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"250 Problems in Elementary Number 

Theory" presents problems and their solutions 

in five specific areas of this branch of mathe­

matics: divisibility of numbers, relatively 

prime numbers, arithmetic progressions, prime 

and composite numbers, and Diophantic 

equations. There is, in addition, a section of 

miscellaneous problems. 

Included are problems on several levels of 

difficulty-some are relatively easy, others 

rather complex, and a number so abstruse 

that they originally were the subject of 

scientific research and their solutions are of 

comparatively recent date. All of the solutions 

are given thoroughly and in detail; they 

contain information on possible generaliza­

tions of the given problem and further 

indicate unsolved problems associated with 

the given problem and solution. 

This ancillary textbook is intended for 

everyone interested in number theory. It will 

be of especial value to instructors and 

students both as a textbook and a source of 

reference in mathematics study groups. 
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PROBLEMS 

I. DIVISIBILITY OF NUMBERS 

1. Find all positive integers n such that n2+ 1 is divisible by n+ 1. 

2. Find all integers x #= 3 such that x-3Ix3-3. 

3. Prove that there exists infinitely many positive integers n such that 
4n2+ 1 is divisible both by 5 and 13. 

4. Prove that for positive integer n we have 16913311+3-26n-27. 

S. Prove that 191 226t+
2 
+3 for k = 0, 1, 2, .... 

6. Prove the theorem, due to Kraitchik, asserting th~t 13127°+37°. 
7. Prove that 11.31.6112015-1. 

8. Prove that for positive integer m and a > 1 we have 

( 
a"'-l ) 
a-I ,a-I = (a-I,m). 

9. Prove that for every positive integer n the number 3(15+25+ ... +nS
) 

is divisible by 13+23+ ... +n3• 

10. Find all integers n > 1 such that 1 "+2"+ ... +(n-l)" is divisible 
by n. 

11. For positive integer n, find which of the two numbers an = 22n+1_ 
-2"+1+1 and b" = 2211+1+2,,+1+1 is divisible by 5 and which is not. 

12. Prove that for every positive integer n there exists a positive integer 

x such that each of the terms of the infinite sequenc~ x+ I, xx+ 1, xxx + 1, ... 
is divisible by n. 

13. Prove that there exists infinitely many positive integers n such that 

1 
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for every even x none of the terms of the sequence x-~ + 1, xxX + 1, / + 1, '" 
is divisible by n. 

14. Prove that for positive integer n we have n21(n+l)"-1. 

15. Prove that for positive integer n we have (2"_1)212(2"-1)"_1. 

16. Prove that there exist infinitely many positive integers n such that 
nI2"+I; find all such prime numbers. 

17*. Prove that for every positive integer a > 1 there exist infinitely many 
positive integers n such that nla" + 1. 

18*. Prove that there exist infinitely many positive integers n such that 
nI2"+2. 

1~. Find all positive integers a for which a10+ 1 is divisible by 10. 

20*. Prove that there are no integers n > 1 for which nI2"-1. 

20a. Prove that there exist infinitely many positive integers n such that 
nI2"+1. 

21. Find all odd n such that n13" + 1. 

22. Find all positive integers n for which 3In2"+ 1. 

23. Prove that for every odd prime p there exist infinitely many positive 
integers n such that pln2"+ 1. 

24. Prove that for every positive integer n there exist positive integers 
x> nand y such that ,xXI>" but x =1= y. 

25*. Prove that for odd n we have nI2"!-1. 

26. Prove that the infinite sequence 2"-3 (n = 2,3,4, ... ) contains in­
finitely many terms divisible by 5 and infinitely many terms divisible by 13, 
but contains no term divisible by 5·13. 

27*. Find two least composite numbers n such that nI2"-2 and 
nI3"-3. 

28*. Find the least positive integer n such that nI2"-2 but n,r 3"-3. 

29. Find the least integer n such that n,r 2"-2 but nI3"-3. 

30. For every positive integer a, find a composite number n such that 
nla"-a. 

* An asterisk attached to the number of a problem indicates that it is more dif­
ficult. 
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31. Prove that if for some integers a, b, c we have 9Ia3+b3+c3, then at 
least one of the numbers a, b, c is divisible by 3. 

32. Prove tbat if for positive integers ak (k = 1, 2, 3, 4, 5) we have 
9Ia~+a~+a~+a:+a~, then 31a1 a2a3a4 Q,. 

33. Prove that if x, y, z are positive integers such that (x, y) = 1 and 
r+r = Z4, then 7lxy; show that the condition (x, y) = 1 is necessary. 

34. Prove that if for integers a and b we have 71a2+b2
, then 71a and 71h. 

35*. Prove that there exist infinitely many pairs of positive integers x, y 
such that 

x(x+l)ly(y+l), xA'Y, x+l~y, x~y+l, x+l~y+l, 

and find the least such pair. 

36. For every positive integer s ~ 25 and for s = 100, find the least pos­
itive integer ns with the sum of digits (in decimal system) equal to s, w~ch 
is d~visible by s. . . 

37*. Prove that for every positive integer s there exists a positive integer 
n with the sum of digits (in decimal system) equal to s which is divisible by s. 

38* . Prove that: 

(a) every positive integer has at least as many divisors of the form 
4k+l as divisors of the form 4k+3; 

(b) there exist infinitely many positive integers which have as many 
divisors of the form 4k+l as divisors of the form 4k+3; 

(c) there exist infinitely many positive integers which have more 
divisors of the form 4k+ 1 than divisors of the form 4k+3. 

39. Prove that if a, b, c are any integers, and n is an integer> 3, then 
there exists an integer k such that none of the numbers k+a, k+b, k+c is 
divisible by n. 

40. Prove that for Fn = 22n + 1 we have Fn12Fn_2 (n = 1, 2, ... ). 

II. RELATIVELY PRIME NUMBERS 

41. Prove that for every integer k the numbers 2k+l and 9k+4 are rel­
atively prime, and for numbers 2k-l and' 9k+4 find their greatest common 
divisor as a function of k. 
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42. Prove that there exists an increasing infinite sequence of triangular 

numbers (i.e. numbers of the form tn = ~ n(n+ 1), n = 1, 2, ... ) such that 
every two of them are relatively prime. 

43. Prove that there exists an increasing infinite sequence of tetrahedral 

numbers (i.e. numbers of the form Tn = ! n(n+ 1)(n+2), n = 1,2, ... ), such 
that every two of them are relatively prime. 

44. Prove that if a and b are different integers, then there exist infinitely 
many positive integers n such that a+n and b+n are relatively prime. 

45* . Prove that if a, b, c are three different integers, then there exist in­
finitely many positive integers n such that a+n, b+n, c+n are pairwise rel­
atively prime. 

46. Give an example of four different positive integers a, b, c, d such 
that there exists no positive integer n for which a+n, b+n, c+n, and d+n 
are pairwise relatively prime. 

47. Prove that every integer> 6 can be represented as a sum of two 
integers > 1 which are relatively prime. 

48*. Prove that every integer > 17 can be represented as a sum of three 
integers > 1 which are pairwise relatively prime, and show that 17 does not 
have this property. 

49*. Prove that for every positive integer m every even number 2k can be 
represented as a difference of two positive integers relatively prime to m. 

50*. Pr~ve that Fibonacci's sequence (defined by conditions U1 = U2 

= 1, Un+2 = U,.+U,,+1, n = 1, 2, ... ) contains an infinite increasing sequence 
such that every two terms of this sequence are relatively prime. 

51 *. Prove that (n, 22"+1) = 1 for n = 1, 2, .... 

51 a. Prove that there exist infinitely many positive integers n such that 
(n, 2"-1) > 1, and find the least of them. 

III. ARITHMETIC PROGRESSIONS 

52. Prove that there exist arbitrarily long arithmetic progressions formed 
of different positive integers such that every two terms of these progressions 
are relatively prime. 
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53. Prove that for every positive integer k the set of all positive integers 
n whose number of positive integer divisors is divisible by k contains an 
infinite arithmetic progression. 

54. Prove that there exist infinitely many triplets of positive integers x, y, z 
for which the numbers x(x+ 1), y(y+ 1), z(z+ 1) form an increasing arith­
metic progression. 

55. Find all rectangular triangles with integer sides forming an arithmetic 
progression. 

56. Find an increasing arithmetic progression with the least possible 
difference, formed of positive integers and containing no triangular number. 

57. Give a necessary and sufficient condition for an arithmetic progression 
ak+b (k = 0, 1, 2, ... ) with positive integer a and b to contain infinitely 
many squares of integers. 

58*. Prove that there exist arbitrarily long arithmetic progressions formed 
of different positive integers, whose terms are powers of positive integers 
with integer exponents > 1. 

59. Prove that there is no infinite arithmetic progression formed of 
different positive integers such that each term is a power of a positive integer 
with an integer exponent> 1. 

60. Prove that there are no four consecutive positive integers such that 
each of them is a power of a positive integer with an integer exponent > 1. 

61. Prove by elementary means that each increasing arithmetic pro­
gression of positive integers contains an arbitrarily long sequence of consecu­
tive terms which are composite numbers. 

62* . Prove by elementary means that if a and b are relatively prime 
positive integers, then for every positive integer m the arithmetic progression 
ak+b (k = 0, 1,2, ... ) contains infinitely many terms relatively prime 
to m. 

63. Prove that for every positive integer s every increasing arithmetic 
progression of positive integers contains terms with arbitrary first s digits 
(in decimal system). 

64. Find all increasing arithmetic progressions formed of three terms 
of the Fibonacci sequence (see Problem 50), and prove that there are no 
increasing arithmetic progressions formed of four terms of this sequence. 



6 250 PROBLEMS IN NUMBER THEORY 

65* . . Find an increasing arithmetic progression with the least differ­
ence formed of integers and containing no term of the Fibonacci sequence. 

66*. Find a progression ak +b (k = 0, 1, 2, ... ), with positive integers a 
and b such that (a, b) = 1, which does not contain any term of Fibonacci 
sequence. 

67. Prove that the arithmetic progression ak+b (k = 0, 1, 2, ... ) with 
positive integers a and b such that (a, b) = 1 contains infinitely many terms 
pairwise relatively prime. 

68*. Prove that in each arithmetic progression ak+b (k = 0, 1, 2, ... ) 
with positive integers a and b there exist infinitely many terms with the same 
prime divisors. 

69. From the theorem of Lejeune-Dirichlet, asserting that each arithmetic 
progression ak+b (k = 0, 1, 2, ... ) with relatively prime positive integers a 
and b contains infinitely many primes, deduce that for every such progression 
and every positive integer s there exist infinitely many terms which are 
products of s distinct primes. 

70. Find all arithmetic progressions with difference 10 formed of more 
than two primes. 

71. Find all arithmetic progressions with difference 100 formed of more 
than two primes. 

72*. Find an increasing arithmetic progression with ten terms, formed 
of primes, with the least possible last term. 

73. Give an example of an infinite increasing arithmetic progression 
formed of positive integers such that no term of this progression can be 
represented as a sum or a difference of two primes. 

IV. PRIME AND COMPOSITE NUMBERS 

74. Prove that for every even n > 6 there exist primes p and q such 
that (n-p, n-q) = 1. 

75. Find all primes which can be represented both as sums and as 
differences of two primes. 

76. Find three least positive integers n such that there are no primes 
between nand n + 10, and three least positive integers m such that there 
are no primes between 10m and lO(m+l). 
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77. Prove that every prime of the form 4k + 1 is a hypotenuse of a rectan­
gular triangle with integer sides. 

78. Find four solutions of the equation p2+ 1 = q2+r2 with primes p, 
q, and r. 

79. Prove that the equation p2+q2 = r2+s2+t2 has no solution with 
primesp, q, r, s, t. 

80*. Find all prime solutions p, q, r of the equation p(p+l)+q(q+l) 
= r(r+l). 

81*. Find all primesp, q, and r such that the numbers p(p+l), q(q+l), 
r(r+ 1) form an increasing arithmetic progression. 

82. Find all positive integers n such that each of the numbers n+ 1, 
n+3, n+7, n+9, n+13, and n+15 is a prime. 

83. Find five primes which are sums of two fourth powers of integers. 

84. Prove that there exist infinitely many pairs of consecutive primes 
which are not twin primes. 

85. Using the theorem of Lejeune-Dirichlet on arithmetic progressions, 
prove that there exist infinitely many primes which do not belong to any 
pair of twin primes. 

86. Find five least positive integers for which n2-1 is a product of 
three different primes. 

87. Find five least positive integers n for which n2+ 1 is a product of 
three different primes, and find a positive integer n for which n2+ 1 is a 
product of three different odd p~mes. 

88*. Prove that among each three consecutive integers > 7 at least 
one has at least two different prime divisors. 

89. Find five least positive integers n such that each of the numbers n, 
n+ 1, n+2 is a product of two different primes. Prove that there are no 
four consecutive positive integers with this property. Show by an example 
that there exist four positive integers such that each of them has exactly 
two different prime divisors. 

90. Prove that the theorem asserting that there exist only finitely many 
positive integers n such that both nand n+ 1 have only one prime divisor 
is equivalent to the theorem asserting that there exist only finitely many 
prime Mersenne numbers and finitely many prime Fermat numbers. 
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91. Find all numbers of the form 2n-l with positive integer n, not 
exceeding million, which are products of two primes, and prove that if n 
is even and > 4, then 2n-l is a product of at least three integers > 1. 

,/. . 

92. Using Problem 47, prove that if Pk denotes the kth prime, then 
for k ~ 3 we have the inequality Pk+l +Pk+2 ~ PIP2 ..• Pk. 

93. For positive integer n, let q,. denote the least prime which is not a 
divisor of n. Using Problem 92, prove that the ratio q,./n tends to zero as n 
increases to infinity. 

94. Prove by elementary means that Chebyshev's theorem (asserting 
that for integer n > 1 there exists at least one prime between nand 2n) 

implies that for every integer n > 4 between nand 2n there exists at least 
one number which is a product of two different primes, and that for intetier 
> 15 between nand 2n there exists at least one number which is a product 
of three different primes. 

95. Prove by elementary means that the Chebyshev theorem implies that 
for every positive integer s, for all sufficiently large n, between nand 2n 

there exists at least one number which is a product of s different primes. 

96. Prove that the infinite sequence 1, 31, 331, 3331, ... contains 
infinitely many composite numbers, and find the least of them (to solve 
the second part of the problem, one can use the microfilm containing all 
primes up to one hundred millions [2]). 

97. Find the least positive integer n for which n4+(n+l)4 is compo­
site. 

98. Show that there are infinitely many composite numbers of the 
form 10n+3 (n = 1, 2, 3, ... ). 

99. Show that for integers n > 1 the number ! (24n+2+ 1) is composite. 

100. Prove that the infinite sequence 2n-l (n = 1, 2, ... ) contains ar­
bitrarily long subsequences of consecutive terms consisting of composite 
numbers. 

101. Show that the assertion that by changing only one decimal digit one 
can obtain a prime out of every positive integer is false. 

102. Prove that the Chebyshev theorem T stating that for every integer 
n > 1 there is at least one prime between nand 2n is equivalent to the theorem 
Tl asserting that for integers n > 1 the expansion of n! into prime factors 
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contains at least one prime with exponent 1. The equivalence of T and Tl 
means that each of these theorems implies the other. 

103. Using the theorem asserting that for integers n > 5 between nand 
2n there are at least two different primes (an elementary proof of this theorem 
can be found in W. Sierphiski [37, p. 137, Theorem 7]), prove that if n is an 
integer > 10, then· in the expansion of n! into prime factors there are at 
least two different primes appearing with exponent 1. 

104. Using the theorem of Lejeune-Dirichlet on arithmetic progression, 
prove that for every positive integer n. there exists a prime p such that each 
of the numbers p-l and p+ 1 has at least n different positive integer divisors. 

105. Find the least prime p for which each of the numbers p-l and 
p + 1 has at least three different prime divisors. 

106*. Using the Lejeune-Dirichlet theorem on arithmetic progression, 
prove that for every positive integer n there exist infinitely many primes p 
such that each of the numbers p-l, p+l, p+2 bas at least n different prime 
divisors. 

107. Prove that for all positive integers nand s there exist arbitrarily 
long sequences of consecutive positive integers such that each of them has at 
least n different prime divisors, each of these divisors appearing in at least 
sth power. 

108. Prove that for an odd n > 1 the numbers nand n+2 are primes if 
and only if (n-l)! is not divisible by n and not divisible by n+2. 

109. Using the theorem of Lejeune-Dirichlet on arithmetic progression, 
prove that for every positive integer m there exists a prime whose sum of 
decimal digits is > m. 

110. Using the theorem of Lejeune-Dirichlet on arithmetic progression, 
prove that for every positive integer m there exist primes with at least m 
digits equal to zero. 

Ill. find all primes p such that the sum of all positive integer divisors 
of p4 is equal to a square of an integer. 

112. For every s, with 2 ~ s ~ 10, find all primes for which the sum of 
all positive integer divisors is equal to the stb power of an integer. 

113. Prove the theorem of Liouville, stating that the equation (P-l)!+ 
+ 1 = pm has no solution with prime p > 5 and positive integer m. 
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114. Prove that there exist infinitely many primes q such that for some 
positive integer n < q we have qJ(n-l)!+l. 

115*. Prove that for every integer k :F 1 there exist infinitely many pos­

itive integers n such that the num:ber 22" +k is composite. 

116. Prove that there exist infinitely many odd numbers k > 0 such that 

all numbers 2211 +k (n = 1,2, .. ) are composite. 

117. Prove that all numbers 22211+1+3, 22411+1+7, 22611+2+ 13, 221011+1 + 
+ 19, and 22611+2+21 are composite for n = 1,2, .... 

118*. Prove that there exist infinitely many positive integers k such that 
all numbers k· 2"+1 (n = 1,2, ... ) are composite. 

119*. Using the solution of Problem 118*, prove the theorem, due to 
P. Erdos, that there exist infinitely many odd k such that every number 
2n+k is composite (n = 1,2, ... ). 

120. Prove that if k is a power of 2 with positive integer exponent, then 

for sufficiently large n all numbers k . 22" + 1 are composite. 

121. For every positive integer k ~ 10, find the least positive integer n 

for which k . 22/1 + 1 is composite .. 

122. Find all positive integers k ~ 10 such that every number k . 22" + 1 
(n = 1,2, ... ) is composite. 

. 123. Prove that for integer n > 1 the numbers lC22"+ 1 + 22" + 1) are all 
composite .. 

124. Prove that there exist infinitely many composite numbers of the 
form (22n+l)2+22. 

125*. Prove that for every integer a with 1 < a ::.;;:; 100 there exists at 

least one positive integer n ~ 6 such that a211 + 1 is composite. 

126. Prove by elementary means that there exist infinitely many odd 
numbers which are sums of three different primes, but are not sums of less 
than three primes. 

127. Prove that there is no polynomial/(x) with integer coefficients such 
that 1(1) = 2, 1(2) = 3,/(3) = 5, and show that for every integer m> 1 
there exists a polynomial/(x) with rational coefficients such that I(k) = Pk 
for k = 1,2, ... , m, where Pk denotes the kth prime. 
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128*. From a particular case of the Lejeune-Dirichlet theorem, stating 
that the arithmetic progression mk+l (k = 1,2, ... ) contains, for each pos­
itive integer m, infinitely many primes, deduce that for every positive integer 
n there exists a polynomial f(x) with integer coefficients such that f(l) < 
<f(2) < ... <fen) are primes. 

129. Give an example of a reducible polynomialf(x) (with integer coeffi­
cients) which for m different positive integer values of x would give m dif­
ferent primes. 

130. Prove that if f(x) is a polynomial of degree > 0 with integer coeffi­
cients, then the congruencef(x) == 0 (modp) is solvable for infinitely many 
primesp. 

131. Find all integers k ~ 0 for which the sequence k + 1, k + 2, ... , k + 10 
contains maximal number of primes. 

132. Find all integers k ~ 0 for which the sequences k+l, k+2, ... , k+ 
+ 100 contains maximal number of primes. 

133. Find all sequences of hundred consecutive positive integers which 
contain 25 primes. 

134. Find all sequences of 21 consecutive positive integers containing 
8 primes. 

135. Find all numbers p such that all six numbers p, p+2, p+6, p+8, 
p+12, andp+14 are primes. 

136. Prove that there exist infinitely many pairs of different positive 
integers m and n such that (1) m and n have the same prime divisors, and 
(2) m+ 1 and n+ 1 have the same prime divisors. 

v. DIOPHANTINE EQUATIONS 

137. Prove by elementary means that the equation 3r+7y2+1 = 0 has 
infinitely many solutions in positive integers x, y. 

138. Find all integer solutions x, y of the equation 2x3+xy-7 = 0 and 
prove that this equation has infinitely many solutions in positive rationals 
x,y. 

139. Prove by elementary means that the equation (x-l)2+(x+l)2 
= y2+ 1 has infinitely many solutions in positive integers x, y. 
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140. Prove that the equation x(x+l) = 4y(y+l) has no solutions in 
positive integers x, y, but has infinitely many solutions in positive rationals 
x,y. 

141 *. Prove that if p is a prime and n is a positive integer, then the equa­
tion x(x+l) = Y"y(y+l) has no solutions in positive integers x, y. 

142. For a given integer k, having an integer solution x, y of the equation 
r-2y2 = k, find a solution in integers t, u of the equation t2-2u2 = -k. 

143. Prove that the equation r-Dr = Z2 has, for every integer D, in­
finitely many solutions in positive integers x, y, z. 

144. Prove by elementary means that if D is any integer #: 0, then the 
equation r-Dy2 = Z2 has infinitely many solutions in positive integers x, y, 
z such that (x, y) = l. 

145. Prove that the equation xy+x+y = 232 has solutions in positive 
integers x, y, and there exists only one solution with x ~ y. 

146. Prove that the equation r-2y2+8z = 3 has no solutions in pos­
itive integers x, y, z. 

147. Find all positive integer solutions x, y of the equation 

y2-x(x+l) (x+2) (x+3) = 1. 

148. Find all rational solutions of the equation 

r+y2+z2+x+ y+ z = 1. 

149. Prove the theorem of Euler that the equation 4xy-x-y = Z2 has 
no solutions in positive integers x, y, z, and prove that this equation has in­
finitely many solutions in negative integers x, y, z. 

150. Prove by elementary means (wit!lout using the theory of Pell's 
equation) that if D = nr+ 1, where m is a positive integer, then the equa­
tion r+Dy2 = 1 has infinitely many solutions in positive integers x, y. 

151*. Find all integer solutions x, y of the equation y2 = r+(x+4)2. 

152. For every natural number m, find all solutions of the equation 

~+L+~=m 
y z x 

in relatively prime positive integers x, y, z. 
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153. Prove that the equation 

~+L+'-:"= 1 
y z x 

has no solutions in positive integers x, y, z. 

154*. Prove that the equation 

x y z -+-+-=2 y z x 

has no solutions in positive integers x, y, z. 

155. Find all solutions in positive integers x, y, z of the equation 

~+L+'-:"= 3. 
y z x 

13 

156*. Prove that for m = 1 and m = 2, the equation xl+y3+Z3 = mxyz 
has no solutions in positive integers x, y, z, and find all solutions in positive 
integers x, y, z of this equation for m = 3. 

157. Prove that theorem Tl asserting that there are no positive integers 
x, y, z for which x/y+y/z = z/x is equivalent to theorem T2 asserting that 
there are no solutions in positive integers u, v, to of the equation u3 +v3 = to3 

(in the sense that Tl and T2 imply easily each other). 

158*. Prove that there are no positive integer solutions x, y, z, t of the 
equation 

~+L+'-:"+!... = 1, 
y z t x 

but there are infinitely many solutions of this equation in integers x, y, Z, t 
(not necessarily positive). 

159*. Prove that the equation 

x y z t 
-+-+-+-=m y z t x 

has no solutions in positive integers x, y, Z, t for m = 2 and m = 3, and find 
all its solutions in positive integers x, y, Z, t for m = 4. 
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160. ' Find all solutions in positive integers x, y, z, f, with x ~ y ~ Z ~ f, 
of the equation 

~+~+~+~= 1. 
x y z t 

161. Prove that for every positive integer s the equation 

1 1 1 -+-+ ... +-= 1 
Xl X2 x. 

has a finite positive number of solutions in positive integers Xl, X2, ... , X •• 

162*. Prove that for every integer s > 2 the equation 

1 1 1 -+-+ ... +-= 1 
Xl Xz X. 

has a solution Xl> X2, ... , x. in increasing positive integers. Show that if I. 
denotes the number of such solutions, then 1.+1 > I. for s = 3, 4, .... 

163. Prove that if s is a positive integer :f: 2, then the equation 

1 1 1 -+-+ ... +-= 1 
Xl X2 X. 

has a solution in triangular numbers (Le. numbers of the form fn = in(n+ 1)). 

164. Find all solutions in positive integers x, y, z, f of the equation 

165. Find all positive integers s for which the equation 

has at least one solution Xl> X2, ... , x. in positive integers. 

166. Represent the number t as a sum of reciprocals of a finite number 
of squares of an increasing sequence of positive integers. 
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167*. Prove that for every positive integer m, for all sufficiently large s, 
the equation 

1 1 1 
...m+m+ ... +...m = 1 
-"I X2 -"s 

has at least one solution in positive integers Xl> Xz, •.• , x •. 

168. Prove that for every positive integer s the equation 

1 1 1 1 
_..2 + _.2 + ... + _.2 = T 
Ai X2 ~.+1 

has infinitely many solutions in positive integers Xl> X2, ••• , Xu X.H' 

169. Prove that for every integer s ~ 3 the equation 

has infinitely many solutions in positive integers Xl> X2, ... , Xu X.+I' 

170* . Find all integer solutions of the system of equations 

171. . Investigate, by elementary means, for which positive integers n the 
equation 3x+5y = n has at least one solution X, y in positive integers, and 
prove that the number of such solutions increases to infinity with n. 

172. Find all solutions in positive integers n, X, y, z of the equation 
nX+nY = n"'. 

173. Prove that for every system of positive integers m, n there exists 
a linear equation ax+by = c, where a, b, c are integers, such that the only 
solution in positive integers of this equation is X = n, y = m. 

174. Prove that for every positive integer m there exists a linear equation 
ax+by = c (with integer a, b, and c) which has exactly m solutions in pos­
itive integers x, y. 

175. Prove that the equation r+y2+2xy-mx-my-m-1 = 0, where 
m is a given positive integer, has exactly m solutions in positive integers x, y. 
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176. Find all solutions of the equation 

in integers x. 

177. Prove that for every positive integer n the equation 

has a solution in integers x, y. 

178. Find all solutions of the equation 

in integers x. 

179. Find all rational solutions x of the equation 

180. Find two positive integer solutions x, y of the equation 

y(y+l) = x(x+l) (x+2). 

181. Prove that the equation l+xZ+y2 = z'- has infinitely many solu­
tions in positive integers x, y, z. 

182. Find all solutions in positive integers n, x, y, z, t of the equation 
nX+n'+n% = nt. 

183. Find all solutions in positive integers x, y, z, t of the equation 
4"+4'+4% = 4t. 

184. Find all solutions in positive integers m, n of the equation 2111_3n = 1. 

185. Find all solutions in positive integers m, n of the equation 3n -2111 
=1. 

186. Find all solutions in positive integers x, y of the equation 2" + 1 = y2. 

187. Find all solutions in positive integers x, y of the equation 2"-1 = y2. 

188. Prove that the system of equations r+2y2 = z'-, 2r+y2 = t 2 has 
no solutions in positive integers x, y, z, t. 
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189. Using the identity 

(2(3x+2y+ 1)+ 1)2 -2(4x+3y+2)Z = (2x+ 1)Z-2y2, 

prove that the equation r+(x+l)2 = y2 has infinitely many solutions in 
positive integers x, y. 

190. Using the identity 

(2(7y+12x+6»2 -3(2(4y+7x+3)+1)2 = (2y)2-3(2x+l)2, 

prove by elementary means that the equation (x+l)3-r = y2 has infinitely 
many solutions x, y in positive integers. 

191. Prove that the system of the equations r+5y2 = Z2 and 5r+y2 
= t2 has no solutions in positive integers x, y, z, t. . 

192. Using Problem 34, prove that the system of two equations r+6y2 

= r, 6r+y2 = t2 has no solutions in positive integers x, y, Z, t. 

192a. Prove that the system of two equations r+7yz = Z2, 7r+y2 = t2 

has no solutions in· positive integers x, y, z, t. 

193. Prove the theorem of V. A. Lebesgue that the equation r-y 3 = 7 
has no integer solutions x, y. 

194. Prove that if a positive integer c is odd, then the equation r- y 3 

= (2c)3-1 has no integer solutions x, y. 

195. Prove that for positive integers k the equation r+2zk+l = y3 has 
no solutions in positive integers x, y. 

196. Solve the problem of A. Moessner of finding all solutions in positive 
integers x, y, z, t of the system of equations 

x+y = zt, z+t = xy, 

where x ~ y, x ~ z ~ t. Prove that this system has infinitely many integer 
solutions x, y, Z, t. 

197. Prove that for positive integers n the equation Xt+xz+ ... +xn 

= Xl X2 ••• X" has at least one solution in positive integers Xl, X2, ••• , X". 

198. For every given pair of positive integers a and n, find a method of 
determining all solutions of the equation x .. _yn = a in positive integers x, y. 
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199. Prove by elementary means that there exist infinitely many trian­
gular numbers which are at the same time pentagonal (Le. of the form 
!k(3k-l), where k is a positive integer). 

MISCELLANEA 

200. If f(x) is a polynomial with integer coefficients, and the equation 
f(x) = 0 has an integer solution, then obviously the congruence fix) 
== 0 (modp) has a solution for every prime modulus p. Using the equation 
of the first degree ax+b = 0, show that the converse is false. 

201. Prove that if for integer a and b the congruence ax+b == 0 (mod m) 
has a solution for every positive integer modulus m, then the equation ax+ 
+b = 0 has an integer solution. 

202. Prove that the congruence 6r+5x+l == 0 (modm) has a solution 
for every positive integer modulus m, in spite of the fact that the equation 
6x2+5x+ 1 = 0 has no integer solutions. 

203. Prove that if k is odd and n is a positive integer, then 2n+21~n_l. 

204. Prove that if an integer k can be represented in the form k = r­
_2y2 for some positive integers x and y, then it can be represented in this 
form in infinitely many ways. 

205. Prove that no number of the form Sk+3 or Sk+5, with integer k, 
can be represented in the form r-2y2 with integers x and y. 

206. Prove that there exist infinitely many positive integers of the form 
Sk+l (k = 0,1,2, ... ) which can be represented as r-2y2 with positive 
integers x and y, and also infinitely many which cannot be so represented. 
Find the least number of the latter category. 

207. Prove that the last decimal digit of every even perfect number is 
always 6 or S. 

208. Prove the theorem of N. Anning, asserting that if in the numerator 

d d . f h&".· 101010101 h di· .. an enommator 0 t e lractlOn 110010011 ,w ose glts are wntten 10 an 

arbitrary integer scale g > 1, we replace the middle digit 1 by an arbitrary 
odd number of digits 1, the value of the fraction remains the same (that is, 
101010101 _ 10101110101 = 1010111110101 = ) 
110010011 11001110011 1100111110011 .... 



PROBLEMS 19 

209*. Prove that the sum of digits of the number 2n (in decimal system) 
increases to infinity with n. 

210*. Prove that if k is any integer> 1 and c is an arbitrary digit in 
decimal system, then there exists a positive integer n such that the kth (count­
ing from the end) digit of the decimal expansion of 2n is c. 

211. Prove that the four last digits of the numbers sn (n = 1, 2, 3, ... ) 
form a periodic sequence. Find the period, and determine whether it is pure. 

212. Prove that for every s, the first s digits of the decimal expansion of 
positive integer may be arbitrary. 

213. Prove that the sequence of last decimal digits of the numbers n"n 
(n = 1, 2, 3, ... ) is periodic; find the period and determine whether it is 
pure. 

214. Prove that in every infinite decimal fraction there exist arbitrarily 
long sequences of consecutive digits which appear an infinite number of times 
in the expansion. 

215. For every positive integer k, represent the number 32k as a sum of 
3k terms, which are consecutive positive integers. 

216. Prove that for every integer s > 1 there exists a positive integer ms 
such that for integer n ~ ms between nand 2n there is at least one sth power 
of an integer. Find least numbers m, for s = 2 and s = 3. 

217. Prove that there exist arbitrarily long sequences of consecutive pos­
itive integers, none of which is a power of an integer with an integer ex­
ponent > 1. 

218. Find the general formula for the nth term of the infinite sequence 
u,. (n = 1, 2, ... ) defined by the conditions Ul = 1, U2 = 3, U,.+2 = 4Un+l - 3un 

for n = 1, 2, ... . 

219. Find the formula for the nth term of the infinite sequence defined 
by conditions Ul = a, U2 = b, U,.+2 = 2U"+1-U,. for n = 1, 2, .... 

220. Find the formula for the nth term of the infinite sequence defined 
by conditions Ul = a, U2 = b, Un+2 = - (U,.+ 2U,.+I) for n = 1, 2, .... Investi­
gate the particular cases a = 1, b = -1 and a = 1, b = -2. 

221. Find the formula for the nth term of the infinite sequence defined 
by conditions Ul = a, U2 = b, U,.+2 = 2U,.+U,.+I. 

222. Find all integers a :F 0 with the property aa
n = a for n = 1, 2, ... 
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223*. Give the method of finding all pairs of positive integers whose 
sum and product are both squares. Determine all such numbers ~ 100. 

224. Find all triangular numbers which are sums of squares of two 
consecutive positive integers. 

225*. Prove the theorem of V. E. Hogatt that every positive integer is 
a sum of distinct terms of Fibonacci sequence. 

226. Prove that the terms Un of Fibonacci sequence satisfy the relation 

U; = Un_IUn+I+(-I),-1 for n = 2, 3, .... 

227. Prove that every integer can be represented as a sum of five cubes 
of integers in infinitely many ways. 

228. Prove that the number 3 can be represented as a sum of four cubes 
of integers different from ° and 1 in infinitely many ways. 

229. Prove by elementary means that there exist infinitely many positive 
integers which can be represented as sums of four squares of different in­
tegers in at least two ways, and that there exist infinitely many positive in­
tegers which can be represented in at least two ways as sums of four cubes 
of different positive integers. 

230. Prove that for positive integers m, in each representation of the 
number 4m ·7 as a sum of four squares of integers ;;:::: 0, each of these numbers 
is ;;:::: 2m- I • 

231. Find,)he least integer> 2 which is a sum of two squares of 
positive integers and a sum of two cubes of positive integers, and prove that 
there exist infinitely many positive integers which are sums of two squares 
and sums of two cubes of relatively prime positive integers. 

232. Prove that for every positive integer s there exists an integer n > 2 
such that for k = 1,2, ... , s, n is a sum oftwo kth powers of positive integers. 

233*. Prove that there exist infinitely many positive integers which cannot 
be represented as sums of two cubes of integers, but can be represented as 
sums of two cubes of positive rational numbers. 

234*. Prove that there exist infinitely many positive integers which can 
be represented as differences of two cubes of positive integers, but cannot be 
represented as sums of such two cubes. 

235*. Prove that for every integer k > 1, k #: 3, there exist infinitely many 



PRO.LlMS 21 

positive integers which can be represented as differences of two kth powers 
of positive integers, but cannot be represented as sums of two kth powers of 
positive integers. 

236*. Prove that for every integer n > 1 there exist infinitely many 
positive integers which can be represented as sums of two nth powers 
of positive integers, but cannot be represented as differences of two such 
nth powers. 

237. Find the least integer n > 1 for which the sum of squares of 
consecutive numbers from 1 to n would be a square of an integer. 

238. Let us call a number of the form a" a proper power if a and bare 
integers > 1. Find all positive integers which are sums of a finite ~ 1 number 
of proper powers. 

238a. Prove that every positive integer n ~ 10 different from 6 is a dif­
ference of two proper powers. 

239. Prove that for every rectangular triangle with integer sides and for 
every positive integer n there exists a similar triangle such that each of its 
sides is a power of a positive integer with integer exponent ~ n. 

240. Find all positive integers n > 1 for which (n-l)!+1 = n2
• 

241. Prove that the product of two consecutive triangular numbers is never 
a square of an integer, but for every triangular number In = in(n+ 1) there 
exist infinitely many triangular numbers 1m, larger than it, such that I"tm is 
a square. 

242. Prove (without using the tables of logarithms) that the number 

F194S = 22194S + 1 bas more than IOS82 digits, and find the number of digits of 
5 · 21947 + 1 (which is, as it is well known, the least prime divisor of Fl94S). 

243. Find the number of decimal digits of the number 211213_1 (this is 
the largest prime number known up to date). 

244. Find· the number of decimal digits of the number 211212(211213 -1) 
(this is the largest known perfect number). 

245. Prove that the number 3!!! written in decimal system has more than 
thousand digits, and find the number of zeros at the end of the expan8ion. 

246*. Find integer m > 1 with the following property: there exists a poly­
nomial/(x) with integer coefficients such that for some integer x the valu~ 
f(x) gives remainder 0 upon dividing by m, for some integer x the value lex) 
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gives remainder 1 upon dividing by m, and for all integer x, the value f(x) 
gives remainder 0 or 1 upon dividing by m. 

247. Find the expansion into arithmetic continued fraction of the number 

yD where D = «4m2+1)n+m)2+4mn+l, where m and n are positive In­
tegers. 

248. Find all positive integers ~ 30 such that q;(n) = d(n), where q;(n) is 
the well-known Euler function, and d(n) denotes the number of positive 
integer divisors of n. 

249. Prove that for every positive integer g, each rational number w > 1 
can be represented in the form 

where k is an integer > g, and s is an integer ~ o. 
250*. Prove the theorem of P. Erdos and M. Suranyi that every integer 

k can be represented in infinitely many ways in the form k = ±12 ±22 ± 
± ... ±m2 for some positive integer m and some choice of signs + or - . 
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I. DIVISIBILITY OF NUMBERS 

I. There is only one such positive integer: n = 1. In fact, n2+l 
= n(n+l)-(n-l); ihus, if n+lln2+1, then n+lln-1 which for p~sitive 
integer n is possible only if n-l = 0, hence if n = 1. 

2. Let x-3=t. Thus, t is an integer =FO such'that t/(t+3)2_3, 
which is equivalent to the condition tI33-3, or t124. Therefore, it is necessary 
and sufficient for t to be an integer divisor of 24, hence t must be equal 
to one of the numbers ±I, ±2, ±3, ±4, ±6, ±8, ±12, ±24. For x 
= t+3 we obtain the values -21, -9, -5, -3, -1,0,1,2,4,5,6,7, 
9, 11, 15, and 27. 

3. .For instance, all numbers n in the arithmetic progression 65k+56 
(k = 0, 1, 2, ... ) have the desired property. Indeed, if n = 65k+56 
with an integer k ~ 0, then n = 1 (mod 5) and n = 4 (mod 13), hence 
4n2+ 1 == o (mod 5) and 4n2+ 1 = 0 (mod 13). Thus, 5l4n2+ 1 and 1314,r+ 1. 

4. We shall prove the assertion by induction. We have 169136-26-27 
= 676 = 4· 169. Next, we have 33(n+l)+3-26(n+l)-27-(3311+3-26n-27) 
= 26(33n+3-1). However, 13133-1, hence 13133(ft+l)-I, and 169126(33n+3-1). 
The proof by induction follows immediately. . 

5. We have 26 = 64 = 1 (mod 9), hence for k = 0, 1, 2, ... we have 
also 26k == 1 (mod 9). Therefore 26k+2 == 22 (mod 9), and since both sides are 
even, we get 26k+2 = 22 (mod 18). It follows that 26k+2 = 18t+22

, where t is 
an integer ~ O. However, by Fermat's theorem, 218 = 1 (mod 19), and 

. 6k+2 
therefore 218t = 1 (mod 19) for t = 0, 1, 2, .... Thus 22 = 218t+4 

= 24 (mod 19); it follows that 226k
+

2 +3 = 24+3 = ° (mod 19), which was 
to be proved. 

6. By Fermat's theorem we have 212 = 1 (mod 13), hence 260 

= 1 (mod 13), and since 25 = 6 (mod 13), which implies 210 = -3 (mod 13), 

23 
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we get 270 = -3 (mod 13). On the other hand, 33 = 1 (mod 13), hence 
369 == 1 (mod 13) and 370 = 3 (mod 13). Therefore 270+370 == 0 (mod 13), or 
13127°+37°, which was to be proved. 

7. Obviously, it suffices to show that each of the primes 11, 31, and 
61 divides 2015-1. We have 25 = -1 (mod 11), and 10 == -1 (mod 11), 
hence 10' == -1 (mod 11), which implies 20' = 1 (mod 11), and 2015 

= 1 (mod 11). Thus 1112015-1. Next, we have 20 = -11 (mod 31), hence 
2()2 == 121 = -3 (mod 31). Therefore 203 == (-11)(-3) == 33 = 2 (mod 31), 
which implies 2015 == 25 = 1 (mod 31). Thus, 3112015-1. Finally, we have 
34 == 20 (mod 61), which implies 2015 == 360 = 1 (mod 61) (by Fermat's 
theorem); thus 61\2015-1. 

8. Let d = (~~11 ,a-I). In view of the identity 

(1) 

and in view of the fact that a-l\tf-I for k = 0, 1, 2, ... , we obtain 
dIm. Thus, if the numbers a-I and m had a common divisor 6 > d, we 

a"'-1 a"'-l 
would have, by (1), the relation ~ 1 and the numbers 1 and 

a- a-
a-I would have a common divisor ~ > d, which is impossible. It follows 
that d is the greatest common divisor of a-I and m, which was to be proved. 

9. For positive integer n, we have 

13 I 23+ + 3 _ n2(n+ 1)2 
T •.. n - 4 

(which follows by induction). By induction, we obtain also the identity 

1 
lS+2s+ ... +ns = 12 n2(n+l)2(2n2+2n-l) 

for all positive integer n. It follows from these formulas that 

which proves the desired property. 
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10. These are all odd numbers > 1. In fact, if n is odd and > 1, then 
the number (n-1)/2 is a positive integer, and for k = 1, 2, ... , (n-l)J2 we 
easily get 

thus n\I"+2"+ ... +(n-l)". 
On the other hand, if n is even, let 2S be the highest power of 2 which 

divides n (thus, s is a positive integer). Since 2S ~ s, for even k we have 
2S \k", and for odd k (the number of such k's in the sequence 1, 2, ... , n-l 

1-2s- 1 ( is in) we have, by Euler's theorem, I{,- = 1 mod 2~, hence k" = 1 (mod 2~ 
(since 2S

-
1!n). Therefore 

which implies 

in view of the fact that 2"+4"+ ... + (n-2)" == 0 (mod 2~. Now, if we had 
n\I"+2"+ ... +(n-1)", then using the relation 2sln we would have in 
= 0 (mod 2~, hence 2slln and 2S+1In, contrary to the definition of s. Thus, 
for even n we have n,r 1"+2"+ ... +(n-l)". 

REMARK. It follows easily from Fermat's theorem that if n is a prime, 
then nll"-1+2"-I+ ... +(n-l),,-I+ 1; we do not know any composite number 
satisfying this relation. G. Ginga conjectured that there is no such composite 
number and proved that there is no such composite number n < 101000• 

11. Consider four cases: 

(a) n = 4k, where k is a positive integer. Then 

a" = 28IC+1_24k+1+1 = 2-2+1 = 1 (mod 5), 

b" = 28k+l+24k+l+1 == 2+2+1 = 0 (mod 5) 

(since 24 = 1 (mod 5), which implies 24k · 28k = 1 (mod 5»). 

(b) n = 4k + 1, k = 0, 1, 2, .... Then 

a" = 28k+3_24k+2+1 = 8-4+1 = 0 (mod 5), 

h" = 28k+3+24k+2+1 == 8+4+1 = 3 (mod 5). 
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(c) n = 4k + 2, k = 0, 1, 2, .... Then 

(d) n = 4k + 3, k = 0, 1, 2, .... Then 

Thus, the numbers an are divisible by 5 only for n == 1 or 2 (mod 4), while 
the numbers bn are divisible by 5 only for n = 0 or 3 (mod 4). Thus one and 
only one of the numbers an and bn is divisible by 5. 

12. It is sufficient to take x = 2n-l. Then each of the numbers 

x, XX, x",x, ... is odd, and therefore 2n = x + 1 is a divisor of each of the 

terms of the infinite sequence x+ 1, x"+ 1, x"X: + 1, .... 

. '13. For instance, all primes p of the form 4k+3. In fact, for even 

x, each of the terms of the sequence x, x" , xr, ... is even. If any of the terms 
x 

of the sequence XX + 1, XXX + 1, XXX + 1, ... were divisible by p, we would 
have for some positive integer m the relation plxlm + 1, hence (X"')2 
= -1 (modp). However, -1 cannot be a quadratic residue for a prime 
modulus of the form 4k+3. 

14. From the binomial expansion 

it follows that for n > 1 (which can be assumed, in view of 12121-1), all 
terms starting from the third term contain n in the power with exponent 

~ 2. The second term equals {i)n = n'1.. Thus, n'1.!(l+n)"-l, which was 

to be proved. 

15. By Problem 14, we have for positive integers m the relation 

m21(m+ l)m-l. For m = 2n-l, we get, in view of (m+ 1)'" = 2 1('!n- 1), the 

relation (2n_l)212c:~n-l)n_l, which was to b~ proved. 
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16. We have 3123+1, and if for some positive integer m 3111 /23111 +1, 

then 23111 = 3"'k-l, where k is a positive integer. It follows that 

where t is a positive integer. Thus, 3m+1123m+l + 1, and by induction we get 

3111 123m + I for m = I, 2, .... There are, however, other positive integers n 
satisfying the relation nl2n+ 1. In fact, if for some positive integer n we 

have nI2"+ 1, then also 2"+ 112211+1+ I. Indeed, if' 2"+ 1 = kn, where k 

is an integer (obviously, odd), then 2"+112k"+1 = 2211+1+1. Thus, 9129+1 
implies 51312513+ 1. 

Suppose now that n is a prime and nI2"+I. By Fermat's theorem we 
have then n\2"-2, which implies, in view of nl2n+ 1, that n13. Since n is 
a prime, we get n = 3. Indeed, 3123+ 1. Thus, there exists only one prime n 
such that nI2"+1, namely n = 3. 

17*. We shall prove first the following theorem due to O. Reutter 
(see [17]): 

If a is a positive integer such that a+ 1 is not a'power of 2 with integer ex­
ponent, then the relation nla"+ I has infinitely many solutions in positive 
integers. 

If a+ I is not a power of 2 with integer exponent, then it must have a prime 
divisor p > 2. We have therefore p/a+l. 

LEMMA. If for some integer k ~ 0 we have 

pk+l1aP" + I, 

where a is an integer > 1, and p is an odd prime, then pk+2lapk+l + 1 . 

, PROOF OF THE LEMMA. Assume that for some integer k ~ 0 we have 

pk+lla""+I. Writing apk = b, we get pk+l\b+l, hence b == -I (mod p1c+l). 
Since p is odd, we obtain 

apk
+

1 
+1 = bP+I = (b+l)(bP- 1-bP- 2+ ... -b+I), (1) 

and (since b = -I (modpk+l) which implies b =-1 (modp» we get the 
relations b21 = I (mod p) and b21

-
1 = -1 (mod p) for I = I, 2, .... Therefore 

bP-
1-bP-

2+ ... -b+l = 1-1+1-... +1 == 0 (modp), . 
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which shows that the second term on the right-hand side of (1) is divisible 

by p. Since the first term is divisible by pk+l, we get pk+2Ial'+1 + 1, which 
proves the lemma. 

The lemma implies by induction that if pla+ 1, then pk+llapk + 1, and 

pk\aP" + 1 for k = 1, 2, .... Thus there exist infinitely many positive integers n 
such that nlan+ 1, which proves the theorem of O. Reutter. 

Since even positive integers satisfy the conditions of Reutter's theorem, 
it suffices to assume that a is an odd number > 1. 

If a is odd, then 21a2+ 1, and tf is of the form 8k+ 1. Thus, cr+ 1 = 8k+ 
+2 = 2(4k+l) is a double odd number. We shall prove the following 
lemma: 

LEMMA. If a is odd> 1, the numbers sand a'+ 1 are double odd numbers, 
and slas+ 1, then there exists a positive integer SI > s such that 81 and aS1+ 1 
are double odd numbers and sllaSt+ 1. 

PROOF. Since slas+l and both sand as+l are double odd numbers, 

we have as+l = ms, where m is odd. Thus as+lld"s+l = aa
s
+l+1, hence 

as+llaa
s
+l+1. Since as+l is even, aa

s
+l+1 is a double odd number. 

For SI = as+ 1 we have therefore sl!aSt+ 1, where S1 and aS1+ 1 are double 
odd numbers. In view of the fact that a > 1, we have SI > s. This proves 
the truth of the lemma. 

Since a is odd, we can put s = 2, which satisfies the conditions of the 
lemma. It follows immediately that there exist infinitely many positive 
integers n, such that nl~+ 1, which was to be proved (see [35]). 

18*. We shall prove that if n is even and such that n1211+2 and 
n-112n+l (which is true, for instance, for n = 2), then for the number 
nl = 2"+2 we also have nl12n1+2 and nl-112n1 +1. In fact, if nJ2"+2 and 
n is even, then 2n + 2 = nk, where k is odd, hence 

and for nI = 2n+2 we have 

Next, we have n-112n+l, which implies 211+1 = (n-l)m, where m is odd. 

We obtain therefore 2n- 1+ 112(n-l)lJI+ 1 = 22n+1+ 1, which yields 211 +2122n+2+ 
+2, or nlI2n1 +2. 
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Since HI = 2"+2 > H, there are infinitely many even numbers n satis­
fying our conditions. Starting from n = 2, we get successively numbers 
2, 6, 66, 266+2., .... However, C. Bindschedler noticed that this method 
does not lead to all numbers n for which n12n+2 since we have, for instance, 
94612946+2. See a solution to my problem 430 in Elemente der Mathematik, 
18 (1963), p. 90, given by C. Bindschedler. 

19. If a is a positive integer, and r denotes its remainder upon dividing 
by 10, then a 10+ 1 is divisible by 10 if and only if r10+ 1 is divisible by 10. 
It suffices therefore to consider only numbers r equal to 0, 1, 2, ... , 9, and 
for these numbers we easily check that only 31°+ 1 and 71°+ 1 are divisible 
by 10. Thus, all numbers a such that a10+ 1 is divisible by 10 are of the 
form 10k+3 and IOk+7 for k = 0, 1,2, .... 

20*. Suppose that there exist positive integers n > 1 such that n/2n-l, 
and let n denote the smallest of them. By Euler's theorem, we have then 
nI29'Cn)-1. However, the greatest common divisor of numbers 2a_1 and 
2b_1 for positive integers a and b is the number 24-1, where d= (a, b). 
For a = nand b = cp(n), d = (n, cp(n)) , it follows that nI24-1. However, 
since n > 1, we have 24-1 > 1, which implies d > 1 and 1 < d ~ q;(n) < n, 
and d/nI24-1 contrary to the definition of n. 

20a. Such are, for instance, all numbers of the form n = 3k
, where 

k = I, 2, .... We shall prove it by induction. We have 3/23+ I. If for some 

positive integer k we have 3k l23
k + I, then, in view of the identity 

and in view of the remark that 

(since 43
k 

gives remainder 1 upon dividing by 3), the second term of the 

formula for 23
k
+

1 + 1 is divisible by 3, which implies 3k+1123k+l + 1. 

21. There is only one such odd number n, namely n = 1. In fact, suppose 
that there exists an odd number n > 1 such that n/3n+ 1. Thus we have 
nI9"-I. Let n be a least positive integer> 1 such that nI9n-l. In view 
ofnI9<p(n)-I, for d=(n,cp(n)) we shall have nI9d-l. Moreover, d>l 
since if d were equal to I, we would have nlS which is impossible since n 
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is odd. Thus 1 < d ~ q;(n) < n, and dlnI9cf-l, contrary to the definition 
of the number n. Thus there is no odd number n > 1 such that n1311+ 1. 

22. Clearly, n cannot be divisible by 3. Thus n is of one of the forms 
6k+ 1, 6k+2, 6k+4, or 6k+5 where k = 0, 1, 2, .... If n = 6k+ 1, then, 
in view of 26 == 1 (mod 3), we have n211 + 1 == (26)k2+ 1 == 2+ 1 = 0 (mod 3). 
Thus 31n211+ 1. Ifn = 6k+2, then n 211+ 1 == 2 (26)k22+ 1 == 8+ 1 = 0 (mod 3), 
hence 3\n2n+ 1. 

If n = 6k+4, then n211+1 == 4(26)k24+1 == 2'+1 == 2 (mod 3). 
Finally, if n = 6k+S, then n2n+l = 5(26)k2s+1 = 2 (mod 3). 
Therefore, the relation 31n211+ 1 holds if and only if n is of the form 6k+ 1 

or 6k + 2, k = 0, 1, 2, .... 

23. If p is an odd prime and n = (P-l)(kp+ 1) where k = 0, 1, 2, ... , 
then n = -1 (modp) and p-lln. By Fermat's theorem, it implies 211 
= 1 (modp), hence n2 t1 +1 == 0 (modp). 

REMARK. It follows from this problem that there exist infinitely many 
composite numbers of the form n211+ 1 where n is a positive integer. The 
numbers of this form are called Cullen numbers. It was proved that for 
1 < n < 141 all numbers of this form are composite, but for n = 141 the 
number n211 + 1 is prime. It is not known whether there exist infinitely many 
prime Cullen numbers. 

24. Let n be a given positive integer, and let k > 1 be a positive integer 
such that 2k > n. Let p be a prime> 2k

-
1k. Since k > 1, for x = 2k, Y = 2p 

we have x,r y, and rly', because r = 2k2k and y' = (2p)2p
, where 2p > 2kk. 

Thus, for instance, 4411010
, but 4,rl0, 8811212 but 8,r12, 9912121 but 9%21. 

25*. For positive integers n we have obviously qJ(n)!n !. In fact, it is 
true for n = 1; if n > 1, and if n = q~lq:2 ... q~k is a decolJjposition of n 
into primes, where ql < q2 < ... < qk, then 

. 
qJ(n) = qf1- t q:2- 1 ••• q:k-1(ql-1) ... (qk-1) 

and we have q~1-lq:2-1 ... q~k-lln, while ql -I < qk ~ n, which implies 
that qk-1 < nand q1-1 < q2-1 < ... < qk-1 are different positive 
integers smaller than n. Thus (ql-1)(q2-1) ... (qk-1)1 (n-l)!, and it 
follows that qJ(n)/(n-l)!n = n!. 

If n is odd, then (by Euler's theorem) nI2fJ(II)-112n!-I, hence nI2n!-I, 
which was to be proved. 

26. By Fermat's theorem, we have 24 = 1 (mod 5) and 212 = 1 (mod 13). 
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Since 23 - 3 (mod 5) and 24 = 3 (mod 13), we get 24k+3 == 3 (mod 5) and 
2121+4 == 3 (mod 13) for k = 0, 1, 2, .... Therefore 5124.t +3-3 and 13/212"+4_3-
for k = 0, 1, 2, .... 

Next, 26 == -1 (mod 65), which implies that 212 == 1 (mod 65) and there­
fore 2"+ 12 - 3 == 2"-3 (mod 65), which shows that the sequence of remainders 
modulo 65 of the sequence 2"-3 (n = 2, 3, ... ) is periodic with period 12. 
To prove that none of the numbers 2"-3 (n = 2, 3, ... ) is divisible by 65 
it is sufficient to check whether the numbers 2~-3 for n = 2, 3, ... , 13 are 
divisible by' 65. We find easily that the remainders upon dividing by 65 are 
I, 5, 13,29,61,60, 58, 54,46,30,63,64, and none of these remainders is zero. 

27*. It is known (see, for instance, Sierpiilski, [37, p. 215]) that the 
four smallest composite numbers n, such that nI2"-2, are 341, 561, 645, 
and 1105. For 341, we have 341,¥3341-3 since, by Fermat's theorem, 330, 
= 1 (mod 31), which implies 3330 = 1 (mod 31), hence 3341 = 311 (mod 31). 
In view of 33 == -4 (mod 31), we get 39 == -64 = -2 (mod 31), hence 
311 = -18 (mod 31). Therefore 3341 _3 = 311-3 = -21 (mod 31), and 
31 ,r 3341 _ 3, which implies 341 = 11 · 31 ,r 3341 _ 3. On the other hand, 561 
= 3 ·11 · 1713561-3 since 11131°-1 which implies 111339°-1 and 11/3341 -3, 
and also 171316-1 which implies 17\316•3s-1 = 356°_1. Thus 1713s61-3. 

Thus, the least composite number n such- that n/2"-2 and nI3"-3 is 
the number n = 561. 

The number 645 is not a divisor of 3645_3 since 645 = 3 · 5 · 43, while 
342 = 1 (mod 43) which implies 342.15 == 1 (mod 43). Thus 3630 = 1 (mod 43), 
and 3645 == 31S (mod 43). Since 34 = -5 (mod 43), we have 

36 = -45 = -2 (mod 43), 312 = 4 (mod 43), 315 == 108 = 22 (mod 43). 

Therefore 3645_3 = 19(mod 43), which implies 43,¥ 3645_3. 
Onthe other hand, we have 1105\31105-3. Indeed, 1105 = 5· 13 · 17, 34 

== 1 (~od 5), and 31104 == 1 (mod 5), and 5131105-3. Next, 312 = 1 (mod 13), 
31104 = 1 (mod 13) and 13131105_3. Finally, 316 == 1 (mod 17), and since 
1104 = 16 · 69, we get 31104 = 1 (mod 17), which implies 17131105-3. 

Thus, two smallest composite numbers for which n\2"-2 and nI3"-3 are 
561 and 1105. 

REMARK. We do not know whether there exist infinitely many composite 
numbers n for which n\2"-2 and n)3"-3. This assertion would follow from 
a conjecture of A. Schinzel concerning prime numbers ([22]). For prime num­
bers n, both relations nI2"-2 and nI3"-3 hold because of Fermat's theorem. 
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28*. In view of n % 3"-3 and Fermat's theorem, the number n must 
be composite, and the least composite n for which nI2"-2 and n % 3"-3 is 
n = 341. In the solution to Problem 27 we proved that 341,t3341 -3. Thus, 
the least number n such that n12n-2 and n,t 311-3 is n = 341. 

REMARK. A. Rotkiewicz proved that there exist infinitely many positive 
integers n, both even and odd, such that nI2"-2 and n,t 3"-3. 

29. Number n = 6 has the desired property. In fact, if n % 2"-2, then n 
must be composite. The least composite number is 4, but 4,t 34-3 = 78. 
Next composite number is 6, and we have 6,t 26-2 = 62, while 6136-3 
since 36-3 is obviously even and divisible by 3. 

REMARK. A. Rotkiewicz proved that there exist infinitely many com­
posite numbers n, both even and odd, such that n\3"-3 and n % 2"-2. 

30. If a is composite, we may put n = a since obviously altf-a. If 
a = 1, we can put n = 4 since 4114-1. If a is a prime> 2, we may put 
n = 2a since in this case a is odd, and the number a2a-a is even; thus, 
cJ2a_a, being divisible by an odd number a and by 2, is divisible by 2a. 

It remains to consider the case a = 2. Here we can put n = 341 = 11·31 
since 34112341-2; the last property can be proved as follows: we have 
11\21°-1 = 1023, hence 111234°-1, and 1112341-2. Next, 31 = 25-112340-1, 
hence 3112341 -2. Thus the number 2341_2 is divisible by 11 and 31, hence 
also by their product 341. 

REMARK. M. Cipolla proved that for every positive integer a there exist 
infinitely many composite numbers n such that nia"-a. (See [5].) We do 
not know~ however, whether there exist infinitely many composite numbers 
n such that nla"-a for every integer a. The least of such number is 
561 = 3·11·17. From a certain conjecture of A .. Schinzel concerning prime 
numbers ([22]) it follows that there are infinitely many such composite numbers. 

31. The cube of an integer which is not divisible by 3 gives remainder 
1 or -1 upon dividing by 9. Thus, if none of the numbers a, b, c were di­
visible by 3, then the number a3+b3+c3, upon dividing by 9, would give the 
remainder ± 1 ± 1 ± 1 which is not divisible by 9 for any combination of 
signs + and -. It follows that if 9Ia3+b3+c3

, then 3labc, which was to be 
proved. 

32. The proof is analogous to the proof in Problem 31 since the number 
± 1 ± 1 ± 1 ± 1 ± 1 is not divisible by 9 for any combination of signs + and - . 
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33. The condition (x, y) = 1 is necessary since, for instance, 152 +202 

= 5\ while 7,t 15·20. Now, if (x, y) = 1 and x, y, z are positive integers 
such that r+y2 = z\ then, as we know from the theory of Pythagorean 
equation, there exist integers m and n such that for instance x = m2_n2, 

y = 2mn, Z2 = m2+n2• Suppose that 7,ty; thus 7,tm and 7 ,tn. It is easy to 
see that the square of an integer not divisible by 7 gives, upon dividing by 7, 
the remainders 1, 2 or 4. Since 1 +2, 1 +4, and 2+4 cannot be such re­
mainders, neither they are divisible by 7, it follows from equation z2 = m2+ 
+n2 that the numbers m and n must give the same remainders upon dividing 
by 7. Thus 71x = m2-w. 

34. The square of an integer not divisible by 7 gives upon dividing by 
7 the remainder 1, 2, or 4, hence the sum of such squares gives the remainder 
1, 2, 3, 4, 5, or 6. Thus, if a and b are integers such that 71a2+b2, then one 
of them, hence also the other, must be divisible by 7. 

35*. The numbers x = 36k+14,y = (12k+5) (18k+7), k = 0, 1,2, ... , 
have the desired property. 

In fact, we have obviously x(x+ 1)ly(Y+ 1) since 

x(x+l) = 2·3(12k+5) (18k+7) = 6y, 

while 61y+ 1. 
The number y is not divisible by x since y is odd, while x is even. The 

number y is not divisible by x+ 1 since 3jx+ 1, while 3,t y. The number 
y+1 is not divisible by x since 18k+71x and 18k+7Iy, hence 18k+7 ,ty+1. 
Finally, the number y+l is not divisible by x+1 since 12k+5Ix+l and 
12k +5Iy, hence 12k+5,t y+ 1. 

For k ± 0, we obtain x = 14, y = 35, and it is easy to show that there 
are no smaller numbers with the required property. 

36. For s < 10, we have of course ns = s. Next, studying successive 
multiples of s, we obtain njO = 190, nll = 209, n12 = 48, n13 . 247, n14 
= 266, nlS = 155, n16 = 448, n17 = 476, n18 = 198, n19 = 874, n20 = 9920, 
n21 = 399, n22 = 2398, n23 = 1679, n24 = 888, n2S = 4975. Finally, we have 
nlOO = 19999999999900. In fact, two last digits of every number divisible by 
100 must be zero, and the sum of digits of every number smaller than 
199999999999 is obviously smaller than 100. See Kaprekar [11]. 

37*. Let s be a positive integer, s = 21J5{1t, where IX and (J are integers 
;;::: 0, and t is a positive integer not divisible by 2 or 5. By Euler's theorem 
we have l()9'<t) == 1 (mod t). Let n = 10IJ+P(10<P(t)+ 1 OZ<p(t) + ... + 10sq;(I»). 
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We have 1()9'!1)+ IQ29'<t)+ ... + l()"9'<t) == S == 0 (mod t) (since tis), and in 

view of 2"'5'll()11H, the number n is divisible by s. On the other hand, it is 
clear that the sum of decimal digits of the number n equals s. 

38*. (a) The theorem is obviously true if the number has no prime 
divisor of the form 4k+3. Suppose that the theorem is true for all numbers, 
whose expansion into primes in first powers (hence not necessarily distinct) 
contains s ;;:, 0 primes of the form 4k+3. Let n be a positive integer, whose 
expansion into primes in first powers (hence not n~essarily distinct) contains 
s+1 prime factors of the form 4k+3. Then we have n = mq, where the ex­
pansion of m into primes in first powers contains s factors of the form 4k+ 
+3, and qis a prime of the form 4k+3. Let g denote the number of integer 
divisors of m which are of the form 4k+ I and let h denote the number of 
integer divisors of n which are of the form 4k+3. By assumption (concern­
ing s) we have g ;;::: h. Now, the integer divisors of the form ~+ 1 of mq are 
of course the divisors of the form 4k+ 1 of m (the number of these divisors 
being equal to g), and also the products of integer divisors of the form 4k+ 
+ 3 of m by the number q; the number of these divisors is h. Thus, the number 
mq will have g+h integer divisors of the form 4k+ 1. On the other hand, 
integer divisors of mq of the form 4k+3 will be the integer divisors of the 
form 4k+3 of m (the number of those divisors being h), and the products of 
the divisors of the form 4k+ I of m by q (the number of those divisors is g). 
However, among the latter there may be divisors which are divisors of the 
form 4k +3 of m. Thus the total number of integer divisors of the form 
4k+3 of mq is ~ h+g (and, perhaps, < h+g). The theorem being true for 
every number mq, we obtp..in by induction (with respect to s) that the theorem 
is true for positive integer s. 

(b) The number 3211- 1 (n = 1,2, ... ) has as many integer divisors of the 
form 4k+ 1 (namely, 1, 32, 34, ... , 3211- 2) as divisors of the form 4k+3 
(namely 3, 33, 35, ... , 3211- 1). 

(c) The number 3211 (where n = 1,2, ... ) has n+1 divisors of the form 
4k+1 (namely 1,32,34, ... ,3211) and only n divisors of the form 4k+3 
(namel, " 33, ... , 3211- 1). The number 5" has all n+ 1 divisors of the form 
4k+l, an.d has no divisor of the form 4k+3. 

39. Let'l, '2, and·'3 be the remainders upon dividing the integers -a, 
-b, and -c by n. ThuS"1> '2, and'3 are integers from the sequence 0,1,2, ... 
... , n-l, and since there is at most three different among the numbers 'I> 
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'2, '3, while n > 3, there exists a number, in this sequence such that, :f: '1, 
, #: '2, and, ¢ '3. If we had nla+r, then in view of -a = '1 (mod n) we 
would have n\r-r). However, rand rl are integers ~ 0 and < n, and if 
their difference is divisible by n, then we must have r = rl contrary to the 
definition of r. In a similar way we show that n,t b+r and nA' c+r. Thus, we 
can put k = r. 

40. We easily show by induction that for positive integers n we have 

211 ~ n+l, which implies that 2"+1122" and 22,,+1_11222"_1. Therefore F" 
'J!' II + 1 2" 211 +1 == 2 +1122 -1122 -1122 -2 = 2Fn-2, and F,.12Fn-2, which was to 

oe proved. 

REMARK. T. Banachiewicz suspected that this relation led P. Fermat to 
his conjecture that all numbers Fn (n = 1, 2, ... ) are primes. During Fermat's 
times it was thought that the so-called Chinese theorem is true, namely the 
theorem asserting that if an integer m > 1 satisfies the relation mJ2m-2, 
then m is a prime (it was checked for first several hundred integers). This 
breaks down, however, for m = 341 = 11 · 31, which was not known then. 

II. RELATIVELY PRIME NUMBERS 

41. Numbers 2k+l and 9k+4 are relatively prime since 9(2k+l)­
-2(9k+4) = I. Since 9k+4 = 4(2k-I)+(k+8), while 2k-1 = 2(k+8)-
-17, we have (9k+4, 2k-l) = (2k-l, k+8) = (k+8, 17). If k = 9 
(mod 17), then (k+8, 17) == 17; in the contrary case, we have 17Ik+8, 
hence (k+8, 17) = 1. Thus, (9k+4, 2k-l) = 17 if k = 9 (mod 17) and 
(9k+4, 2k-l) = 1 if k ;s 9 (mod 17) . 

. 42. We show first that if for some positive integer m we have m triangular 
numbers al < a2 < ... < am which are pairwise relatively prime, then there 
exists a triangular number t > am such that (t, aI, a2, ... , am) = 1. 

In fact, let a = al a2 ... am; the numbers a+ 1 and 2a+ 1 are relatively 
prime to a. The number 

(2a+l) (2a+2) 
am+l = t2Q+1 = 2 = (a+l) (2a+l) 

is a triangUlar number > am; being relatively prime to a, it is relatively prime 
to every number aI, a2, ... , am. 
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It follows that if we have a finite increasing sequence of pairwise relatively 
prime triangular numbers, then we can always find a triangular number 
exceeding all of them and pairwise relatively prime to them. Taking always 
the least such number we form the infinite sequence 

t1 =1, t2=3, t4 =10, t13 =91, t22=253, 

of pairwise relatively prime triangular numbers. 

43. We shall prove first that if for some positive integer m the tetra­
hedral numbers al < a2 < ... < am are pairwise relatively prime, then there 
exists a tetrahedral number T > am such that (T, al, a2, ... , am) = 1. In fact, 
let a = ala2 ... an- Put T = T6a+1 = (6a+l) (3a+l) (2a+l); clearly T is 
prime relatively to a, hence relatively to each of the numbers at, ... , am, 
and T> a ~ am. 

Thus, we can define the required increasing sequence of pairwise relatively 
prime tetrahedral numbers by induction: take Tl = 1 as the first term of the 
sequence, and, after having defined m first pairwise relatively prime tetra­
hedral numbers of this sequence, define the m + 1 st as the least tetra­
hedral number exceeding all first m terms, and being relatively prime to 
each of them. In this manner we obtain the infinite increasing sequence 
of pairwise relatively prime tetrahedral numbers 

Tl =1, T2 = 4, Ts = 35, T17 = 969, 

44. Let a ,and b be two different integers. Assume for instance a < b, 
and let n = (b-a)k+ I-a. For k sufficiently large, n will be positive integer. 
We have a+n = (b-a)k+l, b+n = (b-a) (k+l)+l, hence a+n and b+n 
will be positive integers. If we had dla+n and dlb+n, we would have 
dla-b, and, in view of dla+n, also dll, which implies that d = 1. Thus, 
(a+n, b+n) = 1. 

45*. If the integers a, b, c are distinct, then the number 

h = (a-b) (a-c) (b-c) 

is different from zero. In case h :F ± 1, let Ql, ... , qs denote all prime> 3 
divisors of h. 

If two or more amo~g numbers a, b, c are even, put r = 1, otherwise put 
r = O. Clearly, at least two of the numbers a+r, b+r, c+r will be odd. If 
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a, b, c give three different remainders upon dividing by 3, put ro = O. If two 
or more among a, b, c give the same remainder e upon dividing by 3, put 
ro = I-e. Clearly, at least two of the numbers a+ro, b+ro, c+ro will be 
not divisible by 3. 

Now, Jet i denote one of the numbers 1, 2, ... , s. In view of Problem 39 
(and the fact that qi > 3), there exists an integer r/ such that none of the 
numbers a+rh b+rh c+ri is divisible by qt. According to the Chinese 
remainder theorem, there exist infinitely many positive integers n such that 

n == r (mod 2), n == ro (mod 3), 

and 

n==ri(modqi) fori=1,2, ... ,s. 

We shall show that the numbers a+n, b+n and c+n are pairwise relatively 
prime. Suppose, for instance, that (a+n, b+n) > 1. Then, there would exist 
a prime q such that q\a+n and qjb+n, hence q\a-b, which implies q\h and 
h::F ±1. Since n == r (mod 2) and at least two of the numbers a+r, b+r, 
c+r are odd, at least two of the numbers a+n, b+n, c+n are odd, and we 
cannot have q = 2. Next, since n == ro (mod 3) and at least two of the numbers 
a+ro, b+ro, c+ro are not divisible by 3, at least two of the numbers a+n, 
b+n, c+n are not divisible by 3, and we cannot have q = 3. Since q\h, in 
view of the definition of h, we have q = qi for a certain i from the sequence 
1, 2, ... , s. However, in view of n == rj (mod q,), or n == ri (mod q), and in 
view of the fact that none of the numbers a+rh b+ri, c+ri is divisible by 
qh none of the numbers a+n, b+n, c+n is divisible by q/ = q, contrary to 
the assumption that q\a+n and qJb+n. Thus, we proved that (a+n, b+n) 
= 1. In a similar way we show that (a+n, c+n) = 1, and (b+n, c+n) = 1. 
Therefore the numbers a+n, b+n, and c+n are pairwise relatively prime. 
Since there are infinitely many such numbers n, the proof is complete. 

46. Such numbers are for instance a = 1, b = 2, c = 3, d = 4. In fact, 
for odd n, the numbers a+n and c+n are even, hence not relatively prime, 
and, for even n, the numbers b+n and d+n are even, hence not relatively 
prime. 

47. If n is odd and> 6, then n = 2+(n-2), where n-2 is odd and 
> 1, and we have (2, n-2) = 1. 

The following proof for the case of even n > 6 is due to A. Mq,kowski. 
If n = 4k, where k is an integer > 1 (since n > 6), then n = (2k-1)+ 
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+(2k+l), and 2k+l > 2k-l > 1 (since k > I). The numbers 2k-l and 
2k+l, as consecutive odd numbers, are relatively prime. 

If n = 4k+2, where k is an integer > 1 (since n > 6), we have n = 
= (2k+3)+(2k-l), where 2k+3 > 2k-l > 1 (since k > 1). The 
numbers 2k +3 and 2k-I are relatively prime since if 0 < d12k+3 and 
dI2k-l, then d\(2k+3)-(2k-l) or d14. Now, d as a divisor of an odd 
number must be odd, hence d = 1, and (2k+3, 2k-l) = 1. 

48*. If n is even and> 8, then n = 6k, n = 6k+2 or n = 6k+4, and in 
the first two cases k is an integer> 1, and in the third case, k is a positive 
integer. The formulae 

6k = 2+3+(6(k-l)+1), 6k+2 = 3+4+(6(k-l)+1), 

6k+4 = 2+3+(6k-l) 

show easily that n is a sum of three pairwise relatively prime positive integers. 
Suppose now that n is odd and > 17. We consider six cases: n = 12k + 1, 

n = 12k+3, n = 12k+5, n = 12k+7, ':l = I2k+9, and n = I2k+Il, where 
in the first three cases k is an integer> 1, and in the last three cases k is 
a positive integer. We have 

I2k-l = (6(k-l)-I)+(6(k-l)+5)+9, 

where the numbers 6(k-I)~I, 6(k-l)+5, and 9 are> 1 and relative,ly 
prime; in fact, the first two are not divisible by 3, and are relatively prime 
since dI6(k-I)-1 and dI6(k-I)+5 would imply d/4, while the numbers 
considered are odd. 

Ifn = 12k+3, then we have n = (6k-I)+(6k+l)+3; 
if n = 12k+5, then we have n = (6k-5)+(6k+l)+9; 
if n = 12k+7, then we have n = (6k+5)+(~k-l)+3; 
if n = 12k+9, then we have n = (6k-I)+(6k+l)+9; 

if n = 12k+l1, then we have n = (6(k+l)-S)+(6(k+I)+1)+3, and we 
easily check that in each case we have three terms > 1 and pairwise relatively . 
prIme. 

The number 17 does not have the desired property since in the case 17 
= a+b+c, all three numbers a, b, c (as > 1 and pairwise relatively prime) 
would have to be odd and distinct. We have, however, 3+5+7 = 15 < 17, 
3+5+11 > 17, and in case 3 < a < b < c, we have a ~ 5, b ~ 7, c ~ 9, 
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hence a+b+c ~ 5+7+9 ~ 21 > 17, which shows that 17 does not have 
the desired property. 

49*. We shall present the proof based on an idea of A. Schinzel (see [19]). 
Let k denote a given positive integer and let m be the positive integer whose 
expansion into prime powers is m = qflq~2 ... q~'. Let I(x) = x(x+2k) and 
let i denote one of the numbers 1, 2, ... , s. We cannot have qilx(x+2k) for 
all integer x since then for x = 1 we would have qil2k+ 1, and for x = -1 
we would have qd2k-l, and q;!(2k+l)-(2k-l) = 2, which is impossible 
in view of qjl2k+ 1 (and, in consequence, qiI1). Therefore there exists an 
integer Xj such that qi,r Xi(Xi+2k) = I(xj). By the Chinese remainder 
theorem, there exists a positive integer Xo such that Xo == Xi (mod qj) for 
i = 1,2, ... , s, which yields I(xo) == I(xt) ~ 0 (mod qi) for i = 1,2, ... , s. 
We have therefore (f(xo), q;) = 1 for i ~ 1,2, ... , s, which (in view of the 

expansion of m into prime factors) gives (f(xo), m) = 1, or (xo(xo+2k), m) 
= 1. Thus, if we put a = xo+2k, b = xo, we shall have 2k = a-b, where 
(a, m) = 1, (b, m) = 1, which proves the theorem. 

REMARK. Since adding arbitrary multiples of m to a and b does not 
change the fact that 2k = a-b and (ab, m) = 1, we proved that, for every 
m, every even number can be represented in infinitely many ways as a dif­
ference of positive integers relatively prime with m. 

We do not know whether every even number is a difference of two primes. 
From a certain conjecture on prime numbers of A. Schinzel ([22]), it follows 
that every even number can be represented as a difference of two l'rimes 
in infinitely many ways. ' 

50*. We shall present the proof given by A. Rotkiewicz. If u" is the 'nth 
term of the Fibonacci sequence. and if m and nare positive integers,then 
(um• u,,) = Um,,, (see [27, p. 280, problem 5]). Since Ul = 1, we see that if Pk 

denotes the kth successive prime. then every two terms of the increasing 
infinite sequence 

are relatively prime. Instead of PI< we could take here 22k + 1 since it is well 

known that (22m + 1, 22"+1) = 1 for positive integers m and n =I: m. 

51*. We know that every divisor> 1 of the number F" = 22"+1 
(n = 1,2, ... ) is of the form 2,,+2k+ 1 where k is positive integer (see,. for 
instance, [37, p. 343, Theorem 5]). Since for positive integers nand k we 
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have 2,,+2k+ 1 ~ 2n+t + 1 > n, all > 1 divisors of F" must be > n, hence 
(n, F~) = 1, which was to be proved. 

51a. We easily check that (n, 2"-1) = 1 for n = 1,2, 3,4, 5, while 
(6,26-1) = 3. For k = 1,2, ... , we have 3126-1126k-l, hence (6k, 26k_l) 
~ 3 for k = 1, 2, .... The least such nunlber n is equal to 6. 

III. ARITHMETIC PROGRESSIONS 

52. Let m be a given integer> 1. The numbers m!k+l for k = 1, 2, ... 
... , m are relatively prime since for positive integers k and 1 with k < 1 ~ m 
if d > 1 were the common divisor of m!k+l and m!l+l, we would have 
dll(m!k+l)-k(m!l+l) = l-k < m, hence 1 < d < m, and dim!. This, in 
view of dlm!k+l, gives dll, contrary to the assumption that d > 1. 

53. The required property is satisfied, for instance, by all terms of the 
arithmetic progression 2kt+2k

-
1 (where t = 0, 1, 2, ... ) since in the expansion 

of n = 2kt+2k
-

1 into primes, the number 2 enters with the exponent k-l; 
from the well-known formula for the number of positive integer divisors it 
follows immediately that the number of positive integer divisors of the 
number n is divisible by k. 

54. The required property holds for an arbitrary positive integer x and 
for y = 5x+2, Z = 7x+3 since in this case the numbers 

'x(x+l) =, x2+x, y(y+l) = 25x2+25x+6, z(z+l) = 49r+49x+12 

form the arithmetic progression with the difference 24r+24x+6. 

REMARK. One can show that there are no four increasing positive integers 
x, y, Z, t such that the numbers x(x+ 1), y(y+ 1), z(z+ 1), and t(t+ 1) form 
an arithmetic progression since then the numbers four times greater and 
increased by one, i.e. the numbers (2x+ 1)2, (2y+ 1)2, (2z+ 1)2, and (2t+ 1)2 
would also form an arithmetic progression, contrary to the theorem of 
Fermat asserting that there are no four different squares of integers which 
form an arithmetic progression (the proof can be found in the book by 
W. Sierpinski [37, p. 74, theorem 8]). 

55. If the sides of a rectangular triangle form an arithmetic progression, 
then we can denote them by b-r, band b+r where band r are positive 
integers, and we have (b-r)2+b2 = (b+r)2, hence b = 4r, which gives the 



SOLUTIONS 41 

rectangular triangle with sides 3r, 4r, and 5r, where r is an arbitrary positive 
integer. Thus, all rectangular triangles whose sides are integers forming an 
arithmetic progression are obtained by increasing integer number of times 
the triangle with sides 3, 4, 5. 

56. Triangular numbers In = !n(n+ 1) are odd for n = 4u+ 1 (u = 0, 
1,2, ... ) and even for 41n. Thus both progressions with difference 2 
contain infinitely many triangular numbers. On the other hand, the pro­
gression 3k+2 (k = 0, 1,2, ... ) does not contain any triangular number 
since if 31n, then 3ltn ; similarly, if n = 3u+2 for u = 0, 1,2, ... , then 311ft ; 

. u(u+I) 
finally, if n = 3u+l, where u = 0,1,2, ... , then tn = 9 2 +1, hence 

dividing by 3 yields the remainder 1. 

57. It is necessary and sufficient for b to be a quadratic residue for modulus 
a. In fact, if for some positive integer x and some integer k ~ ° we have 
xl = ak+b, then xl == b (mod a), and b is a quadratic residue for modulus 
a. Conversely, if b is a quadratic residue for modulus a, then there exist 
infinitely many positive integers x such that xl == b (mod a), hence xl = ak+ 
+b, where k is an integer, and consequently, is positive for sufficiently 
large x. 

58*. We shall give the proof due to A. Schinzel. Let Pk denote the kth 
successive prime. Let s be an arbitrary positive integer and let P = PIP2 ... p~. 
By the Chinese remainder theorem, for every positive integer k ~ s there 
exists a positive integer ak such that ak == ° (mod P/Pk), and ak == -1 (mod Pk)' 
Put Q = 1131 213: ... sa,. The numbers kQ (k = 1,2, ... , s) form an increasing 
arithmetic progression with s terms. By the definition of the numbers ale 
(k = 1,2, ... , s), we have Pklak+ 1 and Pklan if k :f:. n, where n is a positive 
integer> s. The numbers 

s 

QIe = k(ak+l)/Pk n na"/p,, 

ft=1 
n.pk 

are natural, and we easily see that kQ= Qf" for k = 1, 2, ... , s, thus the 
numbers kQ (k = 1,2, ... , s) are powers of integers with integer expo­
nents > 1. 

59. The desired theorem is clearly equivalent to the theorem that in 
every infinite increasing arithmetic sequence of integers there exists a term 
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which is not a power with integer exponent > 1 of any integer. Thus, let 
ak+b (k = 0, 1, 2, ... ) be an infinite arithmetic progression, where a and b 
are positive integers. There exists a prime p > a+b. Since (a,p2) = 1, the 
equation ax-p2y = 1 has a solution in positive integers x, y. Let 
k = (p-b)x; this will be a positive integer (since p > b), and we shall 
have. ak+b = p2y (P-b)+p. Thus the term ak+b of our progression is 
not divisible by p2, and therefore cannot be a power of a positive integer 
with integer exponent > 1. 

60. Out of every four consecutive positive integers one must be of the 
form 4k+2, where k is an integer ~ O. No such number, as an even number 
which is not divisible by 4, can be a power of a positive integer with integer 
exponent > 1. 

REMARK. A. M~kowski proved that there are no three consecutive positive 
integers such that each of them is a power with integer exponent > 1 of 
a positive integer, but the proof is difficult (Khatri [13]). There exist, however, 
two consecutive numbers such that each of them is a power with integer 
exponent > 1 of a positive integer. Such numbers are, for instance, 22 = 8, 
32 = 9. Catalan's problem whether there are any other pairs of such integers 
is open. S. Hyyro [10] proved that in any such pair both bases are> 1011 

• 
61. The solution follows immediately from Problem 58, it can, however, be 

proved in a simpler way. Let m > 1 be an integer, and let ql (i = 1, 2, ... , m) 

be primes such that a < ql < q2 < ... < qm. By the Chinese remainder 
theorem, th~re exists a positive integer x such that ax = -b -aj (mod q~) 
for j = 1,2, ... , m. Thus qJla(x+j)+b for j = 1,2, ... , m. Thus m consecu­
tive terms of the progression ak+b, namely the terms a(x+i)+b for 
j = 1, 2, ... , m, are composite. 

62*. We can assume, of course, that m is ~an integer> 1. Let P denote 
the product of all prime divisors of m which are the divisors od a, and let 
P = 1 if there are no such divisors. Let Q denote the product of all prime 
divisors of m which are divisors of b, and let Q = 1 if there are no such 
divisors. Since (a, b) = 1, we have (P, Q) = 1. Finally, let R denote the 
product of all prime divisors of m which do not divide a or b, and if there 
are no such divisors, let R = 1. Obviously, we have (R, P) = 1 and (R, Q) 
= 1. We shall show that (aPR+b, m) = 1. In fact, if it were not true, 
there would exist a prime p such that plm, and plaPR+b. If we had piP, 
then plaP R +b would imply plb, hence plQ, contrary to the fact that (P, Q) 
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= 1. If we had plQ, then we would have plb, hence plaPR, which is im­
possible since (a, b) = 1, (b, P) = 1, (b, R) = 1. Finally, if we had plR, 
we would have plb, hence plQ, contrary to the fact that (R, Q) = 1. Thus, 

we proved that (aPR+b, m) = 1, and it follows that (a(km+PR)+b, m) = 1 
for k = 0, 1, .... Therefore our progression contains infinitely many terms 
relatively prime with m, which was to be proved. 

63. Let b be the first term of our progression and let a be its difference; 
thus the numbers a and b are positive integers. Let x denote the remainder 
obtained from dividing b by a; we have therefore b = al+r where t is an 
integer ~ 0, and r is an integer such that 0 ~ r < a. Let s be an arbitrary 
positive integer, and let Cl> C2, ••• , c. with Cl of.: 0 be an arbitrary sequence 
of decimal digits. Let N denote the s-digit integer, whose consecutive digits 
ar,e Cl> C2, ••• , C •• 

Obviously there exists a positive integer n such that 10" > 20(/+1). The 
nUmber NIO"/a-t will be > 1. 
, Let k be the least positive integer greater than NlO"/a-t; thus, we 
shall have k-l ~ NlO"/a-t, hence 

k 1 ---- NlO' 2 (N+I)lO" + ~ --- + -I < -t 
a a 

since 10" > 2a. We have therefore NIO" < a(k+t) < ak+at+r = ak+b 
< a(k+t+I) < (N+l) 10" = NIO"+IO" and it follows that the first s 
digits of the number ak+b are the same as the first s digits of the number N, 
i.e. the digits Cl> Cz, •.. , c •• 

64. If the terms Uk, u" and Urn of the Fibonacci sequence form an 
arithmetic progression, then we must have u, > I, and therefore I > 2 
(since U2 = I), and m > 3. Moreover, Um = u,+(U,-Uk), which implies that 
Urn < u,+u, < u,+u/+1 = U1+2. Thus Urn < u,+2and it follows that Urn ~ U'H. 
On the other hand, UII! > u" hence Urn ~ U'H, and we must have Urn = Ul+l. 
Therefore (since 1 > 2) we have m = 1+ I. We have thus Uk = 2u,-um 

= U,-(UI+I-U,) = U,-U'_1 = UI-Z, which implies that k = 1-2. Thus, if 
the terms Uk, UI, and' Um of the Fibonacci sequence form an increasing arithme­
tic progression, we must have 1 > 2, k = 1-2 and m = 1+1. On the other 
hand, for any integer I> 1 the numbers UI_2, U" and U/+1 form an arithmetic 
progression with the difference UI_l. If n were an integer> 1+ 1, we would 
have n ~ 1+2, hence U" ~ U1+2. and Un-UHI ~ UH2-UI+1 = U, > UI_1 
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(since 1 > 2). It follows that there are no four terms of the Fibonacci sequence 
which form an arithmetic progression. 

65*. We know [27, p. 279, problem 3] that if m is a positive integer, 
then the remainders of dividing successive terms of the Fibonacci sequence 
by m form a periodic sequence with pure period. For m = 2, 3, 4, 5, 6, 7, 
the remainders upon dividing the terms of the Fibonacci sequence by m 

are respectively (we show here only first few remainders, and not all of 
them): 

for m = 2: 1, 1, 0, ... , 
for m = 3: 1, 1, 2, 0, ... , 
for m = 4: 1, 1, 2, 3, 1,0, ... , 
for m = 5: 1, 1, 2, 3, 0, 3, 3, 1, 4, ... , 
for m = 6: 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 0, ... , 
for m = 7: 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, ... . 
Since for every positive integer m ~ 7 all possible remainders modulo m 

appear in the above sequences, we see that each of the arithmetic progressions 
with the difference m ~ 7 contains infinitely many terms of the Fibonacci 
sequence. 

We shall show now that the progression 8k+4 (k = 0, 1, 2, ... ) does not 
contain any term of the Fibonacci sequence. 

Since Ul = U2 = 1 and U,,+2 = U,,+Un+l for n = 1, 2, ... , we easily see 
that the numbers Ul, U2, ... , U14 give the following remainders upon dividing 
by 8: 

1. 1. 2, 3, 5, 0, 5, 5,2, 7, 1, 0, 1, 1. 

It follows that 81u13~Ul and 8IuI4-u2. Thus, for n· = 1 we have 8Iu"+12-un 

and 8Iu"+13-U"+1 . 
Suppose now that these two formulas hold for some positive integers n. 

We have then 8Iun+12+U,,+13-(U,,+Un+1) or 8Iu,,:"14-Un+2 (since 8Iun~13-U"+I). 
It follows by induction that 8Iun+12-u" for n = 1, 2, ... , which shows that 
the sequence of consecutive remainders modulo 8 of the Fibonacci sequence 
is periodic and has a pure twelve-term period. 

From the first fourteen remainders modulo 8 we see that these remainders 
may be only 0, 1, 2, 3, 5, and 7. Thus there are no remainders 4 or 6, which 
implies that the progressions 8k+4 and 8k+6 do not contain any term 
of the Fibonacci sequence. These are the progressions of integer terms with 
the desired property, and with the least possible difference. 
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66*. The progression llk+4 (k = 0, 1,2, ... ) has the required prop­
erty. As in the solution of Problem 65, we prove by an easy induction 
that 11IUn+10-un for n = 1,2, .... It follows that the sequence of remainders 
modulo 11 of the Fibonacci sequence is periodic, with period 10; we easily 
find this sequence to be 1,1,2,3,5,8,2,10,1,0, .... The number 4 (and 
also 6, 7, and 9) does not appear in this sequence. 

67. Suppose that we have n terms of our progression 

which are pairwise relatively prime (for n = 1 we can put kt = 1). 
Let m = (akt +b)(ak2+b) ... (akll+b). From Problem 62* it follows that 
there exists a positive integer kll+1 such that (akll+1 + b, m) = 1, hence 
(akn+1 +b, aki+b) = 1 for i = 1,2, ... , n. The numbers 

are therefore pairwise relatively prime. Thus we defined by induction the 
infinite sequence kb k2 , ... such that the sequence akl+b (i = 1,2, ... ) 
contains only relatively prime terms of the original arithmetic progression. 

68*. Let d = (a, a+b). Thus we have a = dab a+b = dc, where 
(ab c) = 1 and c> 1 (since d ~ a, while de = a+b > a). In view of 
(ab c) = 1 and of Euler's theorem, we have &<al) == 1 (mod at), hence c"qJ{al) 
== 1 (mod at) for integer n. Therefore c"qJ{al)-1 = t"at with some positive 
integer tn which (since c > 1 and n is arbitrarily large) can be made arbitrarily 
large. Moreover, we have 

The term a(ct,,+I)+b of our progression (which can be arbitrarily large) 
has therefore those and only those prime divisors which are the prime divisors 
of the number de > 1. Thus, in our progression there exist infinitely many 
terms with the same set of prime divisors, which was to be proved (see 
P6lya [14]). 

69. From the theorem of Lejeune-Dirichlet it immediately follows 
that the theorem is true for s = 1. Suppose now that the theorem is 
true for some positive integer s. Thus, if Ca, b) = 1, then there exists 
a number ko such that ako+b = q] q2 ... qs, where ql < q2 < ... < q. are 
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primes. By the theorem of Lejeune-Dirichlet, there exist infinitely many 
integers k such that ak+I = q is a prime> qs. For t = qlq2 ... qsk+ko 
we get 

at+b = ql q2 ... qsak+ako+b = ql q2 ... qs(ak+ 1) = ql q2 ... qsq. 

Therefore the theorem is true for s+ 1. By induction it follows that the 
theorem is true for every positive integer s, which was to be proved. 

70. If p is a prime, then one of the numbers p,p+l0, and p+20 must 
be divisible by 3 (since p+l0 = p+l (mod 3) and p+20 == p+2 (mod 3), 
and out of every three consecutive integers, one must be divisible by 3). Thus, 
if all our numbers are primes, then one of them, hence the least, must 
be equal to 3 and we have p = 3, p+IO = 13, p+20 = 23. Therefore 
there exists only one arithmetic progression of difference 10 consisting of 
three primes, namely 3, 13, 23. We show easily that there is no arithmetic 
sequence of difference 10 consisting of four (or more) primes since ifp, p+ 10, 
p+20, and p+30 were primes, then, as we showed, we would have p = 3, 
while p+30 = 33 = 3 · 11 is not a prime. 

REMARK. From a certain conjecture of A. Schinzel concerning primes ([22]) 
it follows that there exist infinitely many primes p such that p + lOis also 
a prime, for instance 7 and 17, 13 and 23, 19 and 29, 31 and 41, 37 and 47, 
61 and 71, 73 and 83, 79 and 89. 

71. There are no such progressions since one of the numbers p,p+l00, 
and p+200 must be divisible by 3, and if these numbers are primes, then 
p = 3. But in this case p + 200 = 203 = 7 · 29 is composite. 

REMARK. In a similar way we show that there are no progressions with 
difference 1000 formed of three or more primes since 1003 = 17 · 53 is com­
posite. On the other hand, from a conjecture of A. Schinzel ([22]) it follows 
that there are infinitely many primes p such that p+ 1000 is also a prime, 
such as 13 and 1013, 19 and 1019, 31 and 1031, 61 and 1061, 97 and 1097, 
103 and 1103, 1039 and 2039. 

72*. If the difference of our progression were odd, then every second 
term of our progression would be even, which is impossible if our progression 
is to be formed of ten primes. Thus, the difference must be even. If the first 
term were equal 2, then the next term would be even, and hence composite. 
Therefore the first term of our progression is an odd prime, and it follows 
that all terms must be odd primes. We shall use the following theorem due 
essentially to M. Cantor: If 11 terms of an arithmetic progression are odd 
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primes, then the difference of the progression is divisible by every prime < n 
(see, for instance, [37, p. 121, theorem 5]). It follows, for n = 10, that the 
difference of our progression must be divisible by 2, 3, 5, and 7, hence 
by 210. We shall try first to find an arithmetic progression with the difference 
210 formed of 10 primes. 

Since the number 210 (the difference of our progression) is divisible by 
2, 3, 5, and 7, the first term cannot be equal to any of these primes. It cannot 
be equal to 11 since in this case the second term would be 221 = 13 . 17. 
Thus the first term of the progression is > 11, and none of the terms is 
divisible by 11. The remainder of 210 upon division by 11 equals 1. If the 
first term would give the remainder > 1 upon dividing by 11, then with 
every next term this remainder would increase by 1, and one of the terms of 
the sequence would be divisible by 11, which is impossible. Therefore the 
first term of the sequence must give the remainder 1 upon dividing by 11, 
and being odd, it must be of the form 22k+ 1, where k is a positive integer. 
The successive primes of this form are 23,67,89,199, .... 

The first term cannot be 23 since then the sixth term would be 1073 
= 29 . 37. If the first term were 67, then the fourth term would be 697 
= 17·41. If the first term were 87, then the second term would be 229 
= 13 . 23. If, however, the first term is 199, then we obtain a progression 
of ten successive primes 

199,409,619,829,1039,1249,1459,1669,1879,2089. 

Thus we found a progression with difference 210 formed of ten primes. 
Suppose now that we have an increasing arithmetic progression formed of 

ten primes, with the difference r other that 210. Then r must be divisible 
by 210 (by the theorem of Cantor) and different from 210, hence r ;:, 420. 
In this case, however, the second term of our progression would exceed 420, 
hence it would exceed the second term 409 of the progression which we 
found, and obviously, the next terms would also exceed the terms of the 
progression which we found. Thus, the progression with first term 199 
and difference 210 is the ten-term increasing progression formed of primes 
with the least possible last term. 

REMARK. The longest increasing arithmetic progression formed of primes 
known up to date is the progression of thirteen terms with the first term 
4943 and difference 60060 found by W. N. Seredinsky from Moscow. From 
a conjecture of A. Schinzel concerning primes it follows that there exist 
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infinitely many progressions with difference 30030 formed of thirteen primes 
(see [22, p. 191, C},4])' However, no such progression has been found as yet. 

73. F or instance, the progression 30k + 7 (k = 1, 2, 3, ... ) has the 
required property. Indeed, if we had 30k+7 = p+q, then in view of the 
fact that 30k + 7 is odd, one of the numbers p and q would be even, and 
equal to 2 as a prime. Suppose q = 2; then p = 30k+5 = 5(6k+I) which 
is impossible if p is to be a prime. If 30k+ 7 = p-q, where p and q are 
primes, then we would have q = 2 and p = 30k+9 = 3(IOk+3) which is 
also impossible. 

REMARK. One can prove (but the proof is difficult) that there exist in­
finitely many even numbers which can be represented both as sums and 
as differences of two primes. From a certain conjecture of A. Schinzel con­
cerning primes it follows that there exist infinitely many odd numbers which 
are both sums and differences of two primes. See SierpiIiski [34]. 

IV. PRIME AND COMPOSITE NUMBERS 

74. It suffices to take p = 3, q = 5. If n is even and> 6, then we 
have n-l~ 6, and p < q < n-I. The numbers n-p = n-3 and n-q 
= n-5 as consecutive odd numbers are relatively prime. 

75. There is only one such prime, namely 5. In fact, suppose that the 
prime r can be represented both as a sum and as a difference of two primes. 
We must have obviously r > 2, hence r is an odd prime. Being both a sum 
and a differe~ce of two primes, one of them must be even, hence equal 2. 
Thus we must have r = p+2 = q-2, where p and q are primes. In this 
case, however, p, r = p+2, and q = r+2 would be three consecutive odd 
primes, and there is only one such a triplet: 3, 5, and 7 (since out of every 
three consecutive odd numbers one must be divisible by 3). We have there­
fore r = 5 = 3+2 = 7-2. 

76. n = 113, 139, 181; m = 20, 51, 62. 

77. By the well-known Fermat theorem, every prime of the form 4k+l 
is a sum of squares of two positive integers (see, for instance, [37, p. 205, 
Theorem 9]). Thus, if p is a prime of the forn14k+ 1, then we have p = a2+b2

, 

where a and b are positive integers (of course different since p is odd). Assume, 
for instance, a > b. Then p2 = (a2-b2)2+(2ab)2, hence p is a hypotenuse 
of a rectangular triangle whose two other sides are a2-b2 and 2ab. We 
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have, for example, 52 = 32+42,132 = 52+122,172 = 152 +82, 292 = 212+ 
+202• 

78. 132+1 = 72+112, 172+1 = 112+132, 232+1 = 132+192, 312+1 
= 112+292. 

REMARK. The identity (5x+13)2+1 = (3x+7)2+(4x+l? shows that 
if p = 5x+13, q = 3x+7, and, = 4x+l are primes, thenp2+1 = q2+,2. 
From a certain conjecture of A. Schinzel concerning primes ([22]) it follows 
that there are infinitely many such systems of primes. 

79. Note first thatifp, q,', 8, and t are primes and q2+q2 = ,2+82+t2, 
then each of the numbers p and q must be different from each of the numbers 
" 8, and t. In fact, if we had, for instance, p = " then we would also have 
q2 = 8 2+t2 which is impossible since this equation cannot have solution 
in primes q, 8, and t. Indeed, the numbers 8 and t could not be both odd nor 
could they be both even (since in this case we would have q = 2, which is 
impossible in view of the fact that the right-hand side is > 4). If we had 
8 = 2, then the number 4 would be a difference of two squares of positive 
integers which is impossible. 

If p2 +q2 = ,2+82 + t2, then it is not possible that all numbers p, q, " 8, t 
are odd. If p is even, then p = 2, and the numbers q, , , 8, t are odd. Since 
the square of an odd number gives the remainder 1 upon dividing by 8, 
the left-hand side would give the remainder 5, and the right-hand side would 
give the remainder 3, which is impossible. If both p and q are odd, then 
the left-hand side gives the remainder 2 upon dividing by 8, while on the 
right-hand side one (and only one) of the numbers must be even, for instance 
, = 2. Then, however, the right-hand side would give the remainder 6 
upon dividing by 8, which is impossible. 

80*. We present the solution found by A. Schinzel. There is only one 
solution, namely p = q = 2, , = 3. To see that, we shall find all solutions 
of the equation p(p+l)+q(q+l) = n(n+l) where p and q are primes and 
n is a positive integer. Our equation yields 

p(p+l) = n(n+l)-q(q+l) = (n-q)(n+q+l), 

and we must have n > q. Since p is a prime, we have either pln-q or 
pln+q+l. If pln-q, then we have p::::;; n-q, which implies p(p+l) 
::::;; (n-q)(n-q+l), and therefore n+q+l ::::;; n-q+l, which is impossible. 
Thus we have pln+q+ 1, which means that for some positive integer k 

n+q+l = kp, which implies p+l = k(n-q). (1) 
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If we had k = 1, then n+q+ 1 = p and p+ 1 = n-q, which gives p-q 
= n+ 1 and p+q = n+ I, which is impossible. Thus, k > 1. From (I) we 
easily obtain 

2q = (n+q)-(n-q) = kp-l-(n-q) 

= k[k(n-q)-I]-I-(n-q) = (k+I)[(k-l)(n-q)-I]. 

Since k ~ 2, we have k+l ~ 3. The last equality, whose left-hand side has 
positive integer divisors I, 2, q, and 2q only, implies that either k+ 1 = q 
or k+l = 2q. If k+l = q, then (k-I)(n-q) = 3, hence (q-2)(n-q) = 3. 
This leads to either q-2 = I, n-q = 3, that is q = 3, n = 6, k = q-I = 2, 
and, in view of (1), P = 5, or else, q-2 = 3, n-q = I, which gives q = 5, 
n = 6, k = 4, and in view of (I), p = 3. 

On the other hand, if k+l = 2q, then (k-I)(n-k) = 2, hence 
2(q-I)(n-q) = 2. This leads to q-I = 1 and n-q = 1, or q = 2, n = 3, 
and, in view of (I), p = 2. Thus, for positive integer~ n, we have the 
following solutions in primes p and q: I) p = q = 2, n = 3; 2) p = 5, 
q = 3, n = 6, and 3) p = 3, q = 5, n = 6. Only in the first solution all 
three numbers are primes. 

REMARK. If we denote by tn = !n(n+l) the nth triangular number, 
then we can express the above theorem as follows: the equation tp+t4 = tr 
has only one solution in prime numbers, namely p = q = 2, r = 3. 

81*. Such numbers are, for instance, p = 127, q = 3697, r = 5527. It 
is easy to check (for instance, in the tables of prime numbers) that these 
numbers are primes, and that the numbers p(p+l), q(q+l), and r(r+l) 
form an arithmetic progression. We shall present a method of finding such 
numbers. 

From the identity 

n(n+l)+(4In+20)(41n+21) = 2(29n+14)(29n+15) 

it follows that for a positive integer n, the numbers 

n(n+I), (29n+14)(29n+15), and (41n+20)(41n+21) 

form an arithmetic progression. If for some positive integer n the numbers 
n, 29n+14, and 41n+20 were all primes, we would have found a solution. 
Thus, we ought to take consecutive odd primes for n and check whether the 
numbers 29n+14 and 41n+20 are primes. 



SOLUTIONS 51 

The least such number is n = 127 which leads to the above solution. 
We cannot claim, however, that in this manner we obtain all triplets of 
primes with the required properties. 

REMARK. From a certain conjecture of A. Schinzel concerning primes 
([22]) it follows that there exist infinitely many primes n such that the 
numbers 29n+14 and 41n+20 are also primes. 

The above problem may be expressed as follows: find three triangular 
numbers with prime indices, which form an increasing arithmetic progression. 

82. There is only one such positive integer, namely n = 4. In fact, for 
n = 1, the number n+3 = 4 is composite; for n = 2, the number n+ 7 = 9 
is composite; for n = 3, the number n+l = 4 is composite; and for n > 4, 
all our numbers exceed 5, and at least one of them is divisible by 5. The 
last property follows from the fact that the numbers 1, 3, 7, 9, 13, and 15 
give upon dividing by 5 the remainders 1, 3, 2, 4, 3, and 0, hence all possible 
remainders. Thus, the numbers n+l, n+3, n+7, n+9, n+13, and n+15 
give also all possible remainders upon dividing by 5; therefore at least one 
of them is divisible by 5, and as > 5, is composite. On the other hand, 
for n = 4 we get the prime numbers 5,7,11,13,17, and 19. 

REMARK. From a certain conjecture of A. Schinzel concerning the prime 
numbers ([22]) it follows that there exist infinitely many positive integers 
n such that each of the numbers n+l, n+3, n+7, n+9, and n+13 is 
a prime. This is, for instance, the case where n = 4, 10, 100. See also 
Sierpinski [33, p. 319, P2]. 

83. 2 = 14+14, 17 = 14+24,97 = 24+34, 257 = 14+44, 641 = 24+54. 

REMARK. From a certain conjecture of A. Schinzel concerning primes ([22]) 
it follows that there exist infinitely many primes which can be represented as 
sums of two fourth powers on positive integers, and, generally, for every 
positive integers n there exist infinitely many primes of the form cfn +b2 I 
where a and b are positive integers. 

84. Let Pk denote the kth prime, and for positive integer n, let Pkn be the 

largest prime ~ 6n+l. Since the numbers 6n+2 = 2(3n+l), 6n+3 
= 3(2n+I), and 6n+4 = 2(3n+2) are composite, we have Pkn+1 ~ 6n+5, 

and Pkn+l-Pkn ~ (6n+5)+(6n+ I) = 4, hence the primes Pkn and Pkn+l are 
not twin primes. Since Pkn+l ;;;:: 6n+5, and n can be arbitrary, there are 

infinitely many such numbers Pkn and Pkn+l. Note, however, that in the 
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pair Pkn, Pkn+1 the number Pkn may be the larger of a pair of twin primes, 

and Pk +1 may be the smaller in another pair of twin primes. Thus, for n = 1, n , 

we get Pkn = 7, which is the larger in the pair 5, 7 of twin primes, and Pk
n
+l 

= 11, which is the smaller in the pair 11, 13. For n = 2, we get Pk = 13, 
n 

which is the larger in the pair 11, 13, while Pkn+l = 17, which is the smaller 

in the pair 17,19. For n = 17, we get Pkn = 103 = 6 '17+1, which is 

the larger in the pair 101, 103, while Pkn+l = 107, which is the smaller 

in the pair 107, 109. 

85. By the theorem of Lejeune-Dirichlet on arithmetic progressions, 
there exist infinitely many primes in the progression 15k + 7 (k = I, 2, ... ). 
None of these numbers can belong to a pair of twin primes since (15k+7)+2 
= 3(Sk+3), and (15k+7)-2 = 5(3k+1) are composite (since k > 0). 

86. If for a positive integer n the number n2_1 is a product of three 
different primes, then (in view of 22 -I = 3) we have n > 2. Next, in view 
of the identity n2-1 = (n-l)(n+I), the number n must be even since 
otherwise the factors on the right-hand side would be even, and 22\n2-1. 
Moreover, the numbers n-l and n+ 1 (which are both > I since n° > 2) 
cannot be both composite since in this case n2-1 could not be a product 
of three different primes. Thus, one of the numbers n-l and n+ 1 must 
be a prime, and the other one must be a product of two primes. For n = 4, 
we get n-l = 3, n+ 1 = 5, and this condition is not satisfied. Similarly, 
for n = 6, we get n-I = 5, n+l = 7; for n = 8, we have n-I = 7, 
n+l = 9 = 32

• For n = 10, we have n-l = 32
, and for n = 12 we have 

• ° 

n-l = 11, n+l = 13. For n = 14, we have n-l = 13, n+l = 15 = 3· 5. 
Thus, the least positive integer n for which n2-1 is a product of three dif­
ferent primes is n = 14, for which n2-1 = 3 · 5 · 13. Since 162-1 = 3 · 5 ·17, 
we see that the next number which satisfies the required property is 
n = 16. Now, 182-1 = 17 '19, 202-1 = 19 ~21 = 3· 7 ·19, and the third 
such number is n = 20. Next, 222-1 = 3 · 7· 23, and the fourth of the 

. required numbers is n = 22. Continuing in this way we find easily the fifth 
such number to be n = 32, for which 322 -1 = 3 · 11 · 31. Thus, the first 
five integers n for which n2-1 is a product of three different primes are 
14, 16, 20, 22, and 32. 

REMARK. From a certain conjecture of A. Schinzel concerning primes 
([22]) it follows that there are infinitely many such numbers n. More generally, 
for every s > 1 there exist infinitely many positive integers n such that 
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n2-1 is a product of s different primes. Obviously, for s = 2 the numbers 
n-l and n+ 1 form then a pair of twin primes. 

87. The five least positive integers n for which n2+ 1 is a product 
of three different primes are n = 13,17,21,23, and 27. We have 132+1 
= 2·5·17, 172+1 = 2·5·29, 212+1 = 2·13· 17, 232+1 = 2·5·53. 
For n = 112, we have 1122+1 = 5·13 ·193. 

REMARK. From a certain conjecture of A. Schinzel concerning primes 
([22]) it follows that for every s there exist infinitely many positive integers 
n such that n2+ 1 is a product of s different primes. 

88*. Suppose that each of the numbers n, n+l, and n+2, where 
n > 7, has only one prime divisor. None of these numbers is divisible by 6, 
which implies that n must be of the form 6k+l, 6k+2 or 6k+3, where k is 
a positive integer. 

If n = 6k+l, then the number 6k+2, being even and having only one 
prime divisor, must be of the form 2m ; now, since n > 7 which implies 
6k+2 = n+l > 8, the number m must be > 3. The number n+2 = 6k+3 
is divisible by 3, and if it has only one prime divisor, it must be of the form 
3'. Since 6k+3 = n+3 > 9, the number s must be > 2. Moreover, we have 
3'-2"' = I; this equation, however, has only two integer solutions, namely 
s = m = I and s = 2, m = 3 (see Problem 185). 

If n = 6k+2, then n = 2"' and n+1 = 6k+3 = 3' where m > 2 (since 
n > 6). We get 3s_2m = I, which is impossible for m > 3. 

Finally, if n = 6k+3, then n = 3', n+1 = 2"' and in view of n > 7 we 
get s ~ 2, m > 3, while the equation 2m - 3" = 1 has only one integer solu­
tion, namely m = 2, s = 1 (see Problem 184). 

Thus, the assumption that for integer n > 7 none of the numbers n, n+ 1, 
and n+2 has more than one prime divisor led to a contradiction. On the 
other hand, for n = 7 we have n+ I = 23, n+2 = 32, and each of the numbers 
n, n+l, and n+2 has only one prime divisor. 

89. n = 33 (n = 3·11, n+1 = 2·17, n+2 = 5·7), 
n = 85 (n = 5'17, n+l = 2·43, n+2 = 3·29), 
n = 93 (n = 3·31, n+l = 2'47, n+2 = 5·19), 
n = 141 (n = 3'47, n+l = 2·71, n+2 = 11·13), 
n = 201 (n = 3·67, n+l = 2·101, n+2 = 7·29). 

There are no four consecutive positive integers such that each of them is 
a product of two different primes since out of each four consecutive numbers 
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one must be divisible by 4. An example of four consecutive positive integers 
such that each of them has exactly two different prime divisors are numbers 
33 = 3'11, 34 = 2·17, 35 = 5·7, 36 = 22'32. 

REMARK. We cannot prove that there exist infinitely many positive in­
tegers n such that each of the numbers n, n+ I, and n+2 is a p~oduct of two 
different primes; this follows from a certain conjecture of A. Schinzel con­
cerning primes. See [22, p. 197, consequence C7]. 

90. Suppose that there exist infinitely many positive integers n such that 
both nand n+ I have only one prime divisor. We can assume n > I, and 
since one of the numbers nand n+ 1 is even and the other odd, we must 
have for some odd prime p the relation pk_2m = ±I where k and mare 
positive integers. Thus we get pk = 2m±l. Since a Mersenne number> 1 
cannot be equal to a power with exponent> 1 of any prime (see [37, p. 335, 
theorem 2]), in the case pk = 2m-I we must have k = I, and 2m-l = p is 
a Mersenne prime number. 

On the other hand, if pk = 2m+ I, then either k = I, in which case p 
= 2m + I is either equal to 3 or (if m > 1) is a Fermat prime, or else we 
have k > 1 in which case we get 2m = pk_1 = (p-I) (pk-l+pk-2+ ... +1). 
Since the left-hand side is even, the number k must be even; thus k = 2/, 
where 1 is a positive integer, and we have 2m = (pi-I) (p'+I). Therefore 
the numbers pl-I and p' + 1 are powers of 2 which differ by 2, which implies 
that pl_1 = 2, pl+1 = 4, hence pi = 3, and p = 3, 2m = 2·4 = 8, and m 
= 3, which yields 32 = 23 + I. 

We proved, therefore that if for n > 8 the numbers nand n+ 1 have one 
prime divisor each, then either n is a Mersenne prime or n+ I is a Fermat 
prime. 

Conversely, if Mm = 2m-I is a Mersenne prime, then the numbers Mm 

and Mm+1 = 2m have one prime divisor each. If Fk = 22k+l is a Fermat 

prime, then each of the numbers Fk-I = 22k ~nd Fk has one prime divisor 
each, which completes the proof of our theorem. See [26, p. 209]. 

REMARK. Up to date we know only 29 positive integers n such that n 
and n+ 1 have one prime divisor each. The least five are n = 2, 3, 4, 7, 8, 
and the largest of them is n = 211213_1. 

91. We have 22_1 = 3, 24-1 = 3·5 and 22k_1 = (2k_l) (2k+I). If 
for n = 2k > 4 the number 22k-l were equal to the product of two primes, 
~hen the numbers 2k -1 and 2k + 1 would have to be primes. Since these 
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numbers are consecutive odd numbers, we must have 2k-l ~ 5, hence k ~ 2. 
In view of k > 1, we must have k = 2, contrary to the assumption that 
k > 2. Therefore the numbers 2n-l are, for n even and > 4, equal to the 
product of at least three natural numbers. 

For odd n, we have 23-1 = 7, 25-1 = 31, 27-1 :J:: 127, 29-1 = 7'73, 
211-1 = 23·89, 213-1 = 8191, which is a prime, 215_1 = 7·31·151, the 
numbers 217_1 and 219_1 are primes, and 221_1 = 7 ·127· 337, while 223_1 
is already > 106

• Thus, all positive integers of the form 2n-l which are 
< 106 and which are equal to the product of two primes are 24-1 = 3·5, 
29-1 =-7·73 and 211_1 = 23·89. 

REMARK. The Mersenne numbers exceeding million which are known to be 
the product of two different primes are numbers M,. = 2n-l for n = 23, 37, 
49, 67, and 101. We do not know whether there are infinitely many such 
numbers. 

92. Since k ~ 3, we have PIP2 ... Pk ~ PIP2P3 = 2· 3 · 5 > 6, and in view' 
of Problem 47, we have PIP2 ... Pk = a+b where a and bare> 1 and rel­
atively prime, hence also prime with respect to the product PIP2 ... Pk. Since 
a and bare> 1, they have different prime divisors; let pia, qlb, and suppose 
that P < q. Since (P,PIP2 .•• Pk) = 1, we have p ~ Pk+l, and in view of 
q > p, also q ~ Pk+2' Therefore p+q ~ a+b and we have Pk+l +Pk+2 ~ 
~ PIP2 ... Pk, which was to be proved. 

93. Let m denote an arbitrary integer > 3, and let n be an integer such, 
that n > PIP2 ... Pm. Then there exists an integer k ~ m ~ 4 such that 

PIP2 ... p" ~ n < PIP2 ... PkPk+l · (1) 

If we had q,. ~ Pk+l + 1 > Pk+l, then in view of the definition of the number 
q,., each of the numbers PI, P2, ... , Pk+l would be a divisor of n, hence n 
?J:. PIP2 .•. Pk+l contrary to (1). 

We have therefore qn < Pk+l + 1 < Pk+Pk+l and, in view of k ~ 4 arid 
Problem 92, we get q,. ~ PIP2 ... Pk-l which gives, using (1), the relation 

qn 1 1 1 
-<-~-~-. 
n Pk k m 

We proved that for arbitrary m > 3 for n > PIP2 ... Pm we have qnln < 11m 
which shows that the ratio qnln tends to zero as n tends to infinity, which 
was to be shown. 

94. Let n be an integer > 4. We have either n = 2k where k > 2 or 
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n = 2k+l where k > 1. If n = 2k, where k > 2, then by Chebyshev's 
theorem there exists a prime p such that k < p < 2k, and we have p > 2 
since p > k > 2. Thus n = 2k < 2p < 4k = 2n, and in view of p > 2, the 
number 2p is a product of two different primes, and n < 2p < 2n. If n 
= 2k+ 1 where k ~ 2, then by Chebyshev's theorem there exists a prime p 
such that k < P < 2k, hence 3 ~ k+l ~p < 2k and n ~ 2k+l < 2k+ 
+2 ~ 2p < 4k < 4k+2 = 2n, and again we have n < 2p < 2n, while 2p is 
a product of two different primes. 

Let now n be an integer > 15. If n = 16, 17, ... , 29, then the number 30 
= 2· 3· 5 lies between nand 2n. We can therefore assume that n ~ 30. We 
have then n = 6k+r, where k is an integer ~ 5, and r is the remainder 
obtained from dividing n by 6, i.e. r satisfies the inequality 0 ~ r ~ 5. By 
Chebyshev's theorem, there exists a prime p such that k < p < 2k, hence 
p > 5 and k+l ~p < 2k. It follows that n = 6k+r < 6(k+l) ~ 2·3·p 
< 12k ~ 2n, hence n < 2· 3·p < 2n, and 2· 3·p is a product of three dif­
ferent primes. 

95. Let Pk denote the kth consecutive prime, and let s be an arbitrary in­
teger > 1. Let n > PIP2 ... PfP We shall show that between nand 2n there 
exi~ts at least one positive integer which is a product of s different primes. 

Let n = kpIP2 ... PS-l +r, where r is the remainder of dividing n by 
PIP2 ... Ps-l, hence, in view of n > PIP2 ... Ps, we have k > Ps and 0 ~ r 
< PIP2 ... Ps-l' By the Chebyshev theorem, there exists a prime P such 
that k < p < 2k, hence P > Ps and k+ 1 ~ p < 2k. It follows that n = 
PIP2 ... pS_lk+r < PIP2 ... PS-l(k+ 1) ~ P1P2 ... Ps-JP < 2PIP2 ... Ps-l k ~ 2n, 
hence n < PIP2 ... Ps-IP < 2n. The number PIP2 ... PS-IP is, in view of P > Ps, 
equal to the product of s different primes. 

REMARK. An elementary proof of the Chebyshev theorem is given in 
SierpiIiski [37, p. 137, theorem 8]. 

96. We easily check that the nth term of our sequence equals to 1(10"-7). 
We have 102 = 15 = -2 (mod 17), hence 108 = 16 == -1 (mod 17). Thus 
109 = -10 = 7 (mod 17), and since 1016 = 1 (mod 17), we get 1016k+9 

== 7 (mod 17) for k = 0, 1, 2, .... Thus 1711(1 016k+9 - 7), and since the num­
bers i(1016k+9-7) for k = 0,1,2, ... are ~ 1(109-7) > 17, they are all 
composite. 

As it was checked by A. M~kowski in the tables of primes, the numbers 
l(10"-7) are primes for n = 1, 2, 3, 4, 5, 6, 7, and 8. The least composite 
number of this form is therefore 1(109-7) = 333333331. 
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The problem arises whether there are other composite numbers of the 
considered form, besides those which we found. We have 102 = 5 (mod 19), 
hence 104 = 25 == 6 (mod 19) and 1012 = 63 = 7 (mod 19), and since 10ISk 

= 1 (mod 19), we get 1911(101sk+12-7) for k = 0, 1, 2, .... Thus, for in­
stance, the number 1(1012-7) is composite. We do not know, however, 
whether there are other primes of this form besides the ones which were 
given above, and if so, whether there are infi~itely many of them. 

97. The number n = 5, since 14+24 = 17, 24+34 = 97, 34+44 = 337, 
and 44+54 = 881 are primes, while 54+64 = 1921 = 17 ·113. 

98. All numbers of the form 106k+4+3, where k = 0, 1, 2, ... , are com­
posite since they are divisible by 7. In fact, we have 104 = 4 (mod 7), and by 
the Fermat theorem, 106 = 1 (mod 7). Thus, for integer k we have 106k+4+3 
= 104+3 = 4+3 = 0 (mod 7). 

REMARK. We do not know whether among numbers of the form 10"+3 
for n = 1, 2, ... there exist infinitely many primes. Such numbers are prime 
for n = 1 and n = 2, but are composite for n' 3 and n = 4 (since 1003 
= 17·59 and 71104+3). 

99. For integer n we have the identity 

(1) 

Since 5122 +1124n+2+1 and for integer n > 1 we have 22n+l_2n+l+1 
= 2~+1(2~-1)+1 ~ 23.3+1 = 25, it follows that at least one of the factors 
on the right-hand side is divisible by 5, and (for n > 1) upon division by 5 
it gives the ratio exceeding one. Therefore ! (24m +2 + 1) is, fot n = 1, 2, ... , 
equal to the product of two integers > 1, hence is composite .. 

100. Let m be an arbitrary integer> 1, and let n = m!+k, where k 
= 2, 3, ... , m. We have k < m!+k and klm!+k, hence. 2k-l < 2m!+k_l 
and 2k-112mt+k-l. Thus the numbers 2m!+k-l are ~omposite for k = 2, 3, ... 
... , m, hence for m-l consecutive terms of the sequence 2"-1. 

101. In order to obtain a prime from number 200, one hasto change its 
last digit into an odd number. We have, ho~ever, 31201, 71203, 51205, 31207, 
and 111209. Thus, by changing only one digit~ one cannot obtain a prime 
from number 200. 

REMARK. We do not know whether, by changing two digits, one can 
obtain a prime out of every number. On the other hand, it is easy to prove 
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that there exist infinitely many positive integers n such that no change of 
its (decimal) digit would result in a prime. For instance, for n = 2310k-210 
(where k = I, 2, ... ) we would have to change its last digit (that is, 0), (ob­
viously, to one of the numbers 1, 3, 7 or 9) while it is easy to see that 11 In + 1, 
3In+3, 71n+7 and 3In+9. 

102. Suppose that the theorem T is true. Theorem Tl is obviously true 
for n = 2 and n = 3. Assume that n is an integer > 3. If n is even, that is, 
n = 2k, then, in view of n > 3, we have k > 1 and by theorem T there 
exists a prime p such that k < p < 2k, hence p < n < 2p, and p divides 
only one factor in the product n! = 1 ... n. If n = 2k+l where (in view of 
n > 1), k is an integer > 1, then by theorem T there exists a prime p such 
that k < p < 2k < n, hence k+ 1 ~ p which implies 2k+ 1 < 2p and p < n 
< 2p. As before, p enters in the expansion of n! into primes with exponent 1. 
We showed, therefore, that T implies T I • 

Suppose now that Tl holds, and let n denote an integer> 1. By theorem 
T I , there exists a prime p which enters in the expansion of (2n)! into primes 
with the exponent 1. We have, therefore p ~ 2n < 2p (since if we had 2p 
~ 2n, then in the product (2n)! = 1·2· ... · (2n-l)2n we would have factors 
p and 2p, and p would enter with the exponent ~ 2 contrary to theorem T]). 
We have, therefore, n < p < 2n (since, in view ofn > 1, the equationp = 2n 
is impossible for primep). Thus, theorem T follows from theorem T1 , which 
shows that T and Tl are equivalent. 

103. In the expansion of II! into primes, the primes 7 and 11 enter ob­
viously with exponents 1. We may, therefore, assume that n > 11, which 
implies in the case n = 2k, as well as in the case n = 2k+l, that k > 5. By 
the theorem we are going to use, there exist two primes p, and q > p such 
that k < p < q < 2k. We obtain therefore at least p < q < n, and P ~ k+ 
+ 1, which implies 2q > 2p > n. Thus, both primes p and q enter in the ex­
pansion of n! with exponent 1. 

As regards the number 10!, only the prime 7 enters Its expansion with 
exponent 1. 

104. Let n be a given positive integer. By the theorem of Lejeune-Dirichlet 
on arithmetic progressions, there exists a prime of the form p = 6"k+ 
+2.3211

-
1
_1, where k is a positive integer. It follows (in view of 211

-
1 ~ n 

for positive integer n), that 3111p+ 1, and the number p+ 1 has more than n 
different positive integer divisors (for instance, 1, 3, 32

, ••• , 311
). On the other 

hand, by Euler's theorem we have 39'(211) = 1 (mod 2 ,), hence 2-"132:
a
-

1_1, 
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which implies that 2N/p_1 and the number p-I has more than n different 
positive integer divisors (for instance, 1,2,22, ••• ,2"). 

lOS. P= 131. We have herep-I =2·5·13andp+1 =22 .3.11. 

106*. Let n be a given positive integer, and let Pi denote the ith prime. 
By the Chinese remainder theorem, there exists a positive integer b 
such that b == I (mod P1PZ ... Pn), b == -I (mod Pn+1Pn+2 ... pz,,) and b 
== -2 (modpzn+1P2,,+z ... P3n)' 

We have (b,PIPZ ... P3n) = I, and by the theorem of Dirichlet, there exists 
a positive integer k such that the number P = PIPZ ... P3nk+b is a prime. 
We shall have then 

P1PZ ... Pnlp-I, Pn+1Pn+Z ... Pznlp+ I, and PZn+1P2n+2 ... hnlp+2, 

hence each of the numbers p-I, p+l, and p+2 has at least n different 
prime divisors: 

107. Let Pt denote the kth prime. For positive integer n, s and m, write 

aJ = P(j-ljll+lPej-ljll+2 ... pjn for j = 1,2, ... , m. 

We have (a" aJ) = I for I ~ i <j ~ m. and by the Chinese remainder 
theorem, there exists a positive integer x such that 

x== -j(modaj) for j= 1,2 •... ,m. 

Thus we have ajlx+j for j = 1,2, ... , m, which implies that each of the 
numbers x+j U= 1,2, ... , m) has at least m different prime divisors, each 
of these divisors appearing in at least sth power. Therefore the sequence 
x+ I, x+ 2, ... , x+m satisfies the required conditions. 

108. If for a positive integer m the number m! is divisible by a prime P, 
then P must divide at least one of the factors in the product m! = 1·2· .... m, 
hence we must have P ~ m. Thus, if m! is divisible by an integer n > m, 
then n must be composite. It follows that if for some integer n > I the num­
ber (n-l)! were divisible by n or n+2, then n or n+2 would be composite. 
Thus. the condition is necessary. 

Suppose now that for an odd n > I the number (n-I)! is not divisible by 
nor n+2. We shall show that the numbers nand n+2 are primes. It suffices 
to assume that n ~ 7 since forn = 3 and n = 5 the numbers nand n+2 are 
primes. If n were composite, we would have n = ab, where a and bare 
positive integers < n, hence a ~ n-l and b ~ n-1. Thus a and b would 
appear as factors in the product (n-l)! = 1·2· ... ·(n-l). In case a,# b, 
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we would have n = abICn-I)!, contrary to the assumption. In case a = b, 
we would have n = a2

, and since n is odd and > 1, a ~ 3, which implies 
n = a2 ~ 3a > 2a, hence 2a ~ n -1. Thus, a and 2a are different factors in 
the product (n-I)! = 1·2· ... ·(n-1), hence n = a21(n-1)! contrary to the 
assumption. Thus, n is a prime. 

If the number n+2 were composite, we would have n+2 = ab, where a 
and b are integers > 1. Since n is odd, the numbers a and b are odd, and 
therefore ~ 3. Next, since n ~ 7, we have a ~ 1(n+2) ~ len-I), and we 
have 2a ~ n-1. In a similar way we show that 2b ~ n-I. If a and bare 
different, then they appear as different factors in the product 1· 2· ... ·(n-I) 
= (n-I)!, which implies that n+2 = abl(n-I)!, contrary to the assumption. 
If a = b, then a and 2b are different factors in the product (n-I)!, hence 
n+212abl(n-I)!, again contrary to the assumption. 

The condition of the theorem is therefore sufficient. 

109. Let m be a given positive integer. We haye' (10m, 10m-I) = 1 and, 
by the theorem on arithmetic progression, there exists a positive integer k 
such that p = 10mk+ 10m-l is a prime. Obviously, the last m-l digits of 
this number are equal to 9, which implies that the sum of all digits of this 
number is m. 

REMARK. A. M~kowski noticed that the theorem remains valid for an 
arbitrary scale of notation g > I; for the proof, it suffices to replace in the 
above proof the number 10 by g. 

See Sierpinski [31], and Erdos [8]. 
We do not know if the sum of digits of a prime tends to infinity as the 

prime increases. 

110. Let m be a given positive integer. Since (10m+1
, 1) = 1, by the 

theorem on arithmetic progression, there exists a positive integer k such 
that p = lom+lk+l is a prime. The last m di.gits of the number p are, ob­
viously, m zeros and one. Thus, the prime p in decimal system has at least m 
digits equal to zero, which was to be proved. 

REMARK. We do not know whether for every positive integer m there 
exists a prime, which in decimal system has exactly m zeros. For m = 1, the 
least such prime is 101; for m = 2, it is 1009. 

111. If p is a prime, then the sum of all positive integer divisors of p4 
equals l+p+p2+p3+p4. If 1+p+p2+p3+p4 = n'Z where n is a positive in­
teger, then we have obviously (2p2+p)2 < (2n)2 < (2p2+p +2)2, and it 
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follows that we must have (2n)2 = (2p2+p+l)2. Thus, 4n2 = 4p4+ 
+4p3+5p2+2p+l, and since 4n2 = 4(p4+p3+p2+p+l), we have p2_2p_ 
-3 = 0, which implies p13, hence p = 3. If fact, for p = 3 we obtain 1 +3+ 
+32+33+34 = 112. Thus, there exists only one prime p, namely p = 3, 
satisfying the conditions of problem. 

112. A prime number p has only two positive integer divisors, namely 1 
and p. Thus, if the sum of all positive integer divisors of a prime p is equal 
to the sth power of a positive integer n, then I +p = nS, which implies 

p = nS-l = (n-I) (nS - 1+nS - 2+ ... +1). 

We have n > 1, and for s ~ 2 the first factor of the product on the right­
hand side is smaller than the second. We obtain therefore a representation 
of a prime p into a product of two positive integer factors, the first of which 
is smaller than the second. It follows that the first factor must be equal to 
1, hence n-l = 1, or n = 2, and p = 2S-1. Thus, for every integer s ~ 2 
there exists at most one prime satisfying the conditions of the problem, and 
such a prime exists if and only if the number 2" -1 is a prime. For s = 2, we 
obtain the number 3; for s = 3, the number 7; for s = 5, the number 31; 
and for s = 7, the number 127. For s = 4,6,8, and 10, there are no such 
primes since the numbers 24-1 = 3.5,26-1 = 32 .7,28-1 = 3·5·17 and 
210 -1 = 3·11·31 are composite. 

113. For primes p > 5, we have 

which implies 

p-l 
2<--<p-l 

2 

(P_l)2 = 2 P 2 1 (P-l)I(P-l)!. 

If for a prime p > 5 and some positive integer m we had 

then we would have 

and dividing both sides by p-l we would get 

p_llp .. -l+p .. -2+ ... +p+1. . 

(1) 

(2) 
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However, p-llpk-l, hence pk == 1 (modp-l) for k = 0, 1,2, ... , which 
implies that pm-l+pm-2+ ... +p+l == m (modp-I), and in view of (2), we 
findp-llm, hence m ~ p-l. We get, therefore, 

pm ~ p,-1 > (p_l),-l > (P-I)!, 

hence pm > (p-l)! + 1, contrary to (I). 

114. By the Liouville theorem (see Problem 113), if p is a prime> 5, 
then we cannot have (P-I)! + 1 = pm for positive integer m. The odd number 
(P-1)!+1 > 1 has therefore an odd prime divisor q #: p, and from 
ql(P-l)!+1 it follows that q > p-l, hence (in view of q #: p), we have 
q > p. Since p can be arbitrarily large, there exist infinitely many primes q 
such that for some p < q we have ql(P-l)!+ 1, which was to be proved. 

115* . We shall give the proof of A. Schinzel. Let a denote an arbitrary 
positive integer, and let k be an integer :F 1. Further, put k-l = 2sh, where 
2& is the highest power of 2 which divides k-l, and h is an odd number, 

positive or negative. Choose a positive integer m so 'that 22m > a-k, and let 

I denote an integer such that I ~ s, and I ~ m. If the number 22
' +k ~ 22m + 

+k > a were composite, we would have a composite number of the desired 

form, and > Q. Suppose then that the number p = 221 +k is a prime. In view 

of I ~ sand k-l = 2'h we get p-l = 211+k_1 = 2sh1, where hI is odd 
and > O. By the Euler theorem we have 2~hl) = 1 (mod hI), hence also (in 
view of p-I = 2&ht) 2S -HP(hl) == 2S (mod p-l). Since I ~ s, we get 21+9'(hl) 

= 2' (modp-l). By the Fermat theorem we obtain 

22/+q>(h1
) +k == 221 +k == 0 (mod p), 

and, in view of 21 + CP(hl) > 2' we get 

Thus, the number 221
+q>(h

1
) +k is composite and > a since p = 211 +k ~ 22m + 

+k > a, which completes the proof. This proof fails for k = 1 since we do 
not know if there exist infinitely many composite Fermat numbers. 

Let us note that the weaker version of the theorem, asserting that for every 

integer k there exists at least one integer n such that 22n +k is composite, has 
been obtained in 1943 by J. Reiner as a special case of a rather complicated 
theorem; see [16]. To obtain this weaker version from our theorem it suffices 
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to note that (for k = 1) the number 225+1 is composite, namely divisible 
by 641. 

116. For instance, all numbers k = 6t-l, where t = 1,2, ... , are ofthis 

form since for every positive integer n the number 22/1 gives the remainder 1 

upon dividing by 3, hence the number 22/1 +k = 22/1_ 1 +6t is divisible by 3 
and > 3, thus composite. 

117. (a) For positive integer n, the number 22/1_1 is divisible by 3, hence 
the number 22/1+1_2 = 2(22/1_1) is divisible by 6, and we have 22/1+1 = 6k+ 
+2 where k is a positive integer. It follows that 

222/1+1 +3 = (26)",22+3 == 22+3 == 0 (mod 7), 

and 7122211+1+3 for n = 1,2, .... Since 222/1+1+3 ~222 +3> 7, the numbers 

of the form 22211+1 +3 are composite for n = 1, 2, .... 

(b) for positive integer n, we have 24/1_1 = 16/1-1 == 0 (mod 5), which 
implies that 1012411+1-2. Therefore 2411+1 = lOk+2 where k is a positive 

integer and 22411+1 + 7 == (210)" . 22 + 7 == 22 + 7 == 0 (mod 11). Thus we have 

11122411+1 + 7, and since 22411+1+7 ~ 225 + 7 > 11, the numbers of the form 

22411+1 + 7 are all composite for n = I, 2, .... 

(c) For positive integer n, we have 26n == (26)( == 1 (mod 7), which implies 
712611-1 and 28126/1+2_22. Thus, 26/1+2 = 28k+4, where k is a positive integer. 

It follows that 226n+2 = (228)",24 == 16 (mod 29), that is, 291226n+2 +13, 

and since 226n+2 + 13 ~ 228 + 13 > 29, the numbers of the form 226n+2 + 13 
are composite for n = 1,2, .... 

(d) For positive integer n, we have (210)/1 == 1 (mod 11), which implies 
that 22121011+1_2 and 210/1+1 = 22k+2, where k is a positive integer. It 
follows that 221011 +1 = (222)". t~ == 4 (mod 23), and 2312210/1+1+19. Since 

221011+1 + 19 > 23 for all n = 1,2, ... , the numbers 221011+1+19 are all com­
posite. 

(e) For positive integer n, we have 26/1= (23l/l == (-ll/l == 1 (mod 9), 
hence 9126/1-1, and 36126/1+2_22, which implies that 26/1+2 = 36k+4 for 

a positive integer k. It follows that 22611+2 = (236)" • 16 == (mod 37), hence 

37122611+2 +21, and since 226n+2+21 > 37, for n = 1,2, ... , the numbers 
226n+2 +21 are composite for n = 1,2, .... 
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REMARK. We know of no integer k such that we could prove that among 

the numbers 22n +k (n = 1, 2, ... ) there exist infinitely many primes. 

118*. As we know, the numbers Fn = 22~+1 are primes for n = 0, 1, 2, 
3,4, while the number Fs =,641p, where p is a prime> 216+1 = F4 • We 
have also (p, 232 _1) = 1 since plFs implies (p, Fs-2) = 1. By the Chinese 
remainder theorem, there exist infinitely many positive integers k satisfying 
the congruences 

k = 1 (mod (232-1)641) and k = -1 (modp). (1) 

We shall show that if k is an integer> p, satisfying congruences (1), then 
the numbers k · 2n+ 1 (n = 1, 2, ... ) are all composite. 

The number n can be represented in the form n = 2m(2t+l), where m 
and t are integers ~ o. Suppose first that m is one of the numbers 0,.1, 
2, 3, or 4. In view of (1) we shall have 

(2) 

and since for m = 0, 1,2,3,4 we have FmI232-1 and FmI22"'(2~+1), we 
obtain, in view of (2), that Fm Ik · 2n + 1. Since k · 2'''+1 > p > F4 (b~cause 
k > p), the number k · 2n+ I' is composite. 

If m = 5, then by (1) we get k· 2n+l = 22s(2t+l)+I(mod 641) and since 

641IFsI22s(2t+l)+1 we get 6411k· 2n+l and the number k· 2"+1 > p > 641 
is composite. 

It remains to consider the case m ~ 6. In this case we have 261n, hence 
n = 26h where h is a positive ,integer, and in view of (1) we have k · 2n+ 1 

= _226h+ 1 (mod p); since pl2
2S + 11226 -11226h-l, we obtain plk · 2"+ 1. In 

view of the fact that k · 2n + I, > k > p, the number k · 2"+1 is composite. 
Thus, the numbers k· 2"+1 are composite for n = 1, 2, 3, ... , which 

was to be proved. (See [30].) 

. REMARK. We do not know the smallest number k for which all numbers 
k · 2n+ 1 (n = 1, 2, ... ) are composite. 

119*. Let us first note that in the proof of theorem in Problem 118* 
we could add to congruences (1) the congruence k = 1 (mod 2), and this 
would result in the following theorem T: There exist infinitely many odd 
numbers k > p such that each of the numbers k· 2' + 1 (I = 1, 2, ... ) is 
divisible by at least one of the six primes 

(3) 
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(where p > F4)' Let us denote by Q the product of the six numbers (3). 
Since these numbers are odd, we have 2~Q) == 1 (mod Q) and consequently, 
2~Q) == 1 (mod q), where q denotes any of the numbers (3). Let n be an 
arbitrary positive integer. By theorem T (for I = n(lP(Q)-I)), the number 

k . 2/1(tp(QJ-l) + 1 is divisible by at least one of the numbers (3), say by q. 
We shall have therefore k· 2"(tp(Q)-1) +1 == 0 (mod q) hence, mUltiplying by 
2/1 we obtain k· 2/1tp(QJ+2/1 == 0 (mod q), and since 2~Q) == 1 (mod q) and 
consequently, 2/1~Q) == 1 (mod q), we get k+2" == 0 (mod q); since k > p, 
we 'get k > q and k+2/1 > q; thus, the number k+2/1 is composite, and we 
showed that there exist infinitely many odd numbers k such that all numbers 
2'+k, n = 1,2, ... , are composite. 

120. Let k = 2m where m is a positive integer, and let m ~ 2'h where 

s is an integer ~ 0, and h is odd. We have k. 22/1+1 = 22'(2/1-'+hJ+l, 
and for n > s the number 2/1-'+h is an odd positive integer. Thus we get 

22' + 11k· 22:+1, and since n > s, we have k· 22" + 1 > 22'+ 1 and the 

numbers k· 22/1+1 are composite for n > s (they are divisible by 22'+1). 
In particular, if k is a power of 2 with an odd exponent, then all numbers 

k· 221\+1 for n = 1,2, ... are divisible by 3. 

121. For k = 1, n = 5 since the numbers 22" + 1 are prime for n = 1, 2, 

3, 4 while 6411225+1 and 225+1 is composite. 
For k = 2, n = 1 since 312· 22+L 

For k = 3, n = 2 since the number 3.22+1 is prime, while 713.222 +1 
=49. 

For k = 4, n = 2 since 4.22 +1 = 17 isa prime, while 514.222+1. . 
For k = 5, n = 1 since 315.22+1. 
For k = 6, n = 1 since 516.22 +1. 

For k = 7, n = 3 since 7.22+1 = 29 and 7.222+1 = 113 are primes, 

while 1117 . 223 + 1. 
For k = 8, n = 1 since 318.22+1. 

For k = 9, n = 2 since 9.22+1 = 37 is prime, while 519.222 +1. 

For k = 10, n = 2 since 10.22+1 = 41 is a prime, while 7110.222+1. 

122. It follows from the solution of Problem 121 that the numbers 
k = 1, 3, 4, 7, 9, and 10 do not satisfy the requirements. The number 6 

does not satisfy the requirement either since 6· 222 + 1 = 97 is a prime. 
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On the other hand, the numbers 2· 222 + 1, 5· 222 + 1, and 8· 22" + 1 are 
all composite for n = 1, 2, ... since they are divisible by 3 and exceed 3. 

REMARK. If k = 3t+ 2, where t = 0, 1, 2, ... , then the numbers k · 22"+1 
(n = 1, 2, ... ) are all divisible by 3 and composite. 

123. The numbers 1(22"+1 +2211 + 1) are positive integers for n = 1, 2, .... 
lfn is even, then 2" = 1 (mod 3), hence 211 = 3k+ 1 for some positive integer k, 
and 2211 = (23)k • 2 = 8k • 2 == 2 (mod 7), which implies that 2211+1 = (22")2 
== 4 (mod 7). It follows that 2211

+
1 
+2211 +1 = 4+2+1 = 0 (mod 7). If 11 is 

odd, then 211 = 2 (mod 3), hence 211 = 3k+2 where k is an integer ~ o. 
It follows that 2211 = 23

k
+

2 
= 8k 

• 4 == 4 (mod 7), while 22J1+1 = (2JII)2 = 42 

= 2 (mod 7). Thus, 22J1
+

1 
+22J1 +1 = 2+4+1 == 0 (mod 7). Consequently, the 

numbers 1(22"+ 
1 + 22

" + 1) are divisible by 7 for positive integer n, .and since 

for n > 1 they are ~ 1(223 + 222 + 1) = 91 > 7, they are composite for 
n = 2, 3, .... 

Compare with the theorem of Michael Stiffel from the XVllth century; 
see Elemente der Mathematik, 18 (1963), p. 18. 

124. For instance, all numbers of our sequence for n of the form 28k+ 1 
(k = 1, 2, 3, ... ) have the desired property. 

In fact, by the Fermat theorem, we have 228 == 1 (mod 29), which implies, 
for k = 1, 2, ... , that 22.28k == 1 (mod 29), Thus, for n = 28k+ 1 
(k = 1,2, ... ) we have (22n+l)2+22 = 25+4 = 0 (mod 29), which means 
that 291 (22n+ 1)2+22. For k = 1,2, ... we have obviously n = 28k+l 
~ 29, which" implies (22n+l)2+22 > 29. Thus, all numbers of the form 
(22J1+ 1)2+22 for n = 28k+ 1, k = 1, 2, ... , are composite. 

125*. If a is odd and > 1, the numbers tin + 1, being even and > 1, 
are eomposite (for n = 1, 2, ... ); thus, we may assume that a is even. We 

5 4" 3 
have 641122 + 1 , hence also 641142 + 1 and 6411162 + 1 . Next, we easily check 

that 171222 +1, 17142+1, 171623+1, 171822+1, 1711()23+1, 1711223+1, 

1711423+1,1712023 +1, ... ,1712223+1,1712423+1,1712622+1,1712823+1, 

171302+ 1, 1713222 + 1. 

For instance, to check that 1712823 +1 we start from the congruence 
28 = 11 (mod 17), which implies 282 = 121 = 2 (mod 17), which in tum 

yields 2823 == 222 = -1 (mod 17), and, consequently, 1712823 +1. 
In view of these formulas, we obtain immediately for k = 0, 1, 2, ... 
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171 (34k+2)22 +1, 171 (34k + 4)2 + 1, 171 (34k+6t +1, 

171(34k+8t+l, 171(34k+ 10)23 +1, 17/(34k+12)23 +1, 

171(34k+14)23 +1, 171 (34k+20?3 +1, 17/(34k+22)23 + 1, 

17/ (34k + 24)23 + 1 , 171 (34k+ 26)22 + 1, 171 (34k+28)23 +1, 

171 (34k + 30)2+ 1, 171 (34k+32)Z2 +1. 

Using the fact that 51182+ 1 and 131342+ 1, we deduce that for every 
positive integer a ~ 100, except perhaps numbers SO, 52, 68, 84, and 86, 

there exists a positive integer n ~ 5 such that al" + 1 is composite. On the 

other hand, 502+1 = 2501 = 41· 61, 51522+1,51682+1,25718426+1 and 
131862+ 1. Thus, for every positive integer a ~ 100 there exists a positive 

integer n ~ 6 such that a2n + 1 is composite. 

REMARK. A. Schinzel proved that for every positive integer a such that 

1 < a < 227 there exists a positive integer n such that aln + 1 is composite; 
see [20]. 

We do not know whether for every integer a > 1 there exists a positive 

integer n such that aln + 1 is composite; we cannot prove it, for instance, 

for the number a = 22194S• On the other hand, we can prove that for n = 221944 

the number al+ 1 is composite, and we even know its least prime divisor, 

namely 5 . 221947+1; see Sierpinski [37, p. 349, Section 6]. 

126. Each prime> 5 is obviously of the form 30k+r where k is an 
integer ~ 0, and r is one of the numbers 1,7, 11, 13, 17, 19,23 or 29. Since 
there exist infinitely many primes, for at least one of these eight values r 
there exist infinitely many primes of the form 30k+r, where k is a positive 
integer. It is, therefore, sufficient to consider the following eight cases: 

(1) There exist infinitely many primes of the form 30k+ 1. Let p be 
one of them, and let n = 7+19+p; this will be an odd composite number 
since n = 7+19+30k+l = 3(10k+9). Thus, the number n is a sum of 
three different primes (since p = 30k+ 1 is different from 7 and 19), and 
n is not a sum of two primes since then one of them would have to be even, 
hence equa12, and we would have n = 30k + 27 = q + 2, that is, q = 5(6k + 5), 
whlch is impossible. 
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(2) There exists infinitely many primes of the form 30k+ 7. Let p > 7 
be one of these primes, and let n = 7 + 13 + p; n is odd and composite since 
n = 30k+27 = 3(IOk+9) and, in view of p ~ 37, n will be equal to a sum 
of three different primes. Since n-2 = 30k+25 = 5(6k+S), we see that n 
satisfies the required conditions. 

(3) There exist infinitely many primes of the form 30k+l1. Letp > II 
be one of them, and let n = II + 13 + p; thus, n will be odd and equal to 
a sum of three different primes. Since n = 30k+35 == S(6k+7) and n-2 
= 3(30k+l1), the number n satisfies the required conditions. 

(4) There exist infinitely many primes of the form 30k+13. Let p be 
one of them, and let n = 3 + 11 + p; thus, n will be odd and will equal to 
the sum of three different primes. Since n = 3(IOk+9) and n-2 = 5(6k+5), 
the number n satisfies the required conditions. 

(5) There exist infinitely many primes of the form p = 30k+ 17. Let p 
be one of them, and put n = 3+7+p. Since n = 3(10k+9) and n-2 
= 5(6k+5), the number n satisfies the required conditions. 

(6) There exist infinitely many primes of the form 30k + 19. Let p be 
one of them, and let n = 3+5+p. As before, we deduce that n satisfies 
the required conditions. 

(7) There exist infinitely many primes of the form 30k+23~ Let 
p be one of them, and let n = 5+7+p. Since n = S(6k+7) and n--:-.2 
= 3(10k+l1), the number n satisfies the required conditions. 

(8) Ther~ exist infinitely many primes of the form 30k+29. Let 
p be one of them, and let n = S+31+p. Since n = S(6k+13) and ~~2 
= 3(lOk+21)" the number n satisfies the required conditions. 

The proof is complete. See [28]. 

127. If J(x) were a polynomial with integer coefficients such that J(I) 
= 2, /(2) = 3, /(3) = 5, then g(x) = f(x)-2 would be a polynomial with 
integer coefficients such thatg(l) = 0, and we would have g(x) = (x-l)h(x), 
where hex) is a polynomial with integer coefficients. Since /(3) = 5, we have 
g(3) = f(3)- 2 = 3, which gives 2h(3) = 3; this, however, is impossible 
since h(3) is an integer. 

Now let m be an integer> 1, and let 

() 
(x-I) (x-2) ... (x-m) 

gk x = -------­
x-k 

for k = 1, 2, ... , m. 
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Obviously, gk(X) is a polynomial with integer coefficients of the degree m-I , 
and such that gk(X) = 0 for every positive integer x ~ m different from k, 
while gk(k) will be an integer :F O. Let Jk(x) = gk (X)/gk (k) ; obviously, Jk(x) 
will be a polynomial of the order m-I with rational coefficients such that 
[k(X) = 0 for every positive integer x ~ m different from k, whileJk(k) = 1. 

Put 

f(x) = pJ/;(x)+p,}i(x)+···+Pm[m(X); 

clearly, this polynomial will satisfy the required conditions:f(x) has rational 
coefficients and f(k) = Pk for k = 1,2, ... , m. 

128*. Proof due to J. Browkin. Let n be a given positive integer. For 
positive integer k ~ n, define by induction the positive integers tk as follows: 
let to = 1. Suppose that we have already defined for a positive integer 
k ~ n the number tk-1. According to the particular case of the theorem 
of Lejeune-Dirichlet, there exists a positive integer tk such that the number 
qk = (k-l)!(n-k)!tk+ 1 is a prime, and, in case k > I, it is greater than 
the number (k-2)!(n-k+I)!tk_1+1 (where we put O! = I). Thus, the 
numbers ql> q2, ... , qn will be primes, and q1 < q2 < ... < qn. Let 

n 

f(x) = 1+ L (-I);-j (x-l)(x-2): .. (x-n) tJ. 
j-1 X-] 

Clearly, f(x) will be a polynomial of the order ~ n-I with integer coeffi­
cients, and we easily check that 

f(k) = 1+(k-l)!(n-k)!tk = qk. 

129. As an example we may take, for instance~ the polynomial 

where Pk denotes kth prime. 
We shall have heref(Pk) = Pk for k = 1,2, ... , m. 

130. If the constant term of the polynomial f(x) with integer coefficients 
were equal 0, then we would have f(O) = 0 and the congruence f(x) 
~ 0 (modp) would be solvable for every modulus p. Thus, suppose that the 
constant term of the polynomial f(x) equals ao and is not zero. Since f(aox) 
= aoJi.(x), where fi(x) is a polynomial with integer coefficients with the 
constant term equal to 1, it suffices to prove our theorem only for such 
polynomials. 
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Let n be a given positive integer. We have obviously n!lJi(n!)-I, hence 
f{n!) = n! k + 1, where k is an integer. The absolute value of the polynomial 
hex) (which is of the order> 0) increases over all bounds with x; for suffi­
ciently large n we shall have therefore If(n!)1 = In!k+ 11 > 1, and the number 
n!k+l has a prime divisor p. In view of pln!k+l we must have p > n, 
and since pflt(n!), the congruence hex) = 0 (modp) is solvable for a prime 
modulus p > n. Since n is arbitrary, we deduce that the congruence fi(x) 
== 0 (modp), and also the congruence f(x) = 0 (modp) is solvable for in­
finitely many primes p. 

131. There is only one such number, namely k = 1. Then the sequence 

k+l, k+2, ... , k+l0 (1) 

contains five primes: 2, 3, 5, 7, and 11. For k = 0 and k = 2,' sequence 
(1) contains four primes. If k ~ 3, then sequence (1) does not contain 
number 3; as we know, out of each three consecutive odd numbers, one must 
be divisible by 3. It follows that sequence (1) contains at least one odd 
composite number. Besides that, sequence (1) contains five even numbers, 
hence (for k ~ 2) these numbers are composite. Thus, for k ~ 3, sequence 
(1) contains at least 6 composite numbers, and the numbers of primes cannot 
exceed 4. 

REMARK. Sequence (1) contains four primes for k = 0, 2, 10, 100, 190, 
820. We do not know whether there exist infinitely many such numbers k. 
From a certain conjecture of A. Schinzel concerning primes ([22]) it follows 
that the answer is positive. 

132. There exists only one such number, namely k = 1. For this value 
the sequence 

k+l, k+2, ... , k+:lOO (1) 

contains 26 primes. For k = 0, 2, 3 or 4, sequence (1) contains 25 primes. 
Thus, we may assume that k ~ 5. Sequence (I) contains 50 even numbers, 
which for k > 1 are all composite. Next, it contains also SO successive 
odd numbers, and since every three consecutive odd numbers contain one 
divisible by 3, sequence (I) contains at least 16 numbers divisible by 3, 
which are all composite for k > 2. 

Let us compute now the number of terms of sequence (1) which are di­
visible by 5, and neither by 3 or 2. All such numbers will be of the form 
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30t+r where t is an integer ~ 0, and r is one of the numbers 5, 25. Let us 
arrange these numbers in the infinite increasing sequence 

5, 25, 35, 55, 65, 85, 95, 115, 125, 145, 155, 175, 185, ... (2) 

and let u,. denote the nth term of this sequence. We easily check that U,,+6-

-U,. < 100 for n = 1, 2, .... Let u,. denote the last term of this sequence 
which does not exceed k. We shall have u,. ~ k < U,.+l < U,,+6 < Un+ 100 
~ k+l00, which shows that sequence (1) contains at least 6 terms of se­
quence (2), and, consequently, at least 6 terms divisible by 5, but not divi­
sible by 2 or 3, hence composite for k ~ 5. 

Finally, let us compute the number of terms of sequence (1) which are 
divisible by 7, but not by 2, 3 or S. These will be the terms of the form 210t+,­
where t is an integer ~ 0, and r is one of the numbers 7, 49, 77, 91, 119, 
133, 161,203. Let us arrange these numbers in the infinite increasing se­
quence 

7,49,77,91,119,133,161,203,217,259,287, ... (3) 

and let '0,. denote the nth term of this sequence. We easily check that'lJII+3-

-v,. < 100 for n = 1, 2, .... Let 'V,. denote the last term' of the sequence 
'V1, V2, ••• which does not exceed k. We shall have v,. ~ k < V,.+l < V II+3 

< '0,.+100 ~ k+l00, which shows that sequence (1) contains at least 3 
terms of sequence (3), that is, at least three numbers divisible by 7, but 
not divisible by 2, 3 or 5. For k ~ 7, all these numbers will be composite. 

It follows that for k ~ 7, sequence (1) contains at least 50+ 16+6+ 
+3 = 75 composite numbers, hence at most 25 primes. For k == 5 and 
k = 6, sequence (1) contains the composite numbers '02, V3, and 'lJ4. Thus, 
for k > 1, sequence (1) contains at most 25 primes. 

133. There are only 6 such sequences, namely those starting from 1, 3, 
4, 5, 10, and II. The proof follows from the following lemma: 

For k > 11, among the numbers k, k+l, ... , k+99 there is at least 76 
numbers divisible by either 2, 3, 5, 7 or 11. 

The proof of the lemma can be obtained if we write in the form of an 
increasing infinite sequence all numbers divisible by 2, 3, 5, 7 or 11. 
This sequence has the property that if a number r appears in it, then so 
does the number r+2310, and conversely (since 2310 = 2· 3 · 5· 7· 11). 
Thus, if r1, r2, ... , rs denote all positive integers ~ 2310 divisible by 2, 3, 
5, 7 or 11, then all such numbers are contained in s arithmetic progressions 
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2310t+rj, where i = 1, ... , sand t = 0, 1, 2, .... Thus, it suffices to write 
down all positive integers ~ 2310+100 divisible by 2, 3, 5, 7 or 11, and check 
that in each hundred of the numbers k, k+ 1, ... , k+99 for 1 ~ k ~ 2310 
there is at least 76 numbers of this sequence. 

It would be more difficult to prove that there exists only a finite number 
of such positive integers k for which sequence (1) contains 24 primes. On 
the other hand, a certain conjecture concerning primes due to A. Schinzel 
([22]) implies that there exist infinitely many numbers k such that sequence 
(1) contains 23 primes. 

134. LEMMA. Out of every 21 consecutive positive integers, at least 14 
are divisible by one of the numbers 2, 3, or 5. 

PROOF. In every consecutive 21 positive integers we have at least 10 divi­
sible by 2, and at least 10 consecutive odd numbers, out of which at least 3 
are divisible by 3. Thus, it suffices to show that in every sequence of 21 
consecutive positive integers there is at least one which is divisible by 5 but 
not by 2 or 3. Let r denote the remainder of the division of x by 30; we 
have then x = 30t+r, where t is an integer ~ 0, and 0 ~ r < 30. If r ~ 5, 
then'x ~ 30t+5 ~ x+20 and the number 30t+5 is a term of the sequence 
x, x+ 1, ... , x+ 20 which is divisible by 5, but not by 2 or 3. If 5 < r ~ 25, 
then x ~ 30t+25 < x+20 and the number 30t+25 is a term of the sequence 
x, i+ 1, ... , x+ 20 which is divisible by 5 but not by 2 or 3. Finally, if 
25 ~ r < 30, then x < 30t+35 < x+20, and the number 30t+35 is a term 
of the sequence x, x+ 1, ... , x+20 which is divisible by 5, but, not by 2 
or 3. This completes the proof of the lemma. 

0ll;r lem,rna implies immediately that' out of each 21 consecutive positive 
integers exceeding 5 we have at least 14 composite numbers, hence at most 
7 primes. For x = 1,2, and 3, the sequence x, x+l, ... ,'x+20 contains 
8 primes each, while for x = 4 and x = 5 this sequence contains 7 primes. 
Thus, the sequence x, x+ 1, ... , x+20 contains 8 primes for x = 1, 2, 
and 3. 

135. There is only one such number, namelyp = 5. We easily find 
that, the required property does not hold for p < 5. For p = 5, we obtain 
primes 5, 7, 11, 13, 17, and 19. If p > 5 and p = 5k with some positive 
integer k, then p is composite. If p = 5k+l, then p+14 is divisible by 5, 
h~nce ,composite. If p = 5k+2, then p+8 is divisible by 5, hence composite. 
If p = 5k+3, then 5/p+12 and p+12 is composite. Finally, if p = 5k+4, 
then 5/p+6, and p+6 is composite. 
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136. We easily find that for integer k > 1 such pairs are m = 2k_2 
and n = 2k(2k_2), for which m+1 = 2k-l and n+l = (2k_l)2. 

REMAR~. P. Erdos posed a problem of existence of other such pairs; 
see [9, p. 126, problem 60]. A. M~kowski has found a pair: m = 75 = 3.52, 

n = 1215 = 5.35, for which m+l = 22 .19, n+l = 26 .19. 

v. DIOPHANTINE EQUATIONS 

137. The identity 

3(55a+84b)Z-7(36a+55b)2 = 3a2-7b2 

implies that if the integers x = a and y = b satisfy the equation 3r-7y2+ 
+ 1 = 0, then the same equation is satisfied by larger integers x = 55a+ 
+84b and y = 36a+55b. Since the numbers x = 3 and y = 2 satisfy this 
equation, it has infinitely many solutions in positive integers x, y. 

138. Since x(2.x2+y) = 7, the number x must be an integer divisor 
of number 7, that is, must be equal to one of the numbers 1, 7, -1, - 7. 
Substituting there values to the equation, we obtain for y the values 5, -97, 
-9, -99. Thus, our equation has four solutions in integers, namely (1, 5), 
(7, -97), (-1, -9), (-7, -99). 

Now let n denote an arbitrary integer > 5, and let x = 7/n, y = n­
-98/n1.. Since n > 5, we have n ~ 6, and x, y will be rational and pos­
itive; we easily check that they satisfy the equation 2x3+xy-7 = O. 

139. We easily see that if x and y satisfy the equation 

(x-I)2+(x+l)2 = y2+1, (1) 

then 

Thus, for every positive i;nteger solution x, y of equation (I), we obtain 
another solution 2y+3x, 3y+4x in larger integers; since this equation has 
a solution x = 2, y = 3, it has infinitely many solutions in positive integers. 

140. If for positive integers x and y we had x(x+l) = 4y(y+l), then 
we would also have 3 = [2(2y+l)]2-(2x+l)2 = (4y-2x+l)(4y+2x+3), 
hence the number 3 would be divisible by a positive integer 4y+2x+3 
exceeding 3, which is impossible. 
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On the other hand, we easily see that for integer n > 1 and for 

3n_31- n-2 
x= , 

4 

we have x(x+l) = 4y(y+l). For instance, for n = 2 we get x = 5/3, 
y = 2/3. Our equation has infinitely many rational solutions x, y. 

141 * . Proof due to A. Schinzel. Let p be a prime, and let n be a positive 
integer; suppose that positive integers x and y satisfy the equation x(x+l) 

= p2ny (y+l), Since x and x+l are relatively prime, we have either p2nlx 

or p2nlx+ 1, and hence in each case, x+ 1 ~ p2". However, our equation 
is equivalent to the equation 

Since the left-hand side, and the first factor on the right are both positive 
integers, the second factor on the right must also be a positive integer. It 
follows that p2n_l > 2x+l, hence p2n > 2(x+l), which, in view of the 
previously found relation x+ 1 ~ p2n, gives p2" > 2p2n, which is impossible. 

142. In view of the identity (X_2y)2_2(x-y)2 = -(r-2y2), it suffices 
to put t = x-2y, u = x-yo 

143. The proof follows immediately from the identity 

(m2+Dn2)2-D(2mn)2 = (m2-Dn2)2. 

It suffices to choose, for an arbitrary positive integer n, number m such 
that m2 > Dn2 and put 

x = m2+Dn2
, y = 2mn, Z = m2-Dn2

• 

144. If D is odd, then for integer k >..1 the number D+22k
-

2 is odd, 
and we have (D+22k- 2,2k

) = 1; we easily find that 

(D+22k- 2)2_D(2k)2 = (D_22k-2)2. 

We can put x = ID+22k- 21, y = 2k, Z = ID-22k
-
21. If D is even, then for 

every integer y > 1 we have (!Dy2+ 1, y) = 1, and 

(iDY2+1)2_Dy2 = (iDy2-1)2, 

and we can put x = ItDy2+11, Z = IlDy 2-1/. 



SOLUTIONS 75 

145. Our equation is equivalent to the equation 225+1 .= (x+ I)(y+ 1). 

Since the Fermat number Fs = 225 + 1 is equal to the product of two primes, 
the smaller being 641, we have only one solution of our equation in positive 
integers x, and y ~ x, where x = 640. 

REMARK. It is interesting that we know of some equations of the second 
order with two unknowns that they have only one solution x and y ~ x, 
but (for purely technical reasons) we cannot find this solution. Such is, for 
instance, the case of equation xy+x+y+2 = 2137. On the other hand, 

we do not know if the equation xy+x+y = 2217 has a solution in positive 
integers x, y. 

146. If y is even, then r = 3-8z+2y 2 gives the remainder 3 upon 
division by 8, which is impossible. If y is odd, then y = 2k+ 1 where k 
is an integer, then r = 3-8z+8k2+2, which gives the remainder 5 upon 
division by 8, which again is impossible since the square of every odd number 
gives the remainder 1 upon division by 8. 

147. Let x be an arbitrary positive integer. We easily check the identity 
x(x+l)(x+2)(x+3)+1 = (r+3x+l)2, which, in view of our equation, 
implies y = r+3x+ I. Thus, all solutions in positive integers x, y of our 
equations are: x-an arbitrary positive integer, and y = x2+3x+I. 

148. The equation r+y2+z2+x+y +z = 1 has no rational solutions 
since we easily see that it is equivalent to the equation 

and the number 7 would have to be a sum of three squares of rational 
numbers. We shall show that it is impossible. In fact, if 7 were a sum of 
squares of three rational numbers, then, after muliplying by the common 
denominator, we would have 

(1) 

where Q, b, and c are integers, and m is a positive integer. Then, there would 
exist the least positive integer m for which (1) has a solution in the 
integers a, b, c. If m were even, m = 2n, where n is a positive integer, then 
all three numbers Q, b, c would be even, hence a = 2al, b = 2b1 , C = 2CI 
where a1, bI , Cl are integers. Putting this into (1) we get, in view of m 2 = 4n2 

a~+b~+ci = 7n2 
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where n is a positive integer < m, contrary to the assumption that m is the 
least positive integer for which 7m2 is a sum of squares of three integers. 

Thus, m is odd, and m2 gives the remainder 1 upon division by 8. Thus, 
the right-hand side of (1) gives the remainder 7 upon division by 8; we know, 
however, that no such number can be a sum of three squares of integers. 

149. If positive integers x, y, z would -satisfy the equation 4xy-x-y 
= Z2, we would have (4x-1) (4y-l) = (2Z)2+ 1, and the positive integer 
4x-l ~ 3 would have a prime divisor p of the form 4k+3. We would, 
therefore, have (2Z)2 = -1 (modp), and, in view of p = 4k+3, also (2Z)P-l 
= (2Z)2(2k+l) = -1 (mod p), contrary to the Fermat theorem. 

On the other hand, let n denote an arbitrary positive integer, and let 
x = -1, Y = -Sn2-2n, Z = -5n-l. We easily check that the numbers x, 
y, and z satisfy the equation 4xy-x-y = Z2. 

150. We can easily check that for positive integers m and D = m2+ 1 we 
have (2m2+1)2-D(2m)2 = 1. If for positive integers x and y we have r­
- Dy2 = 1, then, in view of the identity 

(r+Dy2)2_D(2xy)2 = (r-Dy2)2, 

we also have x~-DYi = 1, where Xl = r+Dy2 and Yl = 2xy are positive 
integers greater than x and y. 

If follows, for example, that the equation X2 - Dy2 = 1 has infinitely many 
solutions in positive integers x, y for D = 2, 5, 10, 17, 26, 37, 50, 65, 82. 

151*. The equation y2 = x3+(x+4)2 has two obvious solutions: x = 0, 
y = 4 and' x = 0, y = -4. We shall now give the proof, due to A. Schinzel, 
that this equation has no positive integer solutions x, y with x :F 0 (see [29]). 

Suppose that the positive integers x :F ° and y satisfy the equation. We 
have, therefore, 

x3 = (y-x-4) (y+x+4). (1) 

In view of (1) and x :F 0, the integers y-x-4 and y+x+4 are :F o. Let 

d = (y-x-4, y+x+4). (2) 

If d had an odd prime divisor p, then in view of (1) we would have pix, and 
by pld and (2), we would have ply-x-4 and p/y+x+4, hence pl2y. Since 
p is odd, it would follow that ply and p14, which is impossible. Thus, d has 
no odd prime divisor, and must be equal to a power of 2 with an integer 
exponent ~ o. 
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If we had 161d, then by (1) and (2) we would have 2alx3, which implies 
that 231x, and since d/(y+x+4)-(y-x-4) = 2x+8, we would have 1618, 
which is impossible. Thus, 16,r d. 

If we had d = 2, we would have y-x-4 = 2m, y+x+4 = 2n, where 
(m, n) = 1. In view of (1) and (2) we would have 21x, hence also 2/y. But 
2y = 2(m+n), hence y = m+n, and 2Im+n; in view of (m, n) = 1, the 
numbers m and n must be both odd. Since x3 = 4mn, we have 8 ,r x\ which is 
impossible since 2/x. Thus, d =F 2. 

If we had d = 4, then y-x-4 = 4m, y+x+4 = 4n, where (m, n) = 1. 
By (1), we would have x3 = 16mn, hence 4/x, which implies that 4lmn; thus, 
since (m, n) = 1, one of the numbers m, n must be divisible by 4 and the 
other odd. However, since 41x and 4 = d/x-y-4, we have 4/y = 2(m+n), 
which is impossible. Therefore d =F 4. 

Since 16,r d, d =F 2 and d =F 4, and since d is a power of 2, it remains to 
consider two more cases: d = 1 and d = 8. 

If d = 1, then from (1) and (2) it follows that the numbers y-x-4 and 
y+x+4 are cubes of integers; y-x-4 = a3, y+x+4 = b\ which implies, 
in view of (1), that x = ab and 2x+8 = b3-a3. We cannot have a = b since 
then we would have x = -4 and the equation y2 = x3+(x+4)2 would imply 
y2 = _43, which is impossible. In view of x = ab we have 2ab+S = b3_ 
-a3 = (b-a) (b-a)2+3ab). This implies that if b-a = 1, then 2ab+S 
= 1+3ab, hence ab = 7, and consequeqtly x = 7, y2 = 73+112 = 464, 
which is impossible since 464 is not a square. Thus, if we have ab > 0, then 
b-a > 0, and in view of b-a =F 1, we get b-a ~ 2 and 2ab+8 > 6ab. 
This implies ab < 2, hence ab = 1 and a = b = 1, which is impossible. If 
ab < 0, then either a> 0, b < 0, which leads to a3_b3 = a3+(-b)3 ~ a2+ 
+(_b)2 ~ -2ab, contrary to the fact that a3_b3 = -2ab-S < -2ab, or 
else, a < 0, b > 0, which in view of b3 = a3+2ab+8 leads to b3 < 8. Thus, 
b = 1, which gives in turn a3+2a+7 = 0, which is impossible since this 
equation has no integer solutions. Thus, we must have ab = 0, and con­
sequently x = 0, contrary to the assumption x =F 0. We cannot have, there­
fore, d = 1, and we must have d = S. 

By (2) we have, therefore, y-x-4 = Sm, y+x+4 = Sn, where (m, n) = 1, 
and in view of (1) we find x3 = 64mn. Thus, (xj4Y = mn, which implies, by 
(m, n) = 1, that the numbers m and n must be cubes of integers, say m = a\ 
n = b3. Thus x/4 = ab and 2x+S = 8(n-m) = S(b3-a3)' which leads to 
ab+l = b3_a3• Clearly, we cannot have a = b, and we must have la-bl 
~ 1. If ab > 0, then b > a and b-a ~ 1, and since ab+l = b3_a3 
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= (b-a) [(b-a)2+3ab] > 3ab, we get 2ab < 1, contrary to the assump­
tion ab > o. Since 4ab = x :I: 0, we have ab < O. In view of fb-al ~. 1 
and Ib3-a3

1 = Ib-al I (b+a)2- ab\ ~ -ab, and since we also have (in 
view of ab < 0) the relation lab+ll< labl = -ab, the equation ab+l 
= b3-a3 is impossible. This completes the proof of the fact that the equa­
tion y2 = x3+(x+4)2 has no solution in integers x :I: 0 and y. 

152. Our equation is equivalent to the equation X2Z+y2X+Z2y = mxyz 
in integers x, y, z different from 0, and pairwise relatively prime. It follows 
that yl.rz, zly2x, and xlz2y and since (x, y) = I, (z, y) = 1, which implies 
(rz,y) = 1, we get from ylx2z that y = ±I. In a similar way we find z 

= ± 1, and x = ± 1. 
If all three numbers x, y~ Z are of the same sign, then our equation implies 

1 + 1 + 1 = m, hence m = 3. If two of them were positive and one negative, 
or two negative and one positive, then our equation would imply (in view 
of x = ± 1, Y = ± 1, z = ± I) that m is negative, contrary to the assumption. 

Thus, for positive integer m, the equation 

x y z -+-+-=m 
y z x 

has integer solution x, y, z in pairwise relatively prime x, y, z only for m = 3, 
and in this case there are only two solutions: x = y = z = 1 and x = Y 
= z = -1. For positive integer m #: 3, our equation has no solution in 
integers x, y, z different from 0 and pairwise relatively prime. 

153. We have 

x y Z _._e_= 1 
y z x ' 

hence the numbers (rational and positive) x/y, y/z, and z/x cannot be all 
< 1; if at least one of them is ~ 1, then 

x y z 
-+-+->1 
Y z x ' 

and the left-hand side cannot be =·1 for positive integers x, y, z. 

REMARK. It is more difficult to prove that our equation has no solution 
in integers #: 0, cf. Cassels [3], Sierpinski [2]; Cassels, Sansone [4]. 
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154*. LEMMA. If a, b, c are positive, real, and not all equal, then 

( a+b+c)3 b 
3 >a c. (1) 

PROOF. Suppose that the numbers a, b, c are positive and not all equal. 
Then there exist positive numbers u, v, and w, not all equal and such that 
a = u\ b = v3, and c = w3• We have the identity 

U3+V3+w3-3uvw = l(u+v+w) [(u-v)2+(v-wl+(w-U)2]. 

Since not all numbers u, v, ware equal, the last factor is strictly positive, 
and we have 

which, in view of u3 = a, V = b, w3 = c gives (1), and completes the proof 
of the lemma. 

Let now x, y, z be positive integers. It the numbers x/y, y/z, and z/x were 
all equal, then, being positive and their product being equal to 1, they would 
have to be all equal 1, and we would have 

~+L+~= 3 >2. 
y z x 

Thus, not all numbers x, y, z are equal, and by the lemma we have 

[~(~+L+~)]3 > ~. L. ~= 1, 
3y z x y z x 

hence 
x y z 
-+-+->3. 
y z x 

Thus, the equation x/y+y/z+z/x = 2 is impossible in positive integers x, y, z. 

155. Suppose that the positive integers x, y, z satisfy our equation. If 
not all three numbers x/y, y/z, and z/x are equal, then from the solution 
of Problem 154 it follows that 

~+L+~>3. 
y z x 

We must have, therefore, x/y = y/z = z/x, and our equation implies that 
each of these numbers is 1. Thus, x = y = z. In this case we have 

x y z -+-+- = 1+1+1 = 3, 
y z x 
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and our equation has infinitely many solution in positive integers x, y, z; all 
of them can be obtained by choosing an arbitrary positive integer for x and 
setting x = y = z. 

REMARK. We do not know whether the equation~ +L +~ = 4 has pos-
y z x . 

itive integer solutions x, y, z. On the other hand, the equation!... +L +..:.. = 5 
Y z x 

has a solution, for instance x = 1, Y = 2, z = 4; also (as found by J. Brow-

kin), the equation!-. +L +~ = 6 has a solution, for instance x = 2, Y = 12, 
Y z x 

z = 9. 

156*. As noticed by A. Schinzel, if for a given positive integer m the 
positive integers x, y, z satisfy the equation 

then we have 

Indeed, we have 

ry x3 

y2z = xyz' 

and in view of (1) we get 

xl y3 Z3 
-+-+-=m. xyz xyz xyz 

(1) 

(2) 

From Problems 153 and 154 it follows that for m = 1 and m = 2 equation 
(1) has no solution in the positive integers x, y; z, while Problem 155 implies 
that for m = 3 equation (1) has the only solution Xly = y2z = Z2X = n, 
where n is some positive integer. Then, however, ry·y2z·z2x = n3, or (xYZ)3 
= n3

, which implies xyz = n, and, in view of ry = n, we find z/x = 1, or 
x = z; on the other hand, in view of y2z = n, we find xly = 1, or x = y. 
Thus, we must have x = y = z. However, if m = 3, for . any positive integer 
x, and x = y = z we get a solution of equation (1). Thus, for m = 3 all 
solutions of equation (1) in positive integers are obtained by choosing as x 
an arbitrary positive integer, and setting y = z = x. 
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157. Suppose that theorem Tl holds. If theorem T2 were false, there 
would exist positive integers u, v, and w such that U3+V3 = w3, and putting 
x = u2'O, y = v2w, Z = w2u we would have 

z 

x 

contrary to theorem TI . Thus, we proved that theorem Tl implies theorem 
T 2 (this proof was found by A. Schinzel). . 

Suppose now t~at theorem Tl is false. Then there exist positive integ~rs 
x, y, z such that 

Let rz = a, y2x = b; we shall have then Z2y = a+b and ab(a+b) = (xYZ)3. 
Let d = (a, b)'; thus a = da1 , b = db! where (aI' bl ) = 1. It follows that a+ 
+b = d(al+b1) and atbl(al+bt)d3 = (xYZ)3. This implies that d3I(xYZ)3, 
hence dlxyz and xyz = dt, wheret is a positive integer. . 

We have, therefore, Qtbl(al+bl) = t 3
, and since aI, bI , and al+bl are 

pairwise relatively prime, it follows that al = u3
, b1 = '0

3, al +b1 = w3
, 

where u, v, and ware positive integers. Thus, u3 +v3 = w3
, contrary to theorem 

T2, which shows that theorem T2 implies theorem TI . Thus, Tl and .T2 are 
equivalent, which was to be proved. 

REMARK. One can prove by elementary means (though the proof' is 
difficult) that theorem T2 is true; thus, theorem Tl is also true. 

158*. If the numbers x, y, z, t are positive integers, then the numbers xly, 
ylz, zIt, and tlx are rational and positive; their prod~ct equals 1, which 
implies that they cannot be all < I. But if at least one of them is ~ 1, then 
their sum is > 1, and the equation 

~+L+~+~=l· 
y z t x 

cannot hold. Thus, we proved that this equation has no solution in positive 
integers x, y, Z, t. 

We shall show now this equation has infinitely many solutions in integers 
=F O. It suffices to check that this equation is satisfied by nunlbers x = ~n2, 
y = n2(n2-I), z = (n2_1)2, t = -n(n2-1), where n is an arbitrary integer 
> 1. 
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159* . LEMMA. If a, b, c, d are positive and not all equal, then 

( 
a+b+c+d)4 b d 

4 > a c · (1) 

PROOF. Suppose that a, b, c, and d are positive, and that, for instance, 
a :1= b. We have then either a+c #: b+d or a+d:/: b+c since if we had 
a+c = b+d and a+d = b+c, then we would have a-b = d-b = c-d 
and hence a-b = 0, contrary to the assumption a #= h. If, for instance, 
a+c:l= b+d, let u = a+c, v = b+d;we have u =F v, hence (U-V)2 > 0, 
which gives U

2
+V

2 > 2uv. Thus, (U+V)2 = U
2+v2+2uv > 4uv. It follows 

that (a+b+c+d)2 > 4(a+c) (b+d), and since (a+c)2 ~ 4ac, (b+d)2 ~ 4bd, 
we have 

which gives inequality (1), and completes the proof of the lemma. Suppose 
now that for a positive integer m the equation 

x y z t 
-+-+-+-=m 
y z t x 

has a solution in positive integers x, y, Z, t. The product of these terms is 
equal 1. If all of them were equal 1, then m = 4. Thus, if m is a positive 
integer < 4, then not all four positive rational numbers xly, ylz, zIt, and tlx 
are equal, and by the lemma, we have 

which implies 

x y z t . 
-+-+-+->4. y z t x 

Thus, our equation haJ no positive integer solution x, y, z, t for positive in­
tegers m < 4, and for m = 4 it has only the solution in which all four numbers 
xly, ylz, zIt, and tlx are equal, hence equal 1, which implies that x = y = z 
= t. Thus, for m = 4, our equation has infinitely many solutions in positive 
integers x, y, z, t, and they all are obtained by choosing arbitrary positive 
integer x, and putting y = z = t = x. 
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160. We must have x ::;;; 4 since for x ~ 5, in view of x::;;; y ::;;; Z ::;;; I, we 
would have 

1 111 4 -+-+-+-::;;;-<1. x y Z I 5 

Obviously, we also must have x ~ 2. Thus, it remains to consider only three 
cases, namely x = 2, 3, and 4. 

First suppose that x = 2. In this case we have the equation 

(1) 

In view of y ::;;; Z ::;;; I we get ~ ~ ;, which yields y ::;;; 6; on the other hand, 

11· 
we have, by (1), Y > 2' hence y ~ 3. Thus, we can have only y = 3, 4,5, or 6. 

If y = 3, we have 61 =! +! ::;;;!, which gives z::;;; 12, and since z t z 
I 1 "6 > z' the number z may assume only the values 7, 8,9,10,11 or 12. 

For z = 7, we have ! = 4~' or 1=42, which gives the solution x = 2, 

y = 3, z = 7, t = 42 of our equation. 

For z = 8, we have ! = 2~' or t = 24, which gives the solution x = 2, 

y = 3, z = 8, t = 24 of our equation. 

For z = 9, we have ! = I~' hence t = 18, which gives the solution x = 2, 

y = 3, z = 9, t = 18 of our equation. 

For z = 10, we get ! = 1~' or t = 15, which gives the solution x = 2, 

y = 3, z = 10, I = IS of our equation. 

For z = II, we have + = ! ' which does not lead to integer value of t, 

and our equation has no integer solution. 

For z = 12, we have ! = 1~' or t = 12, which gives the solution x = 2, 

y = 3, z = 12, 1= 12 of our equation. 
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111 2 1 1 
If y = 4, we have -4 = -+-t ~ -, hence z ~ 8, and since - > - or 

z z 4 z' 
z > 4, the number z may assume only values 5, 6, 7, or 8. 

For z = 5, we have ! = 2~' or t = 20, which gives the solution x = 2, 

Y = 4, Z = 5, t = 20 of our equation. 

For z = 6, we have ! = 1~' or t = 12, which gives the solution x = 2, 

Y = 4, z = 6, t = 12 of our equation. 

For z = 7, we have + = ~ which does not lead to integer value of t, and 

our equation has no integer solution. 

For z = 8, we have ! = ~, or t = 8, which gives the solution x = 2, Y 

= 4, Z = 8, t = 8 of our equation. 
3 1 1 2 20 . 

If y = 5, we have 10 = z+T ~ Z' or z~3' that IS, z ~ 6, hence 

Z ~ Y = 5, and we see that z may assume only values 5 or 6. 

For z = 5, we have + = 1~' or t = 10, which gives the solution x = 2, 

Y = 5, z = 5, t = 10 of our equation. 
1 2 ' . 

For z = 6, we have t = IT' which does not lead to int~ger value of t, and 

our equation has no solution. 

If y = 6, we have 3
1 =! +! ~ ~ which gives z ~ 6, and since z ~ y = 6, 

z t z . 
we have z' 6, and consequently t'= 6, which leads to the solution x = 2, 
y = 6, z = 6, t = 6. ' 

We have completed the consideration of the case x = 2, showing that 
equation (1) has only 10 positive integer solutions y, z, t with y ~ z ~ t, 
namely 3, 7, 42; 3, 8,24; 3, 9, 18; 3, 10, 15; 3,~ 12, 12; 4, S, 20; 4, 6, 12; 4, 8, 
8; 5, 5, 10, and 6, 6, 6. 

Suppose now that x = 3. Then we have the equation 

111 2 -+-+-=-y z t 3 

and, by y ~ z ~ t, we get ~ ~ ~ or y ~ ~, which implies y~4. Since 3 

= x ~ y, possible values for yare 3 and 4. 
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f h Ill h' h' I' 2 1 6 I y= 3, ten Z+f=3' w IC lmples z~3 or z~ , and since 

! < -} or z > 3, the possible values for z are only 4, 5 and 6. 

For z = 4, we have t = 12, which gives the solution x = 3, y = 3, z = 4, 
t = 12 of our equation. 

For z = 5, we get t = 15/2, which does not lead to a solution in integers 
x,y, z, t. 

For z = 6, we get t = 6, which gives the soll!tion x = 3, y = 3, z = 6, 
t = 6 of our equation. 

1 1 5 2 24 
If y = 4, we have -+- = 12 ~ -, which implies z ~ -5 < 5, and z t z 

since z ~ y = 4, we must have z = 4, and consequently t = 6, which 
gives the solution x = 3, y = 4, z = 4, t = 6 of our equation. 

Suppose now that x = 4. We have then the equation 

111 3 
y+--z+f=4' 

which implies, by y ~ z ~ t, that ! ~ ! ' or y ~ 4, and since y ~ x = 4, we 

can have only y = 4. This leads to i. +i. = 21 ~2, or z ~ 4, and since z ~ y 
z t z 

= 4, we must have z = 4. This in turn implies that t = 4, and we obtain 
the solution x = 4, y = 4, z = 4, t = 4 of our equation. 

We have thus exhausted all possible cases, which leads to the conclusion 
that our equation has 14 positive integer solutions x, y, Z, t with x ~ y 
~ z ~ t, namely 2,3,7,42; 2,3,8,24; 2,3,9,18; 2,3,10, 15; 2,3,12, 12; 
2,4,5,24; 2,4,6,12; 2,4,8,8; 2,5,5, 10; 2,6,6,6; 3,3,4, 12; 3,3,6,6; 
3,4,4,6; and 4, 4, 4, 4. 

REMARK. The equations considered occur in connection with the problem 
of covering the plane with regular polygons; see [25, p. 31 and following]. 

161. For every positive integer s our equation has at least one solution 
in positive integers, namely Xl = X2 = ... = Xs = s. 

To prove that our equation has, for every positive integer s, only a finite 
Dumber of solutions, we shall prove a more general theorem, asserting that 
for every rational wand every positive integer s the equation 

1 1 1 -+-+ ... +-=w 
Xl X2 Xs 
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has a finite ~ 0 number of solutions in positive integers Xl, X2, ••• , Xs. The 
proof will proceed by induction with respect to 3. The theorem is obvious 
for s = 1. Let now 3 be any positive integer, and suppose that the theorem 
is true for the number 3. Suppose that the positive integers Xl, X2, •.. , xs , 

Xs+l satisfy the equation 

1 1 1 1 -+-+ ... +-+- = u, 
Xl X2 Xs Xs+I 

(1) 

where u is a given rational number, obviously positive. We may assume that· 
Xl ~ X2 ~ ••• ~ Xs ~ Xs+l. From (1) it follows that (3+ 1)/Xl ~ u, which im­
plies Xl ~ (s+I)/u; thus, the number Xl can assume only a finite number of 
positive integer values. Let us now take as Xl any of these values; then the 
remaining s numbers X2, X3, ••• , X S , 3s+1 will satisfy the equation 

1 1 1 1 1 -+-+ ... +-+-= u--
X2 X3 Xs Xs+l Xl 

(2) 

where, for a given Xl, the right-hand side is rational. Consequently, by the 
inductive assumption of the truth of our theorem for the number 3, it follows 
that this equation has a finite ~ 0 number of solutions in the positive in­
tegers, X2, X3, ••• , xs , Xs+l- Since Xl can assume only a finite ,number of 
values, the theorem follows for the number s+ 1. This completes the proof. 

162*. We easily check that for s = 3 we have a solution of our equation 
in increasing positive integers, namely Xl = 2, X2 = 3, X3 = 6. If for some 
integer 3 ~.3 the positive integers Xl < X2 < ... < Xs satisfy our equation, 
then in view of 3 ~ 3 we have Xl > 1 and 2 < 2Xl < 2X2 < ... < 2xs; thus 
the numbers t1 = 2, t2 = 2Xl, t3 = 2X2, .•. , ts = 2Xs-l, ts+2 = 2xs form an 
increasing sequence of positive integers and satisfy the equation 

1 1 1 J . -+-+ ... +-+-= 1. 
tl t2 ts ts+l 

(1) 

In this manner we have Is solutions of equation (1) in increasing positive 
integers tl , t2 , ••• , ts, ts+l, and consequently, IS+l ~ Is. Thus, for every in­
teger s ~ 3, the equation 

1 1 1 -+-+ ... +-= 1 
Xl X2 Xs 

has at least one solution in increasing positive integers Xl, X2, ••• , XS. 
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For s = 3, the equation has only one solution in increasing positive in­
tegers since we must have Xl > 1, hence Xl ;::: 2, and if we had Xl ;::: 3, we 
would have X2 ;::: 4, X3 ;::: 5, which is impossible since 

11111 1 -+-+- ~ -+-+- < 1. 
Xl X2 X3 3 4 5 

We have, therefore, X2 = 3, hence X3 = 6, and consequently 13 = 1. On the 
other hand, h > 1 since the equation 

1 1 1 1 -+-+-+-= 1 
Xl X2 X3 X4 

has in positive integers the solutions 2, 3, 7, 42 and 2, 3, 8, 24 (and also 
other solutions). 

We can, therefore, assume that s;::: 4. In this case the equation 

111 -+-+ ... +-=1 
Xl X2 Xs-l 

has at least one solution in increasing positive integers Xl < X2 < ... < Xs-lo 

and then the numbers 11 = 2, 12 = 3, t3 = 6Xlo t4 = 6X2, ••• , tsH = 6XS-l 

will be increasing positive integers, and will satisfy equation (1). This solu­
tion will be different than each of the Is solutions obtained previously since 
there all numbers were even, while here the number 3 is odd. Thus, we have 
IsH;::: 1.+ 1, hence IsH > I. for s ;::: 3, which was to be proved. 

163. Let In = n(n+ 1)/2 denote the nth triangular number. We easily 
check that 

1 III -+-+-+-= 1. 
t2 t2 13 t3 

Thus, it suffices to assume that s is an integer;::: 5. If s is odd, that is, 
s = 2k-1 where k is an integer;::: 3, then we have 

1 1 1 k+l 2 2 2 2 
-+-+ ... +-+- = 2 3 +- 3 4 + ... + (k l)k +-k 12 t3 tk- 1 tk •• -
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and the left-hand side is the sum of reciprocals of (k-2)+(k+l) = 2k-1 
= s triangular numbers. 

If s is even, that is, s = 2k where k is an integer ~ 3, then we have, in case 
k = 3, 6/13 = 1, while in case k > 3 

2 1 1 1 k+l -+-+-+ ... +-+-
13 13 14 1"-1 I" 

and the left-hand side is a sum of reciprocals of (k-l)+(k+l) = 2k = s 
triangular numbers. 

164. Clearly, none of the positive integers x, y, Z, 1 satisfying our equation 
can be = 1. None of them can be ~ 3, either, since if, for instance, x ~ 3, 
then by y ~ 2, z ~ 2, t ~ 2 we would have 

which is impossible. Thus, we must have x = Y = Z = I = 2, which is the 
only solution of our equation in positive integers. 

165. These are numbers 1, 4, and all integers s ~ 6. 
For s = 1, we have an obvious solution Xl = 1. 
For s =' 2 and s = 3, our equation has no solution in positive integers 

since these numbers would have to be > 1, hence ~ 2, while for such num­
bers Xl, X2, X3 we have 

1 1 1 1 
-+-~-+--< 1 xi x~ '-': 4 4 

and 
111 3 
~+~+~~4<1. 

For s = 4, we have the solutiol1 Xl = X2 = X3 = X4 = 2. 
For s = 5, our equation has D" solution in positive integers. In fact, if the 

numbers Xl ~ X2 ~ X3 ~ X4 ~ Xs would satisfy our equation, we would have 
Xl ~ 2, and Xl < 3, since in case Xl ~ 3; we have 

115 2+ ... + _,.1 ~ -9 < 1 . x, ~s 
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We must therefore have Xl = 2, and consequently, 

~+~+~=~=~ rz ;G ~ rs 4' 

which implies X2 < 3 since 4/9 < 3/4. Thus X2 = 2, which yields 

111 1 -+-+--­;G ~ rs- 2 · 

It follows that X3 < 3 since 3/9 < 1/2. Thus, X3 = 2, which yields 

111 -+-=-
~ rs 4' 

which is impossible since X4 ~ 2 and Xs ~ 2. 

89 

For 8 = 6, our equation has a solution Xl = X2 = X3 = 2, X4 = Xs = 3, 
X6 = 6. 

For s = 7, our equation has a solution Xl = X2 = X3 = 2, X4 = Xs = X6 

= X, = 4. 
For 8 = 8, our equation has a solution Xl = X2 = X3 = 2, X4 = Xs = 3, 

X6 = 7, X, = 14, Xs = 21. 
Suppose now that for some positive integer 8 the equation 

has a solution in positive integers tl, ... , ts. Since l/t; = 4/(2ts)2, the equation 

1 1 1 
_..2 + _..2 + ... + x: = 1 
Xi A2 s+3 

has a solution in positive integers Xl = t1 , X2 = t2 , ••• , Xs-l = Is-I, Xs 

= Xs+l = X s+2 = X s+3 = 21s. Thus, if our equation is solvable in positive 
integers for some positive integer s, then it is also solvable for 8+3, and 
since it is solvable for s = 6, 7, and 8, it is solvable for every integer s ~ 6 
(and, in addition to that, for s = 1 and s = 4). 

REMARK. One can prove that the rational number r can be represented 
as a sum of a finite number of reciprocals of squares of an increasing se­
quence of natural numbers if and only if either 0 < r < 11t2-1 or 1 ~ r 
< 11t2. See [36, theorem 5]. 
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1_111111111111 
166. 2: - 22 +}2+ 42 + 62 + 72 + 92 +122 +142 +21 2 +362 + 452 + 602' 

To check this equality one has to note that 

1 1 1 1 
72 +142 +212 =""6 and 

1 1 1 
452 + 602 = 362 ' 

and then reduce all fractions to the common denominator 362• 

REMARK. I do not know whether the number 1/2 can be represented 
as a sum of less than twelve reciprocals of positive integers. 

167*. Let m be a given positive integer. For s = 2"', our equation has 
a solution in positive integers Xl = X2 = ... = Xs = 2. 

Let now a be a given positive integer, and suppose that our equation 
is solvable in positive integers for the positive integer s. Thus, there exist 
positive integers t1> t2 , ... , t. such that 

and since 1/t';' = a"'/(at.)'n, for Xl = t1> X2 = t2, ... , Xs_l = t._1> X. = Xs+l 

= ... = Xs+am_l = at. we shall have 

111 
/R+/R+ ... + '" = 1. 
Xl X2 Xs+a"'_l 

Thus, if our equation is solvable in positive integers for a positive integer s, 
then it is also solvable in positive integers for s+a'" -1, and, more generally, 
for s+(a"'-I)k, where k is an arbitrary positive integer. Taking a = 2 
and a = 2"'-1 we see that (for s = 2"') our equation has a solution in 
positive integers for every s = 2m+(2"'-I)k+[(2"'-l)m-l]/ where k and I 
are arbitrary positive integers. 

The numbers 2"'-1 and (2"'-1)"'-1 are obviously relatively prime. 
By the theorem, proved in Sierpinski [37, p. 29, Corollary 2], it follows 
that every sufficiently large positive integer is of the form (2"'-I)k+ 
+[(2"'-1)"'-1]/, where k and I are positive integers. This implies that 
every sufficiently large positive integer is also of the form 2m+(2"'-I)k+ 
+ [(2"'-1)"'-1]1, hence for every such integer our equation is solvable in 
positive integers. 

168. Clearly, it suffices to show that our equation has for every positive 
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integer s at least one solution in positive integers Xl> Xz ..... X, since every 
such solution multiplied by a positive integer is again a solution. 

For s = 1, we have an obvious solution Xl = X2 = 1. 

th I · 1 1 1 
For s = 2, we have· e so ution 152+122 = 2OZ' 

Now let s be an arbitrary positive integer. and suppose that our equation 
has a solution in positive integers 

Since 

1 1 I 1 -:2+-Z+ ... + 2"" = -2-' 
'1 12 ts 1,+1 

111 
(12/.)2 = (15t.)2 + (20t.)2' 

the positive integers Xi = 12t; for i = 1, ... , s-l, x,= 151., X.+1 = 20t., 
X&+2 = 12/.+1 satisfy the equation 

-.!.. +-.!..+ +-.!..+_1_ = _1_ 
~ ~ ... r. r.+l r.+~ 

and the proof follows by induction. 

169. It suffices to prove that for every integer s;;:;: 3 our equation has 
at least one solution in positive integers Xl> xz, ... , X., x,+1' For s = 3, 
it has the solution 

.1 1 1 1 
123+153+203 = 103 

(which can be obtained by dividing by 603 both sides of the equation 33 + 
+43+53 = 63), while for s = 4 we get the solution 

1 1 1 + 1 _ 1 
(S • 7 . 13)3 + (5 . 12· 13)3 + (7 . 12 . 13)3 (5· 7 . 12 . 13)3 - (S· 7 . 12)3 

(which follows from dividing by (5·7· 12· 13)3 both sides of the equality 
13+53+73+123 = 133). 

Now let s denote a given integer ;;:;: 3 and suppose that our equation 
has a solution in positive integers for this value of s. Thus. there exist positive 
integers 1l> 12, ... , ts> t.+1 such that 
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Putting Xi = lOti for i = 1, 2, ... ,8-1 and Xs = 12t" X s+l = 15t" X,+2 

= 20ts , Xs+3 = 10ts+ 1 , we obtain 

hence if our equation is solvable in positive integers for some s, it is also 
solvable for s+2. Since it is solvable for s = 3 and s = 4, we conclude 
that it is solvable for every s ~ 3, which was to be proved. 

REMARK. One can prove by elementary means that for s = 2 our equa­
tion has no solution in positive integers but the proof is difficult. 

170*. The solution found by A. Schinzel. We have the identity 

Thus, if x, y, and z are integers such that x+y+z == 3 and X3+y3+Z3 == 3, 
then by (1) we get 

8 = (x+y) (x+z) (y+z) = (3-x) (3-y) (3-z), (2) 

and in view of x+y+z = 3 we have 

6 = (3-x)+(3-y)+(3-z). (3) 

The relation (3) implies that either all three numbers 3-x, 3-y, 3-z 
are even or only one of them is even. In the first case, in view of (2), all 
these numbers are equal to 2 in absolute value; thus, by (3), they are equal 
to 2, and 'then x = y = z = 1. In the second case, in view of (2), one of 
the numbers 3-x, 3-y, 3-z is equal to 8 in absolute value, and the re­
maining ones are equal to 1 in absolute value; thus, in view of (3), one of 
them is = 8, and the remaining ones are = -1. This yields x = -S, 
Y = z = 4, or x = y = 4, z = - S, or, fipally, x = 4, y = - S, z = 4. 

Thus, our system of equations has only four integer solutions t namely 
x,y,z= 1,1,1; -5,4,4; 4, -5,4; 4,4, -5. 

See Problem E 1355 from The American Mathematical Monthly, 69 (1962), 
1009. 

REMARK. We do not know whether the equation X3+y3+Z3 = 3 has 
other solutions in integers x, y, z besides the four given above. 

171. Clearly we must have n ~ 8. If n == 3k, where k is an integer 
> 5, then for x = k-5, y = 3 we have 3x+5y = n. If n = 3k+l where 
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k is an integer> 3, then for x = k-3 and y = 2 we have 3x+5y = n 
Finally, if n = 3k+2, where k is an integer> 1, then for x = k-l, y = 1 
we have 3x+5y = n. It follows that our equation has at least one positive 
integer solution x, y for every n > 15. It remains to investigate the numbers 
8, 9, 10, 12, and 15. For n = 8, we have the solution x = 1, Y = 1. For 
n = 9, 12, and 15, our equation has no solution, since we would have 315y, 
hence 31y and 1515y, hence n = 3x+5y > 5y ~ 15. For n = 10, our equa­
tion has no solutions in positive integers either, since then we would have 
513x, hence 51x and 1513x, hence n = 3x+Sy > 15. Thus, our equation 
has at least one solution in positive integers x, y for all positive integers 
n except 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, and 15. 

Let now m be an arbitrary positive integer and let n be an integer > 4Om. 
The equation 3x+Sy = n has, therefore, a solution xo, Yo, and at least 
one of these numbers must be > Sm since in the case Xo ~ Sm, Yo ~ Sm 
we would have 3xo+Syo ~ 40m < n. If Xo > 5m, then for k = 0, 1,2, ... , m 
the numbers x = xo-Sk and y = yo+3k are positive integers and satisfy 
the equation 3x+5y = 3xo+Syo = n. If Yo> 5m, then for k = 0,1, 
2, ... , m the numbers x = xo+Sk and y = yo-3k are positive integers and 
satisfy the equation 3x+Sy = n. Thus, this equation has, for n > 4Om, 
more than m solutions in positive integer x, y, which shows that the number 
of such solutions increases to infinity with n. 

172. n = 2, y = x, z = x+ 1, where x is an arbitrary positive integer. 
In fact, for positive integers x we have 2x+2x == 2x+l. On the other hand, 
suppose that for positive integers n, x, y, and z we have nX+nY = n". We 
may assume that x ~ y ~ z. We cannot have n = 1, hence n ~ 2. We 
have w = rf-nY = w(n"-x-nY-X), which implies nf:-X_nY-X = 1. If we 
had y > x, then we would have nil, which is impossible. Thus, we must 
have y = x, hence rf-X = 2, which yields n = 2, z-x = 1. We obtain, 
therefore, n = 2, y = x, z = x+l. 

REMARK. The equation w+nY = nf: is obtained from the Fermat equa­
tion x"+y" = z" by reversing the roles of exponents and bases. See Mem. 
Real. Acad. Sci. Art. Barcelona, 34 (1961), 17-25. 

173. Let m and n be two given positive integers, and let a and b be two 
different primes > m+n. Put c = am+bn. The system x = m, y = n 
satisfies obviously the equation ax+by = c. Suppose that there is some 
other system satisfying this equation, say x, y. We cannot have x ~ m, 
y > n, or x > m, y ~ n since in this case we would have ax+by > am+ 
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+bn = c. Thus, we must have either x < m or y < n. If x < m, then 
m-x is a positive integer < m, and in view ofax+by = am+bn we have 
by = a(m-x)+hn, which implies that hla(m-x). Since a and b are different 
primes, it follows that him-x, which is impossible since by definition we: 
have m > b. In a similar manner we prove that we cannot have y < n. 

REMARK. It is easy to note that not for aU two systems of positive integers 
there exists a linear equation ax+by = c, with integer a, h, and c, which 
has these two systems as the only positive integer solution. On the other 
hand, we can easily prove that there always exists such an equation of the 
second degree with integer coefficients. 

174. For instance, the equation x+y = m+l, which has exactly m 
solutions in positive integers x, y, namely x = k, y = m-k+ 1, where 
k=l, ... ,m. 

REMARK. It is known that there is no linear equation ax+by = c which 
would have a finite and> 0 number of solutions in integers x, y. 

175. For f(x, y) = r+y2+2xy-mx-my-m-l, we have the iden­
tity f(x, y) = (x+y-m-l)(x+y+l). Since for positive integers x and y we 
have x+y+1 > 0, we can havef(x, y) = 0 if and only if x+y-m-l = 0; 
from the solution of Problem 174 it follows that this equation has exactly 
m solutions in positive integers x and y. 

REMARK. The polynomial in two variables considered in this problem 
is reducible. One could ask whether for every positive integer m there exists 
an irreducible polynomial F(x, y) of the second degree with integer coeffi­
cients, and such that the equation F(x, y) = 0 has exactly m, solutions in 
positive integer x, y. One can prove that for every positive integer m there 
exists a positive integer am such that the equation r+y2 = am has exactly 
m positive integer solutions x, y. More precisely, one can prove it for a2k~'1 
= 2 · S2k-2 and a2k = S2k-l, where k = I, 2, ... , but the proof is not easy. 

Let us also remark that A. Schinzel proved that for every positive integer 
m there exists a polynomial of the second degree in the variables x, y, say 
f(x, y), such that the equation f(x, y) = 0 has exactly m integer solutions. 
See [18]. 

176. Put x = t+3. Then our equation reduces to the equation 

2t(t2+3t+21) = 0, 

which has only one solution in real numbers, namely t = O. It follows that 
our equation has only one integer solution, namely x = 3. 
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REMARK. One can prove that all solutions of the equation 

r+(x+r)3+(x+2r)3+ ... +(x+(n-l)r)3 = (x+nr)3 

95 

in positive integers x, r, n are only n = 3, x = 3r where r is an arbitrary 
positive integer. 

177. If n = 2k-l, where k is a positive integer, then obviously, x = -k, 
Y = 0 is a solution of our equation; if n = 2k,wherej is a positive integer, 
then x = -k, y = k is a solution of our·equation. 

REMARK. There are also other solutions, for instance for n = 8, x = - 3, 
y = 6; for n = 25, x = -11, y = 20; for n = 1000, x = 1333, y = 16830: 

178. In this equation the coefficients at x3, r, and x, are divisible by 3, 
and the constant term is -25, which is not divisible by 3. It follows that 
our equation has no solutions in positive integers x. 

179. Substituting x = t+ 10 we reduce our equation to the equation 

3t(t2+40t+230) = O. 

Since the equation t2+40t-230 = 0 has no rational solutions, we must 
have t = 0, and our equation has only one solution in positive integers, 
namely x = 10. 

180. x = 1, y = 2 (since 2·3 = 1 . 2 . 3) and x = 5, y = 14 (since 
14 . 15 = 5 . 6 . 7). 

REMARK. L. J. Mordell proved that our equation has no other solutions 
in positive integers. 

181. The solution follows immediately from the identity 

1 + (2n)2+ (2n2)2 = (2n2+ 1)2 for n = 1,2, .... 

REMARK. It is easy to prove that for every positive integer k the equa­
tion k+ r+y2 = Z2 has infinitely many solutions in positive integers x, y, z. 
It suffices to take as x an arbitrary integer > Ikl + I, even if k is odd, and 
odd if k is even, and put 

k+r-l 
y= 

2 

182. Suppose that positive integers n and x ~ y ~ z satisfy the 
equation 

(1) 
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We cannot have n = 1. If n = 2, then from (1) we get 1 +2,-x+2%-X = 2t - x, 
and we cannot have y > x. Thus we have y = x, and 2+2:-x = 2t - x , 

which gives z-x = 1, hence t-x = 2. Thus, if n = 2, then we must have 
y = x, z = x+l, and t = x+2, while we easily check that for all positive 
integers x we have 2x+2x+2x+1 = 2x+2. 

Suppose, next, that n ~ 3. In view of (1) we have 1 +n'-x+n%-X = nt-x, 
and since n > 2, we must have y = x and z = x. Thus 3 = nt-x, which 
implies n = 3 and t-x = 1. Therefore, if n > 2, we must have n = 3, 
x = y = z, t'= x+l. We easily check that for every positive integer x 
we have 3x+3x +3x = 3x+1

• 

Thus, all solutions of equation (I) in positive integers n, x, y, z, t with 
x ~ y ~ z are n = 2, y = x, z = x+l, t = x+2, or n = 3, Y = x, z = x, 
t = x+ I, where x is an arbitrary positive integer. 

183. From the solution of Problem 182 it follows that the equation 
4x +4>'+4% = 4t has no solutions in positive integers. Let us note that this 
equation is obtained from the equation X4+y4+Z4 = t 4 by reversing the 
role of bases and exponents. As regards the last equation, it is not known 
whether it has positive integer solutions x, y, z, t or not, as was conjec­
tured by Euler. 

184. This equation has only one solution in positive integers, namely 
m = 2, n = 1. In fact, since 32 = 1 (mod 8), we have for positive integers k 
the relation 32k+l = 2 (mod 8) and 32k

-
1+1 == 4 (mod 8), which shows that 

for a positive integer n the number 3n+ 1 is not divisible by 8, hence is not 
divisible by 2m for integers m ~ 3. Thus, if for positive integers m and n 

we have 2m_3n = 1, then we must have m ~ 2, hence either '2-3n = I, 
which is impossible, or 22-3ft = I, which gives m = 2, n = 1. 

185. This equation has only two solutions in positive integers, namely 
n = m = 1 and n = 2, m = 3. In fact, if n is odd and > 1, then n = 2k + 1 , 
where k is a positive integer, and in view of 32 = 1 (mod 4) we have 32k+1 

= 3 (mod 4), which yields 2m = 3n -1 = 32k+1_1 = 2 (mod 4). This implies 
that m ~ 1 or m = 1, and in view of 3ft -2m = 1 we have also n = 1. If n 
is even, n = 2k for some positive integer k, then we have 2m = 32k _1 
= (3k -1 )(3k + 1). Two successive even numbers 3k -1 and 3k + 1 are, there­
fore, powers of the number 2, which implies that these numbers are 2 and 4, 
which gives k = 1, hence n = 2. This yields the solution n == 2, m = 3. 

186. If for positive integer x andy we have 2x+l - y2, then (y-l)(y+I) 
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= 2x, hence Y > 1, and y-l .= 2\ y+l = 2', where k is an integer ~ 0, 
and 1 is an integer> k. Moreover, k+l = x. It follows that 2'-2k = 2, 
which shows that k > 0 and, in view of k < 1, we have 2k12. Consequently, 
k ~ 1, and since k ~ 0, we obtain k = 1. Thus, 2' = 2k+2 = 4, which 
yields 1 = 2. We have, therefore, x = k+l = 1+2 = 3, hence y2 = 23+1 
= 9, and y = 3. The equation 2X + 1 = y2 has, therefore, only one solution 
in positive integers, namely x = y = 3. 

187. This equation has only one such solution, namely x = y = 1 
since in case x > 1 the number 2X -1 is of the form 4k-l, where k is a posi­
tive integer, and no square of an integer is of this form since upon division 
by 4 it gives the remainder either 0 or 1. 

188. Suppose that our system has positive integer solution x, y, Z, t. We 
may assume that (x, y) = 1 since in the case (x, y) = d> 1 we could 
divide both sides of our equations by d2

• Thus, at least one of the numbers 
x, y is odd. It is impossible that both are odd since in this case the left-hand 
sides of our equations would give remainder 3 upon dividing by 4, which is 
impossible, the right-hand sides being squares. However, if for instance x , 
is even, then y cannot be odd since in this case the left-hand side of the first 
equation would give the remainder 2 upon dividing by 4, which is impossible 
since it is a square. Thus, both numbers x and yare even, contrary to the 
assumption that (x, y) = 1. 

189. Our equation is equivalent to the equation (2x+l)2-2y2 = -1, 
which has a solution in positive integers, namely x = 3, Y = 5. Our identity 
implies that if positive integers x and y satisfy the equation, then greater 
numbers Xl = 3x+2y+l and Yl = 4x+3y+2 also satisfy this equation. 
It follows that this equation has infinitely many solutions in positive integers 
x and y. For x = 3, Y = 5, we obtain in this manner Xl = 20, Y1 = 29. 

190. Our equation is satisfied for X= 7, Y = 13. This equation is equiv­
alent to the equation 3r+3x+ 1 = y2, which jn turn is equivalent to 4y2 
= 12r+12x+4 = 3(2x+l)2+1, thus, to the equation (2y)2-3(2x+l)2 = 1. 
This implies that if x and Y satisfy this equation, then greater numbers 
Xl = 4y+ 7x+3 and Yl = 7y+ 12x+6 also satisfy this equation. It follows 
that the equation considered has infinitely many positive integer solutions 
x, y. For instance, for x = 7, Y = 13 we obtain Xl = 104~ Y1 = 181. 

191. Proof (according to J. Browkin). If our system had a solution in 
positive integers x, y, Z, t, then it would also have a solution with (x, y) = 1 . 
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Adding our equations we obtain 6(X2+y2) = Z2+t 2, which implies that 
3Iz2+t2

• Since a square of an integer which is not divisible by 3 gives the re­
mainder 1 upon dividing by 3, it is impossible that both numbers z and t 
are not divisible by 3. Since, however, 3Iz2+t2

, if one of the numbers z, t is 
divisible by 3, so must be the other. Thus, both z and t are divisible by 3, 
which implies that the right-hand side of the equation 6(r+y2) = r+tZ 

is divisible by 9, and 3Ir+yZ, which, as we know, shows that both x and y 

are divisible by 3, contrary to the assumption that (x, y) = 1. 

192. Our equations imply that 7(X2+y2) = Z2+t2
• We have, therefore, 

7Iz2+tZ
, hence, by Problem 34, we have 71z and 71t. Thus, 49/7(r+y2), 

which implies 7Ir+y2, which again implies that 71x and 71y. Thus; our 
system cannot have solutions with (x, y) = 1, which, of course, is impossible 
if it has at least one positive integer solution x, y, z, t, In fact, if (x, y) 

= d > 1, we would have dlz and dlt, and it would suffice to divide each 
of the numbers x, y, z, t by d. 

192a. It has, for instance, a solution x = 3, Y = 1, z = 4, t = 8. 

193. If y were even, then r· would be of the form 8k+ 7, which 
is impossible. If y were odd, then we would have r+1 = y3+23 

==(y+2)[(y-I)2+3] and, in view of y=2k+l, we would have 
(2k)z+3I(r+l). Since the left-hand side has a prime divisor of the form 
4t+3, the number r+l would have a prime divisor of the same form, 
which is impossible (in view of (x, 1) = I). 

194. We have 

x2+1 = (2C)3+y 3 = (y+2c)(y2-2cy+4c2) 

= (y+2c)(Y-C)2+3c2
). 

Since c2 = 1 (mod 8), we have 3c2 = 3 (mod 8) and if y is odd, then y-c 
is even and (y-c)2+3c2 is of the form 4k+3; thus, it has a prime divisor 
of this form, which is at the same time a divisor of r+ 1, which is impossible. 
If y were even, then we would have r = y3+(2c)3-1 = -1 (mod 8), 
which is impossible. It follows that there exist infinitely many positive in­
tegers which are not of the form xl_y 3, where x and yare integers. 

195. Suppose that x is odd. Then y is of the form y3 = 0 (mod 8), hence 
y3 -I = 7 (mod 8), and x2 + (2k)2 would have a prime divisor of the form 
4k+3, which is impossible, being a sum of two squares of relatively prime 
numbers. Thus, x is even. Let x = 2«z, where ex is a positive integer. If ex = k, 
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then 2Zk(zz+l) = y3_1 = (y-l)(yz+y+l), hence y must be odd and y-I 
cannot be of the form 4k+3. Thus,y == 1 (mod 4), andyz+y+1 == 3 (mod 4), 

which is impossible. If IX < k, then 2Z"(2k-")z+zZ) = (y_I)(yz+y+ I), and, 
in view of the fact that z is odd, we proceed as above. Finally, if IX > k, 

then 2Zk(2CX - kz)z+l) = (y_I)(y2+y+I), and we. proceed as above. In 
particular, if k = 1, we see that the equation y3_r = 5 has no positive 
integer solutions x, y. 

See: L. Aubry in Dickson, [7, p. 538]. 

196. Suppose first that x = 1, Then we have the equations 1 +y = zl, 
and z+1 = y, which imply zl = z+I+1. It follows that z::f: 1 (since z = 1 
would give 1 = t+2, which is impossible). If z = 2, then 1 = 3, hence 
by y = Z+I, we get y = 5, which yields the solution x = 1, y = 5, 
z = 2, 1 = 3. If z ~ 3, then I?: z ~ 3 and we have z = zl+2, 1 = 11+2, 
where ZI ~ 1, 11 ~ 1. It follows that zl = (ZI+2)(t1+2) = ZI11+2z1+211+ 
+4 ~ ZI+11+7 = z+I+3, contrary to the fact that (in view of x = 1) 
we have zl = z+t+ 1. 

Suppose now that x = 2. We then have z ~ x = 2. If z = 2, then 2+y 
= 2/, 2+t = 2y, which implies y = 1 == 2. We would therefore have x 
= y = z = t = 2 which is a solution of our system. If z > 2, then, in view 
of t ~ z, we have 1 > 2 and we may put z = ZI+2, t = 11+2, which implies 
zt = (ZI+2)(t1+2) = ZIII+2z1+211+4?: ZI+tl+7 = z+t+3. However, 
since x = 2, we have 2+y = zt, z+t = 2y, which yields zt = 1(z+t)+2. 
Thus, !(z+I)+2 ~z+t+3, which leads to z+I+2 ~O, which is impossible. 

Suppose now that x> 2, hence x ~ 3, and z?: x ~ 3, I?: z?: 3. We 
can put z = ZI+2, 1 = 11+2, where Zl ~ 1 and tl ~ 1. It follows that 
zt = (ZI+2)(ll+2) = zl(I+2zl+211+4 ~ ZI+tl+9 = z+I+5. Similarly, 
since x ~ 3, we have y ~ x ~ 3, xy?: x+y+5. We have, however, z+t 
= xy, which implies zt ~ z+t+5 = xy+5 ?: x+y+IO = zt+lO, which is 
impossible. 

Thus, our system has only two solutions in positive integers x, y, z, t with 
x ~ y and x ~ z ~ t, namely x = 1, Y = 5, z = 2, 1 = 3 and x = y = z 
= 1=2. 

As regards solutions of our system in integers, there are infinitely many 
such solutions. J. Browkin noticed that such solutions are x = Z = 0, 
t = y, with arbitrary y, while A. M~kowski noticed that the solutions of 
our system are x = t = -1, y arbitrary, z = l-y. 

197. For n = 1, x may be arbitrary. For n = 2, we have XI = X2 = 2. 
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For n > 2, Xl = X2 = ... ~ Xn-2 = 1, Xn-l = 1, Xn = n is a solution. 
There are, however, other solutions, for instance for n = 5, we have Xl 

= X2 = X3 = 1, X4 = Xs = 3. Thus, we can say that for every positive 
integer n there exist n positive integers such that their sum equals to their 
product. 

198. If n is odd and > 1, then 

and in view of a > 0, we must have x-y ~ 1, hence xa-1+yn-l ~ a. Thus, 
x < n-if a and y < n-v a and a finite number of checking will suffice. If 
n = 1, then all positive integer solutions of the equation a = x-yare: 
y arbitrary"x = a+y. 

If n = 2k, where k is a positive integer, then 

a = xa-yn = r"_y2k = (~_yk)(.xk+yk), 

where xk_yk ~ 1, hence ~+yk ~ a. It follows that x < Va, y < Va, 
and a finite number of checking will suffice. 

199. In order for a triangular number tx = x(x+l)/2 to be pentagonal, 
it is necessary and sufficient that for every x there exists a positive integer 
y such that 

y(3y-l) = x(x+l). (1) 

It suffices, therefore, to show that equation (1) has infinitely many positive 
integer solutions x, y. 

We easily check that 

(4x+ 7y+ 1)(12x+21y+2)- (7x+ 12y+ 1)(7x+ 12y+2) 

= y(3y-l)-x(x+l), 

and it immediately follows that if positive integers x, y satisfy (1), then 
the greater integers 

Xl = 7x+12y+l, YI = 4x+7y+l (2) 

satisfy the equation Yl(3Yl-l) = Xl(Xt+1). Since the numbers x = y = 1 
satisfy (1), it follows that this equation has infinitely many positive integer 
solutions x, y. The solution x = 1 = 1 gives by (2) the solution Xl = 20, 
Yl = 12, which in turn leads to X2 = 285, Y2 = 165, and so on. 
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MISCELLANEA 

200. The equation 4x+ 2 = 0 has obviously no integer roots. On the 
other hand, the congruence 4x+2 = 0 (modp) is solvable for every prime 
modulus p. For the modulus equal 2, it is, of course, solvable identically. 
while if p is an odd prime, p = 2k+ 1, where k is a positive integer, it has 
the solution x = k. 

201. Put m = a; if the congruence ax+b = 0 (mod m) has a solution, 
then alb, hence b = ak, where k is an integer, and the equation ax+b = 0 
has the integer root x = -Ok. 

202. We have identically 6r+5x+l = (3x+l) (2x+l), which implies 
that the equation 6r+5x+ 1 = 0 has no integer solutions. Let m be an 
arbitrary positive integer. We have then m = 2fZml, where ex is an integer 
~ 0, and ml is odd. Since (2(1, ml) = 1, there exists a positive integer x 
such that 3x = -I (mod 2fZ), and 2x = -1 (mod ml), which yields m 
= 2crml! (3x+l) (2x+I), and consequently, 6r+5x+l == 0 (mod m) . 

. 203. This it true for n = 1 since a square of an odd number gives the 
remainder 1 upon dividing by 8. Suppose that the assertion holds . for a pos­
itive integer n. Then for odd k: k2n = 2n+2t+l, where t is an integer. 
It follows that k2n+1 = (2n+2t+ 1)2 = 22n+4t2+2n+3t+ 1 = 2n+3(2n+lt2+t)+ I, 
which implies that 2n+31~11+1 -1. The proof follows by induction. 

204. The proof follows immediately from the identity 

(3x+4y)2_(2x+3y)2 = r-2y2, 

and from the remark that for positive integers x and y we have 3x+4y > x, 

and 2x+3y > y. 

205. If for some integers x and y the number r-2y2 is odd, then x must 
be odd, hence r = 1 (mod 8). In the case where y is even, we have 2y2 
= 0 (mod 8), and in the case where it is odd, we have 2y2 == 2 (mod 8). 
Thus, in case of r-2y2 being odd, we have r-2y2 = ± 1 (mod 8), which 
shows that for integers x and y the number r-2y 2 cannot be of the form 
8k+3 or 8k+5, where k is an integer. 

206. It can be seen quite readily that for every positive integer n, the 
number (2n+l)2-2 e 22 is of the form 8k+l, where k is an integer ~ o. 
Next, we have 1 = 32-2.22, 9 = 92-2.62, 17 = 52-2.22

, 25 = 152-2.102
, 

while the number 33 cannot be represented in the form x2-2y2, where x 
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and yare positive integers. We shall prove, more generally, that no number 
of the form 72t+33, where t = 0, I, 2, ... , can be represented in the form 
x2_2y2 with integers x and y. In fact, suppose that 72t+33 = r-2y2 where 
t, x and yare integers. The left-hand side is divisible by 3, but is not divisible . 
by 9. It follows that none of the numbers x, y is divisible by 3 since if 3/x, 
we would have 3/y and the right-hand side would be divisible by 9, which is 
impossible. Thus, the numbers x and yare not divisible by 3, hence x2 and 
y2 give remainder 1 upon dividing by 3; thus, the number x2_2y2 gives the 
remainder 2 upon dividing by 3, which is impossible since the left-hand side 
is divisible by 3. 

Thus, there exist infinitely many positive integers of the form 8k+l (where 
k = 1, 2, ... ) which are not of the form r-2y2, where x and yare integers, 
and the least such number is 33 = 8· 4+ 1. 

207. The even perfect numbers are, as it is well known, of the form 
2P- 1(2P-:-l), wherep and 2P-l are primes (see, for instance, Sierpinski [37, 
p. 172, corollary]). For p = 2 we have the number 6. If p > 2, then p is 

. a prime of the form 4k+l or 4k+3. If p = 4k+l, then 2P- 1 = 24k = 16k, 
and the last digit of 2p

-
1 is obviously 6, while 2P-I = 24k+1_l = 2·16k-l 

and the last digit is obviously 1. Thus, the last digit of the product 
2P-

1(2P-l) is 6. If p = 4k+3, then the number 2P-
1 = 24k+2 = 4·16k 

has the last digit 4, while the last digit of 2P is 8, hence the last digit qf the 
number 2P-I is 7, and, consequently, the number 2P-

1(2P-l) (as the 
product of two numbers, one with the last digit 4, and the other with the 
last digit 7) has the last digit 8. 

This completes the proof. 

REMARK. One could prove (but the proof is more difficult) that if the 
last digit of a perfect number is 8, then the last but one digit is 2. 

208. The value of our fraction, in the scaJe g, is 

1+g2+g4+g6+g8 

1+g+g4+g'+g8 

and we have to prove that for every positive integer k, this fraction is equal 
to the fraction 

1+g2+g4+gS+ ... +g2k+2+g2k+4+g2k+6 
1 +g +g4+gS+ ... +g2k+2+g2k+S+g2k+6· (1) 
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The assertion can be shown by checking that the products of the numerator 
of each of thesej:actions by the denominator of the other are the same. 

See P. Anning [1]. 

REMARK. J. Browkin noticed that for positive integer k we have the identity 

1+g2+g4+gs+ ... +g2k+2+g2k+4+g2k+6 

= (l_g+g2_g3+g") (I+g+g2+ ... +g21c+2), 

and 

l+g+g4+gS+ .. , +g2k+2+g2k+S+g2k+6 

= (l_g2+g4) (l+g+g2+ ... +g21e+Z), 

which implies that the fraction (I) is, for k = 1,2, ... , equal to the fra(:tion 

l_g+g2_g3+g4 

l_g2+g4 

hence its value is independent of k. 

209*. A. Schinzel proved a more general theorem, namely the theorem 
asserting that if g is a positive integer, even, and not divisible by 10, then 
the sum of decimal digits of gil increases to infinity with n. We shall present 
his proof. 

Let us define an infinite sequence of integers ai (i = 0, I, 2, ... ) as follows: 
put ao = 0, and for k = 0, 1,2, ... , let ale+! denote the smallest positive 
integer such that 2a,,+\ > 1(Y''' (thus, we shall have al = I, az = 4, a3 = 14, 
and so forth). Clearly, al < az < a3 < .... 

We shall prove that if for some positive integer k we have n ;:;: ak, then 
the sum of digits of gil is ;:;: k. 

Let Cj denote the digit of the decimal expansion of gil standing at 10j • 

Since g is even, we have 2"lg", and since n ):: ale, we have, for i = 1,2, ... 
... , k-I, the relation 2<lflg". Moreover, since 2a' llQaI, we have 

2allca,_lIQa,-1+ ... +co· 

If for at-I::;;; j < at all digits CJ were equal zero, we would have 

2a'lcai-l_llQ<lf-I-I+ ... +co, 

and, in view of Co :F 0, also 

2a,::;;; cal_I_1lQaI-I-l+ ... +co < 10a,-I. 
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This implies 2ai < loaf-I, contrary to the definition of ai. Thus, at least one 
of the digits c), where ai-l ~j < ai, is different from zero. Since this is true 
for i = 1, 2, ... , k, at least k digits of g" are different from zero. For suf­
ficiently large n (for n ~ at), the sum of decimal digits of gn is not smaller 
than an arbitrarily given number k. This shows that the' sum of decimal 
digits of g" increases to infinity together with n, which was to be proved. 

A. Schinzel noted that in a similar way one can prove that if g is an odd 
positive integer divisible by 5, then the sum of decimal digits of gn increases 
to infinity with n. 

In particular, from the theorem proved above it follows (foro g = 2) that 
the sum of decimal digits of 2" increases to infinity with n. It does not mean, 
however, that the increase is monotone: we have, for instance, the sum of 
digits of 23 equal 8, while the sum of digits of 24 equal 7, and the sum of 
digits of 2s equal 5. Next, the sum of digits of 29 is 8, while that of 210 is 7. 
Similarly, the sum of digits of 216 is 25, while that of 217 is 14. 

210*. Proof due to A. SchinzeI. Let k be a given integer> 1, and let c 
be an arbitrary fixed digit of decimal system. Since k > 1, we easily prove 
(for'instance, by induction) that 10k

-
I > 2·2k

• Let t denote the least 
integer such that t ~ C·lOk

-
1/2k

; we shall have, therefore, 

and 

At least one of integers t and t+l is not divisible by 5; denote this number 
by u. We shall have 

and since 2· 2k < 10k-I, we shall have, for 1 = 2ku, the relation 

C·10k
-

1 ~ 1 < (c+ 1) 10k
-

I
, (1) 

which shows that the number 1 = 2ku has k digits, the first of which (hence 
the kth from the end) is c (this digit can be zero). 

In view of 1 = 2ku we have 2kl/, and by the definition of u it follows that 
51u, hence (I, 5) = 1. 

As we know, the number 2 is a primitive root for the modulus 5" (see, for 
instance, W. Sierpinski [24, p. 246, lemma]). Since (I, 5) = 1, there exists an 
integer n ~ k such that 2n = 1 (mod 5k). Since 2kll and 2kI2", we have also 
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2" == [(mod 2k), and consequently 2" == [(mod 10"), which shows that the k 
last digits of the number 1 coincide with the corresponding digits of 2". It 
follows that the kth from the end digit of the number 2" is e, which was to 
be proved. 

REMARK. The last four digits of powers of 2 cannot be of the form llle 
with C = 2,4, 6 or 8 since none of the numbers 1112, 1114, 1116 and 1118 is 
divisible by 16. 

In the paper quoted above I proved (p. 249), that the third and second 
from the end digits of 2" (where n = 3,4, ... ) can be arbitrary. I proved also 
that if m is an arbitrary positive integer and k is the number of its digits, 
then there exists a positive integer n such that k first digits of the number 2" 
are the same as the digits of m. 

211. For integer n ~ 4, we have 5"+4_5" = 5"(54_1) = 5"·16·39, hence 
5"+4 == 5" (mod 10000), and it follows that the last four digits of the se­
quence S" (n = 4, 5, ... ) form a four-term period. The period is 0625, 
3125, 5625, 8125. This period is not pure since the numbers 5, 5z = 25, 
53 = 125 do not belong to it. 

212. Let s be a given positive integer, and let Cx. Cz, ••• , C. be an arbitrary 
sequence of s decimal digits. Let m = (Cl Cz ••• Cs)lO be a number with s digits 
equal respectively to Ch Cz, ••• , Ca. Let us choose a positive integer k such 

that 2Jim < 10',-1 and let n = [lOkJiml+l, where [xl denotes the greatest 

integer ::;;;. x. We have 10"Ji m < n ::;;; 10"Ji m+ 1, which implies that 

l()2km < nZ::;;; 102km+2·10k{m+l < 1()2km+lOZk- 1+1 < 102km+102k, 

and consequently 

it follows that 

(C1CZ ••• caOO ... 0)10 < n2 < (C1CZ ••• c.999 .~. 9)10, 

where the number of zeros and the number of nines is 2k. It follows that the 
first $ digits of n2 are Clo C2, ••• , Ca. 

i13. If n is a positive integer, then n"+20-n" = n"(n2°-1) is divisible by 
4. In fact, if n is even, then 4[n", and if n is odd, then nlO is odd, hence its 
square n20 gives the remainder 1 upon dividing by 8. Thus, 8[n20-1. For 
positive integer n, the number n"+zo-n", hence also the number (n+20)"+20_ 
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-nil, is always divisible by 4. On the other hand, if a and b are positive 
integers such that a > band 4Ia-b, then for positive integer n we have 
Slna-nb

• Indeed, we have a = b+4k, where k is a positive integer, hence 

na_nb = nb(n4k-1). 

If Sin, then the first factor on the right is divisible by 5; if 5,t'n, then by the 
Fermat theorem we have n4 = 1 (mod 5), which implies n4k == 1 (mod 5), 
and the second factor on the right-hand side of our equality is divisible by 
S. We proved, therefore, that if a and b are positive integers, a > b, and 
4Ia-b, then for positive integers n we have SlnQ-n", and of course, we must 
also have 51(n+20)Q-nb

• In particular, for a = (n+20)11+20 and b = nil, we 

have, as shown above, 4Ia-b, hence 51 (n+20)(n+20j'+20 -nllll. Since the right­
hand side is always even (as nand n+20 are either both even or both odd), 
we have, for positive integers n, the relation 

101 (n+20)<n+20)n+2o _nnll
, 

which shows that the numbers (n+20)(n+20)11+20 and nnll have the same last 
digit. The sequence of last digits of numbers nllll (n = 1, 2, ... ) is therefore, 
periodic; the period is pure, and consists of at most 20 terms. I t is easy to I 

see that the period consists of exactly 20 terms, equal to 

1, 6, 7, 6, 5, 6, 3, 4, 9, 0, 1, 6, 3, 6, 5, 6, 3, 4, 9, O. 

214 .. Let m be an arbitrary positive integer. Let us partition the digits of I 
the given infinite decimal fraction into blocks of m digits each; we shall 
have infinitely many such blocks. On the other hand, there are 10m different I 
sequences formed of m digits; this number being finite, we conclude that at I 
least one of them must be repeated an infinite number of times. i 

~/- I 
REMARK. For irrational numbers V 2, 1t or e, we do not even know which I 

digit will be repeated in the decimal expansion an infinite number of times; f 

it is easy to show that for each of these n~mbers there exist at least two . 
such digits. 

; 

215. If 32k = (n+l)+(n+2)+ ... +(n+3k
), then we have 32k = 3kn+ I 

+!3k (3k +l), which gives n = !(3k -l). Thus, the number 32k is a sum of 
3k terms, equal to consecutive positive integers, the least of them being 
n+l = !(3k +l). We have, for example, for k = 1, 2 and 3: 32 = 2+3+4, 
34 = 5+6+ ... +13, 36 = 14+15+ ... +40. See Khatri [12]. 

216. As we know, if a and b are real numbers such that b-a > 1, then 
between a and b there is at least one integer; in fact, such an integer equals. 

I 
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for instance [a] + I, where [x] denotes the greatest integer not exceeding x. 
Indeed, we have a < [a]+1 ~ a+l < b (since b-a > 1). 

Let s be an integer > I, and let 

1 

this number will be real and positive. Thus, for integer n > P., we shall 
have 

1 
n>~----

(y2-1)' ' 

which implies that 

hence .sr- 1 
., n > .sf 

., 2-1 
and yn(V2-1) >1 

Thus, there exists a positive integer k such that Ylt < k fit < k < Y2n, which 
yields n < k S < 2n. As m. we may take number Vt.]+ l. 

For s = 2, we have Vt2] = 5, and already between 5 and 10 there lies 
a square number, namely 32, while between 4 and 8 there is no square number. 
Thus, the least m2 is 5. Similarly, we easily compute that the least num­
ber m3 is 33. 

217. Let m be an arbitrary positive integer. By the Chinese remainder 
theorem, there exists a positive integer x such that 

x == Pi-i+l (modpt) for i = 1,2, .. , m, (1) 

where Pi denotes the ith prime. The sequence of m consecutive integers x, x+ 
+ I, ... , x+m-l has the desired property since by (1), for i = 1,2, ... , m 
we have x+i~ 1 = pfki+pi> where k i is an integer. This number will there­
fore be divisible by Pi but not divisible by pr, hence x+i-l cannot be a 
power with exponent > 1 of any positive integer. 

218. Un = 3"-1 for n = 1,2, .... Easy proof by induction. 

219. Un = (2-n)a+(n-l)b for n = 1,2, .... Easy proof by induction. 

220. Un = (-1)"[(n-2)a+(n-l)b] for n = 1,2, .... We easily check 
that the formula holds for n = 1 and n = 2. Assuming that for some n the 
formula is valid for u" and U,,+!, we easily check, using the fact that U,,+2 

= -(un+2un+l), that the formula is valid for U,,+2. Thus, the proof follows 
by induction. 
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• 
In particular, if a --.:.. 1, b = -1, we obtain Un = (_I)n+l, and for a·:= 1, 

b = -2, we obtain Un = (_I)n+ln. 

221. Un = ![3n- 2+(-I)n-l]a+![3n-I+(-1)'1b for n = 1,2, .... ' Proof 
by induction. 

222. There are only two such integers, namely a = 1 and a = -1. We 
easily check that both these numbers satisfy the desired condition. Fr?w this 
condition for n = 1 it follows that aa = a. Thus, if a were an integer ~ 2; 
we would have aa > a2 > a, which is impossible. If we had a ~ - 2, 'we 
would also have laDI = l/Iapal < 1, which again is impossible since aD = a 
and a ~ -2 imply laDI = lal > 2. 

223*. Let a and b be arbitrary positive integers, and let c2 denote the 
greatest square divisor of a2+~2, that is, a 2+b2 = kc2• Let x = a 2k, Y = b2k; 
we' have x+Y = a2k+b2k = (a2+b2)k = (kC)2 while xy = (abk)2. 

We shall show that all pairs of positive integers, whose sum and product 
are squares, can be obtained in this manner for suitably chosen a and: h. 

Suppose that x+Y = r, xy = t2
, where Z and t are positive integers. Let 

d = (x, y) and let Cl denote the greatest square divisor of d; we have, there­
fore: d = kcf, where k is a positive integer, not divisible by any square of an 
integer> 1. We have x = dXl, Y =dYl where (Xl' Yl) = 1 and from x+y 
= Z2 it follows that (Xl +Yl)d = Z2. Thus, d = kcilz2, and since k is not 
divisible by any square of an integer> 1, we find that kCllz, which implie.s 
that Z = kCtZl, where Zl is a positive integer. It follows that (Xl +Yl)d = X+ 
+Y = Z2 = k2crzr = kdzi, which implies that Xl+YI = kz{ and XIYl = t2/d2

• 

Since (Xl' Yl) = I, it follows that the numbers Xl and Yl are squares, th~t is, 
Xl = ai, Yl = bi. Since X = dx! = k(clal)2, y = dYI = k(c1b1)2, putting a 

= Clat, b = clbt we get x = ka2, y = kb2, and a2+b2 = (C1al)2+(Ctbt)2 
= Cr(Xl+Yt) = k(CIZl)2; putting CIZt = C, we get a2+b2 = kc'l; since tJte 
number k is not divisible by any square of ~an integer r > 1, the' number CZ 
is the greatest square divisor of a'Z + b2• .' 

All pairs of positive integers ~ 100 whose both sum and· product are 
squares are 2, 2; 5, 20; 8, 8; 10, 90; 18, 18; 20, 80; 9, 16; 32, 32; 50, 50; 
72, 72; 2, 98; 98, 98; 36, 64. 

224. There is only one such number, namely 10. In fact, if (2x-l)~'+ 
+ (2x+ 1)2 = ty(y+I), then (2x+l)2-(8x)2 = 17, and the number 17 has 
only one representation as the difference of two squares of integers, namely 
17 = 92-82

• This yields 2y+l = 9, hence Y = 4 and ty = ty(y+I) ~ 10. 
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225*. We shall prove by induction with respect to n that the theorem of 
Hogatt holds for every positive integer :::::;; Un. It is true for n = 1 since 
Ul = I, and for n = 2 since U2 = 1. Let now n be an integer> 2, and suppose 
that every positive integer :::::;; Un is a sum of different terms of Fibonacci 
sequence. Let k denote an integer such that Un < k:::::;; Un+!' If we had k­
-Un> Un-I> we would have Un+! ~ k > Un-l +Un = Un+h which is impos­
sible. We have, therefore, 0 < k-un :::::;; Un-to The positive integer k-un is, 
by induction, equal to a sum of different terms of Fibonacci sequence, and 
in view ofk-un :::::;; Un-l < Un, the number Un does not appear in the repre­
sentation. It follows that k = (k-un)+u" is a sum of different terms of 
Fibonacci sequence, which completes the proof of Hogatt theorem. 

We have 1 = Ut. 2 = Uh 3 = U. = Ul+Uh 4 = Ut+u., 5 = Us = U3+U4, 
6 = Ul+US, 7 = U3+US, 8 = U6 = u.+us, 9 = Ul+U6, 10 = U3+U6. 

226. We shall proceed by induction. Our formula is valid for n = 2 
since 12 = 1·2+(-1). Suppose that our formula holds for an integer n ~ 2. 
We have, therefore, u~ = Un_lun+i+(-lt- 1. It follows that 

which proves the formula for n+ 1. 

227. Let us notice first that from the identity 

it follows that every integer dividible by 6 is a sum of four cubes of integers. 
Since for every integer k and positive integer n, for r = 0, 1,2,3,4, 5 each 

of the numbers 6k+r-(6n+r)3 is divisible by 6 (as 61r3-r for integer r), it 
follows that every integer can be in infinitely many ways represented as a sum 
of five cubes of integers. 

REMARK. It is conjectured (and this conjecture was checked for all pos­
itive integers < 1000) that every integer can be represented in infinitely 
many ways as a sum of four cubes of integers; see Schinzel, Sierpinski [21] 
and Demjanenko [6]. 

228. The solution follows immediately from the identity 
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229. The proof follows immediately from the following two identities 
valid for integer t > 8: 

(t-8)2+(t-l)2+(t+ 1)2+(t+8)2 = (t-7)2+(t-4)2+(t+4)2+(t+ 7)2 

and 

(t-8)3+(t-l)3+(t+ 1)3+(t+8)3 = (t-7)3+(t-4)3+(t+4)3+(t+ 7)3. 

230. Suppose that for some positive integers m we have 4m ·7 = Ql+ 

+b2+c2+d2
, where at least one of the numbers a, b, c, d, say a, is ~ 0 and 

< 2m-
I

• We cannot have a = 0 since in this case 4n&·7 would be a sum of 
three squares of integers, which is impossible (see, for instance, W. SierpiIi­
ski, [37, p. 363, Theorem 3]). We have therefore m > 1 and a = 2k(2t-l), 
where k is a non-negative integer ~ m-2, and t is a positive integer. It 
follows that 

4m ·7-[2k (2t-l)]2 = 4k [4m- k ·7-(8u+l)] = 4k (8v+7), 

where u and v are integer (since k ~ m-2, which implies that m-k ~ 2), 
and we have 4k(8v+ 7) = b2+c2+tP, which is impossible. 

REMARK. One can easily prove that the number 4m. 7 (where m is a po­
sitive integer) has at least one representation as a sum of four squares of 
integers since 

4m .7 = (2m)2+C2m)2+C2m)2+C2m+l)2. 

231. We easily check that the first six integers> 2, which are sums 
of two cu~es of positive integers are 13+23 = 9, 23+23 = 16, 13+33 = 28, 
23+33 = 35,33+33 = 54, 13+43 = 65. None of the numbers 9, 16,28, 35, 
and 54 is a sum of two squares of integers, ·while 65 = 12+82

• Thus, the 
least integer > 2 which is a sum of two squares of integers and a sum 
of two cubes of positive integers is 65. 

To show that there exists infinitely many~positive integers which are sums 
of two squares and sums of two cubes of two relatively prime positive in­
tegers, it suffices to note that for positive integer k we have 

1 +26k = 12+(23k
)2 = 13+(22k

)3. 

232. For instance, the number 1 +2S
! has this property since kls! for 

k = 1, ... , s. Of course, instead of s! we could take the number [1, 2, ... , s]. 

233*. For instance, aU numbers of the form 6·8" (n = 0, I, 2, ... ) have 
the desired property. In fact, no such number is a sum of cubes of two pos-
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itive integers, as in the case of even n, this number gives the remainder 6 
upon division by 9, while in case of odd n, it gives the remainder 3 (since 
8 == -1 (mod 9». On the other hand, every cube of an integer gives the re­
mainder 0, 1, or -1 upon dividing by 9, hence a sum of two cubes can give 
only the remainder 0, 1, -1, 2 or - 2, and it cannot give the remainder 3 or 
6 (nor 4 or 5). 

On the other hand, we easily check that 6 = (17/21)3+(37/21)3, which 
gives 

• ft = (17.2ft )3 (37.2ft )3 
6 8 21 + 21 . 

Thus, the numbers 6·8ft (n = 0, 1, ... ) are cubes of two positive rational 
numbers. 

234*. Proof due to A. Schinzel. 
For instance, all numbers of the form 7· 8ft (n = 0, 1,2, ... ) have the 

desired property. In fact, on one hand we have 7· 8ft = (2ft+1)3_(2ft)3 for 
n = 0, 1,2, ... ; on the other hand we shall prove that none of the numbers 
7 . 8ft (n = 0, 1,2, ... ) is a sum of two cubes of positive integers. We easily 
check that the assertion is true for n = ° and n = 1. Suppose now that there 
exists a positive integer n such that 7 . 8ft is a sum of two cubes of positive 
integers, and let n be the least of such numbers; we have, therefore, n ;;:. 2, 
and 

where x and yare positive integers. Since the left-hand side :d even, x and 
yare either both even or both odd. If they are both odd, r-xy+y2 is odd, 
and as the left-hand side has only odd divisors 1 and 7, we must have either 
r-xy+y2 = 1 or x2_xy+y2 = 7. In the first case we would have x3+ 
+y3 = x+y, and since x and yare positive integers, this implies that x 
= y = 1, hence 7· 8ft = 2, which is impossible. If x2_xy+y2 = 7, then 

which yields 3r ~ 28 and 3y2 ~ 28, hence x ~ 3, y ~ 3. Thus, x3 + y3 ~ 54, 
which is impossible, as X3+y3 = 7· 8ft ;;:. 7 . 82• 

Thus, x and yare both even, x = 2x1,y = 2YI, where Xl and YI are positive 
integers, and in view of 7· 8ft = X3+y3 we have 7·8"-1 = x~+yf.· con­
trary to the definition of the number n. 
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We proved, therefore, that the numbers 7 · 8ft (n = 0, I, 2, ... ) have the 
desired property. 

REMARK. It has been proved that there exist infinitely many positive 
integers n not divisible by any cube of an integer > 1, such that they cannot 
be represented as sums of two cubes of rational numbers, but the proof 
is difficult. Such numbers ~ 50 are 3, 4, 5, 10, 11, 14, 18, 21, 23, 25, 29, 
36, 38, 39, 41, 44,45,46,47. The number 22 is a sum of two cubes of ration­
al numbers, but with large denominators: 

22 = (17299)3 + (25469)3 
9954 9954· 

See [23, p. 301, and tables on pp. 354 and 357]. 

235* . Proof due to A. Schinzel. 
Numbers of the form (2k _I)· 2nk for n = 0, I, 2, ... have the desired 

property. We obviously have (2k-l)2nk = (2ft +1)k_2I1k and it remains to 
show that the equation 

(1) 

has no positive integer solutions u and v. This is true for n = 0 since 

lk+lk < 2k_1 < 2k+lk. 

Suppose that there exist positive integers n for which equation (1) has a solu­
tion in positive integers u and 'iJ, and let n be the least of such numbers. 
If u and v were both even, u = 2Ul, V = 2Vl, we would have, by (1): 

(2k_l)2(1I-1)k = t4+~ 

contrary to the definition of the number n. Since the left-hand side of (1) 
is even, both numbers u and v have to be odd. 

Suppose that k is odd and > 3. From t?e formula 

Uk+Vk 

+ = ,}-1-zl-2v+ri'-3v2- ... +V"-l 
u 'lJ 

where the right-hand side contains k terms, all of them odd, it follows that 
the left-hand side is odd; since this number is a divisor of (2k_l)2nk, we 
must have 
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We may assume that u ~ v, which implies 

k+ k 
U v 2 k-l 
+ 

~v , 
u v 

113 

and consequently Vk- 1 < 2k; thus v < 2k
/(k-l) < 3 (because k > 3). Since 

k is odd, we have v = 1, and 

:!:k = ::: ~ t/'-2(u-l) > (U-l)k-l, 

It follows that (u-l )k-l < 2\ which yields u-l < 3, hence, in view of the 
fact that u is odd, U = 1 or u = 3. The relation u = 1 is impossible since 
we would then have Uk+Vk = 2, contrary to (1). The relation U = 3 is 
impossible, too, since it would yield 

which is > 2k_1 (for k > 3). 

tl'+vk 

u+v 

Suppose now that k is an even positive integer. Since u and v are odd, 
the number ri'+vk gives the remainder 2 upon division by 4, which is im­
possible since the left-hand side of (I) is divisible by 4. This completes the 
proof. 

236*. Proof due to A. Rotkiewicz. 
If 21n, then for positive integers k and I the number (2k+ 1)n+(21+ l)n 

is a sum of two nth powers of positive integers; as a number of the form 
4t+2, it is not a difference of two squares; since 21n, it is not a difference 
of two nth powers of positive integers, either. On the other hand, if 2,r n, 
then the numbers (211+ 1)211k = (2k+l)n+(2k)n, where k = 0, 1, 2, ... , are 
not the differences of two nth powers of positive integers. In fact, if we had 
(2n+1)2nk = xll_yn for positive integer x and y with x > y, then the 
numbers Xl = x/(x, y) and Yl = y/(x, y) would be positive integers, and 
being relatively prime, could not be both even. It easily follows that 
2,r (~-yi)/(Xl-Yl) and since 

we must have 
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which implies that 

We have, however, 

Xl II 
l-Yl > ~-l~ 3n-1 

XI-YI 

(since we cannot have Xl = 2, for then we would have Yl = 1, and 
2"-11211+1, which is impossible). We would therefore have 3n

-
1 < 2n+l, 

which is impossible for n ~ 3. 

237. We shall use the well-known formula 

rZ+22+ ... +n2 = n(n+l)6(2n+l) . 

We have to find the least integer n > 1 such that n(n+l)(2n+l) = 6m2 

where m is a positive integer. We shall distinguish six cases: 

1. n = 6k, where k is a positive integer. Our equation takes on the 
form 

k(6k+l) (12k+l) = m2
• 

The factors on the left-hand side are pairwise relatively prime, hence they 
all must be squares. If k = 1, then 6k + 1 is not a square. The next square 
after 1 is 4. If k = 4, we have 6k+ 1 = 52, 12k+ 1 = 72, and consequently, 
for n ~ 6k = 24 the sum 12+22+ ... +242 is a square of a positive 
integer, 70. 

2. n = 6k+ 1, where k is a positive integer. In this case we have 

(6k+l) (3k+l) (2k+l) = m2
, 

and each of the numbers 2k+l, 3k+l, and 6k+l (which are pairwise 
relatively prime) must be a square. The least k for which the number 
2k+l is a square is k = 4; in this case, however, we have n = 6k+l > 24. 

3. n = 6k+2, where k is an integer ~ o. We have in this case 

(3k+l) (2k+l) (12k+5) = m2
, 

and the numbers 3k+l, 2k+l, and 12k+5 (as pairwise relatively prime) 
must be squares. If we had k = 0, the number 12k+5 would not be a 
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square. On the other hand, for positive integer k, we have, as before, 
k ~ 4, hence n = 6k+2 > 24. 

4. n = 6k+3, where k is an integer ~ O. In this case we have 

(2k+ I) (3k+2) (12k+ 7) = m2; 

we easily see that the numbers 2k+l, 3k+2, and 12k+7 are pairwise 
relatively prime, hence they must be squares. We cannot have k = 0, 1,2 
or 3 since in this case the number 3k+2 would not be a square. We 
have, therefore, k ~ 4, which implies n = 6k+3 > 24. 

5. n = 6k+4, where k is an integer ~ O. We have in this case 

(3k+2) (6k+5) (4k+3) = m2, 

where the numbers 3k+2, 6k+5, and 4k+3 are pairwise relatively 
prime, hence they must be squares. We cannot have k = 0, 1,2,3 since 
then the number 3k+2 would not be a square. We have, therefore, k ~ 4, 
and consequently n = 6k+4 > 24. 

6. n = 6k+5, where k is an integer ~ O. We have in this case 

(6k+5) (k+l) (12k+11) = m2, 

and the numbers 6k+5, k+l and 12k+11 are pairwise relatively prime, 
hence they all must be squares. We cannot have k = 0, 1,2, 3 since in 
this case the number 6k+5 would not be a square. We have, therefore, 
k ~ 4, and n = 6k+5 > 24. 

We proved, therefore, that the least integer n > 1 for which 12+ 
+22+ ... +n2 is a square is n = 24. 

REMARK. It is rather difficult to show that n = 24 is the only positive 
integer for which 12+2z+ ... +n2 is a square. On the other hand, the sum 
13+23+ ... +n3 is a square for every positive integer n, but one can prove 
that it is not a cube of a positive integer for any n. 

238. All positive integers except 

1,2,3,5,6,7,10,11,13,14,15,19,23. 

It is easy show that none of the above thirteen numbers is a sum of a finite 
number of proper powers (these are successively equal to 22,23,32,24 

= 42, 52, 33,25,62, ••• ). 

Now let n be a positive integer different from any of the above thirteen 
numbers. 
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If n = 4k, where k is a positive integer, then the number n is a sum of k 
numbers 22. 

If n = 4k+ 1, then, in view of n ::F 1 and n ::F 5, we can assume that 
k ~ 2; then n = 4k+l= 32+4(k-2), where k-2 is an integer ~ o. 
If k = 2, then n = 32, while if k > 2, then n = 32+22+ ... +22, where the 
number of terms equal to 22 is k-2. 

If n = 4k+2, then since n is different from numbers 6, 10, and 14, we 
have k ~ 4 and n = 4k+2 = 32+32+4(k-4). Again it follows that the 
number n has the desired property. 

Finally, if n = 4k+3, then since n::F 3,7,11,15,19, and 23, we have 
k ~ 6 and n = 32+32+32+4(k-6), which again implies that n has the 
desired property. 

238a. We have 1 = 32_23, 2 = 33_52, 3 = 27_53, 4 = 53_112 = 23 _ 
_ 22, 5 = 32-22, 7 = 27_112, 8 = 24-2\ 9 = 52_42, 10 = 133-37. 

REMARK. We do not know whether the number 6 is a difference of two 
proper powers. It has been conjectured that every positive integer has a finite 
~ 0 number of representations as the difference of two proper powers. 

239. If a2+b2 = c2, where a, b, and c are positive integers, then multi­
plying both sides of this equality by the number 

a2(4I1Z-I)b411(2n+ 1)(11-1 )C4I1Z(2n-I) 

we obtain 

[(a2nb(2n+I)(I-I)c"(2n-I»2n]2+ [(a2n+lb2nZ-lc2nZ)2n-1]2 

= [(a2n-lb2n(II-I)ClIlZ-2n+ 1)2n+ 1]2 . 

240. There is only one such positive integer, namely n = 5. We easily 
check that this number satisfies the equation (n-l)!+1 = n2, and we 
also check that the numbers n = 2, 3, and 4 do not satisfy this equation. 
For n = 6 we obtain n2 > 6n-4 and we show by induction that the same 
inequality holds for every integer n ~ 6. If n is an integer ~ 6, then 

(n-I) !+1 > 2(n-l) (n-2) = 2(nZ-3n+2) > n2 

since n2 > 6n-4. Thus, we cannot have (n-I) '+1 = n2 for integer n ~ 6. 

REMARK. We know only two positive integers n > 5 such that 

nZI(n-l) '+1, 
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namely numbers 13 and 563, and we do not know whether there are more 
such numbers, or whether there are finitely many of them. We know that 
every such number must be a prime. 

Let us also note that for n = 5,6, and 8 the numbers (n-I) '+1 are 
squares (of numbers 5, 11, and 71 respectively), and we do not know whether 
there are any other such numbers. 

241. If for some integer n > I we had tn- 1 tn = m2 where m is a positive 
integer, we would have (n2-1)n2 = (2m)2, and since n2-1 and n2 are rel­
atively prime, each of them would have to be a square, which is impossible 
since there are no two squares of integers, whose difference would be equal 
to one. 

Let now n be a given positive integer. The equation r-n(n+l)y2 = 1 
has infinitely many solutions in positive integers x and y. In fact, one of 
these solutions is x = 2n+ 1 and y = 2, while if for some positive integers x 
and y we have x 2-n(n+l)y2 = 1, then also 

[(2n+ l)x+2n(n+ l)y]2-n(n+ 1) [2x+ (2n+ l)y]2 = 1. 

If x and yare positive integers such that x 2-n(n+ l)y2 = 1, then 

tnt2tny2 = tntny2(2tny2+1) = t;y2,x2 = (tnyX)2. 

For instance, for n = 2 we get t3t24 = 3OZ, t312400 = (3 '20·49)2, and so on. 

242. We have 210 = 1024> 103• It follows that 

21945 = 25(21°)194 > 10. 10J.194 = 10583• 

Thus, 

221945 > 210583 = (210)10582 > 103.10582, 

and the number of digits of the last number is greater than 10582. 
The number 5 . 21947+1 has obviously the same number of digits as the 

number 5 . 21947 = 10 . 21946, and since the decimal logarithm of 2 equals 
log102 = 0,30103 ... , we have 

21946 = 101946loglOz = 10585,8 ... , 

and it follows that our number has 586 digits. 

REMARK. The number F1945 is the greatest known composite Fermat 
number. 
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243. The number 211213 -1 has (in decimal system) the same number of 
digits as 211213, as it differs only by one from the latter. Thus, it suffices to 
compute the number of decimal digits of 211213. 

If a positive integer n is of the form n = lOX where x is real (of course, 
x ~ 0), then, denoting by [xl the greatest integer ~ x, we have lOX ~ n 
< lO[X] +1 , and it follows that the number n has [xl + 1 decimal digits. We 
have 211213 = 10112131011102, and since 10g102 = 0,30103 ... , we have 3375 
< 11213log10 2 < 3376. Thus, the number 211213 (hence also 211213_1) has 
3376 decimal digits. 

244. We have 211212(211213_1) = 222425_211212. We compute first the 
number of digits of the number 222425. Since 22425 log102 = 22425 ·0,30103 ... 
= 6750,597 ... , we obtain (see the solution of Problem 243) the result 
that the number 222425 has 6751 digits, and we have 222425 = 106750 • 10°·597. 
Since 10°,597 ... > 101/2 > 3, we get 106751 > 222425 > 3 . 10675°, which shows 
that the first digit of 222425 is ~ 3. Thus, if we subtract from the number 
222425 the number 211213, which has smaller number of digits, we do not 
change the number of digits of the latter. Consequently, the number 
211212(211213_1) has 6751 digits. 

245. We have 3! = 6,3!! = 6! = 720,3!!! = 720! > 99! 100621 > 101242. 
Thus, the number 3!!! has more than thousand digits. 

By the well-know theorem (see, for instance, Sierpinski [37, p. 131, Theo­
rem 6]), if m is a positive integer and p is a prime, then the largest power 
of p dividing m! is 

where [xl denotes the greatest integer ~ x. It follows that the largest power 
of 5 which divides 3!!! = 720! is 

[ 72°]+[72°]+[ 7201+[72°] = 144+28+5+1 = 178 5 25 125 625 ' 

while the largest power of 2 dividing 720! is still greater (since already 

[ 7~0] = 360). It follows that the number 3!!! has 178 zeros at the end of 

its decimal expansion. 

246*. The solution found by A. Schinzel. 
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For positive integers m which are powers of primes (with positive integer 
exponents), and only for such numbers. In fact, if m = l', where p is a prime 
and k is a positive integer, then for f(x) = )(PI,!'>, in case p ..r x, by the Euler 
theorem, we have f(x) == 1 (mod pk), while in case pix, in view of rp(pk) 
~ pk-l ~ k (which can be easily shown by induction), we have rlX', and 
consequently, p"IXApk>. Thus,j(x) == 0 (modpk). 

If m is an integer> 1, and m is not a power of a prime, then m has at 
least two different prime divisors, p and q =F p. Suppose that f(x) is a poly­
nomial with integer coefficients, and that there exist integers Xl and Xz such 
that f(XI) == 0 (mod m), while f(X2) == 1 (mod m). We shall have, therefore, 
also (in view of plm and qlm) the relations f(xJ == 0 (mod p) and f(Xl) 
== 1 (mod q). Since p and q are different primes, by the Chinese remainder 
theorem there exists an integer Xo such that Xo == XI (mod p) and Xo 
== X2 (mod q) It follows that f(xo) == j(XI) == 0 (mod p) and f(xo) == j(X2) 
== 1 (mod q). The first of these congruences implies that we cannot have 
f(xo) == 1 (mod m). Similarly, the second congruence implies that we cannot 
have f(xo) == 0 (mod m). Consequently, f(xo) does not give the remainder 0 
upon dividing by m, nor does it give the remainder I. Thus, if m is not a 
power of a prime, then there is no polynomial f(x) with integer coefficients 
which would satisfy the required conditions. 

247. We easily see that 

D < [(4m2 + I)n+m+ 1]2, 

hence the integral part of the number YD equals to ao = (4m2+1)n+m, 
which implies that D-~ = 4mn+ I and 

1 )lD+ao 
Xl= = . YD-ao D-ao 

Since ao is the integral part of the number V D, we have ao < v' D < ao+ 1, 
which yields 2ao < VD+ao < 2ao+ I and since ao = (4mn+ I)m+n, we find 

2n VD+llo 2n+1 
2m+ 4mn+ 1 < D-cro < 2m+ 4mn+ I ; 

since (2n+ 1)/(4mn+ 1) ~ I, we see that the integral part of the number 

Xl = (V D+ao)/(D-~) is equal to al = 2m. We have, therefore 

Xl = al+l/x2, and X2 = I/(xl-al)' 
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On the other hand, 

yD+ao 
Xl-at = 4mn+l 

2m = YD- [(4mn+ l)m-n] 
4mn+l ' 

and consequently, 

We easily check that 

which yields 

(4mn+l) [VD+(4mn+l)m-n] 
D- [(4mn+l)m-n]Z 

xl = VD+(4mn+l)m-n 
4mn+l 

and since ao < yD < ao+l, or 

we get 

(4mn+l)m+n < VD < (4mn+l)m+n+l, 

1 
2m < Xz < 2m+ 4mn+l 

Consequently, the integral part of Xz equals az = 2m. We have, therefore, 
X2 = az+ l/x3> which gives X3 = 1/(x2-a2). However, 

yD+(4mn+l)m-n 2 _ Y:D-(4mn+l)m-n 
X2- aZ = 4mn+l m - 4mn+l . 

Consequently, we have 

- (4mn+l) [vD+(4mn+l)m+n] _ :ID (4 +1) + - 'D+ 
X3 - D-[(4mn+l)m+n]Z - J' + mn m n - V ao 

which implies that the integral part of X3 is 2ao, and that the number VI> 
has the expansion into the arithmetic continued fraction with the three­
term period, formed of numbers 2m, 2m and 2ao. 

REMARK. One can show that all positive integers D for which the ex­
pansion of y D into arithmetic continued fraction has a three:-term period 
are just the above considered numbers D. See Sierpinski [32]. 
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24S. Computing the values of functions cp(n) and den) for n ~ 30 from 
the well-known formulae for these functions. i.e. if n = qf'q~2 ... q~', then 

we easily see that the only values n ~ 30 for which cp(n) = den) are n = 1, 3, 
S, 10, IS, 24, and 30. We have here cp(I) = d(l) = 1, cp(3) = d(3) = 2, cp(8) 
= deS) = 4, cp(lO) = d(lO) = 4, cp(IS) = d(IS) = 6, cp(24) = d(24) = 8, 
cp(30) = d(30) = 8. 

REMARK. It was proved that there are no other solutions of the equation 
cp(n) = den) in positive integers n. It can be shown that for n > 30 we have 
cp(n) > den); see P6lya and Szego [15, Section VIII, problem 45]. 

249. We easily check that for positive integer k and integer s;?: 0 we 
have 

(I.!) ( _1 ) ( _1 ) _ s+ 1 + k 1+ k+l ... 1+ k+s - 1+ k . (1) 

A positive rational number w-l can be always represented in the form w­
-1 = min where m and n are positive integers (not necessarily relatively 
prime) and n > g. It suffices to take k = nand s = m-l; then the right­
hand side of (1) will be equal to w. In this way we obtain the desired de­
composition for the number w. 

250* . We shall first prove that every integer k ;?: 0 can be in at least one 
way represented in the form 

(1) 

where m is a positive integer, and the signs + and - are suitably chosen. The 
assertion holds for the number 0 since 0 = 12+22_32+42_52_62+72. It is 
also true for the numbers 1, 2, and 3 since 1 = 12, 2 = _12_22_32+42, 
3 = -12+22,4 = _12_22+32. 

Now, it suffices to prove that our theorem is true for every positive integer 
k, and since it is true for numbers 0, 1, 2, and 3, it suffices to prove that if 
the theorem is true for an integer k ;?: 0, it is also true for the number k+4. 

Suppose, then, that the theorem is true for the number k; thus, there exists 
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a positive integer m such that with the suitable choice of signs + and - we 
have relation (1). Since we have 

(m+l)2-(m+2)2-(m+3)2+(m+4)2 = 4, (2) 

it follows from (1) that 

k+4 = ±12±22± ... ±m2+(m+l)2-(m+2)2-(m+3)2+(m+4)2, 

that is, our theorem holds for the number k+4. Thus, it is true for every 
integer. 

It follows from (2) that for every positive integer m we have 

(m+I)2-(m+2)2-(m+3)2+(m+4)2-(m+S)2+ 

+(m+6)2+(m+7)2_(m+8)2 = o. 
Thus, in (I) we can replace the number m by m+8, hence also by m+16, 
and so on. This shows that every integer k can be in infinitely many ways 
represented in the form (I), which was to be proved. 
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