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1. Answer (C): There are 18−2 = 16 more students than rabbits per classroom.
Altogether there are 4 · 16 = 64 more students than rabbits.

2. Answer (E): The width of the rectangle is the diameter of the circle, so the
width is 2 ·5 = 10. The length of the rectangle is 2 ·10 = 20. Therefore the area
of the rectangle is 10 · 20 = 200.

3. Answer (D): Let h be the number of holes dug by the chipmunk. Then the
chipmunk hid 3h acorns, while the squirrel hid 4(h − 4) acorns. Since they hid
the same number of acorns, 3h = 4(h − 4). Solving gives h = 16. Thus the
chipmunk hid 3 · 16 = 48 acorns.

4. Answer (B): Diana’s money is worth 500 dollars and Étienne’s money is
worth 400 · 1.3 = 520 dollars. Hence the value of Étienne’s money is greater
than the value of Diana’s money by

520 − 500
500

· 100% = 4%.

5. Answer (A): The sum of two integers is even if they are both even or both
odd. The sum of two integers is odd if one is even and one is odd. Only the
middle two integers have an odd sum, namely 41− 26 = 15. Hence at least one
integer must be even. A list satisfying the given conditions in which there is
only one even integer is 1, 25, 1, 14, 1, 15.

6. Answer (A): Consider x and y as points on the real number line, with x
necessarily to the right of y. Then x − y is the distance between x and y.
Xiaoli’s rounding moved x to the right and moved y to the left. Therefore the
distance between them increased, and her estimate is larger than x − y.

To see that the other answer choices are not correct, let x = 2.9 and y = 2.1,
and round each by 0.1 . Then x − y = 0.8 and Xiaoli’s estimated difference is
(2.9 + 0.1) − (2.1 − 0.1) = 1.0 .

7. Answer (E): Consider consecutive red, red, green, green, green lights as a
unit. There are 5 · 6 · 1

12 = 2.5 feet between corresponding lights in successive
units. The 3rd red light begins the 2nd unit, and the 21st red light begins the
11th unit. Therefore the distance between the desired lights is (11−2)·2.5 = 22.5
feet.
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8. Answer (A): There are 3 choices for Saturday (anything except cake) and
for the same reason 3 choices for Thursday. Similarly there are 3 choices for
Wednesday, Tuesday, Monday, and Sunday (anything except what was to be
served the following day). Therefore there are 36 = 729 possible dessert menus.

OR

If any dessert could be served on Friday, there would be 4 choices for Sunday
and 3 for each of the other six days. There would be a total of 4 · 36 dessert
menus for the week, and each dessert would be served on Friday with equal
frequency. Because cake is the dessert for Friday, this total is too large by a
factor of 4. The actual total is 36 = 729.

9. Answer (B): Let x be Clea’s rate of walking and r be the rate of the moving
escalator. Because the distance is constant, 24(x+r) = 60x. Solving for r yields
r = 3

2x. Let t be the time required for Clea to make the escalator trip while
just standing on it. Then rt = 60x, so 3

2xt = 60x. Therefore t = 40 seconds.

10. Answer (B): Solve the first equation for y2 and substitute into the second
equation to get x2+x−20 = 0, so x = 4 or x = −5. This leads to the intersection
points (−5, 0), (4, 3), and (4,−3). The vertical side of the triangle with these
three vertices has length 3 − (−3) = 6, and the horizontal height to that side
has length 4 − (−5) = 9, so its area is 1

2 · 6 · 9 = 27.

11. Answer (C): First assume B = A − 1. By the definition of number bases,

A2 + 3A + 2 + 4(A − 1) + 3 = 6(A + A − 1) + 9.

Simplifying yields A2 − 5A − 2 = 0, which has no integer solutions.

Next assume B = A + 1. In this case

A2 + 3A + 2 + 4(A + 1) + 3 = 6(A + A + 1) + 9,

which simplifies to A2 − 5A − 6 = (A − 6)(A + 1) = 0. The only positive
solution is A = 6. Letting A = 6 and B = 7 in the original equation produces
1326 + 437 = 6913, or 56 + 31 = 87, which is true. The required sum is A + B
= 13.
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12. Answer (E): By symmetry, half of all such sequences end in zero. Of those,
exactly one consists entirely of zeros. Each of the others contains a single sub-
sequence of one or more consecutive ones beginning at position j and ending at
position k with 1 ≤ j ≤ k ≤ 19. Thus the number of sequences that meet the
requirements is

2



1 +
19∑

k=1

k∑

j=1

1



 = 2(1 + (1 + 2 + 3 + · · · + 19)) = 2
(

1 +
19 · 20

2

)
= 382.

OR

Let A be the set of zero-one sequences of length 20 where all the zeros appear
together, and let B be the equivalent set of sequences where all the ones appear
together. Set A contains one sequence with no zeros and 20 sequences with
exactly one zero. Each sequence of A with more than one zero has a position
where the first zero appears and a position where the last zero appears, so there
are

(
20
2

)
= 190 such sequences, and thus |A| = 1+20+190 = 211. By symmetry

|B| = 211. A sequence in A ∩ B begins with zero and contains from 1 to 20
zeros, or it begins with one and contains from 1 to 20 ones; thus |A ∩ B| = 40.
Therefore the required number of sequences equals

|A ∪ B| = |A| + |B| − |A ∩ B| = 211 + 211 − 40 = 382.

13. Answer (D): The parabolas have no points in common if and only if the
equation x2 +ax+ b = x2 + cx+d has no solution. This is true if and only if the
lines with equations y = ax+b and y = cx+d are parallel, which happens if and
only if a = c and b �= d. The probability that a = c is 1

6 and the probability that
b �= d is 5

6 , so the probability that the two parabolas have a point in common is
1 − 1

6 · 5
6 = 31

36 .

14. Answer (A): The smallest initial number for which Bernardo wins after
one round is the smallest integer solution of 2n + 50 ≥ 1000, which is 475. The
smallest initial number for which he wins after two rounds is the smallest integer
solution of 2n + 50 ≥ 475, which is 213. Similarly, the smallest initial numbers
for which he wins after three and four rounds are 82 and 16, respectively. There
is no initial number for which Bernardo wins after more than four rounds. Thus
N = 16, and the sum of the digits of N is 7.
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15. Answer (C): Each sector forms a cone with slant height 12. The circumference
of the base of the smaller cone is 120

360 · 2 · 12 · π = 8π. Hence the radius of the
base of the smaller cone is 4 and its height is

√
122 − 42 = 8

√
2. Similarly, the

circumference of the base of the larger cone is 16π. Hence the radius of the base
of the larger cone is 8 and its height is 4

√
5. The ratio of the volume of the

smaller cone to the volume of larger cone is

1
3π · 42 · 8

√
2

1
3π · 82 · 4

√
5

=
√

10
10

.

16π

8π

12

4
8

12

12

8
√

2 4
√

5

8π

12

16π

16. Answer (B): There are two cases to consider.

Case 1
Each song is liked by two of the girls. Then one of the three pairs of girls likes
one of the six possible pairs of songs, one of the remaining pairs of girls likes one
of the remaining two songs, and the last pair of girls likes the last song. This
case can occur in 3 · 6 · 2 = 36 ways.

Case 2
Three songs are each liked by a different pair of girls, and the fourth song is
liked by at most one girl. There are 4! = 24 ways to assign the songs to these
four categories, and the last song can be liked by Amy, Beth, Jo, or no one.
This case can occur in 24 · 4 = 96 ways.

The total number of possibilities is 96 + 36 = 132.

17. Answer (C): Let A = (3, 0), B = (5, 0), C = (7, 0), D = (13, 0), and θ
be the acute angle formed by the line PQ and the x-axis. Then SR = PQ =
AB cos θ = 2 cos θ, and SP = QR = CD sin θ = 6 sin θ. Because PQRS is
a square, it follows that 2 cos θ = 6 sin θ and tan θ = 1

3 . Therefore lines SP
and RQ have slope 3, and lines SR and PQ have slope −1

3 . Let the points
M = (4, 0) and N = (10, 0) be the respective midpoints of segments AB and
CD. Let �1 be the line through M parallel to line SP . Let �2 be the line
through N parallel to line SR. Lines �1 and �2 intersect at the center of the
square PQRS. Line �1 satisfies the equation y = 3(x − 4), and line �2 satisfies
the equation y = −1

3 (x − 10). Thus the lines �1 and �2 intersect at the point
(4.6, 1.8), and the required sum of coordinates is 6.4 .
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18. Answer (B): If a1 = 1, then the list must be an increasing sequence. Other-
wise let k = a1. Then the numbers 1 through k − 1 must appear in increasing
order from right to left, and the numbers from k through 10 must appear in in-
creasing order from left to right. For 2 ≤ k ≤ 10 there are

(
9

k−1

)
ways to choose

positions in the list for the numbers from 1 through k − 1, and the positions of
the remaining numbers are then determined. The number of lists is therefore

1 +
10∑

k=2

(
9

k − 1

)
=

9∑

k=0

(
9
k

)
= 29 = 512.

19. Answer (A): Let s be the length of the octahedron’s side, and let Qi and Q′
i

be the vertices of the octahedron on P1Pi and P ′
1P

′
i , respectively. If Q2 and Q3

were opposite vertices of the octahedron, then the midpoint M of Q2Q3 would
be the center of the octahedron. Because M lies on the plane P1P2P3, the vertex
of the octahedron opposite Q4 would be outside the cube. Therefore Q2, Q3,
and Q4 are all adjacent vertices of the octahedron, and by symmetry so are Q′

2,
Q′

3, and Q′
4. For 2 ≤ i < j ≤ 4, the Pythagorean Theorem applied to �P1QiQj

gives
s2 = (QiQj)2 = (P1Qi)2 + (P1Qj)2.

It follows that P1Q2 = P1Q3 = P1Q4 =
√

2
2 s, and by symmetry, P ′

1Q
′
2 = P ′

1Q
′
3 =

P ′
1Q

′
4 =

√
2

2 s. Consequently Qi and Q′
i are opposite vertices of the octahedron.

The Pythagorean Theorem on �Q2P2P
′
3 and �Q′

3P
′
3Q2 gives

(Q2P
′
3)

2 = (P2P
′
3)

2 + (Q2P2)2 = 1 +

(
1 −

√
2

2
s

)2

and

s2 = (Q2Q
′
3)

2 = (P ′
3Q

′
3)

2 + (Q2P
′
3)

2 =

(
1 −

√
2

2
s

)2

+ 1 +

(
1 −

√
2

2
s

)2

.

Solving for s gives s = 3
√

2
4 .
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20. Answer (D): Let ABCD be a trapezoid with AB ‖ CD and AB < CD. Let
E be the point on CD such that CE = AB. Then ABCE is a parallelogram.
Set AB = a, BC = b, CD = c, and DA = d. Then the side lengths of �ADE
are b, d, and c− a. If one of b or d is equal to 11, say b = 11 by symmetry, then
d + (c − a) ≤ 7 + (5 − 3) < 11 = d, which contradicts the triangle inequality.
Thus c = 11. There are three cases to consider, namely, a = 3, a = 5, and a = 7.

If a = 3, then �ADE has side lengths 5, 7, and 8 and by Heron’s formula its
area is

1
4

√
(5 + 7 + 8)(7 + 8 − 5)(8 + 5 − 7)(5 + 7 − 8) = 10

√
3.

The area of �AEC is 3
8 of the area of �ADE, and triangles ABC and AEC

have the same area. It follows that the area of the trapezoid is 1
2 (35

√
3).

If a = 5, then �ADE has side lengths 3, 6, and 7, and area

1
4

√
(3 + 6 + 7)(6 + 7 − 3)(7 + 3 − 6)(3 + 6 − 7) = 4

√
5.

The area of �AEC is 5
6 of the area of �ADE, and triangles ABC and AEC

have the same area. It follows that the area of the trapezoid is 1
3 (32

√
5).

If a = 7, then �ADE has side lengths 3, 4, and 5. Hence this is a right
trapezoid with height 3 and base lengths 7 and 11. This trapezoid has area
1
2 (3(7 + 11)) = 27.

The sum of the three possible areas is 35
2

√
3+ 32

3

√
5+27. Hence r1 = 35

2 , r2 = 32
3 ,

r3 = 27, n1 = 3, n2 = 5, and r1+r2+r3+n1+n2 = 35
2 + 32

3 +27+3+5 = 63+ 1
6 .

Thus the required integer is 63.

21. Answer (A): Extend EF to H and extend CB to J so that HJ contains
A and is perpendicular to lines EF and CB. Let s be the side length of the
square and let u = BX. Because ∠ABJ = 60◦, it follows that BJ = 20 and
AJ = 20

√
3. Then by the Pythagorean Theorem

AX2 = s2 = (20 + u)2 + (20
√

3)2.
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Because ABCDEF is equiangular, it follows that ED ‖ AB and so EY ‖ AB.
Also ZY ‖ AX and thus it follows that ∠EY Z = ∠BAX and so �EY Z ∼=
�BAX. Thus EZ = u. Also, ∠HZA = 90◦−∠Y ZE = 90◦−∠AXJ = ∠JAX;
thus �AXJ ∼= �ZAH and so ZH = 20

√
3 and HA = 20 + u. Moreover,

∠HFA = 60◦ and so FH = HA√
3

= 1√
3
(20 + u). But EZ + ZH = EF + FH,

and so
u + 20

√
3 = 41(

√
3 − 1) +

20 + u√
3

.

Solving for u yields u = 21
√

3− 20. Then s2 = (21
√

3)2 +(20
√

3)2 = 3 · 292 and
therefore s = 29

√
3.

22. Answer (E): Label the columns having arrows as c1, c2, c3, . . . , c7 according
to the figure. Call those segments that can be traveled only from left to right
forward segments. Call the segments s1, s2, and s3, in columns c2, c4, and
c6, respectively, which can be traveled only from right to left, back segments.
Denote S as the set of back segments traveled for a path.

First suppose that S = ∅. Because it is not possible to travel a segment more
than once, it follows that the path is uniquely determined by choosing one
forward segment in each of the columns cj . There are 2, 2, 4, 4, 4, 2, and
2 choices for the forward segment in columns c1, c2, c3, c4, c5, c6, and c7,
respectively. This gives a total of 210 total paths in this case.

Next suppose that S = {s1}. The two forward segments in c2, together with s1,
need to be part of the path, and once the forward segment from c1 is chosen, the
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order in which the segments of c2 are traveled is determined. Moreover, there
are only 2 choices for possible segments in c3 depending on the last segment
traveled in c2, either the bottom 2 or the top 2. For the rest of the columns, the
path is determined by choosing any forward segment. Thus the total number
of paths in this case is 2 · 1 · 2 · 4 · 4 · 2 · 2 = 28, and by symmetry this is also
the total for the number of paths when S = {s3}. A similar argument gives
2 · 1 · 2 · 4 · 2 · 1 · 2 = 26 trips for the case when S = {s1, s3}.

Suppose S = {s2}. Because s2 is traveled, it follows that 2 forward segments in
c4 need to belong to the path, one of them above s2 (2 choices) and the other
below it (2 choices). Once these are determined, there are 2 possible choices for
the order in which these segments are traveled: the bottom forward segment
first, then s2, then the top forward segment, or vice versa. Next, there are
only 2 possible forward segments that can be selected in c3 and also only 2
possible forward segments that can be selected in c5. The forward segments in
c1, c2, c6, and c7 can be freely selected (2 choices each). This gives a total of
(23 · 2 · 2) · 24 = 29 paths.

If S = {s1, s2}, then the analysis is similar, except for the last step, where the
forward segments of c1 and c2 are determined by the previous choices. Thus
there are (23 · 2 · 2) · 22 = 27 possibilities, and by symmetry the same number
when S = {s2, s3}.
Finally, if S = {s1, s2, s3}, then in the last step, all forward segments of c1, c2, c6,
and c7 are determined by the previous choices and hence there are 23 · 2 · 2 = 25

possible paths. Altogether the total number of paths is 210 + 2 · 28 + 26 + 29 +
2 · 27 + 25 = 2400.

23. Answer (B): If zk
0 is equal to a positive real r, then 1 = |z0|k = |zk

0 | = |r| = r,
so zk

0 = 1. Suppose that zk
0 = 1. If k = 1, then z0 = 1, but P (1) = 4 + a + b +

c + d ≥ 4 so z0 = 1 is not a zero of the polynomial. If k = 2, then z0 = ±1.
If z0 = −1, then 0 = P (−1) = (4 − a) + (b − c) + d and by assumption 4 ≥ a,
b ≥ c, and d ≥ 0. Thus a = 4, b = c, and d = 0. Conversely, if a = 4, b = c,
and d = 0, then P (z) = 4z4 + 4z3 + bz2 + bz = z(z + 1)(4z2 + b) satisfies the
required conditions. If k = 3, then z0 = 1 or z0 = γ where γ is any of the roots
of γ2 + γ + 1 = 0. If z0 = γ, then 0 = P (γ) = 4γ + a + b(−1 − γ) + cγ + d =
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(a − b) + d + γ((4 − b) + c) and by assumption a ≥ b, d ≥ 0, 4 ≥ b, and c ≥ 0.
Thus a = b, d = 0, b = 4, and c = 0. Conversely, if a = b = 4 and c = d = 0,
then P (z) = 4z4 + 4z3 + 4z2 = 4z2(z2 + z + 1) satisfies the given conditions
because z0 = cos(2π/3) + i sin(2π/3) is a zero of this polynomial. If k = 4, then
z0 = ±1 or z0 = ±i. If z0 = ±i, then 0 = P (±i) = 4 ∓ ia − b ± ic + d =
(4− b) + d∓ i(a− c) and by assumption 4 ≥ b, d ≥ 0, and 4 ≥ a ≥ b ≥ c. Thus
b = 4, d = 0, and a = c = 4. Conversely, if a = b = c = 4 and d = 0, then
P (z) = 4z4 + 4z3 + 4z2 + 4z = 4z(z + 1)(z2 + 1) satisfies the given conditions,
but it was already considered in the case when z0 = −1. The remaining case is
that zk

0 is not a positive real number for 1 ≤ k ≤ 4. In this case,

4z5 − (z − 1)P (z) = z4(4 − a) + z3(a − b) + z2(b − c) + z(c − d) + d.

If z = z0, then the triangle inequality yields

4 = |z4
0(4 − a) + z3

0(a − b) + z2
0(b − c) + z0(c − d) + d|

≤
∣∣z4

0(4 − a)
∣∣ +

∣∣z3
0(a − b)

∣∣ +
∣∣z2

0(b − c)
∣∣ + |z0(c − d)| + |d|

= |z0|4 (4 − a) + |z0|3 (a − b) + |z0|2 (b − c) + |z0| (c − d) + d

= 4 − a + a − b + b − c + c − d + d = 4.

Thus equality must occur throughout. This means that the vectors v4 = z4
0(4−

a), v3 = z3
0(a − b), v2 = z2

0(b − c), v1 = z0(c − d), and v0 = d are parallel and
they belong to the same quadrant. If two of these vectors are nonzero, then the
quotient must be a positive real number; but dividing the vector with the largest
exponent of z0 by the other would yield a positive rational number times zk

0 for
some 1 ≤ k ≤ 4. Because not all of the vj can be zero, it follows that there is
exactly one of them that is nonzero. If v0 = d �= 0 and v1 = v2 = v3 = v4 = 0,
then 4 = a = b = c = d, and P (z) = 4z4 + 4z3 + 4z2 + 4z + 4 satisfies the given
conditions because z0 = cos(2π/5) + i sin(2π/5) is a zero of this polynomial.
Finally, if vj �= 0 for some 1 ≤ j ≤ 4 and the rest are zero, then 4z5

0 = vj = zj
0n

for some positive integer n, and so z5−j
0 = 1

4n is a positive real.

Therefore the complete list of polynomials is: 4z4 + 4z3 + 4z2 + 4z + 4, 4z4 +
4z3 + 4z2, and 4z4 + 4z3 + bz2 + bz with 0 ≤ b ≤ 4. The required sum is
20 + 12 +

∑4
b=0(8 + 2b) = 32 + 40 + (2 + 4 + 6 + 8) = 92.

24. Answer (D): Let SN = (f1(N), f2(N), f3(N), . . .). If N1 divides N2, then
f1(N1) divides f1(N2). Thus SN2 is unbounded if SN1 is unbounded. Call N
essential if SN is unbounded and N ≤ 400 is not divisible by any smaller number
n such that Sn is unbounded. Assume N = pe1

1 pe2
2 · · · pek

k is essential. If ej = 1
for some j, then f1(N) = f1( N

pj
). Let n = N

pj
and note that SN and Sn coincide

after the first term and consequently Sn is unbounded. This contradicts the fact
that N is essential. Thus ej ≥ 2 for all 1 ≤ j ≤ k. Moreover, (p1p2 · · · pk)2 ≤
pe1
1 pe2

2 · · · pek

k = N ≤ 400; thus p1p2 · · · pk ≤
√

400 = 20. Because 2 · 3 · 5 > 20 it
follows that k ≤ 2.
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First analyze the case when n = 2a · 3b. In that case f2(n) = f1(22b−2 · 3a−1) =
22a−4 · 32b−3; thus Sn is unbounded if and only if a ≥ 5 or b ≥ 4, and n is
essential if and only if n = 25 or n = 34.

If k = 1, then N = pe for some prime p ≤ 19. The cases p = 2 or p = 3 have
been considered before. If p = 5, then f1(5a) = 2a−1 · 3a−1 and because a ≤ 3,
no power of 5 in the given range is essential. If p = 7, then f1(7a) = 23a−3, and
thus N = 73 is essential. If p ≥ 11, then p3 > 400. Because f1(112) = 22 · 3,
f2(132) = f1(2 · 7) = 1, f1(172) = 2 · 32, and f2(192) = f1(22 · 5) = 3, no powers
of 11, 13, 17, or 19 are essential.

If k = 2, then the only possible pairs of primes (p1, p2) are (2, 3), (2, 5), (2, 7),
and (3, 5). The pair (2, 3) was analyzed before and it yields no essential N . If
N = 2a ·5b ≤ 400 is essential, then 2 ≤ a ≤ 4 and b = 2. Moreover f1(N) = 2·3a,
so a = 4 and thus only N = 24 · 52 is essential in this case. If (p1, p2) = (2, 7)
or (3, 5) and N = pe1

1 pe2
2 ≤ 400 is essential, then N ∈ {22 · 72, 23 · 72, 32 · 52}.

Because f1(22 · 72) = 23 · 3, f1(23 · 72) = 23 · 32, and f1(32 · 52) = 23 · 3, it follows
that there are no essential N in this case.

Therefore the only essential values of N are 25 = 32, 34 = 81, 73 = 343, and
24 ·52 = 400. These values have �400

32 � = 12, � 400
81 � = 4, � 400

343� = 1, and � 400
400� = 1

multiples, respectively, in the range 1 ≤ N ≤ 400. Because there are no common
multiples, the required answer is 12 + 4 + 1 + 1 = 18.

25. Answer (B): First note that the isosceles right triangles t can be excluded from
the product because f(t) = 1 for these triangles. All triangles mentioned from
now on are scalene right triangles. Let O = (0, 0). First consider all triangles
t = �ABC with vertices in S ∪ {O}. Let R1 be the reflection with respect to
the line with equation x = 2. Let A1 = R1(A), B1 = R1(B), C1 = R1(C), and
t1 = �A1B1C1. Note that �ABC ∼= �A1B1C1 with right angles at A and A1,
but the counterclockwise order of the vertices of t1 is A1, C1, and B1. Thus
f(t1) = tan(∠A1C1B1) = tan(∠ACB) and

f(t)f(t1) = tan(∠CBA) tan(∠ACB) =
AC

AB
· AB

AC
= 1.

The reflection R1 is a bijection of S ∪ {O} and it induces a partition of the
triangles in pairs (t, t1) such that f(t)f(t1) = 1. Thus the product over all
triangles in S ∪ {O} is equal to 1, and thus the required product is equal to the
reciprocal of

∏
t∈T1

f(t), where T1 is the set of triangles with vertices in S∪{O}
having O as one vertex.

Let S1 = {(x, y) : x ∈ {0, 1, 2, 3, 4}, and y ∈ {0, 1, 2, 3, 4}} and let R2 be
the reflection with respect to the line with equation x = y. For every right
triangle t = �OBC with vertices B and C in S1, let B2 = R2(B), C2 =
R2(C), and t2 = �OB2C2. Similarly as before, R2 is a bijection of S1 and it
induces a partition of the triangles in pairs (t, t2) such that f(t)f(t2) = 1. Thus
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∏

t∈T1
f(t) =

∏
t∈T2

f(t), where T2 is the set of triangles with vertices in S∪{O}
with O as one vertex, and another vertex with y coordinate equal to 5.

Next, consider the reflection R3 with respect to the line with equation y = 5
2 .

Let X = (0, 5). For every right triangle t = �OXC with C in S, let C3 =
R3(C), and t3 = �OXC3. As before R3 induces a partition of these triangles
in pairs (t, t3) such that f(t)f(t3) = 1. Therefore to calculate

∏
t∈T2

f(t), the
only triangles left to consider are the triangles of the form t = �OY Z where
Y ∈ {(x, 5) : x ∈ {1, 2, 3, 4}} and Z ∈ S \ {X}.

The following argument shows that there are six such triangles. Because the y
coordinate of Y is greater than zero, the right angle of t is not at O. The slope
of the line OY has the form 5

x with 1 ≤ x ≤ 4, so if the right angle were at Y ,
then the vertex Z would need to be at least 5 horizontal units away from Y ,
which is impossible. Therefore the right angle is at Z. There are 4 such triangles
with Z on the x-axis, with vertices O, Z = (x, 0), and Y = (x, 5) for 1 ≤ x ≤ 4.
There are two more triangles: with vertices O, Z = (3, 3), and Y = (1, 5), and
with vertices O, Z = (4, 4), and Y = (3, 5). The product of the values f(t) over
these six triangles is equal to

1
5
· 2
5
· 3
5
· 4
5
· 3

√
2

2
√

2
· 4

√
2√
2

=
144
625

.

Thus the required product equals

∏

t∈T

f(t) =

(
∏

t∈T1

f(t)

)−1

=

(
∏

t∈T2

f(t)

)−1

=
(

144
625

)−1

=
625
144

.

The problems and solutions in this contest were proposed by Bernardo Abrego, Betsy
Bennett, Barb Currier, Steve Davis, Zuming Feng, Silvia Fernández, Peter Gilchrist,
Jerrold Grossman, Dan Kennedy, Joe Kennedy, David Wells, LeRoy Wenstrom.
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