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FOREWORD TO THE
THIRD (Russian) EDITION

THis Book conTAINS 320 unconventional problems in algebra, arithme-
tic, elementary number theory, and trigonometry Most of these
problems first appeared in competitive examinations sponsored by the
School Mathematical Society of the Moscow State University and in
the Mathematical Olympiads held in Moscow. The book is designed
for students having a mathematical background at the high school
level;* very many of the problems are within reach of seventh and
eighth grade students of outstanding ability Solutions are given
for all the problems. The solutions for the more difficult problems
are especially detailed.

The third (Russian) edition differs from the second chiefly in the
elimination of errors detected in the second edition. Therefore, the
preface to the second edition is retained.

t The level of academic attainment referred to as ‘‘high school level'' is the
American ninth to twelfth grades. The USSR equivalent is seventh to tenth
grades. This means that this material is introduced about two years earlier
in the Russian schools. Since Russian children begin their first grade studies
about a year later than do American children, the actual age disparity is not
as much as two years [Editor].






PREFACE TO THE
SECOND (Russian) EDITION

THE PRESENT VOLUME, which constitutes the first part of a collection,
contains 320 problems involving principally algebra and arithmetic,
although several of the problems are of a type meant only to encourage
the development of logical thought (see, for example, problems 1-8).

The problems are grouped into twelve separate sections. The last
four sections (Complex Numbers, Some Problems from Number Theory,
Inequalities, Numerical Sequences and Series) contain important theo-
retical material, and they may well serve as study topics for school
mathematical societies or for the Society on Elementary Mathematics
at the pedagogical institutes. In this respect the supplementary refer-
ences given in various sections will also prove useful. All the other
sections [especially Alterations of Digits in Integers and Solutions
of Equations in Integers (Diophantine equations)] should yield material
profitable for use in mathematics clubs and societies.

Of the twelve sections, only four (Miscellaneous Problems in Algebra,
Polynomial Algebra, Complex Numbers, Inequalities) concern algebra;
the remaining sections deal with arithmetic and number theory. A
special effort has been made to play down problems (particularly those
in algebra) involving detailed manipulative matter. This was done
to avoid duplicating material in the excellent Problem Book in Algebra,

vii



viii Olympiad Problems

by V A. Kretchmar (Government Technical Publishing House, Moscow
1950). On the other hand, an effort has been made to render much
of the book attainable to eighth grade, and even seventh grade,
students.

More than three years have passed since the appearance of the first
edition of this book. During this period the original authors received
a great many written and oral communications with respect to it,
and these have been seriously considered in the reworking of the
material and in deciding which features were worth retaining and
emphasizing and which aspects were weak. As a result, the book
has undergone considerable revision. About sixty problems that were
in the first edition have been omitted—some appeared to be too diffi-
cult, or were insufficiently interesting, and others did not fit into
the new structure of the book. Approximately 120 new problems have
been added. The placing of each problem into a suitable section
has been restudied; the sections have been repositioned; all the solu-
tions have been reworked (several were replaced by simplified or
better solutions); and alternative solutions have been provided for
some of the problems. Hints have been given for every problem,
and those problems which to the authors appear of greater difficulty
have been starred(*). Sections 3,5, 6,9, and 10 have undergone such
significant changes that they may be considered as having been com-
pletely rewritten. Sections 1, 2, 4, 7, and 11 have been revised radi-
cally, and only Sections 8 and 12 have had relatively minor alterations.

The first edition of the book was prepared by 1. M. Yaglom in
collaboration with G. M. Adelson-Vel’sky (who contributed the section
on alteration of digits in integers and also a number of problems to
other sections, particularly to the section on Diophantine equations).
An important contribution was made to the first edition by E. E.
Balash (who contributed the section on numerical sequences and series)
and Y I. Khorgin (who made the principal contribution to the section
on inequalities). Solutions for other problems were written by various
directors of the School Mathematical Society of the Moscow State
University. About 20 problems were taken from manuscripts of the
late D. O. Shklarsky.

The rewriting of the book for the second edition was done by 1.
M. Yaglom, who made extensive use of the material of the first
edition.

In conclusion, the author wishes to thank A. M. Yaglom, whose
advice was of invaluable assistance while the book was being written
and who initiated the rewriting of the section on complex numbers.



Preface to the Second Edition ix

The author is also indebted to the editor, A. Z. Rivkin, whose inde-
fatigable labors on the first and second editions made possible many
improvements, and to all the readers who made valuable suggestions,
especially I. V Volkova, L. I. Golovina, R. S. Guter, G. Lozanovsky,
I. A. Laurya, Y. B. Rutitsky, A. S. Sokolin, and I. Y. Tanatar.

I. M. Yaglom






EDITOR’S FOREWORD TO THE
ENGLISH EDITION

One of the important facets of science education in the USSR has
been their series of mathematical competitive examinations held for
students of high ability in the secondary schools. Those contests,
which are being emulated increasingly in our own educational system,
culminate each year in the Soviet Union in their Mathematical
Olympiads held at Moscow University, preliminary qualifying and
elimination examinations having been held nationwide throughout the
academic year. ‘

This book, compiled over a twenty-year period, is a collection of
the most interesting and instructive problems posed at these compe-
titions and in other examination centers of the USSR, plus additional
problems and material developed for use by the School Mathematics
Study Societies. Perhaps the greatest compliment which can be paid
to the problems created for this purpose by leading Soviet mathema-
ticians (or taken and adapted from the literature) has been the extent
to which the problems have been used in our own contests and ex-
aminations.

Soviet students and teachers have had available in published form
the problems, and their solutions, given in such examinations, but
this material has not generally been available in the United States.

X1



xii Olympiad Problem

A few of these problems have been translated and published in such
American journals as The American Mathematical Monthly of The
Mathematical Association of America, and problems of similar scope
appear as regular features of Several American journals. Except for
some compilations from these sources, little exists by way of problems
which deal with real and active mathematics instead of the fringe
and recreational aspects of the science or with conventional textbook
exercises.

This translation and revision of the Third Revised and Augmented
Edition of the QOlympiad Problem Book should therefore fill a very
definite need in American schools and colleges. It contains 320
problems—a few of them merely recreational and thought-provoking,
but most of them seriously engaged with solid and important
mathematical theory, albeit the preparational background is assumed
to be elementary. The problems are from algebra, arithmetic,
trigonometry, and number theory, and all of them emphasize the
creative aspects of these subjects. The material coordinates beauti-
fully with the new concepts which are being emphasized in American
schools, since the “unconventional” designation attributed to the
problems by the original authors means that they stress originality
of thought rather than mere manipulative ability and introduce the
necessity for finding new methods of attack.

In this respect I am reminded of the observation made by some
forgotten character in some forgotten novel who opined that the
ultimate test of an educative effort lay not nearly so much in what
sort of questions the students could finally answer as in what sort
of questions they could finally be asked!

Complete solutions to all problems are given; in many cases,
alternate solutions are detailed from different points of view.
Although most of the problems presuppose oniy high school mathe-
matics, they are not in any sense easy: some are of uncommon
difficulty and will challenge the ingenuity of any research mathe-
matician. On the other hand, many of the problems will yield readily
to a normally bright high school student willing to use his head.
Where more advanced concepts are employed, the concepts are dis-
cussed in the section preceding the problems, which gives the volume
the aspect of a textbook as well as a problem book. The solutions
to more advanced problems are given in considerable detail.

Hence this book can be put to use in a variety of ways for students
of ability in high schools and colleges. In particular, it lends itself
exceptionally well to use in the various Institutes for high school
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mathematics teachers. It is certainly required reading for teachers
dealing with the gifted student and advanced placement classes. It
will furnish them with an invaluable fund for supplementary teaching
material, for self-study, and for acquiring depth in elementary
mathematics.

Except for the elimination of the few misprints and errors found
in the original, and some recasting of a few proofs which did not
appear to jell when translated literally, the translation is a faithful
one: it was felt that the volume would lose something by too much
tampering. (For this reason the original foreword and preface have
also been retained). Thus the temptation to radically alter or simplify
any understandable solution was resisted (as, for example, in the
sections on number theory and inequalities, where congruence
arithmetic would certainly have supplied some neater and more direct
proofs). Some notations which differ in minor respects from the
standard American notations have been retained (as, for example,
C: instead of C}). These will cause no difficulty.

All references made in the text to books not available in English
translation have been retained; no one can know when translations
of some of those volumes will appear. Whenever an English trans-
lation was known to exist, the translated edition is referred to.

The translation was made from the Third (Russian) Edition of
Selected Problems and Theorems of Elementary Mathematics, which
is the title under which the original volume appeared in the Soviet
Union. Mr. John Maykovich, instructor at the University of Santa
Clara, was the translator, and he was assisted by Mrs. Alvin (Myra)
White, who translated fifty pages. The writing out, revising, editing,
annotating, and checking against the original Russian were by my
own hand.

Thanks are due the following persons for their assistance in reading
portions of the translation, pointing out errors, and making valuable
suggestions: Professor George Polya of Stanford University,t Professor
Abraham Hillman of the University of Santa Clara, and Professor
Robert Rosenbaum of Wesleyan University.

I shall be very grateful to readers who are kind enough to point
out errors, misprints, misleading statements of problems, and in-
correct or obscure proofs found in this edition.

January 1962 Irving Sussman

T I would also like to call attention to Professor Polya's new book Mathe-
maticel Discovery (Wiley) which contains elementary problems and valuable
textual discussion of approaches to, and techniques of, problem solving.
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FROM THE AUTHORS

THE THREE voLUMES that make up the present collection of problems
are the commencement of a series of books based on material
gathered by the School Mathematics Society of the Moscow State
University over a twenty-year period. The text consists of problems
and theorems, most of which have been presented during meetings
of the various sections of the School Mathematical Society of the
M.S.U. as well as in the Mathematical Olympiads held in Moscow.
(The numbers of the problems given in the Olympiads are listed on
p. 9.

These volumes are directed to students, teachers, and directors of
school mathematical societies and societies on elementary mathematics
of the pedagogical institutes. The first volume (Part I) contains
problems in arithmetic, algebra, and number theory. The second
volume is devoted to problems in plane geometry, and the third to
problems in solid geometry.

In contrast to the majority of problem books intended for high
school students, these books are designed not only to reinforce the
student’s formal knowledge, but also to acquaint him with methods
and ideas new to him and to develop his predilection for, and ability
in, original thinking. Here, there are few problems whose solutions

1



2 From the Authors

require mere formal mastery of school mathematics. Also, there are
few problems intended for the superficially “clever” or adroit student
—that is, problems involving artificial methods for solving equations
or systems of equations of higher degree. On the other hand, these
books do contain many problems demanding originality and non-
standardized formulations.

In the selection of problems, emphasis has been given to those
aspects of elementary mathematics which are pertinent to contempo-
rary mathematical developments and new directions. Several groups
of problems are worked out in detail in the section on answers and
hints, especially when individual problems involve more mature
mathematics (for instance, elementary number theory and inequali-
ties). Some of the problems have been taken from classics of the
mathematical literature and from articles published in recent mathe-
matical journals.

In view of the unconventional nature of the problems, they may
prove difficult for students accustomed to conventional high school
exercises. Nevertheless, the School Mathematical Society of the
M.S.U. and the directors of the Moscow Mathematical Olympiads
believe that such problems are not beyond the persevering student.

It is recommended that the suggestions for using this book be read
before the problems are undertaken.

Parts I and II of this work were compiled by I. M. Yaglom, and Part
I1I was done principally by N. N. Chentzov. In addition to the listed
authors, many directors of the School Mathematical Society of the
M.S.U. contributed; their names are listed in the Preface to each
volume. Some forty problems were taken from the manuscripts of
D. O. Shklarsky, who worked with the School Mathematical Society
from 1936 to 1941, and who was killed in action on the military front
in 1942. In view of the very great influence which D. O. Shklarsky
exerted through his work with the Society, and in particular upon
the contents of this volume, it is appropriate to place his name first
in authorship of it.

The authors will be grateful to readers who send them new, and
possibly better, solutions to the problems or new problems suitable
for inclusion in such a book as this,



SUGGESTIONS FOR USING THIS BOOK

THis Book coNTaINs (1) statements of problems, (2) solutions, (3)
answers and hints for solving the problems. For more effective use
of the book, the answers and hints appear at the end.

The starred problems are more difficult, in the opinion of the
authors, than the others; the few double-starred problems are the
most difficult. (Naturally, there will be differences of opinion as to
which problems are more difficult than others.)

For most of the problems the authors recommend that the reader first
attempt a solution without recourse to the hints. If this attempt is
unsuccesful, the hint can be referred to, which should aid in arriving
at a solution. If, then, the reader cannot solve a problem, he can (of
course) read the solution; but if he appears to be successful in find-
ing a solution, he should compare his answer with that given in the
answers and hints section. If his answer disagrees with that given,
he should try to determine his possible mistake and correct it. If
the answers agree, he should compare his solution with that given
in the solutions section. If several solutions are given in the answers
section, the reader will profit by comparing the various solutions.

These suggestions are perhaps not as pertinent to the starred prob-
lems as they are to the others. For the starred problems it might

3



4 Suggestions for Using this Book

prove advisable for the reader to read the hint before attempting the
problem. For the double-starred problems it is recommended that
the hints be consulted first. These problems may profitably be con-
sidered as theoretical developments and their solutions read as textual
material. Also, each of the double-starred problems might be con-
sidered as a topic for a special report, or paper, to be given before
a mathematics club. Before attempting one of the more difficult
problems, the reader should solve and analyze the simpler neighboring
problems.

Some solutions involve techniques not ordinarily found in the high
school curriculum. With each such problem this information is given
in small type.

The problems are, in general, independent of each other; only
rarely does the solution of one problem involve the results of another.
Some exception is made in the final four sections, where the prob-
lems are more closely allied.



NUMERICAL REFERENCE TO THE

PROBLEMS GIVEN IN THE

MOSCOW MATHEMATICAL OLYMPIADS

THE OLYMPIAD MATHEMATICAL COMPETITION for seventh to tenth grade
students consists of two examinations.
is for elimination purposes; the second (Type Il question) is for the

The first (Type I question)

finalists.
Olympiads Type I Type 11
For 7th-8th Grade Students
VI (1940) 48 110(¢a)
VII (1941) 75 68, 208
VIII (1945) 64(a), 110(b), 152(a) 78(b), 83
IX (1946) 76, 198 30, 125
X (1947) T1(a), 201(a) 5, 9l(a), 140
X1 (1948) 122 —
XII (1949) 39 9, 11, 92(b), 117(a)
XTI (1950) — 141(a)
XIV (1951) 7(b)t 203
XV (1952) 8, 542 75
For 9th-10th Grade Students
I (1935) 134(d), 176
I (1936) — 56
V (1939) 168 43 165, 217
VI (1940) 80, 113 81, 144, 269(b)
VII (1941) 75, 172, 17%(a), 214 209
VIIT (1945) 33, 64(b), 173 195
IX (1946) 28, 131, 192(a) 95, 126
X (1947) 71(b), 197, 200 10, 9(c)
XI (1948) 190(a) 124(a)
XII (1949) 169 9, 11, 88, 117(b)
XIIT (1950) 82, 171 90(b)
XIV (1951) 7(b) 98
XV (1952) 1933 1943

For sixty teams.

2 Problems given to eighth to ninth grade students.

3 Problems given only to tenth grade students.




INTRODUCTORY PROBLEMS

1. Every living person has shaken hands with a certain number
of other persons. Prove that a count of the number of people who
have shaken hands an odd number of times must yield an even
number.

2. In chess, is it possible for the knight to go (by allowable moves)
from the lower left-hand corner of the board to the upper right-hand
corner and in the process to light exactly once on each square?

Figure 1

3. (a) N rings having different outer diameters are slipped onto
an upright peg, the largest ring on the bottom, to form a pyramid
(Figure 1). We wish to transfer all the rings, one at a time, to a
6



Problems (1-6) 7

second peg, but we have a third (auxiliary) peg at our disposal.
During the transfers it is not permitted to place a larger ring on a
smaller one. What is the smallest number, £, of moves necessary
to complete the transfer to peg number 2?t

(b)* A brain-teaser called the game of Chinese Rings is con-
structed as follows: # rings of the same size are each connected to
a plate by a series of wires, all of which are the same length (see
Figure 2). A thin, doubled rod is slipped through the rings in such
a way that all the wires are inside the U-opening of the rod. (The
wires are free to slide in holes in the plate, as shown.) The problem
consists of removing all the rings from the rod. What is the least
number of moves necessary to do this?

Figure 2

4, (a) We are given 80 coins of the same denomination; we know
that one of them is counterfeit and that it is lighter than the others.
Locate the counterfeit coin by using four weighings on a pan balance.

(b) It is known that there is one counterfeit coin in a collec-
tion of x similar coins. What is the least number of weight trials
necessary to identify the counterfeit?

5. Twenty metal blocks are of the same size and external ap-
pearance; some are aluminum, and the rest are duraluminum, which
is heavier. Using at most eleven weighings on a pan balance, how
can we determine how many blocks are aluminum?

6. (a)* Among twelve similar coins there is one counterfeit. It
is not known whether the counterfeit coin is lighter or heavier than
a genuine one (all genuine coins weigh the same). Using three
weighings on a pan balance, how can the counterfeit be identified
and in the process determined to be lighter or heavier than a genuine
coin?

t This is sometimes referred to as the Tower of Hanoi problem [Editor).
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(b)** There is one counterfeit coin among 1000 similar coins.
It is not known whether the counterfeit coin is lighter or heavier
than a genuine one. What is the least number of weighings, on a
pan balance, necessary to locate the counterfeit and to determine
whether it is light or heavy?

Remark: Using the conditions of problem (a) it is possible to locate, in three
weighings, one counterfeit out of thirteen coins, but we cannnot determine
whether it is light or heavy. For fourteen coins, four weighings are necessary.

It would be interesting to determine the least number of weighings necessary
to locate one counterfeit out of 1000 coins if we are relieved of the necessity
of determining whether it is light or heavy.

7. (a) A traveler having no money, but owning a gold chain
having seven links, is accepted at an inn on the condition that he
pay one link per day for his stay. If the traveler is to pay daily,
but may take change in the form of links previously paid, and if he
remains seven days, what is the least number of links that must be
cut out of the chain? (Note: A link may be taken from any part
of the chain.)

(b) A chain consists of 2000 links. What is the least number
of links that must be disengaged from the chain in order that any
specified number of links, from 1 to 2000, may be gathered together
from the parts of the chain thus formed?

8. Two-hundred students are positioned in 10 rows, each containing
20 students. From each of the 20 columns thus formed the shortest
student is selected, and the tallest of these 20 (short) students is
tagged A. These students now return to their initial places. Next
the tallest student in each row is selected, and from these 10 (tall)
students the shortest is tagged . Which of the two tagged students
is the taller (if they are different people)?

9. Given thirteen gears, each weighing an integral number of
grams. It is known that any twelve of them may be placed on a
pan balance, six on each pan, in such a way that the scale will be
in equilibrium. Prove that all the gears must be of equal weight.

10. Refer to the following number triangle.
1

D DO =

1
3
7

S DN =
Lo
—



Problems (7-13) 9

Each number is the sum of three numbers of the previous row: the
number immediately above it and the numbers immediately to the
right and left of that one. If no number appears in one or more of
these locations, the number zero is used. Prove that every row,
beginning with the third row, contains at least one even number.

11. Twelve squares are laid out in a circular pattern [as on the
circumference of a circle]. Four different colored chips, red, yellow,
green, blue, are placed on four consecutive squares. A chip may be
moved in either a clockwise or a counterclockwise direction over four
other squares to a fifth square, provided that the fifth square is not
occupied by a chip. After a certain number of moves the same four
squares will again be occupied by chips. How many permutations
(rearrangements) of the four chips are possible as a result of this
process?

12. An island is inhabited by five men and a pet monkey. One
afternoon the men gathered a large pile of coconuts, which they
proposed to divide equally among themselves the next morning.
During the night one of the men awoke and decided to help himself
to his share of the nuts. In dividing them into five equal parts he
found that there was one nut left over. This one he gave to the
monkey. He then hid his one-fifth share, leaving the rest in a single
pile. Later during the night another man awoke with the same idea
in mind. He went to the pile, divided it into five equal parts, and
found that there was one coconut left over. This he gave to the
monkey, and then he hid his one-fifth share, restoring the rest to
one pile. During the same night each of the other three men arose,
one at a time, and in ignorance of what had happened previously,
went to the pile, and followed the same procedure. Each time one
coconut was left over, and it was given to the monkey. The next
morning all five men went to the diminished nut pile and divided it
into five equal parts, finding that one nut remained over. What is
the least number of coconuts the original pile could have contained?

13. Two brothers sold a herd of sheep which they owned. For
each sheep they received as many rubles as the number of sheep
originally in the herd. The money was then divided in the follow-
ing manner. First, the older brother took ten rubles, then the
younger brother took ten rubles, after which the older brother took
another ten rubles, and so on. At the end of the division the younger
brother, whose turn it was, found that there were fewer than ten
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rubles left, so he took what remained. To make the division just,
the older brother gave the younger his penknife. How much was
the penknife worth?

14.* (a) On which of the two days of the week, Saturday or Sun-
day, does New Year's Day fall more often?
(b) On which day of the week does the thirtieth of the
month most often fall?



2

ALTERATIONS OF DIGITS IN INTEGERS

15. Which integers have the following property? If the final digit
is deleted, the integer is divisible by the new number.

16. (a) Find all integers with initial digit 6 which have the fol-
lowing property, that if this initial digit is deleted, the resulting
number is reduced to 'y its original value,

(b) Prove that there does not exist any integer with the pro-
perty that if its first digit is deleted, the resulting number is 4% the
original number.

17.* An integer is reduced to § its value when a certain one of
its digits is deleted, and the resulting number is again divisible by 9.
(a) Prove that division of this resulting integer by 9 results

in deleting an additional digit.
(b) Find all integers satisfying the conditions of the problem,

18. (a) Find all integers having the property that when the third
digit is deleted the resulting number divides the original one.
(b)* Find all integers with the property that when the second
digit is deleted the resulting number divides the original one.

19. (a) Find the smallest integer whose first digit is 1 and which
11



12 Alterations of Digits in Integers

has the property that if this digit is transferred to the end of the
number the number is tripled. Find all such integers.

(b) With what digits is it possible to begin a (nonzero) integer
such that the integer will be tripled upon the transfer of the initial
digit to the end? Find all such integers.

20. Prove that there does not exist a natural number which, upon
transfer of its initial digit to the end, is increased five, six, or eight
times.

21. Prove that there does not exist an integer which is doubled
when the initial digit is transferred to the end.

22, (a) Prove that there does not exist an integer which becomes
either seven times or nine times as great when the initial digit is
transferred to the end.

(b) Prove that no integer becomes four times as great when its
initial digit is transferred to the end.

23. Find the least integer whose first digit is seven and which is
reduced to | its original value when its first digit is tranferred to
the end. Find all such integers.

24, (a) We say one integer is the “inversion” of another if it
consists of the same digits written in reverse order. Prove that there
exists no natural number whose inversion is two, three, five, seven,
or eight times that number.

(b) Find all integers whose inversions are four or nine times
the original number.

25. (a) Find a six-digit number which is multiplied by a factor
of 6 if the final three digits are removed and placed (without changing
their order) at the beginning.

(b) Prove that there cannot exist an eight-digit number which
is increased by a factor of 6 when the final four digits are removed
and placed (without changing their order) at the beginning.

26. Find a six-digit number whose product by 2,3,4,5, or 6 con-
tains the same digits as did the original number (in different order,
of course).



THE DIVISIBILITY OF INTEGERS

27. Prove that for every integer n:
(a) »* — n is divisible by 3;
(b) #»* — n is divisible by 5;
(¢) n"— n is divisible by 7;
(d) n'* — n is divisible by 11;
(e) n'* —n is divisible by 13.
Note: Observe that n? — n is not necessarily divisible by 9 (for example,
29 — 2 = 510 is not divisible by 9).
Problems {a-e) are special cases of a general theorem; see problem 240.

28. Prove the following:
(a) 3~ — 28 is divisible by 35, for every positive integer »;
(b) n% — 51® + 4n is divisible by 120, for every integer #;
(c)* for all integers m and n, mn(ms® — n*°) is divisible by the
number 56,786,730.

29. Prove that »n? + 3n + 5 is never divisible by 121 for any posi-

' For a discussion of the general concepts involved in the solution of the
majority of the problems in this section, see the book by B. B. Dynkin and V
A. Uspensky, Mathematical Conversations, Issue 6, Section 2, ‘‘Problems in
Number Theory, Library of the USSR Mathematical Society.

13
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tive integer n.
30. Prove that the expression
m® + 3m*n — Smn? — 15m*n® + dmn' + 12n°
cannot have the value 33, regardless of what integers are substituted
for m and x.

31. What remainders can result when the 100th power of an integer
is divided by 125?

32. Prove that if an integer # is relatively prime to 10, the 101st
power of n ends with the same three digits as does n. (For example,
1233'* ends with the digits 233, and 37'°* ends with the digits 037.)

33. Find a three-digit number all of whose integral powers end
with the same three digits as does the original number.

34. Let N be an even number not divisible by 10. What digit
will be in the tens place of the number N%, and what digit will be
in the hundreds place of N?#°?

35. Prove that the sum
1k + 2% + 3¢ + + nk,
where 7 is an arbitrary integer and k is odd, is divisible by 1 + 2 +
3+ + n.

36. Give a criterion that a number be divisible by 11.

37. The number 123456789(10)(11)(12)(13)(14) is written in the base
15—that is, the number is equal (in the base 10) to

14 + (13)-15 + (12)-15% + (11)-15% + + 2-15'2 + 1518
What is the remainder upon dividing the number by 7?

38. Prove that 1, 3, and 9 are the only numbers K having the
property that if K divides a number &, it also divides every number
obtained by permuting the digits of N. (For K =1, the condition
given is trivial; for K = 3, or 9, the condition follows from the well-
known fact that a number is divisible by 3, or 9, if and only if the
sum of its digits is divisible by 3, or 9.)

39. Prove that 27,195% — 10,887% + 10,152% is exactly divisible by
26,460,

40, Prove that 11'° — 1 is divisible by 100.
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41. Prove that 2222%*s 4 5555%2 is divisible by 7.

42. Prove thas a number consisting of 3" identical digits is di-
visible by 3. (For example, the number 222 is divisible by 3, the
number 777,777,777, is divisible by 9, and so on).

43. Find the remainder upon dividing the following number by 7:
10t + 10(102) + + 10(1010)

44. (a) Find the final digit of the numbers 9®» and 2!
(b) Find the final two digits of the numbers 2?°® and 3°®.
(c)* Find the final two digits of the number 14144,

45. (a) What is the final digit of the number
(@

(where the 7th power is taken 1000 times)? What are the final two
digits?
(b) What is the final digit of the number

()

which contains 1001 sevens, as does the number given in problem
(a), but with the exponents used differently? What are the final two
digits of this number?

46." Determine the final five digits of the number

(")
Gy

which contains 1001 nines, positioned as shown,
47.* Find the last 1000 digits of the number
N=1+50+ 502 + 50° + + 509%9°

48. How many zeros terminate the number which is the product
of all the integers from 1 to 100, inclusive?
Here we may use the following well-known notation:
1-2.34.---(mn — 1) n =n!
(called factorial n). The problem can then be stated more succinctly: How

many zeros are at the end of 100!?

49. (a) Prove that the product of # consecutive integers is divisi-
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ble by n!.
(b) Prove that if a + b + + k < n, then the fraction

n!
atb!---k!
is an integer.
(c) Prove that (n!)! is divisible by »n!®-v!
(d)* Prove that the product of the »n integers of an arithmetic
progression of n# terms, where the common difference is relatively
prime to #n!, is divisible by =!.

Note: Problem 49 (d) is a generalization of 49 (a).

50. Is the number, C¥%, of combinations of 1000 elements, taken
500 at a time, divisible by 7?t

51. (a) Find all numbers n between 1 and 100 having the property
that (# — 1)! is not divisible by #n.
(b) Find ali numbers # between 1 and 100 having the property
that (n — 1)! is not divisible by n®.

52.* Find all integers # which are divisible by all integers not
exceeding V'n

53. (a) Prove that the sum of the squares of five consecutive
integers cannot be the square of any integer.
(b) Prove that the sum of even powers of three consecutive
numbers cannot be an even power of any integer.
(c) Prove that the sum of the same even power of nine con-
secutive integers, the first of which exceeds 1, cannot be any integral
power of any integer.

54. (@) Let A and B be two distinct seven-digit numbers, each
of which contains all the digits from 1 to 7. Prove that A is not
divisible by B.

(b) Using all the digits from 1 to 9, make up three, three-
digit numbers which are related in the ratio 1:2:3.

55. Which integers can have squares that end with four identical
digits?

56. Prove that if two adjacent sides of a rectangle and its diagonal
can be expressed in integers, then the area of the rectangle is divi-

t More ‘‘standard’’ notations for this are C(1000, 500) or Ci3¥* or (‘50). How-
ever, retention of the notation used in the original will cause no difficulty [ Editor].
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sible by 12.

57. Prove that if all the coefficients of the quadratic equation
ax*+bx+c¢=0
are odd integers, then the roots of the equation cannot be rational.

58. Prove that if the sum of the fractions

1+ 1 n 1
n n+1 n+2

(where n is a positive integer) is put in decimal form, it forms a
nonterminating decimal of deferred periodicity.}

59. Prove that the following numbers (where m and » are natural
numbers) cannot be integers:

1 1 1
M=—4 — .
(@ 2+3+ +n.
1 1 1
b = .
(b) N n+n+1+ +n+m'
1 1 1
(© K—?+?+ t o1

60.** (a) Prove that if p is a prime number greater than 3, then
the numerator of the (reduced) fraction
1 1 1

14 — 4 — -
Ttz Tt T

is divisible by p*. For example,

the numerator of which is 52.
(b) Prove that if p is a prime number exceeding 3, then the
numerator of the (reduced) fraction which is the sum
1 1 1

14— 4+ = S
+22+ 32+ -+-(p_1)2

is divisible by p. For example,

t Deferred periodicity means that the periodic portion is preceded by one or
more nonrepeating digits. The criterion is whether the denominator of the
(reduced) fraction has a common factor with 10 [Editor].
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1 1 1 205
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has a numerator which is divisible by 5.
61. Prove that the expression
a® + 2a
a' +3a*+1"°
where a is any positive integer, is a fraction in lowest terms.

62.* Let ay, a;, ---, a, be n distinct integers. Show that the product
Gx — a1
k—1
63. Prove that all numbers made up as follows,

10001, 100010001, 1000100010001,
(three zeros between the ones), are composite numbers.
64. (a) Divide a'?® — b'* by
(a + b)a® + b*)a* + b*)a® + b} a'® + b'°)a*® + b°*)ad* + b°Y)
(b) Divide a* *' — "' by
(@ + bXa* + b)a* + b*)a® + b%)- - (@' + 6" )a® + b .

of all the fractions of form , where n = k > [, is an integer.

65. Prove that any two numbers of the following sequence are
relatively prime:

241,22 4+1,2¢4+1,20+1, 29 +1, «--, 22" + 1,

Remark: The result obtained here proves that there is an infinite number
of primes (see also problems 159 and 253).

66. Prove that if one of the numbers 2* — 1 and 2" + 1 is prime,
where # > 2, then the other number is composite.

67. (a) Prove that if p and 8p — 1 are both prime, then 8p + 1
is composite.
(b) Prove that if p and 8p2 + 1 are both prime, then 8p? — 1
is also prime.

68. Prove that the square of every prime number greater than 3
yields a remainder of 1 when divided by 12.

69. Prove that if three prime numbers, all greater than 3, form
an arithmetic progression, then the common difference of the progres-
sion is divisible by 6.
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70.* (a) Ten primes, each less than 3000, form an arithmetic pro-
gression. Find these prime numbers.
(b) Prove that there do not exist eleven primes, all less than
20,000, which can form an arithmetic progression.

71. (a) Prove that, given five consecutive positive integers, it is

always possible to find one which is relatively prime to all the rest.

(b) Prove that among sixteen consecutive integers it is always
possible to find one which is relatively prime to all the rest,



SOME PROBLEMS FROM ARITHMETIC

72. The integer A consists of 666 threes, and the integer B has
666 sixes. What digits appear in the product A-B?

73. What quotient and what remainder are obtained when the
number consisting of 1001 sevens is divided by the number 1001?

74. Find the least square which commences with six twos.

75. Prove that if the number « is given by the decimal 0.999...,
where there are at least 100 nines, then 1/ &« also has 100 nines at
the beginning.

76. Adjoin to the digits 523... three more digits such that the
resulting six-digit number is divisible by 7, 8, and 9.

77. Find a four-digit number which, on division by 131, yields
a remainder of 112, and on division by 132 yields a remainder of 98.

78. (a) Prove that the sum of all the n-digit integers (# > 2) is
equal to
49499- . .95500- - -0 .

(n — 3) nines (n — 2) zeros

(For example, the sum of all three-digit numbers is equal to 494,550,
20
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and the sum of all six-digit numbers is 494,999,550,000.)

(b) Find the sum of all the four-digit even numbers which
can be written using 0, 1, 2, 3, 4,5 (and where digits can be repeated
in a number).

79. How many of each of the ten digits are needed in order to
write out all the integers from 1 to 100,000,000 inclusive?

80. All the integers beginning with 1 are written successively
(that is, 1234567891011121314.. ). What digit occupies the 206,788th
position?

81. Does the number 0.1234567891011121314---, which is obtained
by writing successively all the integers, represent a rational number
(that is, is it a periodic decimal)?

82. We are given 27 weights which weigh, respectively, 17, 22, 32,
++»,27% units. Group these weights into three sets of equal weight.

83. A regular polygon is cut from a piece of cardboard. A pin
is put through the center to serve as an axis about which the polygon
can revolve. Find the least number of sides which the polygon can
have in order that revolution through an angle of 25} degrees will
put it into coincidence with its original position.

84. Using all the digits from 1 to 9, make up three, three-digit
numbers such that their product will be:
(a) least; (b) greatest.

85. The sum of a certain number of consecutive positive integers
is 1000. Find these integers.

86. (a) Prove that any number which is not a power of 2 can be
represented as the sum of at least two consecutive positive integers,
but that such a representation is impossible for powers of 2.

(b) Prove that any composite odd number can be represented
as a sum of some number of consecutive odd numbers, but that no
prime number can be represented in this form. Which even numbers
can be represented as the sum of consecutive odd numbers?

(c) Prove that every power of a natural number » (# > 1) can
be represented as the sum of » positive odd numbers.

87. Prove that the product of four consecutive integers is one less
than a perfect square.

88. Given 4 positive integers such that if any four distinct integers
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are taken, it is possible to form a proportion from them. Prove that
at least n of the given numbers are identical.

89.* Take four arbitrary natural numbers, A, B, C, and D. Prove
that if we use them to find the four numbers A,, B,,C;, and D,,
which are equal, respectively, to the differences between A and B,
B and C, C and D, D and A (taking the positive difference each
time), and then we repeat this process with A,, B,,C, and D, to ob-
tain four other numbers A,, B,, C., and D,, and so on, we eventually
must obtain four zeros.

For example, if we begin with the numbers 32, 1, 110, 7, we obtain the fol-
lowing pattern:

32, 1, 110, 7,
31, 109, 103, 25,
78, 6, 78, 6,
72, 72, 72, 72,

0, 0, 0, 0.

80.* (a) Rearrange the integers from 1 to 100 in such an order
that no eleven of them appear in the rearrangement (adjacently or
otherwise) in either ascending or descending order.

(b) Prove that no matter what rearrangement is made with
the integers from 1 to 101 it will always be possible to choose eleven
of them which appear (adjacently or otherwise) in the arrangement
in either an ascending or a descending order.

91. (@) From the first 200 natural numbers, 101 of them are
arbitrarily chosen. Prove that among the numbers chosen there exists
a pair of numbers such that one of them is divisible by the other.

(b) From the first 200 natural numbers select a set of 100
numbers such that no one of them is divisible by any other.

() Prove that if one of 100 numbers taken from the first 200
natural numbers is less than 16, then one of those 100 numbers is
divisible by another.

92. (a) Prove that, given any 52 integers, there exist two of them
whose sum, or else whose difference, is divisible by 100.
(b) Prove that out of any 100 integers, none divisible by 100,
it is always possible to find two or more integers whose sum is
divisible by 100.

93.* A chess master who has eleven weeks to prepare for a
tournament decides to play at least one game every day, but in order
not to tire himself he agrees to play not more than twelve games
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during any one week. Prove that there exists a succession of days
during which the master will have played exactly twenty games.

94, Let N be an arbitrary natural number. Prove that there ex-
ists a multiple of N which contains only the digits 0 and 1. Moreover,
if N is relatively prime to 10 (that is, is not divisible by 2 or 5),
then some multiple of N consists entirely of ones. (If N is not
relatively prime to 10, then, of course, there exists no number of form
11 1 which is divisible by N.)

95." Given the sequence of numbers

0,1,1,2,3,5, 8,13, 21, 34, 55, 89,

where each number, beginning with the third, is the sum of the two
preceding numbers (this is called a Fibonacci sequence). Does there
exist, among the first 100,000,001 numbers of this sequence, a num-
ber terminating with four zeros?

96.* Let a be an arbitrary irrational number. Clearly, no matter
which integer » is chosen, the fraction taken from the sequence
9 _ 0,—1- , 2 , —3—, and which is closest to «, differs from «
n n’'n'n
by no more than half of 1/n. Prove that there exist »’s such that
the fraction closest to a differs from @ by not more than 0.001(—’11—).

97. Let m and »n be two relatively prime natural numbers. Prove
that if the m + n — 2 fractions

m+n 2(m + n) 3I(m + n) (m — 1)(m + n)
m ’ m ’ m ’ m ’

m+n 2m + n) 3(m + n) (n—1)m + n)
n n ’ n ’ n

are points on the real-number axis, then precisely one of these
fractions lies inside each one of the intervals (1, 2),(2,3), (3, 4),
(m+n—2,m+ n—1) (see Figure 3, in which m =3, n = 4).

w~
N

?
z 3

Figure 3

98.* Let a,,a: ay, ---,a, be n natural numbers, each less than
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1000, but where the least common multiple of any two of the numbers
exceeds 1000. Prove that the sum of the reciprocals of these numbers
is less than 2.

99.* The fraction ¢/p, where p + 5 is an odd prime, is expanded
as a (periodic) decimal fraction. Prove that if the number of digits
appearing in the period of the decimal is even, then the arithmetic
mean of these digits is 9/2 (that is, coincides with the arithmetic
mean of the digits 0,1,2, ---,9 (this shows that the “greater” and
the “lesser” digits of the period appear “equally often”). If the number
of digits in the period is odd, then the arithmetic mean of these
digits is different from 9/2.

100.* Prove that if the numbers of the following sequence are
written as decimals,

2. 4 & 8-
p PP’ T
(where p is a prime different from 2 or 5, and where a,,a;, -+, a@x
are all relatively prime to p), then some (perhaps only one) of the
first few decimal fractions may contain the same number of digits
in their periods, but the subsequent decimal fractions of the sequence
will all have p times as many digits in their periods as has the
preceding term.
For example: 4 =0.3; $ =04, 419 =0.370; 89 = 0.987654320; 1%
has 27 digits in its period; %33 has 81 digits in its period; and so on.
Remark: By ‘‘the greatest integer in z'’ we shall mean the greatest integer
not exceeding z (that is, to the left of £ on the number axis if z is not a whole

number). This concept will be designated by the use of brackets, that is, by
writing [z]. For example: [2.5] =2, [2] =2, [-2.5] = —3.

101. Prove the following properties of the greatest integer in a
number.

1) [x+ylz[x]+[¥]
(2) [m] = [%] , where n is an integer.

n

3) [x]+[x+—’ll—]+ +[x+ ";1]=[nx]

102.* Prove that if p and ¢ are relatively prime natural numbers,
then
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103. (a) Prove that

. n n LN
L+t + it + +tn~[l]+[2]+[3]+ +[n],

where ¢, is the number of divisors of the natural number n. [Note:
1 and n are always counted as divisors.]
(b) Prove that

[ n n
S+ S+ 82+ +s.¢—[1]+2[2]+3[3]+ +n[n],

where s, is the sum of the divisors of the integer ».

104. Does there exist a natural number » such that the fractional
part of the number (2 + 1/ 2 )», that is, the difference

C+VvVIr-l@e+var,
exceeds 0.999999?

105.* (a) Prove that for any natural number 2, the integer
[(2+13 )" is odd.
(b) Find the highest power of 2 which divides the integer
[(@+1v73)
106. Prove that if p is an odd prime, it divides the difference
[@+V'5)r] — 2

107.* Prove that if p is a prime number, the difference

- [3]

is divisible by p. (Cr is the number of combinations of n elements
taken p at a time, where »n is a natural number not less than p.)
For example,
11.10.9-8.7

3
Ciy = 12345 - 462 ;

1
Ch— ?:|=462—2

which is divisible by 5.
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108.* Prove that if the positive numbers & and 8 have the property
that among the numbers

(], [22], [3e], (8], [28], [38],

every natural number appears exactly once, then @ and B are ir-
rational numbers such that l/a + 1/8 =1. Conversely, if &« and 8
are irrational numbers with the property that l/@ + 1/3 =1, then
every natural number N appears precisely once in the sequence

la], [2«], [3a], (8], [28], [38],

We shall designate by (e¢) the whole number nearest a. If a lies exactly be-
tween two integers, then (a) will be defined to be the larger integer. For ex-
ample: (2.8)=3; (4) =4, (3.5) =4.

109.* Prove that in the equality

_N N N N
N=Z+,+5+ +5+

(where N is an arbitrary natural number) every fraction may be
replaced by the nearest whole number:

V=) () () - ()
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EQUATIONS HAVING INTEGER SOLUTIONS

110. (a) Find a four-digit number which is an exact square, and
such that its first two digits are the same and also its last two digits
are the same.

(b) When a certain two-digit number is added to the two-
digit number having the same digits in reverse order, the sum is a
perfect square. Find all such two-digit numbers.

111. Find a four-digit number equal to the square of the sum of
the two two-digit numbers formed by taking the first two digits and
the last two digits of the original number.

112, Find all four-digit numbers which are perfect squares and
are written:
(a) with four even integers;
(b) with four odd integers.

113. (a) Find all three-digit numbers equal to the sum of the
factorials of their digits.
(b) Find all integers equal to the sum of the squares of their
digits.
114. Find all integers equal to:
(a) the square of the sum of the digits of the number;
27
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(b) the sum of the digits of the cube of the number.

115. Solve, in whole numbers, the following equations.
(a) 1'+21+ 3+ + xt = y?
(b) 11 +2' 43! + + xl =y

116. In how many ways can 2" be expressed as the sum of four
squares of natural numbers?

117. (a) Prove that the only solution in integers of the equation
X2 4+ yr 4 22 = 2xyz

isx=y=2z=0.
(b) Find integers x,y, z, v such that

xt + y? 4 22 4 vt = 2xyaw

118.* (a) For what integral values of % is the following equation
possible (where x, v, z are natural numbers)?
Xt 4y 4 22 = ke,

(b) Find (up to numbers less than 1000) all possible triples

of integers the sum of whose squares is divisible by their product.

119.** Find (within the first thousand) all possible pairs of rela-
tively prime numbers such that the square of one of the integers
when increased by 125 is divisible by the other.

120.* Find four natural numbers such that the square of each of
them, when added to the sum of the remaining numbers, again
yields a perfect square,

121. Find all integer pairs having the property that the sum of
the two integers is equal to their product.

122. The sum of the reciprocals of three natural numbers is equal
to one. What are the numbers?

123. (a) Solve, in integers (positive and negative),

1.1 _ 1

x oy 1
(b)* Solve, in integers,

. 1 _ 1

x y oz

(write a formula which gives all solutions.)
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124, (a) Find all distinct pairs of natural numbers which satisfy
the equation

xv = y®
(b) Find all positive rational number pairs, not equal, which
satisfy the equation
x¥ = y*

(write a formula which gives all solutions).

125. Two seventh-grade students were allowed to enter a chess
tournament otherwise composed of eighth-grade students. Each con-
testant played once against each other contestant. The two seventh
graders together amassed a total of 8 points, and each eighth grader
scored the same number of points as his classmates. (In the tourna-
ment, a contestant received 1 point for a win and ! point for a tie.)
How many eighth graders participated?

126. Ninth- and tenth-grade students participated in a tournament.
Each contestant played each other contestant once. There were ten
times as many tenth-grade students, but they were able to win only
four-and-a-half times as many points as ninth graders. How many
ninth-grade students participated, and how many points did they
collect?

127.* An inlegral triangle is defined as a triangle whose sides are
measurable in whole numbers. Find all integral triangles whose
perimeter equals their area.

128.* What sides are possible in:
(a) a right-angled integral triangle;
(b) an integral triangle containing a 60° angle;
(¢) an integral triangle containing a 120° angle?
(Write a formula giving all solutions.)
Remark: Tt can be shown that an integral triangle cannot have a rational

angle (that is, an angle whose degree measure is a rational number) other than
one of 90°, 60°, or 120°

129.* Find the lengths of the sides of the smallest integral tri-
angle for which:
(a) one of the angles is twice another;
(b) one of the angles is five times another;
(c) one angle is six times another.

130.** Prove that if the legs of right-angle triangle are expressible
as the squares of integers, the hypotenuse cannot be an integer.



EVALUATING SUMS AND PRODUCTS

131. Prove that
n+Dn+2)n+3)---2n—12n=21-3-5---2n — 3)2n — 1)

132. Calculate the following sums.

] ] ] 1
@ T t23 30T taoon

1 1 ] 1
® To3t231 395t Yoo omon

1 1 1
1234 2345 ' 3456

(©

1
% =3 = 2 = D

+

133. Prove that

nin + D(n +2)
3 ’

(b) 1-2.3+2-34+34.5+ + n(n + 1)n +2)

_nn+1n+ 2)(n+3) .
- 4

(a 1-2+23+34+ +an+1) =

30



Problems (131-139) 31

(c) 1:2.3---p+2.3---p(p+ 1)+ +nin+1)
nn+ 1n+2)(n+p)
p+1

+ +n+p—1)=
for any p.

134, Calculate the following sums.

(a) 12+ 2243+

(by 1°+2°+ 3+ + n

(c) 14424+ 3+ + nt

dy 1°+3+5+ + (2n — 3
135. Prove the identity

a+bl+ae)+cl+a)1+b+dl+aXl+b)Xl+c)
+ Ul +aXl+b)--(1+k)
=1+ +HA+¢)---Q+H—1

Investigate the case in which e =b=c¢ = =1/
136. Calculate the following.
(ay 1-1'+2.214+3.3 + + n-n!;
(B) Crit+Cria+Crin+  + Crn
137. Prove that

1 1 1 1 1
+ =
log: N + log, N + logs N + logioo N logiwe N

where 100! is the product 1-2-3---100.

138. Given = positive numbers a,, a,, ---,a,. Find the sum of all
the fractions

1
ar(ax, + ae,Xax, + ax, + a,) - (ax, + ax, + + a.,)
where the set &, &, +--,k, of indices runs through all possible
permutations of 1,2, .-, n (of which there are n!).

139. Simplify the following expressions.

o (BB B (o)

(b) cos acos2acos 4a --- cos 2*a
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140. How many digits are there in the integer 2! after it has
been “multiplied out”?

141. (a) Prove that
1.1 135 9 1
15 " 10V2 ~2 4 6 100 10
(b) Prove that
1 3 5 99 1

2 4 6 100 < 12

Remark: The result of problem (b) is evidently a refinement of that of
problem (a).

142. Prove that

2 L om oo 22
1012 110
(C¥%, is the number of combinations of one-hundred elements taken
fifty at a time.)

143. Which is larger, 99" + 100" or 101" (where »n is a natural
number)?

144. Which is larger, 100** or 300! ?

145. Prove that, for any natural number 7, the following is true:
1 n
2 < (1 + —) <3
n
146. Which is larger, (1.000001)!°0¢.%¢® or 2?

147. Which is larger, 1000 or 1001°%?

148. Prove that for any integer n > 6

(3) > (5)

149.* Prove that if m > n (where m, n are natural numbers):

(a) (1 + %)" > (1 + %)

For exampble,

Iv_9_ .1 Iy _ 6,10 1
<1+_>=T:2_'a“d<1+3>_27_227>24
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(b) (1 + 7;-)"‘“ < (1 + i—)"“ nz2.

For example,

(1+_l_>a= 27 _—_3%_ and (1+.l.>‘=.25_6:3£<31

2 8 3 81 81 8
From problem (a) it follows that in the sequence of numbers (1 + 1/2)2,
1 +1/39, ---, 1 + 1/m)n, each is greater than that preceding. Since, on

the other hand, no member of the sequence exceeds 3 (see problem 145), it
follows that if n — o, the magnitude of (1 + 1/n)* approaches some definite
limit (which is evidently a number between 2 and 3). This limiting number is
designated by e. It is equal, approximately, to 2.718281828459045. - -,

Analogously, problem 149 (b) shows that in the sequence (1 + 1/2)3, (1 + 1/3)3,
1+ 1/4)%, ---, (1 + 1/n)n+1, every number is less than that preceding. Since
every number of the sequence exceeds 1, the magnitude (1 + 1/n)**1, where n
increases without bound, tends toward some limiting number. The numbers
of the second sequence then become successively closer and closer to the
numbers of the first [that is, the ratios (1 + 1/n)?+! (1 +1/n)® =1 + 1/n become
closer and closer to 1). Hence, the limiting number must, in the second case,
also be equal to ¢. This number, ¢, plays a very important role in higher
mathematics, and is encountered in a wide variety of problems (see, for ex-
ample, problems 156 and 159).

150. Prove that, for any integer n, the following inequality holds,

(i)" <ml< n(i)"
[ [
where ¢ = 2.71828--- is the limit of (1 + 1/n)* as n — oo,

This result is an extension of the result of problem 148. It follows, in par-
ticular, that for any two numbers, a; and a2, such that a; < e < a; (for ex-
ample, for ¢, = 2.7 and a: = 2.8; for a, = 2.71 and a: = 2.72; for a¢; = 2.718 and
a: = 2.719, and so on) for all integers n which are ‘‘large enough’ (greater
than some integer N, where the magnitude of N depends on what a, we con-
gider), the following inequality holds:

n \" n\"
(—) >nl > (——-)
ai az
Thus, the number ¢ is that limitig number which separates the numbers a for
which (n/e)" exceeds, or ‘‘dominates,” n! from those numbers ¢ for which the
(n/e)* are ‘‘dominated’’ by n!. (The existence of such a limiting number
follows from problem 148.)
Actually, (n/az)® < n! for every n exceeding 6 [if a2 > e, and if n > 6, in
view of problem 150, n! > (n/e)"]. Further, from the results of problems 145
and 149, it follows that, for n = 3, the following inequalities hold:
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n n
n>e>(l+_l_) =M'
n nn

nrtl > (n 4+ 1),
— =) [ —

Vs Vet

consequently, for n = 3, ,;/—17 diminishes as n increases. It is readily seen

that if n becomes very large, 7;/_1;_ approaches as close to. unity as we wish.

k —

It follows, for example, that logm/ 10 — k/10%, for sufficiently large k, can

be made as small as we wish. Let us now select an N such that the inequality

N, . —_ . .

v N < e/a; holds. Then for » > N the approximation Vv n. < elay is still

more improved, and from problem 150 it follows that

, ( nle )" (‘n )"
n<|v=) <|—
Y a
The inequality of problem 150 admits a great deal of precision. It is possible

to show that for sufficiently large n the number n! is approximated by
Cv' n (n/e)", where C is a constant equal to v'2x:
n!=v m(l)ﬂ
e
[more precisely, it is possible to prove that if n increases without bound, ratio
n!
v 2rn (n/e)n
tends to unity. (See the book by A. M. Yaglom and E. M., Yaglom, Non-

elementary Problems Treated by Elementary Means, Library of the Mathe-
matical Society, Volume 5)].

151. Prove that

netl <1k 4 26 4 3k 4 + nk

1 k+1 1
1 = k1
<< +n) k+1”

k+1

(n and & are arbitrary integers).

Remark: A particular consequence of problem 151 is the following:
mlEt2e 434 4wk 1

" nk+t k+1

(See also problem 316.)

152. Prove that for all integers n > 1:

t The approximation given for n! is usually referred to as Stirling's formula
[ Editor].
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1 1 1 13
@ F<aritaszt T <3
1 1 1
1 —_
M 1< " T+y327  Ftaer <?

153.* (a) Calculate the whole part of the number
1 1 1 1
Ittty Yy Toooo
(b) Calculate the sum

] 1 ] ]
+ t 0z T TV T.000000

110,000 © 1/10,001
to within a tolerance (allowable error) of 1/50.

154." Find the whole part of the number

1 N 1 1 " " 1
Ya T Y5 Yo ¥1,000,000 °
155. (a) Determine the sum
1 1 1 1
o Tttt e
to a tolerance of 0.006.
(b) Determine the sum
1 1 1 1
ottt T 0
to a tolerance of 0.000000015.
156. Prove that the sum
1 1 1 1
1+ E + ? + 2 + + ”

is greater than any previously selected number N, if n is taken
sufficiently great.

Remark: The calculation of this sum can be made very precise. It is pos-
sible to show that the sum

1 1 1 1
1+ 2 + 3 +T+ + n
for large m, is very close to the value of logn (this logarithm taken to the

base ¢ = 2.718.-.). In every case, it can be shown that for any n the difference
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1+1—+—1—+ +—1*—lon
2 3 n €

does not exceed unity (see the reference following problem 150 to the book by
A. M. Yaglom and E. M. Yaglom).
157. Prove that if in the summation

1 1 1 1

1+ -+ —=+—+ + —

2 "33 »
we throw out every term which contains the digit 9 in its denomi-
nator, then the sum of the remaining terms, for any #n, will be less

than 80.
158. (a) Prove that, for any n, the following holds:

1 1 1 1 1
14 — 4 — 4 — 4 — —_
+4+9+16+25+ +n2 <2
(b) Prove that for all »
1 1 1 1 3
l+ s +gtget  +or<ly

It is evident that the inequality of problem (b) is a refinement of problem
(a). An even more precise bound in given by problem 233. That problem
shows that the sum

1+ -+ =4 4L

4 9 nt
is less than n?/6 = 1.6449340668--- (but for any number less than =?/6, for in-
stance for N =1.64 or for N = 1.644934, it is possible to find an n such that

the sum

nl
will exceed N).
159.* Consider the sum
1 1 1 1 1 1 1 1 1
Ity tgtstyta sttt o

in which the denominators run through the prime numbers from 2
to some prime number p. Prove that this sum becomes greater than
any preassigned number N, provided the prime p is taken sufficiently
great.

Remark: The summation of the series in this problem can be found with
great accuracy. For large p, the sum
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PSSP U S B

2 3 5 7 P
differs relatively little from loglog p (where the logarithms are taken to the
base ¢ = 2.718---), and the differences

1+-1~+-1—+-l—+-l—+ +—l—-loglogp
2 3 5 7 P

never exceed 15 (refer to the book by A. M. Yaglom and E. M. Yaglom).
Comparison of the results of this problem with those of problems 157 and 158
emphasizes that among the prime numbers may be found arbitrarily large
integers (this problem reaffirms that there are infinitely many). [t is possible,
for example, to say that the primes are ‘‘more numerous'’' in the sequence of
natural numbers than either squares or numbers failing to contain the digit 9,
inasmuch as the sum of the reciprocals of all the squares, as well as the sum of
all those reciprocals of whole numbers not containing the digit 9, are bounded
(by 1% and by 80, respectively), whereas the sum of the reciprocals of all
the primes becomes arbitrarily great.



MISCELLANEOUS PROBLEMS
FROM ALGEBRA

160. If a + b + ¢ = 0, what does the following expression equal?

b—c¢ c—a a—2b a b ¢
(a * b * c )(b—c+c—a+a—b)

161. Prove that if a + b + ¢ =0, then
a®+ b + ¢ = 3abc

162. Factor the following:

@) a®+ b+ ¢® — 3abc ;
by @a+db+cyr—a—-b—¢°

163. Rationalize the denominator:

Va+ Q/IT +¥Vc
164. Prove that
(@ + b+ ) — g* — P30 — ¢33
is divisible by
@+b+cy—a—0P—c.
38
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165. Factor the following expression:
a®+a +1
166. Prove that the polynomial
D A T L AL
is divisible by
P2+ 4+ + +x+x+1

167. Using the result of problem 162 (a), find the general formula

for the solution of the cubic equation
X+ px+q=0

Remark: This result enables us to solve any equation of the third degree.
Let
2+ Azt + Bz +C=0

be any cubic equation (the coefficient of z? is taken as 1, since in any other
case we can divide through by the coefficient of z3). We make the substitution

z=y+ec,

and we obtain

P+ +3cy ++ Ayt + 2ecy + )+ By+ )+ C=0,
or

¥+ @B+ Ayt + St +24Ac+ By +(c3+ Act+ Bc+ C)=0

From this, if we set ¢ = —A/3 (that is, x = y — A/3), we arrive at
(g (A KAL)

which has the same forms as that of the given problem:

yr*+py+qg=0,

where
A? 2A' AB
p=-3 + B and "‘W—TJrC
168. Solve the equation
Va-Vatz=x.

169.* Find the real roots of the equation

3 _1_.—_ 2 1 ( ._1_)
Tt2xtqe=—atyfat+x- g (0<a<yg
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170. (a) Find the real roots of the equation

;/x+2\/x+21/x+ +2Vx+2V3x =x
{n radicals}

(all roots are considered positive).
(b) Solve the equation

1
S S
1
1 e
T

1+

1+ -
x

(In the expression on the left the fraction designation is repeated =
times.)
171. Find the real roots of the equation
Vi+3-4Vx—1+Vs+8—-6/2-1=1

(All square roots are to be taken as positive.)

172. Solve the equation
lx+ 1] — x| +3|x—1|—-2|x—2|=x+2
173. A system of two second-degree equations
{ xt—y*=0,
(x—ar+y=1
has, in general, four solutions. For what values of a is the number
of solutions of this system decreased to three or to two?
174. (a) Solve the system of equations
{ax +y=a
xt+ay=1

For what values of a does this system fail to have solutions, and
for what values of 4 are there infinitely many solutions?
(b) Answer the above question for the system

{ax+y=a‘
x+ay=1.
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(¢) Answer the above question for the system

[ax+y+z=l,
1x+ay+z=a,
x+2z+az=at

175. Find the conditions which must be satisfied by the numbers
a,, a,, @, @, such that the following system of six equations in four
unknowns has a solution:

X+ x, = aa,,
X+ X3 = @@,
X+ X, = e, ,
Xz + X3 = apey ,
X + x, = @y,
Xy + xy = sy

Find the values of the unknowns x,, x:, x3, x,.

176. How many real solutions has the following system?

{ x+y=2,
xy —22=1
177, (a) How many roots has the following equation?
sinx = 2
100

(b) How many roots has the following equation?
sin x = log x
(Note: log x = logo x .)

178.* Prove that if x, and x, are roots of the equation x* — 6x +
1=0, then x{ + x7 is, for any natural number #, an integer not
divisible by 5.

179. Is it possible for the expression

(a + a; + + @aps + @r000)2 = 4% + a: + + aoge + afooo
+ 2a.a; + 2a.a; + + 2a495a 000
(where some of the numbers a,, a,, -+, @z, @1000 are positive and the
test are negative) to contain the same number of positive and nega-
tive terms in aa;?
Investigate the analogous problem for the expression

(@, +a; + - + Geoos + Ar0.000)° -



42 Miscellaneous Problems from Algebra

180. Prove that any integral power of the number 12 —1 can
be expressed in the form VN — 1 /N —1, where N is an integer
(for example: (V2 —12=3-22 =179 -V 8 and V2 —
-1 =52 —7=150 - V49.

181. Prove that the number 99,999 + 111,1111” 3 cannot be written
in the form (A + B1/3 ), where A and B are integers.

182. Prove that ¥2 cannot be represented in the form p + q1/ 7,
where p, q, r are rational numbers.

183. (a) Which of the following two expressions is greater?
2.00000000004
(1.00000000004) + 2,00000000004
2.00000000002
(1.00000000002)% + 2.00000000002

(b) Let a>b>0. Which of the following is greater?

l+a+a*+ +at
1+a+a*+ +a '’
1+b+b2+ +bm!
1+b+b2+ +b°

184. Given 7 numbers a;, @,, - -+, a,. Find the number x such that
the sum

(x—a)+ (x—a)+ + (x — a,)?
has the least possible value.

185. (a) Given four distinct numbers ¢, < @, < a; < a,. Put these
numbers in such an order, a:, ai,, a.,, a:, (i\, #2, s, i, being some rear-
rangement of 1,2, 3,4) that the sum

0 = (a;, — ai,)* +(a;, — ai,))* + (@i, — ai )} + (@i, — a:)*
has the least possible value.
(b)* Given n real distinct numbers a,, a;, -+, @,. Put these
numbers in such an order ai, ai, -, ai, that the sum
0 = (a; — ai,)* + (@i, — ai))* + + (@i, , — ai,)* + (@i, — a;)

'
has the least possible value.

186. (a) Prove that, regardless of what numbers a,, @, -, a., b,
b,, -+, b, are taken, the following relation always holds:
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Va+b+VEa+bE+ +VETR
z2Via +a+ + a.)t + (b + b, + + b,)?

Under what conditions does the equality hold?

(b) A pyramid is called a right pyramid if, when a circle is
inscribed in its base, the altitude of the pyramid falls on the center
of the circle. Prove that a right pyramid has less lateral surface
area than any other pyramid of the same altitude and base area and
having the same perimeter.

Remark: The inequality of problem (a) is a special case of what is called
the Inequality of Minkowski (see problem 308).

187.* Prove that for any real numbers a,, a,, -+ -, a, the following
inequality holds:

Val+ (1 —a)+ Vai+ 1 —a)
+ +VE L +(Q-a)r+VEaE+Q—-a)rz

n 2
2

For what values of the numbers is the left member equal to the
right member?

188. Prove that if the numbers x, and x; do not exceed 1 in ab-
solute value, then

T 7+ L v \¢
1/1—xﬁ+1/1—x§§2]/1—<%)

For what numbers x, and x, does the equality hold?

189. Which is greater, cos (sin x) or sin{(cos x)?

190. Prove, without using logarithm tables, that:

(@) —1 L 5o,
log, = logs =
b —— 1L 52

log, = log«2

191. Prove that if « and B are acute angles, with @ < 3, then
(a) a—sina< f—sinf;

(b) tana —a < tanf — 73

192.* Prove that if & and 3 are acute angles and @ < 3, then
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tan e < tan 3
a B

193. Find the relationship between arcsin[cos (arcsinx)] and
arccos [sin (arccos x)].

194. Prove that for arbitrary coefficients a;,, @s,, -+ -, @2, @, the sum
cos 32x + a;, cos 31x + @, cos 30x + + a,C08 2x + 4, cos x

cannot take on only positive values for all x.

195. Let some of the numbers a;,a., ---,a. be +1 and the rest
be —1. Prove that

+ o+

. a.\a; a,a,a, aaz: QA o
2 sin (al + 5t T4 BT )45

= a,-/2 + a2+ a;V2 + +a.v 2
For example, let ¢, = a; = =a,=1:

45°
2n—l

25in<1+—%—+%+ cee 4 2}_1>4S°=2cos

=/2+V2+ 1V 2.



THE ALGEBRA OF POLYNOMIALS

196. Find the sum of the coefficients of the polynomial obtained
after expanding and collecting the terms of the product

(1 = 3x + 3x)M%(1 + 3x — 323
197. Which of the expressions,
1+ x2—a)  or (1 — x4 2"t
will have the larger coefficient for x** after expansion and collecting
of terms?
198. Prove that in the product
A—x+ -2+ — 2+ 21+ x + 2+ + 2% + x99,
after multiplying and collecting terms, there does not appear a term
in x of odd degree.
199. Find the coefficient of x%° in the following polynomials:
@ A+ 0+ x(1+ 20+ 21 + 0"+ + xto00;
() A+20+20+22+30+2*+  + 10001 + x)1o°
200.* Find the coefficient of x* upon the expansion and collecting

of terms in the expression
45
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(((x — 22 — 2)t — 2)t — — 2
n times

201. Find the remainders upon dividing the polynomial x + x® +
xs + xz-r + xsl + xzca
(@ byx-—1;
(b) by x*—1

202. An unknown polynomial yields a remainder of 2 upon division
by x — 1, and a remainder of 1 upon division by x —2. What re-
mainder is obtained if this polynomial is divided by (x — 1)}(x — 2)?

203. If the polynomial x'**' — 1 is divided by x* + x* +2x* + x + 1,
a quotient and remainder are obtained. Find the coefficient of x!* in
the quotient.

204. Find an equation with integral coefficients whose roots include
the numbers

@ vV2 +v73,
by v2 + ¥3

205. Prove that if @ and B8 are the roots of the equation
X+px+1=0,
and if r and & are the roots of the equation
2+gx+1=0,
then ‘
(@—71XR—ria+ 8B+ 0)=qg"—p*
206. Let « and A be the roots of the equation
B+ px+g=0,
and 7 and & be the roots of the equation
*+Px+Q=0.
Express the product
(@—71)XB— ria— OB — &
in terms of the coefficients of the given equations.
207. Given the two polynomials
x*+ax+1=0,
+x+a=0,
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Determine all values of the coefficient a for which these equations
have at least one common root.

208. Find an integer a such that (x — a)(x — 10) + 1 can be written
as a product (x + b)(x + ¢) of two factors with integers b and c.

209. Find (nonzero) distinct integers a, b, and ¢ such that the fol-
lowing fourth-degree polynomial with integral coefficients, can be
written as the product of two other polynomials with integral coef-
ficients:

x(x—a)x—0x—¢c)+1

210. For what integers a,, a., - -+, @, where these are all distinct,
are the following polynomials with integral coefficients expressible
as the product of two polynomials with integral coefficients?

(@) (x—aXx—a)lx—as) -(x—as)—1;

(b) (x—a)x—a)x—as) (x—an)+1

211.* Prove that if the integers a,, a,, -+, a, are all distinct, then
the polynomial

(r—a)ix—a)?(x —a,)t+1

cannot be written as a product of two other polynomials with integral
coefficients.

212. Prove that if the polynomial
P(x) = aox" + ax*' + + @nrx + ay,

with integral coefficients, takes on the value 7 for four integral values
of x, then it cannot have the value 14 for any integral value of x.

213. Prove that if the polynomial
ao X’ + a,x® + ax° + a;x* + ax® + axt + aix + a;,

of seventh degree, with integral coefficients, has for seven integral
values of x the value +1 or —1, then it cannot be factored as the
product of two polynomials with integral coefficients.

214. Prove that if the polynomial
P(x) = apx™ + aix™ ' + + ag-1X + ax ,

with integral coefficients, has odd values for x =0 and x = 1, then
the equation P(x) = 0 cannot have integral roots,
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215.* Prove that if the polynomial
P(x) = aox" + a\x"' + + @u-iX + an ,
with integral coefficients, is equal in absolute value to 1 for two
integers x=p and x=¢q (p > ¢), and if the equation P(x) =0 has

rational roots a, then p — ¢ is equal to 1 or 2, and a = _p-;_q

216.* Prove that neither of the following polynomials can be writ-
ten as a product of two polynomials with integral coefficients:
(a) x2222 _+_ 2x2220 _+_ 4x2218 _+_ 6x2213 _+_ 8x2214
+ + 2218x* + 2220x* + 2222 ;
(b) x4+ 2 + 22 + 4+ 24+ x+1
217. Prove that if the product of two polynomials with integral
coefficients is a polynomial with even coefficients, not all of which

are divisible by 4, then in one of the polynomials all coefficients
must be even, and in the other not all coefficients will be even.

218. Prove that all the rational roots of the polynomial
Px)=x"+ax"" + ax"* + + an-1x + an,
with integral coefficients and with leading coefficient 1, are integers.

219.* Prove that there does not exist a polynomial
P(x) = aex" + a,x"' + + @n-1Xx + an

such that P(0), P(1), P(2), are all prime numbers.

Remark: The proposition stated in this problem was first proven by the
mathematician L. Euler. Also credited to him are polynomials whose values
for many consecutive integers are prime numbers. For example, for the poly-
nomial P(x) = 2 — 79z + 1601, the 80 numbers P(0)=.1, P(l)= 1523, P(2),
P(3), -, P(79) are all primes,

220. Prove that if the polynomial
Px)=x"4+ Ax"' + A xt + + A.- + A,

assumes integral values for all integral values for x, then it is pos-
sible to represent it as a sum of polynomials

Pix) =1, Pix) = x, Pyx) = "(’;—‘2“ Pu(x)

_xx—=Dx—2)---x—n+1)
1-2.3---m '
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having the same property [in view of problem 49 (a)] and having
integral coefficients.

221. (a) Prove that if the nth degree polynomial P(x) has integral
values for x=10,1, 2, ---, n, then it has integral values for all integral
values of zx.

(b) Prove that if a polynomial P(x) of degree » has integral
values for # + 1 successive integers x, then it is integral valued for
all integers x.

(c) Prove that if the polynomial P(x) of degree »n has integral
values for r=20,1,4,9, 16, ---, n?, then it has integral values for all
integers x which are perfect squares (but this does not necessarily
follow for all integers x).

Give an example of a polynomial which assumes integral values
for all integers x which are perfect squares, but which for some
other value of x yields a rational (not whole) number.



COMPLEX NUMBERS

In many of the problems in this section the following formulas are
useful.
(1) The formula for the product of complex numbers in trigonometric form:
(cosa + tsina)(cos B + 1sin 8) = cos (@ + B) + isin(a + B)
(2) De Moivre's formula:
(cos a 4+ isin a)® = cos na + 1sin na
(where m is a natural number), which is an n-fold application of the previous

formula.
(3) The formula for the roots of complex numbers:

_— + 360°-k .. 360° - k
’Vcos:x+1sma=cosa " +1.sm"+

(k=0,1,2,.--,mn - 1),
which is an extended form of De Moivre’'s theorem.
In particular, a large role is played in the following problems by the formula
for the nth rooths of unity, that is, the roots of the nth-degree equation

2 —1=0,

which are given by the following formulas:

Z/_l_ = r}s/coso +tsin0 = cos%0
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The following observation will often be useful in solving the problems of
this section. Let the equation of degree n,

" + @izt + @zt ? + +an 1z +an=20,
have the »n roots z;, Zz, *-+, Zn-1, Zn. Then the left member of the equation is
divisible by (z — 2,z — z2)- - -(z — za); that is,
¢+ a " + +an 1T + an = (2 — )T — 22)- (T — Ta- )T — Ta)

If we multiply out the second member of this equation and equate coefficients
of like powers of z from both members, we obtain the following formulas giving
relationships between the coefficients on the left and the roots of the equation
(Vieta's formulas).

ar= —(z: + 22+ + Zp-1+ Zn) ,

a2 = 21Z2 + T12s + + Tu-1Zn,
as = — (212273 + + Zn-2Tn—1Zn) ,
an-1 = (=1)*"Nz2\ 23+ - - Tn—1 + TuZ2"**Tn—_2%n + + xaxs - -Zn) ,

an = (—1)*T1Z223- - - 20
222, (a) Prove that
cosS5a = cos*a — 10 cos® asin*a + S5cos asin* a ,
sin5a = sin*a@ — 10sin* @ cos*a + Ssinacos' a .
(b) Prove that for integers »
cos na = cos"a — Ci cos*tasin*a + Ch cos™* asin' a
— Clcosttasinfa +
sin na = C) cos*! wsin @ — C3 cos"? e sin® &
+ Ch cos** asin® a —
where the terms designated by ---, which are readily identified from

the given terms, are continued while they preserve the sense of the
binomial coefficients,

Remark: Problem (b) is, of course, a generalization of problem (a).
223. Express tan6a in terms of tan a.

224, Prove that if x + 1 = 2cos a, then
x

x* + i = 2cos na
x"
225. Prove that
sin ¢ + sin (¢ + @) + sin (¢ + 2a) + + sin (¢ + na)

sin nt+Da Z De sin ((p + %)
B sin L ’
2
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and that

cos ¢ + cos (¢ + @) + cos (¢ + 2a) + + cos (¢ + na)

. (n+ e ( na)
_ sin 2 s|e + 2
sin x .
2.
226. Find the value of
cos? a + cos? 2a + + cos? na ,
and of
sin? & + sin?2a + + sin? na

227. Evaluate

cos a + Ch cos 2a + C? cos 3a +

+ Cr'cos na + cos (n + Da
and

sina + Ch sin2a + C} sin 3a + + Cr'sinna + sin(n + Na

228. Prove that if m, n, and p are arbitrary integers, then

sin mit sin LA + sin Zmin sin Znil + sin 3mim sin 3n11
P b b b b
+ + sin (p—Vmi G (b= 1)"”]
b b

—5 if m + n is divisible by 2p and m — » is not divisible by 2p;

o> if m — n is divisible by 2p and m + n is not divisible by 2p;

0, if m + n and m — n are both divisible by 2p, or if neither
is divisible by 2p.

229. Prove that
21 4

cos + cos + cos b + + cos 2l _ ——1—
2n+1 2n +1 2n + 1 2n+1 2
230. Construct an equation whose roots are the numbers:
| ., 2nm c, 3m L all
@ S T ™ ot 1 S T
n 2n 3n nil
b) cot? , cot? » cot? » 7oy Cot?
) o T O T+ 1 21 o+
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231. Find the following sums,

2n

nit
+1

nin

2n+1

21 3u
cot? t? + cot?
@ ot T T T T T
+ + cot?
(b) csc? L + csc? + csc? 3n
2n + 1 2n +1 2n+1
+ + csc?
232. Calculate the following products.
. 7 . 21 . 3n . nit
@ sin g TS T 1T 1
and
sin - sin 22 gin 3T gjp 2= DI
2n 2 2n n
(b) cos n cos 21 oS 3 nir
2n +1 2n+ 1 2n + 1 2n+1
and
cos - cos 22 cos 3m os 1= D7
2n 2n 2n 2n

53

233. Using the results of problems 231 (a) and (b), show that for

any natural number » the sum

1 1
1+E+§+

lies between the values

L
ne

2 n:

2
1 — — 2
( n+1)(1 2n+1/6

and

1
(1— 2n+1)(1+

;)L’f
2n+1/6

Remark: A particular result which follows from problem 233 is

1.:2
i
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where the summation on the left is the limit to which 1 + 1/22 & + 1/n?
tends as n — oo.

234. (@) On a circle which circumscribes an #u-sided polygon
AA,---A,, a point M is taken. Prove that the sum of the squares
of the distances from this point to all the vertices of the polygon is
a number independent of the position of the point M on the circle,
and that this sum is equal to 2nR? where R is the radius of the
circle.

(b) Prove that the sum of the squares of the distances from
an arbitrary point M, taken in the plane of a regular nr-sided polygon
A A,--+ A, to all the vertices of the polygon, depends only upon the
distance !/ of the point M from the center O of the polygon, and is
equal to n(R* + /*), where R is the radius of the circle circumscribing
the regular n-sided polygon.

(c) Prove that statement (b) remains correct even when point
M does not lie in the plane of the n-sided polygon A,A4; - A..

235. Let M be a point on the circle circumscribing a regular »-
sided polygon A,A,- A.. Prove the following.

(@) If = is even, then the sum of the squares of the distances
from M to the vertices indicated by even-numbered subscripts (for
example, A,, A,, and so on) is equal to the sum of the squared dis-
tances to the vertices having odd subscripts.

(b) If n is odd, then the sum of the distances from the point
M to the vertices of the polygon which are even-numbered is equal
to the sum of the distances to those which are odd-numbered.

236. The radius of a circle which circumscribes a regular n-sided
polygon A, A,- -A, is equal to R. Prove the following.
(@) The sum of the squares of all the sides and all the
diagonals is equal to n*R2
(b) The sum of all the sides and all the diagonals of the

polygon is equal to = cotzl;R.

M
(¢) The product of all the sides and all the diagonals of the
polygon is equal to n#™2Rint -1V

237.* Find the sum of the 50th powers of all the sides and all
the diagonals of the regular 100-sided polygon inscribed in a circle
of radius R.

238.* Prove that in a triangle whose sides have integral length
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it is not possible to find angles differing from 60°, 90°, and 120°,
and commensurable with a right angle.

239.* (a) Prove that for any odd integer p > 1 the angle arc
cos% cannot contain a rational number of degrees.

(b) Prove that an angle arc tan L, where p and ¢ are dis-

q
tinct positive integers, cannot contain a rational number of degrees.



10

SOME PROBLEMS OF
NUMBER THEORY

These problems are concerned with that division of mathematics treating
properties of integers, Elementary Number Theory. Many of the problems in
other sections of this book also deal with number theory—particularly Sections
3,4, and 5. Several of the following theorems, stated here as problems, play
an important role in number theory (see, for example, problems 240, 241, 245-
247, 249, 253). Clearly, these problems do not pretend to explore with any
completeness the rich variety of methods and ideas that have permeated this
discipline, which is at once one of the most fruitful and one of the most dif-
ficult of all mathematical endeavors. A good systematic account of some parts
of number theory is given in the book by B. B. Dynkin and V A. Uspensky,
Mathematical Conversalions, Issue 6, Library of the USSR Mathematical Society.
There the reader will find alternate solutions to some of the problems of this
section. An excellent condensed treatment is the article by A. Y. Khinchin,
“Elementary Number Theory,”” appearing in the Encyclopedia of Elementary
Mathematics, Government Technical Publishing House, Moscow, 1951, which
contains, as an appendix, an extensive bibliography covering the topics touched
on in the article.

240, Fermat’s Theorem. Prove that if p is a prime number, then
the difference a®» — a is, for any integer a, divisible by p.

Remark: Problems 27 (a)-(d) are special cases of this theorem.

241. Euler's Theorem. Let N be any natural number and let r
56
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be the number of integers in the sequence 1,2,3, -+, N—1 which
are relatively prime to N. Prove that if 4 is any integer which is
relatively prime to N, then @~ — 1 is divisible by N.

Remark: If the number N is prime, then all the integers of the sequence
are, of course, relatively prime to N; that is, r = N — 1. In this case, Euler’'s
theorem assumes the form e¥-! — 1 is divisible by N, if N is prime. It is
clear that Fermat’'s theorem (problem 240) can be considered a special case of
Euler's theorem.

If N= p”, where p is a prime number, then of the first N -1 =p" —1
positive integers, those not relatively prime to N= p® will be p,2p,3p, -,
N—-p=(p"' 1)p. Therefore, we have r = (p® — 1) — (p"~! — 1) = p" — p"-,
and Euler's theorem provides the following corollary: The difference
ar*—p*-t — 1, where p is prime and g is not divisible by p, is divisible by p®.

If N = p{'pf2. -pi*, where pi, pz, - -+, px are distinct primes, then the number
7 of prime numbers less than N and relatively prime to N is given by the

formula
rewf-20-De (-3)
b4 P2 Px

(See, for example, the article by A. Y. Khinchin, referred to above,) If N = p»
is a power of the prime p, this formula yields

r = pﬂ(l __l_)__ n _ mn—1
» 14 P
which is the result obtained previously.
242.* According to Euler's theorem, the difference 2¢ — 1, where
k=5"—5" is divisible by 5" (see problem 241, and the remark

following it). Prove that there exists no k less than 5* — 5*' such
that 2« — 1 is divisible by 5.

243. Let us write, in order, the consecutive powers of the number
2: 2,4,8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, Note that in
this sequence the final digits periodically repeat with a period of 4:

2,4,8,6,2,4,8,6,2,4,8,6,

Prove that, if we begin at a suitable point of the sequence, the last
ten digits of the numbers of the sequence will also repeat periodically.
Find the length of the period and the number of integers in the
sequence for which this observed periodicity occurs.

244.* Prove that there exists some power of 2 whose final 1000
digits are all ones and twos.

245. Wilson's Theorem. Prove that: if the integer p is prime,
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then the number (p — 1)! + 1 is divisible by p; if p is composite,
then (p — 1)! + 1 is not divisible by p.

246.,* Let p be a prime number which yields the remainder 1 upon
division by 4. Prove that there exists an integer x such that x*+ 1
is divisible by p.

247.** Prove the following.

(a) If each of the two integers A and B can be represented
as the sum of two squares, then their product A:-B can also be re-
presented in this manner.

(b) All prime numbers of form 4n + 1 can be written as
the sum of two squares, and no number of form 4n# + 3 can be so
expressed.

(¢) A composite number N can be written as the sum of
two squares if and only if all its prime factors of form 4»z + 3 oc-
cur an even number of times.

For example, the numbers 10,000 = 2¢-5* and 2430 = 22-3%.5.13 can
be represented as the sum of the squares of two integers (in the first
number there are no factors of form 4» + 3, and in the second
number there is one such factor, 3, which occurs twice); the number
2002 = 2-7-11-13 cannot be represented as the sum of two squares
(the factors 7 and 11, of form 4n + 3, appear once).

248. Prove that, for any prime p, it is possible to find integers x
and y such that x* + y* + 1 is divisible by p.

249.** Prove the following.

(a) If each of two numbers A and B can be written as the
sum of the squares of four integers, then their product A-B can
also be represented in this manner.

(b) Every natural number can be written as the sum of not
more than four squares.

example, 35=25+9+1=524+32+1%,60=49+9+1+1=72 +
3 + 1% + 1%; 1000 = 900 + 100 = 30% + 10?, and so on.

250. Prove that no number of the form 4*(8k — 1), where n and &
are integers, that is, no number belonging to the geometric progres-
sions

, 28, 112, 448,
15, 60, 240, 960,
23, 92, 368, 1472,

31, 124, 496, 1984,
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can be a square or the sum of two squares or three squares of
integers.

Remark: It has been shown that every integer which cannot be written in
form 478k — 1) is representable as the sum of three or fewer squares. How-
ever, the proof is very complicated.

251.** Prove that every positive integer can be written as the
sum of not more than 53 fourth powers of integers.

Remark: Experimental trials indicate that integers of moderate size are
representable as the sum of far fewer fourth powers than 53. To the present
time, no integer has been produced which cannot be given as the sum of 19,
or fewer, fourth powers. (Of the numbers less than 100, only one—the number
79—requires as many as 19 fourth powers; that is four terms of 2¢ and 15 units).
It has been conjectured that 19 fourth powers suffice for every integer, but no
proof of this has as yet appeared. The best result in this direction has been
the proof that every natural number can be written as the sum of not more
than 21 fourth powers. This is a substantial improvement over the proposition
given as problem 251, but the proof of it involves considerable higher mathe-
matics.

In problem 239 (b) it was stated that every integer can be written as the
sum of not more than four squares. It has also been shown that every integer
can be written as the sum of not ntore than nine cubes.

All these propositions are embraced by the following remarkable theorem:
For every positive integer k there exists a positive integer N (depending, of
course, on k) such that every integer may be written as the sum of not more
than N kth powers of positive integers. This theorem has been provided with
several different proofs, but only recently has a proof been given which does
not require considerable higher mathematics. In 1942 the Soviet mathematician
U V Linnik gave the elementary proof. This proof is presented in the popular
little book by A. Y Khinchin, Three Pearls of Number Theory, Government
Technical Publishing House, Moscow, 1949.Y Although Linnik's proof is ele-
mentary it is not easy reading. Khinchin himself remarks that almost any-
body can understand it with “‘only two or three weeks work with pencil and
paper.

252.** Prove that every positive rational number (in particular,
every positive integer) can be written as the sum of three cubes of
positive rational numbers.

Remark: Not all positive rational numbers can be represented as the sum
of two cubes of positive rational numbers. Consider, for example, the number
1. The equation

' An English translation has been published by Graylock Press. Rochester.
N. Y., 1952, 64 pp., $2.00 [ Editor|.
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can be written
(ng)? = (mq)P® + (np)®
where m,n, p, and ¢ are integers. But it is known that no solution in integers
exists for the equation
xd + ys =23

(a proof of this may be found in most standard texts on number theory).
253. Prove that there exists an infinite number of prime numbers.

254. (a) Prove that among the numbers of the arithmetic pro-
gressions 3, 7, 11, 15, 19, 23, and 5, 11, 17, 23, 29, 35, there are an
infinite number of primes.

(b)* Prove that there are an infinite number of primes in
the arithmetic progression

5,9,13,17, 21, 25,

(c)* Prove that there are an infinite number of primes in
the arithmetic progression

11, 21, 31, 41, 51, 61,

Remark: The following more general theorem holds: If the first term of
an infinite arithmetic progression of integers is relatively prime to the com-
mon difference, the progression contains an infinite number of primes. How-
ever, the proof of this theorem is quite complicated. (It is interesting that an
elementary, albeit very difficult, proof of this classical theorem of number
theory was published for the first time only in 1952 by the Danish mathema-
tician Selberg. Prior to this the only known proofs involved higher mathematics).
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SOME DISTINCTIVE INEQUALITIES

This section presents several problems relating to inequalities stemming from
two important inequalities which play a major role in mathematical analysis
and in geometry. These are the theorem relating arithmetic and geometric
means (problem 268), and the so-called Cauchy-Buniakowski inequality (problem
289). Many problems on inequalities, not related to these two but of importance
in other applications, appear in other sections of this book (see, in particular,
Sections 6 and 7).

A great many interesting inequalities may be found in the Problem Book in
Algebra, by V A. Kretchmer, Government Technical Publishing House, Moscow,
1950, where an entire chapter is devoted to inequalities. That book offers
alternative proofs of several of the inequalities presented here. There is also
much interesting material in the books by P. P. Korovkin, Inequalities (Govern-
ment Technical Publishing House, Moscow, 1951), by G. L. Nevyashy, In-
equalities (Pedagogical Publishing House, Moscow, 1947), and particularly that
by Hardy, Littlewood, and Polya, Inequalities, (Government Technical Publish-
tng House, Moscow, 1949).

The initial chapters of the last book may be read by persons not acquainted
with higher mathematics’

The following problems are not presented in order of increasing difficulty.

Y The last book was originally written in English. It is published by Cam-
bridge University Press, revised edition, [Editor].
61
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The ordering is such that in some instances the result of one problem will be
useful in solving the next; in other instances problems conceptually related are
grouped together. The simplest properties of inequalities are assumed known.

In all the problems of this section, small English letters designate real
numbers.

Theorems on Arithmetic and Geometric Means and Their Applications

We know, from formal mathematics courses, that the geometric mean of two
positive numbers a and b is less than, or equal to, their arithmetic mean,

— _a+b

vaeb = 2 , (1)

and the equality holds only if @ =b. This is proved as follows.
If we square both members of the inequality and clear of fractions, we arrive
at
4ab = (a + b)?
Expanding the right member, transposing 4ab to the right side, and so on, we
obtain
0<a?— 2ab + b2 =(a — b)?
which clearly is true for all numbers @ and b, since the square of any real
number is nonnegative.

Hence, inequality (1) holds for every real number. Moreover, it is evident
that (@ — b)2 can be zero only if @ = b; that is, the last inequality reduces to
the equality only for a = b. Therefore, this criterion must hold also for in-
equality (1).

Inequality (1) may be rewritten in the following equivalent form, which we
shall use hereafter:

a+b\? _ o+ b
S ’
( 2 ) =73 (1
If we expand the left member of (1’), clear of fractions and put all terms in
the right member, we obtain
0 < 2a2 + 2b2 — (a? + 2ab + b2) = (@ — b)?

Use of inequalities (1) and (1’) simplifies the solution of the first of the prob-
lems which follow. These two forms of the inequality are useful in the deri-
vation of many generalizations, the most important of which are the propositions
of problems 268 and 283.

The arithmetic mean of n positive numbers a,, az, -+, an is defined by the
following expression:
eLta+ - +an

n

The geometric mean of n positive numbers ay, @z, - - -, an is defined as the nth
root of their product:

Aq(a) =

Tafa) = ":/Glaz' @n -
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Finally, the harmontic mean of n positive numbers is the number H(a) such
that
1 lla+1la+ + l/an
H(a) ™~ n
(the reciprocal of the harmonic mean of » numbers is the arithmetic mean of
the numbers inverse to the given ones). In particular, the harmonic mean of
two numbers ¢ and b is determined by the equation

L__I_(L+L>
¢c 2\a b

from which ¢ = 2ab/(a + b).
255. (a) Prove that, of all rectangles having the same given
perimeter P, the square encloses the greatest area.
(b) Prove that, of all rectangles having the same given area
S, that of smallest perimeter is the square,.

256. Prove that the sum of the legs of a right triangle never
exceeds 17 2 times the hypotenuse of the triangle.

257. Prove that for every acute angle &
tana + cota = 2

258. Prove that if @ + b =1, where a and b are positive numbers,

then
2 2
(a+—1—) +(b+—1-) gé
a
Determine for what values of a and b the equality holds.

259. Prove, given any three positive numbers ¢, b, and ¢, the fol-
lowing inequality holds:
(@ + b + ¢c)c + a) = 8abc
Show that the equality holds only for a = b = c.
260. For what values of x does the following fraction have the
least value?
—‘H;# (@ and b positive).

261. A butcher has an inaccurate balance scale (its beams are of
unequal length). Knowing that it is inaccurate, and being an honest
merchant, he weighs his meat as follows. He takes half of it and
places it on one pan, and he places the weights on the other pan;
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then he weighs the other half of the meat by reversing this pro-
cedure, that is, by removing the weights and placing the meat on
that pan. Thus, the butcher believes he is giving honest weight.
Is his assumption correct?

262. (a) Prove that the geometric mean of two positive numbers
is equal to the geometric mean of their arithmetic and harmonic
means.

(b) Prove that the harmonic mean of two positive numbers
a and b does not exceed the geometric mean, and that the equality
holds only if @ = b.

263.* Prove that the arithmetic mean of three positive numbers
is not less than their geometric mean, that is,

atbte

o——
3 2 VYabc ,

and that the equality holds only if a = b =c.

264. Prove that, of all triangles with the same given perimeter,
the greatest area is enclosed by the equilateral triangle.

265. Given a three-faced pyramid having a right trihedral angle
at the vertex. Designate the edges from the vertex by x,y, and z.
For what x,y, and z is the volume of the pyramid a maximum if
it is known that

x+y+z=a?

266. Given six positive numbers a,, a;, a,, b, bs, bs. Prove that the
following inequality holds:
‘t\,/(an + b)a: + b)as + by) = 2/(11(12(13 + Vblb2b3

267. A Special Case of the Theorem Concerning the Arithmetic and
Geometric Means. Given 2™ positive numbers a,, @, ++-, a;m. Prove
the inequality

rzm = Azm(a) .

that is,
Vagr o g At l_Tan
2
and that the equality holds only if all the numbers a,,a,, «--, a,» are
equal.

268.% Theorem of the Arithmetic and Geomelric Means for n Num-
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bers. Prove that for any = positive numbers a,, as, *--, @
I'n(a) £ A.(a),
that is,

n———_ a +ta+ -+ a.
Vaa, - -a. < - ,

and that the equality holds only if @, = a, = = a,.

269. (a) Consider all sets of » positive numbers whose sum is a
given number k. Prove that the maximum product of the numbers
of any such set is attained when all the numbers are equal.

(b) Given n positive numbers a,, a;, --,a,. Prove that
e
a; a, a,
270. Prove that for » positive numbers a,, a,, - - -, a, the following
inequality holds,
Ha = I'(a),
that is,
n -
< Vaa, a.
( 1 1 1 )
—+—+ 4+
a, a: an
and that the equality is obtained only if a, = a, = = Qn.

271. Prove that for two positive numbers a and &
= _ a+nb
vabr = n+1"'
and that equality can hold only if a = b.

272. Prove that for any set of positive numbers a,,a;, -, a,

(@ +a + +au)<—l—+L+ +i);n2
a, a; an

When does the equality hold?
273. Prove that for any integer n > 1

y my
e (22

274. Prove that the following inequality holds for any four posi-
tive numbers a,, a., a,, a.:
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10
aalalal < (al +Zaz+3aa+4a.>

10
275. Prove the following.

SRR i,
22 3P 4 a2 Ln+1

(n(n+1)]
(b) 1.2¢ 33.4¢ n..<[2n3+1] (1712

([a] means “the largest integer in a”).

276. Let a,, as, ---, ax be positive numbers, and let
s=a,+ a; + + Ga
Prove that

2 3 L]
A+a)Xl+a)-Q+a)sl+s+2 4+ 1 4+ =
2t 3 n!
277. Prove that for every integer n

VZYTYE .. V2 sn+1
278. For which value of x is the product
1 — 21 + x)(1 + 2a)?

a maximum, and what is this value?

279.* Inscribe between a given segment of a circle and the arc
of the circle the rectangle of greatest area.

280. From a square piece of cardboard measuring 2a on each side

i
b

Figure 4
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a box with no top is to be formed by cutting out from each corner
a square with sides & and bending up the flaps, as shown in Figure
4. For what value of b will the box contain the greatest volume?

Two Generalizations of the Theorem Concerning
Arithmetic and Geometric Means

The power mean of order a of n positive numbers a,, az, «-+,a, is defined
to be the number

Sw(a) = (
in particular, if « = k is a whole number, we obtain

k% k ]
Sua@) = }/al +afk+  +ak
n

af +af + +a¥ )‘/"
n

It is easy to see that Si(a) = A(a) and S_i(a) = H(a).

if @ =0, the expression for S; is meaningless. On the other hand, it can
be proved that if a — 0, then Ss(a) tends to the geometric mean I'(a).! There-
fore, it is convenient to define Si(a) = I'(a). (An additional justification for
this definition is given in problem 282,) The power mean of order 2 is referred
to as the quadratic mean.

Inequality (1’) (see the remark at the beginning of this section) can now be
stated as follows: The arithmetic mean of two numbers does not exceed their
quadratic mean (and the equality holds only if the numbers are equal).

281.* (a) Prove that the arithmetic mean of n positive numbers
does not exceed the quadratic mean:

(al+az+ +an>2<a§+a§+ + an

n n
The equality holds only if the numbers are all equal.

(b) Let k2 be any integer greater than 1. Prove that the
arithmetic mean of n positive numbers does not exceed their power
mean of order k:

(a;+az+ +a.>"sa{‘+a‘a‘+ + ax
n = n

The equality holds only if all the numbers are equal.
t That is,

n,_
lim = Va@az - -an

a&—0

(a‘,"—+—a:+ +a:>”"’
n

See V E. Levine, "‘Elementary proof of one theorem of the theory of means,”
Math. Educa., Issue 3, pp. 177-181. Moscow, 1958.
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282. Prove that the power mean of order &« of » positive numbers,
for & > 0, is not less than the geometric mean, and, for @ < 0, is
not greater than the geometric mean (equality holds only if all »n
numbers are equal.)

Remark: The theorems of problems 268 and 270 are particular cases of this
proposition.

283.* Theorem of Power Means. Prove that if @ < 8, then the
power mean of order @ does not exceed the power mean of order f8:
(a‘l’+a5‘+ +a‘:>”"< (af+af+ +af)‘“’
n = n

The equality holds only if a, = a, = = da.

284. (a) The sum of three positive numbers is equal to 6. What
is the smallest value which the sum of their squares can have?
What is the smallest value which the sum of their cubes can have?

(b) The sum of the squares of three positive numbers is
equal to 18. What is the smallest possible value for the sum of the
cubes of these numbers? What is the smallest possible value for
the sum of these numbers?

The symmetric mean of order k of n positive numbers ai, a2, -+ -, ap (Where
k is a natural number not exceeding n) is defined to be the kth root of the
sum of all possible products of these n numbers taken k at a time:

_ ¥ Jaiaz- - -ax + @182 - Qe_ 1@k + + Gn-k+10n—k+2- " Qn
Sile) = c*
n

It is clear that X (a) = A(a), Xn(a) = I'(a).
285. Prove that
(B Z (B )= (-
286. Theorem of the Symmelric Mean. Prove that if £ > [, then
2da) = @)
The equality holds only if a, = @, = = @a.

287. Given that the sum of all six possible pairwise products of
four numbers is equal to 24. What is the smallest value possible
for the sum of the four numbers? What is the greatest possible
value for the product of the numbers?

288, Leta+ 8+ 7r=m.
(a) Find the smallest possible value for
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8 T

«@
tan — + tan — + tan —
2 2 2

(b) Find the largest possible value for
B T

@
tan —-tan —-tan —
2 2 2

The Cauchy-Buniakowski Inequality
The following elementary inequality is readily verified:
aiby + azhe £ '/m/m
or,
(@b + azb2)? £ (a} + (b} + b)) (1)
Expanding both sides and collecting all terms on one side we obtain
(a1be — a2b1)? 2 0

It follows that inequality (1) becomes an equality if

ab, = azh,
that is, if

a_a

b b

Inequality (1) yields a significant generalization which is important in in-
equality theory and has useful applications in mathematics and physics.!

289. The Cauchy-Buniakowski Inequality. Prove that for any 2n
real numbers a,,a., --+,a, and b, b, ---, b, the following inequality
holds:

(@b + ;b + tab =@ +ai+ )+ b+ + b
The equality holds only if

290. Use the Cauchy-Buniakowski inequality to derive the results
of problem 272.

291. Use the Cauchy-Buniakowski inequality to obtain the theorem
of problem 281 (a).

292. Prove that if @ + 8 + r = I, then

t This inequality is sometimes referred to, in other texts, as the Cauchy-
Schwarz inequality [ Editor].
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tan’% + tanzﬁ + tanZ% =1

293. Prove for any positive numbers x, xz, * <, Xa} Y1, Y2, "¢y Yn!

Vi + 3+ (e + 3P + + (Xn + ya)?
sVE+E+ +2+VY+yi+ + 32

294, Let @ be the sum of all the possible pairwise products of the
»n positive numbers a,,a., -+, as, and let P be the sum of their
squares. Prove that

Qénglp

295. Prove that, given 2» positive numbers p,, p,, -« -, pa; X1, Xz,
---, x,, the following inequality holds:

(p1xy + poxy + + paXn)?
S(hi+p+ A PNDH A pexi+ + purh)

296. Verify that for any three arbitrary numbers x,, x,, x; the fol-
lowing inequality holds:

1 1 1 2 1 1 1
(—Z—Xl + ?Iz + an) =< ?xf + ?xﬁ + in
297. Prove that if x, x, -, x.; ¥, ¥, -, ¥« are positive numbers,

then
1/:(1}’1 + 1/12_}’2 + + 1/xy.yy.
SVt nt+ 4+ x Vii+y+ + Vn

298. Let ai,a:, -+, a0 b, by, o, bay €162, L Cap di,dy,,dy be
four sequences of positive numbers. Prove the inequality

(alblc]dl + a‘lechz + + anbncndn)‘
<(al+at+a+ +a) bl + b+ b+ + b
X +a+a+ +aXdi+dit+di+ 4 d)
299.* The Cauchy-Buniakowski inequality (problem 289) verifies
that the relationship

(@ +ar+  +a)b+bi+ 4+ by
((llbx + (lzbz + + a,.b,,)’ '

where a,, a», -+, ax, b, bs, -+, b, are two sequences of positive num-
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bers, is greater than or equal to 1 (and is equal to 1 only if 4 _

b,
% = = %’1) Prove that this value is always included between
2 ]

1 and the quantity
1+ (VMIMZ/mlmZ - WlmZ/Mle )’
2

— (VMlelmlmZ + Vmm/ MM, )’ ]
2

where M, and m, are, respectively, the greatest and the least of the
numbers a,, @;, - -+, a., and M, and m, are, respectively, the greatest
and least of the numbers b,, b;, ---, bx. In which case does the value
exactly equal the following?

1+ (VMIMZ/mImI — V'mum,/J M. M, )’
2

Some Additional Inequalities

300. Chebycheff’s Inequality. Let a,, a,, --+,a, and b, by, -+ -, b, be
two nonincreasing sequences of numbers. The following inequality
holds:

g tayt ot bt bt b @bt aht -+ anbs

n n n
the equality holding only if 4, = @, = =g, and b, = b, = = b,.
Remark: 1t is possible to show that if a, a2 ---,an iS a nonincreasing
sequence of numbers, and if by, bs, - -+, by is nondecreasing, then
a +az+ - +an bl+bz+'--+bu2a|b|+azbz+ + @nbn
n n - n

The proof of this proposition is left to the reader.

301. Let p and g be positive rational numbers for which

1 1
p q

Prove that for any positive numbers x and y the following inequality
holds:

xy = —1—x’+ —1—y°
b q
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Remark: For p = ¢ = 2 we obtain the Elementary Theorem of the Arithmetic
and Geometric Means.

302. Let & and A be positive rational numbers, where @ + 8 = 1.
Prove that for any positive numbers a,, @2, - -, @n; by, b2, - --, b the
following inequality holds:

ath} + afb? + +a%8 < (a, +a. + + an) (b, + b, + + by)P

Remark: If a =8 =14, it is readily seen that we obtain the inequality of
problem 297, which is equivalent to the Cauchy-Buniakowski inequality.

303. Holder's Inequality. Let p and g be positive rational numbers
such that
1 1
? q
Prove that for any positive numbers x,, x5, +--, s} Y1, Y2, -+, ¥a the
following inequality holds:
xlyl + Izyz + + Inyn
2+ 4+ + x)(y1 + ¥+ + yR)/e

Remark: If p=q =2, this inequality becomes that of Cauchy-Buniakowski
(problem 289), which, in turn, is a special case of Holder's inequality.

304. Leta,, a,, ---,an; b,by, --,b4; -+ I, L, -+, I, be k sequences
of positive numbers, and «, A, - -, 4 be k positive number such that

a+f+ +4i=1
Prove that

athl-- 1Y+ azhl- B+ +a%bi- I
<(a+a + + a)*b, + b, + + bRl + by + AN

305. Let a,, a., --+,a. be n positive numl?ers, and let ¢ be their
geometric mean (¢ = Va,a.---a.). Prove that

l+a)(l+a)--0+a)=1+g9"

306. Prove that if a,,a:, ---, as; b, b4, -+, ba; Iyly +o+, 1, are
k sequences of positive numbers, then the following holds:

Yaa; --a, + z‘/bxbz"'bu‘*' + ?/1112"'1;-
< V¥a +b + +1)a, +b, L + L)an + ba + + Iy .

307. Let x,y, and z be positive numbers for which

x+y+z=1.
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(1+ %)(1 + —;—)<1 + %) 2 64

308. Minkowski's Inequality. Let a,, a,, -+, au; b, bz, -+, ba;
I, I, -+, ., be k sequences of positive numbers. Prove that

Prove that

Vd+ai+ +ad+Vei+b+  +8
+ +VE+E+ +0I

z2V@+b+ -+l +(@tb+ L+t @+ bt LS
Remark: The inequality of problem 308 [a generalization of the result of
problem 186 (a)] can also be written in the form
Saa) + Sa(b) + + Sol) = Saa + b+ +1,

where S; is the quadratic mean of n numbers (see p. 67).

A more general formulation of Minkowski’'s inequality is as follows. If
@, a2 -y Qa0 b2, o bn; - --i Ui ba, -+, la, are k sequences of positive numbers,
then

= Sala + b+ + D ifa>1;

< Sa(a + b + +1 if a <1

In particular, the inequality of problem 306, which may be written
Fla) + (b + +Isla+b+ +1

Saa) + Sa(b) + + Sz(l){

or
So(a) + Se(b) + + So(l) £ Sola + b + +1)
is a special case of Minkowski's inequality for a = 0°



DIFFERENCE SEQUENCES AND SUMS

Consider the sequence of numbers
Uo, U1, U, = **, Un,

The first difference sequence of this sequence is the set of numbers
(1}

Uy = UL — U,
ulV = up —wr;
u.“;":us—uz;

u = Uns1 — Un,
The gecond difference sequence is the difference sequence of the previous
sequence:
u(()!) — u{l) - u(()l)
@ (n m
Uy 1 T Y
N
2

=u

[

w =uf —u

uf? = uill, - )
Analogously, the sequence of differences of kth order, ™, u{®, ul¥, ... ul¥,
is the sequence obtained by working on the (k — 1)st sequence of differences,
uffY, k= g L= For example, if the initial sequence of numbers is
the arithmetic progression 1,5,9,13,17, then the first row of differences

consists of the numbers 4,4,4,4, ---, and the differences of second order form
74
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a sequence of zeros: 0,0,0,0, If the initial sequence is the set of squares
of integers, 1, 4,9, 16, 25, 36, 49, - . -, then the differences of first order form the
sequence of odd numbers: 3,5,7,9,11,13, ---; the differences of second order
form the sequence 2,2,2,2, --., and the third sequence (differences of third

order) consists of zeros. [In the examples investigated we quickly arrived at
a sequence of zeros, and this is related to the general proposition of 309 (b).]

The sequences of differences of a finite sequence of numbers can be con-
veniently written in {riangular array:

Uo w1 Uz Un

Uy

(n)
uO

Here it is apparent that each number is the difference of the two adjacent
numbers of the row above. For an infinite sequence of numbers the triangular
(infinite) array has the form

Uo Ut Uz Un

u‘()l) u{l) uil; u:‘l)

u? Uy

In a fashion analogous to finding the successive sequences of differences of
a set of numbers we can also define sequences of sums. The sequence of
sums of first order of the set of numbers wug, uy, uz, -+ -, Un, which we shall
designate by writing &), a/", a)l’, ---, 4l is defined by

- M
g’ = w0+ wr;

a? =+ ue;

l;,““ = Un + Un+1t

The sequence of sums of kth order of the numbers uo, w1, + -+, Un, is ob-
tained from the (k — 1)st row of such sums. We shall designate the sums of
kth order by a*', a* ... a¥,

For example, if the initial set is the sequence of ones, 1,1,1,1, then
the sequence of sums of first order consists of two's: 2,2,2,2, -.-; the sequence
of sums of second order is 4,4,64,4, the third sequence is 8,8,8,8, ---;
and so on. If the initial set is the sequence of natural numbers, 1,2,3,4,5,
.-, then each sequence of sums will form an arithmetic progression:
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3, 5, 7, 9, 11, 13,
8, 12, 16, 20, 24,
20, 28, 36, 44,
and so on.
Sequences of successive sums of a finite set uo, i, *+ -, %n can be conveniently

displayed in triangular array:

Uo Ui Uz Un—1 Un

-1 (1) -(1)
", tig 7,

7(2)
Hn_g

Here, each number is the sum of the two adjacent numbers in the row above.
If we consider an infinite sequence of numbers uo, %1, %2, - - -, ¥n, then the tri-
angular array continues indefinitely.

We now consider a related concept, Pascal's Triangle (or the Arithmetic
Triangle):

1
1 1
2 1
1 3 3 1
4 6 4 1

Here, the rows are bordered on each end by ones, and the interior integers are
obtained as the sum of the two adjacent numbers of the previous row.

For convenience we shall start the row enumeration of the Pascal triangle
with the number zero; that is, the number one at the apex of the triangle will
be thought of as the Oth row; the sequence 1, 1 constitutes the first row, and
so on. We shall designate the (k + 1)st element of the nth row as Cf, (that
is, in each row, too, we shall start counting from zero). Using this terminology,
we have the following format for Pascal’s triangle:

C
¢ c
C3 C; ct
g ¢ g a
c o c? al c

A number of properties of the members in the Pascal triangle have been
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developed in the book by B. B. Dynkin and V A. Uspensky, Mathematical
Conversations, Issue 6, Section 2, Chapter III, Library of the Mathematical
Society. The material contained in the problems of this section are closely
related to the material in the interesting popular book by A. E. Markuskevich,
Reflexive Series, Government Technical Publishing House, Moscow, 1950.
The sequence of numbers obtained by successively substituting, for xz in a
polynomial P(z) = aox* + a1z~ + + @x-1Z + ax the sequence of integers
1,2,3, ..., n [that is, the sequence P(l), P(2), .-, P(n)] will be called the kth
order sequence of P(x). A special case of a kth order sequence is the sequence
1k, 2%, 3% 4k ... pk, [that is, P(z) = z*].
309. Let u,, %), %2, -+, u. be a sequence of kth order; that is, let
Un = ain* + an* + + a..
(a) Prove that »\" forms a sequence of (¢ — 1)st order.
(b) Prove that the (¢ + 1)st difference sequence of this se-
quence consists only of zeros.

310. Prove that if . = an* + an*' + + a@*, then all the num-
bers of the kth row of the difference sequences uy, %, %#;, -+, %n,
are equal to a.k!.

311. Prove that:
(a) k= Cittn + Cittasy + Cittniz + + C:un+k:
(b) ua = (=1¥Clun + (=1} "'Cittns
+ (=12 Cittnsz +  + Cithnix.
312. Prove that

C:—__n(n_l)(n_zk?'...(n—k'i-l) k>0,

where k2! =1-2-3---k.
313. Prove that
Ue = Couty + Chttd" + Ciul® + + Chug®

314. Assume that the (k& + 1)st row of successive differences [dif-
ferences of (& + 1)st order] of some seqnence consists of zeros, but
that the kth row consists of nonzero numbers. Prove that this
sequence is a sequence of order k.

Remark: The theorem represented by this problem is the converse of the
theorem of problem 309 (b). There we were to prove that the (k + l)st row
of the differences of a kth order sequence consists of zeros. Here we are to
prove that if the (k + 1)st differences of some sequence consists of zeros, then
the sequence is of kth order.
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315. Find the formula giving the sum of the series
B+204+3+ +au

316. (a) Prove that the sum 1% + 2% + 3% + + n* is a poly-
nomial in » of degree & + 1.
(b) Calculate the coefficients of »**! and of »n* of this poly-
nomial.,

317, We say that a sequence of integers is divisible by a number
d if every number of this sequence is divisible by 4. [For example,
the sequence of numbers #'* — # is divisible by 13; the sequence of
numbers 3%* — 2%* is divisible by 35; the sequence of numbers #n® —
5n° + 4n is divisible by 120. See problems 27 (d), 28 (a), (b)].

Let u. be a kth order sequence, #, = a,n* + a,n** + + ax, where
the coefficients a,, @\, @., - - -, @* are relatively prime integers. Prove
that if the sequence u, is divisible by an integer d, then 4 is a divisor
of k!,

318. Calculate (C2? + (CL)* + (CY* + + (Ch)?

319. Using the result of problem 313, prove Newton’s binomial
formula:

(@ + b = @ + ka*'b + k(k—zTHa""zbz + + W#
320. Consider the sequence 1, —é— , % , —:T, Construct the

successive-difference triangle:

.—
|
l

1 1 1 1
3 12 3 60
1 1 1
4 20 60
1 1
5 30
1
6

Turn this triangle 60° clockwise such that the apex consists of the
number 1:



Problems (315-320) 79

Disregard the minus signs of this triangle, and divide through every
row by the number at the end of that row to obtain

Finally, substitute for each number its reciprocal (that is, replace
a/b by bla).
Prove that this end result gives Pascal’s triangle.



SOLUTIONS

1. Consider the total number of handshakes which have been
completed at any moment. This must be an even number, since every
handshake is participated in by two people, thus the total number
is increased by two. The number of handshakes, however, is also
the sum of the handshakes made by each individual person. Since
this sum is an even number, the count of the people who have shaken
hands an odd number of times must be even (otherwise, odd times
odd would given an odd contribution to the total).

2. In order to traverse the chessboard, stopping precisely once on
each square, the knight must move 63 times. At each move the
knight goes from a square of one color to a square of another color.
Thus, in an even number of moves the knight is again on a square
of the same color as that of the square he started from, and in an
odd number of moves he is on a square of the other color. Therefore,
the knight can not arrive at the opposite end of the diagonal of the
chessboard in 63 moves: the initial and final squares are the same
color.

3. (a) Let us denote the minimum number of transfers necessary
to construct a pyramid consisting of » rings on the second peg (under

80
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the conditions given by the problem) by k(n). Clearly, k1) =1.
Further, if #n = 2, then to transfer the second ring to the second peg,
we must first transfer the first ring from the second peg to the auxil-
liary peg; then we place the second ring on the second peg and
transfer the first (smallest) ring to the second peg. Thus, k(2) = 3.
If » = 3, then to transfer the lowest (largest) ring to the second peg,
in the necessary arrangement, we must first move the two rings al-
ready on the second peg to the auxilliary peg. This requires &(2)
moves, and k(2) moves will be required again to replace the rings on
the second peg after the largest ring is moved from the first peg to
the second peg. Thus,

k(3 =2k2)+1=17
In an analogous way find

k4)=2k(3)+1=15;

k(5) =2k(4) +1=231
In general,

kn)y=2kn —1)+1.

Noting that, for example, £(3) =23 — 1, k(4) = 2* — 1, and so on, we
assume as an induction hypothesis that k(z — 1) = 2"~ — 1. Then

kn)=2kn—1)+1=22"'=-1+1=2"—-1

Thus, by the principle of finite mathematical induction, it follows
that k(n) = 2" — 1 for all =,

(b) Designated by K(n) the least number of moves necessary to
remove n rings from the rod. From the beginning position it is pos-
sible to remove either the first ring [see Figure 5(a)] or the second
[Figure 5(b)]; consequently, K(1) =1 and K(2) = 2 (for two rings, we
first remove the second ring, then the first).

In order to remove the ith ring it is necessary to remove the i — 2
preceding rings; otherwise the ith ring cannot be moved to the end
of the rod. On the other hand, if the ({ — 1)st ring is already removed,
then the ith ring cannot be removed [see Figure 6(a)] (it is evident
that if three rings are removed, then the fourth cannot be removed).
But if the (/ — 1) st ring is removed, then the (i + 1)st ring can easily
be removed [see Figure 6(b) and (c)].

Now it is not difficult to answer the question posed by the problem.
In order to remove the last of the n rings it is first necessary to
remove the first » — 2 rings. This can be done in K(» — 2) moves,
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Figure 5

after this the final ring can be taken off in one more move. It then
remains to remove the (# — 1)st ring. We will designate by k(n) the
number of moves necessary to remove only the »th ring, under the
condition that all the preceding rings have already been taken off.
We obtain

Kn)=Kun—2)+1+kn—1)

We shall now find an expression for the number k(x#). Clearly, in
order to remove the nth ring from the rod we must put the (n — 1)st
ring back on the rod. This can be done in k(s — 1) moves [the same
number of moves which were necessary to remove the (2 — 1)st ring
from the rod, the moves now being done in reverse order]. The nth
ring is now easily removed from the rod, requiring only one addi-
tional move. Finally, the (# — 1)st ring must be taken off the rod,
for which k(21 — 1) more moves are needed. Thus, we obtain

k(ny=2kn—1+1,
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Figure 6

83
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from which we easily derive
kn)y=2"—1

[see the solution to problem (a)].
Now the formula which determines K(n) takes the form

Kn)= Kn—2)+ 2!

But since K(1) =1 and K(2) = 2, we readily find, for » = 2m (an even
number) that
Kn)=Kn—2)+ 2"t =Kn—4)+ 2~ + 2»3
= Kn —6) + 20t 4 203 4 278 =
= K(2) + 2% 4 273 4 270 + + 28
=2_+_2"H—23=,1_(2~+l_2)
4—1 3
If »=2m + 1 (an odd number),
Kn)=Kn—2)+ 2= Kn — 4) + 2" + 23
= K(n — 6) + 2t 4 2773 4 275 =
— K(l) _+_ 2u-l — 2:-3 _+_ 2n—5 _+_ _+_22
2u+l —_ 22 1
=14 —= -2 -1
+ T 3( )

4. (a) We divide the coins into three groups: two having 27 coins
each and one having 26 coins. A first weight trial is made by plac-
ing a group of 27 coins on each of the two pans. If the pans do not
balance, the counterfeit coin is among those in the lighter pan. If
the scale is in balance, the counterfeit coin is among the 26 un-
weighed coins. Therefore, it suffices to solve the following problem:
To find, by three weight trials, a light counterfeit coin among 27
coins (the problem of detecting the counterfeit in the group of 26 coins
can be reduced to this by simply adding to the set of 26 coins a
genuine coin from the 54 which were weighed).

For a second weight trial we divide the 27 coins into three groups
of nine each and place a group of nine coins on each of the two pans.
This will reveal which group of nine coins contains the counterfeit.
The group of nine coins containing the counterfeit is then divided
into three groups of three coins each. A third weight trial will tell
which group of three coins contains the counterfeit. Finally, a fourth
weight trial involving two of the three doubtful coins will reveal the
counterfeit.

(b) Let %k be a natural number which satisfies the inequalities
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3k 2 n and 3*-! < n. We shall show that the number £ satisfies the
conditions of the problem.

First we show that, at most, k weight trials are enough to allow
detection of the counterfeit coin. We divide the coins into three
groups such that in each of two equal groups there are 3* (or fewer)
coins and the number of coins in the third group does not exceed
J#-t(this is possible for # < 3*). The two groups having the same
number of coins are placed on the pans of the balance; this enables
us to determine which group contains the counterfeit [see the solu-
tion to problem (a)]. If the group containing the counterfeit coin
contains fewer than 3*-! coins, we add to it enough (genuine) coins
from the other two groups to give it 3*~! coins. This group of 3*!
coins containing the counterfeit is again divided into three groups,
as before, and a second weight trial is made, as before. The pro-
cedure is continued until after, at most, £ weight trials we arrive at
a group containing only one coin—that is, we have located the counter-
feit coin.

It is now necessary to show that k& is the minimal number of weight
trials which will guarantee the detection of the counterfeit coin under
all circumstances. (Nofe: We might, under certain circumstances,
succeed with fewer weight trials. For example, if two coins are
chosen at random and compared, we might be fortunate enough to
have chosen the counterfeit coin as one of them. However, this does
not give us a proceddre by which we can be sure, under all possible
circumstances, of detecting the counterfeit by the required number
of weight trials.)

In each weight trial, as outlined above, the coins are divided into
three groups, two of which are placed on each of the two pans, and
the third being the unweighed group. If with an equal number of
coins on each pan the scale balances, then, of course, the counter-
feit is in the third group. If the pans are out of balance, we know
that the counterfeit is on one of the pans, although a prior knowledge
as to whether the counterfeit is lighter or heavier than the rest is
needed to tell us on which of the two pans it lies.

Let us assume that in an arbitrary sequence of weight trials the
result of each weighing is least favorable with respect to enabling us
to detect the counterfeit coin; that is the counterfeit is always in
that group of three which contains the largest number of coins.
Then upon each weight trial the number of coins in the group
which contains the counterfeit will not be less than % the to-
tal number of coins (that is, upon division of the coins into three
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groups, one of the groups must contain not fewer than § of them).

Then after # —1 weight trials the number of coins in the groug

containing the counterfeit will be not less than and, since

i
3k-1'
n> 31, the counterfeit will not be found by 2 — 1 weight trials.

Remark: 1t can be shown that the answer to the problem can be expressed
in the following form: The minimal number of weight trials necessary to de-
tect the one counterfeit coin in a collection of n coins is [logs(n — 4]) + 1, where
the brackets designate ‘‘the largest integer in the number’’ (see the note just
prior to problem 101).

5. One block is placed on each pan (first weight trial). There are
two possible outcomes:

On the first weight trial one of the pans is heavier. In this event
one of the blocks must be aluminum and the other duraluminum. We
now place both blocks on one pan and weigh them against pairs of
remaining blocks (those being divided into nine pairs arbitrarily).
Any pair of blocks which outweighs the first pair must consist of
two duraluminum blocks. If the first pair is the heavier, then both
blocks of the second pair are alminum. If both pairs balance, the
second pair contains one aluminum and one duraluminum block.
Thus, for this first event the number of duraluminum blocks can be
determined by at most ten weight trials.

On the first weight trial the pans balance. In this event both blocks
are aluminum or both are duraluminum. As before, we now place
both blocks on one pan and weigh them against pairs of remaining
blocks, Assume that the first # pairs of blocks from the nine pairs
have the same weight as the test blocks, and that the (& + 1)st pair
tested have a different weight. (If 2= 9, then all the blocks weigh
the same, and so there are no duraluminum blocks. The event in
which k=0 falls into the general case.) Suppose, for definiteness,
that the (¢ + 1)st pair is heavier than the test blocks [the reasoning
which follows will be quite analogous if the (¢ + 1)st pair is lighter].
Then the original two blocks, as well as all those of the first & pairs
tested, must be aluminum. Therefore, in the 1+ (¢ +1)=%kF+2
weight trials already made we have found k& + 1 pairs of aluminum
blocks. Now we compare the two blocks of the (k + 1)st (heavier)
pair. [This is the (2 + 3)rd weight trial.] If both blocks are of the
same weight, they must both be duraluminum; if they are not of
the same weight, one is aluminum and the other is duraluminum.
In either event we are able, after £ + 3 weight trials, to display a
pair of blocks of which one is aluminum and the other duraluminum.
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By using this pair we can determine in, at most, 8 — & weight trials
how many duraluminum blocks remain among the 20 — 2(k + 2) =
16 — 2k unweighed ones, using the technique employed in the first
event. The number of weight trials used in this second event is then
equal to £+ 3+ (8 — k) =11,

6. (a) Divide the coins into three sets of four coins each. For a
first weight trial we place a group of four coins on each pan. There
are two possibilities, which we shall investigate separately:

(1) The pans balance.

(2) One pan outweighs the other.

The pans balance. In this event the counterfeit coin is in the un-
weighed set, and all eight coins on the scale are genuine. We num-
ber the coins of the doubtful group 1, 2,3,4. We carry out second
weight trial by placing coins 1, 2, and 3 on one pan and placing the other
three coins now known to be genuine on the other pan. There are
two possibilities:

(A) The pans are in balance. In this event coin 4 is the counter-
feit. A third weighing, comparing coin 4 with a genuine one, will
tell whether it is lighter or heavier.

(B) One pan is heavier. In this event the counterfeit is one of
coins 1,2, or 3. If the genuine coins are the heavier, then the
counterfeit is a light coin, and vice-versa. One more weight trial
will identify which of coins 1,2, or 3 is a light coin, hence counter-
feit [see the solution to problem 4(a)]. If the pan containing coins
1,2, and 3 is the heavier, then the counterfeit coin is heavier than
a genuine one. One weight trial will identify it.

One pan outweighs the other. In this event all the other coins are
genuine. Let us designate the coins on the heavier pan by the num-
bers 1,2, 3,4 (if one of these coins is false, then it is heavier than
the others) and the coins on the lighter pan by 1/, 2/, 3,4’ (if one of
these coins is false, then it is lighter than the others). A second
weight trial is made by placing coins, 1,2, and 1’ on one pan and
coins 3,4, and 2’ on the other. Again, there are several possibilities:

(A) The pans balance. In this event the counterfeit coin is either
3’ or 4’ (and is lighter than a genuine coin). A third weight trial is
made by placing coin 3' on one pan and coin 4’ on the other; the
lighter coin will be the counterfeit.

(B) The pan containing coins 1, 2, and 1’ is heavier. In this event
coins 3,4, and 1’ are genuine; were either coin 3 or coin 4 heavier
than the others, or were coin 1’ light, then in the second weight
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trial the pan containing coins 3,4, and 2’ would have been heavy,
which was not the result for this case. Therefore, the counterfeit
coin is either coin 1 or coin 2 (and it is a heavier coin), or else it is
coin 2’ (and it is a lighter coin). A third weight trial is made, plac-
ing coin 1 on one pan and coin 2 on the other. If the pans balance,
then the counterfeit coin is 2’ If the pans fail to balance, then the
counterfeit coin is on the heavier pan.

(C) The pan containing coins 3,4, and 2’ is heavier. Reasoning
as before, we conclude that coins 1, 2, and 2’ are genuine and that
if one of the coins 3 or 4 is counterfeit, then it is a heavier coin
than the others, and if coin 1’ is the counterfeit, then it is lighter.
A third weighing is made by placing coin 3 on one pan and coin 4
on the other. If the pans balance, then the counterfeit is 1’; if, on
the other hand, one pan is heavier, then it contains the counterfeit
coin.

(b) We shall prove in three stages, (A), (B), (C), that if the num-

ber of coins is N = - 3, then the counterfeit coin can be detected

(and determined to be heavy or light) by n weight trials, and if

N > %——3, then » weighings do not necessarily suffice (see the hint

to this problem). We shall solve first the following related problem,
applying relaxed conditions.

(A) Suppose we are given N coins, divided into two groups, which
we shall designate X and Y (we do not exclude the possibility that
one of the groups contains no coins). We assume that one of the N
coins is counterfeit, and also that if the counterfeit is in the X group,
then it is lighter than all the others, but if it is in group Y then it
is heavier than all the others. We must show that {f N < 3, then
the counlerfeit coin can be detected by means of n weight trials on a
pan balance, and if N > 3*, then this is not always possible.! If group
Y contains no coins, the problem becomes as follows. There is one
counterfeit coin among N coins, and it is lighter than the others; to
prove: that if N < 3~, then the counterfeit can be found by » weight
trials on a pan balance, and if N > 3», then this is not always pos-
sible; see problem 4(b).]

The proof will be given by mathematical induction. First we show
that if N = 3%, the counterfeil can always be detected by n weight
trials. If n=1, that is if N=1,2, or 3, the proposition is quite

t This statement has one obvious exception: If N =2 and groups X and Y
each contains one coin, then, of course, the counterfeit coin cannot be detected.
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obvious (except as noted in the preceding footnote). For example,
if N =3, then it suffices to compare two of the coins from one group.
Assume now that it has been shown that if & < 3", then the counter-
feit coin can be found by 2 — 1 weight trials. Now let N < 3%, Place
on each pan x coins from group X and y coins from group Y, where
x and v are selected to satisfy the inequalities

x+y=s31,
N —2(x+y) £ 31
[For N < 3" the inequality N —2(x+ y)<3", or x + y 2 _N._23.._. L
compatible with x + y < % = 3" that is, it is always possi-
ble to choose numbers x and y such that 3" ' = x + y = i—z—yl]-

If the pans balance, the counterfeit coin is among the N — 2(x + y)
coins which were not placed on the scale; if one of the pans is hea-
vier, the counterfeit is either among the x coins of group X on the
lighter pan, or among the y coins of group Y on the heavier pan.
But according to the induction hypothesis we can, in either event,
find the counterfeit coin by conducting » — 1 additional weight trials
[since both N — 2(x + y) and (x + v) fail to exceed 3"-!].t This pro-
ves, by induction, that if NV < 3=, then » weight trials suffice for find-
ing the counterfeit.

We now prove that if N> 3", then the counterfeit cannol, in
general, be detected by n weight trials. (By '‘in general’’ we mean
that there simply does not exist a sure program which will always
locate the false coin in » trials. There is always the possibility, for
example, that if we select two coins at random, one of them might
be the counterfeit; but we are not concerned with this sort of ac-
cidental success.) For this proof we make an additional assumption to
relax our conditions. We assume that in addition to the two sets X
and Y of coins, together containing N > 3" coins, we have al our dis-
posal a quantity of coins all known to be genuine. We designate this
last group of coins by Z (how many there are is not important). We
shall show, by using these auxiliary coins, that the counterfeit can-
not, in general, be found by n weight trials.

It is easily verified that if # = 1 (that is, if the total number N of
coins in X and Y exceeds 3), then one weighing will not always suf-

Y If N> 2, then £ =1,y = 1 is not an exception, because there are now, be-
yond the two coins, some number of coins known to be genuine. Comparison
of one of the genuine coins with either one of the doubtful coins will enable
us to find the counterfeit by one weighing.
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fice to locate the counterfeit coin. Assume now that it has been
proved that if the number N of coins in groups X and Y exceeds 3",
then it is not, in general, possible to detect the counterfeit by n—1
weight trials. We must show, then, that in this event if N > 37, the
counterfeit cannot always be detected in n» weight trials. Suppose
that in the first weight trial we have placed on the first pan x coins
from group X, y coins from group Y, and z coins from auxiliary
group Z, and that we have put on the other pan x' coins from group
X and y’ coins from group Y, sothat x + y + z = x' + y’ (clearly, it
would be useless to put coins from Z on both pans). Let w be the
number of coins of groups X and Y which have been left off the
scale (x + x' + y + ¥y + w = N). Now the scale may be in balance,
the counterfeit is among those coins not placed on the scale. If w
exceeds 3"!, then, by our induction hypothesis, » — 1 additional
weighings will not, in general, suffice to locate the counterfeit there,
and we will already have used up one weight trial. Thus, on the
first weight trial, in order to guarantee even the possibility that »
trials will suffice, it is necessary that w < 3~ Hence, on this first
trial,
x+y+x+y =N—-3"1>3— 31 =2.3*

If the pans do not balance, the imbalance is caused either by a light
counterfeit in the X group or by a heavy ccunterfeit in the Y group.
Hence, we must deal with either a group of x + y’ coins (if the pan
with x + ¥ + z coins is lighter) or a group of x' + y doubtful coins.
But according to the relation x + y + x' + y’ > 2.3, the larger of
the numbers x + y’ and x’ + y exceeds 3*'. We must be prepared
to deal with this larger number of coins, and according to the in-
duction hypothesis » — 1 additional weight trials will not always
suffice to identify the counterfeit. This induction completes the proof
of case (A).

(B) Suppose we are given N coins containing one counterfeit which
differs in weight from the others, but that we do not know whether
the counterfeit is lighter or heavier. Assume we have available an
extra coin which we know to be genuine. We shall show that if
3 -1

2
the counterfeil can always be detected by n weigh! trials; the counter-
Sfeil can be shown lo be lighter or heavier than the genuine coins, for

3r -1
N> 5

N =
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n weight trials do not, in general, suffice.
First, let N £ 3"2—_1
will obviously suffice. Assume that for
3t —1
2
n — 1 weight trials suffice we shall show that for

3 -1

If » =1 (that is, if N=1), one weighing

N=

Ns=

n weight trials will suffice. We place on one of the pans x of the
N given coins together with the extra genuine coin, and we place on
the other pan x+ 1 coins. There remain N — 2x — 1 unweighed
coins. We choose the number x to satisfy the requirement

2x+1 =34
1
N—-2x-1=% 32—1
It is clear that such an x can always be chosen if N = 3 — 1(in this
case, N — 3,;_12_ 1 = 3"2_ 1_ 3"712_ 1 _ 3""). If the pans balance,
then there remain
N-2r—1=32-1

2

unweighed coins plus a quantity of coins (those on the balance) known
to be genuine. Therefore, according to case (A) we can find the
counterfeit coin by making not more than » — 1 additional weight
trials. If the pans do not balance, then the x coins on one pan and
the x + 1 coins on the other pan form two groups containing a total
of 2x + 1 = 3*! coins, to which we can apply the result of problem
A just investigated. Therefore, # — 1 further weight trials at most,
suffice here also. This completes the proof that, under the conditions
of this case, if

N< 31 —1 '
2
then n weight trials suffice to identify the counterfeit.
We now show that if
-1
2 r
then it is not always possible to solve the problem with only n weight

Nz
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trials. For n = 1(that is, for N > 1) one weighing will not be enough.
Once more we proceed by induction. Assume that for
R |

2

it has already been shown that » — 1 weight trials are not enough.
We investigate the event

N>

N>3"—l

We place on one of the pans x of the N coins and, in addition, z
coins known to be genuine (here we may assume that we have not
just one but many genuine coins at our disposal). We place on the
other pan x + z coins from the given set N. Let us designate by w
the number of coins from N which remain off the balance. Inasmuch

as the pans may be in balance, the number w of coins left off the

n-1 __
balance must not exceed—sz—l; if the number does exceed this

value, then, according to the induction hypothesis, # weight trials
will not suffice to locate the counterfeit. But in this event 2x+2z>3"

(or,N> =1

>. If the balance is not in equilibrium, we can ap-

ply to the coins belonging to groups X and Y, which are made up
of the doubtful coins and which lie on one or the other of the pans,
the results of case (A). It follows from the inequality 2x + z > 3!
that for the unbalanced condition of the scale, n weight trials do not
suffice.

(C) Having obtained the foregoing preliminary results, we now
return to the original problem. We shall prove that given N coins,
where

2<Ng 23
2
one of which is counterfeil (but it is not known whether it is lighter
or heavier than the others), the counterfeit can be detected by n weight
trials and simultaneously shown to be either light or heavy.!

If we place x coins on each pan, there remain N — 2x coins not on

the scale. The number x is selected such that

2x = 30
3t — 1]
2

t Clearly, if only two coins are involved, the counterfeit cannot be found by
weighing.

N—-2x =
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If the pans balance, then the false coin is among the unweighed ones,
of which there are

Nooggdt—1
2
Moreover, we now have on hand 2x coins known to be genuine, and
in view of the result obtained in case (B) we are able to find the
counterfeit by zn — 1 additional weight trials. If one of the pans
outweighs the other, then we can apply the result of case A to the
coins on the scale, since the total number of coins on the two pans
is 2x < 3!, and » — 1 additional weight trials suffice to locate the
counterfeit.
We shall now prove that if

-3
N > 2 ,

then n weight trials will not, in general, suffice. For the first weight
trial we place x coins on each pan, leaving w coins off the scale. If
the pans balance, then in view of case (B), n — 1 further weight
trials will suffice to locate the counterfeit and to determine whether

a—-l __
it is light or heavy only if w does not exceed —3—2— But in this

event

3—3_ 3F1—1_ 232
2 2 2

Since 2x is an even number, 2x > 37!, and in view of the results
of case (A), we cannot determine the counterfeit coin with # weight
trials if one of the pans is heavier.

Thus, we have proved the generalized version of the given pro-
blem. Now we need note merely that

3 -3 3P -3

— =1092>1000>363=—2

2x > =3r1 ]

in order to obtain the answer to our specific problem; that is, £#= 7.

7. (a) If the third link is disengaged from the chain, then there
are three pieces: the single link, a two-link piece, and a four-link
piece. On the first day the traveler gives the single link to the inn-
keeper. On the second day he gives the innkeeper the two-link piece,
receiving the single link back in change., On the third day the tra-
veler pays the single link; on the fourth day he presents the four-
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link piece, receiving as change the single link and the two-link piece.
On the fifth day he gives the single link, and on the sixth day the
single link is returned to him as change for the two link piece.
Finally, the single link pays for the seventh day’s lodging. Hence,
only one link need be disengaged from the chain.

(b) It will be convenient to consider first the following problem.
If % links are disengaged from an »n-link chain, where & is a fixed
number, how large can n be such that any number of links from 1
to n can be obtained by taking one or more of the severed pieces
of the chain? To solve this problem, we first investigate which links
would be most advantageous to remove. After removing k single
links we can gather from these any number of links from 1 to k.
But if we want £+ 1 links, we must consider the remaining pieces
of chain and in particular those pieces having k2 + 1 or fewer links.

Clearly, the most convenient arrangement would be to have a piece
of chain with exactly 2 + 1 links. Then we could gather any number
of links from 1to 2k + 1. In order to collect 2k + 2 = 2(k + 1) links,
we need another piece containing 2(k + 1), or fewer, links, The most
convenient situation would be to have a piece with exactly 2(k+1) links;
we could then gather any number of links from 1 to (2k+1) +2(k+1) =
4k + 3. The next step would be to have available a piece of chain
with 4% + 4 = 4(k + 1)links. Continuing this reasoning, the most ad-
vantageous method of removing links from the chain would be to
have pieces of the following lengths (setting aside the individual
severed links):

E+ 1,20+ 1,4+ 1),8Fk+1), - ,2¢k+ 1)
Thus, any number of links from 1 to
n=k+[k+D+2k+1)+4k+1)+ + 24k + 1)]
=k+ @ —DE+1)=2"k+1)—-1

can be built up by taking pieces of the chain.

Thus, if 2k < n < 2¢'(k + 1) — 1, then it is possible to make %
breaks in the chain, but removal of £ — 1 links will not suffice to
solve the problem. In particular, if

2<n< 7, then k=1, 160 < n < 383, then £ =05;
8<n< 23 then k=2, 384 <pn< 895 then k=6;
24<n< 63, then k=3; 8% < n < 2047, then k=7,
64 < n < 159, then £k = 4;



Solutions (8-9) 95

Therefore, if n = 2000, the least number of links which can be dis-
engaged is 7. The conditions of the problem will be satisfied if we
select those links such that the 8 pieces of chain we obtain (excluding
the 7 individual severed links) have, respectively, 8, 16, 32, 64, 128,
256, 512, and 977 links.

8. Let A be the first of the selected students (that is, the tallest
of the short), and let B be the second of the selected students (the
shortest of the tall). If A and B stand in the same row, then B is
taller than A, since B is the tallest student in that row. If A and
B stand in the same column, then again B is taller than A, since A
is the shortest student in that column. Finally, if A and B do not
stand in either the same column or the same row, let C be that student
standing in the same column as does A and in the same row as does
B. Then B is taller than C (since B is the tallest in that row), and
C is taller than A(since A is the shortest in that column). Hence,
again B is taller than A4; and so in every possible case B is taller
than A.

9, First, it follows from the conditions of the problem that each
gear weighs either an even number of grams or an odd number of
grams. The reasoning is as follows. Since any set of twelve gears
can be divided into two groups of equal weight, a set of twelve gears
will weigh an even number of grams. This total weight remains an
even number if one of the twelve gears is exchanged with the thir-
teenth gear. But this is possible only if the exchanged gear and the
thirteenth gear are both of even weight or both of odd weight, and
this holds for any of the twelve gears initially weighed. Hence, all
the gears are of even, or all are of odd, weight.

Subtract now from the weight of each gear the weight of the
lightest gear (possibly two or morc gears have the same minimum
weight; this is unimportant). This may be thought of as producing
a ‘‘new’’ set of gears, and this new set clearly again satisfies the
conditions of the problem. (One of the gears, and possibly more, must
now be thought of as having ‘‘zero weight’’.) It is easily seen that
each gear of the new set has even weight (counting 0 as an even
number), since if all the gears were of odd weight initially, then an
odd number was subtracted from each individual weight; if they
were all of even weight initially, then an even number was sub-
tracted from each individual weight.

If now we divide each weight by 2 and think of this as providing
a '"‘new” set of weights, this new set again satisfies the conditions
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of the problem.

Assume now that not all the gears are of the same weight. In
this case, not all the weights of the second set (obtained by subtract-
ing the weights of the lightest gear from each of the original weights)
will be zero. If we continue to divide by 2, thus obtaining ‘‘new”
sets satisfying the conditions of the problem, we finally arrive at a
set of gears of which some are of even weight (at least one is of zero
weight) and some are of odd weight (continued division of an even
natural number by 2 finally produces an odd number). But such a
set satisfying the conditions of the problem has been shown to be
impossible. This contradiction proves the assertion of the problem.

Remark: The conditions of the problem require that all the gears be of in-
tegral weight, but the result can be extended to weights which are rational
numbers. If we multiply each of the weights by the least common multiple of
all the denominators, we obtain a ‘‘new’’ set of weights, all integers, and all
of which still satisfy the conditions of the problem, and we go on from there.
Moreover, if we allow the weights to be irrational numbers, the extension can
again be made, since irrational numbers can be approximated by rational num-
bers to as close a tolerance as desired. (The reader is invited to carry out
such a proof, although a rigorous demonstration is by no means a simple task.)

10. Beginning with the third row of the number triangle we write
the first four numbers of each row, but putting in place of an even
number the letter ¢, and in place of an odd number the letter 4:

0 ¢ 60 0
6 8 ¢ 6
e ¢ ¢
g g e
g e

Note that the fifth row of the array coincides with the first row.
But the evenness or oddness of the first four numbers of every row
of the number triangle depends only upon the evenness or oddness
of the first four numbers of the preceding row. Hence, in the above
array any row will periodically duplicate itself in the fourth row
following. Since an even number occurs in each of the first four
rows shown above, an even number must occur in every subsequent
row.
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11. The plan is to number the squares consecutively from 1 to 12,
starting, say, from the red chip, and continuing on through the chips
and around the circle, and then to rearrange the squares by putting
them in an order in which it is possible to move a chip from one
square to the next. That is, after square 1 we place square 6 (since
by the conditions of the problem it is possible for a chip to move
from square 1 to square 6, and vice-versa), then after square 6 we
place square 11 (since a chip may move from square 6 to 11), and
after square 11 we place square 4, and so on. After this rearrange-
ment we have the following order of squares:

R B Y

| I

G

The chips (red, yellow, green, blue, designated R, Y, G, B) are
shown adjacent to their original positions: R on square 1, ¥ on 2,
G on 3, and B on 4. The rule by which the chips may now move
is simple: A chip may move one square in either direction, provided
that square is unoccupied. Clearly, the only way in which a chip
can change places with another is for it to move around the rectangle
in either direction, but now a chip can neither jump over nor occupy
the position of another chip. Thus, if chip R moves to occupy square
4, then B must occupy square 2, Y must occupy square 3, and & must
move to square 1. If R occupies square 2 then B must occupy square
3, Y must move to square 1, and & will occupy square 4. If R oc-
cupies square 3, then B occupies square 1, ¥ moves to 4 and G
moves to square 2. Other than these three rearrangements, no ar-
rangement differing from the initial one is possilbe.

12. First solution. Let n be the number of coconuts each man
received when the pile of coconuts was divided the next morning.
Then 512 + 1 coconuts were in the final pile. The last man to have

raided the pile the night before must have taken ic-’ﬂlnuts, since
. 5
prior to that there must have been 5-——”:1 +1= 25n4 9 co

conuts in the pile.ZSThe gext-to- last (penultimate) man to have raided
1+

1 nuts, and prior to that the pile contained

the pile took%
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5. j}- 2Hn+9 +1= %;61 coconuts. The man who raided prior
1 1252 + 61 1 1252 + 61

to that took s +1=

62n + 369, the man before him took % 6257 + 369

nuts from a pile of S-T . n

nuts from a

64 ’ 64

pile of 5 W +1= 3125’%:\;2101; finally, the first man to have
arisen the night before took —:T W nuts from the original
pile, which contained

_ 1 3125»n + 2101 _15625x2 + 11529

N=5 7 256 1= 1024
_ 2657 + 265
=152 + 11 + T

coconuts. Since N must be an integer, 265(z + 1) must be divisible
by 1024. The least integral value of n» which will make 265(n 4 1)
divisible by 1024 is 1023 (since 265 and 1024 are relatively prime).
Thus,

N =15-1023 + 11 + 265 = 15621

Second solution. The problem can be solved more readily and with
much less calculation if we consider the conditions imposed on the
total number of coconuts. The first condition asserts that the first
division of the total number of nuts by 5 yields a remainder of 1,
that is, for some number /, N=5/+ 1. The numbers N satisfying
this condition appear in the sequence of natural numbers at intervals
five integers apart, and if we know one of the numbers, we can find
as many more as we wish by adding or subtracting multiples of 5.
The second condition asserts that & = (4/5) (N — 1) = 4/ (k is the num-
ber of nuts remaining for the second man’'s raid) gives a remainder
of 1 when divided by 5; that is, 2 = 5/, + 1, for the suitable /,. This
is equivalent to the requirement that [/ yield a remainder of 4 when
divided by 5, or that N=5/ 41 yield a remainder of 21 when di-
vided by 25. Numbers satisfying this condition are found in the
natural number sequence at intervals of 25, and if we know one
such number, we can obtain the others by adding or subtracting
mutliples of 25. The third condition asserts that k2, = (4/5)(k — 1)=
4/, yields a remainder of 1 upon division by 5; this condition deter-
mines the remainder yielded upon division of {/; by 5, or the remainders
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obtained by dividing & and / by 25, or the remainder obtained by
dividing N by 125. All the conditions together determine the re-
mainder obtained by dividing N by 5% = 15,625. These numbers ap-
pear at intervals of 15,625 in the sequence of natural numbers,!

We can now calculate the remainder which N yields upon division
by 5° but this is not necessary. One number satisfying all the im-
posed conditions is —4, which upon division by 5 yields a quotient
of —1 and a remainder of +1. If we subtract the number 1 from
—4 and divide the difference by 4/5, then divide the result by 5, we
again obtain a remainder of +1. Accordingly, upon all further di-
visions by 5 we will obtain the same remainder of +1. The num-
ber —4 cannot, of course, be the answer to the problem, since N has
to be a positive integer. But since we do know one number which
satisfies the conditions of the problem, we can find as many others
as we wish by adding multiples of 5%. The least positive number
which we can add to satisfy the given conditions is 5% itself; we ob-
tain —4 + 5% = 15625 — 4 = 15,621.

13. Let » be the number of sheep in the herd. Then the brothers
received »# rubles for each sheep, and so they received a total of
N = n-n = n* rubles. Let d represent the digit in the tens place of
the number », and let ¢ be the digit in the units place; then # =
10d + ¢, and

N = (10d + e)* = 100d® + 20de + &*

It follows, from the manner in which the money was divided, and
since the older brother had one more selection from the money than
did his brother, that there must have been an odd number of tens
in N, plus a remaining number less than 10. But 100d? + 20de =
20d(5d + e) is divisible by 20 and so contains an even number of tens.
Consequently, the number ¢* must contain an odd number of tens.
Since ¢ < 10 (being the remainder obtained by dividing » by 10), the
only possible values for e are 1,4, 9, 16, 25, 36, 49, 64, or 81.

Of these numbers, only 16 and 36 contain an odd number of tens,
so the possibilities for e* are limited to 16 or 36. Both of these
numbers end with the digit 6, which means that the remainder the
younger brother received in place of 10 rubles was 6 rubles. Thus,
the older brother received 4 rubles more than did the younger. To
make the division even, the older brother would have to give the

t The argument here would be carried out in American schools by the use of
congruence arithmetic [Editor].
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younger hrother 2 rubles. Therefore, the penknife was worth 2
rubles.

14. (a) Our calendar is constructed on the following scheme., Every
year has 365 days except for leap-years (those years whose identify-
ing number is divisible by 4—for example, 1960)., The leap-years
have 366 days (the extra day being February 29). However, there is
an exception to this rule: any year whose identifying number is di-
visible by 100 but not by 400 has only 365 days instead of 366; that
is, those are not leap years. For example, the years 1800 and 1900
were not leap years; also, 2100 will not be a leap year. However,
2000 (being divisible by 400) will be a leap year. The problem asks
on which of the two days, Saturday or Sunday, New Years Day
more frequently falls.

We shall show that any 400-year period of time presents a periodic
pattern, in the sense that the next 400-year period will exactly du-
plicate the calendars of the previous 400-year period (for example,
this month's calender is exactly the same as that of exactly 400 years
ago). This interval of 400 years contains an integral number of
weeks. Leap years have 52 weeks and 2 days, and other years have
52 weeks and 1 day. In the course of four years, of which one is
a leap year, there are 4-52 weeks plus 5 days. In the course of 400
years there would be an additional 500 days, but because three of
these years are divisible by 100 but not by 400 (and so are not leap
years) the 400 years will have only 497 days in addition to 400-52
weeks; that is, there are an additional 71 weeks. Therefore, the
problem can be limited to any 400-year period.

Let us investigate the 400-year period from 1901 to 2301. Every
fourth year is a leap year (since there is no exception for leap years
in this interval). In span of 28 years there will be one ‘‘extra’ week,
owing to leap years; in addition, there will be an additional 28 days,
or 4 weeks, over an exact number of weeks. Thus, a 28-year inter-
val yields an integral number of weeks: 28-52 + 5 weeks.

We select a particular New Year’s Day: January 1, 1952, which
fell on a Tuesday. Since 1952 was a leap year, and a leap year has
2 days over 52 weeks, January 1, 1953, fell on a Thursday, but ja-
nuary 1, 1954, fell on a Friday (1953 not being a leap year), January
1, 1955, fell on a Saturday, and so on. January 1, 1951, fell on a
Monday, January, 1, 1950, fell on a Sunday, and so on. In the 28-
year period 1929-1956, inclusive, January 1 fell exactly four times on
each day of the week. This distribution was exactly the same for
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the 28-year period 1901-1928, inclusive. Werecall that a 28-year period
in which every fourth year is a leap year contains an integral num-
ber of weeks, and, consequently, we repeat the same distribution of
New Year’s Days over the days of the week as obtained for the pre-
vious 28-year period. The interval 1901-2096 (inclusive) contains 196
years, a number divisible by 28 (the year 2000 not providing any
exception for leap year). In this interval, New Year’'s Day will have
fallen exactly the same number of times on each day of the week.

Further, January 1, 2097, will fall on the same day of the week as
did january 1, 1901, January 1, 1929, and so on—it will fall on a Tues-
day. Thus, New Year's Day of 2100 will fall on a Friday, and New
Year's Day of 2101 will fall on a Saturday (2100 is not a leap year).
The 28-year period 2101-2128 will differ from the 28-year period 1901-
1928 in that the period begins not on a Tuesday but on a Saturday.
This calls for a corresponding shift in the days on which New Year’s
Day will fall. However, in the period 1901-1928 New Year’s Day
fell exactly four times on each day of the week, and this will hap-
pen also in the period 2101-2128. The 28-year intervals 2129-2156
and 2157-2184 will follow the same pattern. The year 2185 begins
on the same day as did 2101 —Saturday; this allows us to find the data
for the period 2185 to 2201. Simple calculation shows that in the
interval from 2185 to 2200 New Year’s Day will fall twice each on
Monday, Wednesday, Thursday, Friday, and Saturday, but three times
each on Sunday and Tuesday. New Year's Day of 2201 will fall on
a Thursday. In the course of the 3-28 = 84 years, from 2201 to 2284,
New Year's Day will fall the same number of times on each day of
the week. New Year's Day 2285 will fall on the same day it will
in 2201—Thursday. This allows us to determine the data for the
period 2285-2300. In this interval January 1 will fall twice each on
Monday, Tuesday, Wednesday, Thursday, and Saturday, and three
times each on Sunday and Friday. Similarly, over these periods in
the course of which New Year's Day will fall the same number of
times on each day we counted 2+ 2=4 Mondays, 1+3+2=6
Tuesdays,1 +2 +2 =5 Wednesdays, 1+ 2 +2=5 Thursdays, 6
Fridays, 4 Saturdays, and 6 Sundays. It follows that New Year’s
Day falls more often on Sunday than on Saturday.

(b) Employing methods analogous to those used in problem (a),
we can show that in the 400-year interval the thirtieth day of the
month will fall on Sunday 687 times, on Monday 685 times, on Tues-
day 685 times, on Wednesday 687 times, on Thursday 684 times, on
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Friday 688 times, and on Saturday 684 times. Thus, the thirtieth
day of the month falls most often on a Friday.

15. It is clear that if the final digit of an integer is deleted, the
integer is reduced by a factor of at least 10. If that final digit is
zero then, of course, the number is reduced by exactly the factor
10, and so all such numbers automatically satisfy the conditions of
the problem.

Assume now that if the final digit of a number x is deleted, then
the digit is reduced by an integral factor exceeding 10, say, by the
factor 10 + @a(a =2 1). Let y be the quotient obtained by dividing x
by 10, and let z be the remainder; that is, x = 10y + 2(2 £ 9). If the
last digit of x is deleted, then the deleted digit is z, and the new
number is equal to y. The condition of the problem then calls for
the equation

x=(10+4+a)-y,
or the equation
10y +z=(10+a)y,
from which we obtain
z=ay

Since z < 10, both @ and y must be less than 10. Therefore, except
for the numbers divisible by 10, the only integers meeting the con-
ditions of the problem are two-digit numbers; also, if the final digit
is deleted, the original integer can be reduced by, at most, a factor
of 19(11 £10 +a < 19). It is easily shown that only the following
two-digit numbers are reduced by a factor of 11 when their last digit
is deleted: 11, 22, 33, 44, 55, 66, 77,88,99. (If 10 + @ = 11, then ¢ =1;
hence z=ay =y, and x =10y + z = 11y, where y =1,2,3, ---,9) It
can be shown, in an analogous way, that the only two-digit integers
reduced by a factor of 12 upon deletion of the final digit are 12, 24,
36,48 (z = ay = 2y, whereonly y =1, 2,3, 4 are possible, since z<10,
and x = 12y). The numbers diminished by a factor of 13 are 13, 26,
39; the numbers diminished by a factor of 14 are 14 and 28. It is
evident that the only numbers which can be reduced by factors of
15, 16, 17, 18, 19 are these numbers themselves.

16. (a) Let the integer sought have k& + 1 digits. It may be writ-
ten in the form 6-10* + y, where y is a k-digit number (it may pos-

sibly begin with one or more zeros). The conditions of the problem
are expressed by
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6-10- + y = 25y,
or
_ 610+
24
Clearly, it is necessary that £ = 2, since 60 is not divisible exactly
by 24 and y is an integer. For k= 2 the integer y is equal to
25-10-%; that is, y has the form 250- - -0, where there are 2 — 2 zeros.
Therefore, all the numbers sought are of the form 6250-.-0, where
there are »# zeros and n =0,1, 2, 3,
(b) Solve this problem: Find a number whose first digit is 2 and
which is reduced by a factor of 35 when its final digit is deleted
Proceeding as in problem (a), we have the equation

a-10%
34 14
where y is an integer [see solution of problem (a)]. But the right

member of this equation cannot possibly be an integer ¢ £9 and
kz1.

Remark: Proceeding as we did in problems 16 (a) and (b), we can show that
an integer beginning with a given digit a can be reduced by an integral fac-
tor b upon deletion of the digit a only if a < b — 1 and the (proper) fraction

3‘1—1 can be represented as a finite decimal fraction (that is, all the prime
factors of & — 1 other than 2 and 5 are factors of @, of sufficient multiplicity).
For example, no integer can be reduced by a factor of 85 by deleting its first
digit, since 85 — 1 = 84 includes 3 and 7 among its factors and no digit is
divisible by both 3 and 7. Again, any number which is reduced by a factor
of 15 upon deletion of its first digit must commence with 7, since 14 has 7 as
a factor. A general criterion which will give the necessary form of an integer
having a known first digit ¢ and which is reduced by a factor b upon deletion
of the first digit is usually easy to find.

17. (a) First we show that no integer can be diminished to § its
original value by deleting a digit standing farther from its beginning
than the second place. Let the digits of the number N be a,, @, @2, - -,
a*(a, + 0); that is,

a,-10" + 2,-10*' + +a.=N
Assume that _91\_/ is an integer, and that it has been obtained by de-

leting a digit past the second position. We have

a010"“ + (1110!—2 4+ oo = 191
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If we multiply this equation by 10 and subtract from it the initial
equation for N, we obtain

N

— < 10"
9
This is a contradiction, since{—% is a smaller number, and
Noge10m 4 2 10m

10
We recall the criterion for divisibility of an integer by 9 (a number
is divisible by 9 if and only if the sum of its digits is divisible by
9). Now, if N is divisible by 9, as is also the number obtained from
N by deleting the first digit of N, then this first digit must be 0 or
9 (since it must by itself be divisible by 9). Since ¢, + 0, we must
have a, = 9 if N is to meet the conditions of the problem. But then

the number % has the same number of digits as does NN, and so %

cannot be obtained from N by deleting its fiirst digit. This contra-
diction means that the only possible deletion of a digit from N in
order to meet the conditions given by the problem is that of the
second digit. Thus,

%— = @,10""" + a,10"* + + a,

Since 1—;— must again be divisible by 9 (that is, ay+a:+a: +---+a.

is a multiple of 9, as was @, + a, + a; + + a,) either 4, =0 or
a, =9. If we assume that g, =9, and if we multiply the expansion

for %’— by 10 and subtract the expansion for N, we obtain %:

(@p — 9)-10*! + and since a;, =9, then
N
— < 10*!
9 ’
which is impossible.
Therefore, the conditions of the problem can be met only if the
second digit of N is zero and if this is the digit deleted. Thus,

N-— % = a,-10" — a,-10~*,

or
N - -
3= N —a,-10" + a,-10*!' = N — @,-9-10"! ,
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Finally,

1NyN_N
99 9

— Qy* 107t

This equation states that to divide % by 9, we merely delete the

first digit a,. This solves problem (a).
(b) In solving problem (a) we arrived at the necessary relation

9'9— = N —a,-10+4.9,

from which it follows, upon solving for A, that

_ Q- 10~!-81
N= 8

This is the form that N must have. It is evident that @, cannot be
either of the digits 8 or 9, inasmuch as the second digit of N is re-
quired to be zero. If we try successivelya,=1,2,3,4,5,6,7, along
with the least necessary value of »# which will make N an integer,
we have the following seven numbers, which satisfy the conditions
of the problem:

10,125; 2025; 30,375; 405; 50,625; 6075; 70,875

These numbers, together with all products by 10 (¢ =1, 2, 3, --+) con-
stitute all the integers which satisfy the conditions of the problem.

18. (a) The proposition is equivalent to the assertion that the in-
teger is diminished by some factor m when the third digit is delet-
ed. Let

N = au'lon + ﬂl,IOu—l + az~10"‘2 + +an
Then

10-%200-10"+al-10"“+a,-10"‘2+ + a.-10

If m < 10, then subtraction of the first equation from the second

yields the inequality 10’+mN < 10, which is impossible, since

10 — m 1
—_— > J——
m 10’
and

—1— = . n—1 ses > n—1
10N a,-107! + = 10",
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If m>11, then? ;2 1O-N 10!, which also is impossibile for an

analogous reason <m_;11—0>116> Again, if m =11, then we must

have _llf N < 107t that is, %—_— % has two digits fewer than N, which

is an impossibility.

The only possibility of obtaining a number satisfying the condi-
tions of the problem is to let » = 10. Therefore, the conditions
require numbers all of whose digits, except the first two, are zero.
Such integers satisfy the requirement and hence describe the num-
bers sought.

Remark: It is possible to show, by similar reasoning, that the only integers
which are diminished by an integral factor when the kth digit, where k > 3,
is deleted are those having zeros after the first k — 1 digits.

(b) The requirement that a number N be diminished by an in-
tegral factor m when its second digit is deleted is expressed as follows:
N=a,10" + g,-10" + g,-10** + + Qa,

N @0+ 10" + a,+10"% + + aa
m
It follows that
N

— =N—a,10" — g,-10"! + g,-10"1,
m

or, upon solving for N,

N= (%a, + a,)-10"" -m
m—1

(1)
These equations can be combined to yield
N=a,-10" + @,-10 — gg- 10"t + O +a)-10"
m—1
But, on the other hand, we know that N is an (n + 1)-digit number
beginning with digits @, and a;:

N=a,10" + a,-10"" + a,-10"* + + Gn ,

where we may assume that not all the digits a,, ---,a, are zero
(otherwise the problem leads to investigation of two-digit numbers
N; see the solution to problem 15). The following inequality must
hold:
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(9a, + a))-10"!

O < _(Zo‘].o'"l +
m—1

< 10

or, equivalently,

2 <2 ta g (2)

m—1
As a consequence, we have the following results. The required
numbers N are expressed by (1), where 0 £ 4, £9,0=<¢a, £9. Since

N is an integer, and m and m — 1 are relatively prime, the proper
gao + a;

m—1
this is done the possible values of a,, @, and m must satisfy inequa-
lities (2) in addition, it is necessary to add to the possible values of
N the two-digit numbers obtained in the solution of problem 15).
There now remains only successive investigations of the possible
values for a,.

(1) a, =1. Here, inequality (2) yields

18

fraction can be written as a terminating decimal. When

1< ,m—1<18;
m—1
9 coam—1>4
m—1
Applying the m — 1 successive values 5,6,7, --+,17, and selecting,

each time the appropriate value of a,, we obtain

N = 108; 105; 10,125; 1125; 12,375; 135; 14,625;
1575; 16,875; 121; 132; 143; 154; 165; 176;
187; 198; 1625; 195; 192; 180,625; 19,125,

to each of which we can adjoin an arbitrary number of zeros.
Proceeding in an analogous may, we obtain the following:

@) a0 =2:
N = 2025; 21,375; 225; 23,625; 2425; 25,875;
231; 242; 253; 264; 275; 286; 297, 2925

(3) Qg = 3:

N = 30,725; 315; 32,625; 3375; 34,875;
341; 352; 363; 374; 385; 396.

@ a =4
N = 405; 41,625; 4275; 43,875; 451; 462; 473; 484; 495 .
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B) a =5:
N = 50,625; 5175; 52,875; 561; 572; 583; 594
6) a =6:
N = 6075; 61,875; 671; 682; 693,

(N a=T
N = 781; 792

8 a =8:
N =891

There is no N for a, = 9.

In toto, including the results of problem 15, there are 104 values
for N. An arbitrary number of zeros can be adjoined to each of
these.

19. (a) First solution. Let X be the m-digit number obtained by
deleting the first digit 1 from the integer sought. That integer is
then 10™ + X, and the new number is 10X +~ 1. The condition of
the problem yields

(10" + X)-3=10X +1
or
_ 310" 1
7

The last equation provides a condition for finding X 3-10™ = 3000-- -
must yield the remainder 1 upon division by 7. Direct division by
7 shows that the least number of zeros necessary after 3 to produce
a remainder of 1 is 5; that is, 3-10° = 300,000 = 7(42,857) + 1. Thus,
the least possible value for the integer X is 42,857, and hence the
number sought is 142,857.

To find other such numbers, we note that in dividing 3000- -by 7
we need not stop at the first remainder 1; any quotient obtained for
the remainder 1 will serve as an X. It is readily seen that the other
numbers will be

142,857,142,857; - - -; 142,857,142, 857- . - 142,857; -
(- N [ —;

X

k times

Second solution. Let x be the second digit of the number sought,
let y be the third digit, and so on; that is, the number has the form
lxy---z¢ (the over bar denotes a succession of digits rather than a
product). The condition of the problem states
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lxy---2t-3 =xy---2f1

It is at once apparent that # = 7 (in no other case will the product
on the left yield a final digit 1). Therefore, the tens digit ¢ on the
right is 7. But this is possible only if 2-3 ends in 7 — 2 =5(3-z plus
a carry-over of 2 must yield 7); that is, z=5. There is a carry-over
of 1. The product, 3 times the hundreds digit on the left, plus the
1 carried over, must yield 5; and so on. The reader can readily make
up an organized format for this process. For example,

1 4 2 8 5 7 42857
x 3= 1
4—-1=3,2-0=2,8—2=6,5—-1=47—-2=5
(the calculations are made from right to left). The smallest possible
number occurs when we reach the digit 1 on the left, 142,857.

If this process is continued, we obtain other numbers satisfying
the conditions by stopping whenever we have adjoined another 1 on
the left:

142,857,142,857- - 142,857,
—— —— ——

~
k times
(b) When an integer is tripled, the resulting integer can have
the same number of digits only if the initial digit of the first num-
ber did not exceed 3. As we saw in problem (a), the first digit can
be 1. We shall show now that it cannot be 3.

If the first digit of the integer sought is 3, we see from the re-
quired equality 3xy---z-3 = xy---23 that its second digit (that is, x)
must be 9. But 3 times any integer beginning with 39 yields an in-
teger having one more digit. Hence the first digit of any integer
meeting the conditions of the problem cannot be 3.

It is left to the reader to show that the numbers sought may be-
gin with the digit 2. The smallest such number is 285,714; all such
numbers are of form

285,714,285,714- - - 285,714
—— — ——

E times
The proof is quite similar to that of problem (a).

20. Since after multiplication by 5 the number of digits remains
the same, the initial integer must begin with the digit 1. This di-
git then becomes the final digit of the new number, which is not
divisible by 5.
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The solutions for the digits 6 and 8 are similar,

21. First solution. Since the number of digits is not increased
after multiplication by 2, the first digit of the initial number cannot
exceed 4. Since after the transfer of the first digit to the end we
have an even number (twice the original number), the first digit must
be even; hence it must be either 2 or 4.

Consider now the number X obtained by deleting the first digit of
the original number sought. Reasoning as we did for problem 19
(a), we obtain

(2:10" + X)-2=10- X+ 2,

that is,
410" -2 210" -1
X = 8 = 1 )
or else
410"+ X)-2=10- X+ 4,
that is,

_ 810" —4_210"—1

X 8 2

However, both of these formulas are impossible, since they do not
yield integers (the numerator is odd for both).

Second solution. As in the first solution we conclude that the first
digit of the number sought must be either 2 or 4. We use the nota-
tion employed in problem 19 (a). We have

2xy- -2t-2=xy---212
or else

4xy---2t-2 = xy---2l4

In the first case, ¢ can be only 1 or 6 (otherwise the product on
the left cannot end with the digit 2). But if £ =1, then on the left
is a number not divisible by 4, and on the right is a number divisible
by 4 (an integer being divisible by 4 if and only if the number com-
posed of its last two digits is divisible by 4). If ¢ =6, then on the
left is a number divisible by 4 (product of two even numbers), but
on the right is a number not divisible by 4 (ending in 62).

In the second case, ¢ can be only 2or 7. If ¢t =2, then [as in the
second solution of problem 19(a)|, necessarily, z =1, and it follows
that the product on the left is divisible by 8 (product of a number
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divisible by 4, since it ends in 12, and 2), but the number on the
right is not divisible by 8 (ending in 124).

The demonstration for ¢ = 7 is left to the reader. It is quite simi-
lar to the foregoing solutions.

22. (a) First solution. A number increased seven-fold upon trans-
fer of its first digit to the end must commence with the digit 1
(otherwise the larger number would contain more digits than the
original). As was done in problem 19 (a), we let X be the m-digit
integer obtained by deleting the first digit, 1, of the number sought.
Then, as in the previous problems,

(1-10n + X)-7=10-X +1,
which yields

710 — 1
X=—
3
But it is obvious that there is no m for which X can be an m-digit
7-10 — 1
number (—3— > 10'"),

A similar demostration will prove that there is no number which
is increased nine-fold by transfer of its initial digit to the end of the
number.

Second solution. We conclude, as in the first solution, that the
number sought must begin with the digit 1. Using the terminology
explained in problem 19 (b), we have the following statement of our
problem:

lxy- - 2t-7 =xy--2fl

It follows that the product {-7 must end with the digit 1, which re-
quires that £=3. Insertion of this digit for ¢ yields 1y---23-7=y-.-231.
Since 3-7 = 21, and the product of of 23 by 7 ends in the succession
of digits 31, this product has 1 as a final digit. Consequently, z is
also equal to 3. A similar procedure shows that each successive
digit (from this end forward) is equal to 3. However, the initial
digit of the number must be 1, which is impossible.

Therefore, there does not exist any integer which increases seven-
fold upon transfer of its first digit to the end.

(b) First solution. Inasmuch as the number to be obtained upon
multiplying the sought integer by 4 must not contain a greater num-
ber of digits than before, the initial digit cannot exceed 2. Since
transfer of the initial digit to the end must produce an even num-
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ber, that digit must be 2. If now we designate by X the m-digit
number obtained from the number sought, upon removing the first
digit we obtain
(2-10"+ X)-4 =10X+ 2,
or
_8- 10 -2
6
8-10m — 2
6

X

which is an impossibility, since >10™ [see the first solution

of problem (a)].

Second solution. As in the first solution, the first digit of the num-
ber sought must be 2. Moreover,

2xy---z2t-4d=xy---2t2,

and it follows that { =3 or 8 (¢-4 ends in 2).
If ¢t =8, then the final two digits on the right form the number
82, and the integer is not divisible by 4. If £ = 3, then

2xy---23-4 = xy---232,
hence

2xy-+.20-4 = xv-.-220,
and

2xy...z.4 = xy-..zz

In the same manner we find that the number 2xy- -z has the same
property as did 2xy---zf. By applying the same reasoning as before
we find that, necessarily, z = 3. Continuing this line of reasoning,
and moving from right to left, we find that the tens position of the
number must have the digit 3. But the initial number must com-
mence with the digit 2. This is obviously impossible.

23. First solution. Let us designate the digits of the integer
sought by x,y,---,2,¢. Then proceeding as in problem 19 (a), we
obtain

1
7xy...zt.’3— = xy...zt7

or

xy+2t7-3=Txy.--2t.



Solutions (23) 113

It is clear that ¢ = 1; we can determine the digit z (17-3 yields 51;
this means that z =5), and, moving from right to left we obtain,
successively, the digits forming the integer sought. The process
ends when we obtain the digit 7. It is convenient to display the
result in the following form:

241379310344827586206896551 7241379310344827586206896551

........................... 7.3 =
(the calculations are made from right to left). Thus, the least integer
satisfying the conditions of the problem is 7,241,379,310,344,827,586,
206,896,551.

If in the course of these calculations we do not stop when we first

obtain a 7, we can find additional numbers which satisfy the condi-
tions of the problem. All such numbers will be of the form

7241379310344827586206896551 7241379310344827586206896551
- o

k times
Second solution. Let Txvz ¢ be the integer sought. Division by

3 must yield the integer xyz t7. We write this requirement in
the form
Txyz---t|3
xy2 t7

It is clear that x =2 is necessary. If we replace x by 2 in the
dividend and quotient, we can find the next digit of the quotient,
and this is also the third digit of the dividend; we can then deter-
mine the third digit of the quotient, which is the fourth digit of the
dividend, and so on. The process is complete when the final digit
of the quotient is 7 and simultaneously the dividend is exactly divi-
sible by 3. This dividend is then the number sought and is the
least integer having the required property.

The following arrangement is a convenient scheme for carrying
out this computation (the numbers in the second row are written last):

7 2413 7931 0 3 4 48 2 75 86 2

712411232793110131424822172518 6 2

241 37 9310 3 4 482758¢6 20

06 8 96 551
20 26 28 19 16 15 5 21
6 8 96 551 7
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The least integer is found to be 7,241,379,310,344,827,586,206,896,551.
Third solution. As in the first solution of problem 19 (a), set up
the formula

(7-10m + X)-—é— —10X+7

from which
_710m-21

X 29

The problem then becomes that of finding an integer of form 70,000, - - -
which upon division by 29 yields the remainder 21. It is left to the
reader to verify that the same solution is obtained as before.

Remark: A similar algorithm may be employed to solve the following ge-

neralized problem:

Find the least integer having a given first digit which is diminished to } its

original size when the first digit is transferred to the end. To make the so-
lution possible for integers having 1 or 2 as a first digit, let us agree that a
zero may be put as the first digit of the quotient (and this is then the second
digit of the dividend). The only nonzero integers satisfying the requirements
are (in addition to that produced above):
1,034,482,758,620,689,655,172,413,793;
2,068,965,517,241,379,310,344,827,586;
3,103,448,275,862,068,965,517,241,379;
4,137,931,034,482,758,620,689,655,172;
5,172,413,793,103,448,275,862,068,965;
6,206,396,551,724,137,931,034,482,758;
8,275,862,068,965,517,241,379,310,344;
9,310,344,827,586,206,896,551,724,137
The same procedure will solve the following problem:
Find the least integer commencing with a given digit @ which is decreased
by a factor | when the first digit is transferred to the end.
24. (a) The conditions of the problem may be expressed by the
equality

Xy 2t a=1z yx,
where a is one of the numbers 2, 3, 5, 6, 7 or 8.
If a =5, then x must be 1, otherwise the number on the right

will contain one digit too many. (The case in which x is 0 may be
excluded, since upon multiplying each side by 2 and deleting the
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final zero we obtain y z2t = 2-1z y, that is, we arrive at the
same problem as for ¢ = 2.) But the integer fz--- yl1 is not divisi-
ble by 5. Analogous reasoning will prove that ¢ cannot be 6 or 8.

If a =7, then x again must be 1. In this case, ! must be the
digit 3, otherwise 1y zt-7 fails to end with the digit 1. But the
equation 1y 23-7=13z yl is clearly impossible, since the left
number is greater than the right number.

If a =2, then x cannot exceed 4. Since the integer {z yX must
be even, r is either 2 or 4. If x =4, the digit ¢ (the first digit of
4y z£-2) can be only 8 or 9, and neither 4y z8-2 nor 4y 29-2
ends with the digit 4. If x = 2, then ¢ (the first digit of 2y  zf-2)
can only be 4 or 5; but neither 2y z4-2 nor 2y 2z5-2 can end
in 2,

Finally, if z=3, then x cannot exceed 3. If x =1, then ¢ must
be 7 (¢-3 ends in 1); if x = 2, then ¢ must be 4; if x = 3, then ¢ must
be 1. But in the first case, ¢z yx is certainly greater than xy---zf+3,
and in the second and their cases it is clearly smaller.

(b) Let xy zt be an integer which is 4 its inversion. We then
have

xy z2t-4 =1z yx

Since xy --: zt-4 is to contain the same number of digits as does
xy zt, the digit x can be only 0, 1, or 2. Since ¢z yx must be
divisible by 4, it follows that x must be even, and so the only pos-
sibilities are x = 0 (if we allow 0 to be counted as a digit at the be-
ginning of the integer), or x = 2,

Suppose x =0. Then ¢t =0 or else t =5. Write oy yt-4 =
1z y0; we note that ¢ cannot be the digit 5 (regardless what digit
vy is), and so the only possibility is £=0. We can now write y.--z:4=
z--+y, that is, if a number meeting the condition of the problem
begins with 0, then it also ends in 0, and the integer obtained by
deleting these two zeros will also meet the conditions of the problem.

It suffices therefore to investigate x = 2, for which 2y zt 4=
iz y2. Since 2:4 =8,¢ can be only 8 or 9, but t =9 can imme-
diately be eliminated as a possibility. Thus, # =8, and we can write
y«--28-4 =8z---y2, Since 23-4 > 90,y can be only 0, 1, or 2; also,
the tens digit of any product of form z8-4 must be odd. Thus, y=1.
Since we know the final two digits (12) in the product 21 28 - 4,
we can easily find the only two possibilities for the next successive
digit: z can be only 2 or 7. But 21-4 > 82, which means that z =7.
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Hence, the number must have the form 21 78. We note that
the integer 2178 satisfies the condition of the problem, and hence it
is the only such four-digit number. We now consider solutions in
terms of integers having more than four digits. We must have

21uv rs78-4 = 87 sr vul2 ,
which may be written
84-10%*2 + 312 + uv --- s 00-4
= 8710t 4+ 12 + s7 - - - vu00,

or
uy rs'4 + 3 = 3sr vu.

Since when the number v rs is multiplied by 4, and 3 is added,
the digit 3 is produced as the leading digit of the resulting calcula-
tion, the digit #» must be at least as great as 6, but since 3sr - - vu
must be odd, the only possibilities are 9 or 7. We shall investigate
both possibilities.

When # = 9 we have

Yo rs-4 + 3= 3sr 19 ,

from which _i_t follows that s = 9(s-4 must terminate in 6; if s =4,
then 34r v9 is smaller than Yy r4-4 + 3), and so

9 79-4 + 3 = 39r v9
That is (for # = 9), in order for 21uw 7s78 to meet the conditions
of the problem, the final digit of =v rs must also be 9, In par-
ticular, wv rs must be 9, 99, 999, and so on. We obtain the num-
bers
21,978; 219,978; 2199; 978;

We can easily verify that all such numbers satisfy the conditions of
the problem.
When # =7 we have

v rs-4 + 3 =3sr V7

Reasoning as we did initially in this problem, we find that s =1,
v =8, r = 2; that is, the digit sequence uv rs must have the form
78 21. We can easily verify that if the digit pairs 78 and 21 are
inserted between 21 as the first digit pair, and 78 as the last digit
pair, the resulting integer satisfies the conditions of the problem:

For example,
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21 78 21 78 21 78-4 = 87 12 87 12 87 12

But according to the treatment for x = 9 we will also obtain solu-
tions if we insert the digit 9 in the appropriate positions. For ex-
ample, the following numbers are solutions:

0; 2178; 21,978; 219,978;

2199 - - - 978, 2199 9978, (1)
N H/—'.
k times (B + 1) times
The insertion of the digit 9 may be made after any sequence 21,
provided it is also made in the equivalent location counted from the

other end of the number. Thus, any sequential array of digits of
the form

P1P2 Pn—anPn—x P2P1.

where each letter P; is one of the numbers from the display (1). For
example

2,197,821,978 ,

2,199,782,178,219,978 ,
21,978,021,997,800,219,978,021,978 ,

02,199,999,780
(The last number can be considered a solution if we allow zeros at
the beginning of the number.)

It may be proven in an analogous way that all integers which are
increased by a factor of 9 upon reversal of the digits can be obtained
by sequentially placing together integers of the form

0; 1089; 10,989; 109,989; - - -; 1099 989; 1099 9989;
N N
k times (k& + 1) times
in the same fashion as done for (1).

25. (a) Let N be the number sought. Designate the number formed
by the first three digits of N by p, and the number formed by the
final three digits of N by 4. Then the conditions of the problem
yield

6(1000p + q) = 1000 + p (=6N),
or
(10007 + p) — (1000 + g) = 999(g — p) = 5N,
that is, N is divisible by 999.
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Further, p + ¢ = (1000p + q) — 999p = N — 999p, and it follows that
P + g also must be divisible by 999. But p and g are each three-
digit numbers, and obviously neither is 999; consequently, p + g=999.
We find, without difficulty, that

(10004 + p) + (1000p + ¢) = 1001(p + q) = TN

which yields 7N = 999,999, or N = 142,857.

(b) Reasoning as we did in problem (a), and designating by p the
integer formed by the first four digits of the derived number N, and
by g the integer formed by the final four digits of NV, we obtain

7N =10,001(p + q) = 99,999,999 ,

which fails to yield an integer for N, since 99,999,999 is not
exactly divisible by 7.

26. Let x be a number satisfying the condition of the problem.
Since 6x must be, along with x, a six-digit integer, the first digit of
x must be 1 (and the following digit cannot exceed 6). Hence:

(1) The leading digits of the numbers x, 2x, 3x, 4x, 5x, and 6x are
all different and, as a result, must comprise all the digits contained
in the integer x (each of these digits must appear in the original
number x).

(2) All the digits of x are different.

None of these digits is O(otherwise one of the above products starts
with 0), and so the final digit of x must be odd (otherwise 5x ends
with an 0); also, the final digit must differ from 5(otherwise 2x ends
in 0). Consequently, the final digits of the numbers x, 2x, 3x, 4x, 5x,
and 6x are all different, which implies that these digits comprise all
the digits appearing in x. Therefore, one of these final digits is 1.
Since only the number 3x can terminate with a 1 (2x, 4x, 6x being
even, 5x having 5 as a final digit, and x itself already having 1 as
its first digit), it follows that x must end with the digit 7; 2x ends
with the digit 4; 3x ends with the digit 1; 4x ends with the digit 8;
5x ends with the digit 5; and 6x ends with the digit 2.

Now, the first digits of these numbers are the individual digits of
the digit set comprising x; we display them in increasing order, us-
ing (asterisks to represent unknown digits):

x1=1%%ix7
x-2=2#%kxx 4,

X3 =4 eexl,
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x4 =5xxxx§ ,
X5 =T*xkxx5 ,
X6 = 8xknk 2,

In this display, not only must each row contain (on the right) all
six distinct digits 1, 2,4,5,7, and 8, but each column must contain
these six distinct digits, in some order. Suppose that x-2 and x-5
have the same digit a in a certain position, say in the third position
(¢ can have only one of the two values not assumed by either the
first or the last digit of either of the two investigated numbers).
Since the difference x-5— x-2 = x-3 will be a six-digit number,
either the digit 0 or the digit 9 will stand in its third position (since
we can take, at most, a unit carry-over into this place for the sub-
traction). But this is an impossibility, since we already know that
the number x-3 will contain neither an 0 nor a 9 as one of its digits.

Therefore, in the above display of x'1, x-2, the sum of the di-
gits in any column is1 +2+4+5+7+8=27. We can therefore
add the right member of this display and obtain

x-21 = 2,999,997

whence x = 142,857, which is the integer sought. As a check we
have:

x = 142,857 4x = 571,428 ,
2x = 285,714 , Sx = 714,285,
3xr = 428,571, 6x = 857,142

27. (a) By factorization, #* — n = (n — )n(n + 1). The factors on
the right represent three consecutive integers, whence one of them
is divisible by 3.

(b) n®*—n=nn—1)n+1)(n*+1). If the integer » terminates
with one of the digits 0,1,4,5,6, or 9, then one of the first three
factors on the right is divisible by 5. If » ends in one of the digits
2,3,7 or 8, then »n? ends in 4 or 9, and in this event »? + 1 is divisible
by 5.

@ wW—n=nn—1m+DR—-—n+n*+n+1). If n is divi-
sible by 7, or yields a remainder of 1 or 6 upon division by 7, then
one of the first three factors on the right is divisible by 7. If =»
yields a remainder of 2 when divided by 7 (that is, n = 7k + 2), then
n? yields a remainder of 4 when divided by 7(that is, n2=494%+28k+4),
and so n? + n + 1 isdivisible by 7. Similar reasoning shows that if
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n =7k + 4, then again »*+ n + 1 is divisible by 7. For the re-
mainders 3 or 5, #n* — n + 1 is divisible by 7.

d) nt—n=nn—1)n+1DM+n+n+n*+1). If nis divi-
sible by 11, or yields the remainder 1 or 10 upon division by 11,
then one of the first three factors is divisible by 11, If this re-
mainder is either 2 or 9(n = 11k == 2), then n? clearly yields a re-
mainder of 4;»n* yields a remainder of 5=16— 11; »®* yields a
remainderof 9=20—11[n¢=n*-n*=(11k+5)(11k, +4)=11k,+5) 11k, +4)=
121%.k, + 11(4k, + 5k,) + 20], and #® yields a remainder of 3=25-22,
It follows, in either case, that #® + »n® 4+ n* 4+ n?* + 1 is divisible by
11. In the same manner we can easily verify that if one of the
remainders is =+3, =4, or =5(the only remaining possibilities upon
division of » by 11), then n® 4+ »n® + n* + n* + 1 is divisible by 11.

() n®*—n=nr—Dn+1DHE+1DHE —n*+ 1)(n*+n2+1). The
procedure is analogous to that of problem (d). If »n is divisible by
13, or yields upon division by 13 the remainder =1, then one of
the first three factors is divisible by 13; if » yields the remainder
+5, then #* + 1 is divisible by 13; if the remainder is =2 or =6,
then n* — n* + 1 is divisible by 13; if the remainder is =3 or =4,
then n* + n* + 1 is divisible by 13,

28. (a) The difference of like even powers of any two numbers
is divisible by the sum of the bases (one of the factors is this sum).
Hence, 3% — 26 = 27*» — 82 {s divisible by 27 + 8 = 35.

(b) It is readily verified that

n =51 +4n = n(n* — 1)(n* — 4)
=n—-2Yn—Dnn+ 1n+2)

The factorization displays five consecutive integers. One of them
must be divisible by 5; at least one of them is divisible by 3; at least
two of them are divisible by 2; and one of these two is divisible by
4. Thus, the product of the five consecutive numbers is divisible by
5-3-2-4 = 120 [see the solution of problem 27 (a)).

(c¢) Prime factorization of the given number yields

56,786,730 = 2-3-5-7-11-13-31-61

We must show that mn(m® — nt) is divisible by each of these re-
latively prime numbers. If m and »n are both odd, then m® — n® is
even; consequently, mn(m® — n®) is also even, so it is divisible by
2. Further, it follows from problem 27 that if & is equal to 3,5,7,
11, or 13, and if # is not divisible by k, then the difference n*-! —1
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must be divisible by 2. In particular, if neither » nor m is divisible
by 3, then m —1 = (m*)2 — 1 and »n* — 1 = (n*)* — 1 are divisible
by 3; that is, m® and »*° yield the same remainder, 1, upon division
by 3. Hence, if mn is not divisible by 3, then m® — n® is divisible
by 3, which means that in all cases mn(m® — »n%) is divisible by 3.
It can be shown, in the same way, that the difference

B0 — 1% = (M)t — (n'5)* = (m'0)F — (n10)s
= (M) — (nS)0 = (M)t — (nd)2

is divisible by 5 in the event that neither m nor » is divisible by 5,
and is divisible by 7 if 7 fails to divide either » or », and the ana-
logous conclusion holds for 11 and for 13. Thus, mn(m® — 1) is
divisible by 2:3-5-7-11-13.

Divisibility of mn(mé — n%°) by 31 and by 61 is demonstrated in
similar fashion (since n* — n is, for all integral », divisible by 31,
and »%' — n is, for all integral »n, divisible by 61; problem 240).

29, We shall use the identity
n+3n+5=n+7mn—4)+ 33

If this number is to be divisible by 11, then for the suitable
n, (n+7)(n —4) must be divisible by 11. Since (n + 7)— (n—4) = 11,
either both terms are divisible by 11 or neither is. Hence, if
(n + 7)(1r — 4) is divisible by 11, then it is divisible also by 121, and
(n 4+ 7)(n — 4) + 33 fails to be divisible by 121.

30. The given expression factors to
(me — 2m)(m — n)(m + »)(m + 2n)(m+3n)

If » +0, no two of these factors are equal. However, the integer
33 can be factored only as a product of at most four factors:

3 =(—-11)-3-1-(—11),
or

33=11:(—3)-1-(—1)
If » =0, the given expression becomes m*, which cannot equal 33
for any integral value of m.

31. LEvery integer is either divisible by 5 or else can be represented
in one of the forms 5k + 1,5k + 2,5k — 2, or 5k — 1. If the number
is divisible by 5, then its 100th power is divisible by 5* = 125; hence,
we need only investigate the case for integers not divisible by 5.
According to the binomial theorem,
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“;0_‘299 (5k) = 100-5k + 1,

where every term except the final one contains 5° as a factor, and
so numbers of this form leave a remainder of 1 upon division by
125. Also,
(5k == 2)t00 = (5k)100 4=
+ 100-99
1.2
Again, each term, except the final one, contains 125 as a factor,
The number 2'°® can be represented in the form

G-1r=50— +05-50.5+1,
from which the remainder 1 is obtained upon division by 125.
Therefore, the only two remainders possible when the 100th power
of an integer is divided by 5 are O (if the integer itself is divisible
by 5) and 1.

32. The problem may be characterized as follows. If » is rela-
tively prime to 10, then n!'® —n = n(n'*® — 1) is divisible by 1000;
that is, #'*° — 1 is divisible by 1000. First, it is obvious that if »
1s an odd integer, then #'® — 1 = (3% + 1)(n* + 1)(#** — 1) is divisi-
ble by 8. Further, from the result of the preceding problem we
know that if # is not divisible by 5, then #'% — 1 is divisible by
125, Thus, we see that n!® — 1 is divisible by 8-125 = 1000 if » is
odd and not divisible by 5, and these conditions are satisfied if z is
relatively prime to 10.

(5k = 1 = (k) = +

(5k)?-2%8 = 100-5k- 290 2100

33. Let N be the integer sought. The condition of the problem
requires that N2 — N end in three zeros, that is, that it be divisible
by 1000. Since N*— N = N(N — 1), and since Nand N — 1 are rela-
tively prime, divisibility by 1000 is possible only if one of these fac-
tors is divisible by 8 and the other by 125 (neither N nor N—1 is
divisible by 1000, since N is a three-digit integer).

If N is a three-digit integer divisible by 125, then N — 1 is divisi-
ble by 8 only if N =625 (as we can easily verify), whence N—-1=
624, It is also easily verified that if N —1 is a three-digit integer
divisible by 125, then N is divisible by 8 only if N—1 =375, or
N = 376.

Now, since N¥ ' —1 is (for & = 2) divisible by N —1, it follows
that N* — N = MN* 't — 1) is for all integral k divisible by MN—1)=
N? — N. Therefore, if N2 — N ends in three zeros, then N* — N will,
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for all £ = 2, end with three zeros; that is, N* will end in the same
three digits as does . [t follows that the numbers 625 and 376 (and
only these) satisfy the conditions of the problem.

34. The two final digits of N can be found in the following
manner. The number N? is divisible by 4 (since N is even); fur-
ther, N is not divisible by 5 (since then it _would be divisible by 10,
which denies the hypothesis). Hence, N is representable in the form
5k =1 or 5k =+ 2 (see the solution of problem 31). The number

(Sk = 1) = (5k)® = %(5@19 +

+ %(5/@2 =205k 4 1

yields the remainder 1 when divided by 25, and the number

(Sk == 2) = (5k)0 = z‘l)%ég(sk)mz +

+ %g(Sk)z-Z‘“iZO-Sk-ZW +2m

yields the same remainder upon division by 25 as does
2% = (2192 = (1024)% == (1025 — 1)»?

that is, 1. Since N yields the remainder 1 upon division by 25, it
follows that the final two digits of this number can be only 01, 26, 51,
or 76. In asmuch as N?° is divisible by 4, the possibilities narrow
down to the number 76(since a number is divisible by 4 if, and only
if, the number formed by its final two digits is so divisible). This
yields 7 as the digit standing in the tens place of N2,

We shall now find the final three digits of N2°, The number N?°¢
is divisible by 8. Further, since N and 5 are relatively prime, it
follows that N'% yields the remainder 1 upon division by 125 (see
the solution of problem 31); that is, N!% =125k + 1. But N =
(125k + 1) = (125k)* + 250k + 1 also yields the remainder 1 upon divi-
sion by 125. Therefore, the only possibilities for the final three
digits of N2 are 126, 251, 376, 501, 626, 751, and 876. Since N2 is
divisible by 8, it is clear that N*® ends in 376. Thus, the digit in
the hundreds place of N?%®° is 3.

Remark: It is easily reasoned that the number N1 must end with the
digits 376.
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35. The series 1 +2+ 3 + + n is equal to "(nTM Hence,
we must show that if % is odd, then S, = 1% + 2% + 3* + + n* is
divisible by ”(%“)

We first note that for odd k, a* + b* is divisible by a+b. Two
cases will now be examined.

n is an even integer. Here, the sum S; is divisible by » + 1, since
each of the sums

k k Ok k2K " 7 \* n k
18 4+ pk, 28 + (m — 1), 3+ (n — 2)%, -+, 5 + _2_+1

is divisible by

1+n[=2+(n—1)=3+(n——2)= =§+<%+1)]
The sum S, is divisible also by % since
1* + (n — 1), 28 + (n — 2)%, 3* + (n — )%,
n k n k n\*
(F-0) +(F+y) (%)
are all divisible by -’2’—
n 1s an odd integer. Here the sum S, is divisible by n; 1, since
T4 0k, 26 4 (n — 18, 3%+ 01 — 2%, -, <" = 1)" +<” + 3)"(" + 1)"
2 2 o\ 2
are all divisible by % Also, S, is divisible by #», since

1% + (n — 1F, 28 + (n — 2), 3* + (n — 3)%,
n—=1\* /n+1\ .
() (")

are all divisible by .

36. Let N be written in the form
N=a.-10" + a,-,10" ! + q,-,10* + +a,10 + a,
(the ax are, of course, the digits of N). Subtract from N the number

M=aa-al+az—a;+--~-+_-a,.
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(that is, the algebraic sum, taken with alternating signs, of the digits
of N). A simple regrouping of terms yields

N-—M=a(10+1)+ a(10* — 1) + a,(10° + 1)
+a(l10* —1) + +a,(10 1),

which is divisible by 11 since each term on the right is divisible by
11. [In fact, upon division by 11, 10* = (11 — 1)* yields the remainder
—1 if & is odd and the remainder 1 if & is even, as binomial expan-
sion will show.] The number N is divisible by 11 if, and only if,
the number M is divisible by 11 (zero, of course, is considered divisible
by all nonzero integers). A criterion, then, is as follows: A number N
is divisible by 11 if, and only if, the difference of the sum of digits in
the odd-number (l1st, 3rd, 5th, ) positions and the sum of digits in
the even-number (2nd, 4th, ) positions is divisible by 11.

37. The number 15 yields the remainder 1 upon division by 7; it
follows that

15 =72+ 1D(7-2+1)=7n, + 1
also yields the remainder 1 upon division by 7, as does
152 = 15215 = (Tn, + 1):(7-24+1) =Tn, + 1

It is now easily verified that every power of 15 yields the remainder
1 upon division by 7. Now if the sum 1+2+3+4 + + 14 =
105 is subtracted from the given number, the difference can, after some
simple regrouping and factoring, be displayed in the form

13(15 — 1) + 12(15¢ — 1) + 11(15° — 1) +
+ 2(15% — 1) + 1(15% — 1),

that is, each term is divisible by 7. But since the difference between
the given number and the (decimal) number 105(= 7-15) is divisible
by 7, it follows that the given number is also divisible by 7.

38. Let K be an n-digit integer. In the set of natural numbers
containing » + 2 digits and beginning with the digits 10 (that is,
with numbers of aspect 10a,a, a,, this notation indicating the in-
teger 1-107+2 + q,-10" + @,-10*! + +a,) there can always be found
at least one digit which is divisible by the »n-digit number K. Sup-
pose this number is 10b,b, b.. Then, to satisfy the conditions of
the problem, both the numbers b,b.---5,10 and b,b, 5,01 would
have to be divisible by K. Their difference is 9, which then also
must be divisible by K. Since the only divisors of 9 are 1,3, and
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9, these are the only numbers which can satisfy the conditions of
the problem.

39. We must show that the number
N = 27,195% — 10,887 + 10,152¢
is divisible by 26,460 = 22.32.5.7:, The proof will be given in two
steps:

(1) N=27,195*—(10,887° —10,152%). Now, 27,195 = 3-5-7¢-37, and
so this number is divisible by 5-72 The difference shown in the
parentheses is divisible by

10,887 — 10,152 = 735 = 3:5-7*
(since a@** — b*" is divisible by @ — b). Hence, N is divisible by 5-72,

(2) N=(27,195°—10,887%)+10,152°, Now, 10,152=2?-3*-47 is divisible
by 2:-3%, The difference shown in the parentheses is divisible by

27,195 — 10,887 = 16,308 = 2%-3°-151
Thus, N is divisible by 22.3°

Since N is divisible by 5-7% and by 22-3?, it foliows that N is divi-
sible by the product of these (relatively prime) numbers, and this
product is 26,460,

40. 1t is readily verified that
110 — 1 = (11 — 1)(11° + 118 + 117 + + 1124+ 11 +1)

The second factor of the right number is divisible by 10, since it is
the sum of ten integers each ending with the digit 1. Inasmuch as
both factors on the right are divisible by 10, their product is divisi-
ble by 100. Therefore, 11°—1 is divisible by 100. Therefore, 11'°—1
is divisible by 100.

41. We have

22228555 4 55552222 = (2222°%° + 4%%%)
_+_ (55552222 —_ 42212) — (4&355 — 42222)

Consider the three terms enclosed by parentheses. The first is
divisible by 2222 + 4 = 2226 = 7-318(since a* + b" is divisible by a+b
if n is odd), and so this term is divisible by 7. The second term is
also divisible by 7, since it is divisible by 5555-4 = 5551 = 7-793
(a*—b~ is always divisible by a—»). The third term may be written

42222(43:\33 — 1) — 42222(641111 —_— 1) '

clearly it is divisible by 64 — 1 = 63, and hence by 7.
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42. We use mathematical induction. The number aaa, consisting
of three identical digits (the overbar indicating, as before, that the
integer is given by the succession of digits shown), is divisible by 3
(since the sum of these digits is 3¢, which is divisible by 3). Assume
that the proposition has been proved for any integer consisting of
3 identical digits. The expanded integer consisting of 3**! identical
digits can be written in the following form:

aa a aa a aa a=aa a-100 0100 01

3" times 3" times 3" times 3* times 3"digits 3"digits

There are two factors on the right. The first factor is divisible by 3=,
according to the induction hypothesis. The second factor is divisible
by 3 (the sum of its digits being 3). Therefore, the product is divi-
sible by 3*

43. First note that 10¢ 1 =999 999 is divisible by 7 (in fact,
999 999 =7 142,857). It follows that 10¥ (for any integer N) yields
upon division by 7 the same remainder as does 107, where r is the
remainder obtained by division of N by 6, since if N =6k + », then

10¥ — 107 = 10%+*~ — 107 = 107(10% — 1),

and since 10°% — 1 = (10°)* 1 is divisible by 10® — 1, which in turn
is divisible by 7, then 10¥ — 10" is divisible by 7. This means that
10¥ and 10" yield the same remainder upon division by7.!

Now, it is readily verified that every integral power of 10 yields
a remainder of 4 upon division by 6 (that is, 10 =4 mod 6). The
exponents of each term of the sum given in the problem are all
powers of 10, hence each exponent is congruent to 4 modulo 6. This
means that we can replace each of the ten terms by 10* in order to
find the remainder upon division by 7. We have

10* + 10* + + 10* = 10" 1,000,000 = 7-14,285 + 5
10 terms
Therefore, the remainder is 5.
44, (a) Any even power of 9 may be expressed in the form
92 = 81" == 81-81- -81
—_—

7 times

t In more familiar terminology, 10¥ is congruent to 107, modulo 7, or 10V =
107(mod 7) { Editor).
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and therefore ends with the digit 1. Any odd power of 9 can be
written as 92°+! = 9.81* and therefore ends with the digit 9. Since
9¢" is an odd power of 9, it must end with the digit 9.

It is obvious that 16* ends with the digit 6 for all » = 1. Hence
any power of 2 whose exponent is a multiple of 4 (that is, 2'*) ends
with 6, since 2‘* = 16*. Now, 3* — 1 is divisible by 3 + 1 = 4, and so
264 = 2.2(*-v which is the product of 2 and an integer ending with
6, must end with 2.

(b) If we find the remainder yielded upon division of 2% by 100,
it will be the number formed by the two final digits of 2%°. We first
show, that the number 2! yields the remainder 1 upon division by
25, In fact, 2'**+1=1024 + 1 = 1025 is divisible by 25; and so
220—1 = (219 4 1)(2'°—1) is divisible by 25. Thus, 2'%°—1=(2%)% —1,
being divisible by 22 — 1, is also divisible by 25, and so upon divi-
sion by 25 the number 2!° yields the remainder 1.

It follows that the final two digits of 2'%°° can be only 01, or
01 + 25 =26, or 01 + 50 =51, or 01 + 75 = 76. Since 2!*°° is divisible
by 4, the only possibility among these four numbers is 76. Thus, 2°*®
is the quotient obtained by dividing an integer ending in 76 by 2.
The only possibilities are 38 and 88. Since 2°*° is divisible by 4,
there remains the one possibility, 88, for the final two digits.

As above, we investigate the remainder obtained upon dividing
3% by 100. We recall that every even power of 9 ends with the
digit 1 and that every odd power ends with the digit 9 [see the
solution to problem (a)]. Now consider the remainder obtained upon
division of 9 + 1 by 100. We have

P +1=@0+1)(—F+9—-9+1)
=109 —9 + 9% -9+ 1)

The numbers 9¢, 9%, and 1 all end with the digit 1, and the numbers
9 and 9 end with 9. Thus, 9* + 92 + 1 ends with 3, and 9 + 9 ends
with 8, which means that the number 9* — 9* + 92 — 9 + 1 must end
with 5. Accordingly, 9* + 1 must yield upon division by 100 the
remainder 10-5 =50. It follows that 9° 1=(9°+ 1)-(9° — 1) is di-
visible by 100, and since 3!%° — 1 = 9%¢¢ — 1 = (9'*)** — 1 is divisible
by 9' — 1, it follows that 3!%° — 1 is divisible by 100. Thus, 3:0°
ends with the digits 01. But this number is, of course, divisible by
3; consequently, the carry-over from the hundreds place of 3% to
the tens place must be 2 (if it were 0 or 1, then 3**® would not be
divisible by 3). Therefore, the number 3%° = 3'°%/3 must end with
the same two digits as the number 201/3 = 67.
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(c) We must find the remainder, upon division by 100, of
the number 144'% = (7.2)4'"  First we find the remainders, upon
division by 100, of 7' and 2(*+'%).

The number 7* — 1 = 2401 — 1 = 2400 is divisible by 100. It follows
that if » =4k (k& being an integer), then 7" — 1 is divisible by 100
(since 7% — 1 = (7*) — 1* is divisible by 7* —1). Now, 1414 = 2u.7u
is divisible by 4; consequently, 7%*'" — 1 is divisible by 100, which
means that 7Y ends with the digits 01.

In the solution of part (b) it was shown that 2 — 1 is divisible
by 25; hence, if n = 20k, then 2" — 1 is divisible by 25. We will
now find the remainder obtained from division of 14!* by 20. Clearly,
1444 := 2474 But 2'* =4-2'. Since 2'2—1=(2') — 1 is divisible
by 2¢—1=16—1 =15, it follows that 4(2'* — 1) is divisible by 20,
and consequently 2'* = 4-2'* yjelds upon division by 20 a remainder
of 4. Further, 7** =49-712, Since 7** yields a remainder of 1 upon
division by 20 (12 is divisible by 4, whence 7'* — 1 is divisible by
100), it follows that 49-7'¢ yields upon division by 20 the same re-
mainder as does 49, that is, 9. Similarly, 14" = 2.7 yjelds upon
division by 20 the same remainder as does the product 4-9 = 36, that
is, 16, or 14" = 20k + 16. It follows that 214'" = 215.22% yjelds upon
division by 25 the same remainder as does 2's = 65,536; that is, 2¢4'"
can end only with one of the numbers 11, 36, 61, or 86. Since 214+
is divisible by 4, the final two digits must be 36.

Therefore, since 7Y ends with the digits 01, and 2"*" has as
its two final digits 36, the product 704! .2:u4! = 144'% ends with 36.

45. (a) We make use of the fact that the product of two numbers
ending respectively with the digits 2 and & will have the same final
digit as does the product z-6. This provides a simple solution for
the problem. We consider successively greater powers of 7, keeping
track of the final digit only: 7% ends with the digit9; 7° = 7-7% with
the digit 3; 7* = 7 7° with the digit 1; and 77 = 7¢-7* with the digit 3.

Moreover, we find that (7°)" ends with the digit 7 [(7")? ends with
9; (77)* ends with 7; (7)* ends with 1, and, finally, (7°)" ends with 7).
We find, at the next stage, that the number ((7°)")” ends with the
same digit as does 77 (the digit 3), and the number (((77)7)")" ends
again with the digit 7, and so on. Continuation of this process must
then yield the following rule. For an odd number of exponents 7
we obtain a final digit 3, and for an even number of exponents we
obtain a final digit 7. Since 1000 is an even integer, the number
sought has 7 as its final digit.
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If an integer ends with a two-digit number A, and another integer
ends with a two-digit number B, then the product of the two integers
ends with the same two-dight number as does the product A-B.
This fact allows us to find the final two digits for the number
mentioned by the problem. We easily verify, by the methods used
above, that 7° ends with the two-digit number 43, and (7°)" ends with
the same two digits as does 437, namely 07. It follows that in taking
successive 7th powers, 7,77, (77), we obtain for an odd number of
such “raises” a number with final digits 43, and for an even number
a number with final digits 07. Therefore, the number in which we
are interested must end with 07.

(b) In the solution of problem (a) we saw that 7* ends with
the digit 1. Therefore, 7% = (7*)* also ends with the dight 1, and
7+ where %k is one of the numbers 0, 1, 2, or 3, ends with the same
digit as does 7 (since 7+ = 7*.77). Thus, the problem reduces to
finding the remainder, modulo 4 (that is, after division by 4), of the
“exponential part” of the given number.

The power to which 7 is raised is again a power of 7. We must
determine the remainder obtained by dividing the latter power by 4.
Now 7 =8 — 1, and it follows that: 7° = (8 — 1)-(8 — 1) yields upon
division by 4 the remainder 1; 7° = 72-(8 — 1) yields upon division by
4 the remainder —1 (equivalent, upon division by 4, to the remainder
3); and, in general, every even power of 7 yields upon division by 4
the remainder 1, and odd powers yield the remainder —1 (that is,
+3). For the number in question, we are concerned with an odd
power of 7, since the exponential part is itself a power of 7, and,
consequently, owing to the conditions of the problem, it is of form
7*+s. Therefore, it ends with the same digit as does 7?2, that is,
with the digit 3.

Since 7' ends with 01, 7***7 ends with the same two-digit number
as does 7 Therefore, the given number ends with the same two
digits as does 7%, that is, 43.

46. Consider the following five numbers:
) Z=9
2 Z, =94 = (10— )4
=105 — C¢, 104 + 4+ Cz,-10—1
(where the integers not explicitly displayed are obviously divisible

by 100). Now, Clzl =9, and hence the two final digits of Z, are the
same as the final two digits of 9-10 — 1 = 89.
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@ Z=92=(10-D=%

=10% — C}, 102 +  — C},-10* + C},+10 — 1
Now, Z, ends with 89; consequently, C%, = Z, ends with 89, and
C, = Z{Z,—1) _ -89 .. 88
2T 12 12

(the dots designating unknown digits) ends with the digit 6. Ac-
cordingly, the final three digits of the number Z; will be the same
as the final three digits of the number —600 + 890 — 1 = 289.

4) Z,=9%=(10— )%
—10% — C},-10%t + 4+ C},-10° — C%,-10° + C}, 10 — 1
Since Z; ends with 289, C%, = 7, ends with 289;

Ci — Z(Z; — 1) _ - 289 -288
3 1-2 1-2
ends with 16, and
cy, = Z(Zy — W2y — 2) _ -289 -..288 -..287
1.2-3 1-2-3

ends with the digit 4. Hence, the final four digits of Z, will form
the same number as do the final four digits of the number 4000 —
1600 + 2890 — 1 = 5289.

(5) Zs = 9% = (10 — 1)2s = 1044 — Clz‘~10”q‘l +
— Cz,-10* + Cz,-10° — C%,-102 + C%,-10 — 1
Since Z, ends with 5289, C;, = Z, ends with 5289;

¢t _ ZdZ —1) _ ---5289 --.5288
“a 1.2 1-2
ends with 116;
o Z(Z —1NZ, —2) _ ---5289 -.-5288 . ...5287
4 1-2-3 - 1-2-3
ends with 64; and
Cb o 22— V(2 —2(Z —3) _ ---5289 ---5288 5287 -..-5286
4 1.2.3-4 1-2-3-4

ends with the digit 6. Therefore, Z; ends with the same digit as
does the number

— 60,000 + 64,000 — 11,600 + 52,890 — 1 = 45,289 .
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Further, since the final four digits of the number Z, coincide with
the final four digits of Z,, it follows that the final five digits of the
number Z; = 94 = (10 — 1)%s coincide with the final five digits of the
number Z; (=9%:). It can be shown, in exactly the same way, that
all the numbers of the sequence

Zy; Zo = 9%s; Z; = 9%y Zioao = 9295 Z\g0, = 1000
end with the same four digits, namely the digits forming the number
45,289, Thus, Zi, is the number N called for by our problem.

47. Using the formula for the sum of a geometric progression,
we find

501000 _ 1 501000 — 1
N:: =
50 —1 49
Now 1/49 forms a periodic decimal; it is found (by tedious but

straightforward division) to have a period of 42 digits:

41—9 = 0.(020408163265306122448979591836734693877551)

or, in abbreviated form

1
—=0-P

49 ’
where P expresses the 42 digits written above.

The multiple of 42 nearest 1000 is 1008 = 24-42. Consequently,

10100.’4 1

=10 —— = PP P

49 49 —

24 times

Similarly,
101008 — 1 1 1

— = 10Qwes > _ - = P
M %9 w9 PPt
24 times

is an integer consisting of 1008 digits, which can be arranged in 24
repeating groups of 42 digits each (the number M consists not of
1008 digits but of 1007, since the number P begins with a zero).

We construct the difference between the number N in which we
are interested and the number AM:

5I000,101000 — 1 101008 _ 1 5[000 — 10"

N—-M= 49 49 49

. 10000
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Since the difference N — M of two whole numbers is an integer,

and 10!%°° is relatively prime to 49, it follows that 5'%°* — 10®* must
5[000 — 108

49
and the difference N — M = 10'°.x terminates with 1000 zeros.

Hence the final 1000 digits of N coincide with those of M, namely
qPP---P
23 times

be divisible by 49. Hence, the number x = is an integer,

where ¢ is a group of 34 digits consisting of the last 34 digits of
the number P.

48. The number of zeros at the end of a number indicates how
many times the number 10 enters as a factor. Now, 10=2.5. In
the product of all the integers from 1 to 100 (that is, in 100!) the
factor 2 enters to a higher power than does 5. Hence 100! is divisi-
ble by 10 as many times as the factor 5 appears (and will terminate
in this many zeros). Up to and including 100, there are 20 integers
which are multiples of 5. Four of these (25, 50, 75, and 100) are also
multiples of 25, that is each contains 5 twice as a factor. Therefore,
in the number 100! the factor 5 is encountered 24 times, and so there
will be 24 zeros at the end of this integer.

49. First solution of problems (a) and (b).

(@). Lett+1,¢+2, --,!+ n be n consecutive integers for
some arbitrary integer {. We first determine, for a prime number
b, to what degree p is a factor in »!, and to what degree this prime
enters as a factor in the product (¢! + 1) (¢ + n). Designate by m,
the number of integers in the sequence 1,2, -, n for which p is at
least a simple factor, by m, the number of integers for which p is
at least a twofold factor, and so on. Then the degree to which p
enters as a factor in »! is given by m = m, + m, +

If 5, is the number of integers of the sequence ¢+ 1,! + 2,
¢ + n which are divisible by p, and s, is the number of integers in
this sequence which are divisible by p?, and so on, then the degree
s to which p enters as a factor of (¢ +1) (¢t +a) will be s=
S + 8 +

Now, the number of integers in the sequence ¢{ +1, -,¢+ n which
are divisible by p is not less than m,, since among the integers
t+1, -, ¢+ n are the numbers ¢ + p, ¢t +2p, .-+, ¢ + m,p, and in
each interval between { + kp tot +(k+1)p (k=0,1,2,---,m, — 1)
there is at least one integer which is divisible by p. Thus, s, = m,,
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and, analogously, s, = m,, and so on, and so s = m. This means
that every prime factor of #! enters as a factor of (¢ + 1) t+n
to a degree not less than it enters as a factor of n!. That is, the
number (¢ + 1) (t + n) is divisible by #!
(b) The product of the first a factors of »! is, of course, a!.
The product of the following six consecutive integers of #! is, ac-
cording to problem (a), divisible by b!. The product of the next
successive ¢ consecutive integers of s! is divisible by ¢!, and so on.
Since a + b + + k < n, it follows that n! is divisible by a!b! k!,
Alternate solution of problems (a) and (b) using the result of problem
101. Problem (b) will be considered first. The power iz to which
the prime p is a factor of a! is, as we have seen, equal to m =
m, + m, + where m, is the number of integers of the sequence
1,2, a of which p is at least a simple factor; m, is the number
of integers of which p? is a factor; and so on. The number of inte-

gers in this sequence which are multiples of p is given by [i]; the

b
the number of integers which are multiples of p* is given by [ﬁ];
a a . . a
and so on, where [—5], [F] are the greatest integers in ?)—,
a

— (see the remark just prior to the statement of problem 101).

Thus, m = [%] + [pi] + Let p be a prime number; then the
degree to which p enters as a factor of the numerator is equal to

[—z—] + [;—2] + The degree to which p is a factor of the de-

nominator is

a a b b ] [k] [ k ]
= = +H=l+l15+ +|+ =+
[f)]+[f)2] [p] [pz ARENE
Since nza+ b+ + k, we have (using the result of problem 101,
part 1)

BREE
(102 )= (511 )

that is, p 2nters the numerator as a factor to a higher degree than
it enters the denominator and so the given fraction is an integer.
The proposition of problem (a) immediately follows. Consider the



Solutions (50) 135

product (¢! + a)!. According to what has just been proven,
(t+a) (¢+1p¢—-1) 1 @+ _(¢+1) (¢+a)

alt(t — 1) 1 al!l at
is an integer.

(¢) (nN)! is the product of the first integers. These n!
integers can be written as the product of (# — 1)! product sets each
containing »! successive integers. Each of these sets is, according
to the solution of problem (a), divisible by n!.

(d) Designate the integers by a,a +d,a+2d, ---,a+ (n—1)d.
We first show that there exists an integer k& such that the product
kd yields a remainder 1 when divided by #!. Consider the (n! — 1)
numbers d, 2d, 3d, , (3! — 1)d. None of these numbers is divisible
by #! (since d and n! are, by hypothesis, relatively prime). Further,
no two products pd and ¢gd, where p and ¢ are distinct integers less
than »!, can yield the same remainder upon division by »n! (otherwise
pd — gqd = (p — @)d would be divisible by n!). Hence the n! — 1 inte-
gers all yield different remainders upon division by »!, and so, for
some k, the remainder 1 appears upon division by !, that is, kd =
ral + 1,

If now we designate ke by A, we have

ka = A
ka+dy=A+kd=(A+ 1)+ rn!
ka+2d)=A+2kd=(A+2)+ 2r-a!

kla+n—1d=A+n—-Dkd=[A+(n—D]+ mn-—1ra
It follows that
kYa + dXa + 2d) [a + (n — 1)d]
gives the same remainder upon division by »n! as does
A(A + 1A + 2) [A + (n—1)]
The latter product is divisible by !, in view of the result of problem
(a); also k" is relatively prime to »! (since if k is not relatively prime

to n!, then neither is kd). Therefore, n! divides a(a + d)a + 2d)
la + (n— 1)d].

50. The number of combinations of 1000 elements taken 500 at a
time is given by
1000!
(5002 -
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Since 7 is a prime number, the highest power of 7 which is a factor
of 1000! [see the second solution of praoblem 49 (b)] is equal to

10007 | [10007 , [10007 _ _
[ 3 ]+[ - ]+[343]—142+20+2—164

The highest power of 7 in 500! is equal to

[500]+[500]+[500]=71+10+1:82,

7 49 343

and so the degree to which 7 enters the denominator of the fraction
is 82:2=164. Thus, both numerator and denominator contain the
factor 7 exactly the same number of times. When 7'¢* is cancelled
out of numerator and denominator, no multiple of 7 remains in the
resulting number. Therefore, the integer represented by Ciee is not
divisible by 7.

51. (a) It is readily seen that every prime number satisfies the
given condition, since p does not appear as a factor in (p — 1)!. If
n is a composite number which can be written as the product of
two unequal factors, ¢ and b, then both ¢ and 4 are less than n — 1,
and consequently, both appear in the composition of (# — 1)!. This
means that (n — 1)! is divisible by ab = n. If n is the square of a
prime p > 2, then n — 1= p*—1 > 2p, which implies that both p
and 2p enter into the product composition of (2 — 1)!. Hence, (n — 1)!
is divisible by p-2p = 2p* =2n. Thus, all the composite numbers
except 22 = 4 may be eliminated. However, 4 satisfies the condition
of the problem, as well as do all the prime numbers less than 100:

2,3,4,7,11,13,17,19, 23, 29, 31, 37, 41,
43, 47,53, 59, 61, 67, 71, 73, 79, 83, 89, 97

(b) It will be shown that (z — 1)! fails to be divisible by n?
in the following cases only: # is prime, n is twice a prime, n is the
square of a prime, # =8, n =09.

If » is neither a prime number, nor twice a prime, nor the square
of a prime, nor the numbers 8 or 16, then » may be written as a
product a-b, where ¢ and b are distinct numbers, neither of which
is less than 3. Assume 6 > @ 2 3. Then the numbers a, b, 24, 2b, 3a
are all less than n — 1; moreover, a4, b, and 2b are clearly distinct
from each other, and at least one of the numbers 2a or 3g differs
from a, b, and 2b. Hence, in (n — 1)! there appear the distinct factors
a,b,2b,2a, or else a,b,2b, 3a (and possibly all of a, b, 24, 2b, and 3a
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appear separately as factors of that product). In every case, (n — 1)!
is divisible by a%*?® = n*.

Moreover, if n = p?, where p > 4 is prime, then n — 1 > 4p, and
(n — 1)! contains as factors all of the numbers p, 2p, 3p, 4p and hence
is divisible by p*=n* If n = 2p, then (#n — 1)! is not divisible by
p?, and so it is not divisible by #* when n =8 or n=9, (n — 1! is
not divisible by »* (7! is not divisible by 82, nor is 8! divisible by
9%); if n =16, (n — 1)! is divisible by n? (since 15! contains as factors
the numbers 2,4 = 22,6 = 3-2,8=2%,10 =2-5,12 = 22.3,14 = 2-7, and
so is divisible by 2t+zri#3sitzet = 211 — 162.23),

Thus, the condition of problem (b) is satisfied by all the numbers
which satisfy the condition of problem (a), and in addition by the
integers 6, 8, 9, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, that is, all
primes, doubles of primes, and the integers 8 and 9.

52. Assume that the integer » is divisible by all numbers m <1/ n,
and consider the least common multiple K of all these numbers m.
Of course, all prime numbers p <1/ % are included, as well as powers
up to p* =1, but p**' > 1 n. Assume that there are / primes
which are less than 1/ 7, and designate them by p,, p, -+, p.. The
least common multiple of all the integers less than 1/ n will be the
product K = pfips? pi', where k; is the integer such that

pf‘él/7<pll‘l+l (i‘__lrz""pl)

From the / inequalites

1/;< p'{l“
.1/7< pl;p-z
V< pptt
we obtain
(ﬂ)z < p{qﬂ pl;gi’l pfﬁ’l
However,

poripytt  pitt =kt Pt pipe pi < K?
ke

(since pi'pf2  pi' = K), and, consequently, p.p. p. = K. Hence,
we have

WVn)r < Ke.
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Inasmuch as #n is divisible by K, we must have K < xn, whence
(V' n) < nt Therefore, I < 4. Since p, p.,  pi, are primes less than
V'n, po =7 > 1 % (the fourth prime number is 7), and so n < 49,
If we examine the integers less than 49, we readily ascertain that
only the following integers satisfy the conditions of the problem:

24,12,8,6,4,3,2
53. (a) Designate five consecutive integers by
n—2,n—1,nn+1l,n+2
Then
=2+ m—14+*+n+1*+(n+22=5n+10=5xn*+ 2)

If 5(n% + 2) is a perfect square, then it mush be divisible by 25
(it has the prime factor 5, which must appear twice), hence (n? + 2)
must be divisible by 5. This is possible only if the final digit of »*
is 8 or 3, and no square of an integer ends in either of these digits.

(b) Of three consecutive integers, one is divisible by 3, an-
other yields a remainder of 1 upon division by 3, and the third yields
remainder of 2 (or, equivalently, a remainder of —1). Upon multi-
plication of two such integers, the remainders obtained from division
by any number are also multiplied; actually,

(pk + r)(gk + s) = pgk* + pks + gqkr + rs = k(pgk + ps + qr) + rs

Hence, if a number yields the remainder 1 upon division by 3, then
all of its powers yield the remainder 1 upon division by 3; if the
remainder is —1, then all of the odd powers of the number will
yield the remainder —1, and the even powers will yield the re-
mainder 1.

Thus, given three even powers of consecutive integers, we have,
upon division by 3, the remainder 0 for one power and the remainder
1 for the other two.

Therefore, the sum of even powers of three consective integers
yields the remainder 2 when divided by 3 (or, equivalently, the re-
mainder —1); but no even power of any integer, as we have just
shown, can yield this remainder upon division by 3.

Remark: The even powers referred to in problem (b) need not be the same.
In problem (c) note that the even powers referred to are all the same.

(¢) As we saw in the solution of problem (a), the sum of
even powers of three consecutive integers yields a remainder of 2
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when divided by 3. It follows that the sum of even powers of nine
consecutive numbers yield a “remainder” of 6 upon division by 3,
that is, this sum is divisible by 3. We must show that such a sum
(wherein the even powers are the same) is not divisible by 32 =9,

Of nine consective integers, one is divisible by 9, and the others
yield remainders from 1 to 8. If 2k is the (even) power to which
the nine consecutive integers are raised, then the sum yields the
same remainder upon division by 9 as does

0 + 121: + 221: + 32/.- + 421: + 52k + 62/.- + 72k + 82I¢

or the sum
201% 4 4+ 4+ 7%

(since 3% and 62 are divisible by 9; 1* and 82 =64 each yield a re-
mainder 1; 22 =4 and 7* =49 yield remainders of 4; 4* =16 and
52 = 25 yield remainders of 7).

Now note that 1°* =1, 4% =64, and 7° = 343 all yield the remainder
1 upon division by 9. It follows that if £ = 3/, then 1* + 4% 4 7% =
1! + 64! + 343! yields the same remainder upon division by 9 as does
1' + 1t + 1t = 3; it is not divisible by 9. If £ =3/ + 1, then 1* 4+ 4% +
7k =1'-1 4 64'-4 + 343!-7 yields the same remainder as does the sum
11+4+14+4+1-7=12; it is not divisible by 9. If 2= 3/ + 2, then
1¥ 4 4% 4+ 7% = 1'-1 + 64'-4* + 343!.7¢ yields the same remainder upon
division by 9 as does the sum 1-1+4 1 16 + 1-49 = 66; it is not divisi-
ble by 9.

54. (a) The sum of the digits of each number is 1 + 2+ 3 + 4 +
54+6+7=28. It follows that both numbers yield a remainder of
1 upon division by 9 (an integer yields the same remainder upon
division by 9 as does the sum of its digits). But if A/B =#x, or
A = nB, where # is an integer different from 1, then, since B =
9N + 1, it follows from A = nB=9M + » that » must yield a re-
mainder of 1 upon division by 9. The least value which # can as-
sume is 10. However, A/B < 10, inasmuch as A and B are both
seven-digit numbers.

(b) Designate the integers sought by &, 2N, 3N. Since an integer
yields the same remainder upon division by 9 as does the sum of
its digits, the sum N + 2N + 3N must yield the same remainder
upon division by 9as does 1 + 2+ 3 + + 9 =45 in order to meet
the condition imposed by the problem. Hence, 6N (and consequently
3N) is divisible by 9.

Since 3N is to be a three-digit number, the first digit of N cannot
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exceed 3. It follows that the last digit of N cannot be 1, since the
integer 2N would end with 2 and 3N would end with 3, and then
none of these three digits is available to begin N. The integer N
cannot terminate with 5, since 2N would end with 0. Assume now
that the final digit of V is 2; then the final digits of 2V and 3N are,
respectively, 4 and 6. The remaining two digits for 3V can be chosen
only from 1,3,5,7,8, and 9. Since the sum of all the digits of 3N
must be a multiple of 9, the first two digits of 3N are either 3 and
9 or 5 and 7. By checking all the possibilities, we find that the
following three-digit numbers satisfy the condition of the problem:
192, 384, 576. Analogously, we can investigate the cases for which
N terminates with 3,4,6,7,8, or 9. This procedure will produce
three additional solutions:; 273, 546, 819; 327, 654, 981; and 219, 438, 657.

55. A perfect square can terminate in only one of the digits
0,1,4,9,6, or 5. Moreover, the square of an even integer is obvi-
ously divisible by 4, and the square of an odd integer yields the
remainder 1 upon division by 4 [since (2k + 1)2 =4(k* + k) + 1]. Hence,
no square can end with any of the pairs 11, 99, 66, or 55, since
numbers ending in the digits 11, 99, 66, or 55 yield upon division by
4 the respective remainders 3, 3, 2, and 3).

We now investigate which remainders are possible when a perfect
square is divided by 16. Every integer can be represented in one
of the following forms:

8k , 8k 3,
8k+1, 8k+4
8k+=2,

The squares of these numbers have the following forms:
16(4%%) , 16(4k* = 3k) + 9,
16(4k2 = k) + 1 16(4k* = 4k + 1)
16(4k* =2k) + 4,

These forms show that the square of an integer is either divisible
by 16 or will yield a remainder of 1, 4, or 9 when divided by 16. The
possibility of ending with 1 or 9 has been excluded. A number ending
with the succession of digits 4444 yields a remainder of 12 upon
division by 16 and therefore must also be eliminated as a possibility
for a perfect square.

Therefore, if a perfect square ends with four identical digits, then
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these digits must be zeros (for example, 100? = 10,000).

56. First solution. We designate the sides of the rectangle by x
and y, and the diagonal by z, According to the Pythagorean Theorem,

x2+y2:z2

We are to prove that the product xy is divisible by 12. We shall
first show that xy is divisible by 3, then that it is divisible by 4.
Since

B+ 1)2 =33k + 2k +1,
and
Bk+22=33k+4k+1)+1,

the square of every integer which is not a multiple of 3 yields a
remainder of 1 upon division by 3. Therefore, if neither x nor y is
divisible by 3, then the sum x® + y? will yield a remainder of 2 when
divided by 3 and thus cannot be the square of any integer. Hence,
a necessary condition for x* + y? to be the square of an integer zis
that at least one of x or y be a multiple of 3, which in turn means
that xy is divisible by 3.

Further, not both x and y can be odd numbers, since if x =2m + 1
and y = 2n + 1, then

X4+ y=4m*+4dm+1+4n*+4n+1
=dm*+n+n+n)+2,

which cannot be the square of an integer (the square of an odd
number is odd, and the square of an even number is divisible by 4).
If both x and y are even, then their product is certainly divisible
by 4. Assume then that x is even and y is odd. We have x = 2m,

y=2n+ 1. The number z* (and hence z) is then odd (the sum of
even and odd). If we write z = 2p + 1, we have

@m)r=(2p+ 12— (2n + 1)
=4p2+4p +1—4nt—4n -1
or
m:=p(p+1) —nn+1)
It follows that m? is an even number (each term of the above differ-
ence is the product of two consecutive integers and so is even).

Therefore, since m is even, x = 2m is divisible by 4, and so the
product xy is divisible by 4.
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Second solution. It follows from the formulas of the solution of
problem 128 (a) that the sides x and y of such a rectangle can have
lengths expressible as x = 2tab, y = (@* — b?), where {, a,b are any
integers for which a and b are relatively prime. [The diagonal length
is then the integer ¢(a® + b?).] If at least one of the integers a or b
is even, then x is divisible by 4. If both ¢ and b are odd, then x
is divisible by 2 and y is divisible by 2, hence xy is divisible by 4.
Further, if either @ or b is divisible by 3, then x is divisible by 3;
if neither @ nor b is divisible by 3, then: one of them yields a re-
mainder of 1 when divided by 3 and the other a remainder of 2,
or else both yield the same remainder. In both cases y = {(a + b)Xa — b)
is divisible by 3. Therefore, in every case the product xy is divisi-
ble by 12.

57. We see from the formula giving the roots of a quadratic
equation,

—b =+ Vb — dac
2a

that the roots of the given quadratic equation will be rational if,
and only if, the discriminant b = 4aqc¢ is a perfect square. Let b =
2n+1,a=2p+1,¢c=2¢9+1. Then we can write:
b —dac=02n + 1 —42p + 1)(2¢ + 1)
=4n*+ 4n — 16pg — 8p — 8¢ — 3

_ ni+1) e
_8<—2 209 — b —q 1>+5

X =

2
factors of the numerator is necessarily even [, it can be the square

Since this number is odd I:M is integral, since one of the

of an odd number only. Now, every odd number can be written as
4k + 1, and so the square of an odd number has the form

4k =12 =16R* =8k + 1 =82k k) + 1
That is, the square of an odd number always yield the remainder 1

upon division by 8. Therefore, since b* — 4ac is odd, but yields a
remainder of 5 upon division by 8, it cannot be a perfect square.

58. We have

l+ 1 " 1 3n*+6n+2
n n+1 n+2  nn+Dn+2)
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‘The numerator of this fraction is clearly not divisible by 3, but the
denominator is divisible by 3 (being the product of three consecutive
integers). Hence, since there is an uncancelled factor in the denomi-
nator of the reduced fraction which differs from 2 and 5, the decimal
representation certainly is nonterminating. We shall show that the
denominator is not relatively prime to 10, hence that the period of
the decimal expansion is a deferred one.

Of the two integers n» and » + 1, one must be even and the other
odd. If » is odd, then 3n* is odd, and so the numerator of the
fraction is odd; hence it has no factor 2. If » is even, then n + 2
is divisible by 2, and the denominator is divisible by 22, But the
numerator is divisible only by 2, since if n =2k, then

3n? 4+ 61+ 2 =12k + 12k + 2 =2(6k2 + 6k + 1)

and so the denominator has a factor of 2 not shared with the numer-
ator. Therefore, the denominator of the reduced fraction is not rela-
tively prime to 10, and so its representation as a decimal must have
deferred periodicity.

59. (a) and (b). Of the fractions composing the sum

_1 1 _1 1 1
M_Z+ +m(orN‘n+n~+1+ n+m>

we select that one whose denominator contains the highest power of
2 as a factor; there can be only one such term. Now, if we rewrite
each term of the sum so as to have as denominator the least common
multiple of all the denominators, then each of them, save the selected
fraction, will acquire the factor 2 in its numerator, but the selected
fraction will acquire only odd factors. Therefore, when the fractions
are added in this form, the resulting numerator will be the sum of
several even numbers and exactly one odd number, but the (common)
denominator will be even. Hence the numerator will be odd and the
denominator even, and so the sum cannot be an integer.

(¢) Consider that term of the summation whose denominator
contains as a factor the highest power (say »n) of 3. Since all the

denominators are odd, no fraction of form 7.3+ Can appear as a term

of the sum K. If we obtain the least common multiple of all the
denominators, and express all the fractions with this denominator,
then each of them, except the selected fraction, will acquire a factor
3 in its numerator, but the numerator of the selected fraction will
not have a factor 3. Consequently, we obtain for K a fraction whose
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denominator is divisible by 3 but whose numerator is not divisible
by 3. This cannot be an integer.

60. (a) We consider the sum using denominator (p — 1)! For the
numerator of the sum we obtain the sum of all possible products of
the numbers 1,2, ---,p — 1, taken p — 2 at a time. Since the de-
nominator (p — 1)! of the sum is not divisible by p, we need only
show that the sum of all distinct products of 1,2,---,p — 1, taken
p — 2 at a time, is divisible by p2.

We designate the sum of all possible products of the numbers
1,2, ---,n, taken k at a time, by m%:

M=1+2+3+ +n,
m=12+13+ +1-n+23+24+ +2:n
+3-4 + +3-n+45+ +n—-1n,

n,=1-2-3 n=n!

We shall show that if » +1=p is a prime number, then all the
sums

n—1

”:" ”3” cee, T

are divisible by p, and that 7, itself is divisible by p*. The as-
sertion of the problem will follow directly from the latter statement.
Consider the polynomial

Px)=(x — 1I)(x — 2Xx—3) (x—mn)
If this product is multiplied out, we obtain

P(x) = x" — Max™' + Max"™? —  + 1
(by our hypothesis, n is even).

Consider, further, the expression P(x)[x — (nz + 1)]. This can be
expanded in two ways:

P)x—n+ 1] =" — Mux™ + Max*2—  + O)[x— (n +1)],
and
Pxx—(m+ D= —1Dx—2)(x—3) x—n)(x—n-—-1)
=@-D{IG-D-NEx-1D-2] [x—1)—n]}
=x—1Pax—1=x—Dx— " —mx— 1)~
+ mix— Dt — o .
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We then have the equality
(" — Mx™' + max*t —  + I)[x — (n + 1)]
=@ =1 =M — D"+ M -1 = + -1 (D)
If two polynomials are equal for all x, then they are identical—
we can equate the coefficients of like powers of x from both sides
(designating by Cn = () the (» + 1)st binomial coefficient), and obtain
the following system of equations:
”}-+(n+ 1):C}|+|+”}|u
m o+ (n + DAk = C, + Cinls + 12,
M+ (n+ DIy = Couy + Calln + ChsyfTn + ITn
M+ (n+ DI = Cryy + Ch7'n + Co2i5
+COm+ + Gt 4+,
n+D)a=1+m+0.+ +07" +m
The first of these equalities is obvious. From the second, third,
.-+, nth, we derive
n+H)—-Ci=1,n+1)—~-Ciey=2,---,(n+1)—Ci=n—-1;
”:- = Ci+l ’
2m, =Chv + 1 + Cim @
3m, = Cawy + Cally + Choilln

(n— DA =Casi + C'my + CR1HTS + + Gyt
Since, by assumption, n + 1 = p is prime,

e _r_po—D(p—2 (p—k+])
e i 1-2.3 &

is, for k£ < p, divisible by p (since the numerator of this fraction is
divisible by p and the denominator is not). Therefore we see from
the first formula of (2) that 7. is divisible by p, from the second
formula that m% is divisible by p, and so on up to divisibility of
m™" by p.

Finally, we substitute x = p into the basic equation

(x—=Dx—-20(x—=3)--(x—p+1

- 2 — 3 — -
=2 — My 2?4 Mo X7 — My 2P + - + 11000,
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We obtain
(p = Dl = prt — Moo ip?=* + My pP
— M prt+ ISP — mTip + M)

But m57} = (p— 1)!. If we cancel (p —1)! from both sides, factor
out p, transpose 175_; to the left side, and so on, we obtain

Moot = p(pP= — Mpma PP+ Mo pP* = + M50,

from which we find that 757% is divisible by p* (the expression in
parentheses is, as we have shown above, divisible by p if p > 3.

(b) Using the common denominator [(p — 1)!]}, we arrive at
a sum

A

[(p— D
where A is the sum of all possible products containing p — 2 distinct
factors taken from the numbers 1%, 22, 3% ---,(p — 1)? (or, as charac-

terized before, “taken p 2 at a time”). To show that A is divisible
by p, we shall consider the square of the sum 75-¢ [the terminology
has the same meaning as in problem (a@)]. Since the square of a
polynomial is equal to the sum of the squares of its individual terms
plus twice the sum of all possible pairwise products of the terms,
the sum (1127})? consists of the terms of A plus a series of numbers
(all the possible doubled products). We consider one of these doubled
products:

2l1-2  (-1UE+D (p-DIx[1-2 -G-DG+D (p—1D]
This may be written in the [orm
2[1-2:.3 (p—D-1-2 G-—1E+1) (G-DG+1 (p — D]
Summing all such terms shows that

(5~ A+ 2p—Dm,
whence

A=} = 2p — D3

In view of what has been proved in problem (a), A is divisible by
» as was to be shown.

61. The fraction is reducible if, and only if, its reciprocal is re-

. . at+ 32 +1 a+1 :
ducible. Hence we may consider —wrm 2 Rl T2 This
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2
simplifies the problem to proving irreducibility for %, which
is reducible if, and only if, its reciprocal is reducible. We have
a® + 2a a
=a+
at+1 at*+1

Continuation of this procedure leads to examination of 1/a, which
clearly is irreducible for any integer a.

62. We first show that, for any integer b, the number of differences
a. — a; which are divisible by & is not less than the number of
differences & — ! which are divisible by 5. We first determine how
many differences a. — a; are divisible by b.

Assume that »n, of the integers a,, a., ---,a. are divisible by b,
that »n, of them yield the remainder 1 upon division by b, that »n, of
them yield the remainder 2, and so on up to #n,-, integers that yield
a remainder of & —1 when divided by b. Since an integer yields
precisely one of the remainders 0,1, 2,3, ---,b— 1 upon division by
b, it is clear that

no+n1+nz+ +nb—1=n

The difference a, — a: is divisible by & if, and only if, the two
terms yield the same remainder upon division by 6. The number of
differences a. — a: divisible by b since both terms are divisible by

b will be designated by Ci, = w

+ (1, — 1) of them]; the number of differences a; — @, divisible by

b since both terms yield a remainder of 1 upon division by & will be

mny — 1) , and so on up to Ci,_, z—"b“("’g‘ -1

[clearly, there are 1 + 2 +

designated by Ci =

differences a, — a; divisible by b since both terms yield the remainder
b — 1 upon division by &. It follows that the total number of differ-
ences a; — a; divisible by b is exactly

—_ 1) n (nl — 1) nb—;(nb—l — 1)
N= o7 1
2 +t— g t+ f 2
This expression may by rewritten as
NoMtmtmt  tm mtmtmt  +me
2 2
_mitmtnit  tme 2
2 2

The following expansion can be made:
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Mttt e+ My
2

(o + 1y + 9 + < + Mmp-1)t — 2nny — 2nome — - — 2Mp—eMs—1
2

ﬁ2E + %([("o — ) = ng — mi] + [t — m2)* — 1 — m3]

i

+ + [(12—2 — -2 — ":—2 - ":—1]}

n 1 2 t 2
‘2" + _2— [(ne — n)® + (e — 1)t + + (My-2 — NMp~y)

g (nﬁ + "g) - (”«2) + ";) — - (":—z + ":—l)]
—';—’ + % [(70 — n,)t + (no — n2)* + + (M2 — Mo—()®

— (=D +n+  +ni)]

[Note that in the last term within parentheses, g, 71, ---, 5, each
appear (b — 1) times.] We transfer to the left member all the terms
containing squares of 7, and divide both members by b, obtaining

%(nz + ) + n; + + n5-,)

n + (10 = 1)¥ (Mo — M3)* + -+ + + (My-p — My
2b 2b

from which we obtain

N=Jo=n) + (o —mf + - + (- —m)!  n*  n

2b 2b 2

We can show, in the same way, that the number N’ of differences
k — ! (where k and !/ are integers such that # =2 % >/ = 1) which are
divisible by b is exactly equal to

s (=)t g — )t o+ (lha— M M m
N'= 2 tw T2

where 7: is the number of integers of the sequence 1,2,3,: -,
which give a remainder of k£ upon division by b.

It follows immediately from the formula just obtained that if » = mb
(that is, if n is a multiple of 5), then the number N is not less than
N'. The numbers 5, #1, - - -, ns—, are all equal to m, and consequently
the sum of the squares of the pairwise differences of the numbers
vanishes. It is less obvious that if n yields the remainder » + 0
upon division by & (that is, n =mb+ r, 0 <r < b), we obtain the
inequality N = N’. Here, r of the numbers ), ni, -+, ns-, (in par-
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ticular, the numbers »i, 4, ---, n;) are equal to m + 1, and the re-
maining numbers, #,, #,-1, -, 74—, are equal to . In order to prove
that N cannot be less than N', we employ the following formal method.

Since the sum of the & numbers sy, 1y, ---, 7, is equal to n =

mb + r, at least one of these numbers, say 7., does not exceed m [other-
wise the sum of these numbers would be not less than b (m + 1) > n].
We now add one more number, a.-,, to the numbers a,,a,, ---, a,—
a number giving a remainder of ¢ upon division by 5. Then the
number of differences a; — a; is augmented by the »n differences:
niy — @y, Aney — Az, * -+, Aney — ds.  Of these new differences exactly
n, will be divisible by . Now, the number of differences £ — ! is
augmented by the » differences(n +1)— 1, (n+1)—2,---, (n+ 1) — n,
and it is clear that m = n, of the differences will be divisible by b.
Therefore, if we prove that at least as many of the C%., differences,
a,—a, for k >land k,/=1,2,---,n + 1, are divisible by & as before
(that is, as among the differences @, — a; for k,1=1,2, ---, n), then
it will follow that of the number Cf.l of differences a. — a1 (k > [
k1=1,2, -, n) no fewer will be divisible by b than were divisible
among the differences k£ — /, where k,/=1,2,---,n. If n+1 is
divisible by b, then our quest is ended: the result sought follows
from what we have done (it is analagous to the case n = mb). If
n + 1 fails to be divisible by b, then we adjoin another integer to
the sequence a,,a:, -, an, @»+,—and we may continue adjoining ad-
ditional integers until their number does form a multiple of . This
completes the proof of the initial assertion.

The proposition of the problem follows immediately. If b =p is
any prime number, then p divides at least as many factors a, — a;
as it does factors k — /; the same assertion will be true for p?, p°,
Thus, every prime p will enter the numerator as a factor to an order
at least as great as it enters the denominator; therefore, the denomi-
nator of the fraction obtained by multiplying together all numbers

a, —

of the form ———— will divide the numerator, and so that product

will be an integer.

63. The numbers of our sequence may be expressed in the form
1 +10¢+10° + + 10*, We shall investigate, along with these
numbers, the integers of form 1 + 10 + 10* + 10¢ + + 10%*, It is
readily shown that

10% —1=(10'—1) (1+10°+10°+  +10%),
10%72 — 1 = (10 — 1) (1 + 102 + 10* + --- + 10%) .
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Moreover, it is clear that
10%+¢ — 1 = (10%+2 — 1)(10%+2 4+ 1)
Comparison of these equalities yields
10%+4 — 1 = (10* — (1 + 10* + 10° + + 10%)
=(10* — 1)1 + 10?2 + 10* + + 10%)(10%+2 + 1),
104 — 1
102 —1
(1 4+10* + 108 + + 10%) 101
=1+ 10% + 10* + + 10%)(10%+2 + 1)

or, since =102+ 1 =101,

Since 101 is a prime number, either 1+ 102 + 10* + + 10%* or
10%+2 4+ 1 is divisible by 101, If &2 > 1, then whichever of these two
numbers is divisible by 101, the quotient will exceed 1; hence
1+ 10* + 108 + + 10** is, for k > 1, expressible as the product
of two (nontrivial) factors. If 2 =1, we have the number 10* + 1 =
10,001, which is a composite number (10,001 = 73-137).

Remark: It is possible to prove in a similar way that the following numbers
are all composite:
100 ---0100-.- 01,100 ---0100 - .- 0100 - -- OI,

ym——

@+ D) @k+1) @k+ D@ks D) @+ D)
64. (a) We have
a'®® — b1 = (g® + b%)(a® — b*)
= (a® + b**)(a®? + b%)(a* — b%?)
= (@® + b*)a** + b**)a@® + b't) @' — b'%) =
— (aﬁl + bu)(aaz + baz)(am + ble)(aa + bﬂ)
X (@' + b*¥a® + b*)a + b)Ya — b)
Consequently, the required quotient is equal to a — b.
(b) As in part (a),
a2k+l — pritl
@+ bY@ + b)a* + b%a® + b (@' + b e + b%)
65. We note that
1= RN - )
=@ 4 DRV 1) =
=27+ D24 D@ 1) e (224 12+ 12 — 1),

a—2>b
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(See problem 64. The last factor, 2 — 1, can be disregarded.) Thus,
the integer 2¢" — 1= (2" + 1) — 2 is divisible by all the numbers of
the given sequence which it exceeds. It follows that if 2¢* + 1 and
2** 1 1, where %2 < n, have a common nontrivial divisor, then this
common divisor must also divide 2, and hence must be 2. Since all
the integers of the sequence are odd, it follows that there exists no
common divisor for any two of them.

66. The number 2" is not divisible by 3. If 2" yields the remainder
1 upon division by 3, then 2» — 1 is divisible by 3; if 2" yields the
remainder 2 upon division by 3, then 2* + 1 is divisible by 3. There-
fore, in all cases one of the two numbers, 2* — 1 or 2* + 1, is divisi-
ble by 3; hence, if both integers exceed 3, they cannot both be
primes.

67. (a) If a prime number p > 3 yields the remainder 2 when
divided by 3, then 8p — 1 is divisible by 3. Hence, to meet the
condition of the problem, p must yield the remainder 1 when divided
by 3. But 8p + 1 is divisible by 3. If p = 3, then 8p + 1 = 25, which
is composite.

(b) If p is not divisible by 3, then p? yields the remainder 1
when divided by 3 [see the solution of problem 53 (b)], and then
8p* + 1 is divisible by 3. Hence, the condition of the problem can
be met only if p = 3. But then 86> — 1= 71 is a prime number.

68. If p >3 is a prime, it can yield only 1 or 5 as a remainder
upon division by 6 (if p = 6k + 2, or p = 6k + 4, then it is an even
number; if p = 6k + 3, then it is divisible by 3). Hence, the square
of the prime p must have one of the two forms 36%% + 12n + 1 or
36n® + 601 + 25. Each of these integers yields the remainder 1 when
divided by 12.

69. As explained in the solution of problem 68, a prime number
p > 3 must have one of the two forms 6xn + 1 or 6» + 5. Given three
distinct primes, all exceeding 3, at least two of them must yield the
same remainder upon division by 6. The difference between these
two numbers, which is d or 2d, where 4 is the common difference
of the arithmetic progression, is then divisible by 6, whence, neces-
sarily, the common difference d is divisible by 3. But since 4 is the
difference of two odd numbers, it is also divisible by 2, Therefore,
in every case, d must be divisible by 6. [See also the solution of
problem 70 (a).]
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70. (a) Since all primes exceeding 2 are odd, the common differ-
ence of the arithmetic progression sought must be an even number;
hence, we may eliminate 2 as a possible term of the progression.
Also, since there are certainly three successive terms of the pro-
gression, all of which exceed 3 and which by themselves must form
an arithmetic progression, the common difference d must be (ac-
cording to problem 69) divisible by 6, that is, divisible by both 2
and by 3.

We now show that 4 must be divisible by 5. Assume 4 is not
divisible by 5. Then the numbers

a,atd,a+2d,a+3d,a+4d

all yield different remainders upon division by 5 (if two of the re-
mainders are equal, then it is easily shown that 4 is divisible by 5,
a contradiction of the assumption just made). Thus, one of the
numbers of the progression is then divisible by 5. Since all the
term of the progression are prime, this is a contradiction. Hence
d must be divisible by 5. We can show, in the same manner, that
d must be divisible by 7. (This conclusion cannot be reached for
11, since there are to be only ten terms in the progression, and
a,a+d, --,a+ 9d would not necessarily provide a number divisible
by 11.) Therefore, the common difference d of the progression must
be a multiple of 2-3-5-7 = 210; that is, d = 2104.
According to the conditions of the problem,

an=a, +9d = a, + 1890% < 3000

This inequality is impossible for £ = 2, hence, necessarily, # = 1. It
follows that

a, < 3000 — 94 = 3000 — 1890 = 1110

Now, 210 = 11-19 + 1; consequently, the (m + 1)st term of the pro-
gression may be represented in the form

nn=a, +(11:194+1) m=11-19m + (a; + m)

It follows that if @, yields a remainder of 2 upon division by 11,
then a,, is divisible by 11. If a, yields a remainder of 3 when divided
by 11, then a, is divisible by 11, and so on. Therefore, a, cannot
yield upon division by 11 any of the remainders 2, 3,4, .-+, or 10.
If a, # 11, then since @, is prime it cannot be divisible by 11; this
means that either a; = 11 or 4, yields a remainder of 1 upon division
by 11. Further, since 210 = 13-16 + 16 + 2, and so
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Aniy = a, + (13:16 + 2)m = 13-16m + (a, + 2m) ,

it may be shown that if @, is divisible by 13, it can yield as a re-
mainder only one of the numbers 2, 4, 6, 8, 10, or 12. Since @, is odd
(as are all the terms of the progression), either @, = 11 or it can be
written in one of the following forms:

2-11-13/ + 23 = 286/ + 23, 286/ + 155,
286/ + 45, 286/ + 177
286 + 67 286/ + 199 ,
Since @, < 1110, the possible values for @, are limited to the integers

11; 23, 309, 595, 881; 45, 331, 615, 903; 67, 353, 637, 925,
155, 441, 727, 1013; 177, 463, 749, 1035; 199, 485, 771, 1057

of which the following are prime:
11, 23, 881, 331, 67, 353, 727, 1013, 463, 199

We have found the necessary conditions for the existence of the
progression sought; namely, d = 210, and @, equal to one of the prime
numbers listed. We must test each of the possibilities (for example,
a, = 11 is quickly found untenable, since then @, = 221 = 13-17, which
is not prime). Exactly one of the above primes, a, = 199, will pro-
duce an acceptable progression:

199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089

(b) This problem is solved in a manner analogous to the
solution of problem (a); however, the progression found there cannot
be extended since the following term fails to be prime.

If a, # 11, then, proceeding exactly as in problem (a), we find that
the common difference d of the progression sought must be a multi-
ple of 2-3-5-7-11 = 2310 (d = 2310%). It follows that

a, = a, + 23100%& > 20,000

Hence we need investigate only the case for which a, = 11. Here,
we can have only d = 210k. Since 210 = 13-16 + 2, we can write for
the general term of the desired progression

Qnsy =11 +(13-16 + 2)kn = 13(16kn + 1) + 2(kn — 1)

However, for any £=1,2,3,4,5,7,8,9, or 10, we can always find
an n £ 10 such that k.2 — 1 is divisible by 13, whence a,+, fails to
be a prime number. (These values of n are, respectively, 1,7,9, 10,
8,2,53,4.) If #=6 and d = 210-6 = 1260, then
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a, =11+ 31260 = 3791 ,

which is divisible by 17. Therefore, if 4, =11, then necessarily
k > 10, and so d = 2100, but then a,, > 20,000.

71. (a) If the difference of two odd numbers does not exceed 4,
then they cannot have a common divisor which exceeds 4. Thus,
two of the five consecutive numbers can either have at most a
common divisor of 2,3, or 4 or be relatively prime. At least two
of the five consecutive numbers must be odd, and of two consecutive
odd numbers at least one will fail to be divisible by 3. Hence there
is at least one odd number among the five consecutive integers which
fails to be divisible by 3. This integer will necessarily be relatively
prime to the remaining four integers.

(b) The reasoning employed here closely resembles that used
in problem (a), but it is much more involved. If the difference of
two odd numbers does not exceed %, then they cannot have a cominon
divisor which exceeds 2. To determine whether two integers are
relatively prime, it suffices to consider only prime factors; hence it
suffices to show that, given sixteen consecutive integers, it is always
possible to find one of them which fails to have in common with
any one of the other integers a divisor of 2,3,5,7,11, or 13. That
integer will be relatively prime to all the others.

First we discard the even numbers of the sixteen successive inte-
gers. There remain eight consecutive odd numbers. Divisibility
by 3 clearly holds for either

(1) the first, fourth, and seventh of these eight numbers,

(2) for the second, fifth, and eighth numbers, or

(3) for the third and sixth numbers.

Divisibility by 5 holds for either the first and sixth, or for the second
and seventh, or for the third and eighth, or for one number only
(the fourth or the fifth). Divisibility by 7 holds either for the first
and eighth or for only one of the other integers. One, and only
one, of the odd numbers can be divisible by 11, and only one by 13.

If not more than five of the eight consective odd numbers are
divisible by one of the primes 3,5, or 7, then there must exist among
the remaining three (or more) odd numbers at least one which is
divisible neither by 11 nor by 13. Since that number will fail to
have 2,3,5,7, 11, or 13 as a factor, it will be relatively prime to all
the other integers of the original sequence of sixteen numbers.

We now consider the case in which the number of odd integers
divisible by 3,5, or 7 does not exceed six (which is the maximal
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number of odd integers of the sequence which can be so divisible).
We first assume that three of the eight odd numbers are divisible
by 3. Then, depending upon which three numbers these are (first
and fourth and seventh, or second and fifth and eighth), two re-
maining numbers can be divisible by 5 (third and eighth, or first
and sixth), and one of the remaining numbers might be divisible
by 7.

If we strike out the (at most) five numbers divisible by 3 or by
5, there will remain either the second and fifth and sixth or the
third and fourth and seventh of the eight odd numbers. We consider
the first case. The second, fifth and sixth odd numbers stand either
in the fourth, tenth, and twelfth positions of the original sequence
of sixteen numbers or in the third ninth and eleventh positions of
that sequence. In the first-named positioning two of these odd
numbers must fail to have 7 as a divisor; and, of these two, neither
can have a common divisor of 13 with any other number of the
original sequence, since both differ from all the other numbers by
less than 13. Since at most one of these two numbers is divisible
by 11, at least one remains which cannot be divisible by 2, 3,5, 7, 11,
or 13 and so must be relatively prime to all the other numbers of
the original sequence. In the second-named positioning (third, ninth,
and eleventh), if one of these odd numbers has the factor 13 in
common with another number of the original sequence of sixteen
consecutive numbers, it can be only that number standing in the
third position. If we throw out that number, we are left with num-
bers in the ninth and eleventh positions. Only one of these two
numbers can be divisible by 7; whichever it is, the remaining one
cannot have a factor of 11 in common with any other number of
the original sequence, since it differs from all of them by a number
less than 11. Hence at least one number will be relatively prime to
all the others of the original sequence. The argument for the case
in which the third, fourth, and seventh numbers of the sequence of
odd integers remain after those divisible by 3 or by 5 are thrown
out is quite analogous, and is left for the reader.

If only two numbers of the sequence of eight odd numbers are
divisible by 3 (the third and sixth), then it is possible for two of
the remaining numbers (the first and eighth) to be divisible by 7,
and two more can be divisible by 5 (the second and seventh). If
these six numbers are struck out, only the fourth and fifth of the
eight odd numbers are retained, and these two are not divisible by
3,5, or 7. Each of these remaining two numbers will be relatively
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prime to the other fifteen numbers of the original sequence, since
each of them will differ from the remaining fifteen numbers by less
than 11, and hence could not share with any of them a common
divisor of 11 or 13. This completes the proof.

Remark: The proposition may be proved for any sequence of successive
integers fewer than sixteen (say, ten or twelve) by techniques similar to that
used above. The proposition does not hold for a sequence of seventeen num-
bers.! Whether such a proposition is true for k > 17 numbers, or for special
numbers k, is not known.

72. Since 6 = 3-2, the product in question will be the same as
that obtained by multiplying the integer A, consisting of 666 digits
9 by the integer B, composed of 666 digits 2. But A, is 1 less than
10%¢¢ (the digit 1 with 666 zeros following); and so if B, is multiplied
by A,, the result is the same as multiplying B, by 10%¢ (which
yields an integer composed of 666 digits 2 followed by 666 zeros)
and subtracting the integer B,. It clearly follows that the result
will be a number of form

22 2177 78
665 665

73. The number 777,777 is exactly divisible by 1001, yielding the

quotient 777. Hence the number
777 700000 ,

S——

996
yields, upon division by 1001, a quotient of

777 000 777 000 777 000 00
the grouping 777,000 repeated 166 times

Moreover, the number 77,777 yields a quotient of 77 and a re-
mainder of 700 upon division by 1001; and so the quotient obtained
by dividing A by 1001 has the form

777 000777 000 777000 77
the grouping 777,000 repeated 166 times

and there is a remainder of 700.
74. Since the integer 222,222 is not a perfect square, the integer

t The ‘‘counter-example’ displayed in the original Russion text is incorrect
and so not given here [Editor].
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sought has the form 222,222 a,as a., where a., as, ---, a, are to be
determined.

First assume that the integer n is even: #» =2k, We shall employ
the usual process for finding the square root:

1/22 2222 a;as Q1A — 471 405
16
877622
71609
941 [ 1322
1 941
9424 3 81 (757713
4] 37696
942805 | x, x2xs @s@ 021142
514714025

(the fifth digit of the result is 0, since x, can be only 4 or 5, and
analogous reasoning shows that the sixth digit, if it is to terminate
the square root and produce a least number, will be 5).

The remainder now vanishes if a; =4,4,0=0, a,, =2, a,; =5 and
xn=4,x=7 x3=1; it is easily deduced that as=6 +1=7 and
a; = (7 +9) —10 =6. Hence the smallest integer with an even num-
ber of digits and satisfying the conditions of the problem is

222,222,674,025 = 471,4052
Now we assume that n is odd, 2% + 1, and we obtain

f22 22 2a:a40s * * * Qoo+ = 149071

Z.T.‘—zg
2601

29807 21 2(1-, asly
2086 49

298141 x|xzx:|x¢alo%ll

298142 X5XaX1XsXoX 10212813

ERQ

Since the number formed by the digits x,, x. is not less than 33
(=119 — 86) and does not exceed 43 (=129 — 86), it follows that the
sixth digit of the root is 1. Hence the extraction of the root does
not end here, but continues. Consequently, the smallest number
having an odd number of digits, and satisfying the conditions of the
problem, is not less than the twelve-digit number 222,222,674,025.
Therefore, this is the number sought.
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75. If the positive number « is less than 1, then 1/« is less than
1. Assume that the decimal representation of /'@ mentioned in the
problem has fewer than 100 digits 9 at its beginning. This implies

100

— 1 . .
that Va<1— (1—0) If we square both sides of this inequality,

1 100 1 200
a<1-2(55)" + (1)

But 1—2(-L) 4 (=)< 1= ()", theref 1—(2)"
wt1-2(55) "+ (57) < ‘(W)  therefore, o< 1= (5)

which means that the decimal representing « cannot begin with 100
digits 9. This contradiction proves the proposition of the problem.

we have

76. The desired number commencing with the digits 523 and
divisible by 7-8-9 =504 can be written in the form 523,000 + X,
where X is a three-digit number. Ordinary division yields 523,000 =
504-1037 + 352; that is, 523,000 yields a remainder of 352 when di-
vided by 504. Since the sum of 523,000 and the three-digit number
X must be divisible by 504, it follows that X can be equal to

504 — 352 = 152,
or to
2-504 — 352 = 656
(the number 3-504 — 352 has four digits). Hence the two numbers
523,152 and 523,656 satisfy the conditions of the problem.
77. Let N be the desired four-digit number. The conditions of
the problem gives
N =131k + 112 =132/ 4 98,

where & and [ are positive integers. Since N is a four-digit number,
it i1s clear that

,~ N—98 _ 1000098

182 7 132
that is, [ £75. Further,
131k + 112 = 132/ + 98 ;
1Bk —H=1—14
It is evident that if &2 —/ is not zero, then !/ — 14 exceeds 130 in

absolute value, which is impossible if / < 75. Therefore, necessarily,
k—1=0, or k=1 This yields

< 75-02
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{—14=0,
k=1=14;
N =131-14 + 112 (=132-14 + 98) = 1946
78. (a) The number given in this problem has 2n digits and may
be written as follows:
4102 4 9.10%"-2  4:10%"3 + 9(10%"~¢ + 10%"—° + + 10™) + 5-10*!
10n% —1
9
+ 5:10*t + 5-10"% = 4-10%*~! + 9.10?"-? 4 5.10%*% — 10"

+ 5-10%% = 4-10**~* + 9-10%""% + 4-102*"* + 9.10"

+5:10"! 4 5-10" = —;—(8-10“'l + 18-10%*-% + 10-10%"-3

— 210" + 107 + 10~1) = %(9-102»4 + 91002 — 9.10n1)

[(10* — 1) 4 10"!].9-10~!
2

This number is equal to the sum of the arithmetic progression
having common difference 1 and having 10" as its first term and
10* — 1 as its last term (the number of terms of this progression is
equal to 10* — 107~ = 9-10*-'), which is the sum of all the n-digit
integers.

(b) The number of integers (in the sum) which have a given
digit @ as first digit (¢ may be 1,2, 3,4, or 5) is 6-6-3 = 108 (since
any of the six digits 0,1, 2, 3, 4,5 may stand in the second or in the
third position, and any one of the three digits 0, 2,4 may terminate
the even integer). Consider the contribution made to the sum by
the thousands column: when the digit 1 stands here the sum is
1-108-1000; when the digit 2 stands here, the contribution of this
column to the sum is 2-108-1000; and so on. Thus, the contribution
made by the thousands column to the sum is the total

(14+24+3+4+5)-108-1000 = 1,620,000

Now we consider, in analogous fashion, the contribution to the
sum made by the hundreds place of the numbers. For any digit b
in this (second) position there are 5-6-3 = 90 possible numbers in the
other positions. This column contributes to the sum the total

(1424344 +5)-90-100 = 135,000

(We need not consider here the numbers in which the digit 0 stands
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in the hundreds position; they contribute 0.-90-100 = 0 to the total
for this column,)

In a similar manner we find that the sum contributed by the tens
column is (1 + 2+ 3 + 4 + 5)-90-10 = 13,500; and the sum contributed
by the units column is (2 + 4)-5-6-6 = 1080. Therefore, the sum
sought is equal to

1,620,000 + 135,000 4 13,500 + 1080 = 1,769,580

79. We first investigate the integers from 0 to 99,999,999. In so
doing we “fill in” with zeros at the beginning, all integers having
fewer than eight digits so that these integers have the format of
eight-digit numbers. We then have 100,000,000 eight-digit “numbers.”
To write all of these, we shall need a stockpile containing 800,000,000
digits. Now, if we write 00,000,000 at the top of a sheet and
99,999,999 at the bottom and, moving from the top down and from
the bottom up, fill in the successive numbers (always filling in with
zeros where necessary), we readily see that each digit (including
zero) will be used exactly the same number of times. That is, if
the stockpile of 800,000,000 digits is partitioned into ten bins, each
labeled for a different digit, then each bin will contain 80,000,000
digits all of the same kind.

Now we calculate how many zeros we have used to fill out inte-
gers containing fewer than eight meaningful digits. There are nine
one-digit numbers (omitting zero), 99 — 9 = 90 two-digit numbers,
999 — 99 = 900 three digit-numbers, and so on. To fill out the one-
digit numbers, we used seven zeros; to fill out the two-digit numbers,
we needed six zeros; and so on. Hence the total number of extrane-
ous zeros required for filling out the numbers (disregarding the zeros
used for the first “number,” 00,000,000) is given by the series

7-9 + 6-90 + 5-900 + 4-9000 + 3-90,000
+ 2-900-000 + 1-9,000,000 = 11,111,103

We now append the digit 1 to the first number 00,000,000, thus
obtaining all the integers from 1 to 100,000,000. In order to write
all these numbers we need 80,000,000 twos and the same number of
threes, fours, and so on up to and including nines; we also need
80,000,001 digits 1 and 80,000,000 — 11,111,103 = 68,888,897 zeros.

80. In all, there are nine one-digit numbers, 99 — 9 = 90 two-digit
numbers, 999 — 99 = 900 three-digit numbers; and, in general, there
are 9:10* n-digit numbers.
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One-digit numbers occupy nine positions in the sequential array
written in the problem. Two-digit numbers occupy the next 90-2 =
180 positions; three-digit numbers occupy the next 900-3 = 2700 posi-
tions; four-digit numbers occupy the next 9000-4 = 36,000 positions;
and five-digit numbers occupy the next 90,000-5 = 450,000 positions.
It is clear that the digit of interest to us appears in one of the five-
digit numbers, since we have filled only 38,889 positions before
starting to write five-digit numbers, and when we have appended
the five-dight numbers we will have filled 488,889 places.

To find out how many five-digit numbers are in the interval from
the 38,889th to the 206,788th position, we divide the difference
206,788 — 38,889 = 167,889 by 5:

206,788 — 38,889 = 5-33,579 + 4

Thus, the digit sought must belong to the 33,580th five-digit number,
that is, to the number 33,579 (since the five-digit numbers began with
10,000). The digit sought is the fourth digit of this number: 7.

81. Assume that the decimal 0-1234 ... is periodic, that » is the
periodicity (number of digits in a period), and that %2 is the number
of digits encountered before the periodic position starts. Consider
the integer 10™ (the digit 1 followed by m zeros), where m is not
less than » + k. In composing the decimal we wrote in succession
all the integers; hence any chosen number N will appear somewhere
(it will surely appear when we append the nth integer). Since in
the sequence of numbers written in to make up the infinite decimal
m = n + k zeros must be encountered, it follows that the only pos-
sible period consists of one zero—a situation which does not hold
for this decimal. Hence the decimal is not periodic.

82. Let us take nine weights weighing #?, (n + 1)%, (n + 2)%,
(n + 8)* units (for a suitable #) and group them in three sets as
follows:
Set I. n%(n+ 5% n+ 77
Then, n* + (i +52 + (n + 7)* = 3n® + 24n + 74,
Set II: (n +1)% (n + 3)%, (n + 8)?
Then, (n + 1)2 + (n + 3)2 + (n + 8)* = 3n® + 24n + 74.
Set III: (n + 2, (n + 4)%, (n + 6)2.
Then, (n + 2)2 + (n + 4)2 + (n + 6)* = 3n* + 24n + 56.

For any allowable »n the total weights of the first and second sets
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are equal, and the total weight of the third set is lighter by 18 units,

If we do this for # =1, we will have taken the first nine weights
and grouped them as follows: Set I: 1,6,8; Set II: 2,4,9; Set III:
3,5,7. The first two sets are equal in weight, and the third is 18
units lighter. We now do this for » = 10 (thus choosing the next
nine weights), but after the groupings we interchange the second
and third sets, which means that the second set is 18 units lighter
than the other two sets. We do this for the third set of nine weights
(n =19), and after grouping as for the first trial we interchange the
first and third sets, whence the first set is 18 units lighter than
the other two sets. It is now clear how the three final groupings
may be made.

83. Draw a ray from the pin through one of the vertices of the
polygon. If this ray turns through 254", then it must contain another
vertex of the polygon. Now, 25% is 17/240 of the circumference.
Since 17 and 240 are relatively prime, if the ray is turned through
an angle of 25% any number of times up to 239 times, it will
not duplicate a prior position. If the ray is turned through this
angle m times, it turns through 17m/240 circumferences. In order
for the kth and /th turns of the ray to fall on a prior position,
17k/240 circumferences must differ from 17//240 circumferences by

an integral number; that is, % must be an integer. There-

fore, # — ! must be divisible by 240. It follows that either 2 =1/ or
k = 240. Counting in the initial position we obtain 240 different rays.
One vertex lies on each of these rays, and hence there can be no
fewer than 240 vertices. On the other hand, the 240-sided polygon,
upon rotation through 17/240 of a circumference, coincides with its
initial position. Hence the least number of sides which the polygon
can have is 240.

84. (a) The first digit of each of the three-digit numbers must
be the smallest possible one; hence we may assume that the three
numbers have the form

TAa, 2Bb, 3Cc

where the overbar indicates a succession of digits; for example,
2Bb =2-10* + B-10 + b.

We shall show that necessarily: A < B < C; a <b < ¢; each of the
digits a, b, and ¢ is greater than any of the digits A, B, and C.

(1) Assume A > B. Then Aa > Bb, and so
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14a-2Bb — 2Aa-1Bb
= (100 + Aa)(200 + Bb) — (200 + Aa)(100 + Bb)
=100(Aa — Bb) > 0,
which would mean that
1B5-242-3Cc < [Aa 2Bb-3Ce

whence the product on the right would not be the least, as required.
The assumption B > C will produce a similar contradiction.
(2) Assume ¢ > b. Then

TAz-2Bb — TAb-2Ba
= (10-1A + a)(10-2B + b) — (10-1A + 6)(10-2B + a)
=(10-2B — 10-1AYa — b) > 0,
which would mean that
1Ab-2Ba-3Cc < 1Aa-2Bb-3Cc

which again is a contradiction. The result b < ¢ is similarly shown.

(3 Assume C >a, or C=a + x, where x > 0. According to the
first demonstration C is the largest of the digits A, B, C; and according
to the second demonstration @ is the smallest of the digits a,6,¢c. In
this case we would have

1Aa-3Cc — TAC-3ac = 14a-Bac + 10x) — (1Aa + x)(3ac)
= x(10-14a — 3ac) > 0,

which yields the contradiction

1AC-2Bb-3ac < 1Aa-2Bb-3Cc
It follows from (1), (2), and (3) that
A<B<C<a<bc<ec
whence the product sought is composed as follows:
147-258-369

(b) It is clear that the largest digits must be the initial digits of
each number; hence we may write the product in the form

94a-8Bb-7Cc

Employing techniques analogous to those used in problem (a) we
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readily prove that: A < B< C; a < b < c; each of the digits @, b, ¢
is smaller than any of the digits A4, B, C. That is,

a<b<c<A<B<C,
and so the product sought is
941-852-763

85. Write m+ (m+ 1)+ + (m + k) = 1000. Using the formu-
la for the sum of an arithmetic progression, we have

MT+k (B +1) = 1000,
or
@m + k)(k + 1) = 2000
Since 2m + k) — (kR + 1) = 2m — 1 is odd, one of the two terms on
the left is even and the other is odd. Moreover, it is clear that
2m + k >k + 1. Since 2000 = 2¢-5°, its odd factors are only 1,5, 25,
and 125. For odd (2 + 1) we need consider only 1,5, and 25; for odd
(2m + k) we can have only 125. Hence the problem has the following
readily found solutions:
2m + R =2000, k+1=1, m=1000, 2R=0;
2m+ k=400, k+1=5 m=198, k=4,
2m + k= 80, k+1=25 m=28, k=24,
2m + k=125, k+1=16, m =55, k=15
86. (a) Let N be an integer which is not a power of 2. Then
the following equation can be written:

N=22+1),

where 2* is the greatest power of 2 appearing as a factor of N,
k=0,/=1, and 2/ + 1 is the greatest odd divisor of N. Consider
the arithmetic progression

=D+ @—-1+1+ +@ -1 +2-1D+@-1+2)

_ (21+1)(2"—12+ 2k—14+2]) =22+ 1) =N

If some of the 2/ + 1 consecutive integers which form the progres-
sion are negative (that is, / > 2%), then it is possible to cancel them
with the first-appearing positive integers. It is readily shown that
at least the final two terms of the progression must remain un-
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cancelled. (If only the final term of the progression were to remain,
we could set up the equation 2% + /= N = 2%2/ + 1), which would
imply that £ = —1.)

Assume now that some number of form 2% can be written as the
sum of m consecutive positive integers #,n+ 1, --, n+m — 2,
n+ m—1. Then

200 =2n+(m+ 1) + +m+m—=—2)+n+m—1)]
=mn+nt+tm—1)=mCn+m—1)

But the difference 2n + m — 1) — m = 2n — 1 is an odd number, and,
consequently, one of the numbers, m or 2n + m — 1, must be odd
(and both differ from 1 since, by hypothesis, m > 1and » > 0). This
means that the equality derived above, 2¢*' = m(2n + m — 1), is im-
possible since 2f+' cannot have an odd divisor other than 1,

(b) We have, for any m > n + 1,

Cn+1D+Cn+3)+2n+5+ +@2m—1)

_@Cn+ 1D+ Cm—1)
- 2

m—n)=(m+n) (m-—n)

[If m = n + 1, then there is only one term; there are (m — »n) terms.]
Hence if a number N can be written as the sum of consecutive odd
numbers, then it is a composite number (the product of numbers
m+n and m —n). Now, any composite odd number N can be
written as the product of two odd factors @ and b, (a = b > 1), and
so we can write

N=ab=(m+n(m-—n),

and n = a;b. (Note that for b > 1,

m>n+1). Hence, N={(m + n)m — n) is the sum of a sequence
of consecutive odd numbers, the odd numbers from a—-b5+1 to
a+ b—1. Clearly, no prime number can be represented in this
form, since then the prime would be the product (m + n)(im — n),
whence m — n = 1, and so the series reduces to one term, the prime
number itself. This proves the first assertion.

Now, in the formula N = (m + n)¥m — n), the factors m + n and
m — n are either both even or else both are odd (their difference is
even). Hence if N is an even integer, both of these factors must
be even. In this case N is divisible by 4; therefore, an even number
N which fails to be divisible by 4 cannot be written as a sum of
consecutive odd numbers. On the other hand, if N = 4n, then N can

where we set m = a;—b
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be written as the sum of the two consecutive odd numbers 27 — 1
and 2n + 1.
(c¢) It is readily seen that

et —n+1)+ @t —n+3)+ + (n*' =1
+ (Gt + 1) + +* '+ n—-3)+ R+ n—-1)

@t =+ D+ -1

n=nk
2

(all the terms of the sum are odd, since #*~! and » are simultaneously
even or odd).

87. Designate the four consecutive integers by =n,n+ 1, n + 2,
n+ 3. If 1is added to their product, we have

Pn+Dn+2Xn+3)+1
=nn+3)[n+1n+2)]+1=0w+3n)n*+3n+2)+1
=+ 3 +2m+3n)+1=m+3n+ 12

Therefore, the product of the four numbers is one less than the
square of the integer n? + 312 + 1.

88. We shall show that the set of integers can contain only four
different values. Assume the contrary—that among the 4n integers
there are five of them, ay, a., a,, a,, a;, all distinct. Let us agree that
a; < a; < as; <a, <as.

Consider the integers a,, @., a;,a,. Under the conditions of the
problem it is possible to form a proportion out of these integers.
Hence the product of the extremes will be equal to the product of
the means. This is feasible only if

a,qy = Q20,3

(the equation a,a; = a.a, is impossible, since a, < a, and a; < a,; it
is clear also that @,a; = a,a, is impossible).

Now consider the integers a,, a,, a,, a;. Again, if a proportion is
to be formed, the only possibility is a.a; = a.a;. Consequently, we
must have a,e, = a\a;, which is a contradiction, since a, # as.

Therefore, the set of 4n numbers cannot contain more than four
distinct integers, and so at least one of the integers must appear =
times.

89. We note, first, that the difference of two positive integers is
odd if, and only if, one of the integers is odd and the other even;
we obtain an even difference only from two even or two odd integers.
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Let us designate an even number by the letter ¢, and an odd number
by the letter 0. For four arbitrary integers A, B,C, and D, we have
the following “essentially different” possible even-odd combinations
and arrangements:

(1) e,eee; (4) e 0,e,0;
(2) e,e,e,o; (5 eo0,00;
(3) eeo0,0 (6) o0,0,0,0;

All other arrangements can be obtained by “cyclic permutation” of
these six arrangements (that is, by moving an arrangement to the
right, and putting the fourth integer in the first place, and so on,
not changing the order of appearance). We shall show that, in every
case, after not more than four steps (as described in the problem)
we must arrive at four even numbers. First, combination (1) already
consists of four even numbers; combination (6) achieves the desired
effect in the first step; combination (4) becomes combination (6) in
one step, so it arrives in the desired form in two steps; combination
(3) becomes combination (4) in one step, so it becomes combination
(1) in three steps; finally, combinations (2) and (5) become, in one
step, combination (3) [for combination (5) we first employ cyclic
permutation], so in four steps we achieve the sought combination
(1). Thus, in every case, we arrive at a quadruple of four even
numbers in at most four steps.

We continue the process of forming new quadruples of numbers, and
now we are working entirely with even integers. It is readily
reasoned that after at most four more steps, we obtain numbers
divisible by 4 (if some of the even numbers are not already divisible
by 4, we divide all numbers by 2, and in four steps we have numbers
divisible again by 2); in at most four more steps we obtain integers
divisible by 8, and so on. If the process is continued long enough,
we must be able to arrive at a quadruple of numbers divisible by
any desired power of 2. Since the numbers we obtain are decreasing
in absolute value, we must arrive at a point where we have at least
one zero, and finally at a point where we have four zeros (this will
occur in at most 4" steps, albeit we will usually arrive at this point
much earlier).

Remark: The analogous theorem may be proved for any number 2% of posi-
tive integers. For » numbers, where » is not a power of 2, the proof does
not carry through. For example, if the members are 1,1,0, we never do
arrive at the triple 0,0,0, We have:
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1,1, 0,
0, 1,1,
1,01,
1,1, 0

We note, further, that the numbers A, B, C, and D can be rational numbers—
case not essentially different from the case in which A, B, C, and D are posi-
tive integers. Here the fractions may be written with a common denominator
and the procedure carried out as before. The proposition fails to hold for
irrational numbers.

90. (a) It is readily seen that if the first 100 integers are displayed
in the following order, the condition of the problem is satisfied.

10 9 87 65 43 21 20191817161514131211
30 29 28 27 26 25 24 23 22 21 40 39 38 37 36 35 34 33 32 31
50 49 48 47 46 45 44 43 42 41 60 59 58 57 56 55 54 53 52 51
70 69 68 67 66 65 64 63 62 61 8079 78 77 76 75 74 713 712 71
90 89 88 87 86 85 84 83 82 81 100 99 98 97 96 95 94 93 92 91

(b) From whatever arrangement of the 101 integers has
been presented we select the first integer, labeling it ai’; then (always
moving left to right) we select the next integer ai'' which follows
and exceeds a{", and so on. This produces an increasing sequence
a’,a’, -+, a" (which may conceivably end at the first integer). If
more than ten numbers appear in this sequence (i > 10), the problem
is solved. If, however, { < 10, we cross out the integers already
used, and from the remaining 101 — : integers we begin the con-
struction of a new sequence, following the same procedure. We
then obtain a new increasing sequence a{”,a”, ---,afy Continu-
ation of this process creates from the ordered set of 101 integers a
number of increasing sequences. If any one of them contains more
than ten integers, the problem has heen solved. Hence we need
consider only the case in which none of the sequence we have made
up contains more than ten integers.

Since there are 101 integers in all, the number % of increasing
sequences must in this case be at least equal to 11. But then it is
possible to select from the 101 integers a decreasing sequence of
eleven integers. A procedure for doing this follows.

We select as the final element of the sequence to be constructed
the final element of the final sequence af;' Then if we select from
the previous sequence that number among those of the original
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sequence not yet crossed out, which just precedes af',:’, that number

will exceed ait'; otherwise ai;’ would have appeared in the preceding

sequence. This selected number a;*™" is placed to the left of aff’ in

the new sequence. Now we work with ;" In the sequence just
preceding the (£ — 1)st, the element which had appeared just before
ai*™" (among those not already crossed out in the original sequence)
will exceed ai*"  This number is placed to the left a/*™" in the
new sequence being formed. We can continue in this manner,
selecting larger and larger numbers, each appearing earlier in the
initial array of 101 numbers, and it is clear that we can make at

least eleven such selections.

Remark: It can be proved in analogous way that (n — 1)? positive integers
can be arranged in such an order that no = of them will follow sequentially
in either an increasing or a decreasing order, but that among k> (n — 1)?
integers a sequence of = increasing, or decreasing, numbers can be selected
sequentially from the initial array.

91. (a) Reduce each of the 101 selected numbers by the greatest
power of 2 which divides it, thus obtaining 101 odd numbers. Since
there are precisely 100 distinct odd numbers from 1 to 200, at least
two of the 101 odd numbers must be identical. This means that
among the 101 numbers originally selected there exist two whose
factorizations differ only by a power of 2. The smaller of these two
numbers must divide the other.

Remark: A proof by mathematical induction is also possible.

(b) The desired numbers can be selected in the following
manner: The fifty odd numbers from 101 to 199; the odd numbers
from 51 to 99, each multiplied by 2 (twenty-five numbers); the odd
numbers from 27 to 49, each multiplied by 4 (twelve numbers); the
odd numbers from 13 to 25, each multiplied by 8 (seven numbers);
the odd numbers from 7 to 11, each multiplied by 16 (three numbers);
and finally, the three numbers 3-32,5-32, and 1-64. These total 100
numbers, all less than 200, and none of which is divisible by any
other.

(c) Assume that it is possible to select 100 integers, none
exceeding 200, such that no one of them is divisible by any other.
We shall show that none of the numbers 1-15 inclusive can appear
in the selected set.

As in the solution of problem (a), we divided out of each number
the largest power of 2 which appears as a factor. We obtain a
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second set consisting of 100 odd numbers, none exceeding 200. No
two of these odd numbers belonging to the second set can be equal
(otherwise the corresponding original numbers would differ from
each other only by a factor which is a power of 2, and so one would
be divisible by the other). Accordingly, the 100 odd numbers of the
second set are 1,3,5, ---, 199,

Since 15 divides 45, the integer 2#-15 of the initial set must have
a > 0, since otherwise 15 would divide 45-28, which also appears in
the initial set. This means that 15 cannot have appeared in the
initial set. The same line of reasoning eliminates the possibility
that 13,11, or 9 appeared in the initial set. We now consider the
integer 7. It is clear that 7-2%, which is a number of the initial
set, must have & = 1. But suppose that & = 1. Since 7 divides 49,
which in turn divides 147, and since both 49.28 and 147-2 belong to
the initial set, it is clear that 8 = r is impossible, hence not both 3
and 7 can be zero. But 7 is certainly zero, since the initial set
centains no integer exceeding 200. Therefore, 7-2 must divide 49.28;
this eliminates both 7 and 14 from appearance in the initial set. The
same line of reasoning shows that the integers 5, 10, 3,6, and 12
cannot belong to the initial set. The integer 1 is automatically
rejected, by hypothesis, and the integer 2 is rejected, since its in-
clusion would give precisely the set of 100 odd numbers between 1
and 200, a set which clearly fails to meet the conditions of the
problem.

There remain for consideration only the integers 4 and 8. Were
4 to belong to the initial set, then 2% could not be a factor of any
other member of the initial set unless @ = 1. But this is impossible,
since it would eliminate the appearance of the integer 3 from the
second set (neither 3 nor 6, as has been shown, can belong to the
initial set). By similar reasoning the integer 8 is shown to be im-
possible of inclusion in the initial set. Therefore, none of the inte-
gers from 1 to 15, inclusive, can appear in the initially selected set.

Remark: It can proved, in general, that out of the first 2n (or fewer) inte-
gers it is impossible to select {n + 1) integers having the property that no one
of them is divisible by another, but that it is possible to select n (or fewer)
such integers. If 3% < 2n < 3%+t then out of the first 2n integers it is im-
possible to select »n integers, one of them less than 2%, such that no number
is divisible by another. But n such numbers can be selected, provided the
least is equal to 2¢. For example, from 200 numbers it is possible to select
100, the least equal to 16, not one of which is divisible by another.
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92. (a) Consider the absolute values of the “least” remainders
obtained upon divisible by 100. That is, if a number a yields a posi-
tive remainder exceeding 50, then increase the quotient by 1 to
obtain a negative remainder; ¢ = 100g — », where now 0 < » < 50,
Since (counting zero) there exist 51 possible distinct remainders not
exceeding 50 in absolute value, and since there will be 52 such
remainders obtained upon dividing 52 numbers by 100, at least two
of these remainders are equal in absolute value. If these two re-
mainders have the same sign (+ or —), then the difference of the
corresponding dividends is divisible by 100; if they are opposite in
sign, their sum is divisible by 100.

(b) Let @, a;,a,, --,a. be given integers (in any order).
Consider the sums

S = ay
S =@, + a;
Ss=a+ G + a,;

Swe =@, +a+ a; + + @00

There are 100 such sums; therefore, unless one or more are divisi-
ble by 100, at least two of the sums must yield the same remainder
upon division by 100 (there being only 99 different positive remainders
possible). If we subtract the smaller of the two sums yielding
equal remainders from the larger, we obtain a sum of the form
Ax+\ + Qiry + + aw., which is divisible by 100.

93. Starting with some initial day, say Monday, assume that the
chess player plays «, games; on Monday and Tuesday he plays a.
games; in the three-day period Monday through Wednesday he plays
a, games, and so on, by the end of the 77th day he has played a:.
games. Consider the following sequence of integers:

@y, Az, Ay, * " A7
tZl +20,az+20, "',d77+20

We have, in all, 2-77 = 154 integers, none of which exceeds
132 + 20 = 152, inasmuch as a;; is not, according to the imposed
conditions, to exceed 11-12 = 132 games played in eleven weeks. Hence
at least two of these 154 integers must be equal. However, no two
integers of the sequence a,, a;, - -+, 2; can be equal, since the chess
player has played at least one game every day; similarly, no two of
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the integers a, + 20,a; + 20, --+, @ + 20 can be equal. Therefore,
we must have, for some k£ and some [/, the equality

ax = a; + 20

This equation states that a. — @; = 20: on a succession of k& — / days—
from the (/+ 1)st to the kth, inclusive—the chess master played
exactly 20 games.

94. First solution. Consider the remainders obtained upon dividing
the following numbers by N:

1,11,111, ---, 1111 1
N times

Since it is possible to obtain at most N — 1 different nonzero re-
mainders from these N numbers, then one of these numbers is
divisible by N (in which case the proof is completed), or else two
of them, say

K=1 1 and L =1111 1 (> k),
.

k times ! times
must yield the same remainder upon division by N. But in the
latter case the difference
L-K=11 100 0
(I — k) ktimes
times
is divisible by N.
If N is relatively prime to 10, then, since L — K =11 1-10% is
(I—Fk) times
divisible by N, it follows that 11 1 is divisible by N.
)
times

Second solution. Consider the decimal expansion of 1/N:

_lN— = O'blbz bkalaz a

where a:;b; represents the succession of digits, and where aia, --- a,
is the “periodic” part of the decimal expansion. This can be re-
written in the following form:

1 _ blbz bkalaz a, — blbz et b"
N — 99 900 0 )
N N——y——
! times k times
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It follows that the number A =99--.900---0 is divisible by AN.
-

—r—
! times k times

But A =9A4,, where A, =11 100---0. We now consider the

nssslrer eyl
! times k times

number
B=11 100 - -- 011 100 0 11 100 0,

Itimes k times / times & times Itimes k times

which is obtained if the number A4, is written nine times successively.
It is clear that the number B, equal to the product of A, by

100 --- 0100 ---0---100--- 01,

e — ———— ————
(+k (U+4k (d+ kR
digits digits digits

8 times

is divisible by 9 (the sum of its digits being divisible by 9). There-
fore, the number B, consisting entirely of ones and zeros, is divisible
by 94, = A, and hence by N.

If N is relatively prime to 10, then 1/N yields a decimal which is
periodic, and so B will consist entirely of ones,

95. We shall consider only the final four digits of the integers of
the Fibonacci sequence wherever these integers contain five or more
digits; that is, we shall deal with a sequence of integers all less
than 10*. Let a. designate the (four-digit) number appearing in the
kth place of this sequence (that is, the final four digits of the kth
term of the Fibonacci sequence). If we know the integers ai+,
and ax, we can easily find a.- since the four digits composing a.-,
will depend only on the corresponding four digits of a.., and ax.
Now, if for two natural numbers 2 and # we find that a: = @.+« and
Gi+1 = Ga+ie, then it will follow that

Qk--) = Qurk—

Qg—2 = Qu+ik-1,

G, = Gp+1

(since any number of a Fibonacci sequence is the positive difference
between the two succeeding numbers). However, since a, =0, it
must then follow that a.., = 0; an integer terminating in four zeros
will stand in the (7 + 1)st place of the Fibonacci sequence.
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It will suffice to show, then, that there exists an identical pair
among the 10° + 1 pairs:

a, a:,
as, as,
a8, Qo8+1,
Q108+1, Q108+2

But this certainly must occur in the set of numbers a,,a:, g,
ai0842, Since none of them exceeds 104, and from the 10* integers
0,1,2,3,4,---,999 we can obtain only 10*-10* = 10° distinct pairs
(the first number can assume at most 10 distinct values, and the
second number can take on only 10‘ distinct values).

Remark: It can be shown that the first integer of this Fibonacci sequence
which will end in four zeros stands in the 7501st place (see the book by B. B.
Dynkin and V. A. Uspensky, Mathematical Conversations, Issue 6, Library of
the USSR Mathematical Society, especially problem 174 and the discussion of
it).

96. Consider the decimal parts of the 1001 numbers:
0-aa=0,a,la,la,---, 1000a

(the difference between the given number and the largest number
not exceeding the given number). This yields 1001 positive numbers,
is decimal form, all less than 1. Partition the interval between 0
and 1 on the real-number axis into 1000 intervals (we shall assume
that each interval contains its left end point but not its right end
point). We shall investigate how the points of the above sequence
are distributed among these intervals of length 1/1000. Since there
are 1000 intervals and 1001 points, at least one of the intervals must
contain two (or more) points. This shows that there exist two dis-
tinct natural numbers, say p and ¢ (neither exceeding 1000) such that
the difference between the numbers pa and ga is less than 1/1000.
Say that p > ¢q. Consider the number (p — g)& = pa — qa. Since
pa=P+d ga=@Q +d,, where P and Q are integers, and 4, and
d, are decimals pa and g«, it follows that (p — Q& = (P— Q)+ d, — d,
differs from the integer P— @ by less than 1/1000. This implies
that the fraction == differs from a by less than 0.001 <ﬁ>
97. First, it is readily seen that none of the fractions under con-
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sideration is an integer. Further, no two of these fractions can be
equal, for if, say,

km+n) _ Km+n)

m n
(where % is one of the numbers 1,2,---,m — 1, and / is one of the
integers 1,2, .-+, n — 1), we would have
k_1L
m n’
m= L1 n,
l

which contradicts the fact that m and » are relatively prime (inas-
much as / < # and so cannot be divisible by #»).

Consider now a natural number A less than m + n. The fractions
m4+n 2m+n  kim+n)

» ’ ]

m m m

will be less than A, or k(m + »n) is less than Am, if k is less than

-mA—_:_"—. Clearly, the number of such fractions is equal to the inte-
n
Am

ral part | ————
g P [ m+n

] of the fractions mAm Similarly, the fractions

mt+n 2m+n)  Km+n)

n n n

An
m+n

will be less than A for [ <

The number of such fractions
An
m+n
are nonintegral, since m, n, and

is equal to the greatest integer [

The numbers Am
m

] in the fractions
m+n

m+n
m + n are pairwise relatively prime, and the sum of these two
numbers is A:

Am + An
m+n m+n

But if the sum of two numbers @ and 3, neither an integer, is equal
to an integer A, then [@] + [8] = A — 1. (The proof of this follows
immediately from Figure 7.) Thus,

[ Am ]+[ An ]=A—l,
m+n m+n
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which implies that in the interval (0, A) on the real-number axis
there exist precisely A — 1 of the fractions.

=
a V4
Figure 7

The proposition of the problem follows immediately. Let us first
assume that A =1; we see that none of the fractions is in the
interval (0,1). Let A = 2; since there is one fraction in the interval
(0, 2), it follows that this fraction must be in the interval (1,2). Let
A = 3; since the interval (0, 3) contains two of the fractions, it follows
that the interval (2, 3) contains just one of them. Continuation of
this reasoning completes the proof of the proposition.

98. First Solution. If a number « is in the interval

&0- 2 a> 1000

m m+1

then there are obviously, m integral multiples of ¢ which do not

exceed 1000: a,2a,3a,---,ma. Now, if we designate by £k, the
number of given integers which lie between 1000 and %, by ks
%, %) by k, the number

), and so on, then we have, in

the number which lie in the interval (

which lie in the interval (% %

all, k, + 2k, + 3k, + numbers, not exceeding 1000, which are
multiples of at least one of the given numbers. But, according to
the conditions of the problem, all these multiples are different, and so

ky + 2ky + 3ks + < 1000

It remains to be shown that the sum of the reciprocals of all the
given integers is less than

1 1 1 2k + 3kt 4kt
kiiooe TR o0 TR0 T T 1000
2 3 1
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(here we have replaced k, of the largest of the numbers by L.zgg,

the following %k, numbers by l;m, the following ks, numbers by

1000
4

, and so on). Now we have

2k, + 3k, + 4ky +
=(k1+2k2+3k3+ ')+(k1+k2+k3+ )
= (k, + 2k, + 3ky + )+ <1000 + 2 < 2000 ;

consequently, the sum of the reciprocals of the numbers is less
than 2.

Second Solution. We introduce an important variation of the fore-
going type of reasoning. The number of terms of the sequence

1,2, -+-, 1000 which are divisible by an integer a, is obviously the
greatest integer [1000] in 1200, Since the least common multiple
ay k
of any two of the integers a,, a., -- -, @, exceeds 1000, not one of the
numbers 1,2,3, ---,1000 can be divisible by two of the integers
a,,a, --+,as. It follows that the number of terms of the sequence
1,2,3, ---,1000 which are divisible by at least one of the integers
a,, a,, -+ -, as is equal to the sum
I:lOOO]+|:1000]+|:1000]+ +I:lOOO]
a, a; a, dn
Since there are 1000 numbers in the sequence 1, 2, ---, 1000, it is

clear that

[1000]*_[1000]+ +[1000]§1000

a, as an

But the greatest integer in a fraction differs from the fraction itself
by less than 1; that is,

1000 1000 1000 1000 1000 1000
> - 1! - > - 1, " 'I > - 1
a, a, as a, dn an
Consequently,
(1000 —1)+(1°°0 —1) T +(1°°° —1) < 1000 ;
a, a n

that is,
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1000 | 1000 , 1000 1000 400 . < 2000,
a, a, a; an
and so
_1__+___1__+_ —+—i'<2.
a, a an

Remarks: The estimation of this bound can be made very precise. Consider
all the multiples of those given integers which do not exceed 500. Now, k, of
the given integers will exceed 500; k2 + k3 of the integers will not exceed 500,

500
but will exceed ——; k4 + ks of them will not exceed %. but will exceed

2
%; and so on. It follows, as in the first solution, that the total number of

integers not exceeding 500, and which are multiples of at least one of the given
n numbers, is equal to
(k2 + ka) + 2(ky + ks) + (ks + k7) +
Therefore,
(k2 + ka) + 2(ks + ks) + 3(ks + kr) + < 500
We note now that the difference
500 — ((k2 + ka) + 2(kqs + ks) + -+ -]
expresses the number of integers, not exceeding 500, which are not multiples
of any one of the given integers; and the difference
1000 — (k1 + 2k2 + 3ks + )
is the number of integers not exceeding 1000 which fail to be multiples of any
one of the given integers. Consequently,
500 — [(kz + ka) + 2ke + ks) + (ks + k7)) + ] < 1000 — (ky + 2ks + 3ka +
from which we obtain
(ky + k2) + 2(ks + k) + 3(ks + ko) + < 500
It remains to note that
2ky + 3k2 + 4ka + Sk + 6ks + Tks +
< (ki + 2k2 + 3ks + 4ky + Sks + 6ks +
+ [(ky + ko) + 20ka + ki) + 3(ks + ko) + ]
< 1000 + 500 = 1500
Thus, the sum of the reciprocals of all of the numbers is less than
2k + 3k2 + dka +
1000

or less than 14,

Analogously, if initially we consider the multiples of those given integers
not exceeding 333, we can prove that the sum of the reciprocals of the given
numbers is less than 1}§.
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Note that the number 1000 in this problem can be replaced by any other
integer.
99. Consider the conversion of <L to a (periodic) decimal (see the

footnote accompanying the solution of problem 38).

a
p = A-alaz. LY/ 7707 30/ PRy 17/ 3Y/ PR

Here, A is the whole part of the quotient obtained upon division of
q by p. We can write

q=Ap+aq,

where the remainder ¢, is less than p. Moreover, Aa, will be the
whole part of the quotient obtained upon division of 10g by p (Aa,
is the integer composed of the digits of A followed by the digit a,):

10g = Aa, p + q2,
where ¢, < p. Similarly,
loz.q = Aalaz.p +qs -, 10"(] — Aalaz. . 'ak'p + qr,

The periodic part of the decimal begins again at the point where
division of 10“g by p yields the remainder first obtained, ¢« = ¢,, upon
division of ¢ by p. Thus, the number k of digits composing a period
of the decimal is determined as the least power of 10 such that 10%-¢
yields on division by p the same remainder as did q. For this &
it is clear that 10%¢ — g = (10* — 1)g is divisible by p whence 10*-1 is
divisible by p, inasmuch as p and ¢ are relatively prime (p itself is
prime).

Assume now that & is even: %k = 2/. Since 10% — 1= (10" —1) x
(10* + 1) is divisible by p, either 10‘ — 1 or 10* + 1 is divisible by the
prime p. But 10 — 1 cannot be divisible by p, since if it were, it
would yield the same remainder as does ¢ upon division by p, and

the period of the fraction 4. would be ! instead of k£ = 2/. Hence,

we must conclude that 10¢ + 1 is divisible by p. !
It follows from this conclusion that the sum 1;))_(1+ 4 s an

b
integer. But

10'q q
— + ——
4 4

= Aa\a; a1 QG142 Aua,0y - Ay -

_+_ A. alaz. LY/ 77/ TEN Rl .az'- LN
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Hence, the sum of the decimal fractions

0, ai+1@i+s- - raua\@;---a;- - + 0,014, - @114, - @21~ - -

is an integer. Since each of these positive decimals has a value less
than 1, this sum must be 1 =0.999--- which is possible only if
a+tan=9,
@+ a=9,

a+a;=9
It immediately follows that
a,+a, + -+ + au __i

2/ 2"
If k is odd, the equation

a, + a; + + ai 9
k -2
will not be possible, since £ is not divisible by 2.

100. The numbers of digits in the period of the fractions _a_: and

a::: are equal to the least positive integers £ and !/, respectively,

such that 10* — 1 is divisible by p* and 10 — 1 is divisible by p**+!
(see the solution of the preceding problem). Consider the difference

(10t - 1) — (10* — 1) = 10*¢(10'* — 1)

Since this difference is divisible by p*, 10'-* — 1 is divisible by p=~.
We shall show that 10¢ — 1, where d is the greatest common divisor
of | — k and &, is also divisible by p".

Write | — k = gk + r; we can then write

10¢-% — 1 = 10%%*r — 1 = 107(10v* — 1) + (10" — 1)

But 10* —1 = (10%¥)? — 19 is divisible by 10— 1, whence by p*, and
therefore 10 — 1 is divisible by p*. Similarly, it may be shown that:
107 — 1 (where r, is the remainder obtained upon division of k by »)
is also divisible by p*; that 102 — 1 (where r, is the remainder ob-
tained upon division of » by 7,) is divisible by p*; that 1073 — 1 (where
7s is the remainder obtained upon division of r, by r;) is divisible by
p* and so on. (This process, by which a diminishing sequence of
remainders is obtained, is called the Euclidean Algorithm.)

It is readily shown that the sequence of positive integers r, r,, rz,

- must include the number d; since both /! — & and % are divisible
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by d so is » = (I — k) — qk; since both & and r are divisible by d, so
is »,; since both » and r, are divisible by d, so is r,, and so on.
Consequently, all the (remainders) numbers of the sequence we have
been forming are divisible by d; further, this sequence of positive
integers is decreasing and so must terminate with 0. If the final
nonzero remainder is »,, then »,_ is divisible by », (since the follow-
ing remainder is zero); ».-. is divisible by 7, (since now both 7.,
and r; are divisible by »,); ».—, is divisible by 7, (since both 7.-, and
7., are divisible by r¢), and so on. Finally, # and / — # are divisible
by r.. The inequality r, > d would contradict the fact that 4 is the
greatest common divisor of / — k% and k; hence, ». =d. (Clearly,
7. < d is impossible, since d divides », # 0.)

Now, # has been defined as the least integer such that 10* — 1 is
divisible by p". Therefore, since 10* 1 is also divisible by p*, it
follows that d = &, and /! — k£ is a multiple of k, which means that /
is a multiple of &; that is, [ = kr.

We can expand 10 1 as follows:

100 — 1= 10 1
= (10 — D10~ +107-2% + 410 + 1

Since 10* — 1 is divisible by p", 10¢ yields a remainder of 1 when
divided by p. It follows that 10% = 10*-10¢ yields a remainder of 1
when divided by pr;, 10%* = 10%*.10* yields a remainder of 1 when
divided by p*; and so on. Therefore, each term of the parenthetical
sum on the right, above, yields a remainder of 1 when divided by
p*, and hence the remainder of this sum is ». It follows that if
10* ' fails to be divisible by p"- then the least value of / such that
10! — 1 is divisible by p*! is pk, inasmuch as 107* — 1 is divisible by
pr*t, but is not divisible by p'% (since the expression in parentheses
is not divisible by p?).
The assertion of the problem follows.

101. (1) If x is any real number, it can be written in the form
x = [x] + @, where a is a nonnegative number less than 1.

We write the number y as y={y]+ 30 <8<1). Thenx+y=
[x]+[y]+a+ B3 Since @+ 320, it is clear from this equation
that [x] + [y] is an integer which does not exceed x + y. Since
[x +y] is the largest integer which fails to exceed x + y, it follows
that [x + y] = [x] + [y].

(2) First Solution. Write x =[x] + &, where 0 £ a < 1. Assume
that the integer |x], when divided by », yields the quotient g and
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the remainder 7»:
(xl=¢gn +r 0£r=n—1
We then have

r=gn+rt+a=qgn+r,,

where i =r+a<n = = q+ _r_,; [i] =q= [El] which proves
n n n n
the assertion.

Second Solution. Consider all integers divisible by » but not ex-
ceeding x. Clearly, there are 2 | of them. Consider, also, all
n
integers divisible by # but not exceeding [x]. There are [—[ﬂ-] of

"
these. Since these two integers are the same, we have

[5- 131
nl| Ln
(3) First Solution. Let x=[x] + e« Since 0 £ a@ <1, then a is

equal to one of, or lies between two successive fractions of, the
sequence

012  a-loa
n o n on n 'n
. . . k k+1, .
Assume that the fractions in question are " and — that is,
that
—k—§a<k+1
n n
Now, we have
x+"_k—1:[x]+a+"—k_1<[x]+k+1+"_k~1
n n n n
=[xl +1
2=k ra+ PR e PR
n n n

and
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x+n 1=[x]+a+n 1<[]+k+1+n—1
n n

s+ 2R <

n
It follows that

[x]§[1+l-]§ s[x+"_—’H]<[xJ+1.

n n
[x]+1§[x+n;k]§ g[x+";1]<[x]+2;

that is,

[x]=[x+%]= =[x+"—Tk_1],
[x+";k]= =[x+n;1]=[x]+1

Since after the first » — k2 numbers, there remain %, we have

n—1

[x] + + [x + ] =n—Rx] +kix]+ 1) =n[x] + £

But this is can be shown to be equal to the integral part of nx.
Sincek<na < k+1,thenna=%k+ 3 where0 = 8 < 1. Asa result,

[nx] = [n[x] + nal = [n[x] + kb + Bl =n[x] + &

This proves that

[x]+[x+;ll—]+ +[x+n;1]=[nx]

Second Solution. Consider the left member of the given equation,

n—1
are less

Ifosx < %, then all the numbers x,x+—i-, N

7 n
than 1, and so the integral part of each is 0; also [nx] =0. Thus
the equation holds for such values of «x.

Now let x be arbitrary. If we multiply x by —nl—, all the terms on
the left are “shifted” once to the right, and the final term,

[re251].
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becomes [x + 1], which exceeds [x] by 1. This means that multiplica-
tion of x by % increases the left member of the equation byll. The
right member is also increased by 1 when multiplied by P For
x it is possible to find a number a, where

O§a<—1—
n

such that x differs from a« by !ni' where m is an integer. It follows
that the equality is preserved for all x.

102. Consider all those points of the Cartesian plane having integer
coordinates (“integer points”) x and y, where 1<x=<¢g—1and 1<
y £ p—1. These points lie within a rectangle OABC the lengths
of whose sides are OA =q and OC =p (Figure 8). There are
(g — 1)(p — 1) points. Draw the diagonal OB of the rectangle. It is

»4
C B

X"'kg}mfg
(@)

clear that no integer point will lie on this diagonal, since the co-
ordinates (x, y) of all the points of the diagonal OB are related by
the proportion

and since ¢ and p are relatively prime, there do not exist integers

x < p and y < g such that%:—Z—
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We note now that the number of integer points whose abscissa is
equal to k, where %k is some positive integer less than ¢ and which
appear under the diagonal OB, is equal to the integral part of the
length of the segment MN shown in Figure 8, Since

OM  ,p_ k>

N =
M OA q '’

kp

this number is [T] Hence, the sum

(21121 <[]

q q q q

is equal to the total number of all integer points appearing under
the diagonal OB. There are, in all, (g — 1)(p — 1) integer points in
the rectangle; because of the symmetrical pattern of these points and

the fact that OB bisects the rectangle, exactly half of these points
lie under the diagonal (none lies on the diagonal). Therefore,

1T [2] o[- e

It is shown in the same way that

T2 [5] 5o

103. First Solution. The equation is valid, trivially, if n =1.
Proceeding by mathematical induction, we shall show that if the
equality is assumed to hold for an integer #», then it must hold for
n+ 1.

If » + 1 is not divisible by k; then

n+1l=qgk+r (lsr=sk-—-1,

and n =gk + r', where »' =r —1; thatis, 0 £ ' <k — 2. It follows
that the integers % and [% coincide (both are equal to ¢).
If, then, = + 1 is divisible by k, or n + 1 = gk, then

n+17_ nl_ . .
[ P ]“’ and [k]*" Li

that is,
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Hence,
[":1] - [%] if & is not a divisor of # + 1;
[”:1]=[%]+1, if & is a divisor of n + 1.

It follows that:

@ [ ]

n n n
_[1]+['2—]+ +[n+1]+tn+l
That is, if

EINCI R

then
n+1 n+1 n+1
= t la ”
[ 1 ]+[ 9 ]+ +[n+1] t+ 1L+ + + lntt
1 n+1 n+1
b [25]+ 53] el
()[ o B

_|1® n _n
_[1]+2[2]+ +(n+1)[n+1]+s.ﬂ
That is, if
[i+2[—n—]+ +ﬂ[£’]:$1+51+ + S,
1 2 ”

["Tl]+2[";l]+ +(n+1)[%]

=S8 + 5+ Sy + Sn+

then

Second Solution. The number of integers of the sequence 1,2,3,

.-+, n which are divisible by any chosen integer k is equal to -"k—-]

(these will be the integers %, 2k, 3%, - - -, [-Z—]b) The sum obtained

by totaling this divisor each time it appears is k[—z-] (that is,
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R+ k+ + k; [%] times). We have the following results.

(@) The sum [—'1'—] + [—;L] + + [—%—] + + [%] is equal to

the number of integers of the sequence 1,2,3, ---, n which are di-
visible by 1, plus the number of integers of this sequence which are
divisible by 2, plus the number which are divisible by n#. But
this is precisely the sum ¢, + ¢; + ¢ + + ¢, given in the problem.

(b) The sum 1[—71'—] + 2[%] + + k[l] + + n[%—] is equal

k
to the sum obtained by adding the integer 1 each time it appears as
a divisor of a number of the sequence 1,2,3, ---, #, plus the integer

2 taken each time it appears as a divisor of one of the number of
this sequence, plus the integer 3 taken each time it appears as a
divisor, and so on. But this is precisely the series s, + s, + s +
+ Sx.
Third Solution. An elegant geometric solution suggested by the
second solution will be given. Consider the equilateral hyperbolas

=_akr—' or, equivalently, xy = £ (of which we shall take only the

branches in the first quadrant, see Figure 9).
¥4

[ /N

S & S & & G & &

Figure 9

We note all the points in the first quadrant which have integral
coordinates (integer point). Now, if an integer x is a divisor of the
integer &, then the point (x,y) is a point on the graph of the hy-
perbola xy = k. Conversely, if the hyperbola xy =#% contains an
integer point, then the x-coordinate is a divisor of k. Hence, the
number of integers ¢ which are divisors of the integer % is equal
to the number of integer points lying on the hyperbola xy = k. The
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number ¢, of divisors of % is thus equal to the number of abscissas
of integer points lying on the hyperbola xy = k. Now, we make use
of the fact that the hyperbola xy = » lies “farther out” in the quadrant
than do xy =1, xy =2, xy = 3, xy =n—1. The following im-
plications hold.

(@) The sum ¢, + ¢, + + ¢, is equal to the number of integer
points lying under (or on) the hyperbola xv = #. Each such point
will lie on a hyperbola xy = k£, where £ < n. The number of integer
points with abscissa % located under the hyperbola is equal to the
integral part of the length of the segment MN [Figure 9 (a)]. That

is, % , since MN = % (compare with the solution of problem 102).

Thus, we obtain

AN R n
b+ bt + +tn—[1]+[2]+[3]+ +[n]

(b) Write alongside each integer point [Figure 9 (b)] the number
equal to its abscissa; then, s, + s; + + s, is equal to the sum of
the integers %] for the integer points located under (or on) the
hyperbola xv = n. But the sum of the integers for all such points

for a specific abscissa % is equal to k[%] Hence, we have

+ 5 s+ +sn:[%]+2[%]+3[%]+ +n[—:—]

104. It is readily shown that (2 + 172 )* + (2 — 1/ 2 )" is an inte-
ger: if 2+V 2)=a,+ b,V 2 where a, and b, are integers,
then (2 1V 2 )" =a, — b1/ 2 (this follows from the binomial formu-
la, but may also be shown by mathematical induction). Since
(2—-1"2) <1, it follows that

@+v2r=2+v2r+@e—-vazyr-1
and, consequently,
C+VIZr—[C+V2Zrl=1-@2-V2)

But since (2 — 1/—2')_< 1, we can, by taking the power » sufﬁ_cient-
ly high, make (2 —1/2 )* as small as we wish, If 2—1V"2) <
0-000001, then

C+V2r—2+VvV2Z);r=1—2—-1"2) > 0.999999
105. (a) First Solution. Since 2+ 1V 3> +2—-1V3) is an
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integer (see the solution to problem 104), and since (2—1/3 )" < 1,
it follows that

R+v3Ir=2+v3Ir+2—-1v3r-1
If we expand (21 3 )" by the binomial formula, we obtain
C+V I+ 21V I)=22"+ Ci2v 23+ C24 3t + ..0),

which is divisible by 2. Therefore, [2+ V3 )" =@+ V3 )+
2—-vV3)"—1is odd.

Second Solution. The number (2 + V'3 )" can be written in the
form a. + 5.1/ 3 where a. and b, are integers. We shall show that

at -3 =1.

The proof will be carried out by mathematical induction. First, if
n=1, thenag =2 b =1, and 22 — 3.1 = 1.
Now, assume that for some »n

C+V3r=a.+b13
where ai — 362 =1. Then for (2 + 1/ 3)* we have
2+ V3 =(an+ bV 3IN2+ V' 3) = (28, + 3b)) + (@ + 2603
We see that @a.., = 2a. + 3b. and b.., = a. + 2b,. Consequently,
@ner ~ 3bari = (2an + 3baF — Yan + 26 ) =an — 3bn =1

Therefore, a2 — 3b. for any n.
Thus, we have

[an + bV 3] =an + [baV 3] =a, + [V 301]

=dnt+[Vai—-1]l=a.+(@an—1)=2a,—1

That is, [(2+ V3 )] = la. + 6,173)] is odd.

(b) We note that
(1413 "= {(1 +vV3Ir+a1-v 3)"—.1 , 1.f n is even,

A+vV3Ir+AQ—-1v 3), if n is odd.

Consequently, the expressions on the right are _i_ntegers [see the

solution to problem (a)]. For n even, 0 < (1 — v 3 )* < 1; for n odd,

—1<(1—-13r<0

We shall investigate separately the cases for even »n and odd n.
n is even. =2m. Then
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L+V 3 =0+ VI + 01—V 3 -1
={0+VI3 P +{0-vV3y—1
=4 +2V3m+@-2V3 )" -1
=2"{2+V3Ir+2-1V3IM-1
But the number in the braces is clearly an integer, and so the number
[(1+13)m]=2N—1 is always odd. Hence, if n is even, the
highest power of 2 by which [(1 + v/ 3 )" is divisible is zero.
nisodd. n=2m+ 1. Then
[+ VT =+ VT pme 4 (1= /Ty
=@+2V3Ir1+V3I)+U@-2v3)1-V73)
=2"{2+VI3 M1 +vV3I)+2—-V3I )1 -3 )
=2~[(2+1V 3 +(2—1V"3 )]
+VIEC+VIr—-2—-V I
Let 2+ 1/ 3 )" =an + bal/ 3 where a, and b, are integers; then
(2—1"3) =an+ bay/ 3 Substitution yields
Q1+ 1V 3 )] =2"{gn + ba)/ 3 + am— baV/' 3
+ 13 @n+ bV 3 —an+ 6.1 3))
= 2"(2am + 6bp) = 2™ Nam + 3bp)
But g~ + 3b. is odd. In fact,
(@m + 3bnXam — 3bn) = ab — 95, = (a% — 3b%,) — 6b%, =1 — 6b%,

[see the second solution to problem (a)]. Since 1 — 6b% is odd, both
factors, (am + 3bm) and (a» — 3bn), are odd. Hence the greatest power
of 2 by which [(1 + 13 )] is divisible, for # = 2m + 1, is equal to

_n+l1 _[=n
m+1= 2 _[2]+1

106. Since 2+ 1 5 ) —(2—15 ) is an integer, and since
—1<@2—-VvV5)<0 (for p odd; see the solutions to problems 104
and 105), it follows that

(+VEPI=@+VEr+@E@—V35)
Use of the binomial formula yields

C+vVB5yr+E~-vV5)y
= 2(27 + C327%5 + Cp2r—452 + .+« + CP7'2.50-072)
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so that

[(2+15 )ﬂ] — 2p+1
= 2Ch2r-15 4+ Ci2r—452 +  + CP7'2.5w-v/2)
All the binomial coefficients

. Mp—1
G = 1-2
cr— Kp—1Xp—2Xp—3)
P 1-2-3-4
Ci'=p

are divisible by the prime p (they are integers, and the numerators
are divisible by the prime p, but the denominators are not). This
means that the difference [(2 + V5 )?] — 2°P*! is divisible by p.

107. CP = nwn — 1Xn — 2)'---(n —p+1)

consecutive integers »n,n — '1. n—2,---,n—p+1is divisible by p;

let us designate that integer by N. Then [%] = %, and the dif-

Exactly one of the p

ference given in the problem takes on the form
nn—1) N+ DHDNWN—-1---n—p+1) N

P! j/
We observe now that the integers #, 2 —1,---, N+1, N -1,
n — p + 1 (the integer N being omitted) yield all the possible positive
remainders 1,2, ---,p — 1 upon division by p, inasmuch as the p

successive integers from # to n — p + 1 must yield all these re-
mainders including 0, and we have left out the sole integer divisible
by p. Now we shall show that

nn—1) - (N+IXN-=-1):(n—p+1) —(p—1)
is divisible by p. We write the equations
n=kp+a,
n—1=kp+a,

N+1=kip+air
N—-l=k.'+lp+a.'+|,

n—p+1=lkeip+ aGp,,
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where a,, a;, -+, ay—, are the integers 1,2, ---,p — 1 in some order.
It is clear that if all the integers on the right are multiplied to-
gether, every term of the expansion will contain p as a factor, ex-
cept the term a;-a;-+-ap—,, and this term is equal to (p — 1)!. Thus,
the difference shown is divisible by p.

If we multiply this difference by the integer %, the product still

remains divisible by p; that is,
nn—1---m—p+1 NPp-1)
b b
is divisible by p. If we divide this difference by (p — 1)! [which does
divide it; see problem 49 (a)], we obtain
nn—1---n—p+1) _N_ch_[ﬁ]
! p Ly

This still is divisible by p, inasmuch as p and (p — 1)! are relatively
prime.

108. Let @ and 8 be two numbers satisfying the conditions of the
problem. For some selected positive integer N we consider all the
integers of the sequence [a], [2«], [3«], which do not exceed N;
we shall write these as [a], [2a], - -, [#a]. Since [ra] < N, where n
is maximal, we have [(# + 1)a] > N,and hencena < N+ 1,(n+ Da =
N+1,N+l1>naezN+1—a,orna=N+[, wherel>lz1— a.

We may show, in a similar manner, that if m is the maximal
integer such that the integers [3], [28], [38], - - -, [mfA] all fail to exceed
N, then m@=N+1!', where 1 > /' 21— (. Since, according to the
conditions of the problem, we encounter in the sequences [«], [2a],
<+, [na] and [B],12R8), ---, [mB] each positive integer 1,2,3,.---, N
exactly once, it follows that n + m = N. This implies that

or

and

Ypep) -G D)

From the inequalities involving / and [/ it follows that
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v

1,1 4 r_1 1
R LI e SRV S
a+ﬁ>a+ﬁ a+ﬁ

Designating the sum 1 + —{13— by ¢, and dividing all the numbers of
@

the preceding inequality by N, we arrive at the inequality

¢
=>1—-1=z=
N =

t -2
N

which must be satisfied for any selected positive integer N, no mat-
ter how large. But since the first and third members of this in-
equality can be made as small as we wish, it must follow that
1—-£=0, from which it follows that ¢{ = —tl; + % = 1. Further, it
is readily seen that the numbers & and @ must be irrational, since
if @==2, then we would have 8= —2—, and this would imply

q J—
that [ga] = [(p — ¢)R], which contradicts the conditions of the problem.
Assume now that a« and @ are irrational numbers, and that

% + —19— = 1. Since necessarily @ > 1 and § > 1, it will not be pos-
F ’
sible to find two equal numbers among the integers [a], [2a]), [3a),

---,n or among the integers [B], [28], [38],

We shall now show that, given any positive integer N, either an
integer » can be found such that [na] = N or an integer m can be
found such that [m8] = N, and both possibilities cannot exist simul-
taneously. Let

[(n ~ Da} < N = [na],
[(m — 1)3] < N = [mB]
These inequalities imply that

nae—~a < N, na > N;
mB—~B<N, mB >N

(neither ne nor mf@ can be exactly equal to N, since @ and 8 are
irrational); that is,

nae=N+d,
mp=N+d

where 0 <d < a, 0 <d < 8. It follows that
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_N, 4 N &
n+m—a+a+ﬁ+ﬁ
1 1 d d d d'
NG g) (e w) V(e )
a+ﬁ + a+ﬁ +ﬁ
and, consequently,
i+—£=n+m—N
a B

'
is an integer. But since 0 < —Z— <1, 0< —g—- <1, we have

0<—‘1+ﬁ-l<2
a B

Hence we arrive at the equality

d d

PRI IR
which, since

1 1

P 1,

is possible only in the event that one of the numbers d or d’ is less
than 1 and the other is greater than 1. But this means that of the
integers [n#a)] = [N + d] and [mB] = [N + d'], neither of which is less
than N, one must be equal to N and the other must exceed N.

109. First Solution. It is readily seen that (a) =|a + % . Hence

we can put the equation we wish to derive into the following form.
N 1 N 1 N 1
N—[?+7]+[4 + 2]+[8 + 2]+

Now let
N=a,.~2"+a..~ '2‘_l+ +al'2+ao

(@n, a1, **+, a1, G are either 0 or 1) be the expansion of N in powers
of 2 (as in the binary number system). We then have

[ 3] voms ramgt]
=@ 2" '+ a1 2" + + a, + ao,

.11 L_ .9n-2 On-8 a‘—H f_“]
[4+2]_[a,2 + @n-y2"% + + 2 +4

=ay2" 4 @1’ 2* 7+ - tan,



Solutions (109) 195

2 4 2
N _l_ _ a..+1 Qn—) aa]_
[2n+1+2]_[ 2 + 4 + +2n+l = Gn
and
N 1 N 17.
[2n+2+2]_[2n+3+2]_ =0

(recalling that the a4; are either 0 or 1). Hence we obtain

N 1 N 1 N 1
[7+7]+[T+?]+ +[zm+7]+
=a2t+ 2+ + 141

+ @y (27 200 +1+1)+ +a(l+1)+ao
=@n 2"+ @u-- 2" + +a-2+a=N

which is what we wished to show.
Second Solution. It is obvious that the number of odd numbers
exceeding N is equal to % if Niseven, and is [ N+1 ] = [l] +1

2 2
if N is odd—or, equivalently, (11 . Thus, the number of even

2
numbers not divisible by 4, and not exceeding N, is equal to [%]
if N is either divisible by 4 or yields the remainder 1, and is equal

to [—1{— + 1 if N yields a remainder of 2 or 3 upon division by 4.

In either event this number is %’- . The number of integers not

exceeding N which are divisible by 4 but not by 8 is: equal to [%—]

if N is either divisible by 8 or yields one of the remainders 1, 2, or
3; or else is equal to [%] + 1. In either event the number is equal
o (1)
8 N
In a similar manner it is shown that: (F) is the number of
integers not exceeding N which are divisible by 8 but not by 16;

(-%) is the number of integers not exceeding N which are divisible

by 16 but not by 32; and so on. If we use these results to examine
all the numbers in which we are interested, we find that
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B+ @)e -

which is what we wished to show.

110. (a) Let a be the first digit, and b the last digit, of the
desired integer N. Then the integer can be written as

N = 1000z + 100z + 106 + b,
or as
N = 1100z + 115 = 11(100g + b)
Since this integer is to be a perfect square, and since it clearly must
be divisible by 11, it must also be divisible by 121; that is, ——IA{— =
100z + b must be divisible by 11. But
1002 + b =99a + (@ + b) = 11-9a + (a + b)

Hence a + & must be divisible by 11. Since neither a nor b exceeds
9, and since @ is not 0, it follows that 1< a + b < 18, whence
a+b=11.

This implies that

100 + b=11-9a + 11 =119 + 1),

N  100a+b
1=~ 11 - atl

Since N is a perfect square, ENI is also a square. But among the

integers of form 9¢ + 1, where a ranges through the integer values
1to9, only 9-7 + 1 =64 is a perfect square. This means that N =
121-64 = 7744 = 882,

(b) Let a be the digit in the tens place of the desired integer,
and let b be the digit in the units place; that is, the number is
10g + b. If the order of digits is reversed, the integer becomes
106 + @a. The conditions of the problem yield

10a + b+ 106+ e = 11(a + b) = k*,

where % is an integer.

It follows that k* (hence %) must be divisible by 11; also, a + b
must be divisible by 11. Since ¢ + b < 18, this implies that 2 + b = 11,
or k2 = 121. Therefore, the only possibilities for the integers sought
are
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29, 38, 47, 56, 65, 74, 83, 92,
all of which satisfy the conditions of the problem.

111. Designate by a the two-digit integer formed by the first two
digits of the number NN sought, and by & the two-digit integer formed
by the last two digits of N. Then, NV = 100g + b, and the conditions
of the problem yield

1002 + b = (a + b)*,

which may be written
99z =(a+ bt —(a+by=(@+bla+b—1) (1)

Thus, the product (@ + bXa + b — 1) must be divisible by 99. We
shall investigate the possible values for ¢ and b.

(1) a+b=99%, a+b—1= -Z— Since @ and b are two-digit num-

bers, # < 2. The case £ =2, when used with equation (I), leads
immediately to @ =99 and b =99. Similarly,

k=1,

at+b=99,
a=a+b—-1=98,
N=9801 = (98 + 1)

@2 a+b=1lm, a+b—1=9n, mn=a. Here we obtain 9n =
11m — 1. Since 11m — 1 is thus shown to be divisible by 9, it fol-
lows that m yields the remainder 5 upon division by 9 (it is easily
verified that if there were any other remainder, then 11m — 1 would
not be divisible by 9). Hence, m =9 + 5, and so 9 =99 + 54, n =
11 + 6. We now have

a=mn= (9 +5X11¢t + 6) = 99¢2 + 109¢ + 30

Since a is to be a two-digit integer, we must have ¢ = 0; and,
consequently, @ = 30,a + b= 11m = 55, b = 25, N = 3025 = (30 + 25)%.

3) a+b=9m, a+b—1=11n, mn=a. Reasoning as we did
above in part (2), we have the single possibility N = 2025 = (20 + 25)%.

4) a+b=33m,a+b—1=3n, or a+b=3m, a+b—1=33mn,
which is untenable, inasmuch as ¢ + b and a + b — 1 are relatively
prime numbers.

(5) a+b——1=99k,a+b=—j—;—. Here we will have
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a+b—1=99,

a+b=100,
_(@a+ba+b-1) _
¢= 99 =100,

which is an impossibility.

Therefore, the conditions of the problem can be satisfied only by
the numbers 9801, 3025, and 2025, and these numbers do satisfy the
conditions.

112. (a) Since the numbers are to contain only even digits, they
can begin only with 2,4,6, or 8 hence we need examine only those
integers between 1999 and 3000, 3999 and 5000, 5999 and 7000, and
7999 and 9000. Accordingly, the square roots of such possible four-
digit integers must be between 45 and 55, or 63 and 71, or 77 and
84, or 89 and 95. Further, since (10x + y)* = 100x% + 20xy + y?, it
follows, for 0 < y <9, that the tens digit of the number (10x + y)?
is odd or even simultaneously with the tens digit of y? (the 20xy term
contributes an even digit to that place, and 100x* contributes a zero
digit). Hence the square root of the numbers sought cannot end with
the digit 4 or the digit 6.

Since the square roots of the numbers sought must be even, we
are left with only the following four possibilities:

68° = 4624 ; 80* = 6400 ;
78 = 6084 ; 92* = 8464

These four integers satisfy the conditions of the problem.

(b) Reasoning analogous to that used in problem (a) shows
that there does not exist any number composed of four odd digits
and which is a perfect square.

113. (a) We shall designate the hundreds, tens, and units digits
of the integers N sought by x, y, and z, respectively, so that N =
100x + 10y + 2. The condition of the problem, then, is

100x + 10y +z2 = x! + y! + 2!

Since 7! = 5040 is already a four-digit number, none of the digits
can exceed 6. Consequently, N cannot exceed 700, which implies
that no one of the digits can exceed 5 (since 6! = 720). At least one
of the digits must be 5, otherwise the greatest value obtainable for
x +y!+ 2! would be 3-4! =72 < 100, whereas N is a three-digit
number. The possibility x = 5 can be eliminated, since in that event
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N 2 500, but the greatest value obtainable for x! + y! + 2! is 3.5! =
360. This, in turn, implies that x cannot exceed 3. Further, it can
easily be reasoned that x cannot exceed 2; in fact, 3! + 2-5! = 242 <
300. Now, the number 255 does not fulfill the conditions of the
problem; if only one digit of the number sought is 5, then x cannot
exceed 1, since 2! + 5! + 4! = 146 < 200. Moreover, since 1! + 5! +
4! = 145 < 150, we must conclude that y cannot exceed 4. Con-
sequently, z = 5, since we have shown that at least one of the digits
has to be 5. Therefore, we must have x =1, 4=y =0, and z = 5.
This allows us to find the one possibility for the solution of the
problem—a number satisfying the problem’s condition is N = 145.
(b) The desired numbers N cannot have more than three
digits, since in the extreme case (9% + 92 + 9% + 92 = 4-92 = 324) we
obtain only a three-digit number. Hence we can write, for the inte-
gers, N = 100x + 10y + z, where x,y, and z are the respective digits
of the number (from left to right, and allowing the possibility of
x =0, or even both x =0 and y = 0).
The problem then imposes the condition

100x + 10y + 2= x* + y* + 2%,
or, equivalently,
(100 — x)x + (10 — y)y = 2(z2 — 1). (1)

The last equation implies that, necessarily, x = 0; if this is not the
case, we have on the left an integer not less than 90 [xr = 1, 100 — x =
90, (10 — y)y =2 0], and the integer on the right is not more than
9-8 = 72. Consequently, equation (I) can be replaced by

10 —yy=2z—1)
It is readily verified that this equation cannot be satisfied by any
nonzero y (recall that y and z are digits). If y =0, then there re-
mains only the trivial possibilities z =0 or z = 1.
Hence, except for N =0, there is only the solution N = 1.

114. (a) Clearly, the numbers N which are sought cannot have
more than four digits, since the sum of the digits of a five-digit
number cannot exceed 5-9 = 45, and the square of this number is
2025, a four-digit number. Further, since 4-9 = 36, and 36% = 1296,
if N is a four-digit number satisfying the condition of the problem,
its first digit cannot exceed 1. But 1+ 3.9 =28, and 28 = 784,
whence even four-digit numbers are excluded from consideration,
Thus N can have at most three digits. Assume, now, that N =
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100x + 10y + z, where x,y, and z are digits (the possibility x =0 is
allowed, as is x =y = 0).
Now the condition of the problem can be written in the form

10x + 10y + z=(x+y + 2)*,
or
WPx+9y=x+y+t2f—(x+y+2
=x+ty+a)x+y+2-1)

It follows from the above equality that one of (x +y + 2) or
(x +y +2z—1) is divisible by 9 (not both can be divisible by 3 since
they are relatively prime). Also, 1 <x+y+ 2z =27, We shall in-
vestigate all possible cases.

1 x+y+2—1=0;,9+9 =0, x=y=0,z=1; N=1.

2) x+y+2=9,9x+9y=98=72,x=0,99=72,y=8,z=1;
N=81[=(8+1)2].

@) x+y+2—1=9; 9x +9y =9-10=90, x =0, 9y = 90, which
is impossible.

4 x+y+2z2=18, 9x+9y =18-17=306, x=3,y=1, 2z =18 —
(8 + 1) = 14, which is impossible.

B) x+y+2—1=18; 99x+ 9y =19-18=342, x=3, y=95, z=
19 — (3 + 5) = 11, which is impossible.

®) x+y+2z2=27, ¥Vx+9y=27-26=702, x=7,y=1, 2=27 —
(7 + 1) = 19, which is impossible.

Therefore, the conditions of the problem are satisfied only by the
numbers 1 and 81.

(b) The cube of a three-digit integer can contain no more
than nine digits; hence, the sum of the digits of the cube of a three-
digit number cannot exceed 9-9 =81 < 100. This implies that the
numbers sought cannot be three-digit numbers; and the same kind
of reasoning will show that such a number cannot have more than
three digits. The integer, or integers, sought can have at most two
digits.

The cube of a two-digit integer cannot have more than six digits,
and the sum of the digits of such a cube cannot exceed 6-9 = 54,
whence the numbers sought cannot exceed 54. However, if a number
not exceeding 54 is cubed, the first digit of the cube cannot be
greater than 1; but then the sum of the digits of the cube cannot be
greater than 1 + 5-9 = 46, Thus, the numbers sought cannot exceed
46,

Proceeding as before, we find that if an integer does not exceed
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46, its cube contains at most five digits, and since this cube is less
than 99,999, the sum of the digits is at most equal to 4-9 + 8 = 44.
The cube of 44 is a five-digit number ending with the digit 4. Hence
the number 44 must be thrown out as a possibility. The numbers
sought cannot exceed 43.

Now we make use of the fact that the sum of the digits of every
positive integer yields the same remainder upon division by 9 as does
the number itself upon division by 9. It follows that any of the
integers sought must yield the same remainder upon division by 9
as does its cube. This is possible only if this remainder is —1, 0,
or 1 (solution of »* =7r),

Thus, the numbers sought do not exceed 43, and they can yield
upon division by 9 only the remainders —1, 0, or 1. Only the fol-
lowing thirteen integers can satisfy these conditions:

1

8, 9, 10
17, 18, 19;
26, 27, 28;
35, 36, 37.

Of these possibilities, the following integers satisfy the condition of
the problem:

1 (1P=1);

8 (8° =512) ;
17 (17° = 4193) ;
18 (18* = 5832) ;

26 (26° = 17,576) ;
27 (27° = 19,683)

115. (a) Direct verification assures us that for x < 5 the only
positive integers solving the given equation are r=1, y =1 and
x=23, y=3. We shall show that no solution exists for x 2 5. We
note, first, that

'+21+31+41=33

ends with the digit 3; and 5!, 6!, 7!, all end with the digit 0.
Therefore, if x =2 5, the sum 1! + 2! + + z! terminates with the
digit 3 and therefore cannot be the square of any integer y.

(b) Two cases will be considered.
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z=2n is an even integer. This case is readily reduced to problem
(a), inasmuch as y®* = (y*)?. For even integers z the solutions are
x=1; y=1; z is any even number;
x=3;y==3, z=2.

z is an odd number. For z =1 any value of x, and the correspond-
ing obvious value of y, will suffice. Let 2= 3. We note that

1M+ 204+ 31+ + 8! = 46,233

This number is divisible by 9, but not by 27, whereas for all n 2 9
the number 9! is divisible by 27. The sum 9! + 10! + + x! is
therefore divisible by 27; and so, for x = 8, the sum 1! + 2! + +
x! is divisible by 9, but not by 27. In order for y* to be divisible
by 9 it is necessary that y be divisible by 3, but then y* must be
divisible by 27 (for z = 3). Consequently, for x = 8 and z = 3 the
given equation has no solution in integers.

It remains to consider the case for x < 8. We have 1! =1 =1,
where z can be any integer 1! + 2! = 3 (which does not provide an
integer solution for z = 3), 1! + 2! + 3! = 3* (a solution arrived at
earlier, but not for the case of odd z) and

1M+ 2+31+4 =33,
11+ 2! + + 5! =153,
1+ 2! + + 6! =873,
11 + 2! + + 7! = 5913
As can be easily verified, none of these integers is an integral
power (= 3) of any natural number. Thus, for odd z we have only
the following additional solutions:
x=1, y =1, z=any odd number;
x = any natural number; y = 1! + 2! + +xl z2=1.
116. Let
at+ b 4t Hdt=2"

We shall designate by p the greatest power of 2 which divides all
four integers a,b,c, and d. Upon dividing both sides of the above
equation by (2r)* = 2?7 (an even power of 2), we obtain

ai+ b +ci+d =202

where at least one of the four integers a,, b,, ¢,, d, is odd. If exactly
one, or if exactly three, of the integers a,, b, ¢, d, are odd, then
al + b} + c1 + d} is odd, and in this event the equality is impossible.
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If two of the integers are odd, say @, =2k + 1 and b, =2/ + 1, and
two are even, say ¢, = 2m and d, = 2n, then we may write

@b Fei+di=4r+ 4k +1 48 + 404+ 1 + dm? + 4n?
=202k +k+ B+ +m+n)+1],

which is a contradiction that 4 + b + ¢} + di = 2*-*# cannot have an
odd divisor (the expression in brackets cannot be 1 except for k£ =
Il=m=n=0;, cc=d =0 and ¢c=d=0). If all four integers are
odd, that is, &, =2k +1, by=2l+1, c,=2m+ 1, d,=2n+1, we
have

G+b+i+di=4k +4k+1+42+4/+1

+4m* +4m + 1 +4n* +4n + 1
=4k +1D+ W+ +mm+1)+nn+1)+1)]

Now, the product of two consecutive integers must be an even
integer, and so the expression in the brackets immediately above is
odd. Under the circumstances, its value can be only 2°=1. This
implies thatn — 2p =2, n=2p+2,andk=!l=m=n=0,a, =b =
a=d =1 a=b=c=d=2"

Therefore, if n is an odd number, then 2" cannot be written as
the sum of four squares; if # = 2p is even, then 2* can be expressed
as the sum of four squares only in the following way:

2%p = (2p71)F 4 (2P-1)2 4 (2P71)2 4 (2P
117. (a) First Solution. The equation
x+yt+ 22 =2xyz

is satisfied by x =y =2 =0. It is obvious that no other solution is
available which involves zero value for any one of x,y, or z; hence
we may assume that none of them can vanish. We can write

x = 2%x, ,
y:2ﬂyl'
z2=272,

where x,, y1, 2, are odd (if any one of x,y, z is initially odd, then the
exponent for 2 can be taken to be 0).

Since x,y, and z enter the equation symmetrically, we may assume,
with generality, that « £ 3 < y. We shall now determine by what
power of 2 the left member of the equation is divisible.

1) If «a<BEZy, or else if @« = =1y, then after factoring out
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(2a)* = 2%#, there will remain the sum of an odd and two even
numbers, or else the sum of three odd numbers—that is, an odd
number.

2) If & =8 < 7, then it is possible to write

x =22k + 1),
y=242+1),
z2=2%2m

In this case,

2+ yr 42t =22k + 1) + (21 + 1) + (2m)Y]
=24k + 4k + 1+ 482+ 4l + 1 + 4in?)
=202+ R+ 2+ L+ m?) + 1]

after factoring out 22#+!, there remains in the brackets an odd number.

On the other hand, the right member of the equation is divisible
by 2¢+8=v+t Also, the right member must be divisible by the same
power of 2 as is the left member.

For case (1) we must have 24 =a + 8+ 7+ 1. Since a =8 =<7,
we arrive at the untenable inequality 2« = 3a + 1.

For case (2) it follows that 24 +1=a + 8+ 7+ 1. Since a =
8 < 7, the following inequality is implied, which again is impossible:
20+ 1> 3a + 1.

Therefore, there fails to exist any solution in integers for x* +
y? + 2% = 2xvz, except the trivial one x =y =2 =0,

Second Solution. Since the sum of the squares is to be an even
number, it may be reasoned that either all three of the numbers x2,
y?, 2? (hence also x,y, and z) are even, or one of them is even and
two are odd. But in the last event, the sum would be divisible only
by 2 and the product 2xyz would be divisible by 4. Hence we must
conclude that x,y, and z must all be even: x = 2x,, y =2y, 2 = 22,.
If we substitute these into the given equation and divide through by
4, we obtain

1+ + 2 = A yz,

As above, this equation implies that x,,y,, and 2, are all even
numbers, and so we can write x, = 2x,, y, = 2y,, 2z, = 22,, which
yields the equation

xg + y§ + Z§ = gxzyzz‘z ,

which, in turn, implies that also x,, v, and z, are all even numbers.
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Continuation of this process leads to the conclusion that the fol-
lowing set of numbers are all even:

X, ¥ 2
x1=‘%. _Y1:!2": zl—';—;
xk—%,;; yk=—';—,(. 2 %;

(the numbers xi, yi, 2« satisfy the equation xi + yi + zi = 2 'y 3.2.).
But this is possible only if x=y =2=0.

(b) As above, it may be proved that the only integer solution
of the equation x* + y* + 2>+ v*=2xyzv is x =y =z =v =0. Here,
it suffices to make the special investigation for the case where the
highest power of 2 which divides x, y,2, and v is the same; that is,
when

x=2%2k + 1), y=2¢2+ 1),
2=202m+1), wv=22n+1),

where @ is a nonnegative integer, and %, /,m, and »n are integers,
Then

24+v+ 2+ rr=22Ulr+4k+ 1) +@2+H4+1)

+ (4 +4dm + 1) + (An? + 4n + 1))

=2 b+ P+l +m+m+nt+n+1)
=22k + D+ M+ 1D+ mm+1)+ nn+1)+ 1].
Now, the last expression in brackets must be odd (the terms which
are products of two successive numbers are even). Therefore, the
greatest power of 2 which divides the left member of the equation
has exponent 2« + 2. But, in the original equation, the highest power

of 2 which divides the right member is 2‘**'.  Accordingly, we must
conclude that 2« + 2 = 4« + 1, which is untenable for any integer a.

Remark: A second solution of problem (b), which is analogous to that of
problem (a), is left to the reader.

118. (a) Let x,y,z be any three nonnegative integers satisfying
the equation
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24y 4 22 = kayz ., (1)
We shall show, first, that it is always possible to assume
kyz kxz kxy
< =2 < == < == 2
¥R YET 227 (2)

(none of the integers on the left of (1) can exceed half the value of
the right member). To show this, assume, for example, that z >

%. Then consider not x, y, z, but the lesser integers x,y, and z, =
kxy — z, which clearly also satisfy equation (1):

x2 + y? + (kxy — 2)? = kxy(kxy — 2)
If any integer of this new triple is greater than the product of the
other two multiplied by > we again make a similar substitution

until the conditions of (2) are satisfied (after which the process will
fail to yield decreasing numbers for x, y, 2).

Assume now that x < y < 2. First, since y <z £ %, it follows

that

1

IIA

kx|
2 H
kx =2

Equation (1) can be restated in the form

kxy )’ kxy)’
2 l 2 + 7 __ i =
yry ( 2 2 —( 2

Since z é%’, if in the left member z is replaced by y < z, the

numerical value is increased (or remains the same if y = 2); con-
sequently,

e (B2 ) B
2 = 4

This yields the inequality
x4+ 2y = kxy?
Further, it follows from x < y that
¥+ 2y = kxyt;
that is, kx < 3.
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Hence, we have 2 < kx < 3; that is, kx is equal to 2 or 3. But if
kx = 2, then equation (I) assumes the form

x4+ y* 4 22 =2yz,
or
®+(y—27=0;
thus x =0 and kx = 0 instead of 2. Therefore, kx = 3, which means
that & can have only value 1 or 3. It is readily verified by examples
that these values for k& are possible [see the solution of problem (b)].
(b) Reasoning similar to that employed for problem (a) is

used here. There we had x? + 2y? = kxy?; since kx = 3, this inequality
can be rewritten in the form

X+ 2y 2 3y,

or
=y
However, we assumed x < y; consequently, x =y. Assume now

that in the basic equation, (I), x =y, kx = 3. We obtain

2x* + 22 = 3xz ,
or

(z—xXz—2x)=0

Thus, 2 = x or z =2x. Since

it is impossible for z to be equal to 2x. Therefore, z = x.

Accordingly, for condition (2) to be fulfilled, we must have x =
y = z. But, inasmuch as kx = 3, x can be only 1 or 3, and we obtain
two solutions for equation (I):

xr=y=z=1 k=13);
x=y=2z=3 (k=1)

In the solution of problem (a) we saw that any three integers x,
¥y, z which satisfy condition (1) can produce other solutions, by suc-
cessive replacements of the form z, = kxy — 2z of (2). But if z, =
kxy — z, then z = kxy — z,; hence every solution of equation (I) can
be obtained from the least solution by successive substitutions of
form z, = kxy — z. In particular, we obtain in this way the following
solutions for equation (1) (up to 1000):
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(1) For &£ =3:
X g £
1 1 1
1 1 3
1 1 2
1 2 5
1 5 13
1 13 34
1 34 89
1 89 233
1 233 610
2 5 29
2 29 169
2 169 985
5 13 194
5 29 433
(2) For k=1:
x Y 2
3 3 3
3 3 6
3 6 15
3 15 39
3 39 102
3 102 267
3 267 699
6 15 87
6 87 507
15 39 582

The fact that solutions corresponding to £ =1 can be obtained from
those corresponding to £ = 3 by simple multiplication by 3 follows
from the fact that the least triple (3, 3, 3) satisfying the equation for
k =1 is related to the least triple for # = 3 by the factor 3.

119. If the relatively prime pair x,y is to meet the conditions of
the problem, the following equations must be solvable in integers:

22+ 125 = uy,
y:+ 125 =vx.
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We shall show that a solution of these equations produces not merely
the relatively prime pair x and y satisfying the conditions, but two
other pairings x, # and y, v which satisfy the same conditions. That
is, we shall show that x* + 125 is divisible by # and #«® + 125 is
divisible by x, and also that y* + 125 is divisible by » and »* + 125
is divisible by y.
First, x® + 125 = #y means that x* + 125 is divisible by #. The
equalities yield
uty? = x* + 250x* + 125% ;
wi(vx — 125) = x* + 250x% + 1257,
and, finally,
x(u*v — x* — 250x) = 125(u2 + 125) ,

from which it follows that #* + 125 is divisible by x (which is rela-
tively prime to 125, otherwise x and y would not be relatively prime),
Also, the integers x and « are relatively prime, for if x and % had
a common divisor of d, then 125 = uy — x* would also be divisible by
d (that is, d = 5), and, consequently, y would be divisible by 4 (since
yt*=wvx —125). It may be shown, in exactly the same way, that the
integers y and v are relatively prime, and the square of either when
increased by 125 is divisible by the other.

We redesignate our integers x,y,%,v as follows: x =1, y =z,
#=x-, v=1x. If u*+125= x_,x, then the pair of integers u, x_,,
that is, x-,, x_,, also satisfy the conditions of the problem. Thus, if
vt + 125 = x;y, then the pair of integers v, xs, that is, x., x,, also
satisfy this condition. Hence, beginning with an integer pair satis-
fying the conditions of the problem, it is possible to construct an
infinite double-end array of integers,

cory Xogy Xy Xay Xyy Xy,

where neighboring pairs satisfy the equation

2
Hat 125 _
Xa+1
2
Xa+y + 125 = Xasz
Xa

Further, in the given array the ratio of the sum of a pair neighbor-
ing an integer to that integer is constant:
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Xg—1 + Xav1 _ Xa—1Xa+1 + Xt _ (r3 + 125) + Xt

Xa XaXa+t XaXa+:
_ x5 + (x5, + 125) _ Xo t XaXatz _ Xa t Xaie
XaXa+1 XaXa+1 Xa+1

This observation is helpful in extending the double-end array of inte-

gers above: it we designate w by ¢, we will have
[ ]

Xa+1 = tx,. - Xa-
Xa) = IXa — Xa+1
Now we must develop a procedure which will help us determine

all such arrays which yield solutions of the problem. We note, first,
that lf x¢+1 ; xa, then

2 2
x¢+z = xu+l + 125 > xg+1
Xa X

= Xa+1,

and if x,-, = x4, then x,_; > x,_,; hence every chain of integers
augments in both directions from some least integer (or equal pair
of least integers, and two neighboring numbers of the chain can be
equal only if both are 1).

Let x, be the least integer of the solution-chain:
X Z X, X1 Z X
We shall show that x, < 1125 < 12.

We first observe that the number ¢, referred to above. is an integer
exceeding 2. In fact, it follows from the equation

! = Xg-1 + Xa+1 _ Xa + Xg+2
Xa Xa+1

that ¢ is an integer. Hence x, and x.., are relatively prime, and
consequently

Xa—1 + Xa+1
Xa

=

cannot have in its denominator a divisor of x4.,, and

t = Xa + Xa+2

Xa+1

cannot have in its denominator any divisor of x,. Further,
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Xa + Xoiy + 125 S xf.+at§+; >2,
XaXa+1 XaXa+)

t =

or I:n + I:H = 2xq%a+, (since I: + I:H — 2XaXar1 = (Xa — Xu+1)t 2 0).
Thus, t 2 3. Now, since
(xy — Xofx-y — X)) = 02, + X% — XoX) — XoX—
=X Xy — I: — xo(x) — Xp) — Xo(X-1 — Xo)
S xx-, — x5 =125,

it follows that at least one of the (nonnegative) integers x;, — x, and
x-, — x, fails to exceed 11. Suppose that x, — x, < 11. We have
1+ 21 + 125

XoXy !
x; + xr + 125 — 2onl (Il - Io)2 + 125

t—2= =
x.x, Xo[%0 + (X — x0)]

t:

But ¢ = 3 and so ¢ — 2 = 1; consequently,
(1, — x)* + 125 = x5 + xo(x, — 1) ,

which is impossible if x, = 12 > (x, — x,) [since here x} > 125,
xo(x, — x0) > (11 — X0)%].

It remains now to test for x, all integers that are less than 12 and
which are relatively prime to 125; for such an x, x, is an integer
such that x, + 125 is divisible by x, (that is, x, is a divisor of
2 + 125), and £} + 125 is divisible by x,. Since x; + 125 = x,x_,, we
may use the fact that x, is the smaller of the neighbors of x to
obtain

X S x §1/Is+ 125

It is not difficult to verify that all pairs x,, x, satisfying the con-
ditions of the problem can be expressed as follows:

1.1<t 12+1=+125 ) 1,2(: 1=+22+125=65>;
1,3(: 12+3=+125_45> 1.6<t 1*+6’+125=27>;
1,7(: 1=+7=+125=25>; 1’9(1 12+9=+125=23);
2,3(: 2=+32+125 23>; 6,7(! 6’+72+125=5>
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This yields the following solution arrays:

15,001, 126, 1, 1, 126, 15,001,
.-+, 4094, 63, 2, 129, 8383,
1889, 42, 1, 3, 134, 6027, ---;
15,261, 566, 21, 1, 6, 161, 4341,
10,826, 449, 18, 1, 7, 174, 4343,
7369, 321, 14, 1, 9, 206, 4729,
22,658, 987, 43, 2, 3, 67, 1538, ---;
.-+, 2501, 522, 109, 23, 6, 7, 29, 138, 661, 3167,

All possible pairs of relatively prime positive integers x,y, less
than 1000, such that x* + 125 is divisible by y and y? 4+ 125 is divi-
sible by x, are given by the following tables.

X A X X X A
126 1 449 18 522 109
1 1 18 1 109 23
63 1 1 7 23 6
1 2 7 174 6 7
2 129 321 14 7 29
42 1 14 1 29 138
1 3 1 9 138 661
3 134 9 206
566 21 987 43
21 1 43 2
1 6 2 3
6 161 3 67

120. The problem gives rise to the following system of equations
to be solved in integers (where x, y, z, # are the integers sought);
X+ y+z4+u=(x+0v)?,
VHrx+z4+u=(y+wkr,
22+ x+yt+u=(>a+ e,
w+x+y+2=w+s¢

or,

y+z+4+u=2vx+ 7,
x+z4u=2wy+ w,
X+y+u=22+1*, (1)
z+y+z=2su+s*,
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If we add the equations of (I), we obtain

Qv—3)x+QCw —3)y + (2t — 3)z + (2s — Ju
+ v +wr+t4+s2=0 (2)

Note that in equation (2) at least one of the numbers 2v — 3, 2w — 3,
2t — 3, 2s — 3 is negative; otherwise there would be on the left of
the equation the sum of positive integers. Let us assume that
2v —3 < 0; This is possible only if v =0 or v =1. In the first
event, the first equation of system (I) yields y + z + # = 0, which is
untenable for y, z, « all positive. Hence it must be assumed that all
the integers v, w,!,s are positive, and that » =1. In this event
equation (2) can be rewritten in the form

x=Qw—3)y+ 2 —3)z2+2s—Nu+w+L+s2+1 (3)

We now consider the several possibilities.

The numbers x,y, z, 1 are all distinct, Here, the integers v, w, ¢, s
are also all different; if, for example, » = w, the difference of the
first two of the equations (1) yields y — x = 2v(x — »), which is im-
possible for positive v and x # y. Further, if we assume » = 1, the
first of equations (1) yields 2x =y +z + 2 —1,

x=%y+%z+%u-——;—-,
which is inconsistent with equation (3), where the coefficients of ¥,
z, # in the right member are positive integers (since w, ¢, or s cannot
be equal to 1 because they are distinct from v which is equal to 1).
Therefore, this case is not possible.

Precisely two of the integers x,y,z,u are equal. Here we must
separately investigate two cases.

If z=u, then ¢ =s. Equation (3) and the first of equations (1)
now yield:

x=Qw —3)y+ 22t —3z+w*+2t2+1;
2x =y +2z -1
As before, these equations are inconsistent.

If x=y, then w = v =1. Equation (2) and the first of equations
(1) yield, respectively,

2x = (2t — 3z + 25— 3u+ 12+ s+ 2;
=z4+u—1.
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Substituting the second equality in the first, we have
2t—5z+@2s—5u+1*+s2+4=0, (4)

from which it follows that at least one of the two members 2 —5
or 2s — 5 must be negative. Assume 2t —5 < 0; since? > 0and? # 1
(for v =1, t + v, since z # x), it follows that ¢t = 2. Now, if twice
the first of equations (I) is added to the third equation, we obtain

42 +4x+ 6 =4x+ 2z + 3u,

that is, z = %u — 3. Substituting this into equation (4), along with

t =2, we have
s — 13)u+ 252+ 22=0

Clearly, 4s — 13 < 0. Since s >0,s # 1, s # 2, we must have s = 3,
If these values are now substituted into equations (I), there results
a system of three linear equations in three unknowns:

x+z+u=2s+1,
2x+u=4z+4,
2x+z=6u+9
We easily find that x(=y) =96, z =57, u = 40.
The integers x,y,2, u are two pairs of equal numbers. Assume that

x=yand z=u«. In this event, the first of equations (1) yields x =
2z — 1; if this is substituted in (2), we obtain

x=2t -3z +1*+1,
and so
(2t —5z+12+2=0

It follows that 2t —5< 0, and since ¢ >0, {+ 1, we have ¢ =2,
Equations (I) may now be written

x+22=2x+1,
2 +5=4z2+14,

whence x(=y) =11, z2(=u) = 6.

Three of the integers x,y, z, u are equal. It is necessary to consider
two cases.

If y =z =u, then equations (3) and the first of equatians (I) take
on the form
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x=3Cw—3)y +3w*+1;
2x=3y-—1,

and these, clearly, are inconsistent.
If x =y =z, then the first of equations (1) is

2x+u=2x+1,
from which we find # = 1. The last of equations (I) becomes
3x = 2su + s =25 + st
_Ss+2)
* 3

But x must be an integer; hence either s or s + 2 must be divisible
by 3. That is, s =3k, x =k(3k+2), or s=3k—2, x=(3k — 2)k.
Here k is an arbitrary integer.

All the numbers x,y,z,u are the same. In this case, the first of
equations (I) yields 3x = 2x + 1, x = 1. Hence we have the following
solutions for the problem:

x=y=96, z=57 u=40; xr=y=11, z=u=6;
xr=y=z=k@Bkx2), u=1;, x=y=z=u=1

121. Let x and y be the numbers sought:

x+y=1xy,
or,
xy—x—y+1=1,
(x-Dy~-1=1

Since 1 may be expressed as the product of two whole numbers
in only two ways, we must have

x—1=1, y—1=1;
that is, x =2, y =2, or else,

r—1=~1, y—1=-1;
that is, x =0, y = 0.

122. We shall show, first, that at least one of the positive integers
x, ¥,z the sum of whose reciprocals is equal to 1, must be less than
4. In the equation
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1 1
—+——+—1—=1,
x y z

if all of the integers x, y, and z exceed 4, then the sum % + % + 1
z
must be = L + 1 + 1 = -§- Assuming now that *r <y <2z, we

4 4 4 4
have at most two possible values for x: x=2 or x =3 (clearly,

x > 1). These two possibilities will be considered separately.

If x =2, then —317 + 1 1-—- If we use a common de-
2

x 2°
nominator for L + 1_ %— =0, we find the following necessary
condition: ‘
yz2—2y—22=0,
yz—2y—224+4=4,
or,

=2z -2)=14

Since y and z must exceed 1, neither y —2 nor z -2 can be
negative, and only the following cases are possible:
y—2=2,2—-2=2; y=4,2=4,
y—2=1,2—-2=4; y=3,y=6.

1

If x=3, thenl_;.-—:]_L___l
y 2 x

3
2yz—3y—32=0,
4yz -6y —624+9=9,
2y —3)2z2—-3)=9
Sincey = x = 3,2y — 3 = 3, and 2z — 3 = 3, there is only one possibility:

, or

2y —-3=3, 22-3=3; y=3, z=3

Therefore, all solutions of the problem are given by the equations

2 T4 T4
1 1 1 .
7t3te =l
3 3 3 ’
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123. (@) If —i— + Lv = %, then we must have as a necessary con-
dition
ax +ay = xy
or,

xy —ax —ay +a*=a*,
(x—aXy —a)=a*
The last equation has 2,: — 1 solutions, where u is the number of

divisors of the integer a* (including 1 and @? as divisors). To obtain
all of these solutions, we may write the 2. possible systems of form

at a? .
x—a=d, y—azi and x —a = —d, y—a=—-7 (where d is a
divisor of a@?), and discard the system x —a = —a, y — a = —a, which

leads to the unsatisfactory result x = y = 0.
If @ = 14, then @? = 196, and the divisors of a* = 196 are

1, 2, 4, 7, 14, 28, 49, 98, 196.

We obtain the following seventeen solutions to the problem, which
correspond to the above.

X . x Y
15 210 13 —182
16 112 12 —84
18 63 10 -35
21 42 7 —14
28 28 —14 7
42 21 -35 10
63 18 —84 12

112 16 —182 13

210 15

(b) The given equation may be converted, as in the solution
to problem (a) to the form

(x—2)(y—2)=2* (1)

Let ¢ represent the greatest common divisor of the integers x, y, and
z; that is, r = x4, y = y\!, 2 = z,¢, whence x,, y,, and z, are a relative-
ly prime set (that is, there is no nontrivial divisor for all three).
Further, let us designate by m the greatest common divisor of the
integers x, and z,, and by » the greatest common divisor of y, and
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z,. That is, we write x, = mx,, z, = mz,;; y, = ny:, z, = nz;, where
x, and z;, y. and z, are relatively prime. The integers m and 7 are
relatively prime, since x,, y,, and z, have no common divisor. Since
z, is divisible both by m and by n, we may write z, = mnp.
If we now substitute into the basic equation (1) x = mx.t, y = ny.t,
z = mnpt, and divide by mnt?, we obtain
(xz — np)y: — mp) = mnp* (2)

But x, is relatively prime to p, for m is the greatest common
divisor of the numbers x, = mx, and z; = mnp; analogously, y. and
» are relatively prime. Upon expanding the left member of (2), we
see that x;y, = xomp + y.mp is divisible by p. It follows that p =1,
and the equation takes on the form

(22 —n)(y: —m) = mn

Now x, is relatively prime to n, for the three integers x, = mx,,
Y1 = ny;, and 2z, = mn are relatively prime. Consequently, x; — #n is
relatively prime to n, whence y, — m is divisible by n. Analogously,
x, —n is divisible by m. Thus, x;, —n==xm, y,—m==xn;, x, =
+y, = tm + n. Therefore,

x=m(m + n)t,
y =xnim + n)t,
z=mnt,

where m, n, ¢ are arbitrary integers.

124, (a) It is readily reasoned from the equation x¥ = y* that the
prime divisors of x and y must be the same:

x = p‘l'xp‘:z. . .p:k :
y = pfpft--pfr;

where p,, po, ---, pi are prime numbers. In view of this, and the
equation, we have

@,y = Pix, @,y = Pox, -, any = fix .
We shall assume y > x. It follows that
a, < ﬁh a; < 32) trey Qg < ﬁk

Consequently, y is divisible by x, or y = kx, for some integer k. We
may rewrite our equation as
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x¢® = (kx)*

If we take the xth root on both sides, we obtain x* = kx, or x*-! = k.
Since y > x, then k£ > 1, which implies x > 1. But 2*-! =2, and for
k > 2 we always have x*' > k. In fact, if 2> 2 and x = 2, then

xk-t = 25=1 > kb R
since already 28! > 3; and for k=2, x > 2,
rt=x>2=kFk
Therefore, the only solution of the problem, in positive integers, is
x=2 k=2 y=kx=4.
(b) We shall designate the ratio -% by %, whence y = kx. If
we substitute this for y in the equation, we obtain
x* = (kx)* ,
or, taking the xth root on each side and then dividing by x, we
obtain
x'=k,
from which we obtain
x = kY k-1

y= khV 1) — Bkl k-1
b4

as a fraction —q- in lowest terms.

Write the rational number k—l— 1

Substituting this expression for 7 11 into the formula, we have
k—1=i, k=1+i=p+q k =p+q;
b b b k-1 q
_ p + q)l!l« _ (p + q>(p+q)lc
x el — fr ————
( p 77\

Since p and g are relatively prime, in order for x and y to be
rational numbers we must be able to extract the gth roots of p and
of p +q. But since, for ¢ 22 and p = »n?, we have the following
inequality

n°<p+q<(n+1)°=n°+pn°“+l(qz_—l)n"’+ ,

we must conclude that ¢ =1 is necessary.



220 Equations Having Integer Solutions

Therefore, all positive rational numbers satisfying the given equa-
tion are given by the formula

(5 -

where p is an arbitrary integer other than 0 or 1.

125. Let n be the number of eighth-grade students who participated,
and let m be the number of points assumed by each of them. The
total number of points won in the tournament is then nm + 8. This
number clearly is also equal to the number of games played. Since
there were, altogether, n + 2 players in the tournament, and each
played (n + 1) games (one with each remaining player), there was a

£ n+2)n+1)
2

total o games played (two players to each game,

hence we divide by 2). Therefore, we have

mn+8=(n+2)én+l) ’

or, after simplification,
nn+3—2m)=14

Now, »n is an integer, as is the number in parentheses (since m is
either an integer or a fraction having denominator 2).

Since n must divide 14, » can be only one of the numbers 1,2, 7,
or 14. We must discard the possibilities » =1 and » =2, since in
either of these cases the total number of participants could not have
exceeded 4 and the two seventh graders could not have amassed as
many as 8 points.

There remain the possibilities # =7 and # = 14. If » =7, then
77+3—2m)=14; m=4. If n =14, then 1414 + 3 — 2m) = 14;
m = 8. Hence, there are two answers: n =7 and n = 14.

126. Let n be the number of ninth graders who participated, and
let m be the number of points won by them. Then there were 10n

tenth-grade students, and they won a total of %m points. In all,
then, there were 11n participants in the tournament, and lzlm points

were won,
The total number of points won is, clearly, equal to the number

of games played, But since each of the 11n players played each other
11xn(11ln — 1)

once, there was a total of 2

games played, and so we have

the equation:
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1 Usal-1
2 2 '

and thus,
m=nlln—-1).

But each ninth-grade student played 1172 — 1 games (since there
were 11z participants in all), and the n ninth-grade players could
have amassed n(11nz — 1) points only in the event that each of them
won every game he played. But this is possible only if there were
just one ninth-grader playing; that is, necessarily, n = 1. Therefore,
since this is a possible solution, one ninth-grade student participated
and he won ten points.

127. The conditions of the problem are (using Heron’s formula for
the area of a triangle in terms of the lengths of the sides)

VP —a)p—Bp—c)=2p,

a+b+c. L

where @, b, and ¢ are positive integers, and p = et

p—a=x, p—b=y, and p—c=2. Then the above equation be-
comes

Vix+y+a2xyz=2x+y +2),
or, upon squaring both sides and simplifying,
xyz=4(x+y+ 2

Here, x,y, and z are all integers, or else all of them are fractions

with denominator 2 (depending upon whether p is integral or not),

that is, all are half of odd integers. In the latter case, however,

the left member of the equation is actually a fraction and the right

member is an integer. Hence, x, y, and z are necessarily integers.
Let us assume that x = y = z. The equation yields

gy tidz
yz—4

consequently,

4y + 4z >y
yz—4

We multiply this inequality by yz — 4 (it is clear that yz—4 > 0,
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since otherwise x would be negative) and investigate the resulting
inequality in y:

y2—8y—420, (1)
that is,

(y=y»)Xy—2») <0,

where y, and y, are the roots of the quadratic equation in y, zy* —
8y — 4z = 0 (z being assumed fixed):
3= 4+ 116 + 42®
z ’
,=4— V16 +42*
z

y

However, y. is clearly negative here, which means that y — y. > 0
(y itself being positive). Consequently, a necessary condition for
validity of inequality (1) is that

y - 4 é 0 ’
y< 4+ 116 + 42°
- 2

Hence, we must have yz <4 + /16 + 4z , which implies22 — 4 =
V16 + 42* (for z = y). Squaring both members of this last inequality,
we obtain

2 — 822+ 16 =< 16 + 42%;
2 £ 1222,
which can hold only for z £ 3.
We shall consider the three possibilities.
Q) z=1,y<4tV16+4 1/116+4<9;

x= 4y +42 4y +4

yz—4 y—4

We will obtain a positive integer for x only in the following cases
(for y < 9):

y =5 (here, x =24),

y =6 (here, x=14),

y =8 (here, x=9).
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@ z=2,y<4FVI16e+44 ‘/126+4'4<5;

X = 4y +4z 4y+8 2y+4
yz2—4 T 2y—4 " y—-2

This produces the integral x only if y =3 (yielding x =10) or y =4
(yielding x = 6).
3) z=23, y=—4+ V16 +4.9 <4 For z2=y=3, =ty tidz
3 yz—4
will fail to be integer.
These possibilities yield the following five solutions of the problem.

x y oz xtyt+z=p a b ¢
24 5 1 30 6 25 29
14 6 1 21 7 15 20
9 8 1 18 9 10 17
10 3 2 15 5 12 13
6 4 2 12 6 8 10

128. (a) The problem clearly involves the solution, in integers,
of the equation

x2+y2:22

If ¢ is the greatest common divisor of x,y, and z, we may factor
out #2 from both sides of the equation to obtain an equivalent equation
(having the same solution triples x, y, 2); hence, we shall assume from
the beginning that there is no common divisor for x,y,z. This will
imply that each pair of integers is relatively prime, since if two of
the integers have a common divisor, that number must also divide
the remaining integer.

Since now »x,y,z are assumed to be relatively prime, it follows
that at most one of these unknowns can be even; if two them, for
example, are even, then the third must be even, and hence they
would not be relatively prime. Further, if x and y are both odd,
say x =2k + 1 and y =2/ + 1, we must have

By =@k ) @1 =22k 4+ B+ R+ 1)+ 1)

Now, the square of the integer z is odd if z is odd, or divisible by
4 if z is even. Since the expression on the right for x* + y? is not
divisible by 4, we must conclude that x2 + y* must be an odd number,
and so one of the integers x,y is even and the other odd; also z is
odd. We may, with generality, assume that x = 2x, is even.
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The equation may now be written in the form

@n) =2t -y,

or,
2 z+y zZ—Y
Hn=— =—=
! 2 2
Let z;y =z and zgy =y; then z=u+v and y=u —v. The

integers # and v (recall that z and y are both odd) must be relatively
prime (otherwise z and y would not be relatively prime). Hence
since their product is a perfect square, each of them is a perfect
square; that is, # = a* and v = b* for some integers 2 and b. Finally,
we have

2=u+v=a"+b",

y=u—v=a*—>b,

xn=Vu =ab,
or, if now we relieve the condition that x, y, z be relatively prime
x = 2tab ,
v =ta*— by,
z=Ula*+ b,

where @ and b arbitrary relatively prime integers, ¢ > b, and ¢ is an
arbitrary integer.

These formulas yield all solutions of the problem.

(b) We shall designate the sides of the triangle by x, y, and

z (z being the side opposite the 60° angle). Using the law of cosines
from trigonometry, we have z* = x* + y* — xy.

We must solve this equation in integers. It is convenient to use
a rather indirect method; we can put the equation into the format

[dz+ (x+ VP =22+ 2(x + »)]* + [3(x — »]?
or,
w: = ut +

where # =22 + 2(x + ), v =3(x — y),and w = 4z + (x + ¥). Now the
result of problem (a) can be used to obtain

u = 2tab ,

v = ta?* — b,

w = ta* + b*),
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where 2 and b are some relatively prime numbers and ¢ is an arbitrary
integer.
Therefore, we obtain
4z + (x + y) = Ka* + b%),
22+ 2(x +y)=2tad,
I(x — y) = Ha® — b?)
Solution of this system of equations in three unknowns yields
6z = 2H(a® + b*) — 2tab ,
I(x + y) = Atab — Ha® + b%) ,
Ix — y) = ta*— b9,
and finally,

x= -:—;—tb(Za b,

y =—;—ta(2b —a),

z= -;—t(az + b® —ab)

In order for the values of x, y, and z in these equations to be integers,
it is necessary that at least one of the numbers, ! or a + b, be divisible
by 3. [If ¢ =3¢, then the equations may be expressed in the form

x = t62a — by,

y = hLa(2b - a),

z = (a* + b* — ab)

If @ + b is divisible by 3, then either ¢ = 3a, + 1, b =35, + 2, and
x = 4(3b + 2X2a, — b)),
y = #3a, +1X2b, — a, + 1,
z = 1(3a} + 3b — 3a\b, + 3b, + 1),
or else a =3a,+ 2, b=23h, +1, and
x=13h+1)2a — b +1),
y=H«3a, + 2)(2b — a)),
z = 3a} + 3b} — 3a:b, + 3a, + 1) .]

If the equations we obtain are to be meaningful, it is necessary
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that 2a > b and 2b > a; that is, —;— < b <2a. In order for these

conditions to hold, the largest of the three numbers x, v,z (ifa > b,
the largest will be the number x) will be less than the sum of the
other two. That is, it will be possible to construct the triangle
using segments of lengths x, y, and z.
(c) Using the law of cosines, we have
Z2=x*+y'+ay,

where z is the side of the triangle opposite the 120° angle and x and
v are the remaining sides.
This relationship can be rewritten in the form

4z + (x — P = [22 + 2(x — Y)]* + [Bx + »))?
As in problem (b), we find

x=%ta(a—2b),
1
v =-—th2a - b),
3
1
z—?t(az+b’—ab),

where a and b are relatively prime numbers such that a > 2b and at
least one of the integers ¢ or a + b is divisible by 3.

129. Inthetriangle ABC (whose sides are a, b, ¢ and whose opposite
angles are, respectively, A, B, C) suppose that B=nA. Then C=
180° — (# + 1)A, and, consequently, by the law of sines,

b _ sinnAd

a sinA’
¢ _ sin(n4+ DA
a sin A

(a) n=2. Since
sin2A =2sin Acos 4 ,
sin3A =4costAsinA—sinA,

we have

i=2cosA,
a
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£ =@cosAyr—1 (1)
a

But 2cos A =w

will always be rational. Let 2cos 4 = %, where p and ¢ are inte-

, and so in the integral triangle 2cos A

gers. Then, by (1), we have
a:bic=q:pq:(p*— ¢%

If p and ¢ are relatively prime, then the three integers ¢?, pq, and
p?* — ¢* do not have any common divisor other than 1. It follows
that in all triangles satisfying the given condition B = 24 and having
least integral sides (not having a common divisor) the lengths of the
sides are expressible by the formulas

a=q,
b=pq,
Czpz_qz)

where p and ¢ are relatively prime integers.
In order actually to determine the triangle, where B = 2A4, the
numbers p and ¢ must satisfy the following condition: the angle A =

arccosA must be such that 0 < 4 < 60° (A must be less than 60°,

since A+ B+ C =3A + C =180°). Since cos0 =1and cos60° = %,

this condition can be rewritten as 2 > ya > 1. The least integers p

and ¢ satisfying this condition are p =q3, q = 2. It follows that the
smallest triangle with integral sides satisfying the condition B = 24
will be the one having sides a =4, 6 =6, ¢ =5.

We proceed now to problems (b) and (c). Here it will be necessary
to use trigonometric functions of A to express sin5A4, sin6A4, and
sin7A. Successive applications of the identity involving the sine of
the sum of angles [or using the general formula of problem 222 (b)
given in the “Problems” section] yields the following identities:

sin5A = (2cos A)*sin A — 3(2cos A)*sin A 4 sin A
sin6A = [(2cos A)? — 1][(2cos A)* — 3]2cos A sin A ,
sin7A = [(2cos A)* — 2][(2cos A)t — 34 cos? Asin A —sin A

The calculations are then carried out exactly as in problem (a).
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Assume that 2 cos A = (p/q), where p and g are relatively prime
integers; It follows from the identities for sin5 A, sin6A4, and sin
7 A that triangles with integral (nonreducible) sides whose angles
satisfy the condition B=nA, where n=5 or 6, have sides satisfying
the following formulas:

(b) For n =5,
a=4q,
b=q(p' — 3t’¢* + ¢,
c = p(p* — g (p* — 3¢,
(¢) For n =6,

a = qa ’
b= pg(p* — ¢ (p* — 3¢%),
c=pHp*—2¢0)(p* — 3¢ — ¢°
(Here, p and q are relatively prime integers.)
In order that a triangle be actually determined by these numbers,

and where B = nA, the integers p and ¢ must be such that:
(b’ For m =25,

0< arccos—p- < 30°,
2q

(c’) For n=6,

0 < arc cos—g—q <# = 25°43'

Since cos 30° =1/—23, the integers p and q, for # = 5, must satisfy
the condition 2 > % >V 3 =1.732 The least integers p and
g which satisfy this condition are p = 7 and ¢ = 4 (¢ cannot be less
than 4 because —t‘;— differs from a whole number by less than %).

Therefore, the smallest triangle with integral sides, in which B=
5A, will be the triangle with sides

a = 1024,
b=1220,
c=231
For n = 6, the integers p and ¢ must satisfy the condition

2>—2->2cos 130".
q 7
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We find from tables that

180°

7 ~ 2 cos 25°43’ = 1.802 .

2 cos

Therefore, we find that, necessarily, 2 > pA > 1.802. The least in-

tegers p and ¢ satisfying this condition arg g =6,p =11, Substitut-
ing these values for p and ¢ in the formulas, we find that the
smallest triangle with integral sides, in which B = 64, will be the
triangle with sides

a = 46,656 ,
b=172,930,
¢ = 30,421

130. Given a right triangle with integral sides x? and »* and
with hypotenuse z, where z also is an integer. It is readily re-
asoned that x2, y?, and z are relatively prime, and so

x* = 2ab,
¥ =qa? — b2,
z=gq%*+ b,

where @ and b are relatively prime numbers, and a > b[see the solu-
tion of problem 128 (a)]. The second of these equations can be re-
written as

at =5+ y?,

whence a, b, and y can be expressed by means of the formulas

b=2u,
y:tz-uz!
a=1+u,

where ¢ and u are relatively prime integers [again using the results
of problem 128 (a)]. We obtain

x2 = 2082 + u®)2lu;
(i)2 = f{u(l® + u?)
2

But ¢ and « are relatively prime, which means that they are also
relatively prime to #* + «?; consequently, since the product fu(f*+u?)



230 Evaluating Sums and Products

is to be a perfect square, each of the factors must separately be
perfect squares:

t =1,
u=yl,
£+uw=2

The last equation says that the under the initial assumption there
exists a right-angle triangle with sides f = xf and # = y{ and hypo-
tenuse z,, where x,, y,, and z, are again positive integers and, of par-
ticular importance, z, < z[since, further, zi = (£2+u?)?=a*<a?+b*=2z].
Hence, if there exists any right-angle triangle each of whose legs
are squares of integers, and whose hypotenuse is an integer, then
there exists another such triangle which has a smaller hypotenuse.
Employing the same reasoning we can construct a succession of these
triangles with decreasing hypotenuse. Since all such hypotenuse
lengths are integral, we must arrive at a triangle whose hypotenuse
is of length 1. But this is a contradiction since 1 cannot be a sum
of squares of two positive integers.

131. We shall designate the left member of the equation by A
and the right member by B. Then A = B follows from:
n-A=123 n-A=(02n)
n!'-B=(2*n"-[1-3-5 2n — 1]
=(2-4-6 2n)-[1-3 2n — 1] = @n)
132. (@) If we employ the identity

1 _1 1
e+ k k+17
we obtain
1 1

=1 =
1-2 2’
1 _1 1
2.3 2 3’
11 1
347 3 4"’

1 1 1

Adding together all these equations, we obtain
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1 1 1 1
ST S 1 —1—-=
1-2+2-3+ +(71—1)n n

(b) Using the identity

1 1 1 1
k(k+ 1)(k+2) 7[k(k +1) (B+1)(k +z)]
(which can be readily verified), we obtain

1 _ l[ 1 . 1 ]
n—=2n—1mn 2ln—-2)n—-1 (n—1n
Adding together all these equations, we obtain

] ] ] ]
12317234 7345 7 Yt 2m—1m

22w

(c) We use the identity (whose validity is readily established):

1 1 1 1
kk + D(k+2)(E+3) '3'[ R+ Dk +2) (k+Dk+2E*k+ 3)] :

This yields
1 _L( 11 )
1-2-3-47 3\1.2.3 2.34)/"
1 _L( 11 )
2-3-4.5 3\2-3.4 345/’
1 _L(;_;)
3-4.5-6 3\34-5 456/’

(n—3)(n—2)(n—1n

_L[ 1 B 1 ]
T3Lm—=3(n—-2n—-1 (n—20—n
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Adding together these equations, we obtain

1 1 1 1
1234723453456 T i—3n—2n—1m

g e

Remarks: 1f we '‘guess at’’ the results we expect to obtain (which is often
quite feasible, if we try a few small values for =), we can often prove the
general validity of a formula by using mathematical induction (see, for ex-
ample, the solution of problem 133).

It is possible to prove, also, that in general

1 1
1.2.3...p+ 2.34---(p+ 1)

1

t et Dm—p+m—p+3--m

1 1 1
T p - 1[1.2-3---(p—1) T m—p+2)m—-p+3n—p+4) n]
[the proof being analogous to that of problems (a - dash)].

133. These identities are most conveniently proved by mathemati-
cal induction. We leave the verification of (a) and (b) to the reader,
but we give here the proof of the more general equation (c) of which
(a) and (b) are merely special cases.

The equation is valid for » = 1, since

123 pp+1)
p+1

1-2-3.+- p

Assume now that the equation is valid for some #:

_nn+l) (n+p)

1-2.3  p+ +n(n + 1) n+p-1 » T 1

Then we have

123 p+23 pp+1)
+ +an+l) m+p-D+n+1) @#+DPp—1Dn+P)
_nn+l) ((n+p)
p+1
_nn+1l) B+p)+Pp+Dr+D (n + p)
p+1

+n+1 (n+p)
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(mn+ )+ pm+p+1)
- p+1

By mathematical induction we conclude that the equation holds
for all ».

134. First Solution. (a) We write the sequence of equations
1P =12
2=01+17=1+31*+3-1+1,
P=02+1P=2+3-22+3-2+1
£ =03+1r=3+33+33+1,

m+1P=w+3m*+3n+1

Adding_ all these equalities, and cancelling equal terms on both sides,
we arrive at
m+1p=0+31+22+3+ +nY)
+31+2+3+ +n)+n.
It follows that
1242243+ 4o
_m+1P—-1-31+2+3+---+n)—n

3
2+ 6nr+6n—3m2—3n—2n n@Cn*+3n+1)
- 6 h 6
_nn+ 1D2n+ 1)
- 6

(b) We write the sequence of equations:
1'=14,
2=Q+1)=1"+41"+61"+4-1+1,
FP=2+1)0=2+422+6-22+42+1,
$#4=3B+1)=3+4-33+6-32+4-3+1,

m+1Y¥=n+4n+6n+4n+1

Adding all of these equalities, and cancelling equal terms on both
sides, we obtain
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n+1D'=1"+4Q0*+ 20 + + n?)
+ 6(1* + 22 + +n) +41+2+ +n)+n
We now use the result of problem (a) to obtain
18 + 28 + + n®

=1 (_]_elnt D@+ 1) mn+1)_
_4[(n+1) 1-6 ) 418 ,,]

= 2({n + D — 1{0n + P + 1] = nn + Di@n + 1)

—2n(n +1)— n}

%[(n +DM 2+ —m+ DR+ 1) —2n + 1) —1]

%[(n+1)(n’+2n+2——2n—1—2)+(n2+2n+2—1)]

SECES T S UESS.

(¢) Proceeding as in problems (a) and (b), and using the ex-
pansion (k& + 1)® = k* + Sk* + 10&° + 10k* + 5k + 1, we obtain
(n+1P¥=1+5(1"+2+ + n')
F10(1+ 20+ )+ 1012+ 20+ 4
+51+2+ +n)+n,

from which we find, using the formulas from problems (a) and (b),

nn+1)2n+ 1@ +3n—1)
30

420+ +at=

(d) We write
Se=D+2+3+ +m=20FrLD
? 4

[see problem (b)]. We then obtain
1343+ 5% + +@2n—-3"+@2n—1»
=[1*+2%+ + 2n)»] —20[1° + 28 + + n%]
= S, — 8S, = @n)yCn + 1)! _ gni(n + 1F
4 4
=n2n + 1)* —2n*(n + 1)* = n®(2n + 1)* — 2(n + 1)?
=ntdn*+4n+1—2n*—4n — 2) = n*@2n* — 1) .
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Second Solution. (a) Consider the following table.

1st row 1] 2 3 k n
2nd row 1 2 3 k n
3rd row 1 2 3 k n
kth row 1 2 3 k n
nth row 1 2 3 k ”n

235

The sum of all the integers of any row is equal to 1+2+3. .-+,

that is nn +1)

equal to n - 1'("—+D

, and so the sum of all the integers of the table is

Now let us sum up the numbers within any

region bounded by lines. For the region bounded by the kth row

and kth column we have the sum
1+2+ +k—1)+kk

(k— Dk 3 1
W R = S pr =
g tkEgk gk
Summing up all the regions in this way, we obtain
Sz t - 42+ = 22D

from which we obtain

2 n*n+1) nn+1) nn+1)2n+ 1)
2 2 2 & —
12 4+ 22 4 n 3[ 2 + n ] ;
(b) Consider the following table
st row 12 22| 3 k? n?
2nd row 1@ 22} 3 k? n?
3rd row 1@ 22 32 k* n?
kth row 1@ 22 3 k? n?
nth row 1z 22 3 ke nt
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The sum of all the integers of any one row of the table is
42+ 4+ +a2,

that is, W [see the solution of problem (a)]. Hence the

sum of all the integers of the table is equal to win+ V@n+ 1)

However, the sum of the integers in the region bounded by the kth
row and kth column is equal to

(k= DRk —1)

12+2 4+ 4+ (k— 1+ kb= s

w|a

1 1
3 2 —_
k 2k+6k

This yields
4 ) 1
?(13_\’_28_\’_ -rn“)—7(12+22+ +n2)

nn+ 1H2n+1)
6

+%(1+2+ + )=

from which, after some manipulation, and using the result of prob-
lem (a), we obtain

o _mm £ 1)

B+2+ o+
" 4

(¢) This problem can be solved in a method quite analogous to
that used in problems (a) and (b) by employing the integers 13, 2¢,- - -,
It is left to the reader to carry out the details of the proof.

Remark: 1f we could ‘‘guess at’’ the results of problems 134 (a-d) by
considering small values of n, mathematical induction would serve to establish
the validity of the formulas.

135, If we add 1 to the left member of the given equation, we
can write

[(1+a)+5b1+a)]+cl+a)l+b)
+ +il+a(1+86 (1+4k
=[1+a(1+0b
+cl +a)y(1+b)]+d1l+ a1+ b1 +c)
+ + 1+ a)(1+b) 1+ k)
=[1+a)d+b6(1+0
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+d1+a)1+60+ )]+ +I1+a1+b) (A+4k
=(1+a)1+b6)AQ+0)(1+d)
+ +I1+a)1+b) (A+4k
=14+a1+b1+0) a+1n,
which proves the proposition.
If a=b=c-.-- =1 then we have
a+a(l+a)+ al + a)? + a(l + a)®
+ tal+a'=Q0Q+ar—-1,
where n is the number of integers a,b,c, ---,/; writing 1 +a ==x,
whence 2 = x — 1, we have
x—DA+x+ x*+ +xH)=x"—-1,
which is the formula for the sum of a geometric progression.

136. (a) We add 1 to the sum we wish to determine, and we ob-
tain
Tt+1-1H+2-20 4+ 3.3+ + n-n!

=(2'+2:2) + 3:31 + + n-n!

=3+ 33+ +n-n! =4+ + n-n!

=Ml +nn)=mn+ 1
therefore,

1-11 4+ 2:2! + 3.3 + +unl=m+1-1

Remark: This result can be obtained from the formula of problem 135 by
substituting a =1,6=2,¢=3,---,l = n.

(b) We add to the summation under consideration the term
A =1, If we employ the fact that

Ch+ C'=Cuty,

we obtain
(Coi+ Crr) + Chia + Cars+ + Cine
= (Chsz + Cina) + Chts + + Ck oy
=(Chs+Ca)+  +Cin
= C:+| + + C:+k = = C:+k+|;
therefore,

:ﬂ + C:+2 + C:+S + -+ C:+k = C:+k+l —1.
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Remark: This result can be obtained from the equation of problem 135 by
. n+1 n+1 n+1 n+1
t = = = - =
letting a T b 2 ¢ 3 N X

137. From the definition of a logarithm we obtain

(In fact, if logwa = y, then b¥ = a, or @¢'/¥ = b, whence -}17 = log,b.)

The equation can therefore be written in the form
logy2 + logx3 + + log~100 = logx (2-3 - -+ 100),

from which the desired conclusion immediately follows.

138. It will be shown by mathematical induction that the sum we

seek to determine is equal to——l.——. First, the proposition is
alaz LIS a"
obviously valid for » = 1. Now, assume that the assertion is valid

for n — 1 positive integers, and consider the sum S of the given frac-
tions for »n integers. From each of the n! terms of the sum S, we
1

can factor out the fraction , since this final factor
. a + a; + + an L .
has as its denominator the sum of all the » positive integers (the

order of the addition being unimportant, since no integer is omitted).
Further, grouping in the parentheses separately the (n — 1)! terms
corresponding to those permutations of indices where the index 1 is
missing, the (# — 1)! terms corresponding to the permutations where
the index 2 is missing, and so on, we arrive at n separate sums, to
each of which we can apply the induction hypothesis, since each
comprises (n — 1) integers; for example, @, @y, * -, a,, OF @, @, -*,as,
and so on,
Summing these, and using the induction hypothesis, we obtain

- L (11 1)
a, + + an, \a.as Qn aas Qn a.a; an-y
_ 1 (a; + a» + +a,.) - 1
Cata+t + an aa; a, aa; --a

which is what we wished to show.
139. (a) Multiply the expression by 1 ——:13- to obtain
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[(-5)0 ) )0+ ) et rs)  (vaw)

Therefore

(36 ()

13t 3/, 1
T 1—(/3) ‘2(1 3="“)

(b) If we multiply by sin @, we obtain

(sin ¢ cos o) cos 2 cos 4 - - - COS 2"

= % (sin 2 cos 2a) cos 4 cos 2"

= % (sinda cos da) - - - CcOS 2"

= isin 22q cos 2% = m
21 Zu+l
Therefore
sin 2"t'a
COS @ cOS 2c¢ cos 4o cos 2 = ——— |
2**1sina

140. Since 2!°=1024, we can write 2'°°=1024'°, Since 1000!°=10%°,
which is the number with 1 as a first digit followed by 30 zeros, and
since 1024!° > 1000', it follows that the number 2! = 1024'° cannot
have fewer than 31 digits. However,

1024!° < (1025)‘“_ (ﬂ)”
1000 1000/ ~ \40

20 40 40 40 20 20 40 40 20
(4140 3 3% 37 3% 3B %M B 32
40 39 37°3 35 34 33 32 3
=40,
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since
41 40 39
20393
41 1 40, 1
(40—1+40,39—1+39,andsoon). Hence,

210 = 1024'¢ < 10 - 1000,

which implies that 2'° contains fewer than 32 digits. Therefore,
the integer 2!°° contains exactly 31 digits.

Remark: This result is even more easily obtained by using logarithms.
Since log 2 = 0.30103, log 2!'® = 100 log 2= 30.103, and so 2!% must have 31 digits.
But the technique used in solving this problem without using logarithms has
independent interest.

141. (@) First solution. We designate the product-;— % %
99 . _2 4 6 98
100 by A, and consider also the product B = 3 5 7 99
Since

3 2'5 4 ' 7 6’ 99 7 98’ 100’
we have B > A. Now, clearly,

Ap-l.2 3 4 5 6 B 9 _1

2 3 4 5 6 7 99 100 100
It follows that
1
2 -
A* < AB 100 °
whence A <1L0 Further,
3 5 7 99
A=>2.=2, 2 ... 22
B<2A=4 5 % " 10"
since
2.3 4.5 6 7 @ 8_9
3°4°5 6’78 9 100

Consequently,

A 24> AB= ’&W which implies A > ﬁ.

Second Solution. We write, as above,
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Then,
12 32 52 992

2: ——
A 2t 4 6 100% ’

from which we obtain
1 3 -1 51 992 — 1

2 4 e U TI00T
12 32 52 992
2 .
<A<FI RSl F-1 T00°-1
If we factor the factors of the numerator on the left and the denomi-
nator on the right as differences of two squares, we obtain

1 24 46 98100 . 1 33 55 9.9
2-2 44 6-6 100-100 1.3 35 5.7 99-101 °’
or, after simplification,
D SR U
200 < 4" < o1
1 1 1
- <A i _ .1
0z 4 ST <o

which is what we set out to prove,

Remark: A more general relationship may be proved in exactly the same
way:

1 135 m-1__1
2vn 2 1 6 m Vo
(b) We first show that if » > 1, then
1 3 5 2n—1 < 1
2 4 6 2n V3n+1

This may be done conveniently by mathematical induction. [f n=1,
we have
11
2 V3 T1+1
Assume now that for some »
1 3 5 2n—1 _ 1

2 4 6 2n T V3 +1

2n + 1
2n +2

If both sides of this inequality are multiplied by

, it becomes
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1l 3 5 2n—1 2n+1 2n +1

2 4 6 2n 2n+2= 2n+2V3n +1
Now,
[ 2n +1 ]’_ (2n + 1)
Cn+21V3n+1 | 12n® + 28n* + 20n + 4
_ (2n + 1)

T (122 + 2817 + 19n + 4) + n
2n + 1) 1

S+ )@ rd) +n mtd’
and it follows that

2n +1 < 1
Cn+2V3n+1 1V3n+4

Thus, we obtain

1 3 5 2n—1 2n+1 1

> 4 6 2 42 V3n+ D+l

We conclude, by the principle of mathematical induction, that for
every n

1 3 5 2n—1 _ 1

2 4 6 2n T V3n+1
(We note that equality holds only for n = 1.)

If now we let » =50 in this last inequality, we find
1 3 5 99 1 1 1

2 4 6 10°v3 50+1 151 12.288..
which proves the assertion of the problem.
142. We start with

1w _ 1-2-3...100

2100 1% = 959(1.2.3...50)-2°%(1-2- 3...50)
B 1-2-3...100 _1:3:5...99
~(2-4-6...100)-(2-4-6...100) 2-4-6 100

and apply the results of problem 141 (a).

143. It suffices to determine which is the larger: 101" — 99" or 100",
Consider the relationship
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101» — 99~ (100 + 1) — (100 — 1)

100~ 100"
_ 2ACar10071 4 C2-100"2 + - - -)
- 100~
_o(r  pn—Dn—=2)
=2+ Mgt )

It is clear that the fraction on the left exceeds 1 if #» =50. We
show that this ratio exceeds 1 also for # = 49. We have

49 49.48-47 49 18424
2(100+ 31000 T )>2<100+ 1008)

>2<£ 1002)—1
1001 100°) =

Now we show that if » = 48, the ratio under consideration is smal-
ler than 1:

2<iss_+4,ss-4r7-464r 48-47-46-45- 44 )
100 T 3r-100° 51-100°
48 488 485
< 2[100+ (1-2-3)-100° | (1-2-3)2-3)100°

487
taz23)@ 323100 ]

48 1748\ 1748
‘2['1?0 6<100)+—6_=<100)+ ]

48
100  _ 9600

<2 1/ 48 2_9616<l
6<100)

Clearly, now, the ratio is also less than 1 for all positive integers
less than 48.

Therefore, we finally obtain: 99"+ 100" is greater than 101" if »<48
and is less than 101~ if n > 48,

144. We first show that the product of » consecutive natural num-
bers is greater than the nth power of the square root of the product
of the first and last of these numbers. Let the n integers be
a,a+1,---,a+n—1. Then the kth number from the beginning
will be @ + £ — 1, and the kth number from the end will be a+n—=%.
Their product is
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@+k—NDa+n—~kK=a+an—a+k—-1(n—-k)

2a*+an—a=aa+n-1),
where the equality is obtained only for k=1 or £ =n. That is, the
product of two positive integers equidistant respectively from each
end of the sequence (for odd n, these two integers are taken to be
the common middle one) always exceeds the product of the two ex-
treme (first and last) integers. But then we have, for the product of
all the numbers,

aa+1)---(@+n—1)
=[a@a+n— DMt =[Vaa+n-1,
where the equality holds only if n =1 or n = 2.
We shall show now that 300! > 100*®. We have

1 2 25> 1755 = 5,

26 --- 50 > (126 - 50)»* > 35%;

51 100 > (/51 100)*° >70%;

101 200 > 171007 - 17200190 = 10200 . 2%,
201 -+ 300 > 1/200%° . 1/3001% = 100 2% . 3%

If we multiply together all the left members of these inequalities
and compare the result with the product of all the right members,
we obtain

S(X)! > 5!5 3525 7050 10400 .2[00 350
= 550 7!5 550 . 1450 10400 2100 . 350
= 10500 725 1450 350
= 10500 2125 42!5 1425 > 10500 2025 402! 1425
= 10550 225 . 425 1425 — 10!50 1122!
=100 1,122 > 10800 = 1003

Remark. A more general result is shown in problem 148.

145. We first show that, for any natural number % < n,
k 2
1+—k-§<1 +-l-> <1 +-k—+k—
n n n n?
We use mathematical induction. The proposition is obviously true
for £ =1. Assume now that the proposition holds for a particular
value of k. We shall show that it then holds for £+ 1. We have
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k1 k
(4 5) =0 ) ()2 3)0+ )
n n n n n
=1+-’ﬁ+%>1+M
n n

We do not need here the fact that £ < #, hence the inequality is
valid for any integral value of £. Assume now that £ < n. Then:

() =) () <0 esa)(+ )

2 2
[ kL B2t k4l B

n nt n nt
1 2 . b
gkt +(k+21)_n(k+}) k
n n n
<1+k+1+(k+21)2
n

since n(k + 1) > k* if n =2 k.
If we now substitute 2 = »# in the inequality, we obtain

n 2
2=1+l<(1+—1-) <l+242=3
n n n o n
146. In view of the result of the preceding problem, we have

(1.000001)! 000,000 — (1 +__1—>l.ooo,ooo> 9
' 1,000,000

147. It is clear that
(1001)**® _(lOOl)“’00 1 (1 + 1 >‘°°° 1 <3 1 <1
(1000)t°° — \ 1000 1001 ~ 1000 1001 1001
(see problem 145), and, consequently,
1000'°% > 1001°%°

148. Assume that the given inequality is valid for some natural
number n. To prove it valid for » + 1, it suffices to establish the
validity of the following inequality:

(n + 1>""
N3 S

freay
(z) (3)

z2n+1z
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246
Upon division by # + 1 these inequalities become

LY ziz (e Ly
n 3 n

2
which follow from the inequalities 2 < (1 +—:7>" <3

It remains only to note that for » = 6 the validity of the assertion

of the problem follows, since

(2) 3 =729,
6! =720,
AP
(3) =r=6
149. (a) By the binomial theorem we have
(1+—1—) =1+Ci— +C- +epLl L
n n" n"
B 1 an—1D1 san—Dn—21
=ltn T et 3! o

an—1) 11

nin—1) 2 1
n! n"

T

1 1\ | 1 1 2
1+1+2,(1— n)+?!(1— n)(l—;)

(O I}
n! n n n
and, analogously,
+1 1 1
(1+n+1> _1+1+2!(1_n+1)
s 55)0 -5 5)
3! n+1
1 1 2 ) —1
+ +n!(1 n+1)(1 n+1 ( 1)
1 1 2 ) (_n—l)( )
+(n+1)!(1 n+1)(1 n+1 n+1 n+1

Comparison of these expressions shows that
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1 n+l 1 n
(1+n+1> >(1+ n)

and the assertion of the problem follows immediately.
(b) We write

(1+ 1 )w (n+1>"“
n —_—

247

(H n1—1>n ‘ (nnfl-1>"

=(n+1)"+‘(n—1)"=(n’—l)" n:l___(l__i_z>"(1+_’11_>

n2l+l
IV _,_ 1 an-D1 an—-—Hn-2)1
(1— n’) =l=n mt T W 3!
pHr—Dn—2n—3) 1

4! n
1Lt 1=»a—-1 11/ 1)/ _ 2\1
_1_n+2 nd [3!(1 n)(l n)n3

1 1 2 3\ 1

~r (=) -0 -2

nl
SRS W N

11 1
n 2 nt 2 n°

nz
However, for n = 2

nﬂ

Consequently, (1 — #)ﬂ(l + %) < 1, which means

n+l n
(1 + -1—) < (1 +— )
n n—1
from which the statement of the problem follows.

150. A proof by mathematical induction is given.
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We show first that, for any natural number n,
n n
1 i
n! > ( p ) (1)

This inequality clearly holds for n=1: 1! =1 > L. Assume that
e

inequality (I) holds for some positive integer n; we must show that
n4l1
n+ 1> (%ﬂ)

In view of problem 149 (a), we have

e>(l+i>
n
A |

From (I) we obtain

m+Dl=@m+Dnl > (%)"(n +1)= (n + 1)"+‘(nnne

e + 1)

() )

1+—
n

It follows, by the principle of mathematical induction, that (I) is
valid for all natural numbers n.
We now deal with the inequality

n! < n(i> (2)
e
We show that this inequality holds for all integers » > 6. With the

aid of logarithm tables (natural logarithms are used here) it is readily
verified that inequality (2) is valid for n = 7:

T
"< 7(l>
(4
7 7 7 7
that is, 6! < (7) for In6! = In 720 ~ 6.58, and In (7) =70n7 —1)

= 6.62.
Assume now the validity of (2). By the results of problem 149 (b),
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that is,
<1

n+t
(3
n

But now, by (2), we have

+1!=+Dnl < (n+ Dn (%)"

n+l n+l1 nu-le
= 1
(n + )( € ) (n + 1m+t
nt+l n
=(n+1)(”:1)+ € <(n+1)(”:1) "

(1 + _1_)n+l
n

that is, the analogous inequality, in which » is replaced by » + 1,
will hold. Since inequality (2) holds for #» = 7, it follows by mathe-
matical induction that it will hold for all » exceeding 6. This com-
pletes the proof.

151. We note that in the sum
S=ux%+ a1+ a2 4 +x+1,

if x > 1, then the first term is numerically the greatest, but if x<1,
then the last term is greatest. It follows that

k+Dx*>S>k+1,0f x> 1;
k+Dx<S<k+1 ifr<l

If both sides of these inequalities are multiplied by x—1, it is found
that for x # 1

G+Dx*x—1D>x1'—1>k+DHx—-1).
p

(ot Dt pHt— (p— 1" (k+ 1)(p — F
(p—D 7 (p— 1 (p— D+

p+1
?

Assume now that x =

1; then we find

Analogously, if we assume that x = , we obtain
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b+ D(p+ 1K (p+ DF*—phst  (k + 1)p*
pl«+l > pk+l > pk+1

It follows that
(P + 1Yt — pFr s> (R + 1pF > pr+t — (p — 1)k,

or, letting p successively have the values 1,2,3, ---, n:

2t — 1 > (k4 1IF > 1k — 0,
3I(+l — 2k+l > (k + 1)2!« > 2k+l — 1k+1 s
4k+1 — 3I«+| > (k + 1)3!« > 3kt — 2k+1 ,

(" + 1)k+| — "k+1 > (k + 1)"" > "I«+1 — (" — 1)I(+l

If these inequalities are added together, the following inequalities

result:

(n+ 171 —1> b+ 11k + 28 + 3% + + n*) > nktt

or, dividing through these inequalities by 2 + 1,

1 t+l_ 1 1 o
[(l +7) n"“]k+1"

> 1+ 2%+ 3 + + n* >

_1—"I«+1

This is essentially the set of inequalities sought.

152. (a) First, it is readily seen that

1 1 1 1 1 1 1
a+l nrzT Twmlmtamt YTt
——————————
n times
But also
1, 1 1 1 1r/1 1
PR TSGTY +2n_2[(7+2n)
1 1 1 1 1
(+ 2n——1)+(n+2+2n—2)+ +(2_n+n)]
1 n 3n 3n
‘7[ n2+(n—1) 2n2+2(n—2)+"'+2n2]
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YLy

212n  2n® 2n?
(n + 1)Ytimes
1 3 3 1 3 1
—2(n+1)§7l 4+4n 4+n

which proves the assertions of the problem.
(b) It is first noted that

1,1 1,11

3n 2n  2n  n
It follows that

1 1
n+1+n+.‘2+ -1 ( )
R +_+L=Z_=2
o on n n n
e

(2n — 1) times

On the other hand, we have

1+1+ +1__1_[<1+1>
n+1 n+2 m+1 2l\n+1 " 3n+1

) ]
n+2 3n n+3 3m—1 n+1 n+1
_i[ n +2 N n +2

@Cn+1t—nt 2n+1)%— (- 1)

dn + 2 dn + 2 ]

teonslr—m—2:t VTen+rip—w

L[4n+2 4n +2 4n+2]

@n+t 1 @n+r 1T T @n+ 1Y

(2n + 1) times
dn + 2 -
@n + 1)*
153. (a) We first prove that

1
= 2(2n+1)

2Vn+1-2Vn< 1/1—7 <2V n-2vVn—1.

We write



252 Evaluating Sums and Producls

21/"”_—1_21/722(1/n+1 '—]/7)“/"11 +]/7)
VvVa+l +VvV'n
_ 2 < 2 1
Ve +1+Ve Va+Vie Vn

The second part of the inequality is shown in an analogous manner.
Now we have

1 1 1 T -5
1+]/——2—+1/——3—+ +W>1+2[(V3—1/2)

+0V4 -1V3)+ + (/1,000,001 — 1/1,000,000) |
=1+2(1/1,000,001 —y/2)>2 1000—1/8 +1
> 2000 — 3+ 1 = 1998
Analogously,
I+ bt b <14+ 2(/ T — 1)
V2 V3 171,000,000
+0V 3 -Vv2)+  + V1,000,000 — 17999,999)]
=1+ 2(1/1,000,000 — 1) =1 + 2-999 = 1999

Consequently, the integral part of the sum

1 1 1
1+1/'2_+1/T+ + 1,000,000
is equal to 1998,

(b) A technique similar to that used in problem (a) yields
110,000 © 110,001 171,000,000

> 2[(110,001 — 1/10,000) + (110,002 — 1/10,001)

+ + (171,000,001 — 171,000,000)]
= 2(1/1,000,001 — 1710,000) > 2(1000 — 100) = 1800

and

] 1 ]
V10,000 T /10001 T 171,000,000

< 2[(1/10,000 — 179999 ) + (1/10,001 — 110,000
+ + 171,000,000 — 17999,999)]
= 2(1/1,000,000 — 1/9999)
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= 2000 — /39,996 < 2000 — 199.98 = 1800.02 .

Therefore, the sum

is equal to, with precision to within 0.02, the number 1800.
154. We note, by comparing the two equations
(14 %) =142+
and

2 1\ 1 4 1 8 1
(H—s'n)—”? T3t aw

that for every natural number »n

ok 4o (o)

From this we obtain l+—§- . %> 1+ —) ; multiplication by n®/®
yields

nt's + _g_n—u/:) > (n+ s,

and finally,

7= S VT - ¥
Analogously,

3
I n n

(since —:13— I e it P 2 O) , from which it follows

that

nt/s — .%."—(nls) > (n— 1,
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1 3
R A A

Now we can write
S SR N S
¥4 Y5 41,000,000

(VT - VP + (V- VD
+ ( #/1,000,001* — §/1,000,000%)]

1 e

o w

( ¥/1,000,002,000,001 ¥16) > —g— 10,000 — ¥/54

> 15,000 — 4 = 14,996
However,

1
+ /1,000,000

— ¥+ (V5 — ¥Y9)
+ + ( V1,000,000 — £/999,999%))

17
<

= %( YT000,000,000000 ¥79) < %(10.000 —2) = 14,997

Thus, the integral part of the sum

1 1
vityst  TULo000
is equal to 14,996.
155. (a) It is readily seen that

1 1 1 1
1i>z+112+ *1000:” 10-11 T 1112 T +1oool-1001
11 11 1 1
Z(E’H)+(H‘ﬁ)+ +(m-m)
=%>"1W>01_0001'0099
and, analogously,
T U O S — -
108 T 11¢ 1000: < 910 © 10-11 9991000

_<L_L)+(L_L)+ +<_,1__ 1)_L 1
“\9 10 10 11 999 1000 9 " 1000

< 0.112 — 0.001 = 0.111 .
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Consequently, the sum L + 1 + +

1
102 112 10002 *
0.006, is equal to 0.105.
(b) We note, first, that

with precision to

et + o001 > 107 = 3eaa.ag0, = 0000000275
But, also

RS RS RS

<vlirrir 1t i

B i s b e
~slor-wr oWt e o
=(9i!—ﬁ><—g-%=&z—&)ﬁzo.oooooosos
Therefore, the sum

RS TR E

with precision to 0.00000015, is equal to 0.00000029.
156. We shall show that the sum

1 1 1 1
1+ 2 + 3 + + n— 1+ "
can be made greater than any given number N. Let N be some
chosen integer, and take » = 2?4, Then

1 1 1 11 1 /11
I+ 5+t + +n_1+n—1+2+(3+4>
1 1 1 1 1 1
+(?+6+7+8>+ +(2=~-l+1+22~—1+2
1 1 1 11 1

1 1.1.,1 1.N
+ +2“,_,+2“,>>1+2+2+2+ +5 +1
2N times

levery sum in parentheses is greater than %; see problem 152 (a)].
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Remark: This can also be proved as a consequence of problem 152 (b).

157. De51gnate by n: the number of undeleted fractions between
1

. 1
I and —— 10"“' including — 10,‘ but not —— 10,” If the fraction —, ly-

ing between these two fractions, is one of the undeleted numbers,
1 1

1 1 1
then of t L
hen of the numbers 5, 10q+l' 107 + 2° 100 + & 109+ 9

(all of which lie between W and 10:.“)' only the final fraction will

be deleted when those containing a digit 9 in the denominator are
crossed out. If 1 is one of the deleted numbers, then all of the

additional fractions %q waﬁ 10q1+ 5 will also be deleted.
It follows that
ny = gnk—l
Since n, = 8(of the fractions 1, 11 11 only-l—is deleted)
2'3" '8’ 9’ 9 !
n=8-9=172
n, =8 9%
=8 9
Now consider, for n < 10+, the sum
1 1 1
1+ 5+5+ +
Add this to the sum
1 1 1
l+5+3+ +ipa—7
after throwing out all those fractions having a digit 9 in the deno-
minator;
1 1 1
(l toytyt ot 8)

1 1 1 1
+(100+ 101+"'+§8>+ +(W+ T8

(m + l) times
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1 1 1
<1 — o+ —=-n ——— An-1 t = im
ny + 10 1+ 100 2 + + 10m1 + 10"
If we replace each summation in parentheses by the product of the
largest term contained therein and the number of terms in those
parentheses, we obtain

1'n0+"11‘(‘)'n1+l"n2+ +'01—'7lm—\+'1— Nim

100 101 107
VAN I
‘8(1 T Tt 10)
—g L= O g 1 _gq0=80
1= 2 12
10 10

This verifies the assertion of the problem.
158. (a) Assume that in the summation ] + %, +% + + %the
integer n is less than 2¢*!, Consider the summation

1 1 1
1+—2—2+-§+ +m.

and, as in the solution of problem 156, group the terms in the fol-
lowing manner:

1 1 1 1 1 1
“(§+§7%?+§+§+?>

. 1 1 1 1
’ +[<2‘>2 Te Tyt +<2~+._1)z]<1+(i+§>
1 1 1 1 1 ) .
+ (‘:1—2 + 71—2 + 42 + 42) + + [ (2,‘)2 + (21')2 + + (21')2 ]

—1+L1,1 . 1=-qapm , 1
=l+5++ +5= Y =2-5<2,
2

This verifies the assertion of the problem.

Remark: It is possible to show, by similar techniques, that if « is any

number exceeding 1, then for any natural number n
1 1 1 2% — 1
1+ 2a + Ty + + e < e 11

This sum is bounded, and its bound is independent of n; that is, n can be
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arbitrarily large. Problem 156 showed, on the other hand, that if a < 1, the
1 1

sum 1 -+ 2a + 3a + + o can be made as large as we wish by taking n large

enough.

(b) It is readily seen that

1 1 1 1 1
wtEtatat  to
1-2 23 344 4.5 (n—1n

(545 L 0 S ¥

T\1-2 3 34 (n—1n 4
However, by problem 132 (a), we have

1 1 1 1 1

T2t23734Y Ta-oa A<l

and, consequently,

S—
[l
p—
- |w

1 1 1 1 1
1+ m+m+gt +n2<1+<1——4—
which proves the assertion of the problem.

159. we shall show, first, that

1 1 1 1 1
I+ +g+g+ Ao+,
1 1 1 1 1 1
<<1+2+4+ +2,‘)<1+3+9+ +3k)
1 1 1)
1+_—+— +—,
( p iyt I

where k is an integer such that 2 < n < 2¢*', and p; is the greatest
prime not exceeding n. For this investigation we consider the va-
rious factors in parentheses of the right member of the inequality.
Since every positive integer m from 1 to n can be written as the

product of powers of primes 1, 3,5, :--, p;, we may write
m=2% 3% 5% P
where all the exponents a,, a;, -+ -, @ are nonnegative integers not

exceeding k& (zero 'exponents being, of course, allowable). We en-

, — as well
n—1n

. 1
counter as terms every fraction 1, 2 3
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as some additional positive numbers. This means that the right mem-
ber of the inequality exceeds the left member.
If we take logarithms of both sides of the inequality, we find

(e drdede epled)
auf(efrde Bedege o)
x <1+E+%¥+ +#>]=log<l+—;—+%
+ 2k>+log<1+—:1;-+% +§17>

+ +log< +%+%+ +71>?>

But for any integers k£ and p = 2,

log<l+L+L+—1—+ +};><210g3

p P 2
Consequently, we have
1 1 1 1=/ 1
SR I R S U |
2 2
- b _ 1
“r-1- e

It follows from the results of problem 145 that

(+5=1) <3

1 o
1< V3

1 log 3
log<1+———p_1><—p_1

2log 3 N log 3
2 p—1

1+

and, clearly,

Hence we conclude that

1Y\ 2log3 2log3  2log3 2log3
n>< 2 + 3 + 5 + +—pt

1
log<l+—2*+--~ +
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1 11 1
—2l0g3(L 4L, L 1
Og(2+3+5+ +p:)

If there existed a natural number N such that for every positive

integer / the sum 1 + —;— + % + % + + 1 would be less than N,

then for all positive integers n the following inequality would have
to hold,

1 1 1 1 1
Iog(1+2+3+7+ 3 )
<210g3( + +—+ %)< AN —1)log3,
from which it would follow that
1 1 1 1 1
44— 4 — — < -0 = N,
1+2+3+4+ +n_1+n 3 |

where N, is independent of n. But it was shown in problem 156
that such an N, does not exist; consequently, no number N can exist

1 1 1 1
h that, f i 14--—4=4—= —
suc at, for a +2+3+5+ +p;<N

160. We have

b—c +c—a+a—b: bic — bc® + act — a*c + a*h — ab?
a b ¢ abc

_¢¥a —b)+ abla — b) — (ac + bc)(a — b)
- abc
_(a—=b(c*+ab—ac—bc) (a—b)lelc —a)—blc—a)]
- abc - abc
_a—-blc-—bc—a) __@-bb—-—o—a
- abc - abc

We shall now investigate —— + b +—=
b—c¢ c—a a-—b
b'=c¢c—a,and ¢’ =a—b. Then
¥ —c=c—a—(@a—b=b+c—2a
From the condition ¢ + b + ¢ = 0, we have b + ¢ = — a, from which
b —¢' =—3a,
bl__cl
~—F.

. Leta’ =b—c¢,

a =



Solutions (160-162) 201

In an analogous manner we also obtain

c —a
b=~ 3
c/=_a,—bl
3
It follows that
a b ¢ 1/ —¢" ¢ —a a —¥b
b—¢c T c-a a—b‘_s( 2 Ty tTg )
Using the above formula, we obtain
a_ b c ___1_[_(a’—b’)(b’—-c’)(c’—a’)]
b—¢c ¢c—a "a—-b" 3 a'b'c
1 (=3c)(—3a)(—3b) —~_9 abe
T3 Gb—-oc—aa—b (@a—5®B-—:0o(—a

Consequently, if a+ b + ¢ =0, then

b—c c¢c—a a-—> a b c
(a + b + c )(b—c+c-—a+a—b)

:[_ (a—b)(b—-c)(c—a):":_9 abe ]=9

abc (a— b —c)c— a)

161. We have
O=(@+b+cP=a+0b+c"+ 3a*h + 3a*c
+ 3b%a + 3b*c + 3c*a + 3c*b + babe
=a* + ¥ + ¢ + 3abla + b) + 3ac(a + ¢) + 3bc(d + ¢) + 6abe
=a*+ b + ¢ — 3abc — 3abc — 3abc + 6abc
=a*+ b + ¢* — 3abc
It follows that a® + b° + ¢® = 3abc, which is what we set out to
prove.
162. (a) First Solution. We have
a* + b + 3 — 3abc
=a* + 3abla + b) + b* + ¢ — 3abc — 3abla + b)
= a + 3ath + 3ab* + b* + ¢® — 3ab(c + a + b)
=@+ b+ ct—3abka+ b+ c)
=@+ 6 +cll(a+ b2~ (a+be+ct]—~3abla+b+ o
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=(@a+ b+ c)(a+ b?— (a+ b + ct — 3ab]
=(a+ b+ c)la* + 2ab + b>* — ac — bc + ct — 3ab)
=(@a+b+c)at+ b+ ct—ab— ac— bc)

Second Solution. If in problem 161 we substitute x for a, we have
B4+ +c*—3xbc=0, if x+ b+ c=0. Consequently, the equation
x' —3bcx + b* + ¢®* =0 has a root x = —b —¢, from which it follows
that the polynomial x° — 3bcx + b* + ¢? is divisible by x — (=b —¢) =
x+b+c¢. If in this result we resubstitute a for x, we find that
a® + b + ¢ — 3abc is divisible by a + b + ¢. Ordinary division pro-
duces the other factor:

A+ b +ct—3abc=@+b+c)a*+ b+ ¢t —ab— ac — be)

(b) First solution. We have

[(a+b+c¢P—a’] — B+ ¢
=l@a+b+c)—alllea+ b+ +ala+ b+ )+ a?]
— B+ o) —bc+ c?)
=@bG+c{lle+d+0?—b)+ala+o)
+ (ab + bc) + (@* — ¢¥)}
=b+clla+bdb+c)—bllla+b+c)+bl+ala+ o)
+ bla+ )+ (@a+ o)a— o)}
=b+)a+oa+b+c+b+a+db+a—o

=3b +c)a+c)a+b)

Second Solution. Substitute, in the given expression, x for a:
(x+b+c)— a8 —5b —c.

If x = — b, the expression vanishes; consequently, the equation
(x+b+cP—x*—b—c*=0hasasaroot x = — b, and so (x+b+¢)*—
x* — b* — ¢* is divisible by x + b. Resubstituting a for x, we can
conclude that (@ + b + ¢)* — a® — b* — ¢* is divisible by a + b.

It is similarly shown that (@ + b + ¢)® — a® — b® — ¢? is also divisi-
ble by a + ¢ and by b+ ¢. We can write (since the three factors
are clearly relatively prime)

(@+b+cP—a—b —ct=ka+bla+c)b+ o)

In order to determine the factor k&, it suffices to equate, in this
equality, the coefficients of any like term from each side: for example,
the coefficient of a%b. If we set a =0,b=c =1, then we find £=3.
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163. In problem 162(a) we found that (a? + 82+ r*—aB—ar—RBr)
(@+B+7)=a*+ 8 + 7' —3afr. For «, 8, and r we substitute
¥a, ¥b, and ¥ ¢, respectively; we then have

(¥Ya + ¥b + Vo) ¥Va+ Yo+ Y&t — ¥Vab
—Yac — Ybc)=a+b+c—3¥abc
It follows that

1 __ Vot + ¥F + Y- Yab— Yac— Yo
Va + ¥b + ¥ a+b+c—3 ¥Yabe

Now it is not difficult to eliminate the radical from the denomina-
tor of the fraction on the right:

1 _ _ VYo + Vb + ¥e" — ¥ab — Yac — ¥bc
Ya+ Vo + ¥ (@ + b+ ¢ — 27abc
x[(@a+ b+ ¢+ 3@+ b+c) ¥abe + 9 ¥a%bic?]

164. We saw in problem 162 (b) that (@ + b6+ ¢ —a*— b6 —¢?
differs from the product (@ + b)(a + ¢)(b + ¢) only by a constant fac-
tor; hence it suffices to show that

(a + b + 0)3333 —_ 03333 — bJJSJ —_ 03333

is divisible by a + b,a + ¢, and b + ¢. But this can be shown by
exactly the same proof used in problem 162 (b).

165. We have
(@P—1 ag¥—1
10 s — —
at® +a +1—a’—1 7 —1
(@*) —1 _(@—-—DN@*+a +a"+a+1)

T@e-D@+arat+a+rl) @-D@ +a+a+a+l)
_(a+a+ 1)@ +a”+a*+a+1
- e +ad+a+a+l

But division yields

1z 9 8 3
a*+a*+a +”+1=a°—a’+a’—a‘+a“—a+1
a*+a*+a+a+1

Consequently,
a*+at+l=(@+a+)@e*—a +a*—-—a'—a*+a*—a+1)
166. First Solution. Designate the dividend polynomial by B and
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the divisor by A. Then
B — A = (2" — g% (2% — x%) + (27777 — x7) + (2% — x°)
+ (2% — 2%) + (x4 — x) + (270 — 2?)
+ (%% — 2%) + (2 — )
= (090 — 1] + B[00 — 1] + 2[(x0y™ ~ 1]
+ 2o — 1] + 20 — 1]+ 2 — 1]
+ 20(0)P — 1] + 22[(x0)?22 — 1] + xf (') — 1]

Each difference in parentheses is divisible by x'* — 1, and so by
A=it?.TMWMﬁB—AEdmmeyAwmmmwmmm
B must be divisible by A.

Second Solution. We have

PR AR o A P LR B e A ol Sl o 2l - 2R
M—-1 x-—Dx—a)x—a)x—as) - (x—ay

x—1 x—1

=x—a)x—a) (x—a),

where a, = coszf—on + isinz-f—g k=1,2, ,'9), since the roots of the
equation r'* — 1 = 0, (that is, the ten tenth-roots of unity are of this

form (see the discussion of Section 9, Complex Numbers, preceding
the statement of problem 222). Consequently, in order to prove the
assertion of the problem, it suffices to verify that

19999 + xﬂﬂﬂﬂ + x7171 + xﬂﬁﬂﬁ + 15555 + xllll
+ xaaas + xzzzz + i + l

is divisible by each of the factors (x —a)), (x — @), -+, (x — ay).
This, however, is equivalent to the assertion that

xsoos + xasas + I”” + xuee + xssss + Partll

4ot a4 ] =0 (1)
has as roots a,,a,, a,, -+-,a,. We shall verify that these are roots
of equation (I). Since o}’ =1k =1,2,3, ,9), it follows that

@ = ai™" = (a)')*a} = ai;
a® = a™"" = (a)**a} = 4f; etc.

02099 +azsﬂﬂ + al'”" + azﬂ“ + 02555 + a:‘ll + 02333 + azna +aLlll +l
=gitai+atatatat+al+ait+a+1=0
k=12---9).
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167. We shall find two numbers a and b to satisfy the equation
X4+pr+qg=x+a*+ b — 3abx

To do this, we must solve for @ and b the following two equations
in two unknowns:

@+ b =gq, ab=—£—,
3
or, equivalently,
3 + ba — Sbs p— p3
a =gq, a*h* = o7 -

Now, it is easily verified that @* and » are roots of the quadratic
il
equation 2?2 — gz — %= 0, and, consequently, we will have!'

VEVTE ATE o

Now, in view of the result of problem 162 (a), we have
2+ pr+qg=x+a®+ b — 3abx
=@+b+x)@*+ b +2x*—ab—ax — bx)

Therefore, the solution of the cubic equation reduces to the solution
of the first-degree equation

a+b+x=0,
from which we obtain

n=—a—>b,

A E SRR

t Formulas (1) are obtained from the formula d|splay|ng the roots of a quad-

or,

ratic equation. The roots are real lfl‘ + -2—7- =0; if = Ui + 2—7 < 0, then we will

be involved with the cube roots of 1magmary numbers and ¢ and b will be

imaginary numbers. They may be found using the formula developed at the

beginning of Section 9, which enables us to find the nth root of a complex

number. For each of the three cube roots ¢, obtained from the number

7+ ]/: + Z the corresponding b can be obtained from the relation ¢b =
y4

3
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and the quadratic equation

X—@+bx+at+b—ab=0,
from which it follows that

ST LN \a Y

at
2
at.

Xy =

b a-b0VT ;
2

where a and b are determined by formuta (1).

168. First Solution. We designate v'a + x by y, thereby obtaining
a system of two equations:

Va+tx =y Va—y =x
We square these equations to obtain
a+x=y> a—y=x
If the second equation is subtracted from the first, the result is

x+y=yt—2x",
or,
-yt rx+y=x+yx—-y+1)=0

Two possibilities arise. First,

x+y=0;
then y = — x and x2 — x — @ = 0, which yields
X =i+ +_L
1,2 2— a 4
Or,
x—y+1=0;

then y=x+1and 2* + x + 1 — @ =0, from which we obtain

1
xs,oz—ii a—i

4

These possibilities for the roots of the given equation must be
tested in order to eliminate any extraneous roots.

Remark: If only positive roots are considered, it may be readily ascertained

that the equation will have the single root zs = -—%’ + ]/ a — % provided a =1,
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but will not have a root for a < 1.
Second Solution. We clear the radicals from the equation in the
usual way:
a—Vvatx=x,
@—xY=a+=x,
*—2ax* —x+at—a=0
We now have an equation of degree 4. However, this equation is

quadratic in the letter g; we shall use the device of solving for a in
terms of x:

—2x*+la+x*—x=0,

2@+ 1142 + 4 + 1 —4x* + 4x
2

=2xz+1i1/4x2+4x+1=2.¥2+1t(2x+1)
2 2 '
a=x"+x+1 a =x*—x

The equation
—2x*+Da+x—x=0

has the two roots

a=x*+x+1 a=x—x,
and so we can write

—2x*+Da+x*—x=(@a—a)a—a,)
=(a—x*—x—1D(a™ 2t + x)
Therefore, we can write the quartic equation in the form

K—x—a)*+x—-a+1)=0

This is readily solved to yield

1 1
"‘1-2'—_71‘}/%%-(1 :7'—]/a+—111-

3.4 9 = 4+a— 9 =Y 4

169. First Solution. let

x2+2ax+Tlé—y

—a+}/a2+x—— =Y.
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Then the equation takes on the form
Y=

We express x in terms of y,; calculation yields

1
x=y¥+24y1+1—6

We note that x is expressed in terms of y, by a quadratic formula
having exactly the same coefficients as that giving y in terms of x.
It follows that if we graph the functions

1
) .
y==x +2ax+16

y =_al/a2+x——1-
L 16.

then the two graphs (parabolas) will be symmetrical with respect to
the line bisecting the first quadrant (See Figure 10; every point x=
x5, ¥ = yo Of the first curve has an image point x = y,, y, = x, on the

Ay
z+ler+ =y

-/
a=g

yi+lay~+ /—é =

Figure 10

second curve). The points of intersection of these two curves have
x-coordinates for which y = y,; these coordinates yield the roots of
the equation. These points must lie on the axis of symmetry of the
two curves, satisfying the conditions
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y=x=¥y:.

If we solve the equation y = x, that is,

1
2 —_—
x +2ax+16 x,

~1—2a 1—2a\"_1
fr= T2 il/<—2_)_ﬁ
1

It is left to the reader to convince himself that for 0 <a < T

we obtain

both these roots are real and satisfy the given equation.
Second Solution. The problem can be solved in a more conventional
way. If we clear radicals in the usual manner, we obtain

1\? 1
2 —_ 2 —_— —
(x +Zax+a+16)—a + x 16"
or, upon expansion and the collection of terms,
£+ daxt + <4a’+20+-;—)x2+<4a’+ —‘lra— 1>x

1 1
+8+16+162 =0.

The left member of this equation can be grouped and factored as
follows:

[x‘ + (2a - Dx* + %x’]

[(Za + Dx® + (da? — 1)x* + ( 16) ]

+{(ar 19+ (s g1+ (5 5+ 1)
=[x’ +@2a—Dx + 116-|[xz + (2a + 1)x+<2a + 19]

This yields the solutions

1
x4+ (2a— 1)x+ 16—0

SRR T/ ey
e ="y 2 16’
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x’+(2¢z+1)x+20+i—g=0,

__1+2 ]/I—Za* 17
X34 = 2 = ( 2 )_za_ﬁ

If0<a< %, the first two roots are real and satisfy the initial

equation; the last two roots are complex numbers.

170. (a) To yield a real number for the left member, for real
values of x, the expressions under the radicals in the left member
must all be positive. Let us designate these radicands, respectively,
starting from the innermost one (from 3x), by 31, 33, -+, y2_,, % we
then have

3x = x 4+ 2x =y}

x+ 2y =y,
X + 2y2 = J’: ’
X+ 20 =Yoo,
X+ 20 =V,
where all the numbers y,, y,, * -+, ¥» are real and positive. The initial

equation takes on the form, in the new designation,
In =X

We shall now prove that y, = x. Assume that x > y,. Then a
comparison of the first and second equations shown above will indicate
that y, > .. Similarly, the second and third equations will imply
that y. > y;; we can continue, in a similar manner, to find

Ya > Y > > Yn-1 2> In

Hence if x > y,, then x > y., which contradicts the equation y, = x.
The assumption x < y, will lead, by analogous reasoning, to a similar
contradiction. Hence we must have y, = x.

Since y! = 3, it follows that

3x =«
and so we may set down two possible values for x:
n=3, x =0

Both values satisfy the given equation,
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Remerk: We can use another technique to solve this equation. We write
it as

/Ez
VE+ 2z +2vVi+ +2Vz+2z 2 (1)

n radicals
If we replace the final z of the left member by the entire expression for z as
given by (1), we have

I:p/z+2,/z+2’/z+ +2y'z 1 22

2n radicals
If we again repeat this substitution, we obtain new equations of the same form,
except that we have, successively, 3n, 4n, radical signs. Thus we arrive
at

T=vr+2Vs + 33 +

=Nl.l.T'z+2'I+2'/I+ +2v'z +22 (2)

N radicals
It follows that

=y z+2i z+2; 4+
R T e R (8)

which yields z = v'3z, 2 = 3z; consequently, z, = 0, z2 = 3. This shows that
the roots of equation (1) do not depend upon n [since the roots of (2) are in-
dependent of =l.

The reasoning used here cannot be considered a legitimate solution to the
problem, inasmuch as the existence of the limit shown in (2) has not been es-
tablished and hence cannot be legitimately employed for (3). However, the
reasoning can be rigorously justified by a more advanced discussion, which is
not undertaken here.

(b) We make successive simplifications of the fraction in the
left member:
1_x+1
X X
1 X 2x+1

1+x+1=1+x+1— x+1

X

1+

x+1 3x+2
It 1™ " vl "2+ 1
x+1




272 Miscellaneous Problems in Algebra

We finally arrive at an equation of form

ax+b_x
ex+d 7!

where a,b,c, and d are some integers (depending upon #). This
equation is in fact a quadratic equation x(cx + d) = ax + b, which
implies that the given equation can have at most two roots and hence
cannot be an identity (since then all values of x would satisfy it; in
particular x = 0 fails to satisfy the equation).

Without an assignment of value for » we apparently cannot de-
termine these roots. However, let us assume that

1+-1-:x
x

The successive simplifications of the fraction yield

and we finally arrive at the identity x = x. Hence, under the assump-

tion, the roots of 1 + —i— =1x, or x* —x —1 =0, that is,

_1+v'5
hE——
_1—-15
hE

satisfy the given equation. Since the equation has at most two roots,
and we have found two roots for it, these represent the complete
solution of the problem.

Remark: We display still another method for solving the equation [compare
this with the remark following the solution of problem (a)].

We substitute for the final 2 shown in the ‘‘multi-storied’’ fractiont its
expression as given by the equation itself. We then have an equation of pre-
cisely the same form, except with 2n fractional designations.! - Continuation
of the process leads finally to our writing

t Continued fraction is the terminology usually used for this concept [Editor].
1t Literally, ‘‘twice as many stories’” [Editor].
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1
1 —
+1+7

The fraction bar is
repeated N times

where on the left we have an infinite continued fraction.

This yields
g —1 1 -1
= i = ,
14— ) 1+[ ) 1+z
1+ 1+
1 1 2
Y1 S T e

that is, we obtain the quadratic in z,

1

A PP

which we assumed in the first solution of this problem. This proof now shows
that the solution of the equation does not actually depend upon n (a fact we
might have adduced at the conclusion of the previous solution).

The reasoning here is not rigorous, inasmuch as the existence of the limit
of which we made use has not been proved. However, a rigorous proof can
be given by more advanced mathematics.

171. We have
*r+3-41Vxr—1

Il

x—1—-4vVx—1 +4
Wr—=12—-4Vx—1 +4=1x—-1 -2

I

and, analogously,
t+8—-6Vx—1 =x—1—-6Vx—1 +9
=WVx—1 — 3y
Hence, the equation can be written in the form
Vyx—1-2r+V/x—1-3r=1

or, since it has been specified that only positive roots are to be con-
sidered
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Wx—1 —-2|+|vVx—-1-3|=1,

where | y| means the positive numerical value of y.

We consider the several possibilities.

First,if Vx—1—-220and 1/x — 1 — 3 = 0, that is, if 1/x — 123,
x—129x=210, then V*x—1-2|=vVx—-1-2,|\/x—1—-3]| =
V'x—1 —3, and the equation takes on the form

Vr—1—-2+1Vx—1-3=1

Hence,
2Vx—1=6
x—1=9,
x=10

If Vx—1-220and Vx—1-3=0, that is, if Vx—122, x>
5 but Vx—1=<3,x<10, then |1/x—1-2|=vVx-1-2,Vx—1—
3= —VvVx—1 4 3, and the equation becomes the identity

Vyr—-1-2—VvVx—1+3=1

Therefore, the equation is satisfied by a/l values of x between x=5
and x = 10.

If Vx—1-2<0,vVx—1-3=<0, that is, if Vx—1<2,x<5,
then Vx—1-2|=—vVx—1+2{Vzx—1-3|=—1V7x—-1+3,
and the equation becomes

—-Vr—1+2—-Vx—-1+3=1
It follows that

2Vx—1=14
x—1=4,
x=5

The case Vx—1—-2=0,1x—1—-3=20, is impossible.
In summary, all values of x between 5 and 10, inclusive, that is,
5 < x £ 10, are solutions of the given equation.

172. We shall first look for the real roots lying in the interval 2
to co, then in the interval 1 to 2, then 0 to 1, then —1 to 0, and
finally —oo to —1.

Letx=2. Thenx+1>0,x>0,x—1>0,x—220; hence |x+1|=
x+ 1, x| x|lx—1|=x—1,|x—2|=x—2, and we have the
equation
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x2+1—x24+3x—-1)—-2x—2)=x+2,
which is an identity.
Accordingly, all real numbers greater than 2, and 2 itself, are
roots of the given equation.
Let 1£x<2. Then x+1>0, x>0, x—120, and x —2 <0,
which implies
fx+1|l=x+1,
lxl=x,
lx—1|=x—-1,
l[x—2]=~(x—2)
We obtain, for this case, the equation
x4+l —24+3x—-D+2x—2)=x+2

This yields 4x = 8, or x = 2. This value lies in the interval pre-
viously considered. Consequently, there is no additional root found
between 1 and 2 for the given equation.

Let0=£x<1. Thenlx+1ll=x+1,|xl=xlx—1=—(x—-1),
and |[x —2| = —(x—2). We have

x+1—-2-3x-D+2x—-2)=x+2

This yields x = —1, but since this lies outside the interval which
we used to set up the equation, it must be discarded.

There exists no additional root for the equation in the interval
0=x<l.

Let -1 =£x=<0. Then |zx+1|=x+1]xl=—-x|x—1]=
—(x—=1), and |x—2| = —(x—2). We have

x+1+2—-3x—-D+2x—2)=x+2

This equation is contradictory; hence there are no roots between —1
and 0, inclusive.

Finally, let x < —1. Then |x+1|=—(x+1),|x|=—x1x—1|=
—(x—1,and |x— 2| = —(x — 2); We have
—(x+D+x—3x—-D+2x—-2)=x+2,
x=-2
We obtain the root x = —2 from this interval. Therefore, the equa-

tion is satisfied by —2, by 2, and by all real numbers exceeding 2.

Remark: The results obtained for this problem become vividly clear if we
graph the function



276 Miscellaneous Problems in Algebra
y=le+1l|-|e|+3|z-1|-2|z—-2]|—-(x+2).

Figure 11 shows in light lines the functions ;= |2+ 1|, 9= —|z|, ¥ =
3|z—1|,94= —2|2—2|, and y5s = —(x + 2), and in heavy lines the function
¥Y=% + ¥+ ¥s + ¥ + ys (by ‘“‘composition’’ of graphs). It is clear from the
figure that y crosses the axis at x = — 2 and at x = +2, and thereafter remains
on the z axis for z > 2.

2 3
z
4)5\ S
N ;\' &
1N
/I, 6"
v
o
Figure 11

1738. From the first equation of the given system we see that
=2, y==£x
If we substitute for y* in the second equation, we obtain
x—ap+at=1, (n

which, as a quadratic equation, in general yields two possible values
for x. Since each value of x can be associated with two values of
y, the system will have at most four solutions; This will reduce to
at most three solutions if one of the values of x is zero, since this
value will go with only one companion value for ¥, that is, y =0.
If we substitute ¥ = 0 into equation (I) we obtain

at=1, a==1

The system can, and will, have precisely three solutions only for
these values of a.
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The number of solutions of the system reduces to two if the quadra-
tic equation involving x has only one solution (a ‘‘double root”).
The quadratic equation

(x—aX+xt=1,
or,
2x* —2ax+a*—1=0

will have one root if and only if the discriminant (B? — 4AC) vani-
shes; that is, if
a*—2a*—1)=0,

or, a2 =2; that is, a =12

174. (a) Formal solution of the system yields
a—1
at—1’
_—a*+ta
T oat—1

X =

If a+1+0and a —1 # 0, then the system has the single solution

5= a +a+l
T a+1
— —a -
YT a1
If a = —1, or if a = +1, then the formulas are meaningless; in the
first instance we arrive at the system
{—x +y=1,
x—y=1,
which is a contradictory system. In the second instance we have
{x +y=1,
x+y=1,

which has an infinite number of solutions (for example, for x arbit-
rary, y =1 — x).
(b) Solution of the system yields

_a' =1

T a1
—a'+a

y=—m

at—1
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Here, if @2 — 1 # 0, the system has the single solution xr = @* + 1,

y= —a. For a= —1 and a =1, we obtain the systems
{—x+y=—1,
x—y=1
and
{x+y=1,
x+y=1,

both of which have an infinite number of solutions.
(c) We obtain from the first two equations
yt+tz=1—ax
and
ayt+z=a—x

If we consider this as a system of two equations in two unknowns,
y and 2z, we obtain

a—x—1+a:c:(a—1)(1+x)

y= a—1 a—1 ’
al—ax)—a+x —xa*—1)
- a—1 =Teo1 - Gtes
Hence, if a #1, then y =1+ x and z = ~(1 + @)x. If these values

are substituted into the third equation, we find
xr+ A+ 2 —al + a)x =a?
x(2—a—a’)=a*—-1
—xa+2)a—1)=a*—-1

Therefore, if a — 1+ 0 and a + 2 # 0, the system has the single
solution

= — at —1 __a+l
@+2@a@a-1)" a+2’
1
y=l+rx=7"73,
__ _(@+1r
z=—(a+ Dx= 212

For ¢ =1 and a = —2, we obtain the systems
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x+y+z=1,
x+y+z=1,
r+y+z2=1

and
S—2x+y+z=1,

X —2y+z2=-2,

x+y—2z=4,

The first of these systems has an infinite number of solutions, and
the second has no solution (from the first two equations we obtain
—x — y + 2z = —1, which is inconsistent with the third equation).

175. If we subtract the second equation from the first, and the
sixth from the fifth, and equate the two expressions for x, — x5, we
obtain

a(a, — a;) = ala, — as) ,
or,
(ay — ) (aty — a;) =0

Similarly, if we obtain the two expressions related by x, — x, and
also by x, — x,, we find two more relationships:

(¢, —ay)(as —a,) =0,
(a, — aa)(az - t'h) =0

The first of these three relationships implies that either a, = a;
or a; = a, (possibly both). Let us suppose that a; = a; = @. Then,
from the second relationship, @, = « or else a, = «. Either of these
possibilities makes the third equation an identity. Hence, for the
system to be consistent, it is necessary that three of the four quanti-
ties a,, as, as, @y be equal.

Suppose now that @, = a;» = a;s = @ and that «, = 8. Recalling
those expressions for the differences x — x, x, — x3, X — X3, with
the aid of which we obtained the relationships just exploited between
a,, a,, &, and «,, we find that

X\ =X = X3
Designating x, = x; = x; by x, and x, by y, we find that the six
equations in four unknowns reduces to two equations in two un-
knowns:
2x = a?
xty=aB,
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from which we find that
az

=50

(6-3)

Remark: Analogous reasoning shows that the more general system

Y

T+ T2 + + Tm-1 + Tm = a1z Om—10m ,
r + z2 + + Tm—1 + Tm+1 = auaz A —10m 41
Tn+m—1 + Bnim-2 + + Zn-1 + Zn = Qnim-1An+m-2 ' An-1Qn,

consisting of Cxr equations in n unknowns (n > m + 1), will be solvable only
in the following two cases:

ay =az = =an-1=a, an = f;
here,
a? n-—1
r =%z = =Zp-1=—" x":a‘n—l( - a)
n' A n
n — m + 1, or more, of the quantities ay, az, ---, a, are zero (here, z, = 22 =
=zy = 0).

176. From the first of the given equations,
x=2—y
Upon substitution into the second, we obtain
y—y—-2z2=1,
or
22+yr—2y+1=0,
or
22+ (y—-12=0
Each of the two terms of the last equation is nonnegative, hence

both must vanish. Hence z =0 and y = 1, which implies x = 1.
Therefore, the system has precisely one real solution.

177. (a) First we note that if x, is a root of the given equation,
then —x, is also a root. Consequently, there are as many negative
roots as there are positive roots. Moreover, the number 0 is clearly
a root of the equation. It suffices then to find how many positive

roots there are. Now if 1’%.0 = sin x, then
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| x| =100|sinx| £ 100-1 =100,

and so no root can exceed 100 in absolute value.

Let us partition the x-axis from 0 to 100 into segments each of
length 21 (except for the final segment, which will be shorter); we
shall examine each interval separately to find the roots in it. (See
Figure 12).

’ ) _
s 7 N o,
NZE B N\ =

Figure 12

There exists one positive root in the interval from 0 to 21; in
each of the following intervals (excluding the final one) there
are two positive roots. To find how many roots may be contri-

buted by the final interval, we examine it separately. Now, 100 is

2
a number between 15 and 16 (% —6.666 > 2,:;%: 6.25<21) :

consequently, we have 15 segments each of length 27 and one final
segment of length 100 —15-27 > 5 > 1. This final segment is long
enough to contain the complete upper half of the sinusoidal period,
and hence it also contributes two roots.

Therefore, in all we have 1 + 14-2 + 2 = 31 positive roots for the
given equation, an equal number of negative roots, and, in addition,
the root 0; therefore, the equation has 63 roots.

(b) The solution is quite similar to that of problem (a). First,
if sin x = log x, then x £ 10 (inasmuch as sinx £ 1), Since 2-2r>10,
the interval on the x-axis between x =0 and x = 10 contains one
complete period of the sine curve plus part of a second period. The

ot

Figure 13
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graph of log x intersects the first wave of the sine curve at pre-
cisely one point (see Figure 13). Further, since 2m + % < 10, then

at the point x = 57” we have sin x =1 > logx, which means that

the graph of log x intersects the first half of the second positive wave
of sin x. Since, at x =10, log x = 1 > sin x, the graph of log x must
intersect this second wave another time. Therefore, we conclude
that the equation sin x = log x has exactly three real roots.

178. It is readily verified that the proposition of the problem is
valid for n =1 and n = 2:

X +x=26
d+a=@K+0)?—2nn=62—-2.1=34
(The sum of the roots of a quadratic equation is equal to the negative

of the coefficient of x).
Further, we have

4=+ )T+ AT -l T+ 57
=6+ - 1 (AT + 57
or
o+ =50+ ah
S LC R I C e N ) (1)
It foilows from this formula, first, that if 7 *+ 2% and *f' + 237!
are integers, then 1 + 17 is also an integer; thus, by mathematical
induction x; + x; is shown to be an integer for all natural numbers
n.
Now, let # be the least positive integer such that xi + x7 is divi-
sible by 5. It follows from (1) that, in this case, the difference
E+AH -+ a5
is also divisible by 5. But if we replace » in (1) by n — 1, we obtain
0+ a7 =51+ 47
+@TP RN+ g,
from which it follows that
4 A =50+ Y

[T+ A=+ a]
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is also divisible by 5. This contradicts the assumption that » is the
least integer such that x7 + x7 is divisible by 5. Hence we must con-
clude that there cannot exist a positive integer » such that xi + x7
is divisible by 5,

179. Let us say that there are » positive numbers (and hence
1000 — n negative numbers) among the numbers a,, az,* - -, @1000. Then,
in the expansion given, the ‘“‘mixed products” aa; of the »n positive
numbers | there will be nn + 1)

products of the 1000 — » negative numbers [there will be

(1000 — n)(1000 — n — 1)
2
of these products] will be positive terms, and the product of positive
by negative numbers [there will be »#(1000 — n) of these] will be
negative. The condition of the problem requires that

nin —1) n (1000 — #)(1000 — n — 1)

of these products | and the mixed

5 3 = n(1000 — n) ,
or,
2 —_ 2 — —
nt — n + (1000 - n)? — (1000 —») _ 1000 — n? |
2nt — 20007 + gggéooo =0,
, = 1000 == 171,000,000 — 999,000 _ 1000 =+ 1/1000
2 2 '

which is impossible.
For the analogous problem posed, we obtain by similar reasoning
the requirement

_ 10,000 -+ 110,000 _ 10,000 =+ 100
= > =

“ 2

Here it is possible for the expansion to contain an equal number of

positive and negative mixed products. For this, it suffices if the

10,000 + 100
2

= 4950 negative numbers (or vice-versa).

initial polynomial contains

10,000 — 100
2
180, First, we have
V2 -1r=v72 -1
W2 -1p=3-2vV2 =vV9 -8 .

= 5050 positive numbers and
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The proof will proceed by mathematical induction. Assume that

VT —1%=BVZ A =12 —VAT
can be put into the form VN — V'N — 1, that is, that 2B — A%=1.
We shall show that (replacing # by £+ 1)
V2 -1 =BV2 - A
also comes into such a form, that is, that 2B’* — A2 =1. We can
write
V2 =Dt =12 —1%1(1/ 2 — 1y
=BV 2 —A)B-2V2)
=3B+ 2AW 2 — 4B + 34);
consequently,
B =3B+ 2A4,
A'=4B + 34,
and
2Bt — A'* = 2(3B + 2A)* — (4B + 3A):
= 18B?+ 24AB + 8A* — 16B — 24AB — 9A®
=2B— A*=1,
which is what we wished to show.
Therefore, if the number (12 — 1)%* = C — D1/ 2 can be put into
the form VN —1/ N —1, then also the number (12 — 1)%+t =

C' — D'V'2 can be expressed in this form.
The assertion of the problem follows by mathematical induction.

181. If(A+BV3r=C+ DV 3, thenC = A?+3B?, D=2AB,
and

(A—BV'3)2=A"4+3B*—24ABV 3 =C—-DV'3
Consequently, if
(A+ By 3):=99,999 + 111,111V 3
then also
(A— BV'3)*=99,999 — 111,111 3

which is an impossibility inasmuch as the left member of this equa-
tion is positive and the right member is negative.

182. Assume that ¥ 2 = p + g1/ 7 (p, g, and r rational). If both
sides are cubed, we obtain
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2= +3p2qV 7 + 3pgr + ¢V 7
or,
2=p(p* +3¢) + q(3p* + ¢V 7

We shall now show that our assumption that ¥ 2 =p+q1V 7
implies that ¥ 2 is a rational number. First, if ¢ =0, then ¥ 2 =
p is rational. If ¢ # 0 and if 3p® + ¢*» + 0, then from the last of
the above equations we obtain

~— 2 — p(p* + 3¢*r)
T T e
from which we find
2 — p(p* +3¢'r)
q3p* + ¢y’
which states that ¥ 2 is rational. If 3p? 4+ ¢*r = 0, then
g'r = —3p*,
2=p[p + 3A-3p»)] = —8p?*,
and ¥ 2 = —2p is again a rational number.
It remains to prove that &2 is not a rational number. If §2

were equal to an irreducible fraction % then we would have 2 =
3

V2=p+q

Py or m* =2n". In this event m® (and hence m) would have to be

an even number, and therefore would be divisible by 8. We could
then write n® =—'—;i. and, sinceﬂz’— is even, then necessarily »® (and
therefore n) would have to be even. This contradicts the assump-
tion that —;ﬁ is irreducible, and the contradiction proves the statement

of the problem.

183. (a) Designate 1.00000000004 by «, and 1.00000000002 by 8.

Then it is readily seen that the two numbers of the problem can be
14+ a 1+p8 . ..
e and T+ 51 B Since a > B, it is clear that

l1+a 1 1 1 1
7 et <ETg

8
a 1+a 1+8\__8 .
et (0> (50153
1+a+a at g2 _1+8+8

1+e 1 TTx> iy e 1158

written as

1+ 58

PR
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and, finally,

l1+a -1 (1+a+a2) 1 (1+B+ﬁ’) 1+8

l+a+a l1+a 1+8 ) 1+8+@

Therefore, the second number is greater than the first.
(b) If we designate the two expressions given in the problem
by A and B, respectively, we obtain

ois -
A l+a+a2+ +a!
1 1
=1+ 2 =1+ ;
lta+a+ o L, L + L
a at a° a
1y, !
B~ "1 _1 1
T 1S

It follows that ‘%> % or B> A

184. Let X be an arbitrary number. Consider the difference
(X —a)?— (x—a)?® We note that

X—art—(x—at=X2—x*—-2a(X—1x)
We can now write the difference
[(X—a) + (X —a)* + + (X — an)]
—[(x—a)*+ (x —a)* + + (x — a,)?]
= n(X? —x*) — 2(a, + a: + +a)(X—x)
a, +a +

- + 2, for x, then
that member will be nonnegative; in fact, we shall have
(X—a)+ (X —a)?+ +H(X — an)?]
—[(x—a)* + (x — a:)* + + (x — an)?]
=n(X? — x%) — 2nx(X — x) = n(X® — x* — 2Xx + 2x%)
=n(X—x2=20
It follows that the sought-after value of x must be

If in the right member we substitute

ata,+ --- + an
n

185. (a) We have, in all, only three essentially different arrange-
ments insofar as @ is concerned:
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(1) a,,a,as, a4
0, = (a — @) + (a: — @) + (@ — a)* + (@ — a))?
(2) ay,a,a,as
D, = (@) — @) + (@3 — @) + (@, — a)? + (a, — a,)?
(3) a,a;aias
0, = (a, — @) + (@ — a)* + (as — a3)* + (a; — a,)*
Now, it is readily seen that
0, — 0, = —2a.a, — 2a.a; + 2a.a; + 2a.a,
=2(a, —a)(a —a) <0;
0, — 0, = — 2a,a, — 2a,a, + 2a.a;, + 2a,a.
=2a; —a)(@ —a) <0
Consequently, the arrangement we seek is
a,, 4., a,, ;s
(b) First Solution. Consider the expression
0 =(a; — a,)" + (@i, — ai))* + +(ai,_, —ai,) + (@i, — a;)*,

where a;, ai,, '--, ai, are the given numbers in the required order.
Consider two of these numbers a;, and a;;,, where &« < 8. We claim
that if a;, is greater than (or, respectively, less than) ais, then a;, |
is greater than (or, respectively, less than) Qig, - (We assume
@i, = i),

If we assumed the contrary, that is, if

(a"as - a"ﬂ)(aiaﬂ - aiﬂ+l) < 0 ’

then the permutation which reverses the order ai_, a:_.,, @iz, Sty dig
would decrease the value of the sum @, since the difference of the
new sum @' and the initial sum @ would then be

D —0=— 2a.-a_la.-ﬁ — 2a.-¢a.-ﬁﬂ + 2(1;“_1(1.'“ + ZGiﬁaiﬁ+
= z(a"a - a‘ﬂ)(aia—l - aiﬂ*‘l)

This observation enables us to find the full solution of the problem.
First, since a cyclic permutation of all the given numbers (the permu-
tation which preserves the relative positions of the numbers—for
example, writing them in a circle and merely rotating the circle)
does not change the value of ®, we can assume that g, is the smallest
of the numbers, that is, 7, = 1. It is then possible to assume that
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ai, and a;, follow in order of magnitude. In fact, if for example,
aig < @i, (B + n), then we would have (ai, — aiglai, — aip,,) <0, and
if @iy <ai, (B+2), then we would have (ai — ai5_,) (@i, — aip) < 0.
Since it is possible to change the order of the “links” of the chain
ai,, G, iy, " *, Qi @i, to the reversed order without changing the
value of @, we can assume that ai, < ai,, &, =2, and i, = 3.

Further, we assert that the numbers aiy, Giy_ follow in this order
in magnitude, within the pattern of the numbers a;, ai,, a:, already
considered. In fact, if, for example, ai, > aig B+1,2,n—1,n),
then we would have (a:, — aip)(ai, — aip,,) < 0. But since we have,
moreover, (@, — ai,_ Nai, — ai,) >0, it follows that a:, <a:,_, that
is, @i; = a, and ai,_| = as.

It is similarly shown that a4;, and a4, , follow in magnitude after
a;, < @ip_, (i,=6, i, =7), that the numbers g, and ai,_, follow in
magnitude after the previously determined a:, < ai,_, ({3 = 8, i,—s = 9),
and so on. Finally, we can set down the following scheme.

If n = 2k (even), then

/az—a.——ae— —an—z\
a, dn ,
\a; —as — a1 — - an—l/
if n =2k + 1 (odd), then
S —ai— s —  — Qn-
a, |
\03—05—01— — dn

(The schema represents the order of the numbers; for example, for
even n we have the order a,, a;, a., aq, * -+, Gx—2, An, Gn—y, * * *, @1, A3, A3).

Second Solution. If the order obtained in the first solution could,
in some manner, have been guessed at, the verification could be
made by mathematical induction. In fact, for » = 4 the proof is
quite simple [see the solution of problem (a)]. Assume now that for
some even # the sum @, in the arrangement given by part (a) for
the numbers @, < a; < < a. is less than the sum @, corresponding
to any other order. We shall prove that the sum @,,,; corresponding
to the scheme shown in part (a), as it concerns the #» + 1 numbers
a < a, < < @n < @s+1, is less than the sum @,:, corresponding to
any other ordering of the » + 1 numbers. We have

Oniy — O = (@ — Qut1)? + (@n+1 — CGx1)? — (@n — Qn-1)?
= 2a?l+l - zanan+l - zan—lan+l + zan-—lan
= z(anﬂ - an)(an v — a..-l) .
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On the other hand, if in the order answering to a sum @,., the

~ number a.., were to stand between two numbers a. and as, and if
@, answers the array of # numbers obtained from the array of »n + 1
numbers leading to a sum @.., by striking out the number a,..,, then

ni1— O = (@g — Gns1)? + (@nsy — ap)t — (@ — ap)?

= Zaf.ﬂ — 28a0n+; — 2a8an+ + 2azap
= 2@n+1 — AsXAnt1 — ap) = Pnsy — O,
Thus,

Ouis — Onir = [0n — O] + [(@ny, — B,) — (Bhyy, — O] 0

(the first pair of brackets parentheses encloses a nonpositive number
by the induction hypotheses; the second pair does so by the proof).
Here, if the sum ®@,_ differs from @,.,, then either @, — @, < 0 (and,
consequently, @,.; — @y, <0), or (Opsy, — @,) — (Ohs, — 02) < 0 (and,
consequently, @,., < @r.,). The transition from n to » + 1 is carried
out in a similar manner for odd .

Third Solution. This problem has a less involved geometrical so-
lution. We represent the numbers ¢, < @ < a; < < a, by points
A, A, A, -+, A, on a number axis; we designate the intervals
A A, AA,, ---, Aa_1A., rtespectively, by d,, d;, ---,d,-,. Then the
sum

0 = (ai, — ai,)* + (@i, — @i, }* + + (@i, — @i} + (@i, — a;))
= A AL, + AL AL+ + ALGAL
is equal to the sum of the squares of interval lengths, or “links”
Ai A Aiy,  Ai,_Ai A [all of which lie on the one straight line;
see Figure 14 (a)].

A A, A A4, A A A 4 A A, A A4

Figure 14

Since the closed overlying curve covers the whole segment A,A,,
each of the segments A; A+, = d. enters at least twice into its com-
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position (once in the direction from A, to A+, and again in the
reverse direction). Therefore, regardless of the order in which we
take the points, the expanded sum ® when expressed in terms of the
lengths d;, d:, ---,d.. must contain all the numbers 2d;; that is,
2d;, 2ds, -+ -, 2dr - Further, let A:- A = di-y and AiAi+; = dr be
two adjacent segments. It is clear that if the link of the overlying
curve which covers the segment A:A«+ going from A, to Ais
commences at the point A, then the link covering this segment in
the reverse direction cannot terminate at the point Ai. Therefore,
in all cases there must exist a link which simultaneously covers the
segments A, Ar and AiA«+. [t follows that the sum® must in all
cases contain all the numbers 2d._.dx, that is, 2d\d;, 2d.ds, - -, 2ds—2da-,.

Now we need only note that if the points are ordered as in the
first solution of this problem, then

0 =24 + 2ds + + 2d%_, + 2d.d, + 2duds + + 2d,_ydn-,

[see Figure 14 (b)]. It follows from this, and from what has been
said above, that the sum @ will be least for this ordering.

186. (a) First, we may assume that the numbers aj, a,, - -, aa
and b, b,, ---, b, are all positive, since if some of them are negative
it is clear that the inequality will be exaggerated. Consider the
broken line A.A,A. A, in Figure 15, where the lengths of the

7

b 4,

T

¥ A,

b,

e
alq ] e— q; —' ?
Figure 15

projections of the segments A,A,, A,A; ---, A1 A, onto the x-axis
are denoted by a,, a,, -+, a,, and onto the y-axis by by, b, -+, ba.

Then, by the Pythagorean theorem, we see that



Solutions (186-187) 291
AA, =Val + 8%,
AA,=Va+8,

A,‘—lAn =V af; +b: .

AAy=1Va, + a: + Fa)+Go+b+ - + 6.7,

from which the inequality given in the problem follows immediately.

The broken line A,A,A4, A, can be equal in length to the seg-

ment A,A, only if it is a straight-line segment. This can occur

only if &L= % — =2,
b, by b

(b) Let A be the height of the pyramid; let a,, a., -+-, a, be

the lengths of the sides of the base (a, + a. + + a, = P, the base

perimeter); and let b, b,, ---, b, be the lengths of the perpendicu-
lars from the foot of the altitude (the center of the inscribed circle,

for a right pyramid) to each of the base sides, respectively,
<then —l—albl +l’dzb2 + + —l—a,.b,, = S, the base area). Now, the

and then we have the equality.

2 2 2
lateral surface area X2 of the pyramid is equal to

- 1 : 1 E—
%a,l/bf+h2+5az1/b;+h2+ +7a,1/1;;+h2
However, by part (a),

22 =1V{(ab)? + (@ah)? + Via:b) + (a:h) + + V(@nb)* + (a-h)?
z Viab, + ab. + + a.a.)* + (@ h + a.h + + anh)?

=148 + h*P?,
The equality here holds only if @,b,:a:0,: --- :asbn = aih:azh: la.h—
that is, b, = b, = = b,.

The statement of the problem follows immediately.

187. We shall investigate separately the cases for which »n is
even and » is odd.

The integer n is even. Construct the broken line (Figure 16) con-
necting points A,, A, ---, An, Aari, Anse, forming a “step graph,”
such that the segments A, A,, A,A;, -+, Ans1An+e are of unit length,
and they are successively perpendicular (as shown in Figure 16,
where n =4). On each segment A;A;y, (/=1,2, -, nm+1), or on
its extension, we place a point B; such that the length of the seg-
ment B;A;,, is equal to a; (we shall assume that a,., is equal to a,;
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A
8s
4
'I
4’ ’ AJ 4
’l
,I
I’
8
Al A /, RJ
Id
Id
/’
’ 8,
Z [
Figure 16

that is, B+, is selected such that B, A.+: = a,). In doing this, we
place B; to the left of (or below) the point A;,, if a; > 0, and to the
right of (or above) the point A;4, if a; < 0 (in Figure 16, 0 < a, < 1,
0<a:<1l,a,>1,a,<0). We now connect the points B; to form the

broken line B,B; B..;. By the Pythagorean theorem,

BiBi+1 = ‘/BiA§+l + Bi+1A§+1
Now, B;A;+1 = ai, and B, A+, = |1 — a;+,|; consequently,
m = \/03 + (1 —ain)t

Hence the sum in which we are interested,

Va+(0—ar+Va+(1—a)

+ +Va_ +Q—-ar+Va+Q—a)

is equal to the length of the broken line B,B; By,
It is obvious that the length of the broken line B,B;
not less than the length of the segment B,B..,.. We shall

By is
now find
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the length of this segment. We construct the right triangle B,CB,+,
(Figure 16). Then

—_— [ n
BlC = AzAa + AaAs + + AnAn+l = ? ’

and

CB,.H = AlAz + A(;A‘ + + AnAn = l

V]

(for A\B, = Ay-:Baey =1 —a,]). It follows that

B.B.y, = V(BCF + (CBari) = /Wz n ‘?7

This proves the inequality sought.

It is not difficult now to determine when the equality holds. In
order to arrive at the equality, all the points B, By, - -, B, must
lie on the line segment B,B,-, (that is, B; must coincide with the
points of intersection of the line segments B,B.+, and A;A:.,. Because
the segment B,B,.; forms a 45° angle with B,C (B.C = CB,.,,), it
follows that

BxAz = A.B;, = BaAa = AaBa = = Bn—lAn = Aan ,
thatis,a, =1 —a)=a;, =01 —a) = =@n-1 = (1 — a»). Thus for
»n even, the equality holds for

a = a; = = dn-1 —a,
a=a,= =ar=1—a,

where a is any arbitrary number.
The integer n is odd.' Let @nvy = @y, Gnv2 = @y, -+, @2 = @», and
consider the sum

Vai+(1—ar+Va+(Q1—a)p
+ +V@ +t(d—anr+ V. +Ad—a)y,

which is equal to twice the sum

Va+(Q—a)?t+Va+ (1 —a)y
+ +Va. +(Q-ayr+Va+Q1Q-a)y

(each term of the last sum is met with twice in the preceding sum-

1 Elucidation for n = 3 is left to the reader; the proof for even n does not
apply for odd =.
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mation). However, it has already been shown that the first sum is

less than or equal to %; it follows that

VaE+(1—a)+Va+ (1 —a)

+ +VE Td—ar+Vatd—arz "”22 ;

that is, we obtain the required inequality.
The equality sign holds only if

a1:a2= :a‘n:?

188. First Solution. Both numbers of the inequality are positive;
hence upon squaring both sides we have

-2 +1-242V10-D1 - ) <d— (4200, + 1),
that is,
VA -1 - ) £2-2xx,
m <1-—xx
If again we square both sides, we have
1—xt—ad4+ <1 — 2010, + 202,
and if all terms are transposed to the right side, we have
0= (o — x)?

It is clear that the right member of the given inequality dominates
the left member; also, the equality can hold only for x, = x,.

Second Solution. This problem can also be solved by geometric
means; analogous solutions are possible for many more involved
problems of this sort. Consider in the Cartesian coordinate system
(plane) the unit circle with center at the origin (Figure 17). The
coordinates x,y of points on the circle are related by the equation

xr+yr=1 (1)

Select two points M, and M, on the x-axis having absicissas x,
and x, and where |x,| =1 and |x;| 1 (thus both points are within
or else on the circle). Construct perpendiculars from M, and M.
intersecting the upper semicircle in the points N, and N, respectively.
I1t/is clear from equation (I) that M\N,=1V'1—x! and M,N, =

1— .
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L

M

o\mM M M =

Figure 17

X+ X,
2
segment M M;.t We shall designate this point on the x-axis by M,

and the point above it on the circle by N.

Clearly, the length of MN is ]/1— (%)2 Now, the sum

M N, + M.N, is equal to twice the length of the segment MN’,
where N’ is the point of the trapezoid M,N,N.M. just above M, and
MN is obviously shorter than MN. The inequality of the problem
follows immediately. The equality holds only if the points M, and
M; coincide, that is, if x, = x,.

Note now that the absicissa will be the midpoint of the

Remark: Many interesting inequalities are suggested by this last proof.
For example, consider the unit sphere with center at the origin (Figure 18).
Let M, and M: be any two points in the X Y-plane within (or on) the sphere,
and let N, and N: be the points of intersection, with the sphere, of perpen-
diculars to the plane rising from M; and M., respectively. Let M be the
midpoint of segment M; M, and construct the perpendicular MN in the plane
containing M,, M:, N1, and N, where N is the intersection with the sphere.
Obviously, MN will intersect the segment from N, to N2, and this intersection
point we label N’ If (z1, 1) and (z:, y2) are the coordinates of points M, and
M, then

T This is obvious for positive x; and z; it is easily verified that this will
hold even if one of the numbers is (or both are) negative. Also, it suffices to
consider only positive z; and z:, since in any other event the inequality is
emphasized.
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MN, =Vl — 2} — o},

M2N2=1/:§——_'U§;
MN:}/I_(m;n)’_(yl;yz)’

MN' = %(MlNl + M:N»)

And since MN' < MN, it follows that
; + 2 V7 SRR .
1/1—zf—y3+1/1—z;—y;§2‘/1—(" ny_(BZB) (g

2 2

provided, however, that all the expressions under the radical are nonnegative.
Equality here will hold only for z; = x2, y1 = y2, that is, only when points M,
and M: are coincident.

F4

Figure 18 Figure 19

A somewhat similar inequality can be produced by using a triangle M, MM,
in the XY-plane and letting M be the point of intersection of the medians of
the triangle (Figure 19). We obtain the inequality

VIi-2Z2 -+ Vi-22 -y +Vi-22— 2

53]/1_(z1+z32+za)’_(yl+1g+ya>2_ (%)
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This results from the fact that segment MN’ of the perpendicular from M
does not exceed segment MN. Inequality (3) is valid only when the expres-
gions under the radicals are nonnegative; the equality holds only for z; = z; =
zy and Y, = y: = ¥, that is, when the points M., M, M; all coincide.

Another inequality arises from the use of a right circular cone having its
vertex at the origin and the z-axis as its central axis, and having a vertex
angle of 90° (Figure 20):

VE+ ¥+ VR +yi+ V2 + i

=oFERERT R

This is valid for all z,, z2, 3 and yi, ¥2, ¥s. Equality holds only when %;L =
1

z z . . L.
= - 3 that is, when Ni, N;, and N; lie simultaneously on a generator of

2 Ys
the cone. Algebraic proofs for inequalities (2), (9), and (4) are very involved.

Figure 20

189. Using the trigonometric identity

cos(A + By=cos Acos B—sin AsinB,
we have

143 T P
cos (— + cos I) COS — COS X — SIN — SINCOS X
2 2 2
.. .
- SlﬂgSlnCOSI = — SINnCcos ¥ ,
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or,

. T
SIn COS X = — Cos (E + cos x) ,

from which we obtain

cos sin x — sin cos x = cos sin x + cos (% + cos I) (1)
We employ the formula
cos A + cos B = 2 cos A;B-cos A;B

in the right member of (1) and use the fact that cosa = cos(—a) to find

cos sin x — sin cos x

. 4 . T
smx+E+cosx —sinx + — + cosx

= 2 cos 5 cos 2

Now,

lcosx + sinx| = 1V costx + 2cos xsin x + sin?x
=vI1+sin2x=<v 2

(We note that |cosx + sinx| =172 only if sin2x =1,) Ina similar
manner we find that

[cosx — sinx| =1 cos?x — 2cosxsinx + sin®x
=vI~-sin2xsv2

. cr s 314
(and so |cos x — sinx| = V" 2 only if sin2x = — 1). Since —g—zT:
1.57 and 1/ 2 = 1.41, we have

T

£> D) + cosx + sinx o
2 2
and
2 +cosx—sinx
LN 2 >0
2 2 !
which means that
w .
i + cosx + sinx
cos

2
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and
% + cosx —sin x
2

are always positive, Hence the difference cossin X — sincosx is
always positive; that is, cos sin x exceeds sin cos x for all values of x.

Ccos

190. (a) Write log.# =a and logs® =56. From the equalities
2* = and 5* = n we obtain
rVe =2,
Tt =5,
rle. i/t =2.5=10,

ml/ari/t — 10

However, n* = (3.14) < 10, and therefore we must conclude that
1 1

- + > > 2, which is what we set out to prove.

(b) Write log.m =a and log.2s =b. Then we have 2¢ =r
and =* =2. Since now 2'* =, it follows that 2¢ = 2% or & =%.

The left member of the given inequality now is of form

We are required to show that o+l > 2, or, equivalently, that

a
a*+ 1 > 2a (note that @ > 0). But a*—2a +1=(a—1)?2> 0, which
proves the validity of the given inequality.

191. First Solution. We must show that if 8 > @, then
(a) sinf —sina<f—a.

However,

sin 8 — sina@ = 2 sin

-« B+ a B—a
7 cos 2 <2 3

(for acute angles, sinx < x and cosx < 1),
(b) We have

l1=8—a

tang —tana > 8 — «.
Clearly,

tanf — tan &

f-a<tan(@—a) = 1+ tanftana

< tanf —tan a
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(for acute angles, tan x > x).

Second Solution. We consider only part (a) since part (b) is analo
gous.

In Figure 21, let the radius of the circle be unity; then the chord
AE is equal to the radian measure of @, and AF = 8. If EM and
FP are perpendiculars from E and F to OA, then, designating by
S(OEA) the area of the triangle OEA, and so on, we have

S(OEA) = %sin a,
S(OF A) = % sin @,
and if S(OEA) is the area of the sector OEA, and so on, then

SOEA) = %a ,
S{OFA) = % 8

We readily read from the figure that @ — sina < 8 — sin 3.

C

Figure 21

192. Reference is made to Figure 21, and the same terminology
is used as in the second solution of problem 191. The perpendicular
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AC is tangent to the circle at A, We read from the figure that

S(OAB) = %tan a, SOAC)= %tanﬁ ,

S(0AE) =+ a, s0AR =14
Consequently,
tana _ S(OAB)
a  S(OAE)’
tanf _ S(OAC)
B~ S.(OAF)

Also, it is readily seen that
S(OAB) < S(OAB)
S(OAE) S(OEM) '’

S(OBC) N S(OEC)
S{OEF) S(OEN) '’

and

S(OAB) _ S(OBC)
S(OEM) ~ SOEN)

Thus

S(OAB) < S(OBC)
S(OAE) S:{OEF)

S(OBC) > S(OAB)
S{OEF) S(OAE) "’

S(OAB) + S(OBC) _ S(OAB)

S{OAE) + S(OEF) ~ S.(OAE)’

From the fact that

it follows that

that is, that

S(OAQ) > S(OAB)
S(OAF) S{OAE) "’

which is what we wished to prove.

193. Let arc sincos arc sinx = @. The angle a is bounded be-

tween 0 and —;i; that is, 0 s a = %, inasmuch as 0 < cosarcsinx <1

(— % < arcsinx £ -g—) Further,
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sin & = cos arc sin x
Consequently,

. T
arcsinx = i(? - a) ,

x = sin[i(%—a)] = cosa

Similarly, if arccossinarccosx=f£, then 08 < 7—2r- (for 0 =

and

sinarccosx £ 1, since 0 < arccos x < =), and

cos 8 = sin arc cos x

Consequently,
arccos x = —72r—:|:[3,

and
X = Cos (%iﬁ) = +sinf
Since cos & = sin (= =x), conclude that

a + f = arcsin cos arc sin x + arc cos sin arc cos x =

SR

194. Assume that the series
c0S 32x + as, cos 31x + aao cos 30x + aqe cos 29x
+ + a;cos2x + a,cos x (1)

is always positive for all values of x. Substituting x + = for x in
this series, we obtain
cos 32(x + ) + a3, cos 31(x + ) + @30 c0s 30(x + 7)
+ @308 29(x + m) + + a;co82(x + w) + aycos(x + @)
= €0s 32x — ay, cos 31x + as, cos I0x — a,, cos 29x
+ + a,cos2x — a, cos x , (2)

which must also be positive for all x. Now if the two series (1) and
(2) are added, we obtain

cos 32x + as, cos 30x + + a,cosd4x + a; cos 2x , (3)

which also can take on only positive value for any x.
In (3) we now substitute x + —725- for x to obtain
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cos 32<x + g—) + a3 cOS 30<x + %—) + a5 cOS 28<x + %)

+ + a, cos 4<x + %) + a, cos 2<x + %)

= €08 32x — @30 c0s J0x + @45 cOS 28x — + a,cos 4x — a, cos 2x
I'he sum of (3) and the final series yields the new series
C0S 32 + @13 €OS 28x + @y, COS 24x + + ascos 8x + a,cos4x ,
which will have to be positive for all x.
Replacing x by ¥ + % in the last sum obtained, and adding the
resulting series to the previous one, we obtain

cos 32x + a;, cos 24x + a,, cos 16x + a, cos 8x

Replacing in this series, x by x + %, and adding the resulting ex-
pression to this one, we obtain
cos 32x + a,4 cos 16x

Finally, in another step, we find that cos 32x can take on only posi-
tive values for all x. But this is a contradiction, since if x = —37;—,
then cos32x =cosm = —1. This contradiction proves the assertion
of the problem.

195. The well-known half-angle formula of trigonometry can be
written as

2sin521—= +12 -2cos e,
where the plus-or-minus sign is determined by the quadrant in

which % lies. We shall use this formula to find the sines of the

angles
a, 45°

(a. + “—2"1> 45°

a,a; 2,450, o
832 | 02205 \ 4o
("' Tty )

a,a, a,Q2:a; a,Q2,a; [ o
<a|+T+T+ +T>-45 .
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Assume that we have already found the sine of the angle

<al v Ld | 404y G G """‘) 45°

2 4 2%kt
where a,, a,, as, - - -, a. have the individual values +1 or —1. Since
a.a; a:1Q:Q, aa, ' a aa, il
2<a.+ de gy by GGy = ) 45°
= [190° + <a, + S R ) -45°] ,

(where the plus sign refers to a, = +1 and the minus sign refers to
a, = —1), and since

cos [190° + <az + a22a° + + —aza32~k'_'l akﬂ') -45°]

. a;a aya Ay +
=—sm<az+ 123‘*‘ +-L2k—l—k“) 45°

we may determine the following:

+ 4+

a,a, a.a; ] a.,Q; ' Akl n o
9 k-1 + 2%k ) 4

2sin <al +

= +}/2 + 2sin <az + azzas + + —azauzk-l akH) 45°

Keeping in mind that all angles are (positively or negatively)
acute, we see that even

<1+i+l+ + l)-45°=90°—1—90°

2 4 2||41 2n—l

is less than 90°, that the sign of these angles is determined by the
sign of a,, and that the square root in the final formula must be
taken with a plus or a minus sign in accordance with the sign of
a,. In brief, we can write

2sin <al + axzaz + + alasz_l ax + a,a Zkakalﬁl) 45°
/ 2 + 2sin (az + "22"’ + 4+ —‘“"’2,‘_[ G ) 45°

Now, it is clear that

2sinad5° =a,V 2.
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From this we obtain

2 sin (a‘+"'2i) 5=, Vitay 2,

25in(a.+ﬂ+—”"ii) 5 =, V2+a, V2t a v 2

2
. a,a, a,a,a; a,a,a,a, a
2sin {a, + 45
( Tt Ty T )

=a11/2+a21/2+a31/2+a41/?,

. a,a, a1a:a, a,a,a; Qn o
Sin{a —_— + + — 45
2 si (  + ) + 1 o1 )

—aV2+a,V2+a V2t +tav 2,
which is what we wished to show.

196. The expansion of the given expression will take on the form
(1 — 3x + 3x8)™%(1 + 3x — 3x3)™¢
=A0+A|I+Azx2+ +A,.x" (1)

where A, A,, A;, ---, A, are the coefflcients whose sum we wish to
find, and the degree n of this polynomial is 743-2 + 744-2 = 2974,
In equation (I) let x =1; we then have

11”'17“ = Ao + A[ + A2 + + Au

The sum we seek is equal to 1.

197. Assume that we have expanded the two expressions, obtaining
two polynomials in x. Now let us replace x by —x in each poly-
nomial and rewrite them: the coefficients of odd powers of x change
sign, and the coefficients of even powers do not. In particular, the
coefficient of x* in each of the expansions remains unchanged.
Hence, insofar as the coefficient of x*° is concerned, we may as well
compare the coefficients of x?° in the two expressions (1 + x? + x3)t00°
and (1 — 22 — x%)'°_ which are obtained, respectively, from the given
expressions, by replacing x by —x.

Now it is easily shown that the first of these new polynomials has
the larger coefficient for x*°. In fact, the expansion of (1 + x* + x?)t00
contributes only positive terms to the sum which makes up the
coefficient of x*°; the expansion of (1 — x* — x%)!° cannot produce as
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large a coefficient for x*, since the sum making up that coefficient
is comprised of like terms having coefficients of the same absolute
values as those of the first expansion, but some of them are negative.

Therefore, the coefficient of x*° in (1 4+ x* — x%)!° s greater than
that in (1 — x* + x?)teee,

198. The proof of the problem follows from the following:
(1—x+4x*—x*+ — x4+ 1 + x + x4 2% + + x% 4 x100)
=[1+x*+x+ + x1) — x(l + 2 + x* + + x%%)]

x (1 4+ 22+ x* + + 2199 + x(1 + x* + x* + + x°9)]
=1+ x+x+ + 2100 — 22 (1 + % + x' + + x%)?
199. (a) Using the formulas for the sum of a geometric progres-
sion, and the binomial theorem, we obtain

(14 20100 4+ x(1 + x)°°° + x%(1 + 2)** +  + x10°

xlUOl _ (1 + x)“mo
_ 1+ x _ X000 — (1 4 x)toor = (1 4 x)100 — xro01
X x—1—x
1+«
=1 + lOle + C‘i"omxz + C?omxs + + 1001x‘°°°
Therefore, the coefficient we seek is equal to
50 1001!
100t = 501 9511
(b) Designate the given series by P(x). Then we can write
1+ 0P(x) — P(x)
=[A+x2+21+ %32+ + 999(1 + x)te%0 + 1000(1 + x)root]
—[A+x+20+ 2+ 31+ 2+ + 1000(1 + x)te00]
=10001 + x)' — [+ x)+ A+ 22+ A +x0° 4+ + 1+ x)0

= 1000(1 + zyoor — LFIH A A D _ 1900 4 xyom
l+x—1

4t —-Q1+x
x

It follows that
1001 1001 _
P(I):lOOO(l+x) _(d+x : 1+ x
X X
1000[1001 + C%omx + C?gmxg + + 100141:999 + xlOOO]
— [Cloor + Cloorx + Clogix? + +++ + 1001x°% 4 x°%9] |

I
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Therefore, the coefficient sought is equal to

1000 _1001!  _ 1001!
511 950! 52! 950!

looocft}on - C%m =

51,050 1001!

1001! B
521000 — 9507 = 52! 950!

~ 52! 950!
200. We shall first determine the constant term obtained by ex-
panding
(o (x—2)* — 22— — 2)?

k times

and collecting like terms. Clearly, this term is equal to what is
obtained if we set x = 0; that is,

G (((— 22— 2)2 - —2)122(---((4—2)2—2)’—- —2)
k times k — 1 times
=(--(4—-2-2p¢— —2)
k — 2 times

+((4—2r—20=(4-2¢=4

Designate by A. the coefficient of x, by B. the coefficient of x?,
and by Pu.x* the sum of all the terms containing higher powers of
x (this is x? times a polynomial in x). We then have

(- ((r=2—2— —2¢=Pux'+ Bux®+ Aux +4
k times
However,
(- ((x =2t — 2t — 2) — —2)
k times
=[(---((x = 2)2 — 2)2 — —2)t —2)2
k—1 times

= [(Pi—1x® + Bi-1x* + Apoix + 4) — 2]2
= (Peorx® + Bioax® + Aj_ix + 20
= P} x* + 2P \Biyx* + 2Py Ar B )t
+ (4Picy + 2Bi 1 Ak-0x® + (4Bi-y + AR )t + 4Aix + 4
= [Pz-.x’ + 2P\ Beix* + 2P Ap-y + BZ_l)x
+ (4Pi—y + 2Bi Ai )] + @Bioy + Aic)x® + 44, x + 4.
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From this we obtain

Ak = 4‘Al¢—l ’
Bk = A:—l + 4Bk—1
Since (x —2)*=x*—4x+4, we have A, = —4. Consequently,

A, = —4-4=—4 A; = —4, and, in general, A, = —4*.
We shall now find Bi:
By = Ab\ + 4By, = Ao, + 4Ai, + 4B.,)
= A}l +4AL . + 42(AL, + 4B.)
= AZ—: + 4AZ -2 + 42(AZ—3 + 4“(AZ—. + 4By-))
= A} |+ 4AL, + 241,
+  F4AL+H4TAL+ 4B,
If now we substitute
B] = 1 Aa == _43 ’
A[ = 4 ’
Az = —4? , Al;—l = —41‘_'
we arrive at
Bk — 42&‘2 _+_ 4,42’!—0 _+_ 42,42k—6 _+_ _+_ 4’:—2,42 _+_ 4k—l,1
= 422 + 421:4'3 + 421:»0 + + 4k+l + 4k + 41:—
=411 +4+42+4 4+ + 452 4 4k
4k — 1 42k—l _ 4k—1

= 4"“1 =

4—1 3

201. (a) First solution. Since x* — 1 is divisible by x — 1, for all
natural numbers %, and since we can write

x+8 4+ + 2+ M =(x—-1D+ (-1
FE - D+ @ - D)+ @ -1+ (e —1) + 6,
we see that the given polynomial gives a remainder of 6 upon di-
vision by x — 1,
Second Solution. Let q(x) be the quotient resulting from division
of the given polynomial by x — 1, and let » be the remainder. Then

e+ x4 M =gafx— 1)+ 7

The substitution x = 1 into this identity yields » = 6.
(b) Let g(x) be the quotient and let r,x + r, be the remainder
obtained by dividing the given polynomial by x* — 1. Then
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4+ M+ =gt - 1) +rx + e

If we substitute, first, x = 1 into this identity, and then x = —1, we
derive the two equations (both of which must hold):

6=r7r,+r,
and

~6=—7r+7

Solution of this system yields », =6 and r, = 0.
Therefore, the remainder we seek is 6x.

202, Designate the unknown polynomial by p(x), and let g(x) desig-
nate the quotient and 7(x) = ax + b the remainder resulting from
division P(x) by (x — 1)(x — 2). Then

Px)y=(x—1)(x—2qx)+ax+ b (1;
By the conditions of the problem,
px) =(x— D)+ 2,
whence p(1) = 2; ~
px) = (x — 2)qu(x) + 1,

whence p(2) = 1.
If we substitute x =1 and x = 2, successively, in (1), we obtain
the two equations

2=p(Y=a+b,
and
1=p2)=2a+5b,
from which we obtain
a=-1,
=3
Therefore, the remainder sought is —x + 3.

203. The polynomial x*+ x* +2x2+ x+ 1 1is factorable into
(x* + 1)(x* + x + 1). It follows that this polynomial is a divisor of

x2—1=(x"— 1)+ 1)
= — 1) + 1)+ I)(xt— x4+ 1),
and, specifically, that
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12_1

‘ 8 4 Oyt 1= x

At = e N e T D — D)
-1

- — x4+ 283 -2+ x4+ x—1

Dividing x'%* — 1 by x* + x® + 22 + x + 1 is equivalent to dividing
x93t — 1 first by x'* — 1 and then multiplying the result by
B -4+ 28 -2+ +x—1

However, it is readily found that

% = 1990 | 1927 | g1015 4 y1003 | 4o 4ot g ;72___11

(this is conveniently found if we note that
xlﬂ.’al - 1 — x1[(xlz)162 — 1] _+_ x7 —_ 1

and use the well-known formula for dividing the difference of two
even powers by the difference of the bases). It follows that the
coefficient we seek coincides with the coefficient of x'* in the product

7T —
(xIQSD _+_ xlﬂl'l _+_ _+_ x:u _+_ xlD _+_ x7 _+_ xxlz —11)

X@—2—2"+2x° -2 +x2+x—1),

and this coefficient is equal to 1.

204, (a) Write x=1v"2+4+ V'3 Then
=2+2V2 V3+3=5+2V6,
from which we obtain
2#—-5=2/6,
20— 10x* + 25 =24,
»—10x2+1=0
This equation satisfies the condition of the problem.
(b) Let x=1"2+4+ ¥3 Then we can write
x=V2+¥3,
w=2+2V2 ¥3I+¥9,
¥=2V2+3-2-¥3+3V2-¥9+3.
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Two of the three irrational numbers can be readily eliminated
from these three equations, namely, 1V 2, ¥ 3, and ¥9, by finding
their corresponding expressions in terms of x, x?, and x*. In fact,
from the first and second equations we obtain

¥3=x—-1V"72,
Y¥9=x2—-2-2v2-¥3
=x2—2-2V2x—-1V2)=x*+2—-2V 2x
If these substitutions are made in the third equation, we obtain

P=2V24+6x-V2)+ 2 +2-2v2x) +3,
from which we find
¥+6x—3=1"2(3x*+2)
>
Now we may eliminate the radical by squaring and transposing all
terms to the left side:
X+ 36x2 + 9 + 12x* — 6x% — 36x = 18x* + 24x* 4+ 8 ;
X —6x —6x° + 1242 —36x+1=0
This equation satisfies the condition of the problem.

205. Using the well-known relations between roots and coefficients
of a quadratic equation, we obtain
a+B=—-p, al=1;
r+é6=-—¢q, ro6=1
Therefore,
(& — r¥B — )@+ 8)3 + &)
=@ — r)B + OB — r)a + )]
= (a8 + ad — fr — ro) @B + 86 — ar — rd)
= (ad — Pr)BS — ar) = afd? — a’rd — #*rd + afir?
=8 —at— B+ r*=[0+ r)? + 20r] — (@ + B)* — 2af3]
=(@*—2)—-(p*—2)=¢ - Pp?
206. If « and @ are roots of the equation
¥+px+qg=0,
then (x — @)(x — A) = 2* + px + ¢q. Consequently,
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(@—7)XB — r)a— 8)(B — b
= [(r — a)r — B)][(6 — a)d — B)]
=(r+pr+ g0t +p3+9q).

However,
r+d=-"P,
6=Q,
which means that
(@—1B—1Na—8)B—-8=0"+pr+qXd?+p5+ 9
= 7%0% + pr’d + qr* + prd* + pPré + par + q8% + pgé + ¢*
=8+ pré(r +8) +ql(r + 82 — 278 + prd + pa(y + 8) + ¢°
= Q% — pPQ + q(P* — 2Q) + p*Q — pgP + ¢*
=Q*'+¢q*— pP(Q+ q) + qP* + p*Q — 24Q

207. First Solution. We solve for the constant a4 in the second
equation and substitute into the first:

a=—(x*+1x),
—(x+x0)x+1=0,
»—-1=0,

x—Dx*+x+1)=0

We obtain the roots

X, = 1 N
and

—1 4+ 17 7

X2, = —1 —211/3 »

and, consequently, since a = —(x* + x),

a, = —2 ’
and

Q3,3 = 1

Second Solution. Using the results of problem 206, we can assert
that the necessary and sufficient condition for the given equations
to have a common root is the vanishing of the following expression:

a+1—a la+D)+a*—2a=a"—3a+2
=@—-1a*+a—-2)=@—1D¥a+2).
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This implies that

a =-—-2,
and

a;,=1

208. Let (x —a}x—10)+ 1 =(x+ b)x + ¢). If we make the sub-
stitution x = —b in this identity we obtain

(=b—a—b—10)+1=(—b+bX—b+c)=0
Thus, necessarily,

b+a)b+10)= -1

Since a and b are to be integers, b+ a and b+ 10 must also be
integers. However, —1 can be the product of two integers only if
one of the integers is +1 and the other is —1. Therefore, there
are only two possibilities:

(1) b+10=1,b=—-9; then b +a= —9+ a= —1, that is, a = 8.
In this case,

x—8)x—10) +1=(x—9)

2) b+10=—1, 6= —11;, then b+a=—11+a=1, that is, a =
12. In this case,

(x—12x — 10) + 1 = (x — 11)2

209. A polynomial of degree four can be represented as a product
of two polynomial factors in two ways: a first-degree and a third-
degree polynomial, or two quadratic polynomials. We investigate
each case separately.

For the first case we have

x(x —afx—bx—c)+1=(x+pYx*+qx*+rx+5s) (1)

[The coefficient of x in the first factor on the right side and of x*
in the second factor are both either 1 or —1, since the coefficient of
x* on the left is 1. However, the equation 2#(x —a}x — b)}x —¢)+ 1 =
(—x+ pX—x*+ g.2* + r,.x + s,) can be written in form (I) by using
—1 as a factor on both sides.]

If in identity (I) we substitute, in turn, x =0, r=a, x = b, and
x = ¢, and note that 1 can be expressed as the product of two factors
in only two ways, 1 =1-1 or 1 =(—1)-(—1), we see that the four
distinct numbers
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0+p=0p,
a+p,
b+p,
c+p

(distinct since, by hypothesis, a, b, and ¢ are distinct) can have only

two values, +1 or —1, This is a contradiction.

For the second case we have
Mx—a)x—bx—c)+ 1=+ px+ q)¥x* + rx + )

Substituting, successively, x =0, x =a, x = b, and x = ¢, we find
that both the polynomials x* + px + ¢ and x? + rx + s can take on
only values of +1 or —1. Now, the quadratic trinomial x* + px + ¢
cannot have the same value @ for three distinct values of x (other-
wise the quadradic equation x*+ px +q — a =0 would have three
distinct roots), and so for two of the four distinct values x =0, x = a,
x = b, and x = ¢ this trinomial has value 1, and for the other two
it has value —1. Supppse that 0+ p-0+g=4¢=1, and let x =a
be the other value among the numbers x =a, x =5, and x = ¢ for
which this trinomial has value 1. Then for x = b and for x = ¢ this
trinomial has value —1. This yields the equations

a*+pa+1=1
br+phb+1=-1,
ct+pct+l=-—1
From a*+ pa =a(a + p) =0 we find that a + p =0 and p= —a
(by hypothesis @ + 0). Then the last two equations take on the form
b*—ab=bb—a=-2,
ct—ac=clc—a)=—-2
If we subtract the first equation from the second, we obtain
b2—ab—ct+ac=b—0c)b+c)—alb—c)
=b—-—cb+c—a) =0,

which yields (since b # ¢)

b+c—a=0,
a=b+c,
b—a=—c,

c—a=—-b.
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Now, from the equation
bb—a) = —bc=—-2

we find the following values for b, ¢, and a:

b=1,
c=2,
a=b+c=3,
x—ax=bx—c)+1=x(x—3)x—x—2)+1
= (x2 — 3x + 1),
and
b= -1,
c=-2,

e=b+c=-3,
xx—a)x—>0x—c)+1=x(x+3Nx+Dx+2)+1

= (x— 3x + 1)?

Analogously, if 2 + px + ¢ assumes the value —1 for x =0 and
x = a, and hence the value +1 for x = b and x = ¢, we have

g=-1,
a+pa—-1=-1,
Br+pc—1=1,
ct+pc—1=1,
from which we obtain

p=—a, a=b+c

bb—a)=clc—a)=2, b—a=-c,

b—ab—c*+ac=0, —bc =2

b—c)b+c—a) =0,

In this way we obtain two additional systems from which to obtain
values for a,b, and c:

b=2,
c=-—-1,
a=b+c=1,

xx—a)x—bx—c)=x(x—Dx—2)x+ 1)+ 1
=@ —x—1)3;
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b=1,

c=-2,

a=b+c=-1,

sx—ax—50Hx—c)=x(x+Dx—Dx+2)+ 1
=@+ x— 17

Remark: Another solution of this problem is given in the final part of the
solution of problem 210 (b).

210. (@) Assume that
(x—a)(x —a)(x —ay)--- (x — a.) — 1 = p(x)q(x) ,

where p(x) and g(x) are both polynomials of degree = 1 with integral
coefficients, and that the sum of their degrees is n. We may assume
that the leading coefficient in each polynomial is 1 (compare with
the preceding problem). If we make the successive substitutions
X=a, X=a,;, X =4a, -+, X = a,, and take into consideration that —1
is essentially factorable only as —1 =1 (—1), we see that, for each
of these values of x, either p(x) =1 and ¢(x) = —1, or vice-versa.
Therefore, the sum p(x) + ¢(x) vanishes for x = a,, @z, - -+, a,, and the
equation p(x) + g(x) = 0 has as its roots x, = @,, x, = @3, ***, Xn = Gr.
It follows that p(x) + ¢(x) is divisible by x —a, x — a,, X — Qn,
and hence by the product (x — a,)(x — a,) --- (x — @»). However, the
degree of the polynomial p(x) + g(x) is only the larger of the degrees
of p(x) or g(x), which is less than n [n is the degree of (x — a,)(x — a,)
-++(x — a,) — 1]. Therefore, p(x) + q(x) cannot be divisible by the
product (x — a,)(x — a,) (x — a,), and because of this contradiction
we must conclude that the factorization assumed at the beginning of
this proof is not possible.

(b) Assume that

(x —a)(x — a)x —ay) .-~ (x — a,) — 1 = p(x)g(x) ,

where p(x) and g(x) are polynomials of degree = 1, and whose leading
coefficients are each 1. If in this identity we substitute, successively,
X=a,X=4a;, Xx=4a,, -+, X = a,, then we find that for each of these
values of x, p(x) =1, g(x) =1, or else p(x) = —1, glx) = —1.

Since p(x) — g(x) vanishes for n distinct values of x, we must con-
clude that p(x) — qg(x) =0, or p(x) = ¢(x) [compare with fhe solution
of problem (a)]; also, the integer » must be even, say » = 2k, where
k is the common degree of the identical polynomials p(x) and g(x).
We can rewrite the identity in the form
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(x—a)x—a)x—ay) - (x—au) =px)—1,

Cx —x)(x — a))(x — ay) -+ - (x — aw) = [p(x) + 1][p(x) — 1]

Now the product of the two polynomials p(x) +1 and p(x) — 1

vanishees for x =a,, x =a,, -, x =ax. Consequently, for each of
(hese ~values of x at least one of these polynomials vanishes, which
means  that either p(x) + 1 or else p(x) — 1 (or both) is divisible by
¢+ & and this conclusion holds also for divisibility by x — a; x — a,,
and 8¢S on. Since a polynomial of degree k cannot be divisible by
the pr-oduct of more than k factors of form x — a;, and since the
pmolyncomial p(x) + 1 of degree k, with leading coefficient 1, is divisi-
e bwy % factors of form x —a:, it follows that this polynomial is
nlentically equal to this product. That is, p(x) +1 is the product
of & of the factors x —ai, ¥ — as, x —ay, and p(x) — 1 is the
produ ¢t of the remaining % factors.

We may assume, with generality, that
px) +1=(x—a)x—as) - (x— au-1),
Px) —1=(x—a)x—a) - (x — aw
If the second equation is subtracted from the first, we obtain
2=(x—a)xr—a) - (x— @) — (x —a)x —a)- - (x — az)
Now, to consider a specific case, if we let ¥ = a;, we obtain the
factorization of the integer 2 as the product of % integral factors:
2=(a—a)a: — a)--- (@ — Q- (1)

Since the integer 2 cannot be expressed as a product of more than
three distinct integers [for example, 2=1 (—=1) (—2)] it follows that
k = 3. But the condition # = 3 is impossible in (I). Assume, for ex-
ample, that 2 = 3and that a, < a; < a;; then 2 = (g, — a\)(@; — a:)(@. — as),
where @, —a, > a. —a,>a, —a,, and hence @y —a, = 1, a2 — a, = —1,
and g, — g, = —2. If we substitute x = @, in the formula

2 =(x—a)x — a)(x — @) — (x — a:)(x — a)x — ag) ,

we arrive at the other representation of the integer 2 as a product
of three “polynomials”:

2 = (a, — a\)a, - a;)a, — ay) ,
where also a, —a, > ai— as > a, — a;. It follows that a, —a, =1,
4~ gy, = -1, and g, — @, = —2, which implies that e, = @;, which
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contradicts the conditions of the problem.
Hence only two cases are possible: # =2 and &k = 1.
If k=1, we have
2=(x—-a,)-—(x—az)-
which implies that g, = @, + 2, and if we designate @ simply by a,
we have
—a)xs—a)+l=Ex—a(x—a—2)+1
=(x—a—1)¢
(compare with the solution of problem 208).
If £ =2, we have
2=@x—a)x—a)— (x—a)x—a),

where we will consider @, < a, and a. < a,. 1f we substitute x = a,
in this equation, and then substitute x = a,, (thus obtaining two
equations) we have
2=(ay— a)a —ay), a, — a, > a — as,
2=(a —a)a—a), a —a >a—a
However, the integer 2 can be expressed (in diminishing order)
only in two ways: 2=2 1 and 2 =(—1) (—2). Since, moreover,
a, — a, < a, — a;, we obtain
a—a = —1, a, —ay= -2,
a—a =2, a—a =1,

from which, replacing a, by a, we find

a=a—1,
a=a+1,
a‘:a+2,

and
(x —a)(x — a)x —as)(x—a) +1
=x—ax—a+Dx—a—1)x—a—-2)+1
=x—Qa—-—1x+a*+a— 112
(see the solution of problem 209).

211. As in the solution of the preceding problem, assume that
(x — @) (x — @) x — ap)* -+ (x — an)* + 1 = plx)g(x) , (1)
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where p(x) and ¢(x) are certain polynomials with integral coefficients
(each with leading coefficient 1). In this event, either p(x) =1 and
q(x) =1, or else p(x) = —1 and q(x) = —1, for each of the values
X=4a, X=Ga,;, X =a,, x=a, We shall show that the poly-
nomial p(x) [and, of course, ¢(x)] will be, for all values x = a,, x = a,,
<++, x = a,, either equal to 1, or for all these values of x equal to
-1.

In fact, if (for example) the polynomial p(x) takes on the value 1
for x = a; but assumes the value —1 for x = a; ({ + j), then for some
intermediate value of x between a4; and a; it must become zero [the
polynomial p(x) is continuous; its graph will go from the —1 value
for x = a; to the value +1 for x = a;, thus crossing the x-axis for
some x such that ¢; < x < a;]. However, this is impossible, since
the left side of equation (I) is always greater than 1 and therefore
cannot become zero.

Let us assume that p(x) and ¢(x) both take on the value 1 for
xX=a, X =a,, x=a,. In this case, both p(x) — 1, and ¢(x) — 1
become zero for x = a;,,x = a., - -+, x = a,, and, consequently, p(x) — 1
and g(x) — 1 are divisible by the product (x — a,) (x — a;) -+ (x — a,).
Since the sum of the degrees of the polynomials p(x) and ¢(x) must
be equal to the degree of (x — a)*(x — @)? - (x — a.)* + 1, that is,
2n, it follows that p(x)—1=(x—a)---(x—a,) and qx)—1=
(x — a,) -+ (x — a,) (compare with the solution of the preceding prob-
lem). We also have the identity

(x — @) x — a)* -+ (x — ax)* + 1 = plx)g(x)
=lx—a) - (x—a) +t1ll(x—a)---(x —ay) +1]
=(x— a)¥(x — @) - (x — a)?
+2x—a)x—ay)---(x—ay)+1,

from which we must conclude that
x—a)x—a) - (x—a,)=0

This is impossible; hence we must conclude that neither p(x) nor
g(x) can take on the value 1 for all the x =a;. It can be shown in
exactly the same way that neither p(x) nor ¢(x) can assume the value
—1 at the points x = a,, ¥ = a., x = a, (if they could, we would
obtain p(x) = qx) = (x —a)(x — @) --- (x — ax) —1).

Therefore, the proposed factorization of

(x—a)x—a) --(x—a,)+1
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as the product of two polynomials with integral coefficients is im-
possible.

212, Let the polynomial P(x) be equalto7 for x=a, x =5, x =,
and x =d, where a, b, ¢, and d are integers. Then the equation
P(x) — 7 has four integra! roots a, b, ¢, and 4. This means that the
polynomial P(x) — 7 is divisible by x—a, x—b, x — ¢, and x — d,'
that is,

P(x) =7 =(x — a)(x — b)(x — o)x — d)p(x) ,

where p(x) is the remaining factor (it may be constant).

Now let us suppose that the polynomial P(x) takes the value 14
for the integral value x = A. Upon substituting x = A into the
preceding identity, we obtain, since P(A) = 14,

7=(A—a)A—b(A— XA —d)p(A),

which is impossible, since the integers A —a, A —b, A — ¢, and
A — d are all distinct, and 7 cannot be expressed as a product of
five factors of which at least four are distinct.

213. If a polynomial of seventh degree is factorable as the product
of two polynomials p(x) and q(x) with integral coefficients, then the
degree of one of these factors does not exceed 3. Let us assume
that p(x) is such a factor. If P(x) has the value +1 or else —1 for
seven integral values of x, then p(x) has the value +1 or —1, for
those same values of x [since all coefficients are assumed to be
integers, and since p(x)g(x) = P(x)]. Among the seven integral values
of x for which p(x) has the value +1 or —1, there must be at least
four for which p(x) will have the value 1 or else four for which p(x)
will have the value —1. In the first instance the third-degree equa-
tion p(x) — 1 =0 has four roots, and in the second instance the
equation p(x) + 1 =0 has four roots. No such polynomial p(x) of
third degree can exist, since neither p(*) —1 =0 nor p(x) +1 =20
can have four roots [They would have to be divisible by a polynomial
of fourth degree. Compare with the solution of problem 210 (a).]

214. Let p and g be two integers which are either both even or
both odd. Then the difference P(p) — P(qg) is even, since the value
+ Assume that P(x) — 7 has a remainder r when divided by £ — a. Then

P(z)—7=(z —a)Q(z) +r

If we set z = a in this equality, we obtain 7 — 7 = 0 +  (that is, = 0), and
this means that P(z) — 7 = (x — a)@(z) is divisible by z — a.
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P(p) — P(@) = alp* — ¢") + a(p™* — ¢*")

+ tanoApP—¢) + ani(p—9)
is divisi_ble by the even number p — q.

In pamticular, for even p the difference P(p) — P(0) is even. But
by hypeothesis P(0) is odd; consequently, P(p) must also be odd,
and thesrefore P(p) 0. Analogously, for odd p the difference
P(p) — P(1) is even. Since by hypothesis P(1) is odd, it must follow,
by the same reasoning used above, that P(p) = 0.

COﬂSequently, P(x) cannot become zero for any integral value of

x (either even or odd); that is, the polynomial P(x) does not have
integra 1 roots.

215.  Let us assume that the equation P(x) =0 has the rational

root x — %, that is, P(—’;—) = 0. Let us write the polynomial P(x)

in powers of x — p; we shall express it as
P(x) = colx — p)* + c(x — p)*~

+ (X — Pt + + Cca-r(x — P) + Ca

where ¢, ¢, ¢, -+, c, are certain integers which are readily found

in terms of a; [co is equal to the leading coefficient a, of the poly-
nomial P(x), ¢, is equal to the leading coefficient of the polynomial
P(x) — ¢o(x — p)~ of degree n — 1, ¢, is equal to the leading coefficient
of the polynomial P(x) — co(x — p)* — cu(x — p)*' of degree »n — 2,

and so on.] If in the last expression for P(x) we set x = p, we
obtain ¢, = P(p) = +1.

If in the same expression we set x = —,li and multiply the result
by /", we obtain

l-P(% = ek — pD" + cillk — py-
Yol — I+ o™k — pD + cal* =0,
from which it follows that if P(%) =0, then
A i
=l Rl
= —colk — pDnt — cllk — pD** —
— Ca-al* 2k — pl) — cail™

is an integer. But since p/ is divisible by !/, and k is relatively
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prime to / (we assume, of course, that the fraction l;— is in lowest
terms), then & — pl is relatively prime to /, and, consequently, & — p/

is also relatively prime to /. It follows that can be an

+/
k — pl
integer only if £ — pl/=+1. We may show, in exactly the same
manner, that £ — ¢/ = *1.

Subtracting the equality £ — p/ = =1 from the equality 2 — gl =
+1, we obtain (p —g) =0 or (p — q)l = =2. But (p — q)! > 0, since
p >q and ! >0, and, consequently, (p —q)/ =2, k— pl = —1, and
k—gqgl=1.

Hence, if p — ¢ > 2, then the equation P(x) =0 cannot have any
rational root. If, however, p —g¢=2 or p — g =1, then a rational
root % may exist.

Upon adding the equations

k—pl=—-1,
k—ql=1,

we obtain
2k—(p+ql=0,
k_Ptaq
/i 2

which is what we sought to prove.

216. (a) Let us assume that the polynomial can be expressed as
a product of two polynomial factors having integral coefficients:
X222 2x2220 { fy2218 + 2220x* + 2222
= (@ax" + a1 X" + @upx® 7t 4 + ay)
x (bmxm + bm—lxm_‘ + bm—zx”'ﬁz + + bo)
where m + n = 2222. Here, a.b, = 2222, and therefore one of the
two integers a, and b, will be even and the other will be odd. Let
us assume that a, is the even integer and b, is odd. We shall show
that all the coefficients of the polynomial a@,x" + a,_x""! + + a,
must be even. Indeed, suppose that a, is the first odd coefficient of
this polynomial to appear, reading from right to left. Then the
coefficient of x* in the product
(@2 + @'+ 4 Q)b x™ + D™+ 4 be)
will be equal to
akbo + a,,_lb. + a,,_,bz + .-+ aobk (1)
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(for £ > m, this sum ends with the term ai-mb.). This coefficient
is equal to the corresponding coefficient of x* in the initial poly-
nomial. That is, it is equal to zero if &k is odd, and even if k is
even (since all the coefficients of the polynomial, except the first,
by hypothesis, are even, and £ < n < 2222). But since, by assumption,
all the numbers a;-,, a¢-», @x—s, -+ -, @ are even, then in sum (1) all
the terms other than the first must be even, and, therefore, the
product a:b, must also be even, which cannot be since a: and 4, are
both odd.
Therefore, all the coefficients of the polynomial

apx™ + ApXx* + + ag

must be even, which contradicts the fact that a,b, must be equal
to 1. Our assumption that it is possible to write the given poly-
nomial as the product of two polynomial with integral coefficients is
therefore untenable.

(b) Let us set x=y + 1. We then have
xHO + x249 + leB _+_ + x _+_ 1
=+ + G+ D+ ++D+1
(y + 122 —1 1
:'—:—( +1)251—1
Grp-1 -y ]
Y0 4 951 y249 4 Ch y®® 4 Cl ' + + C:,,y + 251

Further, since all the coefficients of the last-written polynomial,

1l

except the first, are divisible by the prime number 251 [inasmuch as

Chy = 251'250'2{192 3 <25112 —k+ D) ], and since the constant term of
the polynomial is 251, which is not divisible by 251?, we can, by
using reasoning almost identical to that used in problem (a) and
merely replacing eveness and oddness of coefficients with divisibility
by 251, conclude that a necessary condition for the given polyomial
to be expressed as the product of two factors is that all the coef-
ficients of one of the factors be divisible by 251. However, this is

impossible, since the first coefficient of the given polynomial is 1.

217. Let us write the polynomials in the forms

A=ay+ ax + ax* + + a.x",
B =05y, + bx + bx* + + bpx™

Since by hypothesis not all the coefficients in the product are divisi-
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ble by 4, not all the coefficients in both polynomials can be even.
Consequently, in one of them (say, polynomial B) not all the coef-
ficients will be even. Now assume that polynomial A also contains
some odd coefficient. Let us examine the first of these to appear
(that with the smallest subscript), and let us assume that this is the
coefficient @,. Further, let the first odd coefficient of polynomial B
be b, and consider the coefficient of x*** in the product of the poly-
nomials A and B. The term x*** in this product can be obtained
only from those powers of x the sum of whose exponents is equal
to k + s; consequently, this coefficient is equal to

Aobivs + @ 1buse—r + + @oiBisr + @bi + apabio, + +a,.ibo

In this sum all the products appearing before a.b. are even, since
all the numbers a,, 2,, -- -, .-, are even. All the products appearing
after a,b; are also even, since all the numbers by, by, -+, by are
even. But the product a,b: is odd, since both e, and b, are odd
numbers. Consequently, the sum is also odd, and this contradicts
the requirement that all the product coefficients be even. Therefore,
the assumption that polynomial A has odd coefficients is untenable.
Therefore, all the coefficients of A must be even, as was to be proved.

218. We shall prove that for an arbitrary rational, but not inte-
gral, value of x, the polynomial P(x) cannot be an integer, (nor zero,
which we consider an integer).

Let x = P—. where p and ¢ are relatively prime (that is, this frac-
tion is in lowest terms). Then
Px)=x"+4+ax" "' + ax"* + + an 1 x + s

L n-1 n—2
= p_" + a, + a, p i
q "

n—1

+ +an—l£+an
q

prt+apriqt apr g + + @u1 P + auq”
T
P tglapt +apriq + + a1 gt + angt Y
= p
The number p*, as well as p, is relatively prime to g; consequently,
P+ qglapm ' + + a.g*') is also relatively prime to ¢, hence also
to g*. Therefore P(x) becomes an irreducible fraction which cannot
be an integer.'

+ It is as easy to prove the more general theorem that if 2 (in lowest terms)

is a zero of P(z), then p divides an and q divides the leading coefficient [Editor|.
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219. Let N be a certain integer and let P(N) = M. For any inte-
ger k,

P(N + kM) — P(N) = ai[(N + kM)* — N7]
+ a[(N+ kM)t — N*1] + + @n-y[(N + kM) — N]

is divisible by AM—since (N + EM)' — N' is divisible by [(N + kM) —
N =kM]—and hence also by M. Therefore, for any integer k,
P(N + kM) is divisible by M.

Thus, if we prove that among the values P(N + kM) (k=0,1,2,--)
there are integers distinct from =M, then this will prove that not
all of them can be prime. But the polynomial P(x) of nth degree
assumes a given value A for at most » distinct values of x (since
otherwise the nth degree equation P(x) — A =0 would have more
than # roots). Hence, among the first 2# + 1 values of P(N + kM)
(k=0,1,2, ---,2n) there must be at least one which is distinct from
Mor — M.

220. First we show that every polynomial P(x) of degree n can
be expressed in terms of (as “a linear combination” of) polynomials
of the form

Po(’-’) = 1 »

Pl(x) = xl
_xx=1

Py(x) = 1.2

Xx—Dx—2)---(x—n+1)
1.2.3 e ’

each supplied with suitable numerical coefficients b;, namely,
P(x) = ann(x) + bn—l n—l(x) + + blPl(x) + bOPO(x)

To prove this, we note that if b, is chosen such that the number

P.(x) =

% is equal to the leading coefficient of the polynomial P(x), then
P(x) and baPa(x) + ba1Pacs(%) +  + boPo(x) have identical coefficients

n-—1
(n— 1!
coefficient of the new polynomial P(x) — b, P,(x), then P(x) and
bp Po(x) + buey P y(x) + + boPos(x) have identical coefficients for
both x* and x*-t. If, in addition, ﬁ
coefficient of the polynomial P(x)—b..P.(J:')—b,.fl .—(x), then ’(v)

for x». If b.—, is chosen such that is equal to the leading

is equal to the leading
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and Bn Pa(x) + bpoy Pooy(x) + bpog Pa_o(x) + + b P(x) have identical
coefficients for x*, a"~!, x*2%, and so on. Thus, we can determine
bu, bp-y, +++, b, by In such a way that the polynomials P(x) and
b Po(x) + bpy Paoi(x) + + b, P\(x) + boPy(x) completely coincide.

Express the given polynomial P(x) of degree », which has the
property that P(0), P(1), ---, P(n) are integers, in the form (as out-
lined above)

P(x) = boPo(x) + b Pi(x) + b.Py(x) + + by Pa(x)
We see that

P (0) = P(0) = = P(0)
= P(1) = B(1) = = P (1) = Py2) = = P,(2)
=Pin—2)=Pn—-2)=Pn—-1)=0,
Py(0) = P(1) = P(2) = =Payn—1)=P(n) =1
Therefore,

P0) = b, Px0) ,
whence b, = P(0);
P(1) = boPy(1) + b, P(1) ,
whence b, = P(1) — bPy(1);
P(2) = by Po(2) + b P\(2) + b, P:(2) ,
from which it follows that

by = P(2) — boPy(2) — b P\(2) ,

P(n) = b Po(n) + b Pi(n) + + bu\Pnos(n) + b Pa(n) ,

and so
by = P(n) — byPy(n) — bPi(n) —  — bn_ 1 Pu-i(n)

Thus, all the coefficients b, b, b., - - -, ba are integers.

221. (a) It was shown in the solution of problem 220 that a
polynomial of degree n can be expressed as a linear combination
of polynomials of form Py(x), P,(x), -+, P.(x) (see problem 220), where
the coefficients of P; in the linear combination (series) are integers,
and provided that P(k) is an integer for all integers k. The proof
needed only the fact that P(x) had integral values for £=0,1,2,---, n.
Hence the polynomial of the present problem can, under the given
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conditions, be so represented. It is clear that the linear combination
b.P.(x) + -+ bPy(x) must have integral value for a@l// integers, hence,
s0 must P(x).

(b) If the polynomial P(x) = Gax™ + @n-1X""' + Gn-2X" % +
+ a.x + a, has integral values for x=%, k+ 1, £k + 2, k+ n,
then the polynomial

Qx)=Plx— k) =an(x — B)" + @p(x — B)" ' + + ax— k) + a,

has integral values for x=10,1,2,3, ---,n. It follows from problem
(a) that Q(x) has integral values for every integer x. Therefore we
must conclude that the polynomial P(x) = Q(x — k) also has integral
values for every integer x.

(c) Let the polynomial P(x) = @nx™ + @n1x™' + + ax + a,
have integral values for x =0,1,4,9, -,#® Then the polynomial
Q(x) = P(x*) = a,(x®)" + ap- (23" + + a,x* + a, of degree 2n has
integral values for 2n + 1 consecutive values of x, that is, for

x=-—n —n-—-1), —(n—2), -1,0,1, n—1, n. In fact, it
is obvious that
Q(0) = P(0), Q@)= Q(-3)= P©9),

Q) =@Q(-1)= PQ),

Q2)=Q(-2)=P4), Q) =@Q(—n)=Pn,
and all these numbers, by hypothesis, are integers. Consequently,
basing our reasoning on problem (b), we may say that the poly-

nomial Q(x) has integral values for every integral value of x. This
also means that P(k?*) = Q(k) is, for any integer k, an integer.

As an example, we may use P(x) = :t(xl—gl)’ for which
xt — 1) xMx — 1)(x + 1)
— Py = X (x _
Qx) (x?) 1z 12
) (x+2Xx+ Dx(x — 1) _ (x+ Dx(x—1)
1.2-3-4 1-2-3

222. (a) Using De Moivre’s formula and the binomial theorem,
we have

cos 5a + ¢ sin 5a@ = (cos @ + i sin @)
=cos’a +5cos'a isina + 10cos’a - (i sin a)?
+ 10cos*a (isina)® + 5cosa (isina)' + (i sina)?
= (cos*a@ — 10cos*a sin*a + 5cosa sin'a)
+ i5cos'a sina — 10cos*a sina + sin*a) .
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Equating the real and imaginary parts of the left and right sides,
we obtain the required formulas.
(b) As in the solution of problem (a), we have
cos na + i sinna = (cosa + i sina)*
=cos*a + Crcos®™'a-isina + C:cos"?a (isina)?
+ Cicos™*a-(isina)® + Cicos**a-(isina) +
= (cos"a — Cicos*?a-sin*a + Cicos**a-sin‘a — ---)
+ i(Chcos*'a-sina — Cycos*2a-sin*a + ---)
Verification of the desired identities is immediate.
223. Using the formulas of problem 222 (b) we have

sinba _ 6cos*asina — 20 cos*asin’a + 6 cosasin®a
cos 6a costa — 15 cos* @ sin*a + 15 cos* a sin‘a — sin®a

tan 6g =

Dividing the numerator and denominator of the last fraction by
cos® @, we obtain the desired formula:

6tana — 20tan*aq + 6tan®a

tan 6a =
nba 1 —15tantq + 15tan‘e — tan®a

224. We may rewrite the equation x + % = 2cos a« in the form

x*+1=2xcosa
or
x*—2xcosa+1=0
Thus,
x=cosa=*1/costa — 1 =cosa*isina
It follows from De Moivre’s theorem that
1" = cosna +isinna;

1 1 ..
= — = COS na = t SIN na
x" cos na * tsmna

By addition we obtain
X+ L = 2 cos na
xﬂ
225. Let us consider the sum

[cos ¢ + isin ¢] + [cos (¢ + a) + isin (¢ + )]
+ [cos (¢ + 2a) + isin(¢ + 2a)] +
+ [cos (¢ + na) + isin)e¢ + na)l .
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We have now only to compute the coefficients for the imaginary
und real parts of this sum. By designating cos ¢ + zsin¢ as a and
tosa + isina as x, and applying the formula for the multiplication
of complex numbers, and De Moivre’s formula, we find that the
sum under consideration is equal to
axl-i—l —a

x—1
cos(n+ Da+isin(n+ Da—1

cosa + isina — 1
) [(cos (n + 1)a — 1)] + i[sin (n + 1)a]
[(cosa@ — 1) + ¢ sin a]

a+2isin";1acosn+la

a-+ax + axt + + ax* =

= (cos ¢ + isin @)

=(cos¢ + ising

ot
2 sin 2

= (cos¢ + isin ¢ p p” p”
—2sin? — + 2/ sin — cos —
2 2 2

2i sin 2 la[cosn—HaJrisinnJrla]
.. 2 2
= (cos ¢ + i sin ¢)
2i sin E[cosg + 7sin 5]
2 2 2
. n+1
sin 2 @
=——a—(cos¢+isin¢)
sm—z—
(cos£+—1a+isinn+1a)(cos£—isin£)
x 2 2 2 2
c052%+sin2%
. n+1
sin 2 a ” "
= —[cos (¢ + —a) + i sin (¢+ —a)]
. oa 2 2
SmE

[Here we have again used the formula for the multiplication of

complex numbers and also the fact that cos % — z'sin-‘zi = COS (— i;-) +

f sin (— %) ] The required identities follow immediately.

1 + cos 2x

5 and the result of

226. Employing the identity cos?x =

the preceding problem, we obtain
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cos’a + cos?2a + + cos? na

= %[cos 2a + cos 4 + + cos 2na + n|

1 [sin (n + Na cos na 1] n

-2 sina
sin (n + 1)a cos na n—1
= - +
2sina 2

But since sin*x =1 — cos? x, we have
sin? & + sin? 2a + + sin® na
_ sin(n + e cos na n—1

2sina 2
_n+1 sin(n+ Dacosna
-2 2sina

227. We must compute the real part and the coefficient for the
imaginary part of the sum
(cos @ + i sin @) + Cr(cos 2a + i sin 2a)
+ Cicos3a + isin3a) + 4+ [cos (n + D)a + isin (n + 1a]
Designating cosae + ¢ sina as x, and using De Moivre’s formula
and the binomial formula, we can transform the sum into the follow-
ing form:
x+Cix + 0+ + x™ =x(x+ 1)
= (cosa + isina)(cosa + 1 + i sin a)*

= (cos a + 7 sin a)(2 cos? % + 2i cos -g— sin %)n

= 2" cos™ —g— (cosa + 1 sin a)(cos —7-121 + isin %)

— om eaan & n+2 caont+2
=2 cosz(cos 2 a + 1 sin 2 a>

It follows that
cosa + Chcos2a + Cicos3a +  + cos(m + Da

:2"cos'£cosn—+2a,
2 2

sina + Clsin 2a + Cysin3a + +sin(n + 1a
n+2

2 a.

a .
= 2" cos* ) sin
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228. We use the trigonometric identity
sin Asin B = % [cos (A — B) — cos (A + B)]
for the terms of the sum, obtaining

; [cos {m = mr + cos 2m — wr + cos 30m — mz

+ + cos (p = l)f;" = mn ]
_ % [cos (m ; s + cos 2(m;— nr + cos —B(m;- ki3
+ +COS@—1);m+n)n].
The sum
cosan + cos Chere + cos 3kr + + cos {p = Dkr _pl)k”

is equal to p — 1 if £ is divisible by 2p (here, every summand of
the sum is equal to 1). In the event % is not divisible by 2p, how-
ever, this sum, according to problem 225, is equal to

. bk (p — Dhkr ( L ﬂ_)
sin 2p cos 2 oz cos ( k 9 2b
—1=sink 1
sin _k_rr_ 2 sin L3
2p 2p
_ {0, if £ is odd,
“ 1-1, if £ is even

Both of the numbers m + n and m — n will be simultaneously even
or odd; in particular, if either of m + n or m — »n is divisible by 2p,
then both m + » and m — »n are even. The equation sought follows
immediately.

229. Consider the equation x***' — 1 =0, which has roots

1

2z + isin d
2n +1 2n +1

4r .. T
m+1 M,

COSs

Cos

dnr + isin dnm

COS o + 1 on + 1
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Since the coefficient of the absent term x?* in this equation may
be taken as 0, the sum of all these roots is equal to zero:

4 dnr )

2r .
2n+1+C052n+1+ +C052n+1

(1 + cos

Y 2 . 4r . dnrm _
+z(sm2n+l+sm2n+l+ +sm2n+1)—0.

Consequently, the expression inside each set of parenthesis is equal
to zero; in particular,

2 4 dnr
=—1
c052n+1+coszn+1+ +cos2n+1
However,
cos r__ _ cos dnr
2n +1 2n + 1
cos —3F _ — cos (n — 2m
2n + 1 2n +1

and so on, which implies that

2(cos 2r + cos An + +c052"—”)=——1

2n +1 2n + 1 2n +1
That is,
2r 4r 2nm 1
+ co = —=
S+ 1 T T TSy, 2

Remark: It is also possible to prove this result by using the results of
problem 225.

230. (a) From the result of problem 222 (b) we have
sin 2n + Da = Ci.i(1 — sin?@)"sina
— Conni(1 — sinfa)"'sina +  + (—D)*sin®la,

whence it follows that the numbers

0,

sin — =
2n+1"°

sin on

2n+1"'
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sin — %
2n+1"°
sin(— T >=sin l
2n +1 2n +1°
sin(— 2n >=——sin 2n
2n +1 2n +1
sin(— nr >=—sin nr
2n + 1 2n +1

are the roots of the following equation of degree (2n + 1):

Cinni(1 — 2)*x — Chari(1 — 23" 12 + + (=Dt =0

Consequently, the numbers

sin?

sin?

sin?

T
2n + 1
2
2n +1

nr
2n +1

are roots of an equation of degree =, such as

C;n+l(1 — )" — an-l-l(l —x)lx + +(—Drx» =0

333

(b) Let us replace » with 2» + 1 in the formula of problem
222 (b) and write it in the following form:

sin (27 + 1)z = sin?**1@(Cjas, cot?®a — Ciy+y cOtE"—%q

Whence it follows that for

a=

2n+1"'
2r

2n+1"'
3r

2n+1"'

nr
2n +1

+ Ciasi COtE g —
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the following equation holds:
Cinsi €Ot — Cinsy COt™3g 4 Cipyy Ot tg — - =0,

Therefore, the numbers

cot?
2n+1"

2
2n+1"'

cot?

nr
2n +1

cot?

are roots of the following equation of degree n:

Cinerx™ — C:ud—lx"wl + Cons1x"2 — =0.
231. (a) The sum of the roots of the nth degree equation
X an+l P C%ﬂ+l ot =0
;n+l nt+1

[see the solution of problem 230 (b)]is equal to the coefficient of x*~!taken
with the opposite sign (see the remarks preceding problem 222); that is,

2r 3
2 2 + tl
1 T gy T, 1 T
Cins n2n — 1)
+ cot? nr — Lo .
o +1 ~ Chnt 3
(b) Since csc?a = cot?a + 1, the formula of part (a) implies
2 L3 . _2m + 2 .3_”
ol TS 1 TS
., nr ni2n—1) 4 =2n(n+l)
Tt 1T 3 " 3
232, (a) First Solution. The numbers
sin? s
2n+1"'
Y w
S o +1°
sin? nr
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n ye the roots of the nth degree equation obtained in the solution of
1» roblem 230 (a). The coefficient of the highest-degree term x*, of
this equation is equal to

(_I)H(C;nﬂ + an+l + + Cihi +1)
FBut the sum in the parentheses is half the sum of the binomial
Ccoefficients

1 + Cipsr + Cinpr + + Cihnai + 1

which is equal to (1 + 1)2*+t = 22»+t,  Consequently, the coefficient of
x* in the equation is equal to (—1)*22*, Furthermore, the constant
Lerm of this equation is

C‘lhu-l = 2” + 1

Now, the product of the roots of a polynomial equation of degree n
with leading coefficient 1 is equal to (—1)" times the constant term
|if the polynomial has leading coefficient a, # 1, then the constant

term a,. is equal to (—1)* times the product divided by a,]. There-
fore, we have

. . 2r . 2n+ 1
—1" 2 3 2 . 2 BT alh T 0
(~Drsint 22 sint g Sy o sint gty = G0 T
and, consequently,
T__ gin —2F n " _Ven+1
2n +1 2n +1 2n +1 2" *

It can be proved, in an analogous manner, that

sinisinzn—---sin——(n_l)n = Vn

2n 2n 2n To2n
Second Solution. The roots of the equation x** —1=10 are 1,
-1, c05£+isin£, cosz—”+isin-2—”, cos—3—”-+isin3—”,
n n n n n n
cos Qn;—l)rz + isin@. Therefore, we can write

xr—1=(r—1)x+ 1)(‘— cos = — isin£>
n n
X (x - cosz—rr — 7 sin 2—”) [x — cos n—Dr
n n n

— 17sin n—Dm -;1)7r ][x — cos {nt Dr _ i sin {n+ D ] %
n

n
X [x —cosien— b _ gy @r— Dr 1)”]
n n
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However,
cos Zn—RT _ o5 b
n n
. @n—Rkr _ . km
sin ~———— = — sin—
n n

whence it follows that

(= cos & —sin &)« — cos @=L _ iy (=D ]
n n n ”

—xz—Zxcosi;-+1,

< 2r . . 2r )[ 2n — 2n . . (2n — 2)7t]
X—COS — —i1s1n — X—Ccofs—mm—m— —t1simn————
n n n n

—12—21c0527—7+1,

[x —cos M Dm g {n = Dr ]
n n
X [x — cos At D isin #E D ]
n n

=x’—21cos(—"—n—1)"+1

Therefore, the decomposition of the polynomial x?* — 1 into factors
can be written:

-1 =(x— 1)<Jc2 — 2x COS —;—t— + 1)(1:z — 2x cos

X (x2—21c05@+1)

-&7t—+1)x
n

It follows that

7 —1
ﬁ = x4 xind 4 +x2+1

= (xz—Zxcos% + 1)(1’—2.rcos~2n1 + 1) X

x[x*—Zxcosﬂ_nﬁ+l]
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If here we set x =1 and use the identity
2—2cosa =4sin1—;— ,
we obtain
n = 4" sin? —2"7 sin? 2r . sin? n— D

2n 2n
from which it follows that

in " sin2® ...gpB=Dr _ V'n
sin o sin o sin o = 2
It is proved in the same manner that
. T . 2r nr _Von+1
Mo 11 M1 T

(b) We can obtain the required result by reference to either
the first or the second solution of problem (a). We shall not repeat
those solutions here, but we shall derive the formulas we need from
the formulas of problem (a).

Since
. T 2nr
S+ 1 o1
sin 3z _ (2n — 2)n
2n + 1 2n +1
sin 57 — sin (2n — Hrm
2n +1 2n + 1
it follows that
. 2 . ir . 6n . nw
M1 21 P amr1 Mot
. T . 2 . 3= nr Voan+ 1
T 1 Tt 1 M 1T 2

[see problem (a)l. If we divide this formula by

. T . 2r . nw Von+1
M+ 1 P 2r1 M omr1 T

and use the identities
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2 . b4

S0 w1 2 TS T
sin An = 2sin 2r cos Zn
2n + 1 2n+1 2n + 1
. 2nr nr nr
Sin =

mal M1 %11
we obtain

€0s —>—— cos 2T cos 3r cercos T L
2n + 1 2n + 1 2n + 1 2n+1 2

Similarly, we have

cochos—zl--- cos - Lr ] sin = sin 2% . .- sin =L ]
2n 2n 2n _ 2n 2n 2n
1 T 2 . (n—Dr
= —=-—sin — sin . sin
2n-1 n n
But
sin & = sin # =17 ,
n n
sin —— = sin (n =2z ,
. T
— 1
sin 5
Therefore, for odd # (n = 2k + 1):
..mT . 2 . (n—Dm
sin — sin — - - - sin ——
n n n
s T . 2 . ke \*_ ]/2k+1>’= n
= (S‘“ Z+1 " 2k+1 Mo+ 1) (—2k 21

For even n (n = 2k):

sin —Z— sin 2% gjip 2=Dr

n

2k 2k 2k

[see solution (a)]. Whence we obtain

= [sin Z_sin 2n sin (k_—l)"]; (V—I?)z L
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T 2 (n — Drm 1 2n/n=1 )
COS —— C0OS — COos = — =
2n 2n 2n 20t 1V j2n 2n-t
Remark: 1f we divide the formulas of problem (a) by the corresponding
formulas of problem (b), we arrive at

n 2n nr

t e /
tanzn+1 an2n+l tan2n+l V2n +1;
n 2n (m — D=
t. —_— —_— ... t —_— ]
an 2n tan on an 2n
Moreover, the second of these equalities is obvious, since
L3 (n - n [ n
tan—— tan ————— = - —— =1
an on an n tan on cot on
tanz—ntanu: = tan (n = L) tan (n + D =1,
2n 2n 4n 4in
nn
tan n =1

From this equality and from the second formula of problem 232 (a) we may
readily derive the formula

n 2n m—Un v
COSW COSWX XCOST—F-—‘

These solutions can also be obtained in a manner analogous to that used in
the first solution of problem 232 (a).

233. We first show that if « (in radians) is an acute angle, then

C

Figure 22
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sine < @ <tane.

We have (see Figure 22; S is area and the circle has radius 1)

1 .
Sii08 = —sina,
2
1
Ssector 408 = ——& ,
2
1
SAAoc = -—tana
2
But since
Sa408 < Sseeror 408 < Saoc ,
We have

sine < & < tane«

This double inequality implies that

cota < —;-(CSCG

Therefore, it follows from the formulas of problems 231 (a) and (b)
that

n2n—1 .. = , 2m
S W
3n nr
2 2
+ cot ) + + cot 1
2 2 2 2
<<2n-+—1)_+_<2n-+—1)_+_<2n-+—1)+ +<2n+1)
s 2r 3n nr
2
< 2 s 2
cse 2n+1+CS'c 2n + 1
. 97 p_fm___2n(n+1)
LIS S A P | 3

If we divide all the terms of the last double inequality by
(2n 4+ 1)*

2

2n 2n—1__n_2_(1_ 1 )(1_ 2 ) L
2n+1 2n+1 6 2n +1 2n + 2 6
1 1 1

<1+—2;+?+'°'+?

, we obtain
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2n 2n+2 n?

“om+1 2m+1 6

1 1 r?
=(1- i
( 21z+1>(1+2n+1> 6

234. (a) Assume that the point M is on the arc A, A, of the circle
(Figure 23). Designate arc MA, as a; then the arcs MA,, MA,,
MA, are equal, respectively, to

2r

a+—,
n
ir

a+ —,
n

as was to be proved.

a4+ 2n — Dr
n
But the length of a chord AB of a circle with radius R is equal to
2R sin %} (This is readily discerned from the equilateral triangle

AOB, where O is the center of the circle.) It is clear, then, that
the sum which interests us is equal to

4Rz{sinzi + sin? (i + i) + sin? (i + ﬁ) +
2 2 n 2 n
+ sin? (_‘Z_ 1 (n— D= )}
2 n

We shall now evaluate the expression in the brackets. Using the

ﬂ&, we find that the bracketed

half-angle formula, sin®*x = 2

expression is equal to
s==2 _ {cosa+cos(a+ﬁ> +cos(a+—4l> +
2 n n

+ cos (a + 2n = r Dﬂ)}

n

But, by the identity in problem 225, we have

cosa+cos(a+2_:>+ +cos[a+ 2(7!;1)7(]
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sin m cos [a + (n_—D”]
n 0

. T
sin —
n

consequently, S = % The assertion of the problem follows.

Figure 23 Figure 24

Remark: For even n = 2m (Figure 24) the assertion of the problem is obvi-
ous, since, by the Pythagorean theorem,

MA? + MA%., = MA] + MAY. = MA} + MA;. = AR?

(b) Let A\B,, A:B:, -, A.B. be perpendiculars drawn from
points A, A:, -+, A. to the line OM [Figure 25 (a)]. Then it is
readily found (from the law of cosines and consideration of the tri-
angle OAyBy) that

MA, = MO* + OA} — 2MO-OB, = I* + Rt — 2|-OB,
(k: 1)21 "'pn> ’
where the segments OB, are taken with the plus or minus sign de-
pending upon whether the point B, is located on the segment OM

or on its extension.
Consequently,

MA} + MA; + + MA2 = n(l* + R®) — 2OB, + OB, + + OB,).
But if <MOA, = a, then
OB, =0A,cos <AOM=Rcosa,
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2r
OB, = Rcos (a + 7—)

OB, =Rcos<a+£),

n

OB, = R cos [a + 2(nn;1)7r]

However, it was shown in the solution of problem (a) that

cosa+cos(a+27")+ +cos[a+2("_1)”]=0
¢ n

’

and so OB, + OB, + + OB, =0.
The assertion of the problem follows.

Remark: For even n = 2m the assertion of the problem is obvious from
Figure 25 (b). In this case

OB, + OBni1 = OBy ++ OBuns2 = =0Bn+ OB =0

Figure 25

(c) Let M, be the projection of point M onto the plane of
an m-sided polygon (Figure 26). We have

MA2=M1AZ+MM12 (k=1,2,--,n),
and, consequently,

MA} + MA} + - + MAL = M\ A} + M A} + -« + MLA: + n- MM .
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Bat
MA+ MAT+  + MAY= n(R* + OMY)
[see problem (b)], and
It = OM?*= OM? + M\M*?,

whence follows the assertion of the problem.

Figure 26

235. (a) The solution of this problem follows directly from the
theorem of problem 234 (a), if we take into account that for an even =,
the even (and odd) vertices of the »n-sided polygon are also the vertices

of those regular —72'—-gons (abbreviation for polygons with % sides)

inscribed in the circle.

(b) Letn =2m + 1. We deduce from the solution of problem
234 (a) that it is sufficient to prove equality of the following two
sums:

—an® o (a 27 . (a 4r
S.—sm2+sm<2+—2m+1>+sm<2+——2m+1>

. a 2mr
+ +Sm<2 + 2m+1>'
and

Canf@ i . fa 3n
S”_S'“<2 + 2m+1>+sm(2 + 2m+1>

. (a (2m—1)7r)
+ +Sm<2+ 2m + 1



Solutions (235-237) 345

Hut, by problem 225, we have

sin {m + D 194 sin (ﬁ— + T )

S = 2m + 1 2 2m + 1
L 14
sinp —~—
2m + 1

. mnr - [a T (m — Drm
_ s 2m+1sm[2 T om+1 T 2mil ]_
S. = = S

sin 2m + 1

236. In problem 234 (a) we found that the sum of the squares of
the distances from a point on a circle circumscribed about a regular
n-sided polygon to all of its vertices is equal to 2nR?. If we assume
that M coincides with A,, then the sum of all sides and diagonals
of the n-gon emanating from one vertex is equal to 2nR?. If we
multiply this sum by #» (the number of vertices of the n-gon) then
we obtain double the sum of all the sides and diagonals of the n-gon
(since every side or diagonal has two ends, it counts twice in the

sum). The sum we seek is therefore equal to —g—-ZnRz = nR?

(b) For a regular polygon, the sum of all the sides and
diagonals which emanate from one vertex A, is equal to

2R|:Sin—£—+sin_2_n_+ +Sin(”‘l)n’]
n n n

..n . (n—Drm
sin — sin ———=
=2R 2 2n = 2R cot -=—
.o 2n
sin —
2n

[compare with the solution of problem 235 (b)]. When we multiply
this sum by » and halve it we obtain the required result: Rn cot—zl

”n
(c) The product of all the sides and all the diagonals of the
n-gon emanating from one vertex is equal to

.. . 2r . — Dr
2n—1Rn—l sin — sin — - - sIn (_u e 21!—1R1|.—1L
n n 271

[see the solution of problem 232 (a)]. By raising this product to the
nth power and extracting the square root, we obtain the required
result.

237. Let us compute the sum of the 50th powers of the sides and
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diagonals emanating from one of the vertices, say A,. This problem
reduces to finding the sum

. to . 2m\% . WY\
£ = (e g) s (e )" (arsn )
( R sin 100 + (2R sin 100 + + { 2R sin 100

[compare with the solution of problem 234 (a)]. Thus we must make
a summation of the 50th powers of the sines of several angles. But

.. _ i 50
Sin,,,az[(cosa+zsma) = (cos a — isin a)]
i

(=)
x—-—
_ P 1 1\®
= (D)

where we write cosa + isina = x; in this case, cosa — isineg = —,
x

Therefore,
. -1 1 1
sin®*® @ = o (r‘“ - C;ox"—x— + Cgox“‘? -
+ CzstGi; —_ Cg;xﬂaﬁ + Ciﬂ 24;12_'! _
1 1 1

1 1 1 1
= —:?E[<x‘° + F’) — C§°<x“’ + r—“) + C§0<x‘° + F) —

+ C§3<x2 + —JI?) + C:g]
= —%(2 cos 50 — 2C}, cos 48a

+ 2C3, cos 46 — + 2C% cos 2 + C%)

[here we make use of the fact that x* + % = (cos ka + isin ka) +

(cos ka — isin ka) = 2 cos ka

Hence the sum £ may be expressed in the following way.

2r 99
= —R| 2 I 502% )
p) R [ (cosSOlOO + cos ‘30100 + + cos 50 100

1 i3 27 997
- T LT, 8
2C50< cos 481 + cos 481 + + cos 4 ] )
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+ 2C§o( cos 46775'0 + cos 46% + + cos 4639775)
+ 2C§3( cos zl% + cos 2% + + cos 2 ?E())’(; ) - 99C§3]
= —R[2s5, — 2Cqs; + 2CxSa —  + 2Cus2s — 99Caal ,
where s, ss, -+, sss replace the sums in the parentheses., But from
the formula in problem 225 it follows that s, = s, = = Sy = —1.
Therefore we have
T =R2—~2C% +2Ch —  + 2C5 + 99CY)
= R(1 — Ci + Ci — Cao + + C5 — C%
+Co—  +Ci—Ci+1-100Cx)

= R[(1 — 1)* + 100C3] = 100C5R*°

From this we immediately obtain the result that the sum of the
50th powers of all the sides and diagonals of a 100-sided polygon is
equal to

.50!
1005 _ 5000CERS = 5000-50!

2 s K

238. We make use of the fact that in a triangle with integral

2 2 __ 2
sides a, b, and ¢ the number 2 cos A = Pre—a

. (law of cosines,
where A is the angle between b and ¢) is rational. Further, if A =
%-180°, where m and » are integers, then cosnA = cos (m-180°) =
(=D,

We shall now show that 2cos nA for an arbitrary integer » can
be expressed as a polynomial of degree » in terms of 2cos A with
integral coefficients and having leading coefficient 1; that is, that

2cosnA =(2cos A)* + a,(2 cos A)*~% + ax(2cos A)"* +

where a,, a,, are integers. This assertion may by deduced from
the first formula of problem 222 (a), or else proven by mathematical
induction. Indeed, it is true for » =1 and » = 2, since

2cos A =2cos A,
2c0s2A = (2cos A)? — 2.

But from the known product-to-sum identity we have

cos(n + 2)A + cosnA =2cos Acos(n + 1NA,
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and so
cos(nm + 2)A =2cos Acos(n + 1)A — cos nAd ,

from which it immediately follows that if the assertion is true for
the values n and n + 1, then it is also true for » + 2. Since the
assertion is valid for n =1 and n = 2, it follows that it is true for
all values of n.

By setting 2cos A = x and cos mA = (—1)™ in the resulting formula
we obtain the following equation with respect to the unknown x:

4 axt T+ @ttt + —2(=1r=0

Thus x is a rational root (since, here, x = 2cos A is rational) of
an equation with integral coefficients whose highest-degree term has
coefficient unity. But all the rational roots of such an equation must
be integers (see problem 218); therefore, x = 2cos A must be an inte-
ger. Since 0 = cos A <1, the only possibilities are cos A = 0 or else
cos A = :%; that is, A may be 60°, 90°, or 120° (these are the only
angles greater than zero but less than = = 180° for which 2cos A is
an integer).

The existence of 60°,90°, and 120° angles in triangles with integral
sides may be shown by simple examples. A triangle with sides
(3,4,5) is a right triangle—it has a 90° angle. In a triangle with
sides (1,1, 1) all the angles are 60° Finally, we cen verify (by the
law of cosines, for example) that a triangle with sides (3,8,7) will
have a 60° angle (between side 3 and side 8) and a (3,5, 7) triangle
will have a 120° angle (see also problem 128).

239. (a) Let us assume that the ratio of # = arc cosL to 180° is
a rational number, that is, that 8 = :'i-180°, where m and »n are

1
integers (which will be considered relatively prime). From the second
formula of problem 222 (b) we have

sin n8 = Crcos* '6sin @ — Chcos** #sin* 8 + C3 cos** fsin’ § —

In the case of interest to us we have
cos @ = 1 ,
b

sinﬂle—coszﬂz%,

and sin mf = sin 180°» = 0. Substituting these values into the last
equality, we obtain
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0= l/p;‘— 1[,, _ "("——;3(@(,,2 — 1

nn — 1(n — 2)(n — 3)(n ~ 4)
+ 51

(p* = 1 — }

Since p + 1, we have ‘/L:l, + 0, and therefore the sum within

brackets must be equal to zero. Since all the terms of this sum,
except the first, are even integers (p2 — 1 is even, since p is odd),
the first term must also be even. Hence 7 is even, » = 2k, and there-
fore m is odd.

Since m is odd, it follows that

coskﬂ:cosmTa=cos%rr=0

From the first formula of problem 222 (b) we have

cos k0 = cos* 0 — Cj cos*~2 0 sin? 8 + C{ cos** 0 sin* 0 —

By setting cos 6 = %, sinf = _Ll‘;—l, and cos k0 = 0 we obtain

0=ﬁu—ww—n+ww—w—~q
Here all the summands in the brackets, except the first, are even

integers, and the first is equal to unity, that is, is odd. Therefore,
the resulting equality is impossible. This contradiction proves that
the ratio of 6 = arc cos — to 180° cannot be a rational number.

(b) Let us assume that @ = arc tanﬁ- contains a rational
number of degrees, that is, that # can be expressed as 6 = %180°,

where m and n are integers. We shall consider p and ¢ relatively
prime, which is permissible, since we are interested only in the

p

ratio ; We shall use the DeMoivre formulas

(cos @ + 7sin 6)* = cos nf + i sin n0
and
(cos 8 — i sin ) = cos n@ — i sin nf

Since 6 = 1:—180°, we have sin 20 = sin 180°m = 0, and, consequently,

(cos 8 + ¢ sin 8)* = (cos 6 — isin O)* .
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Dividing both sides of this equality by cos® # (cos 0 + 0, sincetan@ =
b

Sinf _ P where q+ 0), we obtain
cos q

(1+itanf)* = (1 —itan )™,

(rig) =0y

or, after multiplying by ¢*,
(g +ip)yr = (g —ip)y

We shall now show that this equality is impossible when p and g
are integers, relatively prime, p +0, ¢ #0, and p and ¢ are not
simultaneously equal to ==1. To this end we express the equality as

(g —ip)» =g —ip) + 2ip]*
= (g — ip* + Calg —ip)*~'2ip + Ci(qg — ip)**(2ip)* +
+ C27' (g — ip)2ip)y»t + (2ip)»
Eliminating the term (¢ — ip)* from the left and the right sides,
dividing by 2ip, and transposing (2ip)*~! to the left side, we obtain

—Qipyt = (g — ip)[Calg — ip)"* +
Cig —ip22ip+  + Ci'(2ip)»?]

Each side of this equality is a complex number; by equating the
moduli of these complex numbers and taking into account the fact
that the modulus of the product equals the product of the moduli of
the factors, we find

that is,

@pyt=(¢* + p)B,

where B is the modulus of the expression within the brackets on the
right side of the preceding equality. Thus B is equal to the sum of
the squares of the real and imaginary parts of the number,

Culg — ip)** + Crlg — ip)*2ip + + CR7'@ip)»
and is therefore an integer. Thus (2p)**~? is divisible by p? + ¢
But since p and ¢ are relatively prime, p? + ¢* does not have common
factors with p and g; that is, 22*~* must be divisible by p? + ¢%. The
numbers p and ¢ are either both odd, or one is even and the other

odd. If one is even and the other odd, then p? + 4* will be odd, but
if p=2r+1 and ¢ = 2s + 1 (both odd), then



Solutions (240) 351

PP+ g =22r*+2r +2s2+2s 4+ 1)

will be even, but it will contain the odd factor 2(»* + » + s2 + s) + 1.
This odd factor becomes unity only for p = =1, ¢ = =1. Therefore
for all remaining cases 2?2 cannot be divisible by p? + 42, That is,

8 = arc tanL cannot contain a rational number of degrees.

240, Firstholution. Assume that < is not divisible by p. Then
the integers ¢, 2a, 3a, ---, (p — Da will also fail to be divisible by p,
and they will yield different remainders when divided by p [if ka
and la (p — 1=k > 1) produced identical remainders when divided
by p, then the difference ka — la = (¢ — l)a would be divisible by p,
which is impossible, since p is prime, a is not divisible by p, and
k — [ is less than p.] But since, upon division by p, all possible
remainders are exhausted by the p — 1 numbers 1,2,3, .-+, p — 1, it
necessarily follows that

a=qp+a,
2a =q.p+a,
3a:q:lp+ag,

(p—Da=gpp + ap

where a,, a., ‘- -, @,-, are the positive integers 1,2, ---,p — 1, taken
in some order. Multiplying together all these equalities, we obtain
[1-2---(p = Dla*~! = Np + a\az - -ap-,
(1.2--(p — Dl@*' — 1) = Np
Therefore it follows that @' —1 is divisible by p, and a*» —a is
also divisible by p. (If a is initially divisible by p, then the asser-
tion of Fermat’s theorem is obvious.)

Second Solution. The theorem is obvious for a = 1, since in that
case > —a=1—1=0, We shall now apply mathematical induction
to the positive integer @, and show that if a*» — a is divisible by p,
then it will follow that (@ + 1)» — (@ + 1) is divisible by p.

By use of the binomial theorem we find that

(@+1p—(@+1)=a+ pa' + Cia**+ Cia»+ +pa+1l—a—1
=(a®—a)+ pa' + Coa** +  +Cp7%a* + pa.
But all the binomial coefficients

ct= P —1)p—2)(p—k+]1)
’ 1.2.3---k
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are divisible by the prime number p, since C% is an integer and since
the numerator of the above expression for C: contains the factor p
whereas the denominator does not contain this factor. But since, by
the induction hypothesis, a» — g is also divisible by p, it follows that
(@ + 1)» — (a + 1) is divisible by p.
We shall detail a more elegant variation of the same proof. Be-
cause all the binomial coefficients C; are divisible by p, the difference
(A + By» — A» — Br
=pAr'B + C,A»B* +  + C;PA*Br* + pABr?
where A and B are any integers, is always divisible by p. If we
apply this result, we find that
(A+ B+ Cyp— A?»— Br — C»
={(A+B)+ClP—(A+ Bp—C?} + (A + By — A»— B
is always divisible by p; that
(A+ B+ C+Dp— A — Br—Cr— Dr

={[(A+ B+ C)+DlP— (A + B+ Cp — D}
+(A+B+Cp— Ar— Br—(C*

is always divisible by p; and that, in general,
(A+B+C+ + K)»— A» — Br — C? — — Kr

is always divisible by p.

If in the last expression we now set A= B=C = =K=1,
and if we let the number of these terms be equal to @, we arrive at
Fermat’s theorem: a* — a is divisible by p.

241. The proof of Euler’s theorem is completely analogous to the
first proof of Fermat’s theorem. Let &,, k., -- -, k. be the set of natural
numbers which are less than, and relatively prime to, the integer N.
We consider the » numbers k,a, ka, ---, k.a. All of these are rela-
tively prime to N (since a is by hypothesis also relatively prime to
N), and all of them, when divided by N, will yield different re-
mainders (this is proven exactly as in problem 240). We may write

kla :q1N+ a ,
k.a = q.N + a. ,

k,a:qu+arp
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where a,, a,, - - -, a, must be the same numbers as &,, &, - -, k,, though
in different order (since clearly the a; are distinct, all less than N,
and if a; were not relatively prime to N, then neither would be k).
If we multiply together all the equalities, we obtain
klkz' . .kra’ = NM + aa; --a, ,
kb - -ka”—1)= NM,

whence it follows that the integer a” — 1 is divisible by N.

242. We shall prove this by mathematical induction. First, it is
evident that for m = 1 the proposition of the problem is correct:

2—-1=1,
22 —1=3,
29— 1=

are not divisible by 5. We shall show that the proposition holds also
for n =2. Let 2* be the smallest power of the number 2 which will
produce a remainder of 1 when divided by 5* =25. (That is, & is
least such that 2¥ — 1 is divisible by 25.) Now, assume that & <
52 —5=25—-5=20. If20is not divisible by & (that is, 20 = gk + 7,
where 0 < r < k), then we obtain

200 — ] = 2ekrr — 1 = 2720 — 1) + (27 — 1)

But 2% —1 js divisible by 25 (by Euler’s theorem), and 2% — 1 =
(2€)e — 17 is divisible by 2¢ — 1, which, by assumption, is also divisible
by 25; therefore 2 — 1 must be divisible by 25, which is a contra-
diction of the assumption that % is the smallest number for which
2 — 1 is divisible by 25. Therefore, # must be a divisor of the
number 20; that is, £ can be equal to only 2,4, 5, or 10. But 22 — 1 = 3,
22—-1=31, and 29 —1=1023 are not divisible by 5, whereas
2¢ —1 =15 is divisible by 5, but is not divisible by 25. Thus, the
proposition of the problem holds also for n = 2.

Let us now assume that the proposition of the problem holds for
some n, but is invalid for » + 1, that is, that the least # such that
2 — 1 is divisible by 5**! is less than 5**' — 5* = 4-5". We can show,
exactly as above (for #» = 2), that 2 must be a divisor of the number
4.5*, But, moreover, we can show analogously that the number
5% — 5% 1 = 4.5 must be the divisor of the number k. If it were
true that k£ = ¢-4-5*' +r, where 0 < r» < 4-:5"!, then 5 — 1 would
be divisible by 5* which contradicts the hypothesis that the propo-
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sition of the problem is valid for the number n. Thus & has only
one possible value: %k =4-5*1,
Since the number
25n—l-5n—2 — 1 — 2‘.5n—2 — 1

is divisible by 5*-! (from Euler’s theorem) and is not divisible by 5*
(otherwise the hypothesis would not be true for »n), then

2097 = g.5%1 + ]
where ¢ is not divisible by 5. From the expansion
(a + b)* = a® + 5a*b + 10a%b* + 10a*h® + Sab* + b*
we obtain
2097 1 = (20 — 1 = (g-5" ! + 1) —1
—_ 5n+l(q5.5hl—0 + q‘.sal—ﬁ + 2q3.521l—l + 2q2.5n—3) + q.5n

whence it is clear that 2¢**' — 1 is not divisible by 5**'. Hence,
the truth of the proposition for » implies that it is also true for
n + 1, whence the statement holds for all integers.

243. According to Euler's theorem (see problem 241), the number

2510—59 —1= 24-59 — 1 =2ne12,30 _ ]

is divisible by 5'; therefore, for n = 10 the difference
27.012.500+n —_ 21! - 21!(27.8!2.500 — 1)

is divisible by 10, That is, the last ten digits of the number
27.012.3004n coincide with 27, This means that the last ten digits of
the numbers of the sequence 2',2% 23 ..., 2~, will repeat after
every 7,812,500 numbers. Moreover, this periodicity begins with the
tenth number of this sequence, that is, with 2!,

It follows from the result of problem 242 that the period is, actual-
ly not less than 7,812,500,

Remark: It can be proven analogously that the last n digits of the numbers
in the sequence under consideration will repeat every 4.5°-! numbers, begin-
ning with the nth number of this sequence (for example, the last two digits
would repeat, beginning with the second number, every 20 numbers).

244. We shall prove an even more general theorem, namely, that
for any integer XV there is always a power of 2 whose last IV digits
will always be ones and twos. Since 2* = 32 and 2° = 512, the propo-
sition is valid for N=1 and N =2. We shall carry out the proof
by mathematical induction.
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Assume that for some natural number N the final N digits of the
number 2* are ones and twos. We are to show that there is a power
of 2 whose last N + 1 digits will be ones and twos.

According to the induction hypothesis, 2* = g-10¥ + b, where & is
an N-digit integer whose digits are all ones or twos. Let us designate
the number 5¥ — 5¥-1 = 4.54 ' by the letter r; then by Euler’'s theo-
rem (problem 241), the difference 27 — 1 will be divisible by 5¥. It
follows that if the integer k is divisible by 2¥*!, then the difference
2tk — k = k(2r — 1) will be divisible by 2-10¥ That is, the final N
digits of 27k and %k will coincide, and the (N + 1)st digit from the
end of each will be both odd or both even.

Let us now consider the following five powers of 2:

on

ontr = or.On
Ont2r — Or. Qn+r
Qni3r — Or Qn+tlr

ontdr — 91 Intdr

From what we have shown, the final N digits of all of these numbers
will coincide (each of the numbers, as well as 27, will terminate in
the same number, b, which consists entirely of one and twos), but
the digits in the (N + 1)st place from the end of all of them will be
simultaneously even or odd. We shall now prove that the digits in
the (N + 1)st place from the end cannot be identical for any two of the
five numbers. In fact, the difference of any two of the numbers
can be expressed as 2"tm™ir (2727 — 1), where m; =0,1,2, or 3, but
m;=1,2,3, or 4. If this difference is divisible by 10%+!, then
2m2r — 1 must be divisible by 5¥*!; but since

Mmey = mg'(SN — SN—I) < 5,(5N —_ 5N——l) — 5N+l pu— 5N

this contradicts the result of problem 242.

Therefore, the digits standing in the (N + 1)st place from the end
of the above five integers must be either 1,3,5,7, and 9 (all ap-
pearing) or else 0,2, 4,6, and B (in what order, we do not know). In
either event, in one of these integers the (N + 1)st digit from the
end must be 1 or else 2. This means that, in any event, there exists
a power of 2 whose final N + 1 digits can comprise only the digits
1 and 2. This induction proves the proposition of the problem.

245. Let a be one of the numbers of the.sequence 2,3, -, p —2.
Consider the integers



356 Some Problems in Number Theory

a,2a, -+, (p—la

Clearly, no two of these integers can yield the same remainder
upon division by p; therefore those remainders will be the positive
integers 1,2,3, -, p — 1 (all appearing, but in what order is unknown
and not important). (Compare with the solution of problem 240.) In
particular, there will be an integer b in the sequence 1,2, --,p—1
such that ba, when divided by p, will have a remainder of 1. Now,
b#1 and b+ p—1, since 2£a<p—2, and were b =1 then the
number ba = @ when divided by p would yield remainder ¢ # 1; and
were b= p — 1 the number ba = (p — 1)a = pa — a when divided by
p would yield the remainder p — a #+ 1. Moreover, b # a, since if a*
yielded a remainder of 1 when divided by p, thena*—1=(a + 1)a—1)
would be divisible by p, which is possible only for ¢ =1 and a =
p—1. Therefore, 2<b < p— 2, and b + a, which means that each
of the numbers 2,3, ---, p — 2 can be paired with one other distinct
integer of this set such that the product of this pair yields a remainder
of 1 upon division by p. Accordingly, the product 2-3-4---p — 2 it-
self yields a remainder of 1 when divided by p.

Now the number p — 1 may be thought of as yielding the remainder
—1 upon division by p. It follows that

(p—D'=123---(p=2)p~-1) =[2:3---(p = 2](p—1)
has the remainder —1 when divided by p. That is,

(p—Dt=kp—1
(p—D'+1=kp,

which says that (p — 1)! + 1 is divisible by p.

If p is not prime, it must have a prime divisor ¢ < p. Then
(p — 1)! is divisible by ¢, since ¢ is one of the factors in (p — 1)\
But then ¢ cannot divide (p — 1)! + 1; hence neither can p.

246. Let p=4n+ 1 be a prime number. By Wilson’s theorem
(problem 245), the number (p — D!+ 1 =(1-2-3---4n) + 1 is divisible
by p. Now in (4n)! we shall replace each factor exceeding 2xn by the
identical number expressed in terms of pand n. For example, since
p=4n+1, we may write 2n+1=p—2n, 2n+2=p—(2n—1),
and so on, until, finally, 42 =p —1. Then (p— 1! =) =1-2-3-
o Cn = 120(p —2n)[p— Cn — D] -(p—1).

It is readily seen that if the right side is expanded, then every
term will have p as a factor, except a final term which will be equal
to [(2n)!]2. Therefore, (p — 1! +1 = Ap + [2»)!]* + 1, where A repre-
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sents an expression unimportant to us. Since this number is divi-
sible by p, and the term Ap is divisible by p, it follows that
[22)!]* + 1 is also divisible by p. Therefore, the number x = 2n)! =

(‘b; l)! satisfies the conditions of the problem.

Remark: We note that if the integer x has the remainder z, when divided
by p, then since
2+ 1=(kp+2)2+1=(Kkp+2ka)p+2at+1
it follows that xf + 1 is divisible by p. Therefore we might stipulate, as an
additional condition of the problem, that x < p, since such an x = z, does exist.

247. (a) The assertion of the problem follows immediately from
the identity
(@* + b%)al + b)) = (aa, + bb,)? + (ab, — ba,)?

(b) First, it is easily shown that no number of the form
4n + 3 can be expressed as the sum of two squares. In fact, the
square of every even number may be expressed as 4k, and the square
of an odd number may be expressed as 4% + 1, since

2a+ 12 =4@*+a)+1

Accordingly, the sum of the squares of two even numbers may have
the form 4n; the sum of the squares of two odd numbers may have
the form 4n + 2; and finally, the sum of the squares of an even and
an odd number may have the form 4n + 1. Thus, an integer which
can be written as 4n + 3 cannot be the sum of two squares.

It is a more involved matter to show that every prime number of
the form 4n + 1 may be expressed as the sum of the squares of two
integers. Let p be a prime of form 4n + 1. We know from problem
246 that some multiple of p can be expressed as the sum of two
squares; in fact, since there exists an integer x such that p divides
x* + 1, there is an m such that

mp=x*+1 (1)

From the remark following problem 246 we may find ¥ < p, whence
x* + 1 < p?, and so in (I) we may assume that, because of the suitable
choice of x, m < p. If m =1, the proof is completed. Hence we
shall assume that m # 1.

Now, if is even, then x*+ 1 is even, whence x must be odd.
Then we can write

o= (55 + (55
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That is, there exists an m' = g’— such that

mip =z + yi
If ' is again even, then either x, and y, are both even, or else both

are odd. In either event, we can easily determine (reasoning as
m!

above) that there exists an integer m”(: 2— such that
mip = x5+ 3;

Now, if m is a power of 2, then the proof concludes in an obvious
way. Hence we need consider only the case in which » is odd (to
which the problem reduces if s fails to be a power of 2) and ‘that
we have

mp = x? + y?
(whether y* =1 or not is not important in the sequel).
Let x, and y, be the least remainders in absolute value which can
result when x and y, respectively, are divided by n::
x=mr+x,
Yy =ms + ¥
(either of x, or y,, or both, may be negative integers). Then | x,| and

n (equality cannot hold, since m is odd),

|v.| are both less than G

and we can write
mp = x + y* = (mr® + 2mrx, + x1) + Onst + 2msy, + 35
It is clear that x} + yi is divisible by m:
x4+ ¥y = mn
(it is readily found that n = p — mr® — 2rx, — ms, — 2sy,).
We note that n < 'ZLI; indeed, since x, < % and y, < %, it follows
that

2 2 2
S .'2<<L”_) (ﬂ) _m
mmEaT s y) T2 2

In addition, # # 0, since otherwise x and y would both be divisible
by m and mp = x* + y? would be divisible by m?* which is impossible
since p is prime and m is distinct from 1 and less than p.

We shall now show that »p may be expressed as the sum of the
squares of two integers. From the identity in problem (a) we have
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mn-mp = mnp = (x* + yO)(x; + y)) = (xx, + yy)? + (xy, — yx.)?
But since x = mr + x, and y = ms + y,, the numbers

xx, + Yy, = mrx, + x1 + msy, + i
= mrx, + msy, + (x1 + 1) = m(rx, + sy, + n),
Xy, — Yx, = mry, + X1y — msx, — x,y, = m(ry, — $x,)

are divisible by m. Thus we obtain

np = <xx. + yy.)* n <xy, - xly)’
m m
which displays #p as the sum of squares.

If, now, » =1, we are finished. If » + 1, we can, by using exactly
the same method, decrease this number, that is, find an #, < 2 such
that n,p can be expressed as the sum of the squares of two integers.
If »n, fails to be 1, we can find an n, < #, such that »;p may be ex-
pressed as the sum of the squares of two integers. Continuation of
this process produces a strictly decreasing sequence of positive inte-
gers for »n;, which must terminate with 1. Therefore, the number
1.p can be expressed as the sum of the squares of two integers:

p=X4+Y?
as was to be shown.

(c) First, it follows almost immediately from the theorcms
in problems (a) and (4) that if a composite number N contains prime
factors of the form 4z + 3, but only even powers of them, then N
can be expressed as the sum of the squares of two integers. Indeed,
in that case the number N can be expressed as a product P?.-Q,
where all the prime factors of P are of form 4m + 3, whereas all
the odd prime factors of @ are of form 42 + 1. Since 2 =12 + 12,
then, from the theorems of problem (b), all the prime factors of @
can be expressed as the sum of the squares of two integers. In that
event, it follows from the theorem in problem (a) that even @ may
be expressed as @ = x* + y%. But since this is so,

N=p*Q = (px)* + (py)

may also be expressed as the sum of the squares of two integers.
This proves one part of problem (c).

Let the composite number N, now, contain a prime factor p of the
form 4n + 3 to an odd power: N = p*+l.m (where m is not now
divisible by p). We shall prove that N cannot be expressed as the
sum of the squares of two integers. Indeed, assume that
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N=x+ yz

where x and y are integers. Then upon dividing 2%, 32, and N by the
square of the greatest common factor of x and y, we must arrive at
the equality

M= X12+ ylz

where M is still divisible by p: M = M,p. By substituting for X,
and Y, their remainders x, and y, upon division by p, we obtain the
equality mp = a1 + y}, where m < p [compare with the remarks after
problem (246)]. But here, as in solution (b), p can be written as
the sum of the squares of two integers, which is impossible [see the
beginning of the solution of part (b)]. This completes the proof.

248. For p =2 we have, trivially, 2=1*+ 02+ 1. For an odd
prime p we shall give a constructive method for finding two numbers
2

x and y, both less than rL which satisfy the condition of the prob-

lem.

p—1

Consider the integers 0,1, 2,

p;l The squares of

any two of these numbers, when divided by p, will yield different
remainders. In fact, the equations

I? = klp + 7

x-f = kzp + 7
would imply that

xf - x: = (0 — x)x% + x2) = (ke — k)P
That is,
(x, — x2)(x, + x2)

would be divisible by p, which is impossible since x, < % and x; <

4

ok and so

n+x<p

fx, — x| < p
(remember that p is a prime number). Hence the numbers of the set

—_ 2
02,12, 22, « -, pTl) yield pTH distinct (nonnegative) remainders
when divided by p. This implies that the 231
—_ 2
1,11, 21, —(”—1) —1 when divided by p also
p+1 2

2

(negative) numbers

yield different (nonnegative) remainders (if —xi—1land —x}—1
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y~ield identical remainders, then xi and x} also yield identical re-

rmainderst). But since there are only p distinct (nonnegative) re-

rmnainders possible after division by p (namely, 0,1,2, ---,p —1), it
2

is clearthat of the p + 1 numbers 07, 12,22, -, (pz;l -1, —12 -1,
—22—1, — pz;l " — 1 at least two of them must yield the same

remainder when divided by p. From what has been shown above
for pairs of this kind, one number must be of the form x* and the

other of the form —y* —1. But if
xt=kp+r
—y-1l=bp+r,
then

xt+yr=k—-—Dp—1=mp-—1;
that is, x2 + y* + 1 = mp is divisible by p.

Remark: The problem could have required that neither of the integers z or
y is to exceed p/2, that is, that the sum z? + 2 + 1 be less than p? and the
quotient m resulting from the division of 22 + y2 + 1 by p be less than p.

249. (a) The assertion of the problem follows from the following
identity:
(F + 24+ x5+ DO+ 5+ 5+ 50
=y + 0y + 6y + 2yt (0 — 0y + XY — X))
+ (0 ys — Xy + XYy — Y+ (0¥ — 0y + KaYs — X3Vt
the validity of which can readily be verified.

Remeark: Since the identity just displayed is rather involved, let us note its
relationship to the simpler identity in problem 247 (a).

The identity in problem
247 (a) may be generalized in the following manner:

(aa’ + bb')aia] + bib}) = (aa] + bbiXaia’ + bib’) + (abs — dai)(a'b] — b'aj)
If in the last identity we now set

a =2z + 122, ar =Y + Y
a' =z — iz, el =y — 1y,
b=1x3+ 124, b= ys + 1ty
b'=Ia-‘iIa. b{=1ls"1:’y|

where 7 =1 =1, then we arrive at the identity of the present problem.

t The quotient ¢ and the (nonnegative) remainder 7 resulting upon the di-
vision of a positive or a negative integer a by p are determined by the formula
a =qp + r, where 0 £ 7 < p, and the quotient ¢ is negative for negative a.
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(b) Since each integer may be expressed as a product of
prime numbers, the result of problem (a) reduces this problem to
showing that every prime number p may be expressed as the sum
of the squares of four integers.

The proof of this proposition is completely analogous to the solu-
tion of problem 247 (b). We know, from the result of problem 248,
that there exists a number m such that mp may be expressed as the
sum of the squares of at most four integers:

mp=xi+ X+ 154 x;

(we can consider x; =1 and x, =0, although we do not need that
information). We can further consider m < p (see the remarks on
the solution of problem 248). We shall show that if m > 1, then m
can be reduced; that is, we can always find some number # < m such
that np can also be expressed as the sum of at most four squares.
This proof is straightforward if m is even, since in that case

2 2 2 2
mp=x + x:+ x + x4

is even, and either all xx (k= 1,2, 3,4) are even, or two of them are
odd and the other two even, or they are all odd. In every case the
four numbers =x,, x;, x5, and x, can be grouped into two pairs (say,
x; x; and x,, x,), each pair consisting of two even or two odd num-
bers. Then the numbers

X + x; x: + X,
2 2
Xy — Xz Xg — Xy
2 2

will be integers, and we will have
m o _(nt ) x = x\? X+ x\? X — x\?
po= () - (2 R)  (BE)  (B)

That is, the number %-p can also be expressed as the sum of the

squares of at most four integers.
The case where m is odd is more involved. Let us substitute y,
(k=1,2,3,4) for the remainder, smallest in absolute value, which

can appear when x, is divided by m (if when x, is divided by m

there is a positive remainder greater than %, then we increase the
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quotient by 1 and show a negative remainder, whose magnitude is
then < ﬂ)
2

Xxx=mq+w (k=12234),

where y, is a positive or negative integer and |y.| < mn (none of the

2
integers y. can have magnitude %5, since i is odd).

We now have
xi = mqi + 2mqiyi + vi = mQi + yi  (k=1,2,3,4),
where Q. = mgi + 2g.y. is an integer. Therefore,
mp=xi+6+5+x=mg+n+yi+y+
(here ¢ = Q, + @, + @, + Q.) and
Nt ntyity=mn

(here n = p — q). In this connection n < m, since
2
mn =y + yi+ yi +yi < 4(%) = mt

moreover, n # 0, since otherwise all x, would be divisible by #» and
X+ %+ x5 + xi = mp would necessarily be divisible by m?, which
is impossible, since p is prime and m is different from 1 and less
than p.

We now show that the number np also can be expressed as the
sum of not more than four squares. We shall see that each of the
numbers mp and mn can be expressed as the sum of not more than
four squares. From the identity proven in problem (a), it follows
that the product

mp-mn = m*np
may also be expressed as the sum of the squares of four numbers:
minp = (X y, + X2 ¥2 + X4ys + Xyt
+ (nye — Xy + Xy — 1)
+ (0, Y5 — X3V + XaYe — Xay2)?
+ (Y — )+ X ys - XYl
We shall show that both sides of the last equality may be divided

by m?®. Let us substitute on the right side of the equality mq, + yx
for all x.. We see that all the expressions in parentheses on the
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right side of the equality are divisible by m: the expression in the
first set of parentheses is divisible by m, since ¥} + y2 + 33 + yi = m#n
is divisible by m, and the expressions in the remaining three sets
of parentheses are divisible by m because after the substitution
x, = mq; + yr all the products of the form y,y,, and so on, cancel.
Now if we divide the last equality by m?, we obtain

np=zi+az+a+az,
as was to be shown.
Thus, if the number m in the equation
mp=1x+x+x+x

is not equal to 1, it can always be decreased; that is, there will al-
ways be a positive » < m for which a similar equality exists. If
n + 1, we can still decrease the number #. In this way we obtain
a strictly decreasing sequence of positive integers m > n > i, >
until in at most a finite number of steps we obtain

P:X12+X22+X.12+X42

250. Let us assume that 478k — 1) = X* + Y? + Z?, where X, Y,
and Z are integers (one or even two of which may be zero). For
n >0, the numbers X, Y, and Z must all be even, for if precisely
one is odd (and the other two even), then the sum X?* + Y* + Z* will
be odd, and if two are odd (for example, X=2k+ land Y =2/ +1)
and the other (for example, Z = 2m) is even, then the sum

X2+ Y + 28 =02k + 1)* + (2] + 12 + 2m)*
=4k +h+DP+1+m)+2
is not divisible by 4. Now if we set

X:Xx —;‘:Z,

2
fon
we arrive at the equation

4"71(81\? - 1) = Xlz + le + 211

If n>1 (m—1>0), it can be shown, exactly as before, that all three
of the numbers Xi, Y, and Z, also must be even, from which we
obtain the equation

4n—2(8k —_ 1) = Xzz + Y_:.. + ZzA ’
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where X, Y;, Z; are integers. Continuing to reason in exactly the

same way, we are finally led to the conclusion that the number

8k — 1 also must be expressible as the sum of three integers:
8h—1=1x*+y*+ 22 (1)

Either one, or else all three, of the numbers x, y,z must be odd;
in any other case the sum x®> + y* + 2% would be even. But the square
of an odd number 2% + 1,

Cn+12=4dm*+4dn+1=4dn(n+1)+1

always has a remainder of 1 when divided by 8 [since one of the
consecutive numbers # and n + 1 must be even, which means that
4n(n + 1) is divisible by 8]. The square of an even number has a
remainder of 0 when divided by 8 (if the number itself is divisible
by 4) or else a remainder of 4 (if the number itself is not divisible
by 4). This implies that if all the numbers x, y, z are odd, then the
sum x* + y* + 22 has a remainder of 3 when divided by 8, and if two
of them are even, and one is odd, then when 2% + y* + 2% is divided
by 8 there must be a remainder of 1 or 5. Thus, the sum of the
squares of three integers can never yield a remainder of 7 when it
is divided by 8. This contradiction of (I) proves the theorem.

251. We employ the identity
(a + b + (@ — b = 2a* + 12a%h* + 2b*
which follows from the expansions
(@ + b = a' + 4a%b + 6a*b* + 4ab® + b*
(@ — b)* = a* — 4a°b + 6a%b* — 4ab* + b
It follows from this identity that
@+ b)+(a—bT+ @+ o)+ (a—c)
+l@a+d)y+@—drl+1b+o +(b—c)
+ b +d)+G—d)]+c+d)+(c—d)
= 6a* + 6b* + 6¢* + 6d* + 12a%b* + 12a%c* + 12 a*d*
+ 12b%c? + 12b%d? + 12¢%d* = 6(a* + b% + ¢ + d?)*
Thus
6(a® + 0° + c* + d*)?
=(@+b'+t@—b'+@a+ot+@a—co'+@t+d)+(@—d)
+Gh+e)+ G-+ B+d)r+b—d)}+(c+d)+(c—d)
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or, expressed in words: if a number can be expressed as the sum of
Jour squares, then six times its square can be expressed as the sum of
twelve integers, each raised to the fourth power. But, from the result
of problem 250, each integer can be expressed as the sum of four
squared integers (some of which may be zero); this implies that six
times the square of each integer can be expressed as the sum of
twelve integers, each raised to the fourth power (some of these may
be zeros).

An arbitrary integer N divided by 6 has a remainder of 0,1, 2, 3,
4, or 5; that is,

N=6n+r
where » =0,1,2,3,4, or 5. Further, from the theorem of problem
249 (b), the number » may be expressed as the sum of four squares
of integers (some of which may be zeros):
n=x*+y +z2+ 1

By what has been shown above, each of the numbers 6x2, 6y2, 622,
and 6#2 (which are expressed as six times the squares of integers)
can be expressed as the sum of twelve integers each raised to the
fourth power (some of which may be zeros). Thus the number

6n = 6x* + 6y* + 62° + 642

can be expressed as the sum of 4.12 = 48 integers, each raised to
the fourth power. But since » =0,1, 2, 3,4, or 5, that is,

r =0+ 0* + 0* + 0* + 0

or r=1*+0*+0*+0*+ 0

or r=1*4+144+0*+0*+0*

or r=1*4+144+1¢4+0*+0*,

or r=1"+1*4+14+1*40*,

or r=1'+1"+1+1+1¢
the integer N = 6n + r can be expressed in the form of the sum of
48 + 5 = 53 fourth powers of integers (zeros allowed).

252. Set
a=x+y' +2z

From the identity in the solution of problem 162 (b) we have
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x+ytar—a=Gx+yt2P-2*—y -2
=3x +x+ 20y +2)

or
a=(x+y+2°—3x+yx+20(y+2)

(see the hint for the present problem). This brings us to the new
unknowns, x+y+z=Z,x+y=Y,andx. Wehave y=Y — x and
z=27Z-—Y, and, therefore,

e=(x+y+28—=3x+yx+2(y+2)
=28 —-3Y(x+ Z—YNY—x+Z—-Y)
=2'—3Y(Z+x—YNZ—x)
=78 —3Y(Z* — x®) + 3Y¥(Z - x)

We can now simplify the equation considerably by supposing that
the unknowns x, Y, Z are related by

78 =3Y(Z* -z,

-nfi-(3)]

(see the hint for this problem). In this case our equation will take
the form

or the equivalent

2 =3YZ—x) = 3Yzz(1 -%).
Z= 3Y[1 - (—2—)’]
¢= 9Y‘(1 - —;—)’(l + %)

Let us introduce, together with the unknown x, a new unknown,
X = We then obtain

or, since
the form
X
A

a=9Y(1—- X1+ X),;
Z=3Y(1 - X?.
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Finally, IeE us introduce, together with the unknown Y, a new
unknown, ¥=3Y(1 — X). Then the relation concerning the unknowns
will take the form

Z=Y1+X),

and the equation will be in the form
= 1g 1+ X
3 Y 1-X

We are now at the end of the solution. _Indeed, from the last
equation X is expressed rationally in ¢ (and Y):

_%a-1°
Ja + Y?
. 3q — Y? >
h = —= =
Thus if X T 7 and Z=Y(1 + X), then

a=x'+y +2°,

where x,y, and z are as in the following formulas:

x=7ZX,

L. Y
y=Y I_B(I—X) zZX,
gy ¥
2=Z-Y=Z-1"7%

From these formulas it follows, in particular, that x, y, and z are
rational, if only the unknown Y is rational. We may choose any
desired Y in the formulas. (This circumstance is analogous to that
where we simplify the equation x* + y® + 28 = g using the relation
y = —z; then the unknown z may be chosen arbitrarily. See the
hints for this problem).

We have thus found the solution to the equation

L+y+2=a

in rational numbers (and even as many solutions as are desired which
are related to the chosen distinct rational values of Y). We have
only to show that ¥ may be so chosen that x, y, and z will be positive
(here we may employ the positive number a4, which we have not
used as yet). Let us express Z=x+y+2z2 Y=x+y,andZ—x=
y + z in terms of X and Y,
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r+y+z2=Z=Y1 + X),
__r
31— X)
y+z2=Z—x=(01-X)Z=Y(1 — X?,
and iry these formulas let us set

x+y=Y

_,_3a—Y* 272
1-X=1 32+ Y Ba+ Y

HXZH:Z;}};::&:T?&
We obtain
a:%—)r%-z:%}—’}73

In thege formulas let us set ¥ = ¥3a, that is
3a =Y

(this yvalue of ¥ may, of course, be irrational), We obtain

x+y+z=Y
1__
==Y
x+y 3
y+z=Y
thﬂtis'
x=0,
_ 1l 1 g
y= 3Y— 3 ¥3a,
—_2__—_2_3/—
z= 3Y— 3 Y3

Let us choose a Y such that it will be rational and sufficiently
cloeto ¥3a (it is possible to find a rational ¥ as close as we wish

to ¥3z). In that case y and z remain close to } ¥3a and to 3 ¥/3a,

Iepectively (they remain positive). Further, from the formulas we
find
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xr+y+z 3a+ ¥V
y+z 2y
Therefo_rf, if it is still necessary that_the c_hosen value of ¥ be less
than ¥/3a (so that 3z > Y? and 3z + ¥ > 2Y?), then we have

x+y+z _3a+ ¥
y+z  2Y7®

>1

and therefore x will also be positive. This cancludes the proof of
the theorem.

For example, consider the case @ = §. By setting Y =1 in the
formulas we can easily obtain

x=2
9’
_1
T X
,= 2.
6'

in fact,

5\  /1\  /5\ 2

(‘9‘) +(18) +(6) =3
253. It follows from the result of problem 159 that there must be
an infinite number of prime numbers. (That problem implies that
prime numbers occur in the sequence of integers sufficiently “often”;
for example, they occur “more often than” squares. See the remark
to that problem). Also, from problem 65 we see that there must be
an infinite number of prime numbers: if there existed only n prime
numbers, then there would be no more than » number-pairs relatively

prime to each other.

A much simpler and more direct proof of the theorem of the in-
finitude of prime numbers, ascribed to Euclid, is the following one.
Let us suppose that in all there are » prime numbers 2, 3, 5,7, 11,
-+, pa. Let us form the number N =2-3-5-7-11---p. + 1. The

number N is greater than all the prime numbers 2,3,5, ---, p» and
must therefore be composite. But since N — 1 is divisible by 2,3,
5,7, -+, pr, it follows that N is relatively prime to all prime numbers,

This contradiction proves the theorem.

254. (a) The proof given here will be quite similar to Euclid’s
proof of the existence of an infinite number of primes. The integers
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comprising the first sequence given in the problem are all those of
form 4k — 1. Assume that only a finite number of primes appear in
the sequence, that is, 3,7,11,19,23, --, p.. Consider the number

N =4(3-7-11-19-23- -p,) — 1

This integer exceeds every prime which appears in the given pro-
gression, and so, being a number of form 4k — 1 (hence belonging
to the progression), it must be composite. Factor N into its prime
factors. none of these factors can be of form 4k — 1, since N+ 1=
4(3-7-11-15-19. - - p,) is divisible by all primes of form 4k — 1, and,
consequently, N is relatively prime to all these numbers. Since N
is odd, it must then be representable as the product of primes of
form 4k + 1. This is impossible, since the product of numbers of
form 4k + 1 is again a number of this same form,

(4k, + 1)(4k, + 1) = 16k.k, + 4k, + 4k, + 1
=4(4kks + k + k) +1 =4k + 1,

and N is of form 4k — 1.

Thus the assumption that there is a finite number of integers of
form 4k — 1 produces a contradiction. Hence the number of primes
in the given sequence must be infinite.

The proof for the second sequence, which contains all the integers
of form 6k — 1, is quite analogous.

(b) The proof of this problem is based on the same idea as
that just presented in part (a). Assume that the sequence 5,9, 13,
17, 21, 25, contains only a finite number of primes: 5,13, 17,
p». Consider the number

N=(513-17---p) + 1

The number N is clearly not a perfect square (it is one more than
a square). However, N is the sum of two squares; from problem
247 (b) it follows that N can only be of form 4k + 1 (no number of
form 4k — 1 can be expressed as the sum of two squares), From
this point the method of proof is analogous to that used in problem
253 or 254 (a).

(¢) The proof is somewhat more complicated than the proofs

of parts (a) and (b), although it is still based on the same’ idea.

Assume that in the sequence 11, 21, 31, 41, 51, 61, there exists
only a finite number of primes:

11,31,41,61, -, p. .
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Consider the integer N =(11-31-41-61---p,)* — 1. This number is
relatively prime to all the integers 11, 31,41, ---, p,, since N + 1 is
divisible by all these integers. We shall designate the product
11-31-41---p, by a. Then

N=a—-1=@a-1a'+a+a+a+1l)

Let us investigate what factorization of N can produce a factor of
a*+a +a*+a+1. Clearly, a* +a® + a* + a + 1is not divisible by
2 (it is the sum of five odd numbers). Further,a'*'+a*+a*+a+1
is divisible by 5, inasmuch as g itself terminates in the digit 1 (g is
a product of numbers all ending with 1; 4%, 4°, and &' each end with
the digit 1, and so the sum 4* + @® + a? + a + 1 ends with the digit
5). Now let p be a prime divisor of a* + a* + @* + a + 1 differing from
5. Here, a — 1 cannot be divisible by p, since otherwise a would be
of form kp + 1, and so a?, @°, and @' (which are equal, respectively,
to (kp + 1), (kp + 1)%, and (kp + 1)*) would be of the same form, and
the number

ad+a+a+ta+l=C(kp+1)+kp+1P+Rp+12+Rp+1)+1

would yield a remainder of 5 upon division by p. It follows that
p — 1 must be divisible by 5; in fact, suppose that p — 1 yields the
remainder 4 when divided by 5:

p—1=5k+14

We note (Fermat’s theorem, problem 240) that g?-' —1 is divisible
by p. But in this case

a ' —1=g¥—-1=a'@-1)+@-1,

and since g* — 1 = (@*)* — 1* is divisible by 4* — 1, which means that
it is divisible also by p, it follows that &*— 1 is divisible by p.
However,

ad—1=ag@-1)+@-1,;

consequently, if a* —1 and q* — 1 are divisible by p, then e — 1 also
must be divisible by p. This, as shown above, is impossible. It
may be shown, in analogous fashion, that p — 1 cannot yield the
remainders 1, 2, or 3 upon division by 5.

Thus, p — 1 is divisible by 5 and is an even number ( p being odd).
Consequently, p — 1 is divisible by 10, which means that p is of form
10% + 1; that is, it belongs to the given progression. Therefore, it is
established that the prime divisors of the numbera* + @® +a* +a + 1
can be only 5 and prime numbers of form 10k + 1.
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However, the number a* + @® + a* + a + 1 is obviously larger than
5, and it is not divisible by 5 = 25. In fact, the integer ¢ ends with
the digit 1 and is consequently of form 5k + 1. Further, by the
binomial theorem, we have

ad+a+a+a+l

=Bk+ 1)+ OGk+1P+ Ok +12+5%+1+1
= 620k' + 4-125k° + 6-25k* + 4.5k + 1
+ 125k* + 3-25k* + 35k + 1
+ 25k*+25k+1+5k+1+1
= 625k' + 5-125k% + 10-25k* + 10-5&% + 5
= 5-[D(20k* + 25k° + 10k* + 2k) + 1]

It follows that this number, and, consequently, N = ¢* — 1, must

have at least one prime divisor of form 10* + 1. But, as noted above,

N is relatively prime to all prime numbers of form 102 + 1. This
contradiction proves the theorem.

Remark: We note that this proof, almost as it stands, will allow us to
prove that any infinite arithmetic progression consisting of integers of form
2pk + 1, where p is an odd prime, contains an infinite number of primes.

255. (a) Let @ and b be adjacent sides of a rectangle; then its
perimeter is P = 2(a + b) and its area is S = ab. From the so-callt_ed
theorem of the geometric and arithmetic means [that is, ab < (GTH’>

see the discussion of Section 11 (Problems)], we have

a+ b\? P\
S_”bé( 2 )‘(T)

It is obvious that the area S will be maximal when < in this ex-
pression represents equality; this happens only for ¢ = b. Therefore,
of all rectangles having the given perimeter P, the rectangle of
greatest area will be a square.

(b) The solution is analogous to that of part (a), except here
S is fixed and P becomes least when a = b.

256. Let a and b be the lengths of the legs of our right triangle, and
let ¢ be its hypotenuse. Then

ct=a®+ b

Let d =a + b be the sum of the legs. From equation (1) of the
discussion of Section 11 (Problems), we have
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a+b 1
<
2 = Va + b
that is,
d_.C
2°v 2"’
or,
2C
< —
1273

257. In view of equation (I) of the discussion of Section 11 (Pro-
blems), we may write

tana + cot @ = 21/ tan a-cot a = 2
The equality holds only when tan a = cot «, that is, for & = 45°
258. We shall rewrite the inequality

x2+y2><x+y>’

2 - 2

usingx=a+Land y:b+%. Then
a
(a+2)+(+5)
a+— ) +10+
a b>:LL< 1 l»*
5 Z a+a+b+b
_1 1 IV _1 at+by_ 1 LY
"4<1+ a*’b) 4<1+ ab >"4<1+¢w>

The fraction ﬁ is least when ab is greatest; hence by inequality

(I) of the discussion in Section 11 (Problems), we have

a+b\* 1
< |{—- = —
ab=< 2 > 2

Thus, —1—_ 4 and 1 + L; 5. It follows that
ab ab

1\? 1\*_ 1 1\ 1 25
— ) > = —_) > =5 ==
(a+3)+(e+5) 2501+ 25) 2 35=3

which was to be shown. The equality is attained only for azbzé—.

259. In view of inequality (1) of the discussion of Section 11 (Pro-
blems), we have
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a+
2

b—zkcg b

¢+
2

b vk

a —
=V

If these three inequalities are multiplied together, we obtain

(a+b)(b-gc)(c+a)g l/aszc—zzabc

Equality takes place only if all three inequalities are equalities,
that is, for a = b = c.

260. By inequality (1) of the discussion of Section 11 (Problems),
we have

a+bx‘:
2

L b =22) 8 pyr =213b
x x? x?

Equality holds only if

261. Let the lengths of the two beams of the scale be @ and b,
respectively. Then in order to balance a weight of 1 pound placed
in one of the pans—say on the pan hung from the beam of length
a—the butcher must place in the other pan an amount of meat

weighing actually x = % pounds (since the moments e-1 and b-x

must be equal in order to produce equilibrium). Similarly, if a one-
pound weight is placed on the other pan, it will be balanced by

LA pounds of meat. Therefore, the butcher gives out -bi + % pounds
a
of meat, and this is weighed out as 2 pounds. However, % + % >2

at —2ab+ b  (a— by
ab T ab

[since -g— + % —-2= 2 0, and equality can

hold only if a=b This means that the butcher gives out more
meat than he charges for.
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On the other hand, suppose the butcher sells his meat in the following way:
A given piece is divided into two equal parts, and each part is weighed on a
different pan. Let us assume (since other cases can be easily handled by si-
milar reasoning) that the true weight of the whole is exactly 2 pounds; thus,
each piece has true weight, by assumption, of 1 pound. When one piece of
meat is placed on one of the pans, the total of the weights needed to balance

. a . .
it comes to — pounds, and when the other piece is placed on the other pan,

b
the total of the weights needed to balance that piece comes to ‘b— pounds.

Thus in this case, the sum of the markings on the weights exceeds the total
weight of the meat—that is the butcher is short-weighing his customers.

Thus, whether the customer gains or the butcher gains depends upon the
procedure used. The reader is invited to answer the equestion: Is a paradox
involved here? [Editor.]

262. (a) The harmonic mean H of two numbers a and b is defined
by

a+b
2ab

Q-l»—l

1
1_a°
H™ 2
2ab

We see that
a+b

thus H=

a+b 2ab
2 a+p - Vab

(b) The result called for follows from part (a) and from in-
equality (Z) of the discussion in Section 11 (Problems).

263. It is to be shown that
a+b+c—3¥abc 20
If we refer to problem 162 (a), we find
a+b+c—3¥abc = (¥a +¥b +¥¢c)
x (¥a* + ¥ + V& — ¥Yab — ¥Ybc — ¥Vac)
= (VT + VT + VN VaE —2¥ab + VB
+YF — 2 YBC + Yo + Yar — 2 Yar + Y&)
1 — — —
=5 (Va+¥b +¥o)

x(¥a — ¥br+(¥b - ¥er+(¥ec—- ¥Varizo.
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The equality sign is obtained only if all three differences

Ve -V
YF - V7T
Ve-Ya

are zero, which happens only when ¢ = b=c.

264. By Heron’s formula, the area of a triangle having sides a, b, ¢,
is equal to

S=vpp—ay(p—b)(p—o
=V Vip—a(p—-bp—0o,

where p =a—+;£is the semi-perimeter. In view of problem 263,
(p—a)(p—b)(p—c)g("”“PB“’“"C)’

_ Q‘_?«Py_(i >°
‘( 3 ) =\3°?
Since the sides of an equilateral triangle having perimeter 2p are

each equal to —23—1), we have

2 3 1 3
(b=ap-tip—0=(p—%0)=(52)
3 3
which yields the greatest possible area for the triangle.
265. The volume of the pyramid is

xyz

6

However, from problem 263 we see that

Ivz<<.r+y+z>“_ at

3 Y
3
Since the number %—7 is independent of x, y, and 2z, the condition for

maximal volume is
x=y=z= a
3

266. It suffices to prove that
(@i + bi((a: + bo){(as + by) = (Va,a.as + Vbbb )
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We have
(a, + b)(a: + b2)(as + bs)
= a.a:a; + bbby + (a.a:0y + aiash; + a.asb))
+ (@b:bs + a.biby + ash,by)
However,

( g/axazaa"' Va bxbzba)a
= @.a;305 + bibabs + 3 ¥V aldkath,b.bs + 3 ¥ a,a.a.b°0%:

In view of the inequality of problem 263, we obtain

a\azbs + a\ash, + a.asbh,

3 = g/a.fa;agbxbzba
abbs + abyb, + asbb S—
1V2U3 23! 1 VU2 > g/alazasbfb;bg

A comparison of the last three formulas yields the result sought.
267. The inequality of the problem may be written in the form

a t+a; +--- +az”')”"
2m

alaz"'az"‘é(

From inequality (I) of the discussion on of Section 11 (Problems), it

follows that
2
aa, = (%) (1)

and we also have
2
2 < (%)

from which we obtain

a +a as + a \"}
a+a, a+al l2 F+ a2 ‘
alazasaQé[T'T] = 3

(al + a + a; + aa)‘
4

We find, in an analogous manner, that

aaaa<(ag+ag+a1+as)‘
stiglerlig = 4

and from this we obtain
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a, B
axaz"'as§[

4

at--ta @+t a\*|
4 4
_ 2
_(a,+--~+aa)“
B 8

Repetition of this process finally yields

a +‘+a, +-- + azm)’"‘
2

which is what we wished to show. We note that in (1) the equality
is obtained for a, = a,. If this fact is employed repeatedly, we find
that the equality holds for (2) only for

ta, a +---+aa]‘
4

A

(2)

aas- - a,™ § (

al=az='-'=az”‘

268. There exist many proofs of this theorem, some of them not
elementary. In view of the importance of this theorem, three different
elementary proofs will be given. The first will be based on the re-
sult of problem 267, and the second and third will use mathematical
induction.

First Proof. We show first that if the statement of the theorem
concerning arithmetic and geometric means holds for » + 1 positive
numbers, then it holds for n positive numbers. Assume that for
any set of # + 1 positive numbers a,, a,," - -, @x, @n+,

a t+a +---+ a,

+ Ant1 n41 e —
7+ 1 g ' 1/0102' /2T /2P

or,

(al +a:+- ta.t+ an

n
= a,a; - a.a
n+1 ) = 142 albn+ )

If we substitute into this inequality
a, + az + b +an

Anil = ’
n
then we obtain
al+az+' +a,
a +a;, +- +a.+an+l_a'+02+'”+a"+ n
n+1 - n+1
n+1

T(a'+02+”'a")_a,+az+---+a.

n+1 n
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Consequently, we have

a4 +ax+-- tan\* ata +---+a
” = A4z *an 7

a, *a;, +- -+a,
n
we arrive at the desired result,

If we cancel on both sides and take the nth root,

a t+a+---+a
n

. -
=z "Vaa, - -a.

But in view of the result of the preceding problem we know that
the theorem of arithmetic and geometric means holds for arbitrarily
large integers, in particular, for integers of form 2 Therefore, the
theorem holds for arbitrary n, since given any # it is dominated by
some number 2", and, by what has just been shown, the theorem
holds for 2 — 1,2™ — 2, and so on, and thus for .

Also, if for » + 1 numbers equality holds only if all the numbers
are equal, then the same condition must clearly hold for » numbers.
Since this condition for equality was shown necessary in problem
267 for n = 2™, it also applies in this problem.

Remark: This method of proof, which somewhat resembles that of mathe-
matical induction, is sometimes called transfinite induction. It may be stated
as follows: if the truth of the theorem for » = k + 1 implies that it holds for
n =k, and if, no matter what positive integer n is chosen, the theorem can
always be demonstrated for some integer exceeding 7, then the theorem holds
for all natural numbers n.

Second Proof (mathematical induction). For n =2, we have

a + a;

2 = Vaa

Assume that the inequality of the problem has been proved for some
number n of positive numbers; we shall show that it must hold for
n + 1 positive numbers. Let a,,a,, -,a. @... be n + 1 positive
numbers, arranged such that a,., is the largest. Since

Qnyr = Ay,

Ap+y = Az, "~ Ant1 2 An ,

it follows that

a t+a +---+a
Ansy 2 = n =,
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We shall write
(Zl +az +"'+an,

" = A.,
as+a;+---+an + ans = Aui,
n+1
Then
nA, + a,.,

Anri = n+1

But since @n.+, = A,., We can write a,., = A, + b, where b = 0, then

nA, + A. +b b

Anir = n+1 = A+

If both members of the last equation are raised to the (# + 1)st
power we have

b R+l
A+l —
(A)H-l) —(An+ n+1>

= (A" + Car(A) +

n+1
2 (An)"ﬂ + (An)'b = (An)"(Au + b) = (An)"anﬂ

Since, by the induction assumption, the inequality holds for » num-
bers, that is,

(A z aia,- - -a.,
it follows that
(Ane )" Z (A" @ney = 0,02+ Aulls 1,
and, consequently,

n+1 -
Annr 2 Vaxaz"'ann

Now, if not all the numbers are equal, then b > 0, and the strict
inequality holds.

Third Solution (mathematical induction). Designate a, by b/, and so
on; then the inequality whose proof we seek takes on the form

b+ b3+ +br 2 nbiby- b,

Suppose that this inequality is assumed to hold for any »n positive
numbers; we shall show that it holds for » + 1 numbers:

B T BT B = (4 Dby basy .
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Dividing both members of this inequality by b:i}, and designating

bbl by ¢;, and so on, yields
nti

al'+at+ a1zt Do e,
or,

at+att ettt 2+ Do e — 1
But by the induction hypothesis,

A7ttt etttz aley - e)
Hence it suffices to show that
(n + I)CICz' cien—125 n(clc2. . .Cn)(ﬂ*’

or, designating ™Vc.c;- - - c» by k, that
(n+ Dk — 1 < nkt?
The last inequality follows from the following computation:
m+ Dk —1—nkrtt = —pkrk — 1)+ (k" — 1)
=k -—D(—nk"+ k' + b2+ + k4 ])
= — k= DIk =) + (B — B9 4+ (b = 1)]
=—G-12F' %+ D)+
+hE 2R+ D)+ R+ D] S0
(for k > 0, the expression in brackets is clearly positive).

The final inequality shown reduces to equality for £ =1. Mathe-
matical induction may be employed to show that equality will hold
only if

CL=C =+ =¢a=1;
that is, if
by=b,=:--=by = bux

Remark: Other proofs may be found in the volumes referred to at the be-
ginning of Section 11 (Problems); see, for examples, the volume by Hardy,
Littlewood, and Polya. Moreover, the inequality of this problem is easily es-
tablished from the results of problem 269 (a) and (b) and problem 270, provided

problem 268 is not used to establish it. (See, for example, the second proof
of problem 269 (a) and (b).

269. (a) First Solution. Designate the » positive numbers by
X1, X2, *++, X». By the imposed conditions, the sum x + x; +---+ x,
is given, and hence so is the arithmetic mean
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X+ Xot o+ Xn
n

=A

By the theorem of arithmetic and geometric means
XXXy = A"
for which the equality is obtained only for
N=X==x=A
Therefore, this product assumes its maximal value A" for
X =A== X

Second Solution. Arrange the n positive numbers in increasing
(non-decreasing) order:

XS X S X

IA

= X

If all the numbers are equal, we have

X|+Xz+"'+xﬂ)n

X(Xo ' Xpn =
142 n < n

Assume that not all these numbers are equal. We shall show, under
this assumption, that there exists another set of » numbers having
the same sum but whose product exceeds x,x;---x,.
Let A be the arithmetic mean of the numbers x, x;, -+, x.. We

have, from our assumptions,

xl < xn ;

n< A,

x> A

Replace the numbers x, and x,, respectively, by new numbers x} and
x» which preserve the arithmetic mean:

X+ Xt X+t X + X
n

=A
To do this, we can set

mw=A,

X =x + (X — x2)

In the product x,x,---x, all the factors except the first and last are
left unchanged; we shall show that the product xix, exceeds xx,:

Xixa > Xi1Xn .
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We designate x, — x» by {; then v, =x, —¢and x| =x, +¢. We
have
xaxy = (% — D, + ) = X1, + (xn — x) ¢ — 22
But since x» = A > x,, we have
Xon— X\ D> Xg—xa =1,
from which we obtain
(s —x)—1t>0,

(Xn—x)t—12>0,

and, consequently,
XaXi = xaX, + (X0 — X)) — 12 D> Xoxy

If the new set xi, X, %, -+, Xa_1, A is now not yet composed of
equal numbers, then, arranging them again in increasing order, we
may repeat the previous procedure to find a new set whose sum is
the same but whose product is greater: In this new sequence at
least two of the numbers will be equal to A. Repetition of this
reasoning must finally produce a set all of whose elements are the
number A.

(b) First Solution. Set

a,

— =X,

a

a, An-y

— =X, = = Xn-1
a; (7%

a; a

— =%, =i

a, a

The geometric mean of the » numbers x,, x;, x;- - -, x» is equal to 1.
Hence, by problem 268, we have

Xy F X+t X
”n

z1

that is,
x1+xz +"'+xngn
Second Solution. The given inequality is readily proved by mathe-
matical induction, without recourse to the theorem of arithmetic and

geometric means. Assume the inequality valid for » — 1 positive
numbers, that is,
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_25+_ag+...+h+_a"_"gn_l (1)
a, das Ay- a,

We shall show that the inequality is then implied for » positive
numbers.

Let a. be the least of the » numbers a,,a,,"--,a,. Then
a—a,z0,
An-y 2 Ay
Hence, a,-\(a, — a,) = a,(a, — a,), and then
Qi@n-y + Ar — Anln-; = A2a,

Division by a.a, yields

Qny | Gn  Qny
ay a, a,

z1 (2)

If inequalities (I) and (2) are added, we obtain

_@+iz+___+ An—3 + dn-1 + An—y +ﬂ_h
as as an-y a, an a, a,
=2yl o B D l=a;
a; as an a,
the inequality holds for the #» numbers a,, @,, -+ -, a.. Therefore, the

inequality holds for all natural numbers .

270. By the theorem of the arithmetic and geometric means (pro-
blem 268), we have

1,1 ....1
d, an (t/l 1 1
2 — —— —
n - a, a; /2%

from which we obtain

1
n:(i+7 +---+%)§ Vaa, -a.

a, 2 "

The equality holds only if a, = @, =- - =a-.

Remark: The inequality here can be proven in many other ways, indepen-
dently of problem 268 (it is recommended that the reader try to find such a
proof). Then this result may be used to ffnd a new proof for problem 268.

271. By problem 268, we can write
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‘uill/abn ="”1/abb---b
N et

sa+b+b+---+b__a+nb
= n+1 T n+1

The equals sign holds only if a = b.

272. Since the arithmetic mean of » positive numbers exceeds
the geometric mean, and the harmonic mean is less than the geo-
metric mean, we have

Ala) 2 H(a) ,
or

a; + a; +---+an n

=
n ——1—+L+...+.1—
a, a; an

which yields the required result.
Equality is attained only if ¢, = a, =+ =a-.

273. Use the theorem of the arithmetic and geometric means,
making the following substitutions:

a|=1,

az=2,

an = n

We obtain
_ 1+ 24---

"l ="1.2-n §¥
_nn+1) n+1
- 2n T2

If the first and last members shown are raised to the power », the
statement of the problem follows.

274. By the theorem of the arithmetic and geometric means, we
have

2 3 4
a.,a3030« = 013:2:0303034,8,a.a4

(a,+az+ag+aa+aa+aa+a.+a.+a.+aa)‘°
10

(a| + zaz + Baa + 4a¢ )10
10

<
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Equality holds only for @, = a;, = a; = a..

275. (a) We first note that the left side of the given inequality

contains two factors %, three factors % and so on, and finally »
factors —1—-; in all, there are 1 +24+3+4+.-- 4+ n= Msuch fac-
nin + 1)

n
tors. The geometric mean of these factors is equal to the 5

root of this product; the arithmetic mean is

1 1 1
L1425 4370 4 b . 5

n(n + 1) ="(_"2+_1_)=n+1

2

The validity of the given inequality follows immediately from the
theorem of the arithmetic and geometric means (problem 268).

(b) The solution here is analogous to that of part (a). The
arithmetic mean of the factors of the left member is equal to

11422433+ 4nm 12424344

nn +1) - nin + 1)
2 2
i+ D2+ 1) nmr+1) 2n+1
- 6 ) 2 -3

[see the solution of problem 134 (a)].

276. By the theorem of the arithmetic and geometric means we
have

(1 +al)(l+a2).,.(1+an)§(n+al+a;+...+a">n

n — 2 n
=(1 +_S_> —14 ,,(i>+m_1>(_s_> . (5_>
n n 2 n n
where the last equality is an application of the binomial theorem.

We note that the coefficient of s» will be
w1
min —m)! n '
However, (n — m)! n™ = n!, whence
R 1w 1
mi(n —m)! n™ -

fIA

m!'n! m!
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from which the assertion of the problem follows directly.
The inequality reduces to equality only for n =1,

277. Rewrite the left member of the inequality in the form
11;/2“21/2(22)1/22_ . .(Zu)n/z"

where @ is an arbitrary integer.

Now the solution of this problem is analogous to that of problem
275 (a) and (b). It follows from the theorem of the arithmetic and
geometric means that

1e/2nu2(@0)1/22, . (2m)1/2" (142271 (22)2m 2. o (2m)]C1/2Im
[(a_+_2,2n—1 _+_22,2n—2_+__,,_+_2n,1)d+2"—|+. +1 ]_1_
a+ 20t 20t 4] 2"

—( a+n_2» )a+:"'—l
T\at+2r—1

<

If & =1, the last exponent shown above is 1, and the expression on
the right becomes

1
ot
The statement of the problem immediately follows.

278. The expression (1 — x*%(1 + x)(1 + 2x))* is negative for |x|>1,
and is positive for | x| < 1. In fact,

1-201+200Q0+20)2=(10-201— 201 + 22

The first and third factors on the right are always positive for
x # 1, and the second factor is positive or negative, respectively,
depending upon whether | x| <1lor |x| > 1. Accordingly, we shall
consider only values of x such that |x| < 1. We now use the theo-
rem of arithmetic and geometric means on the five factors 1 — x, the
single factor 1 + x, and the two factors 1 + 2x:

(I — 21 + x)(1 + 2x)*
< 51—x+A+x +2(1 + 2x))““'-"
= 54+1+2
541+ 2\brit2
- (5 F1+ 2) -
The right side of this inequality is independent of the value assigned

to x. Hence, the left side will be maximal for that value of ¥ which
makes all the factors equal. The only value of x which will accom-
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plish this is x =0. Then for this value of x the given product
reaches its maximal value 1.

279. Let r be the radius of the circle; designate the known length
OM by a, and the unknown length ON by x (Figure 27). Then we
can write:

MN=x—a
NQ=VF—F
and, consequently, the squared area of the rectangle is equal to

4{x —a)}@r*— x?

a u P
R LM S
Figure 27

We must determine for which value of x this expression is maxi-
mal. We rewrite our product in the form

4 .
E[(I —a)(x —a)-alr — x)-B(r + x)]

where « and B are chosen such that the sum of the factors in the
brackets, that is,

x—a)+@x—a)+alr—x+ Br +x)
=2—-a+Pfx+(a+ 8)r—2a,

will be independent of x (such that & — 8 = 2).
The product (1) attains its maximal value if

ar—x)=pFr+x)=x—a

[see the solution of problem 269 (a)]. But the equation a(r — x) =
B(r + x) implies that

_la—8yr_2r

a+ B P T

From this, and from the condition & — 3 = 2, it is readily found that
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Substituting this value of @ in the equation a(r — x) = x — a, we ob-
tain
rZ —_ xz
x

=x-—a
2¢* —ax —rt=0,
from which we have

a+1va + 8
4
(the positive sign is taken for the root, since x > 0).

The segment of length x, and hence the rectangle sought, can be
constructed using ruler and compass.

X =

280. The volume of the box is equal to
(2a — 2b)*-b = 4b(a — b)?
We can write the right member of this equality in the form
2 [b-ata — b)-ata - b)],
and we shall select a such that the sum of the factors within the

brackets, that is,

b+ 2ala — b) = 2aa + (1 — 2a)b,

does not depend upon b(we take a = %)

The maximal value of the product (1) [see the solution of problem
269 (a)] is obtained when

b=ala—b)
Thus, we find
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281. (a) The inequality of this problem has the same relationship
to inequality (') in the discussion of § 11 (problems) as does the theo-
rem of arithmetic and geometric means (problem 268) to inequality
(I) of that discussion. A proof of this is possible in any one of
several ways, all of them analogous to the proofs given for problem
268.

The solution here will be analogous to the first solution of problem
268. Inasmuch as

(al+a,)2sa}‘+a§
2 = 2 ’
and
(a;,+a.)’§ a§+af’
2 2
we have
a.+az+a;+a. :
(a|+az+ag+a.)’_ 2 2
4 - 2
(al+az>’+(a,+a.)’ af+a:+a?.+af
2 2 2 2
= =
- 2 = 2
_a+d+ai+al
4
Also, since
(a1+az+a3+a.)‘<af+a:+a§+af
4 = 4
and

A

(a,+ag+a1+aa>’ a+ ar+ ai + a;
4 4 ’
we can conclude that

(al + a. +---+ag)’< ai+aj+---+a
8 = 8
Continuation of this process enables us to prove the theorem for 2™
numbers, where m is any arbitrary natural number.
We now shall show that if the theorem is valid for n + 1 positive
numbers, that is, if

(a.+ag+---+a..+a..“)’sa?+a§+---+a.f+a.f“

n+1 n+1 ! (1)
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then it holds for #» numbers. Substituting in (1)

a1+a2 +"'+an
Anyy = ” ’

we obtain

af+a§+---+a:+(
n+1

a, + a; +-~-+a.>’
n

(a|+az+"'+an)’
n

£

(compare with the first solution of problem 268), from which we
conclude that

(a1+az+---+a~)zs ait+a;+--+an
n - n

The remainder of the proof does not differ significantly fromn that
of the first solution of problem 268.
It is easily established that equality holds only if ¢, =a, =-- = an.
(b) The validity of the inequality will first be established
for two numbers; that is, we shall establish that

(al +az)k<a{‘ +a:
2 = 2

(1)

For k = 2 this inequality has already been proved [see (1/) of the
discussion of Section 11 (Problems)]. Assume now that the inequality
holds for some given k. We have

(al + a;)"“ _(a. + a,)" a; +a2<al" +a; ata

2 2 2 2 2

_ I¢+1 +alul alu-l +al;n —a’;‘az _alalz:
2 4

_a&" +at (et —ad)a — ay) <&t +at
2 4 2

from which it follows that the inequality holds for 2+ 1. By the
principle of mathematical induction, the proposition holds for all
natural numbers. The remainder of the proof follows as in (a).

282, Let a > 0. Using the theorem of arithmetic and geometric
means, we have

a
n ai + a4+ --+a
Vs --a® £ " LI
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Taking the % > 0 power of both sides produces the desired resuit.
The case in which a < 0 is proved in a similar manner (see the
solution to problem 270).

283. If a and 3 are of different sign, the theorem of power means
follows from the result of problem 282. Hence we shall investigate
only the case in which « and # have the same sign. Assume now
that 0 < « < 8. Designate Sa(a) by K, and divide both sides of the
investigated inequality by K; designate(%)lg by b,; and so on. The
inequality assumes the form

( B b b‘.l’“’)"" <

Here we have

bi+bi+--+ba 1 af +af+---4af 1

= = p =
”n K5 ”n K"K L
bl+b2+"‘+bn=n
Assume now that b, =1+ x,,6, =1+ x;, -, b = 1 + xs; then the

equality b, + b, +---+bs = n becomes
X + 22+ +2xn =0

Suppose that % =—k;— (a rational number). Then we have

e =Y+ xF =Y T3 20+ A+ 211
——

k tijr;les (! — k) times
Rl+x)+U—h-1 k_ a
< ] —1+1x,—1+ﬁxn.

for which the equality holds only if 1 + x, =1 and b =1. Using a
limiting process we find that for an irrational ratio —;;—

@
8
Equality holds only if x, =0 and b = 1.

WP <1+ —x

t Let 2, + 0, and let » be rational, so that —% <r<l

BYE = (1 + 28/ = [(1 + a))a/B/r}r < |:1 + aTm’“:\r sltr fq/-i’“

a

=1
%3

T1.
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Similarly, we have

a

M”§1+an.

---,b‘:"'§1+%x..

As a result, we find

(BF'P + B3P +. .. + bylByV=

n
a a a Ya
SI:(I + -Exl)+(l + —B‘Iz) +-e +(1 + '_B‘In):‘
- n
Vs

:(1+_a_:n+xz+ +x.) -1,

B8 n

which concludes the proof.
Equality holds only if b,=b,=---=bs=1, that is, if a,=a;="--=as.

Proof of the case in which a < 8 < 0 is quite analogous.

284. (a) Since S, =2, we have

2 2 2
BEC D (Sprz Sy =4;

ai+aitayz12
Equality holds only for a, = a, = a; = 2.
Similarly,

3 3 3
L@*—” = (S = (S =8;

al+a+aiz
(b) Proceeding as in part (a), we obtain S; = ]/%8. =176
from which we obtain

3 3 3
% =Sz Sy =6VF6;
a+a+ay=18176
and

a, +a;+ a,
3

g, +a+a, =3V 6

=Sl.§sz=1/‘§-;

Equality in both cases is obtained only ¢, =2, =a;, =1'6.
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285. A proof by induction will be given. It will be convenient to
introduce a special designation for (3.)* (the arithmetic mean of all
possible products of the » numbers a., a,, ,an taken k at a time);
this summation will be designated as P;. The inequality we wish
to prove may then be written

PZ% Pk+l'Pl¢—-l

For convenience we also introduce the notation P,(a), which will be
taken equal to 1.

The inequality is obviously true if there are only two numbers, a,
and a,. In fact, in this case there are only three expressions P.(a):

Pla)=1,
Pa) = %
Pya) = apa, ,

and the inequality assumes the form
Pi(a)? > P.a)Py(a) = Pia),

or
(al + @

2 )~> aa,

(which we have already encountered).

Assume now that the inequality has been established for n — 1
positive numbers a,, a;, --, @s-,; we shall show that the inequality
must also be valid for » positive numbers a,, a., ---, a.. Designate
the sum of all the possible products of the » numbers, taken % at a
time, by S.(a), and the sum of the products of the # — 1 numbers
4., a, -, d,-, taken k at a time, by S({a). If we factor a, out of
each term of S.(@) which contains this number, we derive the iden-
tity

Su(@) = Sda) + a,Sc-.(@)

Further, let us write P, to designate the P.-expressions for the

n — 1 numbers ai, a;, -+, @r-.. We have
Sia) _ Sia Si-i1(a
Po= G =T B
Sda) o, Seia) 2=k, b, o
n n n -1 »

k " k1 n
C"—l n — k Cn—l k
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We now consider the difference

P:_PIH-IPI‘—I
n—k__ k __T n—k—1 R+1 _
=[ " PI( +7anPk-l] _[T Pk+1 + n anPk]
—k+1— k-1
X [nTPk-l + a..Pk-z]

:#{[(n_k)zpz_(n—k—l)(n—k+ VP Pl

+ an[2k(n — B)P.Ps, — (k — 1)(n — k — )P P,
—(k+ 1)(n —k + VPP ] + allk* P’

— & + D)k = YBPS]) =;1;(A + @B + alC),

where A, B, and C designate, respectively, the expressions enclosed
by brackets.
The induction hypothesis implies that

Pi> PP P > PP,
from which, by multiplying these two inequalities, we obtain
PP > Pr Py
Therefore, in the expression for P; — Py, P._, we have
A=(n—krP;—|n—k?— 1P P,
= Pi+ [n — k® — 11[Pi — P Pici] > P,
B =2k(n — B)P.Pi, — (k — 1)(n — k — )P P,
—(k+ 1)(n —k+ )PP, = — 2P,Pi’,
+(k—1)(n —k—)[PPi — PiriPial > 2PP,
C=RrP_* - (- )PP,
=P+ & — D[P — PP] > P’
As a result,
P;— PPy > P: — zanka: + aZIT::lz
=(Pi—a.P ) z0,
which proves the theorem.
286. Excluding as obvious the case in which a, = a, =---=a., we

shall show that 3%, < Y. First, since Py(a) = 1, it follows from pro-
blem 285 that
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P? > PP, =P;
>3 or 2, >3,
Further, by multiplying the inequalities X, > X, 2} > 33-%,, we ob-
tain 3} > 33, 2, > %;. Similarly, taking the products of the ine-

qualities X, > X,, 21 > 25- X, 23> 3%- 35, we arrive at 33> 3%, 3:> 3.
Similar procedures show, finally, that

5>, > %> > 2,

287. We have, X, = }/% = 2 Further, by the theorem of the
symmetric mean, we have

Za) =z Za) =2,
a +a+a+a=4-2=8
and
Za) £ 2a) =2,
aaaa, < 20 =16

In both cases, equality holds only if ¢, =@, = a; = a, = 2.

288. Since the sum of the angles a + 8 + r = =, tan a '2+' B _ cot
foor
a B
tan D} + tan o _ 1
a <] T
- — L tan —
1 - tan 5 tan 5 2

from which we obtain, after simplification,

a A a T B r
- —_—+ -—+ — — =1
tan 2 tan > 2 tan 2 tan 2 tan 2

We write

tan——-=a,,

o~ N MR
1
&

I
8
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Then we see that the symmetric mean X, of the.numbers a;, a;, and

a, is equal to %:1/3_3 It follows, by reasoning analogous to

that used for problem 287, that

@ B r V'3 =y
(a) tan2+tan2+tan223 3__1/3
a B r (VIV_V3
(b) tan 5--tan—--tang S(T) ==

289. The Cauchy-Buniakowski inequality is of sufficient importance
to justify the giving of four proofs of its validity.
First Proof. We can write
(xa, + b))% + (xa: + b)* + -+ + (xa. + b,)?
= (x%a% + 2xa.b, + b))
+ (2%} + 2xasb, + b3) + -+ - +(x%at + 2xanb. + bY)
= Ax*+ 2Bx + C,

where
A=d+ad+ - +ai,

B=ab, + ab: +---+a.b.,

C=0b+b+ - +ba
The left member of this equation is, as a sum of squares, non-
negative for all x; in particular, it is non-negative for »r = — =

A
Substitution of this value for x in the equation yields
B? B AC — B?
—_—— —_ - —_—
AS—2B= +C 20

Since A >0, AC— B*= 0, or B* £ AC.

We obtain the inequality sought by substituting for A, B, and C
their expressions in terms of a; and b;.

The equality sign is possible only if

xa, + b, =xa; +b,=xa; +by=---=xa, + b, =0,
from which we find
b‘ :_llq_:_b_’.:..zh(z —x)
a, G, a, Un

Second Proof. Given two numbers a and b, we have (¢ —b6)* 2 0,
or a@* + b* = 2ab, and so
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ab < —1—(12 +%b2

2
Now let
A=Vd - +a
B=Vb +...+b%,
g. =2
l_A)
Eiz% (l=1v2;' ,n),
then,
ait+---+ai
5§+...+5§=—'—Az—"=1,
2 2
5f+"-+5:=é‘+3—2+bﬂ=1

We can write the n inequalities

If we add these together, we arrive at

1,1

&IEI +"'+&n53 é 7‘+‘ 2 = 1
Substitution of the appropriate quantities for @; and b; yields
@b, abn
AB +-e + é 1 ]

albl +---+a..b,. = AB,
@b+ +aabn)? < (@l +---+al)(Bi +-- +bn),

which is what we wished to prove.
Equality holds only if

al—l;l:(iz—l;z:---zﬁn_[;nzo’

which implies

Third Proof. The inequality holds, trivially, for » = 1; that is,

(a:b)? £ aibi .
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We shall show that if the inequality is assumed to hold for » pairs
of numbers, that is,

C*< AB,
where
A=al+adi+-- +ax,
B=b+b+-+ba,
C=ab + ab;, +--+ auba,
then it must hold also for » + 1 pairs of numbers:
(C + Guribar)* S (A +adi)(B + bhyy)
In fact, we can write
(A + @) (B + bir) — (C + @uribar)?
= AB + Abi,, + Baki, + @iy biri — C? — 2Cans1bns
— (@nt1bas)?
= (AB — C) + (Abi+, + Baii, — 2Canysibasy)
=(AB—C) + (VAbui, — VB ans)?
+ 2(VAB— V' CHausbas1 2 0

(since each of the three terms is equal to or greater than zero).
Therefore, by the principle of mathematical induction, the inequality
is valid for all natural numbers =.
The equality sign holds only if

a,_a ax

bl_;z-:... bn

Fourth Proof. It can be proved by mathematical induction that
n n n 2 n n
(Bat)(B o)~ (Zab) =55 3 @b — aber
k=1 k=1 k=1 2 k=1l=1

The right member of this inequality is nonnegative and vanishes
only in the event of equality of the ratios ai:bi. If this expression
is not zero, we have

(g,laﬁ)(g bZ) —(:‘z:“x a,,b,,)2> 0,

which proves the theorem.

290. By the Cauchy-Buniakowski inequality we have
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1
(a, +a +- +an)< +_ +eo+ %)

=[(Va )+ Ve )+ -+ 1 an)
x[(VTa) + (VTar)? +- - - +(V/ T2l
E(VZVW +1/a_2.1/m++1/zl/1/_a;)z =nt,

which yields the result sought. The equality sign holds only if a, =
a; = An.

291. By the Cauchy-Buniakowski inequality we have
(@a'1+ a1 +---4 a,-1)*
S@+a+--+a)d+1+---+1),
from which we obtain

<a1+az+---+an)’S aita+---+a;
n - n

The equality holds only for @, =a, =---=a,

292. In the solution of problem 288 it was shown that

tan(—;—) tan(—g-)+ tan( g)tan<2 )+ tan( 2)tan< g) =1

By the Cauchy-Buniakowski inequality, we can write

[tan ( 5 ) + tanz< g ) + tan? (%)][tan’( g)+ tan’( : )+ tan? (%)]
[ ()on(£)son(£)on(£) (P ()] -1

from which the desired result follows.
Equality can hold only for a = 8 = r = 60°
293. We can write the following expansion:
(F+ Y+t (3 + 380 = (n + yox
+root(®n F V) + i+ Y)Y+ (X T Ya)Va

Let us make the following substitutions in the Cauchy-Buniakowski
inequality:
X1t yi=ay -, X+ Yo = an,
X1 =bl, *rcy Xn = b,

The following inequality is then valid:
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(xy + yoxe + o+ (Xn + Ya)2a
S+ 208+ (YR 4+ xa]

Analogously, we have

(B +y0y + 0+ (xa + Yr)Ya
e (R R G 0 K PR SRR S H U

If we combine these two inequalities, we obtain

(i + 302 4+ (xa + ya)?
Sl + 30+ -+ (0 + ya)P12
X[(rf ++ o 22+ (O o )

If both members of this last inequality are divided by
[(xy + y0)? 4+ (2a + yu)?]V2,

we obtain

Vi, + 30+ -+ (xs + ya)?
SVird+-4r + Vit +

which is what we set out to prove.

—F_ _Fn

The equality can hold only if X coz=
B yz In

294, The Cauchy-Buniakowski inequality yields
4Q2 = (alaz + a.a, +aay, + aay +---+an1Gn + auan—l)z
S@+aital+-+aya@+at+at-+adi)
=nrn—-—1)P-n—1HP

from which the result immediately follows.
We have equality only if @, = a, =---ga.

From the Cauchy-Buniakowski inequality, we can write
VP Vb +V bV bate - +V Du - V Do 2a)?
SR VR A T VR
+ Vit Vi)

295.

= = X.

The equality sign can be used only if x, = x,
296. We make the following substitutions in the inequality of

problem 295;
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1
h=g

1
b=

1
h=%

We then have

1 1 1 ? 1 1 1 1, 1, 1 ,)
_ —_ _— <[ — _ —_— — —_— _—
(21l+ 3xz+ 613) =<2 + 3 + 6)<2xl+ 3x2+ 613
The equality can hold only for equality of the ratios

o1 1 1
nimia =5 T e
297. This inequality is merely a restatement, in another notation,
of the Cauchy-Buniakowski inequality. In fact, if we substitute in
the latter ai = x, and b; = y, and take the square root of both sides,
we obtain the inequality of the problem.

298. By two applications of the Cauchy-Buniakowski inequality,

first to the pairs a;b, a:b;, -+, @.bs and c.d,, c:d,, - -+, ¢ad,, and then
to the squares of the numbers a, @, -+, @n, b, by -+, ba; €y, €3y
Ca;d,, dy, -+, d,, We obtain

(@bic\dy + abecedy + -+ - + apbacady)t
< (@iby + azbi + - +ab)cid] + cadi +- - Foada)
Z(@+at+---+a)bl+ b+ + by
x(itat o +e)@+dit-+d)
Equality holds only if
acbicid =anbcidy =+ =aabaicaidn

299. We shall rearrange the a; in nondecreasing order, assuming
(renumbering if necessary) that

QS sa; S = an
Now we may consider the b, to be in nonincreasing order; that is,
we assume that

hhzbzb= = b,

[Once we have rearranged the 4; and written the given fraction
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(@ +ar+ - +aD® +by+---+ b
(a,bl + agb¢ +-- +a,.b,.)’ '

if b; < b;, for i < j, for any Z, an interchange of these two b within
the fraction can only increase its value, inasmuch as the value of the
numerator will remain unaltered, but the denominator will become
less (we will have supplied a greater a; with a lesser b; factor; con-
sider the difference

(ab; + a;b) — (adi + a;b;) = (a; — a;}b; — b)) < 0)]

Now, in the event that all a; are equal and all b; are equal, the
fraction has a value of 1. Hence we may assume that either not
all the a; are equal or else not all the b; are the same (or both).
Let us write the system:

a; = aial + Bia,
b3=a|bf+ﬁlb: (1.22,3,"',"_1)
This system may be solved for a; and 3;:
axb; — a'b;
=53
anbl - albn
abi — aib;
aihl — albt’

8i =

The denominators of these fractions are positive,
awht — aiby >0,

or

b2

as
I>bl

and for the numerators we have
awb —abiz 0,

or
a:_ b
=73
ai bl
and also
abhi—aht=0.
or

bi
_2_
b
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Accordingly, a; 20, and 3; =2 0. Now, a; =0 only if

a; = QG,,

b; = b,

Bi=1,
and, analogously,

8:i=0

if a; = a,, b = bl. a; =1,
We introduce the terminology
l+as+as+-+a,., =4,
32+Ba +-e ﬁn—l +1=B8B
Then the numerator of the fraction of the problem can be rewritten
in the form
(Aal + Bas)(Ab; + Bby)

As for the denominator of the given fraction, we shall use the
Cauchy-Buniakowski inequality (a.b, + a:0,)* < (a} + ab) (b1 + b3) (see
the discussion immediately following problem 288) to obtain

abi =V (Vaa Y + (VA )V Va by + /B by
= aialbl + Bianbn ( 1 )

If the inequalities of (I) are added, for i =1,2,3,---,n — 1, n (here
we assume a, =1, 3, =0 and a, =0, 8, = 1), we obtain

albl + azbz +--- 4 a,.b,. ; Aa;b[ + Ba,.b,.
Thus, the given fraction does not exceed

(Aa; + Ba?)(Ab} + Bb})
(Aalbl + l;anbn)2

However,

(Adl + Bay)(Abi + Bby) _ 1 + Ap_{asbr —aiby)®
(Aab, + Ba.b.)* (Aab, + Ba,b,)*

In view of the theorem of arithmetic and geometric means, we have
Aalbl + Ba,.b,. g ZVAalbl-Ba..b.‘ . (2)

Finally, we obtain
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(@i +a+ - +ad)bl + b +---+ by
((llbl + a';bz + .- +a,.b,.)2

n (anbl —_ albﬂ)z

“(Aab, + Banb,y

— 1 +(1/anbl/albn - Valb,./a,.bl )2

(anbl - albn)z
(21/ABa.bxa,.bn)z

=1+ A4 <1+ AB

2

which is what we wished to show.
Inequality (1) cannot become an equality for positive numbers,

since ﬂ;t%. Hence this possibility exists only if all a; are zero or
a

1 (in th':e lat'ier case, B; = 0), that is, if

=0, == < Qiery = Qpvz =***= Qn ,
by=br=-=bi>bwi=br1="-=ba
Then for (2) to become an equality it is necessary that
Aa,b, = Banb, ,
that is,
kab, = (n — E)anb, ,
or,
a b_n—k
an b k

This determines a condition for the equality
(@i + a2+ - +an) (b + b +--- +b7)
(@b + azb; ++++ + anb,)?

= 1 + ( .\/MIMZ/mlmﬂ _ .\/mlmz/MlMg )2
2

300. We can write
n(ab, + ab, -+ -+ anby)
—(a), +az +"'+an)(b1 +bz +"'+bn)
=5 [@ = @) (b, = b) + (@ — a) by — b)

+ vt + (an—l - an)(bn—l - bn)] g 0 ]
from which the required inequality immediately follows.

301. The condition %+—‘1;-=1 implies that p + ¢ = pg, and so
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p:—q = 7 ,
q=P+Q=P1+Q1
p v

where p, and ¢, may be any positive integers proportional to p and
q (if P =2 and ¢ =—§, where a, 8, 7 and & are integers, then we

may use, for example, p, = ad and ¢, = rB).

Accordingly, the inequality we seek to prove may be rewritten in
the form
Pited /ey pylmwl)/m

gx
xy =
pt+a

We now set

X = xPitan/ax

y, = y(PH'Gl)/Pl

, .
Then, using the theorem of arithmetic and geometric means (pro
blem 268), we obtain
xy = xfx/‘l’lﬂx’yl?x/(m*'ﬂ’ = (X2, Xy Y1 Y1- - Y)Y P40
—
q, times p, times

< [(M)" ]""'”" _9% + b
@+ h q+p

p+a _ P 1 1
=" xymta)/an 4 (P1+a1} /Py = — yP 4 —— ¢
q p+q’ p" T

We have equality only if x? = y¢
302. We shall use the designations

at+a+---+ta,=a,
b1+bg+"'+bn=b

and divide the given inequality by a#b®. This yields the following
inequality, which is equivalent to that of the problem:

AWEAN SN AYANY an\*( ba)?
(a) (b) +(7) (b) * +(a) (b) =1
From the theorem of arithmetic and geometric means (problem
268) it is possible to derive the result that, for every £ =1,2,-.:, n,
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a i@ a+p
(3 <(EE) aamin
a b, = a+f T T a b
(compare with the solution of problem 301).
If these inequalities are added for k=1, 2, .-+, n, we have

(%)‘(%)ﬂ+(%)d(%)ﬂ+ OI0)

e T

<

al“ QR &

(@, + a, +-~-+a,)+%b1 + byt -+ by)

LB _
+=atf=1

which is what we set out to prove.

Equality holds only if a,: b, = a.: by =+ < =a,: b,.

Remark: This result can be derived from the inequality of Cauchy-Bunia-
kowski, but the proof is more complicated.

303. Two proofs will be given for this inequality, which has frequent
application in analysis.
First Proof. If we substitute into the inequality of problem 302

a

B

1
T
1
q
and, further,

— P — P — .
@ =x{,8, =x3, -, 8, = X1 ;

blzygv bz:yg. bﬂ:y:!
we obtain Holder's inequality.

We arrive at equality only if x;:y, =20y, =+ = 2,1 s
Second Proof. We write

A+t )P =X,
Wityit+tyde=Y

and divide both members of the inequality by XY. If we use the
terminology,
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I/._
X~

-&: = LAY
Y tlt (k 1;2v |n),

then the inequality we are considering becomes equivalent to
Z|t|+lztz+"'+l,.t;§1 (1)

where the following conditions are to hold:

d+z++z=1,
g+t +---+ 86 =1 (2)

By using the inequality of problem 301, we can write the # inequa-
lities:

The sum of all these inequalities yields

2+ 23l -+ 248,
é%(zf—i—z%’-i—----{-z.’;)-{——;-(ti’-{-zg+..._Hg')

Now, using condition (2), and the fact that—l— +-l- =1, we obtain

q
inequality (1), which is equivalent to that of the problem.
The equality holds only if

Xii Yy = X2l Y2 =< =Xal Yn
304. The proof is analogous to that of problem 302. We write
at+a+---+a,=a,

bi+by+---+ba=b,

Ltb+otl=1

If the inequality of the problem is divided by a#b8.--/*, an equivalent
inequality is found:
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SV (Y (B s (2)(&) (L)
<a)<T) 1) ) B 1) =t
From the theorem of arithmetic and geometric means we obtain
(compare with the solutions of problems 301 and 302)

ﬂ _llk_ I_k abtPi, ..
(B by | miite
a b 1) = a+ f+---+1

A

ca &gk
—aa+ﬁb+ +11

The sum of these inequalitites for 2 =1, 2, -- ., n yields
ﬂ' _[Aﬂ . 1_1)‘ <a')a<5)ﬂ 1_')\
<a)<b) <1)+ 2/ \b <1)

§<ﬂ_an+ﬂ+ +1_’n)+ +<a_a~+ﬁlb+...+_ﬂ_-)
a b ) a b )

=%(al+az+---+a..)+-l;£(b1+bg+~--+b.)

A aa A
T A AT S - - U S
{ a b {
which is what we wished to show.
Equality results only if
a;: b ch=ag by = = Ayl by -
Remark: 1f we write
1 1 1
=, :—'-..,l=—’
=Py t
and
w=z b=yl =4 (=12-,m),
we derive a new form of Hélder's inequality: If %+% +...+-11; =1, then
for arbitrary sets of positive numbers Zi, -+, Zn; Y1, -+, Yn; -] UL, - ¢, Un) WE
have

X1 Uy + X3z " Uz T XnYn Un
S@El+al+ 2D PGl g gD

X oo X (ul 4 us + o - +ul)'t

305. Use, in the inequality of problem 304, the n (two-number)
sequences
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1! a, 1; Qs+, lv Qy,
1

and in that problem let a=8=-:+ = We then have

A+ a)*A + @) (1 + a)/* 2 1 + ay*ad*- - "

which proves the inequality of this problem.
We have equality only for ¢, =a, =-:-a,.

411

306. The inequality here is a special case of problem 304, with

foamm1=l
n
Equality holds only if
a.: b == an b Y P
307. In the inequality of problem 304 set
a = B = T :—:]3-— y
a, = bl = = 1 ’
1
a; = — ,
x
b= L,
Yy
1
Cy = —
z

Then we have

(ax + az)l/a(bl + bz)x/a(cl + cz)x/a > alxlsbilscils + a§'3b§"c§'3

VDD ek

or

By the theorem of arithmetic and geometric means (see problem

263), we have

— _xXx+y+z _ 1
Yxyz < 3 =3

from which we obtain

—

<

=

|
I
w
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Therefore,

a]/(1+—i-)(1+%)(1+%)%1+3=4

If both sides of this inequality are cubed, the required inequality
ensues.

308. Designate by S the right member of the inequality. We then
have
St=(@+b+--+0)P+@+b+ - -+h)?
dooit(@n b+ L) =[ala + b+ 4 1)
tax@+ b+ Hh) o au(@n t by o L)
+[bay + b+ 1)+ boa + b+ 1)
+oortbalan +ba+oH D)+ [+ b+ )
+ha+ b+ 4+ b))+ 4 lan + b+ -+ 1))

Application of Holder’s inequality (problem 303) for p =g =2 to
each of the expressions in brackets produces the inequality

S*<Vadt+al+ - +a2S+VE+E+ -+ 8BS
4o+ VEFE L HES,

The required result follows immediately.
We have equality only if a,: b, = a, by = =aa ba
lu.

309. (a) We have un —ttn=ao[(n + 1) — n*] + a, [(n+1)x1 — pt-1] +
<o+ 4 ap, |(n + 1) — n]. However, for arbitrary a and b the following
identity holds:

a— b =(a— by + a4+ tabkt 4 b
If this identity is applied to the difference (# + 1)* — »*, we have
M+ 1=k =(n+ 1+ m+ 150
+octm 4 Dek? okt = ket

where the dots designate only terms of less than (¢ — 1) st degree in
n. These terms can not increase the order of the sequence; it fol-

lows that the order of the sequence u.’ = un., — u, is equal to k—1:

' = ak-n* 4.,
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(b) Upon transition from the sequence u{ to the sequence
#'", the order of the sequence is decreased by 1. Therefore #* is a
sequence of zero order; that is, all the elements of the sequence #
are the same number. This means that #*'" = 0 for all #, which is
what we wished to show.

Remark: It also follows from the solution of this problem that a sequence
of order k has sequences of first-order, second-order, and so on, differences,
up to the kth order, which do not include a sequence all of whose terms vanish
[that is, w ™ is the first difference sequence comprising all zeros]. In fact,
a sequence of differences of g-order of the sequence, where 8 < k, is a sequence
of order k — 3 whose terms cannot all reduce to 0 (a polynomial of degree k—s
can have value 0 for not more than k — g values of its variable). See problem
310 for the sequence of differences of order k.

310. First Solution. In the solution of problem 309 (a) we saw
that if #, =am* + an*' 4.+ a,isa sequence of order &, then u'
is a sequence of order £ — 1 of form u.’ = ackn*-* +..-. It follows
that the sequence # has the form

us = ack(k — I)m¥-* +
has the form
ul = ak(k — 1)(k — 2)n*3 +-
and so on. Finally, the sequence #+~" has the form
akk —1)---2-n +

the sequence #.”

where the final dots indicate only a constant., The assertion of the
problem follows at once.

Second Solution. By problem 309 (a), the sequence of differences of
kth order of the sequence of degree % is of zero order, that is, all
terms are the same, independent of #n. Hence it suffices to determine
uékl

For #, we have the formula

Un = Uy + Clted + -+ Claul®
(see problem 313). Equating this with the given polynomial, we have
agnt + @t g = up + Coug” - +Clul

The two members of this equation represent the same polynomial
in »; but it is necessary to expand the C’s on the right to enable
comparison of the coefficients of like-degree terms. The term ayn*,
however, can be obtained from the term Ciui*' alone:
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nn—Dn—=2)---n—k+1
k! Ho

The coefficient of n* is equal to #;*'/k!. Equating the coefficients for
7, on both sides, we obtain

k_ (k
Ciul =

_ Yo
=
from which we obtain
u® = a,- k!

311. (a) We shall write the sum-sequence in the triangular form
explained in the introduction preceding problem 309; each # will be
the sum of the two elements flanking it in the previous line:

U 23} Uz Us L 2 Up+1
=1 ={1) —(1} =(1) —(1) ~(1)
ué U Uz Us Un Un+1
=(2) —(2) =(2) —~(2) —(2) =(2)
Up U Us Uy Un Un+1
= (k) —(k) —(k) —{k) — (k) ~(k)
Uo U, U, Uy ccccreenes u:' Up+
—(k
Note that #\ depends only upon #,, #ns, -+, #s+x and not upon any

other numbers of the initial sequence comprising the first row. We
shall now show by mathematical induction that

3] 0 1 2 k
Un = Ckun + Ckun+l + Ckunvi + Ckun+k

The formula is valid for 2 =1, since here it assumes the form

) 0 1
e = Clttn + Cltbnsy = tn + sy ,

which, by definition, is obvious. Now, assume the formula is valid
for k — 1; we shall show that validity for % is implied:
# = dn " + A’
= (Cl-sthn + Chrttnss + Cioihnrg + - + ChZltheiny)
+ (Chotttnir + Chottnss + Chogthnsrs ++++ + CiZlthnri)
= Ci-ittn + (Ciet + CicYthnsr + (Citrt + Cim)ttnore
+ oo (CETE 4 CEZD thnekms + CiZithnes
From the definition of the symbol Cr, it follows that
Ci-=Cx,
Ci-i + Ciy = Ci,
Ciw + Ciey = Ci,



Solutions (311-313) 415
and so on. Therefore,
ﬁ:‘k) = Cgu,. + Cflgu,|+1 +---+ C:-lun+k—l + C:un+k '

which is what we set out to prove.
(b) The proof here is entirely analogous to that of problem
(a) and is left for the reader.

312. The proof will be given by mathematical induction. (Refer
to the terminology of the Pascal Triangle in the introduction to this
series of problems.). The proposition holds for £ =1; that is, C;} =
_ii in the first row of the triangular array.

Assume validity for the (7 — 1)st row; we must show that this
holds for the nth row. From the definition of the Pascal triangle,
we have

Ct=Coi+ Ch
Therefore, for £ > 1, we have

v m—D#n=2)---n—k+1) @®—1n-—2)--(n—k)
G= & — 1! + Rl

We can write this in the form

m—1(n—2) -n—k+1) n—k
Cr= & — 1) (1+25)

nn—1Dn~—2)--(n—k+1)

- k! !

which is the desired resu