t Let P, Q be any two points, and P,P,P; and
QiQ:Qs any Miquel triangles of these poinis, with respect to
triangle Ay AsAs.

If PP meets QiQ at By, PP meets QQ at By, P3P meets
Q:Q at Bs, then By, By, Bs, P, Q lie on a circle, the generalized
Brocard circle. The perpendiculars from the B-poinis to the
corresponding base-lines meet af a point O on this circle, and
parallels to the base-lines through the B-poinis meet at a
pmnt K on the circle. Tmamles BIBgBa and AlAgAs are
wnwersely similar. Lines through A,, As, As, respectively
perpendicular or parallel to the sides of BiBsBs, are concur-
rent on the circumcircle of A1dq4s.

Other theorems may be observed, and numerous special
cases are of interest.

* This theorem, with an analytic proof, is due to P. H. Schoute, Proceed-
ings, Amsterdam Academy, 1887-88, pp. 39-62. See also Gallatly, chap. VIIIL.

tJ. A. Third, Proceedings of Edinburgh Math. Society, XXXI, 1912, pp.
17-34.
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500. Another scheme, due to Lemoine, depends on a gen-
eralization of 440.

Theorem. Let K be any point in the plane, and let ALK

meet Asds at K', etc. Let lines through K', parallel re-

spedively to AlAs and AlAz, meet AlAg and AlAs al Ls and

M, Then ALy, Asls, Asls are concurrent at a poind W,

and A,M,, A:M,, AsM3 at another point W'; these points

have many properties resembling those of the Brocard
points.

501. A generslization of the Tucker circles was studied
by Third.* Essentially, his circles are those circumseribing
the Miquel triangles of any isogonal conjugate points P and P’
(469). The resemblance to Tucker circles extends to many
details.

502. A remarkable group of theorems by Hagge 1 describe
a general circle in the triangle.

Theorem. Let P be any point, P’ ils isogonal conjugate, and
let AP meet the circumcircle at B, etc. Let the reflection of
Bl with mgmd to AzAg be CI, etc. Let C].P meet the altitude
A\H at D], etc. Then the seven pmm H, C], Cg, 03, D], Dg,
D; lie on a circle. The point T', diametrically opposite to H,
has in AyA,Ajs the position homologous to the position of P’
referred to 0,0:0s.

Again, if O,P, 0,P, OsP meet the nine point circle at Xy, Xo,
Xs, and ‘l:f Yl, Yg, Y are the reﬂectwns Of Xh Xg, X3 i
0:05, 050, 010, respectively; finally, if 00, and PY, mee!
in Zl, fcck: then the seven 'pomts O, Y], Yg, Ya, Zl, Zg, Zs lie
on a circle.

We may note that if P is the incenter, the first theorem
gives the Fuhrmann circle (867); if P is the median point, the
second theorem gives the Brocard circle, as is seen in the follow-
ing exercise; another instance is given in 477, and others may
be easily found.

# L.c., XVII, 1898, pp. 70-99.
+ Zeitschrift far Math. Unterricht, 1907-08, p. 257.



THE HARMONIC QUADRANGLE 301

Exercise. Prove that the vertex C, of the second Brocard tri-
angle, is on circle A,0,0;, and that if A, M meets the nine-point
circle at X, then triangles 0.05Cy and 0.0: X, are symmetrically
congruent.

603. Attempts to extend the Brocard geometry to the
quadrangle are only moderately successful. In order to have
results of any value, we must restrict ourselves to the so-
called harmonic quadrangle, whose characteristic property is
that it is inscribed in a circle, and the products of opposite
sides are equal. We have seen (133) that the vertices of a
harmonic quadrangle are inverse to those of a square; again
(200) that if A’B’'C’D' is a square, P any point, PA’, PB’,
PC', PD’ meet the circle A’B’C’D’ in vertices of a harmonic
quadrangle.

504. Theorem. In a harmonic quadrangle ABCD, there
exist a point P, and a point Q, such that

L PAB= £ PBC= £ PCD= £ PDA
ZQBA = LQCB= £QDC= LGAD

The four poinis of intersection of such lines as AP and BQ
lie on a circle through the center O of the circle through
A, B, C, D. If OK is a diameler of this circle, K is the
tnlerseclion of the diagonals, and corresponds to the symmedian
point. Lines through K and parallel to the sides meet the
other sides in eight points on a circle whose center s the mid-
point of OK. Analogues of the other Tucker circles may be
worked out. K isthat point for which the sum of the squares
of the distances from the sides of the quadrangle ts a minimum.*

Exercise. The reader is invited to furnish proofs of the
unproved propositions in the following sections: 480, 481,
482, 484, 4856, 489, 490, 492496,

* Cf. Tucker, Educational Times, Reprint, 44, p. 125; Neuberg, Mathesis,
1885, p. 202; Gob, Cong. de Marseille, 1891; Eckhardt, Archiv der Math. und
Physik, 13, p. 12; Zeitschrift fir Math und Phys. Unterricht, 36, 1905, p. 409.



CHAPTER XVIII
THREE SIMILAR FIGURES

505. When three similar figures are constructed on the three
sides of a triangle as bases, there is an intimate relation be-
tween these figures and the Brocard configuration. We shall
study this problem in some detail, investigating the location
of corresponding points that are collinear, or of the points at
which corresponding lines may be concurrent, and determin-
ing the centers of similitude. We then take up the more gen-
eral problem, of three directly similar figures lying in any
positions in a plane. We find that the centers of similitude
and the other notable points suggest a group of theorems, of
which the Brocardian theorems are a special case. It seems
best to treat the special and the general cases separately by
different methods; the parallelism between the two will be
manifest at all times.

506. Let three similar figures be construeted, so that the
lines A2 A3, A3A;, A, A are homologous members. A familiar
example is the Euclidean proof of the theorem of Pythag-
oras, wherein squares are drawn externally on the sides of a
right triangle. Other sets of homologous points with which
we are familiar are the mid-points of the sides, and the ver-
tices of the first Brocard triangle (461).

Theorem. The centers of simalitude of the three figures, two
by two, are the vertices of the second Brocard triangle C;, Cs, Cs.
The ratio of simslitude with respect to Cy is az/a, the angle of
stmalitude 180 — .

For we saw in 463 that triangles C,4,4., C; 434, are simi-
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lar, so that C; is seli-homologous in the similar figures on
A;Ag and AsA,. The circles used in the proof of the theorem
of 32 are here the c-cirdles ¢;, ¢,’; whence we have a direct proof
resting on that fundamental theorem.

Ry

R,

41
Fic. 104

507. Theorem. The median point of the triangle of any
homologous points is at M (368); if any three homologous
points Py, Ps, Pg are collinear, their line passes through M,
and MP,+ MP;+ MP; = O.

508. We next consider the possibility of three homologous
lines being concurrent. For instance, we are already ac-
quainted with the perpendicular bisectors of the sides, and
with the lines from the vertices to either Brocard point.

Theorem. If three homologous lines are concurrent, their

point of concurrence is on the Brocard circle, and they pass

respectively through the vertices of the first Brocard circle.

Let us first consider three homologous lines parallel to the
sides; then their distances from the latter are proportional
to @y, az, a; and if three such lines meet, their common point
must be the symmedian point K (342), and they are the lines
KB,, KB;, KB;.
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Three homologous lines that meet the sides, say at P,, Ps,
P; respectively, make equal angles with them. If three such
lines are concurrent, say at a point U, then A4,, P, P, U are
on a circle; and this circle passes through the center of simili-
tude C; (83). Hence

Fia. 105

X PUC, = X P3A\Cy; similarly, X CoUP; = % C3A4:P;
Adding, and remembering that C;, Cz, Cs are on the respective
symmedians,

X CoUC, = % CyA,5,CiA, = X KCy, KC, = X C.KCy
and we see that C,, C3, K, U are concyclic; but the first three

are on the Brocard circle, and therefore the first part of the
theorem is Proved. Let UP, meet this circle again at Q,, then

25. UQlK = ZS_ UCgK = ZS. UCQAE = 4 UPgAz = ZS. UPIAg
so that Q,K is parallel to 434, and Q, coincides with B,.

509. Theorem. Conversely, the lines connecting any point

of the Brocard circle with the vertices of the first Brocard

triangle are homologous.

For if B\U, B,U, B,U, through a point U of the Brocard
circle, meet the sides at P,, Ps, P;, we see easily that they
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make equal angles with the sides, and that therefore triangles
BlolPl, BgOng, BsOsP.s are shnilar.

Corollary. Three homologous lines through the points
B,, B,, B;, meet on the Brocard circle.

510. Theorem. The pedal triangle of any point on the

Brocard circle has the Brocard angle w. (Cf. 498.)

For in the above discussion, P,P.P; is a Miquel triangle
of U; hence the result by 476.

We consider next three homologous lines in general.

511. Theorem. If a itriangle is formed by three homol-
ogous lines, its symmedians pass through the verlices of the
second, Brocard triangle and meet at a point on the Brocard
circle; the center of similitude of the triangle with the given
triangle is also on the Brocard circle.

For through homologous points Py, P,, P; on AsA;, AzA,,
and A,4; respectively, let three homologous lines I, I, I3 be
drawn, meeting at L,, L;, L. (We recognize that these
points are not generally homologous.) Obviously 4,, Ps, Ps,
L,, C, are concyelic;

% P3A,Cy = X P3L,C,, that is, X AsA(K = X L,L,Cy

But triangles A,4245 and L.L;L; are similar; if U denotes
the symmedian point of the latter,
4 AQAIK = 4IQL1U
Hence L,, C;, U are collinear, and C is on the symmedian
L,U. Since LyL;L; is similar to 4;424;,
4 LlULg = 4 AIKAg, 4 CIU02 b 4 CpKCg,

and U is on the circle C,C2K. Finally, the center of simili-
tude lies on a circle through homologous points U, K and the
point of intersection C; of homologous lines 4,KC,, L, UC;;
this is the Brocard circle.
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Corollary. The center of similitude of any two triangles
whose sides are homologous lies on the Brocard circle.

512. We next investigate triads of homologous points that
are collinear. We have already seen that such points are
collinear with the median point.

Theorem. Three homologous collinear points lie respectively

on the circles through M and two of the vertices of the second
Brocard triangle (the circles of McCay, cf. 485).

The point C, is a center of similitude, therefore if Py, Ps, P3
are homologous, triangle C; Ps P; is similar to the fixed triangle
C,B3B;. Hence if P, P;P; passes through M (507),

LC1P2M = A_ CIPQPs = 4018283 = 4010383 = ﬁ_ C[CaM
(465) so that P,, Cy, C3, M are concyclic.

513. Theorem. Conversely every line through M cuts the
circles of McCay wn homologous points.

If a point moves on a McCay circle, the homologous points
trace the other McCay circles so as to be collinear with M, and
}Tf?1+ MP2+MP3= 0. Ona tangent to a McCaycirde



THE McCAY CIRCLES 307

at M, the other circles cut equal chords. If MCy culs the
McCay circle MC:Cs at Cy, then MCy' = 2C1M; Cy is the
point which, referred to the figure on AsAj, corresponds to the
self-homologous point Cy of the other two figures. Triangle
C 1’02'03’ 8 hmnoﬂzetzc to Clczca.
514. Theorem. If the lines connecling the vertices A1 A4z
to three homologous points PP, P; are concurrent, then either
Py, P,, P; are on the perpendicular bisectors of the sides
(857) or else they are on the respective Neuberg circles (480)
and the conneclors are parallel.
Unfortunately the proof of this excellent theorem is long
and involved;* as it is in no sense instructive, we omit it.
The converse theorem leads to the following properties of
the MeCay circles.
515. Theorem. If parallel lines are drawn through the ver-
tices they meet the respective Neuberg circles in homologous
poinds.
Theorem. A linethrough M, parallel to the connectors Ay Py,
A2 Ps, A3Ps;, passes through the median points of the homol-
ogous trumgles AzAs.Pl, A;;Ang, AlAgPs. That ?:8, the I()Ci
of these median points are the respective circles of McCay.
For a line through M, parallel to 4,P,, trisects ,0,, which
is a median of triangle 4243 P;.
Corollary. The mid-point of the side A;As is the external
center of similitude for the opposite Neuberg circle and McCay
circle, the ratio being 3/1. The center Y; of the McCay
circle MCoCs is on 00,

0.y, =1

01Y1 = 6 col w
and the radius is r=%‘—‘Vcot w— 3.
The radius of the McCay circle is the mean proportional
between Y10y and Y By. The vertices of the D-triangle (477)

lie on the respective McCay circles.
* See Emmerich, Lc., §167.
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516. We now turn to the more general problem of the
mutual relationships of three directly similar figures in a
plane. We have seen in Chapter 1I that two similar figures
determine a unique center of similitude, or self-homologous
point; and in the first part of this chapter we have discussed
three similar figures having three sides of a triangle as homol-
ogous bases. We find that many of the theorems apply with
some modification to the more general case.*

Let us first recall the method of determining the self-
corresponding point of two figures; if two homologous seg-
ments MN, M’N’ are chosen as base lines, and these lines
meet at X, then the second intersection C of circles MM'X
and NN'X is the center of similitude. Moreover, if any
lines MP, M'P meet at P on the circle MM’C, they are
homologous; if CH and CH’ are the perpendiculars from C
to these lines, the figure CHPH'’ is of fixed form.

Considering now the case of three figures, we may think of
them as determined by a set of homologous segments or base-
lines, MN;, MoNa2, M3N;. To avoid troublesome limiting
cases, we shall assume that none of these are parallel, that no
two of the six points coincide, and that the three centers of
similitude are not collinear. We may also require that the
lines MN;, MsN2, M3N; are not concurrent, but form a
triangle L;L.L;. We denote the center of similitude of II and
III by C;, or sometimes, to emphasize that it is self-homol-
ogous in these figures, by Cas; similarly the other centers of
similitude are C; and Cj, or C3; and Cy2. The circle C,C:Cj; is
called the circle of similitude. In triangle L,L,Ls, denote the
Miquel point of M;M.M; by M, that of N;N2Ns by N.
Then, for instance, L,, Ms, Mg, C;, M Le on one circle, and
L, N3, N3, Cy, N on another circle.

617. Theorem. The circle of similitude passes through the

* Cf. Simon, L., pp. 171-172.
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points M and N. The lines L,Cy, L:Cs, LsCs are concurrent
on the circle of similitude.

For let L:C; meet L;C; at U, then
% CoMCs= % CoM, LoCo+ X LyCs, LsCy+ % LyCs, MCy
= X MCsLz:+ X L;CsM+ % CoUCs
= X MM\L,+ X L:M,M+ X CUC
= X C.UC;
Similarly, X% CoNCs= % C:UCs

s M, N, Lsg
Fic. 107

Hence the circle through C;, C3, and M passes also through
U and N, and therefore through C, as well.

518. Theorem. The triangle of any three homologous lines
s in perspective with the triangle of similitude, and the locus
of the center of perspective is the circle of similitude. The
distances from the center of perspective U to the homologous
lines are proportional to the scales of the figures. (Cf. 511.)

If lines UL,y UL;, UL; are divided proportionally at
L/, Ly, Ly, then L/Ly, L Ly, L/'Ly are paraliel to
LyLs, Lsla, LI, respectively, and homologous. In par-
ticular, lines through U, parallel to the respective base-lines,
are homologous. Conversely, if three homologous lines are
concurrent, their common point lies on the circle of similitude.
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519. Theorem. Three concurrent homologous lines pass
respectively through three fized points on the circle of simili-
tude, called the invariable poinis.

Let XP;, XP3 homologous lines of II and III, whose
intersection X is on the circle of similitude, meet that circle
again at T and T3. Then arcs C,7 and C,7’s are constant in
magnitude and direction, and T and T are fixed points.
Similarly X;P, passes through a fixed point 7).

Corollary. The invariable poinis are homologous, and their

triangle is inversely similar fo any triangle whose sides are

homologous lines (461). Any set of lines joining the in-
variable points to a point of the circle of similitude are
homologous.

620. The triangle of similitude and the invariable triangle

are in perspective al a point Q (465).

For let us write Co; instead of C,, to remind ourselves that
it is self~-homologous in II and III; and let the homologous
point in I be Cy’. Let T2C2 meet T3C; at Q, then C,’ lies on
the circle C:C3Q. For

% C.Cy'Cy= X CoCY Ty + % T1C/'Cs
= X ColosTs+ % T2C2:C
= % CoT2Ts+ % T2T5C3
= X CoT2, T3Cs= % C2QC;
Also, Cy’ and @ lie on the line C237T;. For
X C3TiCy = X C3T3Co3 = X. C3T1Cog
% C3C/Q= X% C3CQ = X CsCoTo= % CsCo3 T2 = X C3C1' T

The intersection of the line CQTy with the circle QCoCs s
the point Cy' which corresponds to Ces (513).

521. Theorem. Given two triads of mon-concurrent homol-
ogous lines, forming similar triangles; their respective cenfers
of perspeclive are homologous with respect to these triangles,
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and their center of similitude lies on the circle of similitude

(512).

622. Theorem. If Py, Po, P; are homologous poinis in the

stmilar figures, the circles PiCoCs, PyCiCh, PsCiC, are con-

current at a point P.

For we saw in 516 (end) that circles PzPsCl, PJ’;Cg, Plpoa
are concurrent; hence the result, by 188 e.

Theorem.
X CoQCs = % Py P1P3+ X CoPyCh
523. Theorem. If homologous poinis move tn such fashion

that X. P, PPy is constantly equal to a given angle a, each lies
on a fized circle; the locus for Py is that circle through C» and

Cs for which

X CoPC3+ a= X CoQC3
while Py and Pj lie on the homologous circles.  In particular,
the loci of collinear homologous points are the circles CoCiQ,
CC1Q, C1CQ.
Theorem. Awny line through three homologous points passes
also through Q.

For ZS. CsQIJI = 4 CsC{Pl = 4 CsCle = 4— CsQ.Pz

6524, Theorem. There is a single triad of homologous points
which are the vertices of a triangle similar to a given triangle.
Let it be required to find a triangle of homologous points
PP, P;, similar to a given triangle V1V:V3;. The locus of
each vertex, when one angle, say P,P,P;, equals the given
angle VoV Vs, is a circle. If now a second angle is assigned,
we have a second triad of locus circles; and it is easily seen
that these meet in one set of homologous points. A different
and somewhat longer proof is needed to establish the analo-
gous theorem in the special case that Vy, Vs, V; are collinear:
626. Theorem. There is a single triad of homologous points
whose distances from one another are as the distances of any
three given collinear points.
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528. Exercises. a. Find the locus described by each of three
homologous points in three similar figures, if the ratio of
P\P; to PPy is constant; if the area of triangle PyP;Ps is
constant; if the length of P2P; ts constant.

b. Determine how far the fundamental elements of a system
of three similar figures may be taken arbitrarily. For in-
stance, show that #f two triangles are in perspective and are in-
scribed in the same circle, either may be taken as the triangle
of similitude, and the other as the invariable triangle, of such
a system.

c. Establish completely the parallelism between the general
theory here discussed and the special theory in the first part of
the chapter. The first Brocard triangle is the invariable tri-
angle, the second the triangle of similitude, the circles of McCay
the eircles QCoCs, etc.; and so on.

d. In the general case, the condition for the existence of a
triangle A1A2As on which the shmilar figures are based, is
that the point Q be the median point of the invariable triangle.

Exercise. In this chapter, proofs are to be furnished by
the reader in the following sections: 507, 509, 513, (614),
(615), 518, 519, 521-523, (625), (626).



INDEX OF NOTATION FOR
THE TRIANGLE

Tue following symbols are used consistently throughout the
book. Unfortunately it is necessary to use some symbols in
different parts of the work with different meanings; the fol-
lowing includes all standardized symbols.

It is understood that generally the letter designating any
point, when written with a subscript, denotes the foot of the
perpendicular from that point on the designated side of the
triangle. (Thus K, K;, K3 are the vertices of the pedal tri-
angle of the point K.) But this is not an invariable conven-
tion; the subscripts are frequently used in other senses (as in
the case of N, N,, N, Ny).

SymsoL MeaNING Rnl;;(;:rcn
Ay, A2, As vertices of given triangle 8
ay, @z, a3 lengths of sides 8
aj, Gz, a3 its angles 8
By, B,, Bs  vertices of first Brocard triangle 278
Cy, C2, Cs  vertices of second Brocard triangle 279
Dy, Dy, Dy  vertices of an associated triangle 284
F mid-point of OH 195
H orthocenter 9
H,, H,, H; feet of the altitudes 9
hy, ko, ks lengths of the altitudes 9
I incenter 9
J J, J" excenters 182
K symmedian point 213
Ly, L3, Ly centers of circles of Apollonius 204
M median point 9
my, ma, maz lengths of medians 9
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Pace

SrueoL MEeaNING REFERENCE
N Nagel point 225
Ny, Nj, N3 centers of circles of Neuberg 287
0 circumeenter 8
0Oy, Oy, O3  mid-points of sides 8
R radius of circumcircle 8
R, B’ isogonic centers 218
S, 8 isodynamic points 295
S Steiner point 281
8 half perimeter 9
T Tarry point 282
Z mid-point of OK 273
A area of given triangle 9
P radius of incircle 9
P1, P2, P3 radii of excireles 182
o Brocard points 264

w Brocard angle 264
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Affolter, 77
Algebra of directed lines, 2
Algebraic equations and formulas,
188 ff.
Alison, 251
Altitudes, 9, 148, 162 ff., 189
Altshiller-Court, vii
Angle bisectors, 9, 148, 149, 182 fi.,
255

Angles, directed, 11-15
Anharmonic ratio, 60
Anning, 244
Antihomologous points, 19-21, 41
Antiparallels, 172, 215, 271
Antipedal triangles, 225
Antisimilitude, circles of, 96 ff.
Apollonius, circles of, 40, 294

problem of, 117-21

theorem of, 70
Arbelos, 116
Archibald, vi, ix
Archimedes, 116

Baker, H. F., 122
Baker, Marcus, 189
Barrow, 157
Beard, 211
Bisectors. Sec Angle bisectors
Bodenmiller, 172
Brianchon, theorem of, 237
Bricard, 245
Brocard angle, 266
as related to angles of tri-
angle, 288, 293
axis, 272 ff., 205
circle, 278, 297, 300, 303
first triangle, 277, 303
geometry of the quadrangle, 301
second triangle, 279, 296, 302 ff.
points, 264 ff.
Brown, ix

Candy, 78

Casey, John, vi, 86, 97, 113, 122, 263
theorem on powers, 86, 88
criterion for circles tangent to a

circle, 121 ff.

Center of gravity, 174, 248, 249

Center of similitude, homothetic, 18
of directly similar fizures, 23, 302
of three circles, 151
of two cireles, 19, 197

Ceva, 148
theorem of, 14547

Circle, circles. See also Antisimili-

tude, Apollonius, Brocard, Circum-
seribed, Coaxal, Cosine, Escribed,
Fuhrmann, Hart, Inscribed, Le-
moine, McCay, Miquel, Neuberg,
Nine-Point, Pedal, Schoute, Simili-
tude, Spieker, Taylor, Triplicate
ratio, Tucker

Cireles, generalization of term, 8
intersecting at given angles,

128 ff.
orthogonal, 33
orthogonal to a given circle, 42
orthogonal to two circles, 37
tangent, externally or internally,
110
tangent to two, three or four
circles, 111 ff.
three equal, through a point, 75
Circumcircle and circumeenter, 8, 9,
161 fi.
as related to incenter, 186
Coaxal circles, definition and prop-
erties, 34 fi.
systems, conjugate, 37, 199, 279
Coaxaloid circles, 276
Collinear points on sides of triangle,
147
Concurrent lines through vertices of
triangle, 145
Congruent figures, 18
Conjugate points and lines, 102
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Conjugate coaxal systems, 37
Coolidge, vii, ix, 115, 124, 130
Cosine circle, 271

Cosines, law of, 11

Cosymmedian triangles, 218, 253
Crelle, 263

Cross ratio, 60

Cydlic quadrangle. See Quadrangle

D-triangle, 285, 296, 307
Desargues, theorem of, 230
Directed angles, 11 ff.
Directly similar figures, 18
d’Ocagne, 250

Double ratio, 60
Drawings, 10

Droz-Farny, 256

Duran Loriga, 260

Durell, vii, 152

Eckhardt, 301

Emmerich, vii, 263

Equibrocardal triangles, 282 ff., 257 ff.

Equilatera) triangles on sides of given
triangle, 218

Equilateral triangles projected into
equibrocardal triangles, 290 ff.

Escribed circles. See Excircles

Euclid (I 43), 61

Euler, 3, 76, 165, 196

Euler line, 165, 199, 259

Excenters and excircles, 182 ff., 225

Exmedians and exmedian points, 175,
176

Expansion of figure, 21

Exsymmedians and exsymmedian
points, 214

External center of similitude f two
circles, 19

Fermat, 76, 221
Feuerbach, 190, 196, 200, 204, 277
theorem of, 127, 200 ff., 244,
246
Fontené, 244, 245
Forces treated geometrically, 251
Formulas for the triangle, 11, 189 ff.,
266 ff.
transformation of, 191
Four circles touching a circle: Casey’s
criterion, 122 fi.
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Fuortes, 76

Fuhrmann, vii, 65, 81, 175, 228, 254,
261, 263

Fuhrmann triangle and circle, 228, 300

Gallatly, vii, 157, 225, 247, 209
Gauss-Bodenmiller, 172
Gergonne, 120

point of, 184, 216
Gob, 259, 301
Grebe point, 213
Griffiths, 245

Hagge, 181, 300
Happach, 240
Harmonic set, 60, 149
quadrangle, 100, 301
Hart, theorem of, 127
Harvey, 205
Hayashi, 193
Hexagon inscribed in circle, 235
Homologous points, 18
of two circles, 19
Homothetic center, 18
centers of two circles, 19, 41
figures, 18

Incenter and excenters, 182 ff., 249
of four points on a circle, 255
of complete quadrilateral, 255
Incircle and incenter, 9, 182 ff., 200 fi.,
225

Infinity, points at, 5

line at, 7

in inversion geometry, 45
Inscribed circle. See Incircle
Internal center of similitude of two

circles, 19
Invariable triangle, 310
Inversely aimilar figures, 18, 26
Inversion, definition and leading
properties, 43 ff.

constructions, 46, 47

further properties, 96 ff., 100 ff.

in space, 106 ff.

applications of, passim
Inversor of Peaucellier, 48, 51
Isodynamic pointa, 222, 295 ff.
Isogonal lines, 153, 224

conjugates, 154 ff., 213, 243
Isogonic centers, 218
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Isosceles similar triangles on sides of
given triangle, 223
Isotomic conjugates, 157, 278

Jacobi, 263
Japanese theorems, 192, 193

Lachlan, vii, 26, 97, 102, 122, 130, 157,
237

Lange, 196
Laws of sines and cosines, 11
Lemoine, 192, 263, 300
circle, 273, 278
circle, second, 271
line, 294, 297
point, 213
Locus of center of circle orthogonal to
two given circles, 34
of center of similitude of two
circles, 25
of point having equal power with
regard to two circles, 31
of a point whence a given seg-
ment subtends a given angle,
38
of point whose distances from
given points are in given ratio,

38

of point whose pedal triangle is
isosceles, 295

of point whose pedal triangle has
a given Brocard angle, 208

of vertex of triangle on given
base and with given Brocard
wslen 287

Mackay, J. 8., vii, 78, 116, 137, 138,
186, 189, 192, 196, 213, 215, 222
Mannheim, 143
Maps, 24
McCay, 245, 263
circles, 290, 306
McClelland, vii, 82, 97
Medians and median point, 9, 148,
161, 173 fi., 223, 225
Median point as center of gravity, 174,
249
of first Brocard triangle. 279
of triangle of homologous points,
223, 303
Median triangle, 282, 283
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Menelaus, theorem of, 147, 148

Mention, 203, 25656

Minima, theorems concerning, 169,
175, 216, 217, 221

Minimum chord, 29

Miquel, theorem of, 131 ff.

Miquel point, triangles, circles, 131 ff.

Morley, theorem of, 253

Muir, 137

Nagel point, 149, 184, 225 fi.
Neuberg, 247, 263, 301
Neuberg circles, 287, 307
Nine point circle, 165, 195 ff., 200 ff.
Notation for triangle, 8

Index of, 313
Null-circle, 8, 30

Orthocenter of triangle, 9, 98, 161 ff.,
223

Orthocenters of complete quadrilat-
eral, 172, 209
of cyclic quadrangle, 169, 251

Orthocentric system, 165 ff., 182, 197
center of gravity, 249
polar circles, 177

Orthogonal circles, 33, 163, 167
circles, four mutually, 178
circle, common to three circles,

34
Orthopole, 247

P-circle, 226
Pappus, theorems of, 117, 237
Parallel projection of equilateral
triangles, 290
Parallelogram law, 251
Parallels, mseting at infinity, 6
Paralogic triangles, 258
Pascal, theorem of, 235
Peaucellier inversor, 48, 51
Pedal circle, 135 ff.
of Brocard points, 270
of isogonal conjugate points, 155
Pedal circles in complete quadrangle,
240 fi.
Pedal line, 137, 138 fi.
Pedal triangles, 135, 136, 139
area of, 139
of orthocenter and circumcenter,
162, 163, 197
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Pedal triangles of Broeard points
269
Perimeter of triangle,
gravity of, 249
Perspective, 230 ff.
Brocard triangles, 280
double and triple, 234
Philip, 254
Poincaré, 42
Points at infinity, 5
Points whose pedal triangles have
given form, 136, 297
Polar axis of triangle, 199
Polar circle of triangle, 176 ff.
Polar of symmedian point, 294
of point with regard to circle,
100, 104
reciprocation, 237
trilinear, 150
Poles and polars, 100 ff.
Poncelet, 138, 196
theorems of, 91
Power of point as to circle, 28 ff.
of a triangle, 260
Prerequisites, 1
Problem of Apollonius, 117 ff.
Projective geometry, 60, 230
Ptolemy, theorem of, 62, 63
corollaries, 64 ff.
generalizations, 65, 89, 122

center of

Quadrangles and quadrilaterals, sim-
ple and complete, 61
Quadrangle inscribed in circle, 81 ff.,
251 fi.
Quadrangle, harmonic, 100, 301
Quadrilateral, complete, 61
bisectors of angles, 255
mid-points of diagonals collinear,
62, 162, 172
Miquel point and Simson line,
139
perspective properties, 234
polar circles coaxal, 179

Radical axis, 31 ff.
construction, 33
relation to homothetic centers, 41
Radical center, 32
as center of common orthogonal
circle, 34
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Radii of in- and ex-centers, formulas
connecting, 189

Ratio of distances from point to three
given points, 66 ff., 143

Ratio of line-scgments, 4, 7

on side of triangle, 59

Reflection, 21

Resultant of vectors, 251

HRotation, 21

Russell, vii, 169

Sanjana, 212
Schoute, circles of, 297
theorem of, 298, 305
Schroeder, 189
Schroter, 261
Self-conjugate triangle, 105, 177
Self-homologous point, 23
Bervois, 137
Shoemaker's Knife, 116
Similar figures, 16 ff., 302 ff.
directly, 21 ff.
homothetic, 17 ff.
inversely, 26
three, 302 ff.
Similitude. See Centers and Circle of
similitude
Simon, vi, 76, 116, 120
Simson, 76, 137
Simson lines of a triangle, 137 ff.,
206 fi., 211
of a cyclic quadrangle, 209, 243,
251

Simson line of a complete quadri-
lateral, 139, 209
Simson line, generalization, 209
Sines, law of, 11
Soons, 247
Spencer, Herbert, 151
Spieker circle, 226, 249
Steiner, 200, 221, 255, 256, 259
chain of circles, 113 ff.
point, 281, 288
Stereographic projection, 106
Sylvester, 251
Symmedians and symmedian point,
213 ff., 268 fi., 271 ff., 303 ff.
Symmetrical congruence, 18

Tangency of circles, a condition for,
89
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Tangency of circles, external and in-
ternal, 110
like and unlike, 111
Tangents to circles, direct and trans-
verse, 19, 111
Tangent circles. See Circles
Tangents to circumecircle of triangle,
214
Tarry point, 282, 288
Taylor, 254
Taylor circle, 277
Third, 277, 299, 300
Torricelli, 221
Transformation of theorems, 191
Translation, 21
Triangle, 8 ff.
inseribed in given triangle, divid-
ing its sides in equal ratios, 80,
175, 250, 284
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inscribed in another and similar
to it, 276, 297
inscribed in one circle and cir-
cumscribed to another, 187
self-conjugate, 105
Triplicate ratio circle, 274
Trisectors of angles of triangle, 253
Tucker, 263, 301
Tucker circles, 274 ff., 300

Vectors, 251
Viviani, 221

Wallace, 138
Wallace line, 138
Weill, 245, 252

Young, ix



