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Problem 1:
Zou and Chou are practicing their 100-meter sprints by running 6 races against each other. Zou wins the first race,

and after that, the probability that one of them wins a race is % if they won the previous race but only % if they lost

the previous race. The probability that Zou will win exactly 5 of the 6 races is 7, where m and n are relatively prime
positive integers. Find m + n.

Solution:

Answer (097):

Zou will win exactly 5 out of 6 races if her record over the last 5 races is WWWWL, WWWLW, WWLWW, WLWWW,
or LWWWW, where W represents a race won and L represents a race lost. In the first case, the sequence of winners
changes once, and in the other four cases, the sequence of winners changes twice. Thus the probability that one of

these sequences occurs is
1 2y IV (2)  16+4-8 16
=) +4(=z)([z) =—— =—.
3/\3 3 3 33 81

The requested sum is 16 4 81 = 97.

Problem 2:

In the diagram below, ABCD is a rectangle with side lengths AB = 3 and BC = 11, and AECF is a rectangle with
side lengths AF = 7 and FC = 9. The area of the shaded region common to the interiors of both rectangles is 7,
where m and n are relatively prime positive integers. Find m + n.

F

Solution:

Answer (109):
Let G be the intersection of AD and CF. Then AAGF ~ ACGD, so

AG FG AF 7
CG DG CD 3
It follows that there are constants x and y such that AG = 7x, CG = 3x, FG = 7y, and DG = 3y. Thus

7x 4+ 3y =11 and
7y +3x =0.

Adding the two equations and dividing by 10 gives x 4+ y = 2. Subtracting the second equation from the first and
dividing by 4 gives x — y = % Hence x = % and y = %. Because AD || BC and AE || CF, the region interior to
the two rectangles is a parallelogram, and thus the required area is AG - AB = 7x-3 ="7- % ‘3= %. The requested
sum is 105 4+ 4 = 109.

OR
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Defining G as above, lett = DG so that AG = 11 —¢ and, by the Pythagorean Theorem, CG = /32 + 2. Because
ANAGF ~ ACGD, it follows that
AG CG 11—t ~9+12

— = —— and =
AF CD 7 3
105

Solving for ¢ gives t = %, from which the required area is 3 - (11 — %) = 4>, as above.

Problem 3:

Find the number of positive integers less than 1000 that can be expressed as the difference of two integral powers of 2.

Solution:

Answer (050):

Assume that positive integer N can be represented as N = 2*¥ — 2% for integers x and y. Because N < 2%, x must be
a positive integer which implies that y is nonnegative.

If 2" — 25 = 2% — 2V for nonnegative integers r, s, u, and v with > s and u > v, then the greatest power of 2 that
divides the left side is 2°, while the greatest power of 2 that divides the right side is 2”. Hence s = v and r = u.
Therefore no positive integer can be represented as the difference of two integral powers of 2 in two distinct ways.

If N = 2% —2% then N > 2*~1 50 x < 10.
e If 1 < x <09, there are x choices for y, namely y =0,1,...,x — 1.
e If x = 10, there are 5 choices for y, namely y = 5,6,7,8,9.

Therefore there are 1 +2 + --- 4+ 9 4+ 5 = 50 positive integers N that can be expressed as a difference of two integral
powers of 2.

Problem 4:

Find the number of ways 66 identical coins can be separated into three nonempty piles so that there are fewer coins in
the first pile than in the second pile and fewer coins in the second pile than in the third pile.

Solution:

Answer (331):

Assume that there are three distinct piles with x coins in the first, y coins in the second, and z coins in the third. The
answer is the number of solutions to x 4+ y + z = 66, where x, y, and z are integers satisfying0 < x <y < z.

Without the restriction x < y < z, the number of solutions in positive integers is the same as the number of solutions
to x + y + z = 63 in nonnegative integers, which by the sticks-and-stones technique with 63 stones and 2 sticks is
(°?) =32-65.

The number of solutions where x = y is the number of solutions in nonnegative integers of 2x + z = 63. This
equation has one solution for each odd number z from O to 63, which gives 32 solutions. Similarly, there are 32
solutions where x = z and 32 solutions where y = z. In addition, there is 1 solution where x = y = z. Altogether
there are 32 4+ 32 4+ 32 — 2 = 3 - 32 — 2 solutions where at least two of the variables are equal.

Therefore there are 32 - 65 — 32 -3 4+ 2 = 32 .62 + 2 solutions where all three variables assume distinct values. The
number of unordered solutions is then

32:62+2  32-60+ 66
31 o 6

=32-10+4 11 = 331.

OR

Note that there are L%J ways to place n coins into two piles with a different number of coins in each pile. Consider
the size of the smallest pile among the three piles. If it has 1 coin in it, then removing a coin from each pile reduces
the problem to the case of two piles with n — 3 coins.
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If all three piles have at least two coins, then removing a coin from each of them reduces the problem to the case with
n — 3 coins and three piles. Thus if a,, is the number of ways to build three piles using # coins, then for n > 4,

n—4
ap = ap—3 + 3 .

Applying the recursion twice gives for n > 7:

n—17 n—4
ap = dp—¢ + 3 + 3 .

This form has the advantage that the sum of the last two terms simplifies to n — 6. Thus

ap = ay—6 + (n —6).
Repeated application of this last recursion yields

ags = dgo + 60 =asq4 +54+60=---=a¢+6+12+---4+ 60
14+ 6(1424--+10) = 143-11-10 = 331.

OR

The result is the number of positive integer solutionsto x + y +z = 66 with0 < x < y < z. By lettinga = x — 1,
b=y—x—1,and c = z — y — 1, this is equivalent to counting solutions to 3a + 2b + ¢ = 60 with a,b,c > 0.
Because ¢ = 60—3a —2b, the count equals the number of lattice points (a, b) in the triangle defined by 3a +2b < 60,
a>0,and b > 0.

This triangle is formed by taking the rectangle given by 0 < a < 20 and 0 < b < 30 and cutting it in half along the
diagonal. The total number of lattice points in the rectangle is 31 - 21, while the number of points along the diagonal
is gcd(20,30) + 1 = 11. Hence the total number of lattice points in this triangle is
31-21 4+ 11
2

= 331.

Problem 5:

Call a three-term strictly increasing arithmetic sequence of integers special if the sum of the squares of the three terms
equals the product of the middle term and the square of the common difference. Find the sum of the third terms of all
special sequences.

Solution:

Answer (031):

Leta — d, a, and a + d be the three terms, with d > 0. The given condition is
(a—d)?+a*>+@+d)?=d?*a, so 3a*>—d?*a+2d*>=0.

Consider the equation as a quadratic in a and apply the quadratic formula to get

d>+d-~d?—24
a= .
6

Because a is an integer, the discriminant must be a perfect square. Hence

d?>—24=xso 24=(d—-x)d+x)

for some nonnegative integer x. Because d — x and d + x have the same parity, they are both even. There are two
ways to factor 24 into two positive even integers. Thus eitherd —x = 4andd +x = 6ord —x =2andd +x = 12,
implying thatd = 5ord = 7.
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e For d =5, the sequence is 0, 5, 10.
e For d =7, the sequence is 7, 14, 21.

The requested sum is 10 4+ 21 = 31.

OR

342

As in the previous solution, 3a? — d?a + 2d? = 0, from whicha — 2 = X

Because a — 2 is an integer, a = 3k? + 2 for some positive integer k. Hence d = Skk—+2 =3k + %, which implies

that k = 1 or k = 2. Checking these two cases yields the same two possible values for d as above.

Problem 6:

Segments AB, AC, and AD are edges of a cube and segment AG is a diagonal through the center of the cube. Point
P satisfies BP = 604/10, CP = 60+/5, DP = 1204/2, and GP = 36+/7. Find AP.

Solution:

Answer (192):

Let the cube have side length s and place the cube in Cartesian 3-space with vertices A(0, 0,0), B(s, 0,0), C(0, s,0),
D(0,0,s),and G(s,s,s). Let P have coordinates (x, y, z). Then

BP?2 = (x—s5)? + y? + z2 = (60\/5)2
CP? = x? + (y—5)? + 22 = (60\/5)2

DP2 = X2 4+ 32 4 (z—s? = (120¥2)
GP2 = (x—52 + (-9° + (-9 = (367 .

Adding the first three equations and subtracting the fourth equation yields
2 (¥ + 32+ 2%) = 122+ [ (5VI0] + (5V5) + (10v2) — (3v/7) |
=122.(250 + 1254+ 200 —63) = 2-122-16% = 2- 1922,

Therefore AP = /x2 + y2 + z2 = 192.

Problem 7:

Find the number of pairs (m, n) of positive integers with 1 < m < n < 30 such that there exists a real number x
satisfying
sin(mx) + sin(nx) = 2.

Solution:

Answer (063):

Note that the maximum of sin(mx) is 1 and is achieved when x = 3600’;—”00 for any integer k. If sin(mx)+sin(nx) =
2, then there exists a real number x such that sin(mx) = sin(nx) = 1. Thus x = %(360°k +90°) = %(360% +90°)
for some integers k and £. Hence

dk+1  4l+1

)

m n

which is equivalent to (4k +1)-n = (4€+ 1) -m. Because 4k + 1 and 4£ + 1 are odd, the greatest power of 2 dividing
m must be equal to the greatest power of 2 dividing n. Letm = 2" -m’ and n = 2' - n’, where m’ and n’ are both odd.
Then (4k +1)-n’ = (4 + 1) -m’ and 4 | (m" — n’).
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Conversely, if m” and n’ are odd positive integers satisfying m’ = n’ (mod 4), then there exist positive integers k and
£ such that the above equation holds:

e If m’ and n’ are congruent to 1 modulo 4, then setting 4k + 1 = m’ and 4¢ + 1 = n’ leads to integer values for
k and £.

e If m’ and n’ are congruent to 3 modulo 4, then setting 4k + 1 = 3m’ and 4 4+ 1 = 3n’ leads to integer values
for k and £.

Therefore the required integers k and £ exist if and only if m’ and n’ are both odd and 4 | (m’ — n’), which means
that either m’,n’ € {1,5,9,...,29} or m’,n’ € {3,7,11,...,27}. In the first case, m and n are distinct integers
from {1,5,9,...,29}, from {2, 10, 18,26}, or from {4, 20}. In the second case, m and n are distinct integers from
{3,7,11,...,27}, from {6, 14,22, 30}, or from {12, 28}. Hence there are

s + ! + 2 + ! + ! + ) = 63
2 2 2 2 2 2)
ordered pairs with the required properties.

Problem 8:

Find the number of integers ¢ such that the equation
“20|x| —xzy —c‘ =21
has 12 distinct real solutions.

Solution:

Answer (057):
The equation y = }20|x| — xz} has the following graph.

300
200

100,

-30 20 -10 0 10 20 30

On the interval [—20,20], the graph reaches a maximum of 100 at x = =£10. The solutions to the equation
“20|x| — x2| — c‘ = 21 are the x-coordinates of the points of intersection of this graph with the lines y = ¢ + 21

and y = ¢ — 21. Each of these lines intersects the graph exactly 6 times when y is in the range 0 < y < 100, and no
two of these intersections have the same x-coordinate. Thus in order for the given equation to have 12 real solutions,
¢ must satisfy 21 < ¢ < 79. There are 78 — 21 = 57 integers in this range.

Problem 9:

Let ABCD be an isosceles trapezoid with AD = BC and AB < CD. Suppose that the distances from A to the lines
BC,CD, and BD are 15, 18, and 10, respectively. Let K be the area of ABCD. Find JV2-K.

Solution:

Answer (567):
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D P C
By symmetry, AABC is congruent to ABAD. The areas of these two triangles can be calculated in three ways as
15-BC 18-AB _ 10-BD
22 2 7
Thus there is a constant £ such that AB = 5k, AD = BC = 6k, and AC = BD = 9k. Because ABCD is an

isosceles trapezoid, it is cyclic, so by Ptolemy’s Theorem, AC - BD = AB - CD + AD - BC. Thus CD = 9.
Let P be the foot of the perpendicular from B to CD. Then CP = L;AB = 2k. By the Pythagorean Theorem,

BC? = BP? + CP?, which implies that (6k)?> = 182 + (2k)? and k = %ﬁ. Therefore the area of ABCD is

AB +CD Sk + 9% 9V2 56742
+-BP:+-18=7-18k=7-18-T\/_= 2f.

The requested product is v/2 - %ﬁ = 567.

Problem 10:
2020

Consider the sequence (ag)x>1 of positive rational numbers defined by a1 = 557 and for k > 1, if ap = 7 for
relatively prime positive integers m and 7, then

m+ 18

ak+1 = —n+19'

Determine the sum of all positive integers j such that the rational number a; can be written in the form H—Ll for some
positive integer 7.

Solution:

Answer (059):
18

Note that all the terms in the sequence (a )1 are strictly between 15 and 1. Call an integer j simple if the rational
number a; can be written in the form H—Ll for some integer t > 18. Suppose j is a simple positive integer and term
t

J of the sequence is aj = 5. Let?t = pip2--- pg + 18 with py < pp < --- < p; being the primes in the prime

factorization of ¢ — 18. Note that for any positive integer k, the greatest common divisor of # + 18k and 4+ 1 + 19k is

ged(t + 18k, t + 1 4+ 19k) = ged(t + 18k, k + 1) = ged(r — 18,k + 1).

Thus this greatest common divisor is first greater than 1 when k = p; — 1, in which case the greatest common divisor
is equal to p;. At that point,

t+18(p1—1)  pipa---pe+18p1  pap3---pg+ 18
t+14+19p1—1)  pipa---pe+19p1  papz---pe+19°

dj+p1—1 =

so j + (p1 — 1) is the next integer greater than j that is simple. By the same reasoning, the numbers

J+mi=-D+p2=D.....j+(1i—D+(p2=D+(p3—D+--+(pe— 1)

are all the simple numbers exceeding j + (p; — 1).
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The first simple number is j = 1 for which t = 2020 = 2002 4 18 =2-7-11 - 13 4 18. Therefore the sequence of
simple numbers is 1, 2, 8, 18, and 30. The requested sum is

14+24+8+18+30=59.

Problem 11:

Let ABCD be a cyclic quadrilateral with AB = 4, BC = 5,CD = 6, and DA = 7. Let A; and C; be the feet of
the perpendiculars from A and C, respectively, to line BD, and let By and D be the feet of the perpendiculars from
B and D, respectively, to line AC. The perimeter of A4; B1C; D is %, where m and n are relatively prime positive
integers. Find m + n.

Solution:

Answer (301):

Let P denote the intersection point of diagonals AC and BD, and let 6 be the acute angle formed by AC and BD.
Because /DCC = ZDD1C = 90°, it follows that CDCy D1 is cyclic, implying that /PD1Cy = ZPDC and
ZPCiDy = ZPCD.

D

It follows that APD{C; ~ APDC, and so

C1D1 PC1
——— = —— =cosf.
CD PC
Similarly,
AlBl Blcl DlAl
— = =cos 6.
AB BC DA
Therefore

C]D] +31C1 ~|—A]Bl ~|—A1D1 = (CD—FBC—}—AB—FAD)COS@ = 22cos 6.

Let X be the reflection of B across the perpendicular bisector of diagonal AC. Then ABXC is an isosceles trapezoid,
so A, B, X, C, and D lie on a circle. Because AB = XC,

XC+CD _AB+CD
2 B 2
Similarly, /ZXCD = ZAPD = 180° — 6. Applying the Law of Cosines to AXCD and AXAD gives

ZXAD = = /ZAPB = 0.

XD? =42 +4+6>+2-4-6cos0 =5>+7>—2-5-Tcosb,

socosf = Therefore the perimeter of A1 B1Cy D1 is 22 - % = 242 Tpe requested sum is 242 + 59 = 301.

11
59 59

OR
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As in the first solution, the perimeter of A; B1Cq D1 equals 22 cos 6.

Note that the area of ABCD equals ACéBD -sin 8. On the other hand, by Brahmagupta’s formula, area of cyclic
quadrilateral A BCD equals

V(s —a)(s = b)(s —c)(s — d),

where a, b, ¢, d are side lengths and s is the semiperimeter. In this case,

AC - BD
T-sin@ =+/4-5.6-7.
By Ptolemy’s Theorem, AC - BD =4-6+5-7 = 59. Hence

2-4/840

sinf =
59

from which cos 0 = % and the solution finishes as above.

Problem 12:

Let AjA2 A3 ... A2 be a dodecagon (12-gon). Three frogs initially sit at A4, Ag, and A;5. At the end of each
minute, simultaneously each of the three frogs jumps to one of the two vertices adjacent to its current position, chosen
randomly and independently with both choices being equally likely. All three frogs stop jumping as soon as two frogs
arrive at the same vertex at the same time. The expected number of minutes until the frogs stop jumping is 7, where
m and n are relatively prime positive integers. Find m + n.

Solution:

Answer (019):

Define the distance between two frogs as the number of sides between them that do not contain the third frog. At any
moment before the frogs stop jumping, the three distances, in nondecreasing order, can only be the following triples:
(4,4,4),(2,4,6), and (2,2,8). Let A, B, and C be the expected number of minutes from each status to the stopping
time, respectively. Then A, B, and C satisfy the following system of equations.

1. 3
A=1+-A+>B
47 T 4

B—1+10+1A+1B+1C
o 4 8 2 8
C—1+10+IB+1C
- 2 4 4

Solving the system yields A = 1—36, B=4and C = %. Because the frogs start in configuration A, the requested sum
is16 +3 = 19.

Problem 13:

Circles @, and w, with radii 961 and 625, respectively, intersect at distinct points A and B. A third circle o is
externally tangent to both w; and w,. Suppose line A B intersects @ at two points P and Q such that the measure of
minor arc PQ is 120°. Find the distance between the centers of w; and w;.

Solution:

Answer (672):

Let Ry = 961 and R, = 625 be the radii of w; and w,, respectively, r be the radius of w, and £ be the distance from
the center O of w to the line AB. Let O and O, bet_he centers of w; and w,, respectively. Let X be the projection of
O onto line 07 0,, and let Y be the intersection of AB with line O O,.
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Let the distance between O; and O, be d. Thend = 01Y — O,Y. Because AB is a chord in both w; and w,, the
power of point Y is the same with respect to both circles. Thus

R? — R3 = 01Y? - 0,Y? =d(0,Y + 0,Y).
Furthermore, note that
d(01X + 0:X) = 0, X?— 0,X* = 0,0 - 0,07

= (Ri+1)? = (R +71)?

= (R = R3) +2r(Ry - Ra).
Substituting the first equality into the second one and subtracting yields

2r(R1 — Ry) = d(O1 X + 02X) —d(01Y + 0,Y) =2dXY =2d¢,

which shows that Ri—R,

d
Therefore d = 2(R; — Rz) = 2(961 — 625) = 672.

£ 1
= - = 60°) = —.
. cos(60°) 5

Note: In the figure shown, it is assumed that the points X, Y, O, and O; occur in that order along the line containing
the centers of w; and w,. If the order were different, the same argument with appropriate sign changes would yield
the same answer.

OR

Let O, 01, O3, Ry, R,, and r be as in the first solution. Let line OP intersect line 010, at T, and let u = TO,,
v =TO0; and x = PT. Because lines PQ and O; O, are perpendicular, lines OT and O; O, meet at a 60° angle.
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Applying the Law of Cosines four times gives
AOLPT : 02P? = u? + x* —ux
AO{PT : 01P? = v +x* + vx
AOLOT : (r+ R)?>=u?+ (r +x)* —u(r + x)
AOOT : (r + R))?> =02+ (r + x)> + v(r + x).
Adding the first and fourth equations, and subtracting the second and third equations gives
(02P2 = 01P2) + (R} = R3) +2r(Ry = Ra) = r(u +v).
Because point P is on the radical axis of w; and w,, the power of point P with respect to either circle is
0,P? — R? = 0, P> — R%.
Hence 2r(R; — R2) = r(u + v) which simplifies to
u+v=2(R; —Ry).

The requested distance
010, = 01T+ 0T =u+v

is therefore equal to 2 - (961 — 625) = 672.

Problem 14:

For any positive integer @, o (a) denotes the sum of the positive integer divisors of a. Let n be the least positive integer
such that o(a”) — 1 is divisible by 2021 for all positive integers a. Find the sum of the prime factors in the prime
factorization of n.

Solution:
Answer (125):
If a has prime factorization py' py?---, then o(a) = o(p}')o(p32)--- and hence o(a”) = o (p{“)o(py™?)---.

Therefore it suffices to find the least positive integer n such that o(p”"*) = 1 (mod 2021) for all prime powers

p%. Because 2021 = 43 - 47, by the Chinese Remainder Theorem, it is sufficient that o (p"*) = 1 (mod 43) and

o(p"®) =1 (mod 47) for all prime powers p®.

Assume that n satisfies the required condition. In particular, for all p and «, n must satisfy
o(p")=1+p+p*+-+p" =1(modg).

where ¢ = 43 or g = 47.

e If p = g, this sum will always be congruent to 1 (mod g).

e If p =1 (mod g), then each term in the sum is 1 (mod ¢), so
o(p"*)=na+1=1 (mod q).

Thus the required n must satisfy ¢ | no for all &, so g | n.

Note that 43 -4 4+ 1 = 173 and 47 - 6 4+ 1 = 283 are both prime numbers, so such p exist for both ¢ = 43 and
q =47.

e If pis a prime such that p # g and ged(p — 1,¢9) = 1, then

pn(x+1 _

l+p+p>+-+p=
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which, after clearing the denominators and canceling a factor of p, reduces to

"% =1 (mod gq).

By Fermat’s Little Theorem, it is sufficient to have ¢ — 1 | n. However, for both ¢ = 43 and ¢ = 47 there exists
a prime p such that p is a primitive root modulo g. For example, p = 5 is a primitive root modulo both 43 and
47. Therefore the condition that ¢ — 1 | n is also necessary.

It follows that #n must be divisible by 42, 43, 46, and 47. The requested sum is 2 4+ 3 + 7 + 23 4+ 43 4+ 47 = 125.

Problem 15:
Let S be the set of positive integers k such that the two parabolas
y=x*—k and x =2(y—202%—k
intersect in four distinct points, and these four points lie on a circle with radius at most 21. Find the sum of the least

element of S and the greatest element of S

Solution:

Answer (285):

Note that y = x2 — k has its vertex at (0, —k), which is below the line y = 20, and opens upwards. Parabola
x = 2(y —20)? — k has its vertex at (—k, 20) and opens to the right.

e If 0 < k < 4, then for —k < x < 0, the maximum value of y on the first parabola is k? — k < 12. However,

for x < 0, the minimum value of y for the second parabola is 20 — \/g > 18. Thus if 0 < k < 4, the second
parabola does not intersect the left half of the first parabola.

e If k > 5, then at x = —k the first parabola has y value (—k)? — k > 20, and hence the vertex of the second
parabola lies to the left of the first parabola. The lower half of the second parabola intersects the y-axis at

20 — %, which is above the vertex of the first parabola. Hence if k > 5, the two parabolas intersect at four
points.

e If k = 5, then the first parabola passes through the vertex (—5, 20) of the second parabola. If x = —5 + ¢, then
the y-coordinate of the first parabola is 20 — 10e + €2, while the y-coordinate of the lower half of the second

parabola is 20 — \/g Because \/g > 10€ — €2 for small positive values of ¢, the lower half of the second

parabola lies below and to the left of the left half of the first parabola. Similarly to the previous case, the lower
half of the second parabola intersects the y-axis above the vertex of the first parabola. Thus for k = 5, the two
parabolas intersect at four points.

Adding the first equation given in the problem to half of the second equation yields
X 3
Z = (y—20)2+x? - Zk,
Yy =0-207+x" -5
which, upon completing the square, gives
41\? N 1)\> 325 NER
- — xX—=) =—+ k.
) 4 16 " 2

All four intersection points satisfy this equation, which is an equation of a circle. Hence as long as the two parabolas
intersect in four distinct points, these four points are concyclic. Moreover, the square of the radius of this circle is

325 , 3

Te + Ek .

Thus the desired condition is that
325 3
— + —k < 441,
16 2

which holds when k < 280. The requested sum is 5 + 280 = 285.
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