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PROBLEMS

1. DIVISIBILITY OF NUMBERS

1. Find all positive integers n such that n*+1 is divisible by n--1.
2. Find all integers x # 3 such that x—3|x3—3.

3. Prove that there exists infinitely many positive integers n such that
4n*+1 is divisible both by 5 and 13.

4. Prove that for positive integer n we have 169|33"+3—26n—27.
Prove that 1922**2 43 for k=0, 1,2, ...

Prove the theorem, due to Kraitchik, asserting that 13|2™4-3,
Prove that 11:31:61|20"5—1.

Prove that for positive integer m and a > 1 we have

© N o »

a"—1
(-—a—_:—l-—, a—-l) = (a—l, M).

9. Prove that for every positive integer # the number 3(1°+25+ ...+n°)
is divisible by 13++234- ... 4+-n3.

10. Find all integers » > 1 such that 1"4-2"4 ... 4(n—1)" is divisible
by n.

11. For positive integer n, find which of the two numbers g, = 22*+!—
—2"+141 and b, = 2¥+14-2"*+1.11 is divisible by 5 and which is not.

12. Prove that for every positive integer » there exists a positive integer

x such that each of the terms of the infinite sequencé x+1, x*+-1, x* 4 1‘,
is divisible by n.

13. Prove that there exists infinitely many positive integers n such that

1
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for everj( even x none of the terms of the sequence x*+1, x*"+1, el +1, ...
is divisible by n.

14. Prove that for positive integer n we have n?|(n+1)"—1.
15. Prove that for positive integer n we have (2"—1)?[2@"-D"—1,

16. Prove that there exist infinitely many positive integers n such that
n|2"+1; find all such prime numbers.

17*. Prove that for every positive integer a > 1 there exist infinitely many
positive integers n such that n|a"+1.

18*. Prove that there exist infinitely many positive integers »n such that
n|2"+-2.

19. Find all positive integers a for which a'®+1 is divisible by 10.

20*. Prove that there are no integers n > 1 for which n|2"—1. "

20a. Prove that there exist infinitely many positive integers »n such that
n|2"4-1. ‘

21. Find all odd » such that n|3"4-1.

22. Find all positive integers n for which 3|n2"+1.

23. Prove that for every odd prime p there exist infinitely many positive
integers n such that p|n2"+1.

24. Prove that for every positive integer n there exist positive integers
x > n and y such that x¥|)” but x # y.

25*%, Prove that for odd n we have n|2"—1.

26. Prove that the infinite sequence 2"—3 (n = 2, 3, 4, ...) contains in-
finitely many terms divisible by 5 and infinitely many terms divisible by 13,
but contains no term divisible by 5-13.

27*. Find two least composite numbers n such that »|2"—2 and
n|3"—3,

28*. Find the least positive integer n such that n|2"—2 but n } 3"—3,

29. Find the least integer n such that n  2"—2 but n|3"—3.

30. For every positive integer a, find a composite number » such that
nla"—a.

* An asterisk attached to the number of a problem indicates that it is more dif-
ficult,
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31. Prove that if for some integers a, b, ¢ we have 9|a*+b%+c3, then at
least one of the numbers a, b, ¢ is divisible by 3.

32. Prove that if for positive integers ax (k= 1,2,3,4,5 we have
9)a}+a3+a3-+ai+a3, then 3|a,a,a3a4as.

33. Prove that if x, y, z are positive integers such that (x,y) =1 and
x2+y* = 2% then 7|xy; show that the condition (x, y) = 1 is necessary.

34. Prove that if for integers a and b we have 7|a*+ 5%, then 7|a and 7|b.

35%. Prove that there exist infinitely many pairs of positive integers x, y
such that
x(x+Dlyp+1), xky, x+1ky, xky+l,  x+14fy+1,
and find the least such pair.

36. For every positive integer s < 25 and for s = 100 find the least pos-
itive integer n, with the sum of digits (in decimal system) equal to s, which
is divisible by s. .

37*. Prove that for cvery‘positive integer s there exists a positive integer
n with the sum of digits (in decimal system) equal to s which is divisible by s.
38*. Prove that:
(a) every positive integer has at least as many divisors of the form
4k+-1 as divisors of the form 4k+3;

(b) there exist infinitely many positive integers which have as many
divisors of the form 4k-+-1 as divisors of the form 4k--3;

(c) there exist infinitely many positive integers which have more
divisors of the form 4k-+1 than divisors of the form 4k--3.

39. Prove that if g, b, ¢ are any integers, and » is an integer > 3, then
there exists an integer k such that none of the numbers k+a, k+b, k+cis
divisible by n.

40. Prove that for F, = 22"+1 we have F,]2™"—2 (n= 1,2, ...).

Il. RELATIVELY PRIME NUMBERS

41.  Prove that for every integer k the numbers 2k+1 and 9k-+-4 are rel-
atively prime, and for numbers 2k—1 and 9%--4 find their greatest common
divisor as a function of k.
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42. Prove that there exists an increasing infinite sequence of triangular

numbers (i.e. numbers of the form t, = 3n(n+1), n = 1,2, ...) such that
every two of them are relatively prime.

43. Prove that there exists an increasing infinite sequence of tetrahedral

numbers (i.e. numbers of the form T, = -61- n(n+1)(n+2), n=1,2,...), such
that every two of them are relatively prime.

44. Prove that if g and b are different integers, then there exist infinitely
many positive integers » such that a-+n and b+n are relatively prime.

45*, Prove that if a, b, ¢ are three different integers, then there exist in-
finitely many positive integers n such that a+n, b+n, c+n are pairwise rel-
atively prime.

46. Give an example of four different positive integers a, b, ¢, d such
that there exists no positive integer n for which a+n, b+n, c+n, and d+n
are pairwise relatively prime.

47. Prove that every integer > 6 can be represented as a sum of two
integers > 1 which are relatively prime.

48*. Prove that every integer > 17 can be represented as a sum of three
integers > 1 which are pairwise relatively prime, and show that 17 does not
have this property.

49*. Prove that for every positive integer m every even number 2k can be
represented as a difference of two positive integers relatively prime to m.

50*. Prove that Fibonacci’s sequence (defined by conditions % = u,
=1, U,,2 = u,+u,,;, n=1,2,...) contains an infinite increasing sequence
such that every two terms of this sequence are relatively prime.

51*%. Prove that (n,22"+1)=1forn=1,2, ....

51a. Prove that there exist infinitely many positive integers n such that
(n,2"—1) > 1, and find the least of them.

Ill. ARITHMETIC PROGRESSIONS

52. Prove that there exist arbitrarily long arithmetic progressions formed
of different positive integers such that every two terms of these progressions
are relatively prime.
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53. Prove that for every positive integer k the set of all positive integers
n whose number of positive integer divisors is divisible by k contains an
infinite arithmetic progression.

54. Prove that there exist infinitely many triplets of positive integers x, y, z
for which the numbers x(x+1), y(y+1), z(z+1) form an increasing arith-
metic progression.

55. Find all rectangular triangles with integer sides forming an arithmetic
progression.

56. Find an increasing arithmetic progression with the least possible
difference, formed of positive integers and containing no triangular number.

57. Give a necessary and sufficient condition for an arithmetic progression
ak+b (k=0,1,2,..) with positive integer a and b to contain infinitely
many squares of integers. -

58*. Prove that there exist arbitrarily long arithmetic progressions formed
of different positive integers, whose terms are powers of positive integers
with integer exponents > 1.

59. Prove that there is no infinite arithmetic progression formed of
different positive integers such that each term is a power of a positive integer
with an integer exponent > 1.

60. Prove that there are no four consecutive positive integers such that
each of them is a power of a positive integer with an integer exponent > 1.

61. Prove by clementary means that each increasing arithmetic pro-
gression of positive integers contains an arbitrarily long sequence of consecu-
tive terms which are composite numbers.

62*%. Prove by elementary means that if @ and b are relatively prime
positive integers, then for every positive integer m the arithmetic progression
ak+b (k=0,1,2,...) contains infinitely many terms relatively prime
to m.

63. Prove that for every positive integer s every increasing arithmetic
progression of positive integers contains terms with arbitrary first s digits
(in decimal system).

64. Find all increasing arithmetic progressions formed of three terms
of the Fibonacci sequence (see Problem 50), and prove that there are no
increasing arithmetic progressions formed of four terms of this sequence.



6 250 PROBLEMS IN NUMBER THEORY

65*. 'Find an increasing arithmetic progression with the least differ-
ence formed of integers and containing no term of the Fibonacci sequence.

66*. Find a progression ak+b (k =0, 1, 2, ...), with positive integers a
and b such that (a, b) = 1, which does not contain any term of Fibonacci
sequence.

67. Prove that the arithmetic progression ak+b (k =0,1,2,...) with
positive integers @ and b such that (a, b) = 1 contains infinitely many terms
pairwise relatively prime.

68*. Prove that in each arithmetic progression ak+b (k=0,1,2,...)
with positive integers a and b there exist infinitely many terms with the same
prime divisors.

69. From the theorem of Lejeune-Dirichlet, asserting that each arithmetic
progression ak—+b (k =0, 1, 2, ...) with relatively prime positive integers a
and b contains infinitely many primes, deduce that for every such progression
and every positive integer s there exist infinitely many terms which are
products of s distinct primes.

70. Find all arithmetic progressions with difference 10 formed of more
than two primes.

71. Find all arithmetic progressions with difference 100 formed of more
than two primes.

72*. Find an increasing arithmetic progression with ten terms, formed
of primes, with the least possible last term.

73. Give an example of an infinite increasing arithmetic progression
formed of positive integers such that no term of this progression can be
represented as a sum or a difference of two primes.

IV. PRIME AND COMPOSITE NUMBERS

74. Prove that for »every even n > 6 there exist primes p and g such
that (n—p,n—q) = 1.

75. Find all primes which can be represented both as sums and as
differences of two primes.

76. Find three least positive integers » such that there are no primes
between n and n+-10, and three least positive integers m such that there
are no primes between 10m and 10(m--1).
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77. Prove that every prime of the form 4k+1 is a hypotenuse of a rectan-
gular triangle with integer sides.

78. Find four solutions of the equation p>+1 = g*>+r* with primes p,
q, and r.

79. Prove that the equation p>+¢* = r*4s>+t% has no solution with
primes p, q,r, s, t.

80*. Find all prime solutions p, g, r of the equation p(p+1)+g(g+1)
= r(r+1). |

81*. Find all primes p, ¢, and r such that the numbers p(p+1), g(g+1),
r(r+1) form an increasing arithmetic progression.

82. Find all positive integers n such that each of the numbers n+1,
n+3, n+7, n+9, n+13, and n+15 is a prime.

83. Find five primes which are sums of two fourth powers of integers.

84. Prove that there exist infinitely many pairs of consecutive primes
which are not twin primes.

85. Using the theorem of Lejeune-Dirichlet on arithmetic progressions,
prove that there exist infinitely many primes which do not belong to any
pair of twin primes.

86. Find five least positive integers for which n>—1 is a product of
three different primes.

87. Find five least positive integers n for which n*+1 is a product of
three different primes, and find a positive integer n for which n?>+1 is a
product of three different odd primes.

88*. Prove that among each three consecutive integers > 7 at least
one has at least two different prime divisors.

89. Find five least positive integers n such that each of the numbers 7,
n+1,n4-2 is a product of two different primes. Prove that there are no
four consecutive positive integers with this property. Show by an example
that there exist four positive integers such that each of them has exactly
two different prime divisors.

90. Prove that the theorem asserting that there exist only finitely many
positive integers n such that both n and n+1 have only one prime divisor
is equivalent to the theorem asserting that there exist only finitely many
prime Mersenne numbers and finitely many prime Fermat numbers.
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91. Find all numbers of the form 2"—1 with positive integer n, not
exceeding million, which are products of two primes, and prove that if n
is even and >/A4, then 2"—1 is a product of at least three integers > 1.

92. Using Problem 47, prove that if p; denotes the kth prime, then
for k > 3 we have the inequality pii1+pPkss < P1P2 ... Dk-

93. For positive integer n, let g, denote the least prime which is not a
divisor of n. Using Problem 92, prove that the ratio g,/n tends to zero as n
increases to infinity.

94. Prove by elementary means that Chebyshev’s theorem (asserting
that for integer » > 1 there exists at least one prime between n and 2n)
implies that for every integer n > 4 between n and 2n there exists at least
one number which is a product of two different primes, and that for integer
> 15 between n and 2n there exists at least one number which is a product
of three different primes.

95. Prove by elementary means that the Chebyshev theorem implies that
for every positive integer s, for all sufficiently large »n, between » and 2n
there exists at least one number which is a product of s different primes.

96. Prove that the infinite sequence 1, 31, 331, 3331, ... contains
infinitely many composite numbers, and find the least of them (to solve
the second part of the problem, one can use the microfilm containing all
primes up to one hundred millions [2]).

97. Find the least positive integer n for which »n*+(n41)* is compo-
site.

98. Show that there are infinitely many composite numbers of the
form 10"4+3 (n=1,2, 3, ...).

99. Show that for integers » > 1 the number +(2**+241) is composite.
100. Prove that the infinite sequence 2°—1 (n =1, 2, ...) contains ar-

bitrarily long subsequences of consecutive terms consisting of composite
numbers. '

101. Show that the assertion that by changing only one decimal digit one
can obtain a prime out of every positive integer is false.

102. Prove that the Chebyshev theorem T stating that for every integer
n > 1 there is at least one prime between »n and 2# is equivalent to the theorem
T, asserting that for integers n > 1 the expansion of n! into prime factors



PROBLEMS 9

contains at least one prime with exponent 1. The equivalence of T and T,
means that each of these theorems implies the other.

103. Using the theorem asserting that for integers n > § between n and
2n there are at least two different primes (an elementary proof of this theorem
can be found in W. Sierpiniski [37, p. 137, Theorem 7]), prove that if » is an
integer > 10, then in the expansion of n! into prime factors there are at
least two different primes appearing with exponent 1.

104. Using the theorem of Lejeune-Dirichlet on arithmetic progression,
prove that for every positive integer n there exists a prime p such that each
of the numbers p—1 and p-+-1 has at least n different positive integer divisors.

105. Find the least prime p for which each of the numbers p—1 and
p+1 has at least three different prime divisors.

106*. Using the Lejeune-Dirichlet theorem on arithmetic progression,
prove that for every positive integer n there exist infinitely many primes p
such that each of the numbers p—1, p+1, p+2 has at least n different prime
divisors.

107. Prove that for all positive integers n and s there exist arbitrarily
long sequences of consecutive positive integers such that each of them has at
least n different prime divisors, each of these divisors appearing in at least
sth power.

108. Prove that for an odd n > 1 the numbers # and n-2 are primes if
and only if (n—1)! is not divisible by » and not divisible by n+2.

109. Using the theorem of Lejeune-Dirichlet on arithmetic progression,
prove that for every positive integer m there exists a prime whose sum of
decimal digits is > m.

110. Using the theorem of Lejeune-Dirichlet on arithmetic progression,
prove that for every positive integer m there exist primes with at least m
digits equal to zero.

111. Find all primes p such that the sum of all positive integer divisors
of p* is equal to a square of an integer.

112. For every s, with 2 < s < 10, find all primes for which the sum of
all positive integer divisors is equal to the sth power of an integer.

113. Prove the theorem of Liouville, stating that the equation (p—1)!-+
+1 = p™ has no solution with prime p > 5 and positive integer m.
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114. Prove that there exist infinitely many primes ¢ such that for some
positive integer n < g we have g|(n—1)!4-1.

115*. Prove that for every integer k 1 there exist infinitely many pos-
itive integers n such that the number 22"k is composite.

116. Prove that there exist infinitely many odd numbers £ > 0 such that
all numbers 2 +k (n =1, 2, ...) are composite.

117. Prove that all numbers 22*"*' 43, 22"+ 17 226%2 ) 43 ool0n+l
-+19, and 2%"*21 21 are composite forn=1,2, ....

118*. Prove that there exist infinitely many positive integers & such that
all numbers k - 2"4+1 (n =1, 2, ...) are composite.

119*. Using the solution of Problem 118%, prove the theorem, due to
P. Erdds, that there exist infinitely many odd k such that every number
2"-+k is composite (n = 1, 2, ...).

'120. Prove that if k is a power of 2 with positive integer exponent, then
for sufficiently large n all numbers k - 22" 41 are composite.

121. For every positive integer k < 10, find the least positive integer n
for which k - 22"+1 is composite.

122. Find all positive integers k < 10 such that every number k - 22"+ 1
(n=1,2,...) is composite.

123. Prove that for integer n > 1 the numbers 3(22"*'+ 22"+1) are all
composite. ,

124, Prove that there exist infinitely many composite numbers of the
form (22"4-1)24-22,

125*. Prove that for every integer a thh 1 < a <100 there exists at
least one positive integer n < 6 such that a*" —I—l is composite.

126. Prove by elementary means that there exist infinitely many odd
numbers which are sums of three different primes, but are not sums of less
than three primes.

127. Prove that there is no polynomial f(x) with integer coefficients such
that f(1) = 2, f(2) = 3, f(3) = 5, and show that for every integer m > 1
there exists a polynomial f(x) with rational coefficients such that f(k) = p;
fork = 1,2, ..., m, where p; denotes the kth prime.
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128*, From a particular case of the Lejeune-Dirichlet theorem, stating
that the arithmetic progression mk+1 (k = 1, 2, ...) contains, for each pos-
itive integer m, infinitely many primes, deduce that for every positive integer
n there exists a polynomial f(x) with integer coefficients such that f(1) <
< f(2) < ... < f(n) are primes. ‘

129. Give an example of a reducible polynomial f(x) (with integer coeffi-

cients) which for m different positive integer values of x would give m dif-
ferent primes.

130. Prove that if f(x) is a polynomial of degree > 0 with integer coeffi-
cients, then the congruence f(x) = 0 (mod p) is solvable for infinitely many
primes p.

131. Find all integers k > O for which the sequence k+1, k+2, ..., k+10
contains maximal number of primes.

132. Find all integers k > 0 for which the sequences k-1, k+2 k+
+100 contains maximal number of primes.

133. Find all sequences of hundred consecutive positive integers which
contain 25 primes. '

134. Find all sequences of 21 consecutive positive integers containi'ng
8 primes.

135. Find all numbers p such that all six numbers p, p+2, p+6, p+8,
p+12, and p+14 are primes. '

136. Prove that there exist infinitely many pairs of different positive
integers m and n such that (1) m and » have the same prime divisors, and
(2) m+1 and n+-1 have the same prime divisors.

V. DIOPHANTINE EQUATIONS

137. Prove by elementary means that the equation 3x*+7y*+1 = 0 has
infinitely many solutions in positive integers x, y.

138. Find all integer solutions x, y of the equation 2x*+xy—7 = 0 and
prove that this equation has infinitely many solutions in positive rationals
X, y.

139. Prove by elementary means that the equation (x—1)>+(x+1)2
= y*>+1 has infinitely many solutions in positive integers x, y.
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140. Prove that the equation x(x+1) = 4y(y+1) has no solutions in
positive integers x, y, but has infinitely many solutions in positive rationals

Xy Y.
141*. Prove that if p is a prime and # is a positive integer, then the equa-
tion x(x-+1) = p*"y(y+1) has no solutions in positive integers x, y.

142. For a given integer k, having an integer solution x, y of the equation
x*—2y* = k, find a solution in integers #, u of the equation 1*—2i4* = —k.

143. Prove that the equation x>—Dy? = 22 has, for every integer D, in-
finitely many solutions in positive integers x, y, z.

144. Prove by elementary means that if D is any integer # O, then the
equation x>— Dy? = 2? has infinitely many solutions in positive integers x, ,
z such that (x,y) = 1.

145. Prove that the equation xy+x+y = 2% has solutions in positive
integers x, y, and there exists only one solution with x < y.

146. Prove that the equation x>—2p?4-8z = 3 has no solutions in pos-
itive integers x, y, z.

147. Find all positive integer solutions x, y of the equation
y—x(x+1) (x+2) (x+3) = 1.
148. Find all rational solutions of the equation
X4yt x+y+z=1.
149. frove the theorem of Euler that the equation 4xy—x—y = z* has

no solutions in positive integers X, y, z, and prove that this equation has in-
finitely many solutions in negative integers x, y, z.

150. Prove by elementary means (without using the theory of Pell’s
equation) that if D = m?4-1, where m is a positive integer, then the equa-
tion x2+4Dy? = 1 has infinitely many solutions in positive integers x, y.

151*. Find all integer solutions x, y of the equation y? = x*+ (x+4)%.

152. For every natural number m, find all solutions of the equation
X Y 2
y + z + x "

in relatively prime positive integers x, y, z.
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153. Prove that the equation

X, y.z_,
y t z | X
has no solutions in positive integers x, y, z.

154*. Prove that the equation
SRS AR
y z x

has no solutions in positive integers x, y, z.

155. Find all solutions in positive integers x, y, z of the equation
X Xz
v + Z + X 3.

156*. Prove that for m = 1 and m = 2, the equation x*+y*+z* = mxyz
has no solutions in positive integers X, y, z, and find all solutions in positive
integers X, y, z of this equation for m = 3.

157. Prove that theorem T, asserting that there are no positive integers
x, y, z for which x/y+y/z = z/x is equivalent to theorem T, asserting that
there are no solutions in positive integers u, v, w of the equation #*+7° = w?
(in the sense that T, and T, imply easily each other).

158%. Prove that there are no positive integer solutions x, y, z, ¢ of the
equation

X y z i_
7+—;+t+x_l’

but there are infinitely many solutions of this equation in integers x, y, z, ¢
(not necessarily positive).

159*. Prove that the equation
X ry, z. t_
7 + . + 7 + it

has no solutions in positive integers x, y, z, ¢ for m = 2 and m = 3, and find
all its solutions in positive integers x, y, z, ¢t for m = 4.
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160. Find all solutions in positive integers x, y, z, t, with x < y <z < ¢,
of the equation

1 1 1 1
7+7+7+T =1.
161. Prove that for every positive integer s the equation
1 1 1
;‘l—+'x—2+ oo +;s' -

has a finite positive number of solutions in positive integers x;, x,, ..., x;.

162*. Prove that for every integer s > 2 the equation

1 1 1
}:"‘l—'x—z'—*‘ vee +x—= 1

s

has a solution x;, X, ..., X5 in increasing positive integers. Show that if /,
denotes the number of such solutions, then /;.; > I, fors = 3,4, ....

163. Prove that if s is a positive integer # 2, then the equation

1 1 1

s

has a solution in triangular numbers (i.e. numbers of the form ¢, = }n(n-1)).

164. Find all solutions in positive integers x, y, z, ¢ of the equation

2+ + +

165. Find all positive integers s for which the equation

f+ﬁ+ +f

has at least one solution x;, x;, ..., X, in positive integers.

166. Represent the number % as a sum of reciprocals of a finite number
of squares of an increasing sequence of positive integers.
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167*. Prove that for every positive integer m, for all sufficiently large s,
the equation

x,,+x2+ +—=

has at least one solution in positive integers x,, x,, ..., X;.

168. Prove that for every positive integer s the equation

l

+++ch

-
)~

has infinitely many solutions in positive integers x;, Xz, ..., X, Xs41.

169. Prove that for every integer s = 3 the equation

1 1 1 1
x—%'l‘;g-*- h +x§ - x3+1

has infinitely many solutions in positive integers x;, Xa, ..., Xs, Xs11-

170*. Find all integer solutions of the system of equations
x+y+z=3 and x*+y*+22=3.

. Investigate, by elementary means, for which positive integers » the
equation 3x+5y = n has at least one solution x, y in positive integers, and
prove that the number of such solutions increases to infinity with #.

172. Find all solutions in positive integers n, x, y, z of the equation
n*+n’ = n®.

173. Prove that for every system of positive integers m, n there exists
a linear equation ax-+by = c, where a, b, c are integers, such that the only
solution in positive integers of this equation is x =n, y = m.

174. Prove that for every positive integer m there exists a linear equation
ax-+by = ¢ (with integer a, b, and ¢) which has exactly m solutions in pos-
itive integers x, y.

175. Prove that the equation x?+y*+2xy—mx—my—m—1 = 0, where
m is a given positive integer, has exactly m solutions in positive integers x, y.
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176. Find all solutions of the equation
B4 (x+1P+(x+2) = (x+3)°

in integers x.

177. Prove that for every positive integer # the equation
(x+1P+(x+2+ ... +(x+n)* =3

has a solution in integers x, .

178. Find all solutions of the equation
(x+1*+(x+20 4+ (x+3)°+ (x+4)* = (x+5)°

in integers x.

179. Find all rational solutions x of the equation
(x+12+(x+2)*+ (x+3)°+ (x+4) = (x+10)%.
180. Find two positive integer solutions x, y of the equation
yo+1) = x(x+1) (x+2).
181. Prove that the equation 1-4x?>-4» = z* has infinitely many solu-

tions in positive integers x, y, z.

182. Find all solutions in positive integers n, x, y, z, t of the equation
wr+n’+n® =n'.

183. Find all solutions in positive integers x, y, z, ¢ of the equation
FLOLE = 4,

184. Find all solutions in positive integers‘m, n of the equation 2" —3" = 1.

185. Find all solutions in positive integers m, n of the equation 3"—2"
= 1.

186. Find all solutions in positive integers x, y of the equation 2*+41 = )%
187. Find all solutions in positive integers x, y of the equation 2*—1 = 2.

188. Prove that the system of equations x>-+2y* = 22, 2x*>+y* = t* has
no solutions in positive integers x, y, z, .
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189. Using the identity
(2(3x+2y+l)+1)2—-2(4x-l—3y+2.)2 = (2x+1)*—2y?,
prove that the equation x*-+(x+1)? = y* has infinitely many solutions in

positive integers x, y.
190. Using the identity

Q2(Ty+12x+6)) —3(2@y+Tx+3)+1) = @p)—3Q2x+1),
prove by elementary means that the equation (x+1)*—x* = y? has infinitely

many solutions x, y in positive integers.

191. Prove that the system of the equations x*+5y* = z? and 5x>-+)°
= ¢2 has no solutions in positive integers x, y, z, ¢. '

192. Using Problem 34, prove that the system of two equations x24-6y*
= 2%, 6x>+y* = t* has no solutions in positive integers x, y, z, ¢.

192a. Prove that the system of two equations x*4-7y? = z?%, 7x24-y* = ¢*
has no solutions in positive integers x, y, 2, t.

193. Prove the theorem of V. A. Lebesgue that the equation x*—y* = 7
has no integer solutions x, y.

194. Prove that if a positive integer ¢ is odd, then the equation x2—y?
= (2c)’—1 has no integer solutions x, y.

195. Prove that for positive integers k the equation x?+2%*-41 = »* has
no solutions in positive integers x, .

196. Solve the problem of A. Moessner of finding all solutions in positive
integers X, y, z, t of the system of equations

x+y=zt, z+t=Xxy,
where x < y, x < z < t. Prove that this system has infinitely many integer

solutions x, y, z, t.

197. Prove that for positive integers n the equation x;+x,+ ... +x,
= X;X, ... X, has at least one solution in positive integers x;, Xs, ..., Xp.

198. For every given pair of positive integers @ and n, find a method of
determining all solutions of the equation x*—y" = qg in positive integers x, y.
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199. Prove by elementary means that there exist infinitely many trian-
gular numbers which are at the same time pentagonal (i.e. of the form
3k(3k—1), where k is a positive integer).

MISCELLANEA

200. If f(x) is a polynomial with integer coefficients, and the equation
f(x) =0 has an integer solution, then obviously the congruence f{(x)
= 0 (mod p) has a solution for every prime modulus p. Using the equation
of the first degree ax+b = 0, show that the converse is false.

201. Prove that if for integer a and b the congruence ax+b = 0 (mod m)
has a solution for every positive integer modulus m, then the equation ax+
+b = 0 has an integer solution.

202. Prove that the congruence 6x2+5x+1 = 0 (mod m) has a solution
for every positive integer modulus m, in spite of the fact that the equation
6x%4-5x+1 = 0 has no integer solutions.

203. Prove that if k is odd and » is a positive integer, then 2"+2k?"—1.

204. Prove that if an integer k can be represented in the form k = x*—
—2y? for some positive integers x and y, then it can be represented in this
form in infinitely many ways.

205. Prove that no number of the form 8k-+3 or 8k--5, with integer &,
can be represented in the form x?—2y? with integers x and y.

206. Prove that there exist infinitely many positive integers of the form
8k+1 (k=0,1,2,..) which can be represented as x>—2y? with positive
integers x and y, and also infinitely many which cannot be so represented.
Find the least number of the latter category.

207. Prove that the last decimal digit of every even perfect number is
always 6 or 8.

208. Prove the theorem of N. Anning, asserting that if in the numerator
101010101

110010011°
arbitrary integer scale g > 1, we replace the middle digit 1 by an arbitrary

odd number of digits 1, the value of the fraction remains the same (that is,
101010101 10101110101 _ 1010111110101 )
110010011 — 11001110011 ~ 1100111110011 ~ ~°*7°

and denominator of the fraction whose digits are written in an
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209*. Prove that the sum of digits of the number 2" (in decimal system)
increases to infinity with n.

210*. Prove that if k is any integer > 1 and c is an arbitrary digit in
decimal system, then there exists a positive integer » such that the kth (count-
ing from the end) digit of the decimal expansion of 2" is c.

211. Prove that the four last digits of the numbers 5" (n =1, 2, 3, ...)
form a periodic sequence. Find the period, and determine whether it is pure.

212. Prove that for every s, the first s digits of the decimal expansion of
positive integer may be arbitrary.

213. Prove that the sequence of last decimal digits of the numbers n""
(n=1,2,3,..) is periodic; find the period and determine whether it is
pure.

214, Prove that in every infinite decimal fraction there exist arbitrarily

long sequences of consecutive digits which appear an infinite number of times
in the expansion.

215. For every positive integer k, represent the number 3% as a sum of
3* terms, which are consecutive positive integers.

216. Prove that for every integer s > 1 there exists a positive integer m;
such that for integer n = m; between n and 2n there is at least one sth power
of an integer. Find least numbers m, for s = 2 and s = 3.

217. Prove that there exist arbitrarily long sequences of consecutive pos-
itive integers, none of which is a power of an integer with an integer ex-
ponent > 1.

218. Find the general formula for the nth term of the infinite sequence
u, (n=1,2,..)defined by the conditions w; = 1, u, = 3, Uy = 4up11—3u,
forn=1,2,....

219. Find the formula for the nth term of the infinite sequence defined
by conditions u; = @, 4, = b, Up1y = 2Up—uforn=1,2, ....

220. Find the formula for the nth term of the infinite sequence defined
by conditions u; = a, 4, = b, Uy = — (Up+2u,yy) forn=1,2, ... . Investi-
gate the particular casesa =1, b= —landa=1,b = —2.

221. Find the formula for the nth term of the infinite sequence defined
by conditions u; = a, u, = b, Uy = 2uy+Uyy.

222. Find all integers a % O with the property a* =aforn=1,2, ...
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223*, Give the method of finding all pairs of positive integers whose
sum and product are both squares. Determine all such numbers < 100.

224. Find all triangular numbers which are sums of squares of two
consecutive positive integers.

225*. Prove the theorem of V. E. Hogatt that every positive integer is
a sum of distinct terms of Fibonacci sequence.

226. Prove that the terms u, of Fibonacci sequence satisfy the relation
u,z. = u,._.lu,.H-I—(—l)"l for n= 2, 3, eee o

227. Prove that every integer can be represented as a sum of five cubes
of integers in infinitely many ways.

228. Prove that the number 3 can be represented as a sum of four cubes
of integers different from 0 and 1 in infinitely many ways.

229. Prove by elementary means that there exist infinitely many positive
integers which can be represented as sums of four squares of different in-
tegers in at least two ways, and that there exist infinitely many positive in-
tegers which can be represented in at least two ways as sums of four cubes
of different positive integers.

230. Prove that for positive integers m, in each representation of the
number 4™ - 7 as a sum of four squares of integers > 0, each of these numbers
is > 2m-1,

231. Findthe least integer > 2 which is a sum of two squares of
positive integers and a sum of two cubes of positive integers, and prove that
there exist infinitely many positive integers which are sums of two squares
and sums of two cubes of relatively prime positive integers.

232. Prove that for every positive integer s there exists an integer n > 2
such that fork = 1, 2, ..., s, nis a sum of two kth powers of positive integers.

233*, Prove that there exist infinitely many positive integers which cannot
be represented as sums of two cubes of integers, but can be represented as
sums of two cubes of positive rational numbers.

234*, Prove that there exist infinitely many positive integers which can
be represented as differences of two cubes of positive integers, but cannot be
represented as sums of such two cubes.

235*. Prove that for every integer k > 1, k 5 3, there exist infinitely many
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positive integers which can be represented as differences of two kth powers
of positive integers, but cannot be represented as sums of two kth powers of
positive integers.

236*. Prove that for every integer n > 1 there exist infinitely many
positive integers which can be represented as sums of two nth powers
of positive integers, but cannot be represented as differences of two such
nth powers.

237. Find the least integer n > 1 for which the sum of squares of
consecutive numbers from 1 to » would be a square of an integer.

238. Let us call a number of the form a” a proper power if a and b are
integers > 1. Find all positive integers which are sums of a finite >> 1 number
of proper powers. '

238a. Prove that every positive integer n < 10 different from 6 is a dif-
ference of two proper powers.

239. Prove that for every rectangular triangle with integer sides and for
every positive integer n there exists a similar triangle such that each of its
sides is @ power of a positive integer with integer exponent = n

240. Find all positive integers n > 1 for which (n—1)!4-1 = n?,

241. Prove that the product of two consecutive triangular numbers is never
a square of an integer, but for every triangular number #, = in(n4-1) there
exist infinitely many triangular numbers ¢,, larger than it, such that ¢,¢,, is
a square.

242, Prove (without using the tables of logarithms) that the number
Fious = 22°* 11 has more than 10°% digits, and find the number of digits of
524741 (which is, as it is well known, the least prime divisor of Fjes).

243. Find the number of decimal digits of the number 2!12!3—1 (this is
the largest prime number known up to date).

244, Find the number of decimal digits of the number 2“2‘2(211213 1)
(this is the largest known perfect number).

245. Prove that the number 3!!! written in decimal system has more than
thousand digits, and find the number of zeros at the end of the expansion.

246*. Find integer m > 1 with the following property: there exists a poly-
nomial f(x) with integer coefficients such that for some integer x the value
f(x) gives remainder 0 upon dividing by m, for some integer x the value f(x)
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gives remainder 1 upon dividing by m, and for all integer x, the value f(x)
gives remainder O or 1 upon dividing by m.

247. Find the expansion into arithmetic continued fraction of the number
/D where D = ((4m?+1)n+m)°+-4mn+-1, where m and n are positive in-
tegers. '

248. Find all positive integers < 30 such that ¢(n) = d(n), where ¢(n) is
the well-known Euler function, and d(n) denotes the number of positive
integer divisors of n.

249. Prove that for every positive integer g, each rational number w > 1
can be represented in the form

1 1\ 1
w= (“‘-75)(”1?;1‘)“' (“‘m)’
where k is an integer > g, and s is an integer > 0.

250%. Prove the theorem of P. Erdés and M. Suréanyi that every integer
k can be represented in infinitely many ways in the form k = 1% 4£-2% +
+ ... +m? for some positive integer m and some choice of signs + or — .



SOLUTIONS

1. DIVISIBILITY OF NUMBERS

1. There is only one such positive integer: n= 1. In fact, n*+1
= n(n+1)—(n—1); thus, if n4+1|n?+1, then n4-1jn—1 which for positive
integer n is possible only if n—1 = 0, hence if n = 1. -

2. Let x—3=1¢. Thus, ¢ is an integer # O such that z|(z+3)*—3,
which is equivalent to the condition #|3*—3, or ¢|24. Therefore, it is necessary
and sufficient for ¢ to be an integer divisor of 24, hence # must be equal
to one of the numbers +1, +2, +3, +4, +6, +8, +12, +24. For x
= t+3 we obtain the values —21, —9, —5, -3, —1,0,1,2,4,5,6, 17,
9, 11, 15, and 27.

3. For instance, all numbers » in the arithmetic progression 65k--56
(k=0,1,2,...) have the desired property. Indeed, if n = 65k+456
with an integer k>0, then n=1(mod5) and 7 = 4 (mod 13), hence
4n*4-1 = 0 (mod 5) and 4n*+1 = 0 (mod 13). Thus, 5/4n*-+1 and 13|4n*+1.

4. We shall prove the assertion by induction. We have 169|3°—26—27
= 676 = 4 - 169. Next, we have 33*+V+3_26(n+41)—27—(3%"*+3*—26n—27)
= 26(3***+3—1). However, 13|3°—1, hence 13|3%"+Y—1, and 169|26(3**+*—1).
The proof by induction follows immediately. |

5. We have 25 = 64 = 1 (mod 9), hence for Kk =0,1,2,... we have
also 2% = 1 (mod 9). Therefore 2%+2 = 2% (mod 9), and since both sides are

even, we get 25%+2 = 22 (mod 18). It follows that 28+ = 18¢+42%, where ¢ is
an integer > 0. However, by Fermat’s theorem, 2!* = 1 (mod 19), and

therefore 2'* =1 (mod 19) for ¢=0,1,2,.... Thus 2°°*% = 21+
= 2*(mod 19); it follows that 2242 1 3 = 2413 = 0 (mod 19), which was
to be proved.

6. By Fermat’s theorem we have 2!2=1(mod13), hence 2%
= 1 (mod 13), and since 2° = 6 (mod 13), which implies 2!® = —3 (mod 13),

23
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we get 2° = —3 (mod 13). On the other hand, 3% = 1 (mod 13), hence
3% = 1 (mod 13) and 3”° = 3 (mod 13). Therefore 27°4-3" = 0 (mod 13), or
13]27°+37, which was to be proved.

7. Obviously, it suffices to show that each of the primes 11, 31, and
61 divides 20'*—1. We have 2° = —1 (mod 11), and 10 = —1 (mod 11),
hence 10° = —1 (mod 11), which implies 20° = 1 (mod 11), and 20%
= 1 (mod 11). Thus 1120'—1. Next, we have 20 = —11 (mod 31), hence
20? = 121 = —3 (mod 31). Therefore 20° = (—11)(—3) = 33 = 2 (mod 31),
which implies 20" = 25 = 1 (mod 31). Thus, 31j20'*—1. Finally, we have
3* = 20 (mod 61), which implies 20" = 3% = 1 (mod 61) (by Fermat’s
theorem); thus 61/20°—1.

8. Letd= (a_:_:-_-il_ , a-—l). In view of the identity
m_1
"a__ == @' = D+@ =D+ @ Dtm (1)

and in view of the fact that a—1|a*—1 for Xk =0,1,2,..., we obtain
dm. Thus, if the numbers a—1 and m had a common divisor 6 > d, we

a1 and the numbers a1
a—1 a—1
a—1 would have a common divisor d > d, which is impossible. It follows

that d is the greatest common divisor of a—1 and m, which was to be proved.

and

would have, by (1), the relation é ,

9. For positive integer n, we have

n*(n+1)>*

3193 3 __

(which follows by induction). By induction, we obtain also the identity
154254...+n° = —llz-nz(n+1)2(2n2+2n—l)

for all positive integer n. It follows from these formulas that
315425 +...+n%)/ (13423 +...+1°) = 2n*+-2n—1,

which proves the desired property.
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10. These are all odd numbers > 1. In fact, if n is odd and > 1, then
the number (n—1)/2 is a positive integer, and for k =1, 2, ..., (n—1)/2 we
easily get

nlk*+(@n—k)* (since (—k)" = —k");

thus n|1"4+2"+...+(r—1)"

On the other hand, if n is even, let 2° be the highest power of 2 which
divides » (thus, s is a positive integer). Since 2° > s, for even k we have
25|k, and for odd k (the number of such £’s in the sequence 1,2, ..., n—1

is 1n) we have, by Euler’s theorem, = 1(mod 2°), hence k" = 1(mod 2°)
(since 2°~!|n). Therefore

1"+3"+...4+@—3)"+(n—1)" = in (mod 2°),

which implies
1"+2°4...4+(n—1" = in (mod 2°),

in view of the fact that 2"+4"+...+(n—2)" = 0 (mod 2%). Now, if we had
n|1"42"+...4+(n—1)", then using the relation 2°n we would have %n
= 0 (mod 2°), hence 2°{3n and 2°*!|n, contrary to the definition of s. Thus,
for even n we have n y 1"+2"+...+(n—1)"

ReMmAark. It follows easily from Fermat’s theorem that if n is a prime,
then n|1"1+2"14...4(n—1)""'41; we do not know any composite number
satisfying this relation. G. Ginga conjectured that there is no such composite
number and proved that there is no such composite number n < 10'0%,

11. Consider four cases:
(@) n = 4k, where k is a positive integer. Then

g, = 2%H1_o#+10] =2 241 = 1 (mod 5),
b, = 28k+142%+11 1 = 24241 = 0 (mod 5)

(since 2* = 1 (mod 5), which implies 2% = 2% = 1 (mod 5)).
(b) n=4k+1,k=0,1,2,.... Then

g, = 2+ 29421 = 8—4+1 = 0 (mod 5),
b, = 28+31.2%+21 1 = 84441 = 3 (mod 5).
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(c0 n=4k+2,k=0,1,2,.... Then
@, = 286+5-2%+31 1 = 2841 = 0 (mod 5),
b, = 2%+54-2%+311 = 248+1 = 1 (mod 5).
(d) n=4k+3,k=0,1,2,.... Then |
a, = 2%¥+7_2%+41 1 = 8—141 = 3 (mod 5),
b, = 28+742%+41 1 = 8§4+1+1 = O(mod 5).

Thus, the numbers a, are divisible by 5 only for » = 1 or 2 (mod 4), while
the numbers b, are divisible by 5 only for n = 0 or 3 (mod 4). Thus one and
only one of the numbers a, and b, is divisible by 5.

12. It is sufficient to take x =2n—1. Then each of the numbers
x, X%, x%, ... is odd, and therefore 2n = x-1 is a divisor of each of the
terms of the infinite sequence x+1, x*41, x*+1, ....

13. For instance, all primes p of the form 4k-+3. In fact, for everi
x, each of the terms of the sequence x, x*, x*, ... is even. If any of the terms
of the sequence x*+1, x* +1, x"xx+1, ... were divisible by p, we would
have for some positive integer m the relation p|x*"41, hence (x™)

= —1 (mod p). However, —1 cannot be a quadratic residue for a prime
modulus of the form 4k--3.

14. From the binomial expansion
(1+n)* = 1+(§‘)n+(’2')nf+...+(;,‘)n"

it follows that for n > 1 (which can be assumed, in view of 132!—1), all
terms starting from the third term contain » in the power with exponent

> 2. The second term equals ('f)n = n?. Thus, n*|(1+n)"—1, which was
to be proved.

15. By Problem 14, we have for positive integers m the relation
m?|(m-+1)"—1. For m = 2"—1, we get, in view of (m+1)* = 2'®"-D, the
relation (2"—1)%2*"-1"—1, which was to be proved.
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16. We have 3/2°+1, and if for some positive integer m 3™23"4-1,
then 22" = 3™k—1, where k is a positive integer. It follows that

2™ = (3mk—1) = I3l | = 3l

where ¢ is a positive integer. Thus, 3™+!|2*"*' 41, and by induction we get

3m|23" 41 for m = 1,2, .... There are, however, other positive integers »
satisfying the relation n|2"+1. In fact, if for some positive integer » we
have n|2"+1, then also 2"4-1]2*"+'-11. Indeed, if 2"+1 = kn, where k
is an integer (obviously, odd), then 2"+1|2¥"41 = 22"+111, Thus, 9|2°+1
implies 513|253 4-1. |
Suppose now that n is a prime and n|2"+1. By Fermat’s theorem we
have then »|2"—2, which implies, in view of n|2"-+1, that »|3. Since » is
a prime, we get n = 3. Indeed, 3|2°41. Thus, there exists only one prime »
such that n|2"41, namely n = 3. '

17*. We shall prove first the following theorem due to O. Reutter
(see [17]):

If a is a positive integer such that a+1 is not a power of 2 with integer ex-
ponent, then the relation n|a"+-1 has infinitely many solutions in positive
integers. '

If a4-1 is not a power of 2 with integer exponent, then it must have a prime
divisor p > 2. We have therefore pla+-1.

LeMMA. If for some integer k = 0 we have
pHe 1,

where a is an integer > 1, and p is an odd prime, then p*+?|a?*' 4-1.

. PROOF OF THE LEMMA. Assume that for some integer kK >0 we have
Pl a? +1. Writing a?* = b, we get p**!|b-+1, hence b = —1 (mod p*+).
Since p is odd, we obtain

41 = P41 = b+1)E b+ —b+1), 1)

and (since b = —1 (mod p**') which implies b =—1 (mod p)) we get the
relations 4% = 1 (mod p)and b*-! = —1 (mod p)for I =1, 2, .... Therefore

bp_.l___bp-z_l_”.__b..{_.l = 1-—1+1——+1 = O(mOdp)9
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which shows that the second term on the right-hand side of (1) is divisible

by p. Since the first term is divisible by p**!, we get p*+2|a”**' 41, which
proves the lemma.

The lemma implies by induction that if pla+1, then p"“la"k 41, and
pla”+1for k = 1,2, .... Thus there exist infinitely many positive integers n
such that nla"+1, which proves the theorem of O. Reutter.

Since even positive integers satisfy the conditions of Reutter’s theorem,
it suffices to assume that a is an odd number > 1.

If a is odd, then 2|a®+1, and a2 is of the form 8k+1. Thus, a®>+1 = 8k
+2 = 2(4k+1) is a double odd number. We shall prove the following
lemma:

LemMMA. Ifais odd > 1, the numbers s and a*+1 are double odd numbers,
and s|a’+1, then there exists a positive integer s, > s such that s, and a*1+1
are double odd numbers and s,|a*1+1.

ProoF. Since s|a*+1 and both s and a°+1 are double odd numbers,
we have a*+1 = ms, where m is odd. Thus a*+1|a™+1 = a*+'+1, hence
a’*+1|a®”*1+1. Since a°+1 is even, a®*'+1 is a double odd number.

For s; = a°*+1 we have therefore s;|a*t+1, where s, and ¢*14-1 are double
odd numbers. In view of the fact that @ > 1, we have s; > s. This proves
the truth of the lemma.

Since a is odd, we can put s = 2, which satisfies the conditions of the
lemma. It follows immediately that there exist infinitely many positive
integers » such that n|g"+1, which was to be proved (see [35]).

18*. We shall prove that if n is even and such that n|2"4-2 and
n—1|2"+1 (which is true, for instance, for n = 2), then for the number
n, = 2"+2 we also have n;|2"+2 and n,—1|2m+1. In fact, if n|2"+2 and
n is even, then 2"+2 = nk, where k is odc}, hence

212" 41 = 28424 ]
and for n; = 2"+2 we have
n—1 =2"+1|2m4-1.

Next, we have n—1|2"+1, which implies 2"+1 = (n—1)m, where m is odd.

We obtain therefore 2"-141[2"-Um1 = 22"+1 1 which yields 2"42|22"+24
+2, or ny|2M+2.
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Since n; = 2"+2 > n, there are infinitely many even numbers » satis-
fying our conditions. Starting from n =2, we get successively numbers
2,6,66,2%+2,.... However, C. Bindschedler noticed that this method
does not lead to all numbers » for which n|2"+2 since we have, for instance,
946|2°%6+-2. See a solution to my problem 430 in Elemente der Mathematik,
18 (1963), p. 90, given by C. Bindschedler.

19. If ais a positive integer, and r denotes its remainder upon dividing
by 10, then a'°+1 is divisible by 10 if and only if r'°4-1 is divisible by 10.
It suffices therefore to consider only numbers r equal to 0, 1,2, ..., 9, and
for these numbers we easily check that only 3'°4-1 and 7!°+1 are divisible
by 10. Thus, all numbers a such that ¢'°+1 is divisible by 10 are of the
form 10k+3 and 10k+7 for k=0,1,2, ....

20*. Suppose that there exist positive integers n > 1 such that »|2"—1,
and let n denote the smallest of them. By Euler’s theorem, we have then
n|2%M—1. However, the greatest common divisor of numbers 2°—1 and
2°—1 for positive integers @ and b is the number 2¢—1, where d = (a, b).
For a =n and b = ¢(n), d = (n, p(n)), it follows that n|2¢—1. However,
since n > 1, we have 2¢—1 > 1, which impliesd > l1and 1 < d < ¢(n) < n,
and d|n|29—1 contrary to the definition of .

20a. Such are, for instance, all numbers of the form n = 3% where
k=1,2,.... We shall prove it by induction. We have 3|2*+1. If for some

positive integer £ we have 3"]23k+1, then, in view of the identity

21 = @+ @2 2% 1))
and in view of the remark that
223 _9% 11 =22 10 (2%41), and 312*%4+2

(since 4% gives remainder 1 upon dividing by 3), the second term of the
formula for 2**'4-1 is divisible by 3, which implies K LESTDLMAR

21. There is only one such odd number n, namely n = 1. In fact, suppose
that there exists an odd number » > 1 such that »|3"41. Thus we have
n|9"—1. Let n be a least positive integer > 1 such that n|9"—1. In view
of n|9%"—1, for d = (n, p(n)) we shall have n|99—1. Moreover, d > 1
since if d were equal to 1, we would have n|8 which is impossible since n
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is odd. Thus 1 < d < ¢(n) < n, and d|n|9°—1, contrary to the definition
of the number n. Thus there is no odd number » > 1 such that n|3"+1.

22. Clearly, n cannot be divisible by 3. Thus » is of one of the forms
6k+1, 6k+2, 6k4-4, or 6k-+5 where k =0,1,2,.... If n = 6k-1, then,
in view of 2¢ = 1 (mod 3), we have n2"+1 = (25*2+1 = 241 = 0 (mod 3).
Thus 3|n2"+1.Ifn = 6k-+2, thenn2"+1 = 2(2%*2241 = 841 = 0 (mod 3),
hence 3|n2"+-1.

If n = 6k-+4, then n2"+1 = 4(25*2*+1 = 25+1 = 2 (mod 3).

Finally, if n = 6k+5, then n2"+1 = 5(25*2°+1 = 2 (mod 3).

Therefore, the relation 3|n2"+1 holds if and only if 7 is of the form 6k-+1
or6k+2,k=0,1,2,.

23. If pis an odd prime and n = (p—1)(kp+1) where k =0,1,2, ...,
then n = —1 (mod p) and p—1jn. By Fermat’s theorem, it implies 2"
= 1 (mod p), hence n2"+1 = 0 (mod p).

ReMARK. It follows from this problem that there exist infinitely many
composite numbers of the form n2"+1 where n is a positive integer. The
numbers of this form are called Cullen numbers. It was proved that for
1 < n < 141 all numbers of this form are composite, but for n = 141 the
number #2"+1 is prime. It is not known whether there exist infinitely many
prime Cullen numbers.

24. Let n be a given positive integer, and let £ > 1 be a positive integer
such that 2* > n. Let p be a prime > 2*-'k. Since k > 1,forx = 2%, y = 2p

we have x t y, and x*|y”, because x* = 242 and y” = (2p)?*, where 2p > 2.
Thus, for instance, 4410, but 4 410, 8%12'2 but 8 ¥ 12, 9°|21%! but 9 y21.

25*. For positive integers n we have obviously ¢(@)ln!. In fact, it is
true for n=1; if n > 1, and if n = gf1g32 ... g is a decom:position of n
into primes, where ¢, < ¢, < ... < ¢, then

p(n) = g-1q3t. “*“(ql—l) A(gx—1)

and we have gni—lgg-!.. qgk"lln, while ¢,—1 < g, <n, which implies
that ¢,—1 <n and ¢—1 < g,—1 < ... < q—1 are different positive
integers smaller than ». Thus (¢;—1)(g;—1) ... (gx—1)|(n—1)!, and it
follows that ¢(n)|(n—1)!n = n!.

If n is odd, then (by Euler’s theorem) n|29"—1|2*'—1, hence n|2"—
which was to be proved.

26. By Fermat’s theorem, we have 2* = 1 (mod 5) and 2'2 = 1 (mod 13).
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Since 2° = 3 (mod 5) and 2* = 3 (mod 13), we get 2**3 = 3 (mod 5) and
21%+4 = 3 (mod 13)fork = 0, 1, 2, .... Therefore 5/2*+3—3 and 13]212k+4_3
fork=0,1,2,....

Next, 25 = —1 (mod 65), which implies that 2!2 = 1 (mod 65) and there-
fore 2*+12_3 = 2"—3 (mod 65), which shows that the sequence of remainders
modulo 65 of the sequence 2"—3 (n = 2, 3, ...) is periodic with period 12.
To prove that none of the numbers 2"—3 (n = 2, 3, ...) is divisible by 65
it is sufficient to check whether the numbers 2"—3 for n = 2, 3, ..., 13 are
divisible by 65. We find easily that the remainders upon dividing by 65 are
1, 5,13, 29, 61, 60, 58, 54, 46, 30, 63, 64, and none of these remainders is zero.

27*. It is known (see, for instance, Sierpinski, [37, p. 215]) that the
four smallest composite numbers », such that n|2"—2, are 341, 561, 645,
and 1105. For 341, we have 341} 3°**—3 since, by Fermat’s theorem, 3%
= 1 (mod 31), which implies 3**° = 1 (mod 31), hence 3**! = 3" (mod 31).
In view of 3* = —4 (mod 31), we get 3’ = —64 = —2 (mod 31), hence
3! = —18 (mod 31). Therefore 3*'—3 = 3"—-3 = —21 (mod 31), and
31 ¥ 3*'—3, which implies 341 = 11 - 31 ¥ 3**—3. On the other hand, 561
= 3-11-17|3%'—3 since 11|31°—1 which implies 11]|3°*°—1 and 11|3*—3,
and also 17|3—1 which implies 17|3'6*°*—1 = 3°—1, Thus 17|3%—3.

Thus, the least composite number n such that »|2"—2 and »|3"—3 is
the number n = 561.

The number 645 is not a divisor of 3%°—3 since 645 = 3 - 5-43, while
32 = 1 (mod 43) which implies 3**'* = 1 (mod 43). Thus 3% = 1 (mod 43),
and 3% = 3'5 (mod 43). Since 3* = —5 (mod 43), we have

3¥= —45= —2 (mod 43), 32=4(mod43), 3= 108= 22 (mod43).

Therefore 3%°—3 = 19(mod 43), which implies 43 y 3%45—3.

On the other hand, we have 1105|3!1%*—3. Indeed, 1105 =5-13-17, 3¢
= 1 (mod 5), and 3''** = 1 (mod 5), and 5/3"'%—3. Next, 3 = 1 (mod 13),
3104 = | (mod 13) and 13|3!1%—3. Finally, 3= 1 (mod 17), and since
1104 = 16 - 69, we get 3! = 1 (mod 17), which implies 17|311°—3,

Thus, two smallest composite numbers for which n|2"—2 and n|3"—3 are
561 and 1105.

REMARK. We do not know whether there exist infinitely many composite
numbers n for which 7|2"—2 and 7|3"—3. This assertion would follow from
a conjecture of A. Schinzel concerning prime numbers ([22]). For prime num-
bers n, both relations n|2"—2 and n|3"—3 hold because of Fermat’s theorem.
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28*. In view of n )y 3"—3 and Fermat’s theorem, the number » must
be composite, and the least composite n for which 7|2"—2 and n .t 3"—3 is
n = 341. In the solution to Problem 27 we proved that 341} 33! —3, Thus,
the least number 7 such that n|2"—2 and n } 3"—3 is n = 341.

ReMARK. A. Rotkiewicz proved that there exist infinitely many positive
integers n, both even and odd, such that 7|2"—2 and n t 3"—3.

29. Number n = 6 has the desired property. In fact, if n ¥ 2"—2, then n
must be composite. The least composite number is 4, but 4 y 3*—3 = 78.
Next composite number is 6, and we have 6 }2°—2 = 62, while 6/3°—3
since 35—3 is obviously even and divisible by 3.

ReEMARK. A. Rotkiewicz proved that there exist infinitely many com-
posite numbers n, both even and odd, such that n|3"—3 and n y 2"—2.

30. If a is composite, we may put » = a since obviously a|a"—a. If
a =1, we can put n = 4 since 4|1°—1. If a is a prime > 2, we may put
n = 2a since in this case a is odd, and the number 4?>*—a is even; thus,
a*—a, being divisible by an odd number a and by 2, is divisible by 2a.

It remains to consider the case a = 2. Here we can put n = 341 = 11.31
since 341|234 —2; the last property can be proved as follows: we have
11]29—1 = 1023, hence 11{2**—1, and 11|23 —2. Next, 31 = 2°—1|23—1,
hence 31|23"—2. Thus the number 23!—2 is divisible by 11 and 31, hence
also by their product 341.

RemMARK. M. Cipolla proved that for every positive integer a there exist
infinitely many composite numbers n such that n|a"—a. (See [5].) We do
not know, however, whether there exist infinitely many composite numbers
n such that nla"—a for every integer a. The least of such number is
561 = 3:11:17. From a certain conjecture of A. Schinzel concerning prime
numbers ([22]) it follows that there are infinitely many such composite numbers.

31. The cube of an integer which is not divisible by 3 gives remainder
1 or —1 upon dividing by 9. Thus, if none of the numbers a, b, ¢ were di-
visible by 3, then the number a*+5%+-¢*, upon dividing by 9, would give the
remainder 41 41 4-1 which is not divisible by 9 for any combination of

signs + and —. It follows that if 9|a*+-b3-c*, then 3|abc, which was to be
proved.

32. The proof is analogous to the proof in Problem 31 since the number
4141414141 is not divisible by 9 for any combination of signs + and — .
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33. The condition (x, y) =1 is necessary since, for instance, 15%420°
= 5% while 7415-20. Now, if (x,y) =1 and x, y, z are positive integers
such that x>++y? = z* then, as we know from the theory of Pythagorean
equation, there exist integers m and »n such that for instance x = m?>—n?,
y = 2mn, 2> = m*+n’. Suppose that 7 f y; thus 7 fm and 7 f n. It is easy to
see that the square of an integer not divisible by 7 gives, upon dividing by 7,
the remainders 1, 2 or 4. Since 1+2, 144, and 2+4 cannot be such re-
mainders, neither they are divisible by 7, it follows from equation 22 = m?+
+n? that the numbers 7 and » must give the same remainders upon dividing
by 7. Thus 7|x = m*—n’.

34. The square of an integer not divisible by 7 gives upon dividing by
7 the remainder 1, 2, or 4, hence the sum of such squares gives the remainder
1,2, 3,4, 5, or 6. Thus, if @ and b are integers such that 7|a>+-b? then one
of them, hence also the other, must be divisible by 7.

35*. The numbers x = 36k+14,y = (12k+-5) (18k+7), k=0, 1, 2,...,
have the desired property.
In fact, we have obviously x(x+1)[y(y+1) since

x(x+1) = 2-3(12k+5) (18k+7) = 6y,
while 6/y+-1.

The number y is not divisible by x since y is odd, while x is even. The
number y is not divisible by x-+1 since 3|x+1, while 3 fy. The number
y+1 is not divisible by x since 18k-+7|x and 18k+7|y, hence 18k+7 .} y+1.
Finally, the number y+1 is not divisible by x+1 since 12k+5|x+1 and
12k 45|y, hence 12k+5 Y y+1.

For k 4- 0, we obtain x = 14, y =35, and it is easy to show that there
are no smaller numbers with the required property.

36. For s < 10, we have of course n, = s. Next, studying successive
multiples of s, we obtain nyo = 190, ny; = 209, ny, = 48, ny; = 247, ny,
= 266, n;s = 155, nig = 448, n;7 = 476, njis = 198, ny = 874, nyo = 9920,
ny = 399, nyy = 2398, ny3 = 1679, nyy = 888, nys = 4975. Finally, we have
nyo0 = 19999999999900. In fact, two last digits of every number divisible by
100 must be zero, and the sum of digits of every number smaller than
199999999999 is obviously smaller than 100. See Kaprekar [11].

37*. Let s be a positive integer, s = 2*5%¢, where « and g are integers
=0, and ¢ is a positive integer not divisible by 2 or 5. By Euler’s theorem
we have 10°") = 1 (mod ¢). Let n = 10°*#(10%" 410?74 ... 4-10°%),
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We have 109041020+ ... +10%® = s = 0 (mod ?) (since ¢|s), and in
view of 2*5f|10°+#, the number # is divisible by s. On the other hand, it is
clear that the sum of decimal digits of the number » equals s.

38*. (a) The theorem is obviously true if the number has no prime
divisor of the form 4k-+3. Suppose that the theorem is true for all numbers,
whose expansion into primes in first powers (hence not necessarily distinct)
contains s > 0 primes of the form 4k+-3. Let n be a positive integer, whose
expansion into primes in first powers (hence not necessarily distinct) contains
s-+1 prime factors of the form 4k+3. Then we have n = mg, where the ex-
pansion of m into primes in first powers contains s factors of the form 4k-+
+3, and ¢ is a prime of the form 4k+-3. Let g denote the number of integer
divisors of m which are of the form 4k4-1 and let 4 denote the number of
integer divisors of n which are of the form 4k+3. By assumption (concern-
ing s) we have g > h. Now, the integer divisors of the form 4k+1 of mgq are
of course the divisors of the form 4k+1 of m (the number of these divisors
being equal to g), and also the products of integer divisors of the form 4k
+3 of m by the number g; the number of these divisors is 4. Thus, the number
mq will have g+h integer divisors of the form 4k+-1. On the other hand,
integer divisors of mq of the form 4k+-3 will be the integer divisors of the
form 4k -3 of m (the number of those divisors being /), and the products of
the divisors of the form 4k-+1 of m by g (the number of those divisors is g).
However, among the latter there may be divisors which are divisors of the
form 4k +3 of m. Thus the total number of integer divisors of the form
4k+3 of mq is < h+g (and, perhaps, < h-+g). The theorem being true for
every number mg, we obtzin by induction (with respect to s) that the theorem
is true for positive integer s.

(b) The number 3?"~! (n = 1, 2, ...) has as many integer divisors of the
form 4k+1 (namely, 1, 3%, 3% ..., 3*"?) as divisors of the form 4k+3
(namely 3, 33, 35, ..., 3**"Y). )

(c) The number 3*" (where n == 1, 2, ...) has n+1 divisors of the form
4k+1 (namely 1, 3%, 3% ..., 3*") and only n divisors of the form 4k+3
(namely 3, 3, ..., 32""!). The number 5" has all n+1 divisors of the form
4k+1, and has no divisor of the form 4k--3.

39. Let ry, r,, and r; be the remainders upon dividing the integers —a,
—b, and —c by n. Thus, r,, r,, and r; are integers from the sequence 0, 1, 2, ...
..., n—1, and since there is at most three different among the numbers r;,
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r,, r3, while n > 3, there exists a number r in this sequence such that r # r,,
r # r,, and r # r;. If we had nla+r, then in view of —a = r, (mod n) we
would have n|r—r,. However, r and r; are integers >0 and < n, and if
their difference is divisible by », then we must have r = r; contrary to the
definition of r. In a similar way we show that n ¥ b+r and n .}/ c+r. Thus, we
can put k =r.

40. We easily show by induction that for positive integers n we have
9" > n+1, which implies that 2"+![2*" and 2%"*'—122* —1. Therefore F,

= 2?2 12" —2 = 2Pa—2, and F,[2F-—2, which was to
oe proved.

ReMARk. T. Banachiewicz suspected that this relation led P. Fermat to
his conjecture that all numbers F, (n = 1, 2, ...) are primes. During Fermat’s
times it was thought that the so-called Chinese theorem is true, namely the
theorem asserting that if an integer m > 1 satisfies the relation m|2™—2,
then m is a prime (it was checked for first several hundred integers). This
breaks down, however, for m = 341 = 11 - 31, which was not known then.

Il. RELATIVELY PRIME NUMBERS

41. Numbers 2k+1 and 9k+4 are relatively prime since 9(2k+1)—
—2(9+4) = 1. Since 9k +4 = 4(2k— 1)+ (k+8), while 2k—1 = 2(k-+8)—
—17, we have (9k+4, 2k—1) = (2k—1, k+8) = (k+8, 17). If k=9
(mod 17), then (k+8, 17) = 17; in the contrary case, we have 17|k--8,
hence (k+8, 17) = 1. Thus, (9k+4, 2k—1) =17 if k = 9 (mod 17) and
(9k+4,2k—1) = 1if k # 9 (mod 17).

‘42. We show first that if for some positive integer m we have m triangular
numbers a; < @, < ... < a, which are pairwise relatively prime, then there
exists a triangular number ¢ > a,, such that (¢, a,, a,, ..., a,) = 1.

In fact, let a = a,a, ... a,,; the numbers a+1 and 2a+1 are relatively
prime to a. The number

amis = tras = SR LD _ (11 @at1)

is a triangular number > a,,; being relatively prime to g, it is relatively prime
to every number q, a,, ..., Q.
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It follows that if we have a finite increasing sequence of pairwise relatively
prime triangular numbers, then we can always find a triangular number
exceeding all of them and pairwise relatively prime to them. Taking always
the least such number we form the infinite sequence

t1= 1, t2= 3, t4= 10, t13= 91, 122=253, ves

of pairwise relatively prime triangular numbers.

43. We shall prove first that if for some positive integer m the tetra-
hedral numbers ¢, < a, < ... < a,, are pairwise relatively prime, then there
exists a tetrahedral number T > a,, such that (7, a,, a,, ..., a,,) = 1. In fact,
let a =aya,...a,. Put T = Tgeyy = (6a+1) 3a+1) 2a+1); clearly T is
prime relatively to a, hence relatively to each of the numbers g, ..., a,,
and T > a > a,.

Thus, we can define the required increasing sequence of pairwise relatively
prime tetrahedral numbers by induction: take T} = 1 as the first term of the
sequence, and, after having defined m first pairwise relatively prime tetra-
hedral numbers of this sequence, define the m--1st as the least tetra-
hedral number exceeding all first m terms, and being relatively prime to
each of them. In this manner we obtain the infinite increasing sequence
of pairwise relatively prime tetrahedral numbers

Tl='1’ T2=4, T5=35, T17=969, ree e

44, Let a and b be two different integers. Assume for instance a < b,
and let n = (b—a)k+1—a. For k sufficiently large, n will be positive integer.
We have a+n = (b—a)k+1, b+n = (b—a) (k+1)+1, hence a+n and b+n
will be positive integers. If we had dja+n and d|b+n, we would have
dla—b, and, in view of dla+n, also d|1, which implies that d = 1. Thus,
(a+n, b+n) = 1. ;

45*. 1If the integers a, b, c are distinct, then the number
h = (a—b) (a—c) (b—c)

is different from zero. In case h # 41, let ¢, ..., g, denote all prime > 3
divisors of A.

If two or more among numbers a, b, ¢ are even, put r = 1, otherwise put
r = 0. Clearly, at least two of the numbers a-+r, b+r, c+r will be odd. If
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a, b, c give three different remainders upon dividing by 3, put r, = 0. If two
or more among 4, b, c give the same remainder ¢ upon dividing by 3, put
ro = 1—p. Clearly, at least two of the numbers a-r,, b+ry, c+r, will be
not divisible by 3.

Now, let i denote one of the numbers 1, 2, ..., s. In view of Problem 39
(and the fact that g; > 3), there exists an integer r; such that none of the
numbers a+r;, b+r;, c+r; is divisible by ¢;. According to the Chinese
remainder theorem, there exist infinitely many positive integers # such that

n=r(mod2), n=r,(mod?3),
and
n=r;(modg) fori=1,2,..,s.

We shall show that the numbers a-+n, b-+n and c+n are pairwise relatively
prime. Suppose, for instance, that (a+n, b+n) > 1. Then, there would exist
a prime ¢ such that gla+n and gijb+-n, hence gla—b, which implies gl and
h # +1. Since n= r (mod 2) and at least two of the numbers a+r, b+r,
c+r are odd, at least two of the numbers a-+n, b+n, c+n are odd, and we
cannot have ¢ = 2. Next, since n = r, (mod 3) and at least two of the numbers
a+ry, b+ry, c+ry are not divisible by 3, at least two of the numbers a-+n,
b+n, c+n are not divisible by 3, and we cannot have g = 3. Since g|4, in
view of the definition of A, we have g = g; for a certain i from the sequence
1, 2, ..., s. However, in view of n = r; (mod g;), or n = r; (mod ¢), and in
view of the fact that none of the numbers a-r;, b+r;, c-+r; is divisible by
q;, none of the numbers a-+n, b+n, c+n is divisible by ¢;= g, contrary to
the assumption that gla+n and gq|b-+n. Thus, we proved that (a+n, b+n)
= 1. In a similar way we show that (a-+n, c+n) = 1, and (b+n, c+n) = 1.
Therefore the numbers a+n, b+n, and c+n are pairwise relatively prime.
Since there are infinitely many such numbers n, the proof is complete.

46. Such numbers are for instance a =1, b = 2, ¢ = 3, d = 4. In fact,
for odd n, the numbers a+n and c+n are even, hence not relatively prime,
and, for even n, the numbers b-+n and d+n are even, hence not relatively
prime.

47. If nis odd and > 6, then n = 2+4+(n—2), where n—2 is odd and

> 1, and we have (2, n—2) = 1.
~ The following proof for the case of even n > 6 is due to A. Makowski.
If n = 4k, where k is an integer > 1 (since n > 6), then n = 2k—1)+
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+(2k+1), and 2k+1 > 2k—1 > 1 (since k > 1). The numbers 2k—1 and
2k+-1, as consecutive odd numbers, are relatively prime.

If n = 4k+-2, where k is an integer > 1 (since n > 6), we have n =
= (2k+3)+(@2k—1), where 2k+3>2k—1>1 (since k>1). The
numbers 2k +3 and 2k—1 are relatively prime since if 0 < d|2k+3 and
d|2k—1, then d|(2k+3)—(2k—1) or d|4. Now, d as a divisor of an odd
number must be odd, hence d == 1, and (2k+3, 2k—1) = 1.

48*. 1If nis even and > 8, then n = 6k, n = 6k+2 or n = 6k-+4, and in
the first two cases k is an integer > 1, and in the third case, k is a positive
integer. The formulae

6k = 24+3+(6(k—1)+1), 6k+2 = 3+4+(6(k—1)+1),
6k 44 = 243+ (6k—1)

show easily that  is a sum of three pairwise relatively prime positive integers.

Suppose now that » is odd and > 17. We consider six cases: n = 12k+1,
n=12k+3,n = 12k+35, n = 12k+7, n = 12k+9, and n = 12k+11, where
in the first three cases k is an integer > 1, and in the last three cases k is
a positive integer. We have

12k—1 = (6(k—1)—1)+(6(k—1)+5)+9,

where the numbers 6(k—1)—1, 6(k—1)+5, and 9 are > 1 and relatively
prime; in fact, the first two are not divisible by 3, and are relatively prime
since d|6(k—1)—1 and d|6(k—1)+5 would imply d|4, while the numbers
considered are odd. |

If n = 12k+-3, then we have n = (6k—1)+(6k+1)+3;

if n = 12k+5, then we have n = (6k—5)+(6k-+1)+9;

if » = 12k+-7, then we have n = (6k-+5)+ (6k—1)+3;

if n = 12k4-9, then we have n = (6k—1)+(6k+1)+9;

if n = 12k+11, then we have n = (6(k+1)—5)-+(6(k+1)+1)+3, and we
easily check that in each case we have three terms > 1 and pairwise relatively
prime.

The number 17 does not have the desired property since in the case 17
= a+b+c, all three numbers a, b, ¢ (as > 1 and pairwise relatively prime)
would have to be odd and distinct. We have, however, 3+5+7 = 15 < 17,
3+5+11>17,and incase 3<a<b<c,wehavea>5b6>17 ¢>9,
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hence a-+b+c = 5+7+9 > 21 > 17, which shows that 17 does not have
the desired property.

49*, We shall present the proof based on anidea of A. Schinzel (see [19]).
Let k denote a given positive integer and let m be the positive integer whose
expansion into prime powers is m = ¢{'g32 ... gg=. Let f(x) = x(x-+2k) and
let i denote one of the numbers 1, 2, ..., s. We cannot have g;|x(x+2k) for
all integer x since then for x = 1 we would have ¢;|2k+1, and for x = —1
we would have ¢;|2k—1, and ¢;|(2k+1)—(2k—1) = 2, which is impossible
in view of ¢;|2k+-1 (and, in consequence, g;|1). Therefore there exists an
integer x; such that g¢;t xi(x;+2k) = f(x;). By the Chinese remainder
theorem, there exists a positive integer x, such that x, = x; (mod ¢;) for
i=1,2,...,s which yields f(x0) = f(x)) # 0 (mod ¢;) for i=1,2, ..., s
We have therefore (f(xo), g)=1fori=1,2,...,s which (in view of the
expansion of m into prime factors) gives (f(xo), m) =1, or (xo(xo+2k), m)
= 1. Thus, if we put a = x,+2k, b = xo, we shall have 2k = a—b, where
(a,m) = 1, (b, m) = 1, which proves the theorem.

ReMARK. Since adding arbitrary multiples of m to @ and b does.not
change the fact that 2k = a—b and (ab, m) = 1, we proved that, for every
m, every even number can be represented in infinitely many ways as a dif-
ference of positive integers relatively prime with m.

We do not know whether every even number is a difference of two pnmes
From a certain conjecture on prime numbers of A. Schinzel ([22]), it follows
that every even number can be represented as a difference of two primes
in infinitely many ways. '

50*. We shall present the proof given by A. Rotkiewicz. If u, is the nth
term of the Fibonacci sequence, and if m and n are positive integers, then
(t> Uy) = Um,n (see [27, p. 280, problem 5]). Since u; = 1, we see that if p,
denotes the kth successive prime, then every two terms of the increasing
infinite sequence

Upis L, Upyy -

are relatively prime. Instead of p, we could take here 2211 since it is well
known that (22" +1, 22"+1) = 1 for positive integers m and n # m.
51*. We know that every divisor > 1 of the number F,=2*+1

(n =1,2,..) is of the form 2"+%k-+-1 where k is positive integer (see, for
instance, [37, p. 343, Theorem 5]). Since for positive integers n and k we
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have 2"*2%k+1>2"*?241 > p, all > 1 divisors of F, must be > n, hence
(n, F,) = 1, which was to be proved.

5l1a. We easily check that (n,2"—1)=1 for n=1,2, 3,4, 5, while
(6,2°—1) = 3. For k= 1,2, ..., we have 3|25—1|2%—1, hence (6k, 2%—1)
>3 for k =1, 2, .... The least such number » is equal to 6.

I1l. ARITHMETIC PROGRESSIONS

52. Let m be a given integer > 1. The numbers m!k-1fork =1, 2, ...
..., m are relatively prime since for positive integers k and I with k < I << m
if d > 1 were the common divisor of m!k+1 and m!l+1, we would have
dllm'k+1)—k(m!l+1) = I—k < m, hence 1 < d < m, and d|m!. This, in
view of d|m!k+-1, gives d|1, contrary to the assumption that d > 1.

53. The required property is satisfied, for instance, by all terms of the
arithmetic progression 2¢¢+2*-! (where t = 0, 1, 2, ...) since in the expansion
of n = 2*¢4-2*-! into primes, the number 2 enters with the exponent k—1;
from the well-known formula for the number of positive integer divisors it
follows immediately that the number of positive integer divisors of the
number » is divisible by k.

54. The required property holds for an arbitrary positive integer x and
for y = 5x+2, z = 7x+3 since in this case the numbers

XD = 24x,  y+1) =252+25x+6, z(z+1) = 49x2+49x+12

form the arithmetic progression with the difference 24x*+-24x-6.

REMARK. One can show that there are no four increasing positive integers
X, ¥, z, t such that the numbers x(x-+1), y(y+1), z(z+1), and #(¢+1) form
an arithmetic progression since then the nimbers four times greater and
increased by one, i.e. the numbers (2x-+1)?, (2y+1)%, (2z+1)? and (2t+1)?
would also form an arithmetic progression, contrary to the theorem of
Fermat asserting that there are no four different squares of integers which
form an arithmetic progression (the proof can be found in the book by
W. Sierpinski [37, p. 74, theorem 8]).

55. If the sides of a rectangular triangle form an arithmetic progression,
then we can denote them by b—r, b and b+r where b and r are positive
integers, and we have (b—r)>+b* = (b+r)? hence b = 4r, which gives the
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rectangular triangle with sides 3r, 4r, and 5r, where r is an arbitrary positive
integer. Thus, all rectangular triangles whose sides are integers forming an
arithmetic progression are obtained by increasing integer number of times
the triangle with sides 3, 4, 5.

56. Triangular numbers t, = §n(n+1) are odd for n = 4u+1 (u=0,
1,2,...) and even for 4|n. Thus both progressions with difference 2
contain infinitely many triangular numbers. On the other hand, the pro-
gression 3k+2 (k=0,1,2,...) does not contain any triangular number
since if 3|n, then 3|t,; similarly, if n = 3u+2 for u=0, 1, 2, ..., then 3|¢,;
u(u+1)

finally, if n = 3u+1, where u=0,1,2, ..., then t, =9 3

dividing by 3 yields the remainder 1.

+1, hence

57. TItisnecessary and sufficient for b to be a quadratic residue for modulus
a. In fact, if for some positive integer x and some integer £k > 0 we have
x* = ak+b, then x* = b (mod a), and b is a quadratic residue for modulus
a. Conversely, if b is a quadratic residue for modulus g, then there exist
infinitely many positive integers x such that x* = b (mod a), hence x* = agk-+
+b, where k is an integer, and consequently, is positive for sufficiently
large x.

58*. We shall give the proof due to A. Schinzel. Let p, denote the kth
successive prime. Let s be an arbitrary positive integer and let P = p, p, ... p,.
By the Chinese remainder theorem, for every positive integer k < s there
exists a positive integer a; such that @, = 0 (mod P/p;), and a, = —1 (mod py).
Put Q = 191 2%, 5%, The numbers kQ (k =1, 2, ..., 5) form an increasing
arithmetic progression with s terms. By the definition of the numbers a;
(k=1,2,...,5), we have pla,+1 and pila, if kK # n, where n is a positive
integer > s. The numbers '

s

0, = klax+Dir n naxlpi

n=1
n£k

are natural, and we easily see that kQ = Qf« for k = 1,2, ..., s, thus the
numbers kQ (k =1, 2,...,5) are powers of integers with integer expo-
nents > 1.

59. The desired theorem is clearly equivalent to the theorem that in
every infinite increasing arithmetic sequence of integers there exists a term
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which is not a power with integer exponent > 1 of any integer. Thus, let
ak+b (k=0,1,2,..) be an infinite arithmetic progression, where a and b
are positive integers. There exists a prime p > a+-b. Since (a, p*) = 1, the
equation ax—p?’y =1 has a solution in positive integers x, y. Let
k = (p—b)x; this will be a positive integer (since p > b), and we shall
have ak-+b = p*y(p—b)+p. Thus the term ak+b of our progression is
not divisible by p?, and therefore cannot be a power of a positive integer
with integer exponent > 1.

60. Out of every four consecutive positive integers one must be of the
form 4k-2, where k is an integer > 0. No such number, as an even number
which is not divisible by 4, can be a power of a positive integer with integer
exponent > 1.

REMARK. A. Makowski proved that there are no three consecutive positive
integers such that each of them is a power with integer exponent > 1 of
a positive integer, but the proof is difficult (Khatri [13]). There exist, however,
two consecutive numbers such that each of them is a power with integer
exponent > 1 of a positive integer. Such numbers are, for instance, 22 = 8,
3% = 9, Catalan’s problem whether there are any other pairs of such integers
is open. S. Hyyr6 [10] proved that in any such pair both bases are > 10"

61. The solution follows immediately from Problem 58, it can, however, be
proved in a simpler way. Let m > 1 be an integer, and letg; (i =1, 2, ..., m)
be primes such that a < ¢; < ¢ < ... < gn. By the Chinese remainder
theorem, there exists a positive integer x such that ax = —b—aj (mod ¢%)
forj=1,2,...,m. Thus gjla(x+j)+b forj= 1,2, ..., m. Thus m consecu-
tive terms of the progression ak+-b, namely the terms a(x-+j)+b for
j=1,2, ..., m, are composite.

62*. We can assume, of course, that m is an integer > 1. Let P denote
the product of all prime divisors of m which are the divisors od a, and let
P =1 if there are no such divisors. Let Q denote the product of all prime
divisors of m which are divisors of b, and let Q = 1 if there are no such
divisors. Since (a, b) = 1, we have (P, Q) = 1. Finally, let R denote the
product of all prime divisors of m which do not divide a or b, and if there
are no such divisors, let R = 1. Obviously, we have (R, P) = 1 and (R, Q)
= 1. We shall show that (aPR+b,m) = 1. In fact, if it were not true,
there would exist a prime p such that p|m, and p|aPR-+b. If we had p|P,
then plaPR+b would imply p|b, hence p|Q, contrary to the fact that (P, Q)
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= 1. If we had p|Q, then we would have p|b, hence plaPR, which is im-
possible since (a,b) =1, (b, P) =1, (b, R) = 1. Finally, if we had p|R,
we would have pl|b, hence p|Q, contrary to the fact that (R, Q) = 1. Thus,
we proved that (aPR+-b, m) = 1, and it follows that (a(km+PR)+b, m) =1
for k = 0,1, .... Therefore our progression contains infinitely many terms
relatively prime with m, which was to be proved.

63. Let b be the first term of our progression and let a be its difference;
thus the numbers a and b are positive integers. Let x denote the remainder
obtained from dividing b by a; we have therefore b = at+r where ¢ is an
integer > 0, and r is an integer such that 0 < r < a. Let s be an arbitrary
positive integer, and let ¢;, c3, ..., ¢; With ¢; # 0 be an arbitrary sequence
of decimal digits. Let N denote the s-digit integer, whose consecutive digits
are Cpy €2y «eey Cs. )

Obviously there exists a positive integer » such that 10® > 2a(¢+1). The
aumber N10"/a—¢ will be > 1.

" Let k be the least positive integer greater than N10%/a—t¢; thus, we
shall have k—1 < N10"/a—t, hence

N10* (GARVI
a

k1< +2—t <

since 10" > 2a. We have therefore N10"” < a(k+t) < ak+at+r = ak+b
< a(k+t+1) < (N+1)10" = N10"410" and it follows that the first s
digits of the number ak+b are the same as the first s digits of the number N,
i.e. the digits ¢;, ¢z, ..., Cs.

64. If the terms u,u;, and u, of the Fibonacci sequence form an
arithmetic progression, then we must have #; > 1, and therefore I >2
(since u, = 1), and m > 3. Moreover, ¥, = -+ (;—ux), which implies that
Um < +u < W+t = 4. Thus u, < uy4, and it follows that u, < uy44.
On the other hand, u,, > u;, hence u,, = u;1,, and we must have u, = uy4,.
Therefore (since / > 2) we have m = I+1. We have thus w = 2u—un
= wy— (U141 — W) = W—uj_; = U, wWhich implies that k = /[—2. Thus, if
the terms u, u;, and u,, of the Fibonacci sequence form an increasing arithme-
tic progression, we must have / > 2, k = /—2 and m = [41. On the other
hand, for any integer / > 1 the numbers u;_,, u;, and #;,; form an arithmetic
progression with the difference u;_,. If » were an integer > /41, we would
have n>1+2, hence u, > uy;. and w,—uyy = Uppo—Uyg = Wy > 4,
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(since I > 2). It follows that there are no four terms of the Fibonacci sequence
which form an arithmetic progression.

65*. We know [27, p. 279, problem 3] that if m is a positive integer,
then the remainders of dividing successive terms of the Fibonacci sequence
by m form a periodic sequence with pure period. For m = 2,3,4,5,6,7,
the remainders upon dividing the terms of the Fibonacci sequence by m
are respectively (we show here only first few remainders, and not all of

them):

form=2:1,1,0,..

form=3:l,1,2,0, .y
form=4:1,1,2,3,1,0, ...,
form=5:1,1,2,3,0,3,3,1,4, ...,
form=6:1,1,2,3,5,2,1,3,4,1,5,0, ...,

form=17:1,1,2,3,5,1,6,0,6,6,5,4, ....

Since for every positive integer m < 7 all possible remainders modulo m
appear in the above sequences, we see that each of the arithmetic progressions
with the difference m < 7 contains infinitely many terms of the Fibonacci
sequence.

We shall show now that the progression 8k+4 (k =0, 1, 2, ...) does not
contain any term of the Fibonacci sequence.

Since uy =u, =1 and u,,, = u,+u,., for n=1,2, ..., we easily see
that the numbers u,, u,, ..., u;4 give the following remainders upon dividing
by 8:

1.1,2,3,5,0,5,5,2,7,1,0,1, 1.

It follows that 8|u;3—u; and 8|u;4—u,. Thus, for n= 1 we have 8|u,; 12—ty
and 8|up13—Unyy -

Suppose now that these two formulas hold for some positive integers n.
We have then 8|12+ #ns13— (Un+Un+1) OT 8|thyy14—Uny2 (SINCE 8|thns13—Unsr).
It follows by induction that 8|u,,;,—u, for n =1, 2, ..., which shows that
the sequence of consecutive remainders modulo 8 of the Fibonacci sequence
is periodic and has a pure twelve-term period.

From the first fourteen remainders modulo 8 we see that these remainders
may be only 0, 1, 2, 3, 5, and 7. Thus there are no remainders 4 or 6, which
implies that the progressions 8k+4 and 8k+6 do not contain any term
of the Fibonacci sequence. These are the progressions of integer terms with
the desired property, and with the least possible difference.
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66*. The progression 11k+4 (k =0,1,2,...) has the required prop-
erty. As in the solution of Problem 65, we prove by an easy induction
that 11|ups10—u, for n =1, 2, .... It follows that the sequence of remainders
modulo 11 of the Fibonacci sequence is periodic, with period 10; we easily
find this sequence to be 1,1,2,3,5,8,2,10,1,0, .... The number 4 (and
also 6,7, and 9) does not appear in this sequence.

67. Suppose that we have n terms of our progression
ak,+b, ak,+b, ..., ak,+b,

which are pairwise relatively prime (for n =1 we can put k, =1).
Let m = (ak,+b)(ak,+b) ... (ak,+b). From Problem 62* it follows that
there exists a positive integer k,4; such that (ak,,+b, m)=1, hence
(akps1+b, aki+b) =1 for i = 1,2, ..., n. The numbers

ak1+bs ak2+b’ LEXE) akn+b, akn+l+b

are therefore pairwise relatively prime. Thus we defined by induction the
infinite sequence ki, k2, ... such that the sequence ak;+b (i=1,2,...)
contains only relatively prime terms of the original arithmetic progression.

68*. Let d= (a,a+b). Thus we have a=da,, at+b =dc, where
(@,c)=1 and ¢ >1 (since d<a, while dc = a+b >a). In view of
(a1, ¢) = 1 and of Euler’s theorem, we have ¢#%) = 1(mod a;), hence ¢"#@
= 1 (mod a,) for integer n. Therefore ¢™@—1 = t,a; with some positive
integer ¢, which (since ¢ > 1 and » is arbitrarily large) can be made arbitrarily
large. Moreover, we have

a(ct,2+1)+b = dayct,+dc = dcw@n+1,

The term a(ct,+1)+b of our progression (which can be arbitrarily large)
has therefore those and only those prime divisors which are the prime divisors
of the number dc > 1. Thus, in our progression there exist infinitely many
terms with the same set of prime divisors, which was to be proved (see
Pélya [14]).

69. From the theorem of Lejeune-Dirichlet it immediately follows
that the theorem is true for s = 1. Suppose now that the theorem is
true for some positive integer s. Thus, if (a, b) = 1, then there exists
a number ko, such that ak,+b = ¢q,¢, ... g5, where g, < g, < ... < g, are
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primes. By the theorem of Lejeune-Dirichlet, there exist infinitely many

integers k such that ak+1 =g is a prime > g,. For t = q\¢, ... g;k+k,
we get

at+b = qi1q, ... gsak+ako+b = 14> ... gs(ak+1) = q1q; ... ¢sq.

Therefore the theorem is true for s+41. By induction it follows that the
theorem is true for every positive integer s, which was to be proved.

70. If p is a prime, then one of the numbers p, p+10, and p+20 must
be divisible by 3 (since p+10 = p+1 (mod 3) and p+20 = p42 (mod 3),
and out of every three consecutive integers, one must be divisible by 3). Thus,
if all our numbers are primes, then one of them, hence the least, must
be equal to 3 and we have p =3, p+10 = 13, p+20 = 23. Therefore
there exists only one arithmetic progression of difference 10 consisting of
three primes, namely 3, 13, 23. We show easily that there is no arithmetic
sequence of difference 10 consisting of four (or more) primes since if p, p+10,
p+20, and p+30 were primes, then, as we showed, we would have p = 3,
while p+30 = 33 = 311 is not a prime.

ReMARK. From a certain conjecture of A. Schinzel concerning primes ([22])
it follows that there exist infinitely many primes p such that p+10 is also
a prime, for instance 7 and 17, 13 and 23, 19 and 29, 31 and 41, 37 and 47,
61 and 71, 73 and 83, 79 and 89.

71. There are no such progressions since one of the numbers p, p+100,
and p+200 must be divisible by 3, and if these numbers are primes, then
p = 3. But in this case p4-200 = 203 = 7 - 29 is composite.

REMARK. In a similar way we show that there are no progressions with
difference 1000 formed of three or more primes since 1003 = 17 - 53 is com-
posite. On the other hand, from a conjecture of A. Schinzel ([22]) it follows
that there are infinitely many primes p such that p+41000 is also a prime,
such as 13 and 1013, 19 and 1019, 31 and 1031, 61 and 1061, 97 and 1097,
103 and 1103, 1039 and 2039.

72*. If the difference of our progression were odd, then every second
term of our progression would be even, which is impossible if our progression
is to be formed of ten primes. Thus, the difference must be even. If the first
term were equal 2, then the next term would be even, and hence composite.
Therefore the first term of our progression is an odd prime, and it follows
that all terms must be odd primes. We shall use the following theorem due
essentially to M. Cantor: If n terms of an arithmetic progression are odd
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primes, then the difference of the progression is divisible by every prime < n
(see, for instance, [37, p. 121, theorem 5]). It follows, for n = 10, that the
difference of our progression must be divisible by 2, 3, 5, and 7, hence
by 210. We shall try first to find an arithmetic progression with the difference
210 formed of 10 primes.

Since the number 210 (the difference of our progression) is divisible by
2,3, 5, and 7, the first term cannot be equal to any of these primes. It cannot
be equal to 11 since in this case the second term would be 221 = 13- 17.
Thus the first term of the progression is > 11, and none of the terms is
divisible by 11. The remainder of 210 upon division by 11 equals 1. If the
first term would give the remainder > 1 upon dividing by 11, then with
every next term this remainder would increase by 1, and one of the terms of
the sequence would be divisible by 11, which is impossible. Therefore the
first term of the sequence must give the remainder 1 upon dividing by 11,
and being odd, it must be of the form 22k+-1, where & is a positive integer.
The successive primes of this form are 23, 67, 89, 199, ....

The first term cannot be 23 since then the sixth term would be 1073
= 29 - 37. If the first term were 67, then the fourth term would be 697
= 17-41. If the first term were 87, then the second term would be 229
= 13- 23. If, however, the first term is 199, then we obtain a progression
of ten successive primes

199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089.

Thus we found a progression with difference 210 formed of ten primes.

Suppose now that we have an increasing arithmetic progression formed of
ten primes, with the difference r other that 210. Then r must be divisible
by 210 (by the theorem of Cantor) and different from 210, hence r > 420.
In this case, however, the second term of our progression would exceed 420,
hence it would exceed the second term 409 of the progression which we
found, and obviously, the next terms would also exceed the terms of the
progression which we found. Thus, the progression with first term 199
and difference 210 is the ten-term increasing progression formed of primes
with the least possible last term.

ReMARK. The longest increasing arithmetic progression formed of primes
known up to date is the progression of thirteen terms with the first term
4943 and difference 60060 found by W. N. Seredinsky from Moscow. From
a conjecture of A. Schinzel concerning primes it follows that there exist
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infinitely many progressions with difference 30030 formed of thirteen primes
(see [22, p. 191, C,,4]). However, no such progression has been found as yet.

73. For instance, the progression 30k+7 (k=1,2,3,...) has the
required property. Indeed, if we had 30k+7 = p+gq, then in view of the
fact that 30k+7 is odd, one of the numbers p and ¢ would be even, and
equal to 2 as a prime. Suppose ¢ = 2; then p = 30k+5 = 5(6k+1) which
is impossible if p is to be a prime. If 30k-+7 = p—gq, where p and ¢ are
primes, then we would have ¢ = 2 and p = 30k+9 = 3(10k-+3) which is
also impossible.

REMARK. One can prove (but the proof is difficult) that there exist in-
finitely many even numbers which can be represented both as sums and
as differences of two primes. From a certain conjecture of A. Schinzel con-
cerning primes it follows that there exist infinitely many odd numbers which
are both sums and differences of two primes. See Sierpinski [34].

IV. PRIME AND COMPOSITE NUMBERS

74. 1t suffices to take p=3, ¢g=S5. If nis even and > 6, then we
have n—1> 6, and p < g <n—1. The numbers n—p = n—3 and n—gq
= n—>5 as consecutive odd numbers are relatively prime.

75. There is only one such prime, namely 5. In fact, suppose that the
prime r can be represented both as a sum and as a difference of two primes.
We must have obviously r > 2, hence r is an odd prime. Being both a sum
and a difference of two primes, one of them must be even, hence equal 2.
Thus we must have r = p4-2 = g—2, where p and ¢q are primes. In this
case, however, p,r = p+2, and g = r+2 would be three consecutive odd
primes, and there is only one such a triplet: 3, 5, and 7 (since out of every
three consecutive odd numbers one must be d1V1S1ble by 3). We have there-
forer=5=34+2=7-2.

76. n=113,139, 181; m = 20, 51, 62.

77. By the well-known Fermat theorem, every prime of the form 4k--1
is a sum of squares of two positive integers (see, for instance, [37, p. 205,
Theorem 9]). Thus, if p is a prime of the form 4k+1, then we have p = a*-+b?,
where a and b are positive integers (of course different since p is odd). Assume,
for instance, @ > b. Then p* = (a*—b*)?*+(2ab)?, hence p is a hypotenuse
of a rectangular triangle whose two other sides are a*—b* and 2ab. We
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have, for example, 5 = 32+4%, 132 = 524122, 17> = 1524-8?%, 29> = 212+
~+20%

78. 13241 =7*+11%, 17%+1 = 112413%, 23241 = 132419, 31241
= 1124-29%

ReEMARK. The identity (5x+413)>+1 = (3x+7)*+(4x+1)*> shows that
if p = 5x+13, ¢ = 3x+7, and r = 4x+1 are primes, then p*+1 = g*+r2
From a certain conjecture of A. Schinzel concerning primes ([22]) it follows
that there are infinitely many such systems of primes.

79. Note first thatif p, ¢, r, s, and ¢ are primes and g*>+¢* = r2+s*+12%,
then each of the numbers p and g must be different from each of the numbers
r, s, and ¢. In fact, if we had, for instance, p = r, then we would also have
g* = s*+t* which is impossible since this equation cannot have solution
in primes g, s, and ¢. Indeed, the numbers s and ¢ could not be both odd nor
could they be both even (since in this case we would have g = 2, which is
impossible in view of the fact that the right-hand side is > 4). If we had
s = 2, then the number 4 would be a difference of two squares of positive
integers which is impossible.

If p*+q* = r*-+s*+£2, then it is not possible that all numbers p, g, r, s, ¢
are odd. If p is even, then p = 2, and the numbers ¢, r, s, ¢ are odd. Since
the square of an odd number gives the remainder 1 upon dividing by 8,
the left-hand side would give the remainder 5, and the right-hand side would
give the remainder 3, which is impossible. If both p and g are odd, then
the left-hand side gives the remainder 2 upon dividing by 8, while on the
right-hand side one (and only one) of the numbers must be even, for instance
r = 2. Then, however, the right-hand side would give the remainder 6
upon dividing by 8, which is impossible.

80*. We present the solution found by A. Schinzel. There is only one
solution, namely p = g = 2, r = 3. To see that, we shall find all solutions

of the equation p(p+1)+g(g+1) = n(n+1) where p and g are primes and
n is a positive integer. Our equation yields

p(p+1) = n(n+1)—g(g+1) = (n—q)(n+q+1),
and we must have n > ¢. Since p is a prime, we have either pjn—gq or
pin+q+1. If pln—q, then we have p < n—gq, which implies p(p-+1)

< (n—q)(n—g+1), and therefore n+q-+1 < n—qg-+1, which is impossible.
Thus we have p|n+g-+1, which means that for some positive integer k

n+qg+1=kp, whichimplies p+1 = k(n—gq). 0
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If we had k = 1, then n+9+1 = p and p+1 = n—gq, which gives p—gq
= n+1 and p+¢g = n+1, which is impossible. Thus, £ > 1. From (1) we
easily obtain

29 = (n+q)—@n—q) = kp—1—(n—q)
= k[k(n—q)—1]—1—(n—q) = (k+1)[(k—1)(n—g)—1].

Since k > 2, we have k+1 > 3. The last equality, whose left-hand side has
positive integer divisors 1,2, g, and 2g only, implies that either k41 = ¢
ork+1 = 2q.If k41 = q, then (k—1)(n—q) = 3, hence (g—2)(n—q) = 3.
This leads to eitherg—2 = 1,n—q = 3, thatisq=3,n =6,k = qg—1 = 2,
and, in view of (1), p = 5, or else, g—2 = 3, n—g = 1, which gives g = 5,
n==6, k=4, and in view of (1), p = 3.

On the other hand, if k41 =2q, then (k—1)(n—k) =2, hence
2(qg—1)(n—q) = 2. Thisleadstog—1 =1landn—g=1,0orqg=2,n=3,
and, in view of (1), p = 2. Thus, for positive integers n, we have the
following solutions in primes p and q: 1) p=¢q=2,n=3;2) p=35,
g=3,n=6,and 3) p=3, ¢g=15, n= 6. Only in the first solution all
three numbers are primes.

REMARK. If we denote by ¢, = in(n+1) the nth triangular number,
then we can express the above theorem as follows: the equation t,+-7, = ¢,
has only one solution in prime numbers, namely p = g =2, r = 3.

81*. Such numbers are, for instance, p = 127, ¢ = 3697, r = 5527. It
is easy to check (for instance, in the tables of prime numbers) that these
numbers are primes, and that the numbers p(p+1), ¢g(¢+1), and r(r+1)
form an arithmetic progression. We shall present a method of finding such
numbers.

From the identity

n(n+1)+(41n+20)(41n+21) = 2(29n+14)(29n+15)
it follows that for a positive integer n, the numbers
n(n+1), (297+14)(29n+15), and (41n+4-20)(41n+21)

form an arithmetic progression. If for some positive integer n the numbers
n, 29n--14, and 41n+-20 were all primes, we would have found a solution.
Thus, we ought to take consecutive odd primes for » and check whether the
numbers 297+ 14 and 41n-+20 are primes.
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The least such number is n = 127 which leads to the above solution.
We cannot claim, however, that in this manner we obtain all triplets of
primes with the required properties.

ReMARK. From a certain conjecture of A. Schinzel concerning primes
([22)) it follows that there exist infinitely many primes n such that the
numbers 291414 and 41n+20 are also primes.

The above problem may be expressed as follows: find three triangular
numbers with prime indices, which form an increasing arithmetic progression.

82. There is only one such positive integer, namely n = 4. In fact, for
n = 1, the number n+3 = 4 is composite; for n = 2, the number n+7 =9
is composite; for n = 3, the number n+1 = 4 is composite; and for n > 4,
all our numbers exceed 5, and at least one of them is divisible by 5. The
last property follows from the fact that the numbers 1, 3, 7,9, 13, and 15
give upon dividing by 5 the remainders 1, 3,2, 4, 3, and 0, hence all possible
remainders. Thus, the numbers n+1, n+43, n+7, n+9, n+13, and n+15
give also all possible remainders upon dividing by 5; therefore at least one
of them is divisible by 5, and as > 5, is composite. On the other hand,
for n = 4 we get the prime numbers 5,7, 11, 13,17, and 19.

ReMARK. From a certain conjecture of A. Schinzel concerning the prime
numbers ([22]) it follows that there exist infinitely many positive integers
n such that each of the numbers n+1, n+3, n+7, n+9, and n+13 is
a prime. This is, for instance, the case where n =4, 10, 100. See also
Sierpinski [33, p. 319, P,].

83. 2= 1%41% 17 = 1*4-2% 97 = 24434, 257 = 1*4-4%, 641 = 2%+ 5%

RemMARk. From a certain conjecture of A. Schinzel concerning primes ([22])
it follows that there exist infinitely many primes which can be represented as
sums of two fourth powers on positive integers, and, generally, for every

positive integers n there exist infinitely many primes of the form a*"+5*'
where a and b are positive integers.

84. Let p; denote the kth prime, and for positive integer , let py, be the
largest prime < 6m+41. Since the numbers 6n-+2 = 2(3n+1), 6n+3
= 3(2n+1), and 6n-+4 = 2(3n+-2) are composite, we have py .1 = 6n+5,
and pg,+1—px, = (6n+5)+(6n+1) = 4, hence the primes py, and py, 41 are
not twin primes. Since py 4y > 6n+5, and n can be arbitrary, there are
infinitely many such numbers P, and p; 1. Note, however, that in the
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pair py , px,+1 the number p,, may be the larger of a pair of twin primes,
and p;_+, may be the smaller in another pair of twin primes. Thus, forn =1,
we get p, = 7, which is the larger in the pair 5, 7 of twin primes, and Pr+1
= 11, which is the smaller in the pair 11, 13. For n = 2, we get P, = 13,
which is the larger in the pair 11, 13, while p,_,; = 17, which is the smaller
in the pair 17,19. For n =17, we get p, = 103 = 6 - 1741, which is
the larger in the pair 101, 103, while p;_,; = 107, which is the smaller
in the pair 107, 109.

85. By the theorem of Lejeune-Dirichlet on arithmetic progressions,
there exist infinitely many primes in the progression 15k+7 (k =1, 2, ...).
None of these numbers can belong to a pair of twin primes since (15k+7)-4-2
= 3(5k+3), and (15k+47)—2 = 5(3k+1) are composite (since k > 0).

86. If for a positive integer n the number n®>—1 is a product of three
different primes, then (in view of 22—1 = 3) we have n > 2. Next, in view
of the identity n*—1 = (n—1)(n+1), the number #n must be even since
otherwise the factors on the right-hand side would be even, and 2%|n*—1.
Moreover, the numbers n—1 and n41 (which are both > 1 since n > 2)
cannot be both composite since in this case n*—1 could not be a product
of three different primes. Thus, one of the numbers n—1 and n+1 must
be a prime, and the other one must be a product of two primes. For n = 4,
we get n—1 =3, n4+1 =35, and this condition is not satisfied. Similarly,
for n=6, we get n—1 =35, nt+1=7; for n=28, we have n—1 =17,
n+1 =9 = 3% For n = 10, we have n—1 = 3%, and for n = 12 we have
n—1=11,n+1 = 13. Forn = 14, we have n—1 = 13,n+1=15=3-5.
Thus, the least positive integer n for which n*—1 is a product of three dif-
ferent primes is n = 14, for which n2—1=13-5-13. Since 16*—1=3-5-17,
we see that the next number which satisfies the required property is
n = 16. Now, 18°—1 = 1719, 20°—~1=19-21 = 3-7-19, and the third
such number is n = 20. Next, 22>—1 = 3-7-23, and the fourth of the
‘required numbers is n = 22. Continuing in this way we find easily the fifth
such number to be n = 32, for which 322—1 = 3 - 11 - 31. Thus, the first
five integers n for which n*—1 is a product of three different primes are
14, 16, 20, 22, and 32.

ReMARK. From a certain conjecture of A. Schinzel concerning primes
([22)) it follows that there are infinitely many such numbers #. More generally,
for every s > 1 there exist infinitely many positive integers n such that
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n*—1 is a product of s different primes. Obviously, for s = 2 the numbers
n—1 and n+1 form then a pair of twin primes.

87. The five least positive integers n for which n’+1 is a product
of three different primes are n = 13, 17,21, 23, and 27. We have 13241
=2-5-17, 17+1=2-5:29, 21?41 =2-13-17, 23>°4+1=2-5-53.
For n = 112, we have 112241 =5-13-193.

REMARK. From a certain conjecture of A. Schinzel concerning primes
([22)) it follows that for every s there exist infinitely many positive integers
n such that n>+1 is a product of s different primes. '

88*. Suppose that each of the numbers », n+1, and n-+2, where
n > 7, has only one prime divisor. None of these numbers is divisible by 6,
which implies that n must be of the form 6k-+1, 6k+2 or 6k-3, where k is
a positive integer.

If n = 6k+1, then the number 6k+2, being even and having only one
prime divisor, must be of the form 2™; now, since n > 7 which implies
6k+2 = n-+1 > 8, the number m must be > 3. The number n+2 = 6k+3
is divisible by 3, and if it has only one prime divisor, it must be of the form
3%, Since 6k+3 = n+3 > 9, the number s must be > 2. Moreover, we have
3°*—2" = 1; this equation, however, has only two integer solutions, namely
s=m=1and s = 2, m = 3 (see Problem 185).

If n = 6k+2, then n = 2™ and n+1 = 6k+3 = 3° where m > 2 (since
n > 6). We get 3°*—2™ = 1, which is impossible for m > 3.

Finally, if n = 6k+-3, then n = 3°, n4+1 = 2™ and in view of n > 7 we
get s = 2, m > 3, while the equation 2™—3° = 1 has only one integer solu-
tion, namely m = 2, s = 1 (see Problem 184).

Thus, the assumption that for integer » > 7 none of the numbers n, n+1,
and n-+2 has more than one prime divisor led to a contradiction. On the
other hand, for n = 7 we have n+1 = 2%, n+2 = 3%, and each of the numbers
n, n+1, and n+2 has only one prime divisor.

89. n=133 (n=3-11,n+1=2-17,n4+2=15'7),
n=285 (n=>517,n+1=2-43, n+2 = 3.29),
n=93 (n=23-31,n+1=2:47,n+2=5-19),
n=141 (n =3-47, n+1 =271, n+2 = 11-13),
n=201 (n=3-67,n+1=2-101, n+2 = 7-29).
There are no four consecutive positive integers such that each of them is
a product of two different primes since out of each four consecutive numbers
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one must be divisible by 4. An example of four consecutive positive integers
such that each of them has exactly two different prime divisors are numbers
33 =23-11,34 =2-17,35 = 5-7, 36 = 2*-32,

ReMARK. We cannot prove that there exist infinitely many positive in-
tegers n such that each of the numbers n, n+1, and n+2is a product of two
different primes; this follows from a certain conjecture of A. Schinzel con-
cerning primes. See [22, p. 197, consequence C;].

90. Suppose that there exist infinitely many positive integers » such that
both n and n-+1 have only one prime divisor. We can assume » > 1, and
since one of the numbers n and n4-1 is even and the other odd, we must
have for some odd prime p the relation p*—2™ = +1 where k and m are
positive integers. Thus we get p* = 2"+L1. Since a Mersenne number > 1
cannot be equal to a power with exponent > 1 of any prime (see [37, p. 335,
theorem 2]), in the case p* = 2"—1 we must have k =1, and 2"—1=p is
a Mersenne prime number. ‘

On the other hand, if p* = 2™+1, then either k = 1, in which case p
= 2™+1 is either equal to 3 or (if m > 1) is a Fermat prime, or else we
have k > 1 in which case we get 2™ = p*—1 = (p—1) (p* 1 4-p* 24 ... +1).
Since the left-hand side is even, the number £k must be even; thus k = 2/,
where [ is a positive integer, and we have 2™ = (p'—1) (p'+1). Therefore
the numbers p'—1 and p'+1 are powers of 2 which differ by 2, which implies
that pP—1 =2, p'+1 =4, hence p' =3, and p =3,2" =24 =8, and m
= 3, which yields 32 = 2°+1. '

We proved therefore that if for » > 8 the numbers n and n+1 have one
prime divisor each, then either » is a Mersenne prime or n-+-1 is a Fermat
prime.

Conversely, if M,, = 2™—1 is a Mersenne prime, then the numbers M,,
and M,,+1 = 2™ have one prime divisor each. If F; = 2211 is a Fermat

prime, then each of the numbers F—1 = 22 and F; has one prime divisor
each, which completes the proof of our theorem. See [26, p. 209].

ReMARK. Up to date we know only 29 positive integers » such that n
and n-+1 have one prime divisor each. The least five are n = 2, 3, 4, 7, 8,
and the largest of them is n = 212131,

91. We have 22—1 =3, 2°—1 =35 and 2*—1 = (2*—1) (2*+1). If
for n = 2k > 4 the number 2%*—1 were equal to the product of two primes,
then the numbers 2*—1 and 241 would have to be primes. Since these
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numbers are consecutive odd numbers, we must have 2—1 < 5, hence & < 2.
In view of k > 1, we must have k = 2, contrary to the assumption that
k > 2. Therefore the numbers 2"—1 are, for » even and > 4, equal to the
product of at least three natural numbers.

For odd n, we have 2°—1 =17, 2°—1 =31, 2'—1 = 127, 2°—1 = 7-73,
211 = 23-89, 2!3—1 = 8191, which is a prime, 2"°—1 = 7-31-151, the
numbers 2'7—1 and 2'°—1 are primes, and 23'—1 = 7-127-337, while 223—1
is already > 10° Thus, all positive integers of the form 2"—1 which are
< 10% and which are equal to the product of two primes are 2*—1 = 3.5,
2°>—1=7-73 and 2""—1 = 23-89.

ReMARK. The Mersenne numbers exceeding million which are known to be
the product of two different primes are numbers M, =2"—1forn= 23, 37,
49, 67, and 101. We do not know whether there are infinitely many such
numbers.

92. Since k > 3, we have pip, ... px = p1p2p3 = 2:3:5 > 6, and in view-
of Problem 47, we have p,p, ... px = a-+b where a and b are > 1 and rel-
atively prime, hence also prime with respect to the product p;p, ... px. Since
a and b are > 1, they have different prime divisors; let p|a, ¢|b, and suppose
that p < q. Since (p, p1p> ... px) = 1, we have p = p.,;, and in view of
g > p, also q > pyy,. Therefore p+q < a+b and we have pyii+pess <
< p1p: -.- Px» Which was to be proved.

93. Let m denote an arbitrary integer > 3, and let # be an integer such
that n > p,p, ... pn. Then there exists an integer kK = m > 4 such that

PiP2 o D SN < P12 oo DiPrt- (1

If we had g, = pri1+1 > piy1, then in view of the definition of the number
qa> €ach of the numbers py, ps, ..., pxs1 Would be a divisor of n, hence »
== p1Pa -.- Dry1 contrary to (1).

We have therefore ¢, < pii1+1 < pi+pi+1 and, in view of k > 4 and
Problem 92, we get ¢, < p,p> ... px—; Which gives, using (1), the relation
n Pk k m
We proved that for arbitrary m > 3 for n > p,p, ... pn We have g,/n < 1/m
which shows that the ratio g,/n tends to zero as n tends to infinity, which

was to be shown.
94. Let n be an integer >> 4. We have cither n = 2k where £k > 2 or
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n =2k+1 where k > 1. If n = 2k, where k > 2, then by Chebyshev’s
theorem there exists a prime p such that k < p < 2k, and we have p > 2
since p > k > 2. Thus n = 2k < 2p < 4k = 2n, and in view of p > 2, the
number 2p is a product of two different primes, and n <2p < 2n. If n
= 2k+1 where k > 2, then by Chebyshev’s theorem there exists a prime p
such that Kk <p < 2k, hence 3<k+1<p <2k and n=2k+1 < 2k+
+2 < 2p < 4k < 4k+2 = 2n, and again we have n < 2p < 2n, while 2p is
a product of two different primes.

Let now n be an integer > 15. If n = 16, 17, ..., 29, then the number 30
= 2-3-5 lies between n and 2n. We can therefore assume that » > 30. We
have then n = 6k-r, where k is an integer > 5, and r is the remainder
obtained from dividing n by 6, i.e. r satisfies the inequality 0 < r < 5. By
Chebyshev’s theorem, there exists a prime p such that k& < p < 2k, hence
p>5and k+1<p < 2k. It follows that n = 6k+r < 6(k+1) < 2-3-p
< 12k < 2n, hence n < 2-3-p < 2n, and 2-3-p is a product of three dif-
ferent primes.

95. Let p, denote the kth consecutive prime, and let s be an arbitrary in-
teger > 1. Let n > p;p, ... ps. We shall show that between n and 2n there
exists at least one positive integer which is a product of s different primes.

Let n=kp,p,... ps.y+r, where r is the remainder of dividing n by
PiDa ... Ps—1, hence, in view of n > p;p, ... ps, we have k > p, and 0 < r
< piP2 ... Ps-1. By the Chebyshev theorem, there exists a prime p such
that kK < p < 2k, hence p > p, and k+1 < p < 2k. It follows that n =
PP .. Psak+r < pips ... ps1tk+1) < p1pa ... psap < 2p1p3 ... Ps1k < 2n,
hencen < pyp; ... ps_1p < 2n. The number p,p, ... ps_1p s, in view of p > p;,
equal to the product of s different primes.

REMARK. An elementary proof of the Chebyshev theorem is given in
Sierpinski [37, p. 137, theorem §).

96. We easily check that the nth term of our sequence equals to 1(10"—7).
We have 10> = 15 = —2 (mod 17), hence 10® = 16 = —1 (mod 17). Thus
10°= —10= 7 (mod 17), and since 10 =1 (mod 17), we get 106+
= 7 (mod 17) for k =0, 1, 2, ... . Thus 17|3(10'%+°—7), and since the num-
bers $(10!%+°—7) for k =0,1,2, ... are > }(10°—7) > 17, they are all
composite.

As it was checked by A. Makowski in the tables of primes, the numbers
3(10"—7) are primes forn =1, 2, 3, 4, 5, 6, 7, and 8. The least composite
number of this form is therefore $(10°—7) = 333333331.
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The problem arises whether there are other composite numbers of the
considered form, besides those which we found. We have 10? = 5 (mod 19),
hence 10* = 25 = 6 (mod 19) and 10> = 6® = 7 (mod 19), and since 10'%
= 1 (mod 19), we get 19|3(10'%*+12—7) for k=0, 1, 2, .... Thus, for in-
stance, the number 4(10'>—7) is composite. We do not know, however,
whether there are other primes of this form besides the ones which were
given above, and if so, whether there are infinitely many of them.

97. The number n = 5, since 1442* =17, 2443% = 97, 34444 = 337,
and 4%4-5* = 881 are primes, while 5*+6* = 1921 = 17-113.

98. All numbers of the form 10%+443, where £k =0, 1, 2, ..., are com-
posite since they are divisible by 7. In fact, we have 10* = 4 (mod 7), and by
the Fermat theorem, 10° = 1 (mod 7). Thus, for integer & we have 10%+443
= 10*+3 = 443 = 0 (mod 7).

REMARK. We do not know whether among numbers of the form 103
for n =1, 2, ... there exist infinitely many primes. Such numbers are prime
for n =1 and n = 2, but are composite for n = 3 and n = 4 (since 1003
= 17-59 and 7|10*4-3).

99. For integer n we have the identity
24n+2_[_1 —_ (22n+1__2n+1+1) (22n+1+2n+1+1). | (1)

Since 5/224-1|2%+24+1 and for integer » > 1 we have 22*+1_2"+1 1]
= 2"1(2"—1)+1 > 2%-341 = 25, it follows that at least one of the factors
on the right-hand side is divisible by 5, and (for » > 1) upon division by 5
it gives the ratio exceeding one. Therefore L(2*"+241) is, for n=1,2,...,
equal to the product of two integers > 1, hence is composite. - '

100. Let m be an arbitrary integer > 1, and let n = m!-+k, where k
=2,3,...,m. We have k < m!+k and k|m!+-k, hence 2¥—1 < 2m!+k_1
and 2¥—1|2™+*—1, Thus the numbers 2™!+*—1 are composite for k = 2, 3, ...
..., m, hence for m—1 consecutive terms of the sequence 2"—1.

101. In order to obtain a prime from number 200, one has to change its
last digit into an odd number. We have, however, 3|201, 7|203, 5|205, 3/207,
and 11|209. Thus, by changing only one d1g1t one cannot obtain a prime
from number 200.

ReEMARK. We do not know whether, by changing two digits, one can
obtain a prime out of every number. On the other hand, it is easy to prove
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that there exist infinitely many positive integers n such that no change of
its (decimal) digit would result in a prime. For instance, for » = 2310k—210
(where k = 1, 2, ...) we would have to change its last digit (that is, 0), (ob-
viously, to one of the numbers 1, 3, 7 or 9) while it is easy to see that 11|n+-1,
3|n+3, 7\n+7 and 3|n+9.

102. Suppose that the theorem T is true. Theorem T, is obviously true
for n = 2 and n = 3. Assume that » is an integer > 3. If n is even, that is,
n = 2k, then, in view of n > 3, we have k£ > 1 and by theorem T there
exists a prime p such that k¥ < p < 2k, hence p < n < 2p, and p divides
only one factor in the product n! =1 ... n. If n = 2k+1 where (in view of
n > 1), k is an integer > 1, then by theorem T there exists a prime p such
that k < p < 2k < m, hence k+1 < p which implies 2k+1 <2pand p < n
< 2p. As before, p enters in the expansion of n! into primes with exponent 1.
We showed, therefore, that T implies T;.

Suppose now that T; holds, and let » denote an integer > 1. By theorem
T,, there exists a prime p which enters in the expansion of (2r)! into primes
with the exponent 1. We have, therefore p < 2n < 2p (since if we had 2p
< 2n, then in the product (2n)! = 1:2- ... - (2n—1)2n we would have factors
p and 2p, and p would enter with the exponent > 2 contrary to theorem T,).
We have, therefore, # < p < 2n (since, in view of n > 1, the equation p = 2n
is impossible for prime p). Thus, theorem T follows from theorem T, which
shows that T and T, are equivalent.

103. In the expansion of 11! into primes, the primes 7 and 11 enter ob-
viously with exponents 1. We may, therefore, assume that n > 11, which
implies in the case n = 2k, as well as in the case n = 2k+1, that k > 5. By
the theorem we are going to use, there exist two primes p, and ¢ > p such
that k < p < ¢ < 2k. We obtain therefore at least p < g <n, and p > k-+
+1, which implies 2¢ > 2p > n. Thus, both prlmes p and q enter in the ex-
pansion of n! with exponent 1.

As regards the number 10!, only the prime 7 enters its expansion with
exponent 1.

104. Letnbe a given positive integer. By the theorem of Lejeune-Dirichlet
on arithmetic progressions, there exists a prime of the form p = 6"k
+2-32"7'—1, where k is a positive integer. It follows (in view of 2" > n
for positive integer n), that 3"|p+41, and the number p+1 has more than n
different positive integer divisors (for instance, 1, 3, 3%, ..., 3"). On the other
hand, by Euler’s theorem we have 3*®" = 1 (mod 2"), hence 2°|3%"'—1,
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which implies that 2"|p—1 and the number p—1 has more than » different
positive integer divisors (for instance, 1, 2, 2%, ..., 2").

105. p = 131. We have here p—1 = 2:5-13 and p+1 = 2%:3-11.

106*. Let n be a given positive integer, and let p; denote the ith prime.
By the Chinese remainder theorem, there exists a positive integer b
such that b= 1(modp,p,... ps), b= —1 (mod pps1Pni2 -.. o) and b
= —2 (mod pn1P2n42 -+ Pan)

We have (b, p1p> ... pss) = 1, and by the theorem of Dirichlet, there exists
a positive integer k such that the number p = p;p, ... p3,k+b is a prime.
We shall have then

DiD2 .. PulP—1,  Pui1Pniz - Paulp+1, and  papiiPaniz - Panlp+2,

hence each of the numbers p—1, p+1, and p+2 has at least »n different
prime divisors.’

107. Let p, denote the kth prime. For positive integer n, s and m, write
a; = P:j—l)a+1p(sj—l)n+2 “es pjn fOl’ j = l, 2, e g m.

We have (a;,a;) =1 for 1 <i<j<m, and by the Chinese remainder
theorem, there exists a positive integer x such that

x=—j(moda) for j=12,..,m.

Thus we have a;|x-+j for j = 1,2, ..., m, which implies that each of the
numbers x+j (j= 1,2, ..., m) has at least m different prime divisors, each
of these divisors appearing in at least sth power. Therefore the sequence
x+1, x+2, ..., x+m satisfies the required conditions.

108. If for a positive integer m the number m! is divisible by a prime p,
then p must divide at least one of the factors in the product m! = 1-2- ... -m,
hence we must have p << m. Thus, if m! is divisible by an integer n > m,
then n must be composite. It follows that if for some integer » > 1 the num-
ber (n—1)! were divisible by n or n+2, then » or n+2 would be composite.
Thus, the condition is necessary.

Suppose now that for an odd » > 1 the number (n—1)! is not divisible by
n or n+2. We shall show that the numbers » and n--2 are primes. It suffices
to assume that n > 7 since for n = 3 and n = 5 the numbers » and n+2 are
primes. If » were composite, we would have n = ab, where a and b are
positive integers < n, hence a < n—1 and b < n—1. Thus a and b would
appear as factors in the product (n—1)! =1:2- ... -(n—1). In case a # b,
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we would have n = ab|(n—1)!, contrary to the assumption. In case a = b,
we would have n = a%, and since »n is odd and > 1, a > 3, which implies
n = a* > 3a > 2a, hence 2a < n—1. Thus, a and 2a are different factors in
the product (n—1)! = 1-2- ... -(n—1), hence n = a*|(n—1)! contrary to the
assumption. Thus, 7 is a prime.

If the number n+2 were composite, we would have n+42 = ab, where a
and b are integers > 1. Since n is odd, the numbers a and b are odd, and
therefore > 3. Next, since n > 7, we have a < {(n+2) < 3(n—1), and we
have 2a < n—1. In a similar way we show that 2b << n—1. If qa and b are
different, then they appear as different factors in the product 1-2- ... -(n—1)
= (n—1)!, which implies that #-+2 = ab|(n—1)!, contrary to the assumption.
If a = b, then a and 2b are different factors in the product (n—1)!, hence
n-+-2|2ab|(n—1)!, again contrary to the assumption.

The condition of the theorem is therefore sufficient.

109. Let m be a given positive integer. We have (10", 10"—1) =1 and,
by the theorem on arithmetic progression, there exists a positive integer k
such that p = 10"k+10™—1 is a prime. Obviously, the last m—1 digits of
this number are equal to 9, which implies that the sum of all digits of this
number is m.

ReMARK. A. Makowski noticed that the theorem remains valid for an
arbitrary scale of notation g > 1; for the proof, it suffices to replace in the
above proof the number 10 by g.

See Sierpinski [31], and Erdos [8].

We do not know if the sum of digits of a prime tends to infinity as the
prime increases.

110. Let m be a given positive integer. Since (10™+!,1) =1, by the
theorem on arithmetic progression, there exists a positive integer k such
that p = 10™+'k+-1 is a prime. The last m digits of the number p are, ob-
viously, m zeros and one. Thus, the prime p in decimal system has at least m
digits equal to zero, which was to be proved.

REMARK. We do not know whether for every positive integer m there
éxists a prime, which in decimal system has exactly m zeros. For m = 1, the
least such prime is 101; for m = 2, it is 1009,

111. If p is a prime, then the sum of all positive integer divisors of p*
equals 14+p+p*4-p*+4p* If 14+-p+p*4-p*+p* = n® where n is a positive in-
teger, then we have obviously (2p®>+p)® < (2n)* < (2p*+p+2)% and it



SOLUTIONS 61

follows that we must have (2n)* = (2p*+p-+1)®.. Thus, 4n* = 4p*+
+4p34-5p*+2p+1, and since 4n* = 4(p*+p*+p*+p+1), we have p>*—2p—
—3 = 0, which implies p|3, hence p = 3. If fact, for p = 3 we obtain 143+
+324-3°43* = 112. Thus, there exists only one prime p, namely p = 3,
satisfying the conditions of problem.

112. A prime number p has only two positive integer divisors, namely 1
and p. Thus, if the sum of all positive integer divisors of a prime p is equal
to the sth power of a positive integer n, then 1+4p = »®, which implies

p=n"—1= @m—1) @ +n*24 ... +1).

We have n > 1, and for s > 2 the first factor of the product on the right-
hand side is smaller than the second. We obtain therefore a representation
of a prime p into a product of two positive integer factors, the first of which
is smaller than the second. It follows that the first factor must be equal to
1, hence n—1 =1, or n = 2, and p = 2°—1. Thus, for every integer s > 2
there exists at most one prime satisfying the conditions of the problem, and
such a prime exists if and only if the number 2°—1 is a prime. For s = 2, we
obtain the number 3; for s = 3, the number 7; for s = 5, the number 31;
and for s = 7, the number 127. For s = 4, 6, 8, and 10, there are no such
primes since the numbers 2*—1 = 3-5, 2—1 = 32.7, 2—1 = 3-5-17 and
21°—1 = 3.11-31 are composite.

113. For primes p > 5, we have

p—1 _
2 < ) <p—1

which implies
(-1 = 2251 DI

If for a prime p > 5 and some positive integer m we had

(P—D!+1=p", ¢Y)
then we would have

(—1yp"—1
and dividing both sides by p—1 we would get

p—1p™4p" 2+ .. +p+1. ¥))
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However, p—1|p*—1, hence p* = 1 (mod p—1) for k =0, 1,2, ..., which
implies that p™~'4+p™-%+ ... +p+1 = m (mod p—1), and in view of (2), we
find p—1|m, hence m = p—1. We get, therefore,

p" PP > (p— 1P > (p—1)),

hence p™ > (p—1)!1+1, contrary to (1).

114. By the Liouville theorem (see Problem 113), if p is a prime > 5,
then we cannot have (p—1)!4+1 = p™ for positive integer m. The odd number
(p—D!+1 >1 has therefore an odd prime divisor g # p, and from
gl(p—1)'+1 it follows that ¢ > p—1, hence (in view of g # p), we have
g > p. Since p can be arbitrarily large, there exist infinitely many primes ¢
such that for some p < g we have g|(p—1)!+1, which was to be proved.

115*. We shall give the proof of A. Schinzel. Let a denote an arbitrary
positive integer, and let k be an integer # 1. Further, put k—1 = 2°h, where
2° is the highest power of 2 which divides k—1, and 4 is an odd number,

positive or negative. Choose a positive integer m so'that 2*" > a—k, and let
I denote an integer such that I > s, and I > m. If the number 2% +k > 22"+
+k > a were composite, we would have a composite number of the desired
form, and > a. Suppose then that the number p = 22 tkisa prime. In view
of I >s and k—1 = 2°h we get p—1 = 22'+k——1 = 2°h,, where h;, is odd
and > 0. By the Euler theorem we have 270 = 1 (mod A,), hence also (in
view of p—1 = 2%,) 25+#h) = 2° (mod p—1). Since /> s, we get 2/+eth
= 2! (mod p—1). By the Fermat theorem we obtain

229 Lk = 22 Lk = 0 (mod p),

and, in view of 2/+9%) > 2! we get
221+¢("x)+k > 22’+’é = p.

Thus, the number 22"t k is composite and > a since p = 22'+k > 22"+
+k > a, which completes the proof. This proof fails for k = 1 since we do
not know if there exist infinitely many composite Fermat numbers.

Let us note that the weaker version of the theorem, asserting that for every

integer k there exists at least one integer » such that 22"k is composite, has
been obtained in 1943 by J. Reiner as a special case of a rather complicated
theorem; see [16]. To obtain this weaker version from our theorem it suffices
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to note that (for k = 1) the number 22°+1 is composite, namely divisible
by 641.

116. For instance, all numbers k = 6¢—1, where ¢t = 1, 2, ..., are of this
form since for every positive integer # the number 22" gives the remainder 1
upon dividing by 3, hence the number 22" +k = 2*"—14-6¢ is divisible by 3
and > 3, thus composite.

117. (a) For positive integer n, the number 22"—1 is divisible by 3, hence

the number 22"+!—2 = 2(2?"—1) is divisible by 6, and we have 2***! = 6k}
+2 where k is a positive integer. It follows that

222"y 3 = (22243 = 2243 = 0 (mod 7),
and 712243 for n = 1,2, ... . Since 22"*'+3 > 2243 > 7, the numbers
of the form 22"+ +3 are composite forn =1, 2, ... .

(b) for positive integer n, we have 2*"—1 = 16"—1 = 0 (mod 5), which
implies that 10|2*"+!'—2. Therefore 2***! = 10k+2 where k is a positive
integer and 22" 47 = (29 - 2247 = 2247 = 0 (mod 11). Thus we have
1122**'+7, and since 22*"*'+7 > 22°4+7 > 11, the numbers of the form

22"*1 1.7 are all composite for n = 1,2, .

(c) For positive integer n, we have 2"" = (2‘): = 1(mod 7), which implies
7|12°*—1 and 28|2%"+2—22, Thus, 25"*+2 = 28k+4, where k is a positive integer.
It follows that 22**? = (22%).24= 16 (mod 29), that is, 2922?13,
and since 22°**°413 >2"+13 > 29, the numbers of the form 22***4+13
are composite for n =1, 2, ....

(d) For positive integer n, we have (2'°)" = 1 (mod 11), which implies
that 22|2!%+!_2 and 2'%*+!=22k-2, where k is a positive integer. It
follows that 22'“"*' = (2%2)%.22 = 4 (mod 23), and 23[22"*'+19. Since
22"+ 119 > 23 for all n =1, 2, ..., the numbers 2*'*"*' 419 are all com-
posite.

(e) For positive integer n, we have 2% = (2*)* = (—1)*" = 1 (mod 9),
hence 9|2%"—1, and 36|2"+2—22, which implies that 2¢*+2 = 36k--4 for
a positive integer k. It follows that 22*** = (2*6). 16 = (mod 37), hence
37122**2121, and since 22?421 > 37, for n=1,2, ..., the numbers
22"*2 1 21 are composite for n = 1,2, ....
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REMARK. We know of no integer k such that we could prove that among
the numbers 2*'+k (n = 1, 2, ...) there exist infinitely many primes.

118*. As we know, the numbers F, = 2¥ -1 are primes forn = 0, 1, 2,
3, 4, while the number Fs = 641p, where p is a prime > 2'%+1 = F,. We
have also (p, 2**—1) = 1 since p|Fs implies (p, Fs—2) = 1. By the Chinese
remainder theorem, there exist infinitely many positive integers k satisfying
the congruences

k= 1(mod 2*2—1)641) and k= —1 (mod p). (D

We shall show that if k is an integer > p, satisfying congruences (1), then
the numbers k- 2*+1 (n =1, 2, ...) are all composite.

The number n can be represented in the form n = 2™(2¢4-1), where m
and ¢ are integers > 0. Suppose first that m is one of the numbers 0, 1,
2,3, or 4. In view of (1) we shall have

k-2"41 = 22" +D 4 1(mod 2%2—1), . )

and since for m=0,1,2,3,4 we have F,[2°2—1 and F,|22"®*), we
obtain, in view of (2), that F,[k - 2"+1. Since k - 2°4-1 > p > F, (because
k > p), the number k - 2"+1 is composite.

If m = 5, then by (1) we get k- 2"+1 = 22°Ct+1) 4 1 (mod 641) and since
641|F;[22°®*+V1 1 we get 641]k - 2"+1 and the number k - 2"+1 > p > 641
is composite. |

It remains to consider the case m > 6. In this case we have 2%, hence
n = 2% where h is a positive integer, and in view of (1) we have k - 2"+1
= —22%_11 (mod p); since p|22°+1[22°—1]22"—1, we obtain p|k - 2"+1. In
view of the fact that k- 2"+1 > k > p, the number k - 2"+1 is composite.

Thus, the numbers k -2"+41 are composite for n=1,2, 3, ..., which
was to be proved. (See [30].) :

" REMARK. We do not know the smallest number k for which all numberé
k-2"41 (n=1,2,...) are composite.

119*. Let us first note that in the proof of theorem in Problem 118*
we could add to congruences (1) the congruence k = 1(mod 2), and this
would result in the following theorem T: There exist infinitely many odd
numbers k > p such that each of the numbers k-2'4+1 (I=1,2,..) is
divisible by at least one of the six primes

FO’FI’FZ’F39F4: andp (3)
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(where p > F,). Let us denote by Q the product of the six numbers (3).
Since these numbers are odd, we have 272 = 1 (mod Q) and consequently,
2°? = 1 (mod g), where g denotes any of the numbers (3). Let n be an
arbitrary positive integer. By theorem T (for / = n(p(Q)—1)), the number
k-2"®@-D_1 1 is divisible by at least one of the numbers (3), say by q.
We shall have therefore k - 2"*@-D 41 = 0 (mod g) hence, multiplying by
2" we obtain k- 2"*@42" = 0 (mod g), and since 2%® = 1 (mod g) and
consequently, 2"*@ = 1 (mod g), we get k+2" = 0 (mod g); since k > p,
we ‘get k > ¢ and k42" > g; thus, the number k2" is composite, and we
showed that there exist infinitely many odd numbers k& such that all numbers
2'+k,n=1,2, ..., are composite.

120. Let k = 2" where m is a positive integer, and let m = 2% where
s is an integer >0, and k is odd. We have k-2%"41 = 220" "S+h_ |
and for n > s the number 2"~*+#4 is an odd positive integer. Thus we get
2¥ 4 1)k - 2¥°+1, and since n > s, we have k-22"4+1 >2%41 and the
numbers k - 22"+1 are composite for n > s (they are divisible by 22°+1).

In particular, if k is a power of 2 with an odd exponent, then all numbers
k-2*"+1for n=1,2, ... are divisible by 3.

121. For k = 1, n = 5 since the numbers 22’41 are prime forn =1, 2,
3,4 while 641|22°+1 and 22°+1 is composite.

For k = 2, n =1 since 3|2 2%41.

For k = 3, n = 2 since the number 3 - 2241 is prime, while 7|3 - 222+1
=49,

For k =4, n = 2 since 4-22+1 = 17 is a prime, while 54 - 2=2+1

For k = 5, n =1 since 3|5 22+1.

For k = 6, n = 1 since 5|6 - 224-1.

For k=7, n=3 since 7-22+1 =29 and 7-2%+1 = 113 are primes,
while 11]7 - 22°+1.

For k = 8, n =1 since 3|8 - 2241.

For k =9, n = 2 since 9 - 22++1 = 37 is prime, while 5|9 - 2241,

For k = 10, n = 2 since 10 - 22+1 = 41 is a prime, while 7|10 - 22 1.

122. 1t follows from the solution of Problem 121 that the numbers
k=1,3,4,7,9, and 10 do not satisfy the requirements. The number 6

does not satisfy the requirement either since 6 - 2241=97is a prime.
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On the other hand, the numbers 2-22°+1, 5-22°+1, and 8- 22" 11 are
all composite for n =1, 2, ... since they are divisible by 3 and exceed 3.

ReMARK. If k=3¢+42, where t=0, 1, 2, ..., then the numbers & - 22"+ 1
(n=1,2,..) are all divisible by 3 and composite.

123. The numbers 1(22"*'+2%"+1) are positive integers for n — 1,2,....
If nis even, then 2" = 1 (mod 3), hence 2" = 3k -1 for some positive integer k,
and 22" = (2%%-2 = 8% -2 = 2 (mod 7), which implies that 22"*'—= (22"}
= 4 (mod 7). It follows that 2"*'+-2*"+-1 = 44241 = 0 (mod 7). If n is
odd, then 2" = 2 (mod 3), hence 2" = 3k+2 where k is an integer > 0.
It follows that 22" = 2%** = 8% 4 = 4 (mod 7), while 2"*' = (") = 4?
= 2 (mod 7). Thus, 22"“—{—22"-}-1 = 2+441 = 0 (mod 7). Consequently, the
numbers %(22"“—}-22"—}- 1) are divisible by 7 for positive integer n, and since
for n > 1 they are > %(223+222+1) =91 > 7, they are composite for
n=23,...

Compare with the theorem of Michael Stiffel from the XVIIth century;
see Elemente der Mathematik, 18 (1963), p. 18.

124. For instance, all numbers of our sequence for n of the form 28k-1
(k =1, 2,3, ...) have the desired property.

In fact, by the Fermat theorem, we have 22® = 1 (mod 29), which implies,
for k=1,2,..., that 22%%* = 1(mod29), Thus, for n=28k+1
(k =1,2,..) we have (2>"+1)*+2% = 2544 = 0 (mod 29), which means
that 29|(22"+-1)?4-2%. For k=1,2,... we have obviously n = 28k+1
> 29, which implies (22"+1)*+4-2%2 > 29. Thus, all numbers of the form
(22"+1)2+22 for n = 28k+1, k =1, 2, ..., are composite.

125*. If a is odd and > 1, the numbers a*' 41, being even and > 1,
are composite (for n =1, 2, ...); thus, we may assume that a is even. We
have 641|22°+1, hence also 641/42*+1 and 641|16%°+1. Next, we easily check
that 17[222-}—1, 17|4*+1, 17|623+1, 17|822+l, l7|1023+1, 1711223—{—1,
17)142°+1, 17120241, ..., 171228 +1, 171242 +1, 1726°°+1, 17]28%+1,
17130241, 171322 +1. |

For instance, to check that 17|2823+1 we start from the congruence
28 = 11 (mod 17), which implies 28% = 121 = 2 (mod 17), which in turn
yields 28%° = 22 = —1 (mod 17), and, consequently, 17/282°+1.

In view of these formulas, we obtain immediately for k =0,1, 2, ...
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17/(34k+224+1,  17|(G4k-+4P+1,  17|(34k+6)P+1,
17|34k 8 +1,  17|34k+10°+1,  17|(34k+122+1,
17|34k +142°+1,  17(34k+20)°+1, 17|34k +22)2+1,
17134k +242° +1,  17|(34k+26"+1,  17|(34k+28) +1,
17|34k +30)2+1,  17|(34k+32)2+1.

Using the fact that 5/18%+1 and 13|34*+1, we deduce that for every
positive integer a < 100, except perhaps numbers 50, 52, 68, 84, and 86,
there exists a positive integer #n < 5 such that @*"+1 is composite. On the
other hand, 50241 = 2501 = 41 - 61, 5(52>41, 5/68+1, 257|84**+1 and
13|86>+1. Thus, for every positive integer a <X 100 there exists a positive
integer n < 6 such that a®" 41 is composite.

REMARK. A. Schinzel proved that for every positive integer a such that
1 < a < 2% there exists a positive integer n such that a*'4-1 is composite;
see [20]. .

We do not know whether for every integer a > 1 there exists a positive
integer n such that a@"+1 is composite; we cannot prove it, for instance,

for the number a = 22", On the other hand, we can prove that for n = 22'**
the number a*+1 is composite, and we even know its least prime divisor,

namely 5 - 22°+1; see Sierpiniski [37, p. 349, Section 6).

126. Each prime > 5 is obviously of the form 30k-+r where k is an
integer > 0, and r is one of the numbers 1, 7, 11, 13, 17, 19, 23 or 29. Since
there exist infinitely many primes, for at least one of these eight values r
there exist infinitely many primes of the form 30k--r, where k is a positive
integer. It is, therefore, sufficient to consider the following eight cases:

(1) There exist infinitely many primes of the form 30k+1. Let p be
one of them, and let n = 7419+ p; this will be an odd composite number
since n = 74+19+430k+1 = 3(10k+9). Thus, the number » is a sum of
three different primes (since p = 30k+1 is different from 7 and 19), and
n is not a sum of two primes since then one of them would have to be even,
hence equal 2, and we would have n = 30k+4-27 = g+2, thatis, g = 5(6k+5),
which is impossible.
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(2) There exists infinitely many primes of the form 30k+7. Let p > 7
be one of these primes, and let » = 74-134-p; n is odd and composite since
n = 30k4-27 = 3(10k4-9) and, in view of p > 37, n will be equal to a sum
of three different primes. Since n—2 = 30k-+-25 = 5(6k+5), we see that n
satisfies the required conditions.

(3) There exist infinitely many primes of the form 30k+411. Let p > 11
be one of them, and let n = 114-134-p; thus, n will be odd and equal to
a sum of three different primes. Since n = 30k+35 = 5(6k+7) and n—2
= 3(30k-+11), the number » satisfies the required conditions.

(4) There exist infinitely many primes of the form 30k+13. Let p be
one of them, and let » = 3-+11-+p; thus, n will be odd and will equal to
the sum of three different primes. Since n = 3(10k+9) and n—2 = 5(6k+5)
the number » satisfies the required conditions.

(5) There exist infinitely many primes of the form p = 30k+17. Let p
be one of them, and put n = 3+47-4p. Since n = 3(10k+9) and n—2
= 5(6k+5), the number » satisfies the required conditions.

(6) There exist infinitely many primes of the form 30k-+19. Let p be
one of them, and let n = 34-5+4p. As before, we deduce that n satisfies
the required conditions.

(7) There exist infinitely many primes of the form 30k+23. Let
p be one of them, and let »n = 54-74p. Since n = 5(6k+7) and n—2
= 3(10k+11), the number » satisfies the required conditions.

(8) There exist infinitely many primes of the form 30k+29. Let
p be one of them, and let » = 5+31+p. Since n = 5(6k+13) and n—2
= 3(10k--21), the number » satisfies the required conditions.

The proof is complete. See [28].

127. If f(x) were a polynomial with integer coefficients such that f{1)
= 2, f(2) = 3, f(3) = 5, then g(x) = f(x)—2 would be a polynomial with
integer coefficients such that g(1) = 0, and we would have g(x) = (x—1)A(x),
where h(x) is a polynomial with integer coefficients. Since f(3) = 5, we have
g(3) = f(3)—2 = 3, which gives 2h(3) = 3; this, however, is impossible
since A(3) is an integer.

Now let m be an integer > 1, and let

gk(x)=(x—1)(x;_2_)k'"(x’m) for k=1,2,..,m.
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Obviously, gx(x) is a polynomial with integer coefficients of the degree m—1,

and such that g;(x) = O for every positive integer x < m different from k,

while gi(k) will be an integer # 0. Let fi(x) = gi(x)/gk(k); obviously, f;(x)

will be a polynomial of the order m—1 with rational coefficients such that

fi(x) = 0 for every positive integer x <X m different from k, while f;(k) = 1.
Put -

Jx) = pi/i(x)+p2fo(x)+ .. +Pmfu(%);

clearly, this polynomial will satisfy the required conditions: f(x) has rational
coefficients and f(k) =p;, for k=1,2,...,m.

128*. Proof due to J. Browkin. Let n be a given positive integer. For
positive integer k < n, define by induction the positive integers # as follows:
let t, = 1. Suppose that we have already defined for a positive integer
k < n the number #,_,. According to the particular case of the theorem
of Lejeune-Dirichlet, there exists a positive integer # such that the number
g = (k—1D)(m—k)!t,+1 is a prime, and, in case k > 1, it is greater than
the number (k—2)!(n—k+1)!#_;+1 (where we put 0! = 1). Thus, the
numbers ¢, ¢, -.., g, Will be primes, and ¢; < ¢, < ... < ¢,. Let

fx) =1+ Z (—1)-d O (=2 ... =n) "

Jj=1 xX—J]

Clearly, f(x) will be a polynomial of the order << n—1 with integer coeffi-
cients, and we easily check that

S = 14+-(k—DIn—k)! e = gu.

129. As an example we may take, for instance, the polynomial

Sx) = [(x—p)(x—p2) ... (x—pm)+1]x,

where p; denotes kth prime.
We shall have here f(pi) =px for k=1,2,...,m.

130. If the constant term of the polynomial f(x) with integer coefficients
were equal O, then we would have f(0) =0 and the congruence f(x)
=0 (mod p) would be solvable for every modulus p. Thus, suppose that the
constant term of the polynomial f(x) equals a, and is not zero. Since f(a,x)
= aof,(x), where f;(x) is a polynomial with integer coefficients with the
constant term equal to 1, it suffices to prove our theorem only for such
polynomials.
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Let n be a given positive integer. We have obviously n!|f;(n!)—1, hence
f(n!) = n'k+1, where k is an integer. The absolute value of the polynomial
f1(x) (which is of the order > 0) increases over all bounds with x; for suffi-
ciently large n we shall have therefore | f(n!)| = |[n'k+1| > 1, and the number
nlk+1 has a prime divisor p. In view of p|n!k+1 we must have p > n,
and since p|f,(n!), the congruence fi(x) = 0 (mod p) is solvable for a prime
modulus p > n. Since n is arbitrary, we deduce that the congruence f;(x)
= 0 (mod p), and also the congruence f(x) = 0 (mod p) is solvable for in-
finitely many primes p.

131. There is only one such number, namely ¥ = 1. Then the sequence
k+1, k+2, ..., k+10 D

contains five primes: 2, 3, 5, 7, and 11. For k£ = 0 and k = 2, sequence
(1) contains four primes. If k > 3, then sequence (1) does not contain
number 3; as we know, out of each three consecutive odd numbers, one must
be divisible by 3. It follows that sequence (1) contains at least one odd
composite number. Besides that, sequence (1) contains five even numbers,
hence (for k > 2) these numbers are composite. Thus, for k > 3, sequence
(1) contains at least 6 composite numbers, and the numbers of primes cannot
exceed 4.

REMARK. Sequence (1) contains four primes for k = 0, 2, 10, 100, 190,
820. We do not know whether there exist infinitely many such numbers %.
From a certain conjecture of A. Schinzel concerning primes ([22]) it follows
that the answer is positive.

132. There exists only one such number, namely k = 1. For this value
the sequence

k+1, k+2, ..., k+100 (1)

contains 26 primes. For k = 0, 2, 3 or 4, sequence (1) contains 25 primes.
Thus, we may assume that k > 5. Sequence (1) contains 50 even numbers,
which for k£ > 1 are all composite. Next, it contains also 50 successive
odd numbers, and since every three consecutive odd numbers contain one
divisible by 3, sequence (1) contains at least 16 numbers divisible by 3,
which are all composite for k£ > 2.

Let us compute now the number of terms of sequence (1) which are di-
visible by 5, and neither by 3 or 2. All such numbers will be of the form
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30¢4r where ¢ is an integer > 0, and r is one of the numbers 5, 25. Let us
arrange these numbers in the infinite increasing sequence

5,25, 35,55, 65, 85,95, 115, 125, 145, 155, 175, 185, ... 2

and let u, denote the nth term of this sequence. We easily check that u,, ;—
—u, < 100 for n=1,2,.... Let u, denote the last term of this sequence
which does not exceed k. We shall have u, <k < tpyy < thp 6 < u,+100
< k4100, which shows that sequence (1) contains at least 6 terms of se-
quence (2), and, consequently, at least 6 terms divisible by 5, but not divi-
sible by 2 or 3, hence composite for k = 5.

Finally, let us compute the number of terms of sequence (1) which are
divisible by 7, but not by 2, 3 or 5. These will be the terms of the form 210z
where ¢ is an integer > 0, and r is one of the numbers 7, 49, 77, 91, 119,
133, 161, 203. Let us arrange these numbers in the infinite increasing se-
quence

7,49,71,91, 119, 133, 161, 203, 217, 259, 287, ... 3)

and let v, denote the nth term of this sequence. We easily check that v, ;—
—v, <100 for n=1,2,.... Let v, denote the last term of the sequence
v, ,, ... Which does not exceed k. We shall have v, < k < Upy1 < Upys
< v,+100 < k+100, which shows that sequence (1) contains at least 3
terms of sequence (3), that is, at least three numbers divisible by 7, but
not divisible by 2, 3 or 5. For k =7, all these numbers will be composite.

It follows that for k > 7, sequence (1) contains at least 50-+16--6--
+3 = 75 composite numbers, hence at most 25 primes. For k =5 and
k = 6, sequence (1) contains the composite numbers v,, v;, and v4. Thus,
for kK > 1, sequence (1) contains at most 25 primes.

133. There are only 6 such sequences, namely those starting from 1, 3,
4, 5, 10, and 11. The proof follows from the following lemma:

For k > 11, among the numbers k, k+1, ..., k-+99 there is at least 76
numbers divisible by either 2, 3, 5, 7 or 11.

The proof of the lemma can be obtained if we write in the form of an
increasing infinite sequence all numbers divisible by 2, 3, 5, 7 or 11.
This sequence has the property that if a number r appears in it, then so
does the number r+4-2310, and conversely (since 2310 =2-3-5-7-11).
Thus, if r,, 7,, ..., rs denote all positive integers << 2310 divisible by 2, 3,
5, 7 or 11, then all such numbers are contained in s arithraetic progressions



72 250 PROBLEMS IN NUMBER THEORY

2310t +r;, wherei=1,...,sand t =0, 1, 2, .... Thus, it suffices to write
down all positive integers << 23104100 divisible by 2, 3, 5, 7 or 11, and check
that in each hundred of the numbers &, k+1, ..., k+99 for 1 <k <2310
there is at least 76 numbers of this sequence.

It would be more difficult to prove that there exists only a finite number
of such positive integers k for which sequence (1) contains 24 primes. On
the other hand, a certain conjecture concerning primes due to A. Schinzel
([22]) implies that there exist infinitely many numbers & such that sequence
(1) contains 23 primes.

134. LeMMA. Out of every 21 conmsecutive positive integers, at least 14
are divisible by one of the numbers 2, 3, or 5.

ProOF. In every consecutive 21 positive integers we have at least 10 divi-
sible by 2, and at least 10 consecutive odd numbers, out of which at least 3
are divisible by 3. Thus, it suffices to show that in every sequence of 21
consecutive positive integers there is at least one which is divisible by 5 but
not by 2 or 3. Let r denote the remainder of the division of x by 30; we
have then x = 30¢+r, where ¢ is an integer >0, and 0 < r < 30. If r < 5,
then x < 30745 < x-+20 and the number 30z-+5 is a term of the sequence
x, x+1, ..., x+20 which is divisible by 5, but not by 2 or 3. If 5 < r < 25,
thén x < 30¢+25 < x+20 and the number 30725 is a term of the sequence
x, x+1, ..., x+20 which is divisible by 5 but not by 2 or 3. Finally, if
25 < r < 30, then x < 307435 < x-20, and the number 30z+35 is a term
of the sequence x, x+1, ..., x+20 which is divisible by 5, but not by 2
or 3. This completes the proof of the lemma. |

Our lemma implies immediately that out of each 21 consecutive positive
integers exceeding 5 we have at least 14 composite numbers, hence at most
7 primes. For x =1, 2, and 3, the sequence x, x+1, ..., x+20 contains
8 primes each, while for x = 4 and x = 5 this sequence contains 7 primes.
Thus, the sequence x, x-+1, ..., x+20 contains 8 primes for x =1, 2,
and 3.

135. There is only one such number, namely p = 5. We easily find
that the required property does not hold for p < 5. For p = 5, we obtain
primes 5, 7, 11, 13, 17, and 19. If p > 5 and p = 5k with some positive
integer k, then p is composite. If p = 5k+1, then p+414 is divisible by 5,
hence composite. If p = 5k+2, then p+8 is divisible by 5, hence composite.

If p = 5k+3, then 5|p+12 and p+12 is composite. Fmally, if p = 5k+4,
then 5|p+6, and p+6 is compos1te
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136. We easily find that for integer k£ > 1 such pairs are m = 2¥—2
and n = 2%(2*—2), for which m-+1 = 2*—1 and n+1 = (2*—1)2.

ReMARK. P. Erdés posed a problem of existence of other such pairs;
see [9, p. 126, problem 60]. A. Makowski has found a pair: m = 75= 3.5,
n = 1215 =5.3% for which m+1 = 22.19, n+1 = 26.19,

V. DIOPHANTINE EQUATIONS

137. The identity
3(55a+84b)*—7(36a-+55b)* = 3a*—Tb*

implies that if the integers x = a and y = b satisfy the equation 3x>—7y*+
+1 = 0, then the same equation is satisfied by larger integers x = 55a-+
+84b and y = 36a+-55b. Since the numbers x = 3 and y = 2 satisfy this
equation, it has infinitely many solutions in positive integers x, y.

138. Since x(2x?>+4y) =7, the number x must be an integer divisor
of number 7, that is, must be equal to one of the numbers 1, 7, —1, —7.
Substituting there values to the equation, we obtain for y the values 5, —97,
—9, —99. Thus, our equation has four solutions in integers, namely (1, 5),
(7a —'97)a (—la ""9): (—7’ —'99)

Now let n denote an arbitrary integer > 5, and let x = 7/n, y = n—
—98/n?. Since n > 5, we have n > 6, and x, y will be rational and pos-
itive; we easily check that they satisfy the equation 2x*+xy—7 = 0.

139. We easily see that if x and y satisfy the equation

(x—1P?+(x+1)> = y*+1, )]
then

Qy+3x—12+Qy+3x+1)> = (By+4x)*+1.

Thus, for every positive integer solution x,y of equation (1), we obtain
another solution 2y-+-3x, 3y+4x in larger integers; since this equation has
a solution x = 2, y = 3, it has infinitely many solutions in positive integers.

140. If for positive integers x and y we had x(x41) = 4y(y+1), then
we would also have 3 = 2Qy+1)P—(2x+1)* = (dy—2x+1)([dy+2x+3),
hence the number 3 would be divisible by a positive integer 4y-+2x+3
exceeding 3, which is impossible.
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On the other hand, we easily see that for integer » > 1 and for

3n_31-—-n___2 _3n+31—n_4

*ET 0 YTy

we have x(x-+1) =4y(y+1). For instance, for n =2 we get x = 5/3,
¥y = 2/3. Our equation has infinitely many rational solutions x, y.

141*, Proof due to A. Schinzel. Let p be a prime, and let n be a positive
integer; suppose that positive integers x and y satisfy the equation x(x+1)
= p*y(y+1), Since x and x+1 are relatively prime, we have either p**|x
or p*"|x+1, and hence in each case, x+1 > p?". However, our equation
is equivalent to the equation

p"—1=[P"Q+D+Cx+ D] [p"Qy+1)—(2x+1)].

Since the left-hand side, and the first factor on the right are both positive
integers, the second factor on the right must also be a positive integer. It
follows that p>*—1 > 2x-+1, hence p** > 2(x-+1), which, in view of the
previously found relation x+1 > p**, gives p** > 2p?", which is impossible.

142. In view of the identity (x—2y)*—2(x—y)?> = —(x2—2)?), it suffices
to put t = x—2y, u =x—)y.

143. The proof follows immediately from the identity
(m*+Dn?)*—D(2mn)* = (m*—Dn?).

It suffices to choose, for an arbitrary positive integer n, number m such
that m* > Dn? and put

x=m*+Dn?, y=2mn, z= m’—Dn’

144. If D is odd, then for integer £k >_1 the number D-+2%*72 is odd,
and we have (D+2%72,2%) = 1; we easily find that

( D +22k—2)2_ D(zk)z — ( D___22k—2)2.

We can put x = |[D+2%*72|, y = 2% z = |D—2%"2|, If D is even, then for
every integer y > 1 we have (3Dy*+1,y) =1, and

(Dy*+1)*—Dy* = (3Dy*—1)?,

and we can put x = [$Dy*+1|, z = [4Dy*—1].
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145. Our equation is equivalent to the equation 2241 = (x+D(y+1).

Since the Fermat number Fs = 225+1 is equal to the product of two primes,
the smaller being 641, we have only one solution of our equation in positive
integers x, and y > x, where x = 640.

REMARK. It is interesting that we know of some equations of the second
order with two unknowns that they have only one solution x and y > x,
but (for purely technical reasons) we cannot find this solution. Such is, for
instance, the case of equation xy-+x+y-+2 = 2"". On the other hand,

we do not know if the equation xy-+x+y = 22" has a solution in positive
integers x, y.

146. If y is even, then x* = 3—8z+42)* gives the remainder 3 upon
division by 8, which is impossible. If y is odd, then y = 2k+1 where k
is an integer, then x* = 3—8z+4-8k?+4-2, which gives the remainder 5 upon
division by 8, which again is impossible since the square of every odd number
gives the remainder 1 upon division by 8.

147. Let x be an arbitrary positive integer. We easily check the identity
x(x+1)(x+2)(x+3)+1 = (x*+3x+1)%, which, in view of our equation,
implies y = x*+3x+1. Thus, all solutions in positive integers x, y of our
equations are: x—an arbitrary positive integer, and y = x*+3x+1.

148. The equation x?>4y?+z°>+4x-+y+z =1 has no rational solutions
since we easily see that it is equivalent to the equation

x4+ 1+ Qy+112+Qz+112 =17,

and the number 7 would have to be a sum of three squares of rational
numbers. We shall show that it is impossible. In fact, if 7 were a sum of
squares of three rational numbers, then, after muliplying by the common
denominator, we would have

@ +b*+-c* = Tm? Y

where a, b, and c are integers, and m is a positive integer. Then, there would
exist the least positive integer m for which (1) has a solution in the
integers a, b, c. If m were even, m = 2n, where n is a positive integer, then
all three numbers a, b, ¢ would be even, hence a = 2a,, b = 2b;, ¢ = 2¢,
where a,, by, ¢, are integers. Putting this into (1) we get, in view of m? = 4n?

a,+bi+-ci = T’
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where n is a positive integer << m, contrary to the assumption that m is the
least positive integer for which 7m? is a sum of squares of three integers.

Thus, m is odd, and m? gives the remainder 1 upon division by 8. Thus,
the right-hand side of (1) gives the remainder 7 upon division by 8; we know,
however, that no such number can be a sum of three squares of integers.

149. If positive integers x, y, z would satisfy the equation 4xy—x—y
= 22, we would have (4x—1) (4y—1) = (2z)*+1, and the positive integer
4x—1 > 3 would have a prime divisor p of the form 4k+3. We would,
therefore, have (2z)* = —1 (mod p), and, in view of p = 4k+3, also (2z)!
= (22)%#+D = —1 (mod p), contrary to the Fermat theorem.

On the other hand, let » denote an arbitrary positive integer, and let
x = —1,y = —5n*~2n, z = —5n—1. We easily check that the numbers x,
y, and z satisfy the equation 4xy—x—y = 22,

150. We can easily check that for positive integers m and D = m*+1 we
have (2m*+1)>*—D(2m)* = 1. If for positive integers x and y we have x>—
—Dy?* = 1, then, in view of the identity

(x*+Dy*)’—D(2xy)* = (x*—Dy*%,

we also have x2—Dy; = 1, where x, = x*-+Dy* and y, = 2xy are positive
integers greater than x and y.

If follows, for example, that the equation x>*—Dy? = 1 has infinitely many
solutions in positive integers x, y for D = 2, §, 10, 17, 26, 37, 50, 65, 82.

151*. The equation y* = x*-+(x-+4)* has two obvious solutions: x = 0,
y =4 and x = 0, y = —4. We shall now give the proof, due to A. Schinzel,
that this equation has no positive integer solutions x, y with x ¢ 0 (see [29]).

Suppose that the positive integers x # 0 and y satisfy the equation. We
have, therefore,

X = (y—x—4) (y+x+4). )
In view of (1) and x # O, the integers y—x—4 and y+x-+4 are # 0. Let
= (y—x'—4) y+x+4)- (2)

If d had an odd prime divisor p, then in view of (1) we would have p|x, and
by pld and (2), we would have p|y—x—4 and p|y+x-+4, hence p|2y. Since
p is odd, it would follow that p|y and p|4, which is impossible. Thus, 4 has
no odd prime divisor, and must be equal to a power of 2 with an integer
exponent > 0.
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If we had 16|d, then by (1) and (2) we would have 2%|x°, which implies
that 23|x, and since d|(y+x+4)—(y—x—4) = 2x+8, we would have 16|8,
which is impossible. Thus, 16 } d.

If we had d =2, we would have y—x—4 = 2m, y+x-+4 = 2n, where
(m,n) = 1. In view of (1) and (2) we would have 2|x, hence also 2|y. But
2y = 2(m-+n), hence y = m+n, and 2|m+-n; in view of (m,n) = 1, the
numbers m and n must be both odd. Since x> = 4mn, we have 8 } x3, which is
impossible since 2|x. Thus, d # 2.

If we had d = 4, then y—x—4 = 4m, y4x+4 = 4n, where (m, n) = 1.
By (1), we would have x* = 16mn, hence 4|x, which implies that 4|mn; thus,
since (m, n) = 1, one of the numbers m, n must be divisible by 4 and the
other odd. However, since 4|x and 4 = d|x—y—4, we have 4|y = 2(m-n),
which is impossible. Therefore d # 4.

Since 16 ¥ d, d # 2 and d # 4, and since d is a power of 2, it remains to
consider two more cases: d = 1 and d = 8.

If d = 1, then from (1) and (2) it follows that the numbers y—x—4 and
y+x-+4 are cubes of integers; y—x—4 = a*, y+x+4 = b*, which implies,
in view of (1), that x = ab and 2x+8 = b*—a®. We cannot have @ = b since
then we would have x = —4 and the equation y* = x*+(x+4)* would imply
y* = —4%, which is impossible. In view of x = ab we have 2ab+8 = b*—
—a* = (b—a) ((b—a)*+3ab). This implies that if b—a =1, then 2ab+8
= 14-3ab, hence ab =7, and consequently x =7, y*> = 7°+11% = 464,
which is impossible since 464 is not a square. Thus, if we have ab > 0, then
b—a >0, and in view of b—a # 1, we get b—a > 2 and 2ab-+8 > 6ab.
This implies ab < 2, hence ab =1 and a = b = 1, which is impossible. If
ab < 0, then either @ > 0, b < 0, which leads to a*—b* = &*+(—b)* > a*+
+(—b)* > —2ab, contrary to the fact that a*—b* = —2ab—8 < —2ab, or
else, a < 0, b > 0, which in view of b* = a*>+2ab-+8 leads to b* < 8. Thus,
b =1, which gives in turn @*+2a-+7 = 0, which is impossible since this
equation has no integer solutions. Thus, we must have ab = 0, and con-
sequently x = 0, contrary to the assumption x # 0. We cannot have, there-
fore, d = 1, and we must have d = 8.

By (2) we have, therefore, y—x—4 = 8m, y+x-+4 = 8n, where (m, n) = 1,
and in view of (1) we find x* = 64mn. Thus, (x/4)* = mn, which implies, by
(m, n) = 1, that the numbers m and n must be cubes of integers, say m = a°,
n=b’. Thus x/4 = ab and 2x+8 = 8(n—m) = 8(b*—a®), which leads to
ab+1 = b*—a’. Clearly, we cannot have a = b, and we must have |a—b|
>1. If ab>0, then b >a and b—a>1, and since ab+1 = b>—a®
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= (b—a) [(b—a)*+3ab] > 3ab, we get 2ab < 1, contrary to the assump-
tion ab > 0. Since 4ab = x # 0, we have ab < 0. In view of |b—a] > 1
and |b*—a’| = |b—a| |(b+a)*—ab| > —ab, and since we also have (in
view of ab < 0) the relation |ab+1|< |ab| = —ab, the equation ab--1
= b’—a’ is impossible. This completes the proof of the fact that the equa-
tion y? = x>+ (x+4)* has no solution in integers x # 0 and y.

152. Our equation is equivalent to the equation x*z+y%x+2%y = mxyz
in integers x, y, z different from 0, and pairwise relatively prime. It follows
that y|x’z, z|y*x, and x|z’ and since (x,y) =1, (z, ») = 1, which implies
(x*z,y) =1, we get from y|x’z that y = 4 1. In a similar way we find z
= +4+1,and x = +1.

If all three numbers x, y, z are of the same sign, then our equation implies
1+1+41 = m, hence m = 3. If two of them were positive and one negative,
or two negative and one positive, then our equation would imply (in view

of x = +1, y = 41, z = 1) that m is negative, contrary to the assumptlon
Thus, for positive integer m, the equation

X 4
Yy 4 X

has integer solution x, y, z in pairwise relatively prime x, y, z only for m = 3,
and in this case there are only two solutions: x =y=z=1and x=y
= z = —1. For positive integer m # 3, our equation has no solution in
integers x, y, z different from 0 and pairwise relatively prime.

153. We have

hence the numbers (rational and positive) x/y, y/z, and z/x cannot be all
< 1; if at least one of them is > 1, then

X . y . z
St > 1
and the left-hand side cannot be =1 for positive integers x, y, z.

ReMARk. It is more difficult to prove that our equation has no solution
in integers # 0, cf. Cassels [3], Sierpifski [2]; Cassels, Sansone [4].
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154*. LemMA. If a, b, c are positive, real, and not all equal, then

3
(L;-i—c) > abc. 6))

PrOOF. Suppose that the numbers a, b, ¢ are positive and not all equal.
Then there exist positive numbers u, v, and w, not all equal and such that
a =11} b=19° and ¢ = w’. We have the identity

0+ —Buow = J(u-Ho+9) [(—0)+ (0—w) + (w—u)?].

Since not all numbers u, v, w are equal, the last factor is strictly positive,
and we have

v tw? )3 33 3

w+o*4+w® > 3uvw, hence ( 3 > wolw?,

which, in view of #® = @, v* = b, w® = c gives (1), and completes the proof
of the lemma.

Let now x, y, z be positive integers. It the numbers x/y, y/z, and z/x were
all equal, then, being positive and their product being equal to 1, they would
have to be all equal 1, and we would have

LANES ANNLAN BN 3
y z x
Thus, not all numbers x, y, z are equal, and by the lemma we have

3
1(x »y =z x y z X  y  z

Bl A A A A S | 242

[3 (y+z+x)]>y 7 X , hence y+z+x>3.
Thus, the equation x/y+y/z+z/x = 2 is impossible in positive integers x, y, z.

155. Suppose that the positive integers x, y, z satisfy our equation. If
not all three numbers x/y, y/z, and z/x are equal, then from the solution
of Problem 154 it follows that

Xir 4z
St >3

We must have, therefore, x/y = y/z = z/x, and our equation implies that
each of these numbers is 1. Thus, x = y = z. In this case we have

e y zZ _ _
STty = I+ =3,
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and our equation has infinitely many solution in positive integers x, y, z; all
of them can be obtained by choosing an arbitrary positive integer for x and
setting x = y = z.

REMARK. We do not know whether the equation-;—-{——g— —|—;zc— = 4 has pos-

itive integer solutions x, y, z. On the other hand, the equation -'ij +% +_§ =5
has a solution, for instance x = 1, y = 2, z = 4; also (as found by J. Brow-
kin), the equation —;——}-% +§ = 6 has a solution, for instance x =2, y =12,
z=09.

156*. As noticed by A. Schinzel, if for a given positive integer m the
positive integers x, y, z satisfy the equation

X4y = rhxyz, (1)
then we have
Xty Yz  2Px
vz | 2% T X2y " &)

Indeed, we have

Xy X yiz )’ 22x  z

— ——

vz xyz’ Z22x xyz’ Xy xyz

and in view of (1) we get

x3 y? 23
Xyz = Xxyz = Xxyz

From Problems 153 and 154 it follows that for m = 1 and m = 2 equation
(1) has no solution in the positive integers x, y; z, while Problem 155 implies
that for m = 3 equation (1) has the only solution x*y = y?z = z’x =n,
where n is some positive integer. Then, however, x%y-y?z-z>x = n?, or (xyz)*
= n’, which implies xyz = n, and, in view of x*y = n, we find z/x = 1, or
x = z; on the other hand, in view of y*z2 = n, we find x/y = 1, or x = y.
Thus, we must have x = y = z. However, if m = 3, for any positive integer
x, and x = y = z we get a solution of equation (1). Thus, for m = 3 all
solutions of equation (1) in positive integers are obtained by choosing as x
an arbitrary positive integer, and setting y = z = x.
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157. Suppose that theorem T; holds. If theorem T, were false, there
would exist positive integers u, v, and w such that #*+9¢* = @’, and putting

x = w0, y = v*w, z = w’u we would have
wo vw  u | 9P wto’ w’

z
~+w 'vw+w2u vw+wu_ wow | wow | x

contrary to theorem T;. Thus, we proved that theorem T; implies theorem

T, (this proof was found by A. Schinzel). ‘
Suppose now that theorem T; is false. Then there exist positive integers

X, ¥, z such that |

X Z 2 2
— — — .—..—-’ h —_— .
+ J ence Xx’z-+y*x = 2%y

Let x?z = a, y°x = b; we shall have then z2y = a+b and ab(a+b) = (xyz)°.
Let d = (a, b); thus a = da,, b = db, where (a,, b;) = 1. It follows that a-+
+b = d(a,+b,) and a;by(a;+b))d® = (xyz)’. This implies that &|(xyz)’,
hence d|xyz and xyz = dt, where t is a positive integer.

We have, therefore, a;b,(a,+b;) = t3, and since a,, b,, and a;+b, are
pairwise relatively prime, it follows that aq, = #®, b, = ¢, a;+b, = w?,
where u, v, and w are positive integers. Thus, &’ +9* = w?, contrary to theorem
T,, which shows that theorem T, implies theorem T;. Thus, T, and . T, are
equivalent, which was to be proved.

REMARK. One can prove by elementary means (though the proof-is
difficult) that theorem T, is true; thus, theorem T, is also true.

158*. If the numbers x, y, z, t are positive integers, then the numbers x/y,
¥/z, zft, and t/x are rational and positive; their product equals 1, which
implies that they cannot be all < 1. But if at least one of them is > 1 then
their sum is > 1, and the equation S

X Yy Lt g
y+z+t+x !

cannot hold. Thus, we proved that this equation has no solution in posmve
integers x, y, z, t.

We shall show now this equation has infinitely many solutions in integers
# 0. It suffices to check that this equation is satisfied by numbers x = —n?,
y = n*(n*—1), z = (i®—1)%, t = —n(n*—1), where n is an arbitrary integer
> 1.
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159*. LemMmA. If a, b, ¢, d are positive and not all equal, then

(a—i—b+c+d
4

4
) > abcd. 6))

ProoF. Suppose that g, b, ¢, and d are positive, and that, for instance,
a # b. We have then either a+c # b+d or a+d # b+c since if we had
a+c¢ = b+d and a+d = b-+c, then we would have a—b = d—b = ¢c—d
and hence a—b = 0, contrary to the assumption a # b. If, for instance,
a+c # b+d, let u=a+c, v=>b+d; we have u # v, hence (u—v)* > 0,
which gives w?+v* > 2uv. Thus, (u+9)* = +v*+2uv > 4uw. It follows
that (@+b+c+d)? > 4(a+c) (b+d), and since (a+c)* > 4dac, (b+d)* > 4bd,
we have

(a+b+c+d)t > 4(a+c)’(b+d)* > 4%abcd,

which gives inequality (1), and completes the proof of the lemma. Suppose
now that for a positive integer m the equation

X Yzt
y+z+t+x—m

has a solution in positive integers x, y, z, t. The product of these terms is
equal 1. If all of them were equal 1, then m = 4. Thus, if m is a positive
integer < 4, then not all four positive rational numbers x/y, y/z, z/t, and t/x
are equal, and by the lemma, we have

which implies
X .y . z t
y+z+t+x>4'

Thus, our equation hag no positive integer solution x, y, z, ¢ for positive in-
tegers m < 4, and for m = 4 it has only the solution in which all four numbers
x/y, y/z, z/t, and t[x are equal, hence equal 1, which implies that x =y = z
== t. Thus, for m = 4, our equation has infinitely many solutions in positive
integers x, y, z, t, and they all are obtained by choosing arbitrary positive
integer x, and puttingy =z =1t = x.
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160. We must have x < 4 since for x > 5, in view of x < y <z < 1, we
would have

1 1 1 1 4
—_— - < .
e + y + Z + : S <1
Obviously, we also must have x > 2. Thus, it remains to consider only three
cases, namely x = 2, 3, and 4.
First suppose that x = 2. In this case we have the equation

1,1, 1 1
Strt =7 )

1
In view of y <z <<t we get 3 2, which yields y < 6; on the other hand,

we have, by (1), 31’- hence y > 3. Thus, we can have only y=23,4,5,0r6.

2)
1 1.1 2
If y =3, we have 5= ?+7 < Py which gives z < 12, and since
% —:— the number z may assume only the values 7, 8, 9, 10, 11 or 12.
For z =7, we have —:— = 4—12, or t = 42, which gives the solution x = 2,

y=3,2z=17,t=42 of our equation.

For z =8, we have% = %, or t = 24, which gives the solution x =2,
y =3,z =28, t =24 of our equation.

For z = 9, we have % = —1—18—, hence ¢t = 18, which gives the solution x = 2,
y=3,z=09,t =18 of our equation,

%, or ¢ = 15, which gives the solution x =2,

y =3,z =10, t = 15 of our equation.

For z =10, we get% =

For z =11, we have% = 3§6—’ which does not lead to integer value of ¢,

and our equation has no integer solution.

For z = 12, we have—:— = —117’ or t = 12, which gives the solution x = 2,

y =3,z =12, t = 12 of our equation.
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1 2 : 1
If y = 4, we have = ?+7 < P hence z < 8, and since ik —;—,

z > 4, the number z may assume only values 5, 6, 7, or 8.

or

1 . .
35" or t = 20, which gives the solution x = 2,

y=4,z=2>5,1t=20of our equation.

1
For z =5, we have-{ =

1 1 c
For z = 6, we haveT =15 OF t = 12, which gives the solution x = 2,
y=4,z=6,1t=12of our equation.

1
For z = 7, we have - = —— which does not lead to integer value of ¢, and

28
our equation has no integer solution.

1 1 : . .
For z = 8, we have - =g or ¢t = §, which gives the solution x =2, y

8
= 4, z = 8, t = 8 of our equation.
3 1 1 2 20
If y =5, we have 0= ?—{— S5 0 3 , that is, z << 6, hence

z >y =5, and we see that z may assume only values 5 or 6.

For z =5, we have—}- . —1—1(—), or t = 10, which gives the solution x = 2,

y =5, z =5, t = 10 of our equation.

For z = 6, we have—;- = —é—, which does not lead to integer value of t, and

our equation has no solution.

Ify= 6wehave%~=-——|—-—— zwhichgivesz<6 andsincez>y 6,

we have z = 6, and consequently ¢ = 6, which leads to the solution X = 2
y=6,z=26,1t=6.

We have completed the consideration of the case x = 2, showing that
equation (1) has only 10 positive integer solutions y, z, t with y <z < ¢,
namely 3, 7, 42; 3, 8, 24; 3,9, 18; 3, 10, 15; 3,12, 12; 4, §, 20; 4, 6, 12; 4, 8,
8;5, 5,10, and 6, 6, 6.

Suppose now that x = 3. Then we have the equation

1 1 1 2
YT TT=3
3 2 . 9 . . L3 .
and, by y <z < ¢t, we get-); 301y < L which implies y <{4. Since 3

=x<), poss1b1e values for y are 3 and 4.
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1 1 1
If y= 3, then ’ZT+’?——‘

e 21 .
3 which implies ~z—>— or z< 6, and since

3

% < -;— or z > 3, the possible values for z are only 4, 5 and 6.

For z = 4, we have ¢t = 12, which gives the solution x =3,y =3,z =4,
t = 12 of our equation.

For z = 5, we get t = 15/2, which does not lead to a solution in integers
X, ¥, Z, L.

For z = 6, we get t = 6, which gives the solution x =3, y =3, z=6,
t = 6 of our equation.

1 1 5 i e 24

If y =4, we have ~z—+7 =1 < —, which implies z <—5- <5, and
since z >y =4, we must have z =4, and consequently ¢ = 6, which
gives the solution x = 3, y = 4, z = 4, t = 6 of our equation.

Suppose now that x = 4. We have then the equation

N

1 1 1 3
Yyt T
c e 3 3 .
which implies, by y < z < ¢, that 74—<—4—, or y< 4, and since y > x = 4, we
| , 1,1 1_2 .
can have only y = 4. This leads to ?+7 = —2-<~z—, orz<4,andsincez >y

= 4, we must have z = 4. This in turn implies that t = 4, and we obtain
-the solution x = 4, y = 4, z = 4, t = 4 of our equation.

We have thus exhausted all possible cases, which leads to the conclusion
that our equation has 14 positive integer solutions x, y, z, ¢t with x <y
<z < t, namely 2,3,7,42; 2,3,8,24; 2,3,9,18; 2, 3,10, 15; 2,3, 12, 12;
2,4,5,24; 2,4,6,12; 2,4,8,8; 2,5,5,10; 2,6,6,6; 3,3,4,12; 3,3,6,6;
3,4,4,6; and 4, 4, 4, 4.

ReMARK. The equations considered occur in connection with the problem
of covering the plane with regular polygons; see [25, p. 31 and following].

161. For every positive integer s our equation has at least one solution
in positive integers, namely x; = x, = ... = x; = &.

To prove that our equation has, for every positive integer s, only a finite
number of solutions, we shall prove a more general theorem, asserting that
for every rational w and every positive integer s the equation

1 1 1

X1 X2
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has a finite > 0 number of solutions in positive integers x;, x,, ..., x,. The
proof will proceed by induction with respect to s. The theorem is obvious
for s = 1. Let now s be any positive integer, and suppose that the theorem
is true for the number s. Suppose that the positive integers x,, x,, ..., x,,
X4 satisfy the equation

1
._1_+-1—+ o F— ! = u, ey

X1 X2 Xs  Xs+1

where u is a given rational number, obviously positive. We may assume that
X < X< .o < X < Xgqq. From (1) it follows that (s+1)/x; > u, which im-

plies x; < (s-+1)/u; thus, the number x; can assume only a finite number of

- positive integer values. Let us now take as x; any of these values; then the

remaining s numbers X;, Xs, ..., X, S5+1 Will satisfy the equation

+ + +xs+xs+1 > @
where, for a given x;, the right-hand side is rational. Consequently, by the
inductive assumption of the truth of our theorem for the number s, it follows
that this equation has a finite > 0 number of solutions in the positive in-
tegers, Xz, X3, ..., X5, Xs41. Since x; can assume only a finite number of
values, the theorem follows for the number s+-1. This completes the proof.

162*. We easily check that for s = 3 we have a solution of our equation
in increasing positive integers, namely x; = 2, x, = 3, x3 = 6. If for some
integer s > 3 the positive integers x; < x, < ... < X; satisfy our equation,
then in view of s > 3 we have x; > 1 and 2 < 2x; < 2x, < ... < 2x,; thus
the numbers t, = 2, £, = 2x;, 13 = 2X3, ..., ts = 2X;_q, ls,z = 2X, form an
increasing sequence of positive integers and satisfy the equation

—+ + et

ts ts+l

Y

In this manner we have /; solutions of equation (1) in increasing positive
integers t, t;, ..., ts, ts11, and consequently, /;,, = I;. Thus, for every in-
teger s > 3, the equation

Lily. +——

X1 X2

has at least one solution in increasing positive integers x;, X;, ..., X;.
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For s = 3, the equation has only one solution in increasing positive in-
tegers since we must have x; > 1, hence x; > 2, and if we had x, > 3, we
would have x, > 4, x; > 5, which is impossible since

1 1 1 1 1 1
Sl T el i T Bl
x1+xz+x3 = 3 + 4 + 5

We have, therefore, x, = 3, hence x; = 6, and consequently /; = 1. On the
other hand, /, > 1 since the equation

1 1 1 1

X1 Xy X3 X4
has in positive integers the solutions 2, 3,7,42 and 2, 3, 8,24 (and also

other solutions).
We can, therefore, assume that s > 4. In this case the equation

11,

X1 X2 Xs—1
has at least one solution in increasing positive integers x; < x, < ... < X5_1,
and then the numbers t;, =2, t, =3, t; = 6x;, t4 = 6x3, ..., L5 = 6%,
will be increasing positive integers, and will satisfy equation (1). This solu-
tion will be different than each of the /; solutions obtained previously since
there all numbers were even, while here the number 3 is odd. Thus, we have
Isy1 = I,+1, hence [, > [ for s > 3, which was to be proved.

163. Let t, = n(n+1)/2 denote the nth triangular number. We easily
check that

1 1,1 1 1 1 1 1 1

=1, At =1

_—l’ - — 1y
13} L L b t, Lh 8 4

Thus, it suffices to assume that s is an integer > 5. If s is odd, that is,
s = 2k—1 where k is an integer > 3, then we have

1 k+1 2
—+ + At =33

SO ISRTNS] 16

2 ]

tygt ot
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and the left-hand side is the sum of reciprocals of (k—2)+(k+1) = 2k—1
= s triangular numbers.

If 5 is even, that is, s = 2k where k is an integer > 3, then we have, in case
k = 3, 6ty = 1, while in case k > 3

1 k41
——+—~+ R
k-1 k
1,2 2 2 2
=3t g tasT T oe T =1

and the left-hand side is a sum of reciprocals of (k—1)+(k+1) =2k = s
triangular numbers.

164. Clearly, none of the positive integers x, y, z, ¢ satisfying our equation
can be = 1. None of them can be > 3, either, since if, for instance, x > 3,
then by y > 2, z > 2, t > 2 we would have

1 1 1 1 1 3 31
St M B N el
x2+y2+22+t2\ 9+4 36<1
wh_ic'hi is impossible. Thus, we must have x = y = z = ¢ = 2, which is the
only solution of our equation in positive integers.

165. These are numbers 1, 4, and all integers s > 6.

For s = 1, we have an obvious solution x; = 1.

For s ='2 and s = 3, our equation has no solution in positive integers
since these numbers would have to be > 1, hence > 2, while for such num-
bers x;, X,, x; we have

For s = 4, we have the solutior x; = x; = x3 = x, = 2.

For s = 5, our equation has no solution in positive integers. In fact, if the
numbers x; < x; < X3 < x4 < x5 would satisfy our equation, we would have
x; = 2, and x; < 3, since in case x; > 3, we have

1

—+ ...+
1

5
< — .
o \9<1

| =
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We must therefore have x; = 2, and consequently,

1 1 1 1 3
A AR A &

which implies x, < 3 since 4/9 < 3/4. Thus x, = 2, which yields

1 1 1 1
A RTET T

+

It follows that x; < 3 since 3/9 < 1/2. Thus, x; = 2, which yields

1 1 1
;2;4-;2; =2
which is impossible since x, > 2 and x5 > 2.

For s = 6, our equation has a solution x; = x, = x3 =2, x, = x5 = 3,
Xs = 6.

For s = 7, our equation has a solution x; = x, = x3 = 2, x; = x5 = X,
= Xx7=4.

For s = 8, our equation has a solution x;
X =1, x; = 14, x3 = 21.

Suppose now that for some positive integer s the equation

I
Ry
|

=X3 =2, X4 = X5 =3,

1 1 1
't?""i?'*' ot = 1
has a solution in positive integers #y, ..., #,. Since 1/tZ = 4/(2t,)?, the equation
1 1 1
4=+ .. F+—=1
e + 2 + o+ =,

has a solution in positive integers x; =1;, Xz = t3, «..y Xs—1 = ls_1, X
= Xs41 = Xs+2 = Xs43 = 2f;. Thus, if our equation is solvable in positive
integers for some positive integer s, then it is also solvable for s+3, and
~ since it is solvable for s = 6, 7, and 8, it is solvable for every integer s > 6
(and, in addition to that, for s = 1 and s = 4).

REMARK. One can prove that the rational number r can be represented
as a sum of a finite number of reciprocals of squares of an increasing se-
quence of natural numbers if and only if either 0 <r <n*—1l or 1 <r
< 372 See [36, theorem 5.
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1 _1r 1 1 1 1 1 1 1 1 1 1 1
16 7 = etptetetetetetetrtetete
To check this equality one has to note that
1 1 1 1

and

72+ 42+212 3 1% T 6 < 360

and then reduce all fractions to the common denominator 362

ReEMARK. 1 do not know whether the number 1/2 can be represented
as a sum of less than twelve reciprocals of positive integers.

167*. Let m be a given positive integer. For s = 2™, our equation has
a solution in positive integers x; = X, = ... = X, = 2.

Let now a be a given positive integer, and suppose that our equation
is solvable in positive integers for the positive integer s. Thus, there exist
positive integers t,, t,, ..., t; such that

1 1 1
t—{”+§+ +?— 1,

and since 1/t = a™/(aty)", for x; = t1, X =t3, 0., Xs_1 = ls_yy Xs = X541
= ... = X, = at; we shall have
+ + = 1 __ 1

xr Xg4am_1 o
Thus, if our equation is solvable in positive integers for a positive integer s,
then it is also solvable in positive integers for s+a™—1, and, more generally,
for s+(a™—1)k, where k is an arbitrary positive integer. Taking a = 2
and g = 2"—1 we see that (for s = 2™) our equation has a solution in
positive integers for every s = 2”4 (2"—1)k+[(2™—1)"—1]] where k and !/
are arbitrary positive integers. .

The numbers 2"—1 and (2™—1)"—1 are obviously relatively prime.
By the theorem, proved in Sierpinski [37, p. 29, Corollary 2], it follows
that every sufficiently large positive integer is of the form (2"—1)k-+
+[(2™"—1)"—1]/, where k and [/ are positive integers. This implies that
every sufficiently large positive integer is also of the form 2"+ (2" —1)k+
+[(2™—1)"—1]I, hence for every such integer our equation is solvable in
positive integers.

168. Clearly, it suffices to show that our equation has for every positive
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integer s at least one solution in positive integers x;, X, ..., X, since every
such solution multiplied by a positive integer is again a solution.
For s = 1, we have an obvious solution x; = x, = 1.
1 1 1
15712 = 207
Now let s be an arbitrary positive integer, and suppose that our equation
has a solution in positive integers

For s = 2, we have the solution

1
s+l
Since
1 1 1

(2ry ~ @5y T oy

the positive integers x; = 12¢; for i =1, ..., s—1, x,= 15¢,, x,,, = 20¢,,
Xs+2 = 12t satisfy the equation

1
2ttt tetE T,

and the proof follows by induction.

169. It suffices to prove that for every integer s > 3 our equation has
at least one solution in positive integers X, X,, ..., Xg, Xs41. FoOr s =3,
it has the solution

1

23+ 53+203 10°

(which can be obtained by dividing by 60° both sides of the equation 3*+
+4°+5% = 6%, while for s = 4 we get the solution

1 1 1 1 1
G By TG R B 2B 67126 67 1)

(which follows from dividing by (57 - 12 - 13)* both sides of the equality
P45 4734123 = 13%).

Now let s denote a given integer >3 and suppose that our equation
has a solution in positive integers for this value of s. Thus, there exist positive
integers t,, t,, ..., ts, ts41 Such that

1
AR T

ts+1
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Putting x; = 10¢; for i =1,2,...,5—1 and x; = 12¢,, x,4, = 15¢,, X512
= 20¢t,, x,43 = 10¢,,,, we obtain

1 1
3 p—t

1 1
¥{+;§+ +xs+2 x3+3’

hence if our equation is solvable in positive integers for some s, it is also
solvable for s+2. Since it is solvable for s = 3 and s = 4, we conclude
that it is solvable for every s > 3, which was to be proved.

REMARK. One can prove by elementary means that for s = 2 our equa-
tion has no solution in positive integers but the proof is difficult.

170*. The solution found by A. Schinzel. We have the identity
(x+y+2P— (P +y*+2°) = 3(x+y) (x42) (+2). (1)

Thus, if x, y, and z are integers such that x+y-+z = 3 and x*+y*+2° = 3,
then by (1) we get

8 = (x+y) (x+2) +2) = 3—x) B—y) 3—2), 2
and in view of x+y+z = 3 we have
6 = 3—x)+(3—»)+(3B—12). 3

The relation (3) implies that either all three numbers 3—x, 3—y, 3—z
are even or only one of them is even. In the first case, in view of (2), all
these numbers are equal to 2 in absolute value; thus, by (3), they are equal
to 2, and then x = y = z = 1. In the second case, in view of (2), one of
the numbers 3—x, 3—y, 3—z is equal to 8 in absolute value, and the re-
maining ones are equal to 1 in absolute value; thus, in view of (3), one of
them is = 8, and the remaining ones are = —1. This yields x = —5,
y=z=4,or x=y=4, z= -5, or, finally, x =4, y= —5, z=4.

Thus, our system of equations has only four integer solutions, namely
x,y,z=1,1,1;, —5,4,4;4,—-5,4; 4,4, —5.

See Problem E 1355 from The American Mathematical Monthly, 69 (1962),
1009.

REMARK. We do not know whether the equation x*+)*4-z® =3 has
other solutions in integers x, y, z besides the four given above.

171. Clearly we must have n > 8. If n = 3k, where k is an integer
> 3, then for x = k—5, y = 3 we have 3x+5y = n. If n = 3k+1 where
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k is an integer >3, then for x = k—3 and y =2 we have 3x+5y =n
Finally, if n = 3k+2, where k is an integer > 1, then for x = k—1, y=1
we have 3x-+5y = n. It follows that our equation has at least one positive
integer solution x, y for every n > 15. It remains to investigate the numbers
8, 9, 10, 12, and 15. For n = 8, we have the solution x =1, y = 1. For
n =29, 12, and 15, our equation has no solution, since we would have 3|5y,
hence 3|y and 15|5y, hence n = 3x+4-5y > 5y > 15. For n = 10, our equa-
tion has no solutions in positive integers either, since then we would have
5I3x, hence 5|x and 15|3x, hence n = 3x+5y > 15. Thus, our equation
has at least one solution in positive integers x, y for all positive integers
nexcept 1, 2, 3,4,5,6,7,9, 10, 12, and 15.

Let now m be an arbitrary positive integer and let » be an integer > 40m.
The equation 3x-+-5y = n has, therefore, a solution x,, y,, and at least
one of these numbers must be > 5m since in the case x, < 5m, y, < 5m
we would have 3x,+5y, < 40m < n.If xo > 5m, thenfork =0, 1,2, ..., m
the numbers x = xo—5k and y = y,-+3k are positive integers and satisfy
the equation 3x-+5y = 3xy+Sy, =n. If yo > 5m, then for k=0,1,
2, ..., m the numbers x = x,+5k and y = y,—3k are positive integers and
satisfy the equation 3x--5y = n. Thus, this equation has, for n > 40m,
more than m solutions in positive integer x, y, which shows that the number
of such solutions increases to infinity with n.

172. n=2, y=x, z= x+1, where x is an arbitrary positive integer.
In fact, for positive integers x we have 2*+2* = 2**!, On the other hand,
suppose that for positive integers n, x, y, and z we have n*+nr® = n*. We
may assume that x <<y <<z. We cannot have n =1, hence n >2. We
have n* = n*—n’ = n*(n*~*—n’~*), which implies r»*~*—n’-*=1. If we
had y > x, then we would have n|1, which is impossible. Thus, we must
have y = x, hence n*~* = 2, which yields n =2, z—x = 1. We obtain,
therefore, n =2, y = x, z = x+1.

ReMARK. The equation n*+n” = n* is obtained from the Fermat equa-
tion x"+)" = 2" by reversing the roles of exponents and bases. See Mem.
Real. Acad. Sci. Art. Barcelona, 34 (1961), 17-25.

173. Let m and n be two given positive integers, and let a and b be two
different primes > m-+n. Put ¢ = am-+bn. The system x=m, y=n
satisfies obviously the equation ax-by = c. Suppose that there is some
other system satisfying this equation, say x,y. We cannot have x > m,
y>n, or x >m, y>n since in this case we would have ax-+by > am-+
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+bn = c. Thus, we must have either x <m or y <n. If x < m, then
m—x is a positive integer < m, and in view of ax+by = am--bn we have
by = a(m—x)-+bn, which implies that bja(m—x). Since q and b are different
primes, it follows that bjm—x, which is impossible since by definition we
have m > b. In a similar manner we prove that we cannot have y < n.

REMARK. It is easy to note that not for all two systems of positive integers
there exists a linear equation ax+-by = c, with integer a, b, and ¢, which
has these two systems as the only positive integer solution. On the other
hand, we can easily prove that there always exists such an equation of the
second degree with integer coefficients.

174. For instance, the equation x4y = m-+1, which has exactly m
solutions in positive integers x, y, namely x =k, y = m—k-+1, where
k=1,...,m.

REMARK. It is known that there is no linear equation ax--by = ¢ which
would have a finite and > 0 number of solutions in integers x, y.

175. For f(x,y) = xX*+y*+2xy—mx—my—m—1, we have the iden-
tity f(x, y) = (x+y—m— 1)(x+y-+1). Since for positive integers x and y we
have x+y+1 > 0, we can have f(x, y) = 0if and only if x+y—m—1 = 0;
from the solution of Problem 174 it follows that this equation has exactly
m solutions in positive integers x and y. '

ReMARK. The polynomial in two variables considered in this problem
is reducible. One could ask whether for every positive integer m there exists
an irreducible polynomial F(x, y) of the second degree with integer coeffi-
cients, and such that the equation F(x,y) = 0 has exactly m solutions in
positive integer x, y. One can prove that for every positive integer m there
exists a positive integer a, such that the equation x*4y* = a,, has exactly
m positive integer solutions x, y. More precisely, one can prove it for a,_;
=2-5%2 and ay = 57", where k = 1, 2, ..., but the proof is not easy.

Let us also remark that A. Schinzel proved that for every positive integer
m there exists a polynomial of the second degree in the variables x, y, say
f(x,y), such that the equation f(x, y) = 0 has exactly m integer solutions.
See [18]. _

176. Put x = ¢t+3. Then our equation reduces to the equation

2t (*+3t4+21) = 0,
which has only one solution in real numbers, namely ¢ = 0. It follows that
our equation has only one integer solution, namely x = 3.
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REMARK. One can prove that all solutions of the equation

B4 x>+ E+2r P+ A+ (x+H—1)r) = (x+nr)

in positive integers x, r, n are only n = 3, x = 3r where r is an arbitrary
positive integer.

177. If n = 2k—1, where k is a positive integer, then obviously, x = —k,
y = 0 is a solution of our equation; if n = 2k, where j is a positive integer,
then x = —k, y = k is a solution of our-equation.

ReMark. There are also other solutions, for instance forn = 8, x = —3,

y=6; forn=25,x= —11, y = 20; for n = 1000, x = 1333, y = 16830.
178. 1In this equation the coefficients at x*, x%, and x, are divisible by 3,
and the constant term is —25, which is not divisible by 3. It follows that
our equation has no solutions in positive integers x.
179. Substituting x = ¢+10 we reduce our equation to the equation
3¢(¢*+40t+-230) = 0.

Since the equation t?4-40r—230 =0 has no rational solutions, we must
have ¢t = 0, and our equation has only one solution in positive integers,
namely x = 10.

180. x=1, y=2 (since 2:3=1-2-3) and x= 35, y =14 (since
14:15=5-6-7). '
ReMARK. L.J. Mordell proved that our equation has no other solutions
in positive integers.
181. The solution follows immediately from the identity
1+@n2+@n?? = 2n?+1* for n=1,2,...

REMARK. It is easy to prove that for every positive integer k the equa-
tion k+x2+y? = z? has infinitely many solutions in positive integers x, y, z.
It suffices to take as x an arbitrary integer > |k|+1, even if k is odd, and
odd if k is even, and put

_ k+x*—1 ,— k+x*+1
=T T
182. Suppose that positive integers n and x <<y <z satisfy the
equation
n*+n’+n* = n'. : )
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We cannot have n = 1. If n=2, then from (1) we get 14-27"¥4-27"% = 2t-*,
and we cannot have y > x. Thus we have y=x, and 24+2**=2'"*
which gives z—x = 1, hence t—x = 2. Thus, if n = 2, then we must have
y =x, z=x+1, and ¢t = x+42, while we easily check that for all positive
integers x we have 27424241 = 2¥+2,

Suppose, next, that n>> 3. In view of (1) we have 1-+n"~*+n*~*=n'"7
and since n > 2, we must have y = x and z = x. Thus 3 = »*~*, which
implies » = 3 and t—x = 1. Therefore, if n > 2, we must have n =3,
x=y=2z, t=x+1. We easily check that for every positive integer x
we have 3*4-3*4-3* = 3°+1,

Thus, all solutions of equation (1) in positive integers n, x, y, z, ¢ with
x<y<Lzaren=2,y=x,z=x+1,t=x4+2,orn=3,y=x, z = x,
t = x+1, where x is an arbitrary positive integer.

183. From the solution of Problem 182 it follows that the equation
4*4-4+4* = 4' has no solutions in positive integers. Let us note that this
equation is obtained from the equation x*-+y*+4-z*=t* by reversing the
role of bases and exponents. As regards the last equation, it is not known
whether it has positive integer solutions x, y,z, ¢ or not, as was conjec-
tured by Euler.

184. This equation has only one solution in positive integers, namely
m =2, n=1. In fact, since 3% = 1 (mod 8), we have for positive integers k
the relation 3%*+1 = 2 (mod 8) and 3%*-'+1 = 4 (mod 8), which shows that
for a positive integer » the number 3"+1 is not divisible by 8, hence is not
divisible by 2™ for integers m > 3. Thus, if for positive integers m and n
we have 2"—3" = 1, then we must have m < 2, hence either 2—3" =1,
which is impossible, or 22—3" = 1, which gives m =2, n = 1.

185. This equation has only two solutions in positive integers, namely
n=m=1andn =2, m=3.Infact,if nis odd and > 1, then n = 2k+1,
where k is a positive integer, and in view of 3* = 1 (mod 4) we have 3***!
= 3 (mod 4), which yields 2™ = 3"—1 = 3**+1—1 = 2 (mod 4). This implies
that m <1 or m =1, and in view of 3"—2" =1 we have alson = 1. If n
is even, n = 2k for some positive integer k, then we have 2™ = 3%*—]
— (3*—1)(3*+1). Two successive even numbers 3—1 and 3*+1 are, there-
fore, powers of the number 2, which implies that these numbers are 2 and 4,
which gives k = 1, hence n = 2. This yields the solution n =2, m = 3.

186. If for positive integer x and y we have 2*+1 = y?, then (y—1)(y+1)
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= 2%, hence y > 1, and y—1 = 2, y+1 = 2!, where k is an integer >0,
and / is an integer > k. Moreover, k+/ = x. It follows that 2'—2¢ = 2,
which shows that k > 0 and, in view of k < /, we have 2*(2. Consequently,
k <1, and since k >0, we obtain k = 1. Thus, 2! = 2*4-2 = 4, which
yields / = 2. We have, therefore, x = k+/ = 142 = 3, hence y* = 2341
=9, and y = 3. The equation 2*+1 = y? has, therefore, only one solution
in positive integers, namely x = y = 3.

187. This equation has only one such solution, namely x =y =1
since in case x > 1 the number 2*—1 is of the form 4k—1, where k is a posi-
tive integer, and no square of an integer is of this form since upon division
by 4 it gives the remainder either 0 or 1.

188. Suppose that our system has positive integer solution x, y, z, . We
may assume that (x,y) =1 since in the case (x,y)=d >1 we could
divide both sides of our equations by d2. Thus, at least one of the numbers
x, y is odd. It is impossible that both are odd since in this case the left-hand
sides of our equations would give remainder 3 upon dividing by 4, which is
impossible, the right-hand sides being squares. However, if for instance x
is even, then y cannot be odd since in this case the left-hand side of the first
equation would give the remainder 2 upon dividing by 4, which is impossible
since it is a square. Thus, both numbers x and y are even, contrary to the
assumption that (x,y) = 1.

189. Our equation is equivalent to the equation (2x--1)2—2y* = —1,
which has a solution in positive integers, namely x = 3, y = 5. Our identity
implies that if positive integers x and y satisfy the equation, then greater
numbers x; = 3x+42y+1 and y, = 4x+3y+2 also satisfy this equation.
It follows that this equation has infinitely many solutions in positive integers
x and y. For x = 3, y = 5, we obtain in this manner x; = 20, y; = 29.

190. Our equation is satisfied for x =7, y = 13. This equation is equiv-
alent to the equation 3x*4-3x-+1 = y? which in turn is equivalent to 4y?
= 12x*+12x+4 = 3(2x+1)>+1, thus, to the equation (2y)*—3(2x+1)* = 1.
This implies that if x and y satisfy this equation, then greater numbers
x; = 4y+7x+3 and y, = Ty+12x+6 also satisfy this equation. It follows
that the equation considered has infinitely many positive integer solutions
x, y. For instance, for x =7, y = 13 we obtain x; = 104, y, = 181.

191. Proof (according to J. Browkin). If our system had a solution in
positive integers x, y, z, t, then it would also have a solution with (x, y)=1.
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Adding our equations we obtain 6(x*+3*) = z’+¢%, which implies that
3|z24-12. Since a square of an integer which is not divisible by 3 gives the re-
mainder 1 upon dividing by 3, it is impossible that both numbers z and ¢
are not divisible by 3. Since, however, 3|22+, if one of the numbers z, ¢ is
divisible by 3, so must be the other. Thus, both z and ¢ are divisible by 3,
which implies that the right-hand side of the equation 6(x*+y?) = z%+¢*
is divisible by 9, and 3|x*+y?, which, as we know, shows that both x and y
are divisible by 3, contrary to the assumption that (x, y) = 1.

192. Our equations imply that 7(x*+3*) = 2>+ We have, therefore,
7|z2+12, hence, by Problem 34, we have 7|z and 7|¢. Thus, 49|7(x*+3?),
which implies 7|x*+y?, which again implies that 7|x and 7|y. Thus, our
system cannot have solutions with (x, y) = 1, which, of course, is impossible
if it has at least one positive integer solution x, y, z, ¢, In fact, if (x, y)
= d > 1, we would have d|z and d|t, and it would suffice to divide each
of the numbers x, y, z, ¢ by d.

192a. It has, for instance, a solution x =3, y =1, z=4, r = 8.

193. If y were even, then x* would be of the form 8k-7, which
is impossible. If y were odd, then we would have x*+1 = y3>+423
= (y+2)[(y—1)*+3] and, in view of y=2k-+1, we would have
(2k)*+3|(x®-+1). Since the left-hand side has a prime divisor of the form
4¢3, the number x>*41 would have a prime divisor of the same form,
which is impossible (in view of (x, 1) = 1).

194. We have
P41 = Q)+ = (02007 —2cp+4c%)

= (y+2)((y—c)*+3c?).

Since ¢? = 1 (mod 8), we have 3¢? = 3 (mod 8) and if y is odd, then y—c
is even and (y—c)®>+3c? is of the form 4k-3; thus, it has a prime divisor
of this form, which is at the same time a divisor of x2--1, which is impossible.
If y were even, then we would have x> = y*4(2¢)’—1= —1 (mod 8),
which is impossible. It follows that there exist infinitely many positive in-
tegers which are not of the form x2—y°, where x and y are integers.

195. Suppose that x is odd. Then y is of the form y* = 0 (mod 8), hence
y*—1 = 7 (mod 8), and x>+ (2*)* would have a prime divisor of the form
4k+-3, which is impossible, being a sum of two squares of relatively prime
numbers. Thus, x is even. Let x = 2%z, where o is a positive integer. If a = k,
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then 2%*(z2+1) = y*—1 = (y—1)(»*+y+1), hence y must be odd and y—1
cannot be of the form 4k 3. Thus, y = 1 (mod 4), and y*+p+1 = 3 (mod 4),
which is impossible. If @ < k, then 22%((2*-*)2+2%) = (y—1)(3*+y+1), and,
in view of the fact that z is odd, we proceed as above. Finally, if « > k,
then 22%((2*~*z)*+1) = (y—1)(»*+y+1), and we. proceed as above. In
particular, if k = 1, we see that the equation y’—x? =5 has no positive
integer solutions x, y.
See: L. Aubry in Dickson, [7, p. 538].

196. Suppose first that x = 1, Then we have the equations 14y = zt,
and z-+t = y, which imply zt = z+z+1. It follows that z % 1 (since z =1
would give ¢t = ¢t+2, which is impossible). If z = 2, then # = 3, hence
by y=z+t, we get y =15, which yields the solution x=1, y=35,
z=2,t=3.1fz>3, then t >z >3 and we have z = 2,42, t = 1,42,
where z; > 1, ¢, > 1. It follows that zt = (z;+2)(t;,+2) = z;4,+22,+2¢t,+
+4 > z,4+4,+7 = z+t+3, contrary to the fact that (in view of x = 1)
we have zt = z+¢+1.

Suppose now that x = 2. We then have z > x = 2. If z = 2, then 2ty
= 2t, 24t = 2y, which implies y = ¢ = 2. We would therefore have x
= y = z = t = 2 which is a solution of our system. If z > 2, then, in view
of t > z, we have t > 2 and we may put z = 2,42, ¢t = ¢;+2, which implies
zt = (2;+2)(t,+2) = z14,+22;4+-2t,+4 > z,-+4,+7 = z+t+3.  However,
since x = 2, we have 2+y = zt, z+t = 2y, which yields z¢t = }(z+1)+2.
Thus, $(z+1)+2 > z+1t+3, which leads to z4¢4-2 <0, which is impossible.

Suppose now that x > 2, hence x >3, and z>x>3,t>2z>3. We
can put z =z;+2, t = t,+2, where z; >1 and t, > 1. It follows that
zt = (2;+2)(1,+2) = 214, +22+24,+4 > z;+4,+9 = z+¢t+S5.  Similarly,
since x > 3, we have y > x > 3, xy > x+y+5. We have, however, z+¢
= xy, which implies zt > z-++t+5 = xy+5 > x+y+10 = z¢4-10, which is
impossible.

Thus, our system has only two solutions in positive integers x, y, z, ¢t with
x<yand x<z<t,namelyx=1,y=5,z=2,t=3 andx=y=z
=t=2.

As regards solutions of our system in integers, there are infinitely many
such solutions. J. Browkin noticed that such solutions are x =z =0,
t = y, with arbitrary y, while A. Makowski noticed that the solutions of
our system are x = t = —1, y arbitrary, z = 1—y.

197. For n = 1, x may be arbitrary. For n = 2, we have x, = x, = 2.
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For n>2, xy;=X=..=%X,2=1, x,,y=1, x,=n is a solution.
There are, however, other solutions, for instance for n = 5, we have x;
= X, =X3=1, X4 = X5 = 3. Thus, we can say that for every positive
integer n there exist n positive integers such that their sum equals to their
product.

198. If nis odd and > 1, then
a=x"—y"= (x—=p)x"+x"2p4 ... 3",

and i in view of a > 0 we must have x—y > 1, hence x*~'4-y"~! < q. Thus,
x<"Yaandy< ]/ a and a finite number of checking will suffice. If
n =1, then all positive integer solutions of the equation g = x—y are:
y arbitrary, . x = a-+y.

If n = 2k, where k is a positive integer, then

a = x"—y" = x*—p¥* = (FF—y)(x*+yY),
where x*—y>1, hence x*+y*<a. It follows that x <}/a, y <]/a,
and a finite number of checking will suffice.

199. In order for a triangular number ¢, = x(x-+1)/2 to be pentagonal,
it is necessary and sufficient that for every x there exists a positive integer
y such that

y@3y—1) = x(x+1). 1)

It suffices, therefore, to show that equation (1) has infinitely many positive
integer solutions x, y.
We easily check that

(dx+Ty+1)(12x+21y+2)— (Tx+12p+1)(Tx+12y+2) |
= y@y—1)—x(x+1),

and it immediately follows that if positive integers x, y satisfy (1), then
the greater integers

x, = Tx+12y+1, y, =4x+7y+1 2

satisfy the equation y;(3y,—1) = x;(x;+1). Since the numbers x =y =1
satisfy (1), it follows that this equation has infinitely many positive integer
solutions x, y. The solution x = 1 =1 gives by (2) the solution x; = 20,
y1 = 12, which in turn leads to x, = 285, y, = 165, and so on.
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MISCELLANEA

200. The equation 4x+2 = 0 has obviously no integer roots. On the
other hand, the congruence 4x+2 = 0 (mod p) is solvable for every prime
modulus p. For the modulus equal 2, it is, of course, solvable identically
while if p is an odd prime, p = 2k-+1, where k is a positive integer, it has
the solution x = k.

201. Put m = a; if the congruence ax-+b = 0 (mod m) has a solution,
then alb, hence b = ak, where k is an integer, and the equation ax+b = 0
has the integer root x = —k.

202. We have identically 6x>+45x-+1 = (3x+1) (2x+1), which implies
that the equation 6x>+5x+1 = 0 has no integer solutions. Let m be an
arbitrary positive integer. We have then m = 2*m,, where « is an integer
>0, and m; is odd. Since (2% m,;) = 1, there exists a positive integer x
such that 3x = —1 (mod 2*), and 2x = —1 (mod m;), which yields m
= 2°m,! (3x+1) (2x-1), and consequently, 6x*>+5x+1 = 0 (mod m).

1203. This it true for n = 1 since a square of an odd number gives the
remainder 1 upon dividing by 8. Suppose that the assertion holds for a pos-
itive integer n. Then for odd k: k*" = 2"*%t+1, where ¢ is an integer.
It follows that k2**' = (2+2¢1)2 = 220424 DP4+3¢ 1] = ™3™ 12 1)+ 1,
which implies that 2""3]k2"+1—-1. The proof follows by induction.

204. The proof follows immediately from the identity
(Bx-+4y)*— (2x+3y)* = ¥*—2)%,

and from the remark that for positive integers x and y we have 3x+4-4y > x,
and 2x+3y > y.

205. If for some integers x and y the number x2—2)? is odd, then x must
be odd, hence x* = 1 (mod 8). In the case where y is even, we have 2y
= 0 (mod 8), and in the case where it is odd, we have 2y? = 2 (mod 8).
Thus, in case of x2—2y* being odd, we have x*—2y* = 41 (mod 8), which
shows that for integers x and y the number x*—2y? cannot be of the form
8k—+3 or 8k-+5, where k is an integer.

206. It can be seen quite readily that for every positive integer n, the
number (2n+41)2—2-22 is of the form 8k-+1, where k is an integer > 0.
Next, we have 1 = 32—2:22, 9 = 92-2.6% 17 = 5*—2-2%, 25 = 15°—2-10%,
while the number 33 cannot be represented in the form x2—2y%, where x
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and y are positive integers. We shall prove, more generally, that no number
of the form 72¢4-33, where t =0, 1,2, ..., can be represented in the form
x*—2y* with integers x and y. In fact, suppose that 72¢4-33 = x2—2)? where
t, x and y are integers. The left-hand side is divisible by 3, but is not divisible
by 9. It follows that none of the numbers x, y is divisible by 3 since if 3|x,
we would have 3|y and the right-hand side would be divisible by 9, which is
impossible. Thus, the numbers x and y are not divisible by 3, hence x? and
y* give remainder 1 upon dividing by 3; thus, the number x*—2)? gives the
remainder 2 upon dividing by 3, which is impossible since the left-hand side
is divisible by 3. ‘

Thus, there exist infinitely many positive integers of the form 8% -1 (where
k = 1,2, ...) which are not of the form x*>—2y? where x and y are integers,
and the least such number is 33 = 8:4+-1.

207. The even perfect numbers are, as it is well known, of the form
2P-1(2P—1), where p and 2°—1 are primes (see, for instance, Sierpinski [37,
p. 172, corollary]). For p = 2 we have the number 6. If p > 2, then p is
- a prime of the form 4k+1 or 4k+3. If p = 4k-1, then 27! = 2% = 16,
and the last digit of 27~ is obviously 6, while 22—1 = 2%+1__1 — 2.16*—1
and the last digit is obviously 1. Thus, the last digit of the product
2P-1(2P—1) is 6. If p = 4k+3, then the number 2P-1 — 24+2 — 4.16k
has the last digit 4, while the last digit of 27 is 8, hence the last digit Qf the
number 2°—1 is 7, and, consequently, the number 2°-1(2°—1) (as the
product of two numbers, one with the last digit 4, and the other with the
last digit 7) has the last digit 8.

This completes the proof.

REMARK. One could prove (but the proof is more difficult) that if the
last digit of a perfect number is 8, then the last but one digit is 2.

208. The value of our fraction, in the scale g, is

1+g2+g4+g6+g8
1+g+g*+g"+¢°

and we have to prove that for every positive integer k, this fraction is equal
to the fraction

142444 g5+ ... fgHht2fgtkts | g2k+6
14-g +g*+g°+ ... +g¥kt+2{g2k+5 g2k+te-

(D
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The assertion can be shown by checking that the products of the numerator
of each of these fractions by the denominator of the other are the same.
See P. Anning [1].

REeMARK. J. Browkin noticed that for positive integer k we have the identity
14g gt g+ ... gt gthripgthts
= (1-g+&*—g’+&%) (+g+&+ ... +g**?),
and
1+g+g4_|_g5+ __|_g2k+2+g2k+5_l_g2k+6
= (1—g*+g") (I +g+g*+ ... +2*+3),
which implies that the fraction (1) is, for k = 1, 2, ..., equal to the fraction
1—g+g’—g’+g*
1—g?+g*

hence its value is independent of k.

209*. A. Schinzel proved a more general theorem, namely the theorem
asserting that if g is a positive integer, even, and not divisible by 10, then
the sum of decimal digits of g" increases to infinity with n. We shall present
his proof.

Let us define an infinite sequence of integers @; (i = 0, 1, 2, ...) as follows:
put @ =0, and for k=0,1,2,..., let g;,, denote the smallest positive
integer such that 29+ > 10% (thus, we shall have a, = 1, @, = 4, a3 = 14,
and so forth). Clearly, ¢; < a, < a3; < ....

We shall prove that if for some positive integer ¥ we have n > a;, then
the sum of digits of g" is > k.

Let ¢; denote the digit of the decimal expansion of g" standing at 10/.
Since g is even, we have 2"|g", and since n > ax, we have, for i=1, 2, ...
..., k—1, the relation 2%|g". Moreover, since 2%|10%, we have

241cg,—110%—14 ... +¢o.
If for a;_, <j < a; all digits ¢; were equal zero, we would have
2%|cp, 11091714 L o,
and, in view of ¢, # 0, also
2% < ey 109171 L dgp < 10471,
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This implies 2% < 10%-, contrary to the definition of g;. Thus, at least one
of the digits ¢;, where a;—; <j < a;, is different from zero. Since this is true
fori= 1,2, ..., k, at least k digits of g" are different from zero. For suf-
ficiently large n (for n > ay), the sum of decimal digits of g" is not smaller
than an arbitrarily given number k. This shows that the sum of decimal
digits of g" increases to infinity together with », which was to be proved.

A. Schinzel noted that in a similar way one can prove that if g is an odd
positive integer divisible by 5, then the sum of decimal digits of g” increases
to infinity with n. |

In particular, from the theorem proved above it follows (for g = 2) that
the sum of decimal digits of 2" increases to infinity with z. It does not mean,
however, that the increase is monotone: we have, for instance, the sum of
digits of 2° equal 8, while the sum of digits of 2* equal 7, and the sum of
digits of 2° equal 5. Next, the sum of digits of 2° is 8, while that of 21 is 7.
Similarly, the sum of digits of 26 is 25, while that of 2! is 14.

210*. Proof due to A. Schinzel. Let k be a given integer > 1, and let ¢
be an arbitrary fixed digit of decimal system. Since k > 1, we easily prove
(for instance, by induction) that 10! >2-2% Let ¢ denote the least
integer such that # > ¢-10*~1/2*; we shall have, therefore,

-1 k=1
< 0}92;___{.1, and +1< c.-l%,-‘-—+2.

At least one of integers ¢ and 741 is not divisible by 5; denote this number
by u. We shall have

lo'c-l " lok-l

c-—-2—k———<u<c 2k

+2

and since 2-2% < 10*~!, we shall have, for I = 2*u, the relation
e 101 < 1 < (e4+1)10+, (1)

which shows that the number / = 2*u has k digits, the first of which (hence
the kth from the end) is ¢ (this digit can be zero).

In view of [ = 2*u we have 2%|/, and by the definition of u it follows that
5|u, hence (/, 5) = 1.

As we know, the number 2 is a primitive root for the modulus 5* (see, for
instance, W. Sierpinski [24, p. 246, lemma]). Since (J, 5) = 1, there exists an
integer n > k such that 2" = [ (mod 5%). Since 2*|/ and 2¥2", we have also
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" = ] (mod 2¥), and consequently 2" = I(mod 10%), which shows that the k
last digits of the number / coincide with the corresponding digits of 2", It
follows that the kth from the end digit of the number 2" is ¢, which was to
be proved.

ReMARk. The last four digits of powers of 2 cannot be of the form 111¢
with ¢ = 2, 4, 6 or 8 since none of the numbers 1112, 1114, 1116 and 1118 is
divisible by .16.

In the paper quoted above I proved (p. 249), that the third and second
from the end digits of 2" (where n = 3, 4, ...) can be arbitrary. I proved also
that if m is an arbitrary positive integer and k is the number of its digits,
then there exists a positive integer # such that k first digits of the number 2"
are the same as the digits of m.

211. For integer n > 4, we have 5"**—5" = 5"(5*—1) = 5".16-39, hence
5"+4 = 5" (mod 10000), and it follows that the last four digits of the se-
quence 5" (n=4,5,...)) form a four-term period. The period is 0625,
3125, 5625, 8125. This period is not pure since the numbers 5, 5% = 25,
5% = 125 do not belong to it.

212. Let s be a given positive integer, and let ¢y, c;, ..., ¢, be an arbitrary
sequence of s decimal digits. Let m = (c;¢; ... ¢5)10 be a number with s digits
equal respectively to ¢;, c,, ..., ¢;. Let us choose a positive integer k such

that 2)/m < 10*-! and let n = [10*)/m]+1, where [x] denotes the greatest
integer < x. We have 10*)/m < n < 10*y/m-1, which implies that

10%m < n? < 10%*m+2-10"Y m+1 < 10¥*m+10*-1 1 < 10%*m+10%,
and consequently
_ 10%*m < n* < 10%*m+(10%*—1);.
it follows that
‘ (c1€z .. €500 ... )y < 1* < (c1C; ... €5999 ... o,
where the number of zeros and the number of nines is 2k. It follows that the
first s digits of n* are ¢, ¢;, ..., Cs.

213. If n is a positive integer, then #"+2°—n" = n*(n**—1) is divisible by
4. In fact, if n is even, then 4|n", and if n is odd, then n'® is odd, hence its
square n*® gives the remainder 1 upon dividing by 8. Thus, 8#**—1. For
positive integer n, the number #"+2°—n", hence also the number (n+20)"*+2°—
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—n", is always divisible by 4. On the other hand, if a and b are positive
integers such that a > b and 4|a—b, then for positive integer n we have
5|n°*—n®. Indeed, we have @ = b4k, where k is a positive integer, hence

n’—n® = n’(n*—1).

If 5|n, then the first factor on the right is divisible by 5; if 5)n, then by the
Fermat theorem we have n*= 1 (mod 5), which implies n* = 1 (mod 5),
and the second factor on the right-hand side of our equality is divisible by
5. We proved, therefore, that if a and b are positive integers, a > b, and
4]a—b, then for positive integers n we have 5|n°—n’, and of course, we must
also have 5|(n+20)°—n®. In particular, for a = (n+20)"**° and b = n", we
have, as shown above, 4la—b, hence 5](n-+20)"+2"**_»"" Since the right-
hand side is always even (as n and n4-20 are either both even or both odd),
we have, for positive integers », the relation

10](n-+-20)"+20" 20 _ "

which shows that the numbers (n--20)"*2"*® and »™ have the same last
digit. The sequence of last digits of numbers n™ (n=1,2, ...) is therefore
periodic; the period is pure, and consists of at most 20 terms. It is easy to |
see that the period consists of exactly 20 terms, equal to
1,6,7,6,5,6,3,4,9,0,1,6,3,6,5,6, 3,4,9,0. |

214. Let m be an arbitrary positive integer. Let us partition the digits of |
the given infinite decimal fraction into blocks of m digits each; we shall
have infinitely many such blocks. On the other hand, there are 10™ different |
sequences formed of m digits; this number being finite, we conclude that at | i
least one of them must be repeated an infinite number of times. :

ReMARK. For irrational numbers ]/ 2, t or e, we do not even know which
digit will be repeated in the decimal expansion an infinite number of times;
it is easy to show that for each of these numbers there exist at least two
such digits.

215. If 3%* = (n4+1)+(n+2)+ ... +(n+3%), then we have 3%* = 3*n4-
+13*(3*+1), which gives n = }(3*—1). Thus, the number 3%* is a sum of
3* terms, equal to consecutive positive integers, the least of them being
n+1 = §(3*+1). We have, for example, for k = 1, 2 and 3: 3% = 24344,
34 = 5464 ... +13, 3° = 144154 ... +40. See Khatri [12]. :

216. As we know, if @ and b are real numbers such that b—a > 1, then
between a and b there is at least one integer; in fact, such an integer equals
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for instance [a]+1, where [x] denotes the greatest integer not exceeding x.
Indeed, we have a < [a]+1 < a+1 < b (since b—a > 1).
Let s be an integer > 1, and let
Py =~
-y

this number will be real and positive. Thus, for integer n > u,;, we shall
have

I S

V21’

which implies that

hence V/n > ]T/Z_'l_—l_ and Vn@{/2—1)>1

Voan—yn=Vn@/2-1)>1.

Thus, there exists a positive integer k such that f/;t— <kyn<k< ]s/fn, which
yields n < k* < 2n. As m, we may take number [u,]+1.

For s = 2, we have [u;] = 5, and already between 5 and 10 there lies
a square number, namely 32, while between 4 and 8 there is no square number.
Thus, the least m, is 5. Similarly, we easily compute that the least num-
ber m; is 33.

217. Let m be an arbitrary positive integer. By the Chinese remainder
theorem, there exists a positive integer x such that

x=p—i+l(modp}) for i=12, ..,m, ()

where p; denotes the ith prime. The sequence of m consecutive integers x, x-+
+1, ..., x+m—1 has the desired property since by (1), for i=1,2,...,m
we have x-+i—1 = p?k;-+p;, where k; is an integer. This number will there-
fore be divisible by p; but not divisible by p?, hence x-+i—1 cannot be a
power with exponent > 1 of any positive integer.

218. wu, = 3""'forn =1,2,.... Easy proof by induction.
219. u, = (2—n)a+@®m—1)b for n =1, 2, .... Easy proof by induction.

220. u, = (—1)"[(n—2)a+(m—1)b] for n=1,2,.... We easily check
that the formula holds for » = 1 and » = 2. Assuming that for some 7 the
formula is valid for u, and u,,,, we easily check, using the fact that u,.,
= —(u,+2uy,41), that the formula is valid for #,,,. Thus, the proof follows
by induction.
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In particular, if @ = 1, b = —1, we obtain u, = (— 1)**1 and for a=1,
b = —2, we obtain u, = (—1)"*'n.

21wy = §B3 4 (— ) aHE (- Db for n=1,2,. .. Proof
by induction.

222. There are only two such integers, namely a =1 and a = —1. We
easily check that both these numbers satisfy the desired condition. From this
condition for n = 1 it follows that ¢* = a. Thus, if @ were an integéf =2,
we would have a® > a* > a, which is impossible. If we had a < —2, we
would also have |a°| = 1/]a]'! < 1, which again is impossible since a® = a
and a < —2 imply |a°| = |a] > 2.

223*, Let a and b be arbitrary positive integers, and let ¢ denote the
greatest square divisor of a>+b?, that is, a®+b* = kc?. Let x = a*k, y = b%;
we have x+y = a*k+b%k = (*+b*)k = (kc)* while xy = (abk)>.

We shall show that all pairs of positive integers, whose sum and product
are squares, can be obtained in this manner for suitably chosen a and b.

Suppose that x+y = 2%, xy = t?, where z and ¢ are positive integers. Let

= (x, y) and let ¢, denote the greatest square divisor of d; we have, there-
fore, d = kc?, where k is a positive integer, not divisible by any square of an
integer > 1. We have x = dx;, y = dy, where (x;, ;) = 1 and from x4y
= 22 it follows that (x;+y,)d = z%. Thus, d = kc}|z? and since k is not
divisible by any square of an integer > 1, we find that kc,|z, which implies
that z = ke, z;, where z, is a positive integer. It follows that (x,+y,)d = x+
+y = 2 = k*c}z} = kdzi, which implies that x;+y, = kz} and x,y, = £*/d>.
Since (x;, y1) = 1, it follows that the numbers x, and y, are squares, that is,
Xy = a:, y; = bi. Since x = dx; = k(c1a;)%, y = dy, = k(c,b,)?, putting a
= a4y, b= c,b, we get x =ka?, y =kb? and a*+b* = (c,a1)*+(c1b,)>
= c2(x;+y1) = k(c1z))?; putting ¢z, = ¢, we get a>+-b* = kc?; since the
number k is not divisible by any square of-an integer r > 1, the number c
is the greatest square divisor of a>+-b2.

All pairs of positive integers << 100 whose both sum and product are
squares are 2, 2; 5, 20; 8, 8; 10, 90; 18, 18; 20, 80; 9, 16; 32, 32; 50, 50;
72, 72; 2, 98; 98, 98; 36, 64.

224. There is only one such number, namely 10. In fact, if (2x—1)*+
+Q@2x+1)? = 3y(y+1), then (2x+1)*—(8x)*> = 17, and the number 17 has
only one representation as the difference of two squares of integers, namely
17 = 92—82 This yields 2y+1 =9, hence y = 4 and ¢, = }y(y+1) = 10.
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225*. We shall prove by induction with respect to n that the theorem of
Hogatt holds for every positive integer < u,. It is true for n =1 since
u; = 1, and for n = 2 since u, = 1. Let now n be an integer > 2, and suppose
that every positive integer << u, is a sum of different terms of Fibonacci
sequence. Let k denote an integer such that u, < k < u,.;. If we had k—
—Uy >U,_y, we would have w4y =k > u,—1+u, = u,4,, which is impos-
sible. We have, therefore, 0 < k—u, < u,_,. The positive integer k—u, is,
by induction, equal to a sum of different terms of Fibonacci sequence, and
in view of k—u, < u,_; < u,, the number u, does not appear in the repre-
sentation. It follows that k = (k—u,)+u, is a sum of different terms of
Fibonacci sequence, which completes the proof of Hogatt theorem.

Wehave 1 =uy,2 =3, 3 =ty = ty+us, 4 = uy+uy, 5= us = us-+uy,
6 = uytus, 7= ustus, 8 = ug = uy+-us, 9 = u;+ug, 10 = u;+ug.

226. We shall proceed by induction. Our formula is valid for n =2
since 12 = 1-24-(—1). Suppose that our formula holds for an integer n > 2.
We have, therefore, 42 = u,_y 1+ (—1)""1. It follows that

Upg1—Unlinyz = U1 —Un(Un~+Uns1)
= Upy1(Unp1—Un)—Us = Uny1Up_1—Up = (—1)"
which proves the formula for n+-1.
227. Let us notice first that from the identity
6t = (t+17+@—1)°+ (=)’ + (1)’

it follows that every integer dividible by 6 is a sum of four cubes of integers.

Since for every integer k and positive integer n, for r = 0, 1, 2, 3, 4, 5 each
of the numbers 6k-r—(6n+r)? is divisible by 6 (as 6|r>*—r for integer r), it
follows that every integer can be in infinitely many ways represented as a sum
of five cubes of integers.

ReMARK. It is conjectured (and this conjecture was checked for all pos-
itive integers << 1000) that every integer can be represented in infinitely
many ways as a sum of four cubes of integers; see Schinzel, Sierpiniski [21]
and Demjanenko [6]. ‘

228. The solution follows immediately from the identity

3 = (4+24n°)*+(4—24n°)* +(—24n°)*+(=5)° forn=1,2,3, ....
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229. The proof follows immediately from the following two identities
valid for integer ¢ > 8:

(t—8)2+(t—1)*+(t+1)*+(t+8) = (t—T*+(t—4)>+(t+4)>+(t+7)
and
(t—8)+ (t— 1)+ (t+1Y°+(t+8)’ = (t=7+(t—4)’+(t+4)°+(1+7)°.

230. Suppose that for some positive integers m we have 4™-7 = @+
+b*+c*--d?, where at least one of the numbers a, b, ¢, d, say a, is > 0 and
< 2™1, We cannot have a = 0 since in this case 4™-7 would be a sum of
three squares of integers, which is impossible (see, for instance, W. Sierpin-
ski, [37, p. 363, Theorem 3]). We have therefore m > 1 and a = 2*(2t—1),
where k is a non-negative integer << m—2, and ¢ is a positive integer. It
follows that

47 7—[242t—1)P = 4*[4"*-T—(Bu+1)] = 4*(8v+7),

where u and v are integer (since k << m—2, which implies that m—k > 2),
and we have 4*(8v+7) = b*+c?+d?, which is impossible.

ReEMARK. One can easily prove that the number 4™-7 (where m is a po-
sitive integer) has at least one representation as a sum of four squares of
integers since

4" = QP+ QPRI

231. We easily check that the first six integers > 2, which are sums
of two cubes of positive integers are 1°+2°> =9, 2°4-2° = 16, 1'+3° = 28,
23433 = 35, 3343% = 54, 1>*4+4° = 65. None of the numbers 9, 16, 28, 35,
and 54 is a sum of two squares of integers, while 65 = 124-82. Thus, the
least integer > 2 which is a sum of two squares of integers and a sum
of two cubes of positive integers is 65.

To show that there exists infinitely many- positive integers which are sums
of two squares and sums of two cubes of two relatively prime positive in-
tegers, it suffices to note that for positive integer k¥ we have

1+26k —_ 12+(23k)2 — 13+(22k)3'
232. For insténce, the number 142 has this property since k|s! for
k=1, ..., s Of course, instead of s! we could take the number [1, 2, ..., s].

233*, For instance, all numbers of the form 6-8" (n =0, 1, 2, ...) have
the desired property. In fact, no such number is a sum of cubes of two pos-
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itive integers, as in the case of even n, this number gives the remainder 6
upon division by 9, while in case of odd n, it gives the remainder 3 (since
8 = —1 (mod 9)). On the other hand, every cube of an integer gives the re-
mainder 0, 1, or —1 upon dividing by 9, hence a sum of two cubes can give
only the remainder 0, 1, —1, 2 or —2, and it cannot give the remainder 3 or
6 (nor 4 or 5).

On the other hand, we easily check that 6 = (17/21)*+(37/21)%, which

gives
. (1727 (37.20)}
o5 =(T2) +{217).

Thus, the numbers 6:8" (n =0, 1, ...) are cubes of two positive rational
numbers.

234*, Proof due to A. Schinzel.

For instance, all numbers of the form 7-8" (n =0,1, 2, ...) have the
desired property. In fact, on one hand we have 7 - 8" = (2**1)*—(2")? for
n=0,1,2,...; on the other hand we shall prove that none of the numbers
7-8m=0,1,2,..)is a sum of two cubes of positive integers. We easily
check that the assertion is true for n = 0 and » = 1. Suppose now that there
exists a positive integer n such that 7 - 8" is a sum of two cubes of positive
integers, and let » be the least of such numbers; we have, therefore, n > 2,
and

7-8" =X+’ = (x+y) (F*—xy+y"),

where x and y are positive integers. Since the left-hand side s even, x and
y are either both even or both odd. If they are both odd, x>—xy-+»? is odd,
and as the left-hand side has only odd divisors 1 and 7, we must have either
x*—xy+y*=1 or x*—xy+y* = 7. In the first case we would have x>+
+y* = x+y, and since x and y are positive integers, this implies that x
=y =1, hence 7-8" = 2, which is impossible. If x>*—xy-+y* = 7, then

(2x—y)*+3y* = 2y—x)*+3x* = 28,

which yields 3x? < 28 and 3y < 28, hence x < 3, y < 3. Thus, x*+)* < 54,
which is impossible, as x*+y* = 78" >7-8%

Thus, x and y are both even, x = 2x,,y = 2y,, where x; and y, are pqsitive
integers, and in view of 7-8" = x34»* we have 7-8"'= x}+y}, con-
trary to the definition of the number n.
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We proved, therefore, that the numbers 7-8" (n =0, 1, 2, ...) have the
desired property.

REMARK. It has been proved that there exist infinitely many positive
integers n not divisible by any cube of an integer > 1, such that they cannot
be represented as sums of two cubes of rational numbers, but the proof
is difficult. Such numbers < 50 are 3, 4, 5, 10, 11, 14, 18, 21, 23, 25, 29,
36, 38, 39, 41, 44, 45, 46, 47. The number 22 is a sum of two cubes of ration-
al numbers, but with large denominators:

17299\°  [25469\°
2= ("9352‘) +(‘9‘9‘51') :

See [23, p. 301, and tables on pp. 354 and 357].

235%. Proof due to A. Schinzel.

Numbers of the form (2*—1):-2"™ for n =0, 1, 2, ... have the desired
property. We obviously have (2*—1)2" = (2"+)*—2" and it remains to
show that the equation

(2F—1)2% = yk4-o* (1)
has no positive integer solutions % and v. This is true for n = 0 since
1% < 261 < 28415,

Suppose that there exist positive integers # for which equation (1) has a solu-
tion in positive integers # and v, and let n be the least of such numbers.
If u and v were both even, ¥ = 2u;, v = 2v,;, we would have, by (1):

2 —1)20"Y% = i o

contrary to the definition of the number n. Since the left-hand side of (1)
is even, both numbers v and v have to be odd.
Suppose that & is odd and > 3. From the formula

uk +,vk
utv
where the right-hand side contains k terms, all of them odd, it follows that

the left-hand side is odd; since this number is a divisor of (2¢—1)2", we
must have

=yl — 2ot 32— | Lokt

uk+vk '
<2k 1.
u+v s2-1
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We may assume that » > v, which implies
k
+o*
> okl
u—+v

and consequently o*~! < 2%; thus v < 2¥¢-1 < 3 (because k > 3). Since
k is odd, we have v = 1, and

ok w41
ut+v  u+tl

It follows that (u—1)*-! < 2%, which yields u—1 < 3, hence, in view of the
fact that u is odd, # = 1 or u = 3. The relation u = 1 is impossible since
we would then have u*+o* = 2, contrary to (1). The relation v = 3 is
impossible, too, since it would yield

ot 3441

ut+v 4
which is > 2¢¥—1 (for k£ > 3).

Suppose now that k is an even positive integer. Since # and v are odd

the number »*+* gives the remainder 2 upon division by 4, which is im-

possible since the left-hand side of (1) is divisible by 4. This completes the
proof.

236*. Proof due to A. Rotkiewicz.

If 2|n, then for positive integers k¥ and ! the number (2k-+1)"+(2/41)"
is a sum of two nth powers of positive integers; as a number of the form
4:+2, it is not a difference of two squares; since 2|n, it is not a difference
of two nth powers of positive integers, either. On the other hand, if 2 tn,
then the numbers (2"4-1)2"™ = (2**1)"4-(2*)", where k =0,1,2,..., are
not the differences of two nth powers of positive integers. In fact, if we had
(2"+1)2"* = x"—y" for positive integer x and y with x > y, then the
numbers x; = x/(x, y) and y; = y/(x, y) would be positive integers, and
being relatively prime, could not be both even. It easily follows that
2 f (xi—y1)/(x1—y) and since

> v u—1) > (u—1)

@"+1)2% = (x, )" (xl—yl) i

we must have

2"+1,
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which implies that
xn_ n
1 yl < 2n+1
X1—WM
We have, however,
__Jf'l‘—'yl > x'1‘~1,>/ 3n-1
X1—)

(since we cannot have x; =2, for them we would have y, =1, and
2"—1|2"+1, which is impossible). We would therefore have 3"~! < 2"+1,
which is impossible for n = 3.

237. We shall use the well-known formula

124224 4p2=" ("+1)6(2” +1)

We have to find the least integer # > 1 such that n(n+1)(2n+1) = 6m®
where m is a positive integer. We shall distinguish six cases:

1. n= 6k, where k is a positive integer. Our equation takes on the
form

k(6k+1) (12k-+1) = m?.

The factors on the left-hand side are pairwise relatively prime, hence they
all must be squares. If k = 1, then 6k-1 is not a square. The next square
after 1is 4. If k = 4, we have 6k+1 = 52, 12k-+1 = 72, and consequently,
for n= 6k =24 the sum 12422+...4+24% is a square of a positive
integer, 70.

2. n = 6k-+1, where k is a positive integer. In this case we have

(6k+1) (3k+1) (2k+1) = m?,

and each of the numbers 2k+1, 3k+41, and 6k-+1 (which are pairwise
relatively prime) must be a square. The least k for which the number
2k+1 is a square is k = 4; in this case, however, we have n = 6k+1 > 24.

3. n = 6k-2, where k is an integer > 0. We have in this case
(Bk+1) 2k+1) (12k+5) = m?,

and the numbers 3k+1, 2k+1, and 12k+5 (as pairwise relatively prime)
must be squares. If we had £k = 0, the number 12k+45 would not bg a



SOLUTIONS 115

square. On the other hand, for positive integer k, we have, as before,
k > 4, hence n = 6k+2 > 24.

4. n = 6k+3, where k is an integer > 0. In this case we have
(2k+1) (3k+2) (12k+7) = m?;

we easily see that the numbers 2k41, 3k+2, and 12k+7 are pairwise
relatively prime, hence they must be squares. We cannot have k =0, 1,2
or 3 since in this case the number 3k+2 would not be a square. We
have, therefore, k¥ > 4, which implies n = 6k+3 > 24.

5. n = 6k-4, where k is an integer > 0. We have in this case
(Bk+2) (6k+5) (4k+3) = m?,

where the numbers 3k+2, 6k+5, and 4k+-3 are pairwise relatively
prime, hence they must be squares. We cannot have k=0, 1, 2, 3 since
then the number 3k-+2 would not be a square. We have, therefore, k > 4,
and consequently n = 6k-+4 > 24.

6. n = 6k-+5, where k is an integer > 0. We have in this case
(6k+5) (k+1) (12k+11) = m?,

and the numbers 6k+5, k+1 and 12k-+-11 are pairwise relatively prime,
hence they all must be squares. We cannot have k = 0, 1,2, 3 since in
this case the number 6k+5 would not be a square. We have, therefore,
k>4, and n = 6k+5 > 24.

We proved, therefore, that the least integer n > 1 for which 12+
+224...+n? is a square is n = 24.

ReMARK. It is rather difficult to show that » = 24 is the only positive
integer for which 124+224...4-n? is a square. On the other hand, the sum
134-234...4n* is a square for every positive integer n, but one can prove
that it is not a cube of a positive integer for any n.

238. All positive integers except
1,2,3,5,6,7,10, 11, 13, 14, 15, 19, 23.

It is easy show that none of the above thirteen numbers is a sum of a finite
number of proper powers (these are successively equal to 22 23, 32, 2%
= 4%, 52,33, 2% 6%, ...).

Now let n be a positive integer different from any of the above thirteen
numbers.
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If n = 4k, where k is a positive integer, then the number # is a sum of k
numbers 22.

If n = 4k+1, then, in view of n# 1 and n # 5, we can assume that
k>2; then n=4k+1 = 34+4(k—2), where k—2 is an integer > 0.
If k = 2, then n = 3%, while if k > 2, then n = 324-224...4-22 where the
number of terms equal to 22 is k—2.

If n = 4k+2, then since » is different from numbers 6, 10, and 14, we
have k >4 and n = 4k+2 = 3%+324+4(k—4). Again it follows that the
number n has the desired property.

Finally, if n = 4k+-3, then since n # 3,7, 11, 15, 19, and 23, we have
k> 6 and n = 3>43%+324+4(k—6), which again implies that » has the
desired property.

238a. We have 1 =32—-2%2=3"-52,3=2"-53 4 =5—112 = 2*°—
—2%,5=32-24,7=2"—11%, 8 =2-23, 9 = 52—4% 10 = 13°—3".

ReEMARK. We do not know whether the number 6 is a difference of two
proper powers. It has been conjectured that every positive integer has a finite
= 0 number of representations as the difference of two proper powers.

239. If a®>+b* = c%, where a, b, and ¢ are positive integers, then multi-
plying both sides of this equality by the number

@2én2—1)pan(2n+1)(n—1) p4n2(2n—1)
we obtain
[(a2"b@n+1n—1)gn(2n—1yy2nj2 | [(a2n+1p2—1c22yn—1]2
— [(aZn—1b2n(n—1)02n2—2n+1)2n+l]2_
240. There is only one such positive integer, namely n = 5. We easily
check that this number satisfies the equation (n—1)!41 = n2, and we
also check that the numbers n = 2, 3, and 4 do not satisfy this equation.

For n = 6 we obtain n> > 6n—4 and we show by induction that the same
inequality holds for every integer n > 6. If n is an integer > 6, then

(r—1D!14+1>2(m—1) (n—2) = 2(W*—3n+2) > n®

since n* > 6n—4. Thus, we cannot have (n—1)!4-1 = n? for integer n > 6.

REMARK. We know only two positive integers # > 5 such that

n?(n—1)141,
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namely numbers 13 and 563, and we do not know whether there are more
such numbers, or whether there are finitely many of them. We know that
every such number must be a prime.

Let us also note that for n =5, 6, and 8 the numbers (n—1)!+1 are
squares (of numbers 5, 11, and 71 respectively), and we do not know whether
there are any other such numbers.

241. If for some integer n > 1 we had ¢,_,7, = m* where m is a positive
integer, we would have (n*—1)n*> = (2m)?, and since n’—1 and n® are rel-
atively prime, each of them would have to be a square, which is impossible
since there are no two squares of integers, whose difference would be equal
to one.

Let now n be a given positive integer. The equation x*—n(n+1)y* =1
has infinitely many solutions in positive integers x and y. In fact, one of
these solutions is x = 2n+1 and y = 2, while if for some positive integers x
and y we have x>—n(n+1)y*> = 1, then also

[@n+1)x+2n(n+-1)yP—n(n+1)[2x+@Qn+1)yP = 1.
If x and y are positive integers such that x>—n(n-+1)y* = 1, then
tatye g2 = bt V* (21" +1) = 132 %* = (tayx)%
For instance, for n = 2 we get t3t,, = 30%, t3t5400 = (3 - 20 - 49)%, and so on.
242. We have 2'° = 1024 > 103 It follows that
21945 — 25(210)194 >10- 103-194 — 10583.
Thus,
221945 210583 _ (210)10582 >1 03,10582’

and the number of digits of the last number is greater than 10%,

The number 5 - 2411 has obviously the same number of digits as the
number 5 - 27 = 10 - 294, and since the decimal logarithm of 2 equals
loge2 = 0,30103 ..., we have

1946 __ — 1()585,8.-
21946 _ 1194610812 — 10 ,

and it follows that our number has 586 digits.

ReEMARK. The number Fos is the greatest known composite Fermat
number.
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243. The number 2231 has (in decimal system) the same number of
digits as 2%, as it differs only by one from the latter. Thus, it suffices to
compute the number of decimal digits of 211213,

If a positive integer 7 is of the form n = 10* where x is real (of course,
x > 0), then, denoting by [x] the greatest integer << x, we have 10* <n
< 10™1+1, and it follows that the number » has [x]+1 decimal digits. We
have 21213 = 10"2!%lo812 and since log;p2 = 0,30103 ..., we have 3375
< 11213log;o2 < 3376. Thus, the number 2'?"* (hence also 2!'2'3*—1) has
3376 decimal digits. .

244. We have 2'1212(QU283_1) = 222425_)Ql1212 We compute first the
number of digits of the number 222425, Since 22425 log;o2 = 22425 - 0,30103 ...
= 6750,597 ..., we obtain (see the solution of Problem 243) the result
that the number 2224?° has 6751 digits, and we have 22425 = 105750 . 10597,
Since 10%%7 > 10'2 > 3, we get 107! > 222425 > 3. 10570 which shows
that the first digit of 2224?° is > 3. Thus, if we subtract from the number
222435 the number 2?3, which has smaller number of digits, we do not
change the number of digits of the latter. Consequently, the number
21212(91213__1) has 6751 digits.

245. Wehave 3! = 6, 3!! = 6! = 720, 3!!! = 720! > 99!1100%! > 10242,
Thus, the number 3!!! has more than thousand digits.

By the well-know theorem (see, for instance, Sierpifiski [37, p. 131, Theo-
rem 6]), if m is a positive integer and p is a prime, then the largest power

where [x] denotes the greatest integer << x. It follows that the largest power

of 5 which divides 3!!! = 720! is ~
720 720 720 720
[ ] [ ] [125] [625] 144+4-28+5+1 = 178,

while the largest power of 2 dividing 720! is still greater (since already
[%0] = 360). It follows that the number 3!!! has 178 zeros at the end of

its decimal expansion.
246*. The solution found by A. Schinzel.
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For positive integers m which are powers of primes (with positive integer
exponents), and only for such numbers. In fact, if m = p*, where p is a prime
and k is a positive integer, then for f(x) = prle ), in case p } x, by the Euler
theorem, we have f(x) = 1 (mod p¥), while in case p|x, in view of @(p*)
> p*! > k (which can be easily shown by induction), we have p*|x*, and
consequently, p"lx""”k ). Thus, f(x) = 0 (mod p*).

If m is an integer > 1, and m is not a power of a prime, then m has at
least two different prime divisors, p and g # p. Suppose that f(x) is a poly-
nomial with integer coefficients, and that there exist integers x; and x, such
that f(x;) = 0 (mod m), while f(x,) = 1 (mod m). We shall have, therefore,
also (in view of plm and g|m) the relations f(x;) = 0 (mod p) and f(x,)
= 1 (mod ¢). Since p and g are different primes, by the Chinese remainder
theorem there exists an integer x, such that x, = x; (mod p) and x,
= x, (mod q) It follows that f(x,) = f(x;) = 0 (mod p) and f(x,) = f(x,)
= 1 (mod ¢). The first of these congruences implies that we cannot have
f(xo) = 1 (mod m). Similarly, the second congruence implies that we cannot
have f(x,) = 0 (mod m). Consequently, f(x,) does not give the remainder 0
upon dividing by m, nor does it give the remainder 1. Thus, if m is not a
power of a prime, then there is no polynomial f(x) with integer coefficients
which would satisfy the required conditions.

247. We easily see that
D < [(4m*+1D)n+m+1P,

hence the integral part of the number ]/f) equals to a, = (4m*+1)n+m,
which implies that D—aj = 4mn+-1 and

1 — I/B‘i-ao

= ]/I)—ao .D—ao

Since ay is the integal part of the number 1/ D, we have a, < 1/13 <ay+1,
which yields 2a, < ]/ D+ay, < 2ay-+1 and since ap = (4mn-+1)m-+n, we find

2n VD+a, 2n+1

4mn-+-1 < D—a <2m+ .

2m+ 4mni-1"°

since (2n+1)/(4mn+1) < 1, we see that the integral part of the number
X, = (V5+ao)/(D—a§) is equal to @; = 2m. We have, therefore

X =a+1/x;, and x, = 1/(x;—ay).
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On the other hand,

_ VD4+a o — ¥V D—[(4mn+1)m—n]

f—a = dmn+1 4mn—+1 i

and consequently,

_ (4mn+1) [VB+(4mn—|—1)m—n]
o D—[(4mn+1)m—n)? ’

We easily check that
D = [(@mn+1)m—n}*+ (4mn-+1)?,
which yields

2 ]/5+(4mn—|—l)m—n
- 4mn+1

and since ay < /D < a,+1, or

(dmn+1)m+n < ]/l_)< (4mn+-1)ym-+n—+1,

we get

1
2m < x; < 2m+m—.
Consequently, the integral part of x, equals a, =2m. We have, therefore,
X, = a,+1/x;, which gives x; = 1/(x,—a,). However,

_ ]/l—)+(4mn+l)m—n
, —

gty = om =]/'5——(4mn—l-l)m—n

4dmn+1 4dmn—+1

Consequently, we have

= (4mn+-1) ['/B—I—(4mn+l)m+n]
T D—[(4mn+1)m-+n)?

= i/3+(4mn+1)m+n = V/E—l—ao

which implies that the integral part of x; is 2a,, and that the number ]/ D
has the expansion into the arithmetic continued fraction with the three-
term period, formed of numbers 2m, 2m and 2a,.

REMARK. One can show that all positive integers D for which the ex-
pansion of ]/ D into arithmetic continued fraction has a three-term period
are just the above considered numbers D. See Sierpinski [32].
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248. Computing the values of functions ¢(n) and d(n) for n <30 from
the well-known formulae for these functions, i.e. if n = g®q2 ... g5, then

e = gy~ (qi—1) ... g7 (gs— D),
d(n) = (@+1) ... (@+1),

we easily see that the only values # <C 30 for which ¢(n) = d(n) are n = 1, 3,
8, 10, 18, 24, and 30. We have here ¢(1) = d(1) = 1, ¢(3) = d(3) = 2, ¢(8)
=dB) =4, ¢(10)=d(10) =4, @(18)=d(18)=6, @(24) = d(24) =38,
@(30) = d(30) = 8.

REMARK. It was proved that there are no other solutions of the equation
@(n) = d(n) in positive integers n. It can be shown that for » > 30 we have
@(n) > d(n); see Polya and Szegd [15, Section VIII, problem 45].

249. We easily check that for positive integer k and integer s >0 we
have

(1+ )(1+k+1) (+—J—r~)=l+%. (1)

A positive rational number w—1 can be always represented in the form w— .
—1 = m/n where m and n are positive integers (not necessarily relatively
prime) and n > g. It suffices to take k = n and s = m—1; then the right-
hand side of (1) will be equal to w. In this way we obtain the desired de-
composition for the number w.

250*%, We shall first prove that every integer £k = 0 can be in at least one
way represented in the form

k= +124224 ... +m? )

where m is a positive integer, and the signs + and — are suitably chosen. The
assertion holds for the number O since 0 = 12-+-22—-324-42—52—6>1-72 It is
also true for the numbers 1, 2, and 3 since 1 = 12, 2 = —12—-22-324-42,
3= —12422 4 = —12-224+32,

Now, it suffices to prove that our theorem is true for every positive integer
k, and since it is true for numbers 0, 1, 2, and 3, it suffices to prove that if
the theorem is true for an integer k > 0, it is also true for the number k+4.

Suppose, then, that the theorem is true for the number & ; thus, there exists
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a positive integer m such that with the suitable choice of signs + and — we
have relation (1). Since we have

(m-+1)*—(m~+2)*—(m+3)*+(m+4)* = 4, )]
it follows from (1) that
k+4 = +124224 ... £m?+(m+1P—(m+2)>—(m+3)*+(m-+-4),

that is, our theorem holds for the number k-+4. Thus, it is true for every
integer.
It follows from (2) that for every positive integer m we have

(m-+-1)*—(m+-2)*—(m+-3)*+ (m-+4)*— (m-+5)*+
+(m—+-6)>+(m+7)>— (m+8)* = 0.

Thus, in (1) we can replace the number m by m-8, hence also by m-16,
and so on. This shows that every integer k can be in infinitely many ways
represented in the form (1), which was to be proved.
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