American Mathematics Competitions

Solutions Pamphlet MAA American Mathematics Competitions

37th Annual AIME I

American Invitational Mathematics Examination I
 Wednesday, March 13, 2019

This Solutions Pamphlet gives at least one solution for each problem on this year's AIME and shows that all the problems can be solved using precalculus mathematics. When more than one solution for a problem is provided, this is done to illustrate a significant contrast in methods. The solutions are by no means the only ones possible, nor are they necessarily superior to others the reader may devise.
We hope that teachers inform their students about these solutions, both as illustrations of the kinds of ingenuity needed to solve nonroutine problems and as examples of good mathematical exposition. Routine calculations and reasons for proceeding in a certain way are often omitted. This gives greater emphasis to the essential ideas behind each solution.
The publication, reproduction, or communication of the problems or solutions for this contest during the period when students are eligible to participate seriously jeopardizes the integrity of the results. Dissemination at any time during this period, via copier, telephone, email, internet, or media of any type is a violation of the competition rules.
Correspondence about the problems/solutions for this AIME and orders for any publications should be addressed to:

MAA American Mathematics Competitions
Attn: Publications, PO Box 471, Annapolis Junction, MD 20701
Phone 800.527.3690 | Fax 240.396.5647 | amcinfo@maa.org
The problems and solutions for this AIME were prepared by the MAA's Committee on the AIME under the direction of:

Jonathan M. Kane AIME Chair

1. Answer (342):

Write

$$
\begin{aligned}
N & =(10-1)+\left(10^{2}-1\right)+\cdots+\left(10^{321}-1\right) \\
& =10+10^{2}+10^{3}+10^{4}+10^{5}+10^{6}+\cdots+10^{321}-321 \\
& =1110-321+10^{4}+10^{5}+10^{6}+\cdots+10^{321} \\
& =789+10^{4}+10^{5}+10^{6}+\cdots+10^{321}
\end{aligned}
$$

The sum of the digits of N is therefore equal to $7+8+9+(321-3)=342$.

2. Answer (029):

There are $\binom{20}{2}=190$ equally likely pairs $\{J, B\}$. In 19 of those pairs $(\{1,2\}$, $\{2,3\},\{3,4\} \ldots,\{19,20\})$, the numbers differ by less than 2 , so the probability that the numbers differ by at least 2 is $1-\frac{19}{190}=\frac{9}{10}$. Then $B-J \geq 2$ holds in exactly half of these cases, so it has probability $\frac{1}{2} \cdot \frac{9}{10}=\frac{9}{20}$. The requested sum is $9+20=29$.

3. Answer (120):

Triangle $P Q R$ is a right triangle with area $\frac{1}{2} \cdot 15 \cdot 20=150$. Each of $\triangle P A F$, $\triangle Q C B$, and $\triangle R E D$ shares an angle with $\triangle P Q R$. Because the area of a triangle with sides a, b, and included angle γ is $\frac{1}{2} a \cdot b \cdot \sin \gamma$, it follows that the areas of $\triangle P A F, \triangle Q C B$, and $\triangle R E D$ are each $\frac{1}{2} \cdot 5 \cdot 5 \cdot \frac{150}{a b}$, where a and b are the lengths of the sides of $\triangle P Q R$ adjacent to the shared angle. Thus the sum of the areas of $\triangle P A F, \triangle Q C B$, and $\triangle R E D$ is

$$
5 \cdot 5 \cdot \frac{150}{15 \cdot 25}+5 \cdot 5 \cdot \frac{150}{25 \cdot 20}+5 \cdot 5 \cdot \frac{150}{20 \cdot 15}=25\left(\frac{2}{5}+\frac{3}{10}+\frac{1}{2}\right)=30
$$

Therefore $A B C D E F$ has area $150-30=120$.

4. Answer (122):

There is 1 way of making no substitutions to the starting lineup. If the coach makes exactly 1 substitution, this can be done in 11^{2} ways. Two substitutions can happen in $11^{2} \cdot 11 \cdot 10$ ways. Similarly, three substitutions can happen in $11^{2} \cdot 11 \cdot 10 \cdot 11 \cdot 9$ ways. The total number of possibilities is $1+11^{2}+11^{2}$. $11 \cdot 10+11^{2} \cdot 11 \cdot 10 \cdot 11 \cdot 9=122+11^{3}(10+990) \equiv 122(\bmod 1000)$.

5. Answer (252):

All paths that first hit the axes at the origin must pass through the point $(1,1)$. There are 63 paths from the point $(4,4)$ to the point $(1,1):\binom{6}{3}=20$ that
take 3 steps left and 3 steps down, $\left(\begin{array}{cc}5 & 5 \\ 2 & 2\end{array}\right)=30$ that take 2 steps left, 2 steps down, and 1 diagonal step, $\left(\begin{array}{cc}4 \\ 1 & 1\end{array}\right)=12$ that take 1 step left, 1 step down, and 2 diagonal steps, and 1 that takes 3 diagonal steps. The total probability of moving from $(4,4)$ to $(1,1)$ is therefore

$$
\frac{1}{3^{6}} \cdot 20+\frac{1}{3^{5}} \cdot 30+\frac{1}{3^{4}} \cdot 12+\frac{1}{3^{3}} \cdot 1=\frac{245}{3^{6}} .
$$

Multiplying by $\frac{1}{3}$ gives $\frac{245}{3^{7}}$, the probability that the path first reaches the axes at the origin. The requested sum is $245+7=252$.

6. Answer (090):

Let P be the intersection of line $L O$ with line $K N$. Then $\triangle K P L \sim \triangle K L N$, so $\frac{28}{K P}=\frac{K N}{28}$ and $K P \cdot K N=28^{2}$. Also $\triangle K P O \sim \triangle K M N$, so $\frac{K P}{8}=$ $\frac{8+M O}{K N}$ and $K P \cdot K N=8(8+M O)$. Thus $28^{2}=8(8+M O)$, from which $M O=90$.

Note that the value of $M N$ is irrelevant.

7. Answer (880):

The two equations are equivalent to $x(\operatorname{gcd}(x, y))^{2}=10^{60}$ and $y(\operatorname{lcm}(x, y))^{2}=$ 10^{570}, respectively. Multiplying corresponding sides of the equations leads to $x y(\operatorname{gcd}(x, y) \operatorname{lcm}(x, y))^{2}=(x y)^{3}=10^{630}$, so $x y=10^{210}$. It follows that there are nonnegative integers a, b, c, and d such that $(x, y)=\left(2^{a} 5^{b}, 2^{c} 5^{d}\right)$ with $a+c=b+d=210$. Furthermore,

$$
\frac{(\operatorname{lcm}(x, y))^{2}}{x}=\frac{y(\operatorname{lcm}(x, y))^{2}}{x y}=\frac{10^{570}}{10^{210}}=10^{360}
$$

Thus $\max (2 a, 2 c)-a=\max (2 b, 2 d)-b=360$. Because neither $2 a-a$ nor $2 b-b$ can equal 360 when $a+c=b+d=210$, it follows that $2 c-a=2 d-b=360$. Hence $(a, b, c, d)=(20,20,190,190)$, so the prime factorization of x has $20+20=40$ prime factors, and the prime factorization of y has $190+190=380$ prime factors. The requested sum is $3 \cdot 40+2 \cdot 380=$ 880.

8. Answer (067):

Let $c=\sin ^{2} x \cdot \cos ^{2} x$, and let $S(n)=\sin ^{2 n} x+\cos ^{2 n} x$. Then for $n \geq 1$

$$
\begin{aligned}
S(n) & =\left(\sin ^{2 n} x+\cos ^{2 n} x\right) \cdot\left(\sin ^{2} x+\cos ^{2} x\right) \\
& =\sin ^{2 n+2} x+\cos ^{2 n+2} x+\sin ^{2} x \cdot \cos ^{2} x\left(\sin ^{2 n-2} x+\cos ^{2 n-2} x\right) \\
& =S(n+1)+c S(n-1)
\end{aligned}
$$

Because $S(0)=2$ and $S(1)=1$, it follows that $S(2)=1-2 c, S(3)=1-3 c$, $S(4)=2 c^{2}-4 c+1$, and $\frac{11}{36}=S(5)=5 c^{2}-5 c+1$. Hence $c=\frac{1}{6}$ or $\frac{5}{6}$, and because $4 c=\sin ^{2} 2 x$, the only possible value of c is $\frac{1}{6}$. Therefore

$$
S(6)=S(5)-c S(4)=\frac{11}{36}-\frac{1}{6}\left(2\left(\frac{1}{6}\right)^{2}-4\left(\frac{1}{6}\right)+1\right)=\frac{13}{54}
$$

The requested sum is $13+54=67$.

9. Answer (540):

Let p, q, and r represent primes. Because $\tau(n)=1$ only for $n=1$, there is no n for which $\{\tau(n), \tau(n+1)\}=\{1,6\}$. If $\{\tau(n), \tau(n+1)\}=\{2,5\}$, then $\{n, n+1\}=\left\{p, q^{4}\right\}$, so $\left|p-q^{4}\right|=1$. Checking $q=2$ and $p=17$ yields the solution $n=16$. If $q>2$, then q is odd, and $p=q^{4} \pm 1$ is even, so p cannot be prime.
If $\{\tau(n), \tau(n+1)\}=\{3,4\}$, then $\{n, n+1\}=\left\{p^{2}, q^{3}\right\}$ or $\left\{p^{2}, q r\right\}$. Consider $\left|p^{2}-q^{3}\right|=1$. If $p^{2}-1=(p-1)(p+1)=q^{3}$, then $q=2$. This yields the solution $p=3$ and $q=2$, so $n=8$. If $q^{3}-1=(q-1)\left(q^{2}+q+1\right)=p^{2}$, then $q-1=1$, which does not give a solution. Consider $\left|p^{2}-q r\right|=1$. If $p^{2}-1=(p-1)(p+1)=q r$, then if $p>2$, the left side is divisible by 8 , so there are no solutions. Finding the smallest four primes such that $p^{2}+1=q r$ gives $3^{2}+1=10,5^{2}+1=26,11^{2}+1=122$, and $19^{2}+1=362$. The six least values of n are $8,9,16,25,121$, and 361 , whose sum is 540 .

10. Answer (352):

Because each root of the polynomial appears with multiplicity 3, Viète's Formulas show that

$$
z_{1}+z_{2}+\cdots+z_{673}=-\frac{20}{3}
$$

and

$$
z_{1}^{2}+z_{2}^{2}+\cdots+z_{673}^{2}=\frac{1}{3}\left((-20)^{2}-2 \cdot 19\right)=\frac{362}{3}
$$

Then the identity

$$
\left(\sum_{i=1}^{673} z_{i}\right)^{2}=\sum_{i=1}^{673} z_{i}^{2}+2\left(\sum_{1 \leq j<k \leq 673} z_{j} z_{k}\right)
$$

shows that

$$
\sum_{1 \leq j<k \leq 673} z_{j} z_{k}=\frac{\left(-\frac{20}{3}\right)^{2}-\frac{362}{3}}{2}=-\frac{343}{9}
$$

The requested sum is $343+9=352$.
Note that such a polynomial does exist. For example, let $z_{673}=-\frac{20}{3}$, and for $i=1,2,3, \ldots, 336$, let

$$
z_{i}=\sqrt{\frac{343 i}{9 \sum_{j=1}^{336} j}} \text { and } \quad z_{i+336}=-z_{i}
$$

Then

$$
\sum_{i=1}^{673} z_{i}=-\frac{20}{3} \quad \text { and } \quad \sum_{i=1}^{673} z_{i}^{2}=2 \sum_{i=1}^{336} \frac{343 i}{9 \sum_{j=1}^{336} j}+\left(\frac{20}{3}\right)^{2}=\frac{362}{3}
$$

as required.

OR

There are constants a and b such that

$$
\left(x-z_{1}\right)\left(x-z_{2}\right)\left(x-z_{3}\right) \cdots\left(x-z_{673}\right)=x^{673}+a x^{672}+b x^{671}+\cdots .
$$

Then

$$
\left(x^{673}+a x^{672}+b x^{671}+\cdots\right)^{3}=x^{2019}+20 x^{2018}+19 x^{2017}+\cdots
$$

Comparing the x^{2018} and x^{2017} coefficients shows that $3 a=20$ and $3 a^{2}+$ $3 b=19$. Solving this system yields $a=\frac{20}{3}$ and $b=-\frac{343}{9}$. Viète's Formulas then give $\left|\sum_{1 \leq j<k \leq 673} z_{j} z_{k}\right|=|b|=\frac{343}{9}$, as above.

11. Answer (020):

Rescale the triangle so that $B C=1$ and $A B=A C=x$. Then $[A B C]=$ $\frac{1}{2} \sqrt{x^{2}-\frac{1}{4}}$. Let the incircle of $\triangle A B C$ have center I and radius r. Let the excircles opposite A and B have centers I_{A} and I_{B} and radii r_{A} and r_{B}, respectively. For any triangle $A B C$ with $a=B C, b=A C, c=A B$, inradius r, and the radius of the excircle opposite A, r_{A}, the area of $\triangle A B C$ is given by $r \cdot \frac{a+b+c}{2}$ and by $r_{A} \cdot \frac{b+c-a}{2}$. It follows that

$$
r=\frac{1}{2} \sqrt{\frac{x-\frac{1}{2}}{x+\frac{1}{2}}}, \quad r_{A}=\frac{1}{2} \sqrt{\frac{x+\frac{1}{2}}{x-\frac{1}{2}}}, \quad \text { and } \quad r_{B}=\sqrt{x^{2}-\frac{1}{4}}
$$

Let M be the midpoint of $\overline{B C}$, and let D be the point of tangency of the excircle opposite B with line $B C$. Let point X lie on line $I_{B} D$ so that $\overline{I X} \perp$ $\overline{I_{B} D}$. Note that the radius of ω is equal to $r+2 r_{A}$. Note also that $B D$ is the semiperimeter of $\triangle A B C$; that is, $B D=x+\frac{1}{2}$, and so $I X=M D=$ $B D-B M=x$. The Pythagorean Theorem applied to $\triangle I X I_{B}$ yields

$$
x^{2}+\left(r_{B}-r\right)^{2}=\left(r+2 r_{A}+r_{B}\right)^{2}
$$

Expressing each term in the above equation in terms in x gives

$$
\begin{aligned}
x^{2} & =4 r r_{A}+4 r r_{B}+4 r_{A} r_{B}+4 r_{A}^{2}=1+(2 x-1)+(2 x+1)+\frac{x+\frac{1}{2}}{x-\frac{1}{2}} \\
& =4 x+1+\frac{2 x+1}{2 x-1}=\frac{8 x^{2}}{2 x-1}
\end{aligned}
$$

implying that $x=\frac{9}{2}$. Thus the minimum possible perimeter with integer side lengths occurs when $B C=2$ and $A B=A C=9$, giving a perimeter of 20 .

OR

Set T_{A} and T_{B} to be the tangency points of ω with the excircle opposite A, ω_{A}, and excircle opposite B, ω_{B}, respectively. Note that the homothety \mathcal{H}_{A} sending ω_{A} to ω has positive scale factor and is centered at T_{A}, while the homothety \mathcal{H}_{B} sending ω to ω_{B} has negative scale factor and is centered at T_{B}. Thus the composition $\mathcal{H}_{B} \circ \mathcal{H}_{A}$ is another homothety with negative scale factor and sends ω_{A} to ω_{B}. Because ω_{A} and ω_{B} have common tangent lines
$A C$ and $B C$, the center of this homothety is C and therefore T_{A}, T_{B}, and C are collinear. In turn,

$$
\angle B T_{A} I=90^{\circ}-\frac{\angle T_{B} I T_{A}}{2}=90^{\circ}-\frac{\angle A I C}{2}=45^{\circ}-\frac{\angle B}{4} .
$$

Now note that $\overline{B I_{A}}$ is a median of $\triangle B T_{A} M$, where M is the midpoint of $\overline{B C}$; combining this with $\angle I_{A} B M=90^{\circ}-\frac{\angle B}{2}$ yields the trigonometric equation

$$
\cot \left(45^{\circ}-\frac{\angle B}{4}\right)=2 \tan \left(90^{\circ}-\frac{\angle B}{2}\right)=\frac{2}{\tan \frac{\angle B}{2}}
$$

Let $\beta=\frac{\angle B}{4}$. Then

$$
\cot \left(45^{\circ}-\beta\right)=\tan \left(45^{\circ}+\beta\right)=\frac{1+\tan \beta}{1-\tan \beta}
$$

and

$$
\frac{2}{\tan (2 \beta)}=\frac{1-\tan ^{2} \beta}{\tan \beta}
$$

This shows that $\tan \beta=\frac{3-\sqrt{5}}{2}$ and $\tan (4 \beta)=\tan (\angle B)=4 \sqrt{5}$. It follows that $A B=\frac{9}{2} B C$ as above.

12. Answer (230):

The arguments of two complex numbers differ by 90° if the ratio of the numbers is a pure imaginary number. Thus three distinct complex numbers A, B, and C form a right triangle in the complex plane with right angle at B if and only if $\frac{C-B}{B-A}$ has real part equal to 0 . Hence

$$
\begin{aligned}
\frac{f(f(z))-f(z)}{f(z)-z} & =\frac{\left(z^{2}-19 z\right)^{2}-19\left(z^{2}-19 z\right)-\left(z^{2}-19 z\right)}{\left(z^{2}-19 z\right)-z} \\
& =\frac{\left(z^{2}-19 z\right)\left(z^{2}-19 z-19-1\right)}{z^{2}-20 z} \\
& =\frac{z(z-19)(z+1)(z-20)}{z(z-20)} \\
& =z^{2}-18 z-19
\end{aligned}
$$

must have real part equal to 0 . If $z=x+11 i$, the real part of $z^{2}-18 z-19$ is $x^{2}-11^{2}-18 x-19$, which is 0 when $x=9 \pm \sqrt{221}$. The requested sum is $9+221=230$.

13. Answer (032):

Because quadrilateral $D F A C$ is cyclic, $\angle D F C=\angle D A C=\angle B A C$. Because quadrilateral $E F B C$ is cyclic, $\angle E F C=\angle E B C=180^{\circ}-\angle A B C$.
Hence $\angle E F D=\angle E F C-\angle D F C=180^{\circ}-\angle A B C-\angle B A C=\angle A C B$. Applying the Law of Cosines to $\triangle D E F$ and $\triangle A B C$ gives

$$
\cos \angle E F D=\cos \angle A C B=\frac{6^{2}+5^{2}-4^{2}}{2 \cdot 6 \cdot 5}=\frac{3}{4}
$$

and

$$
D E=\sqrt{7^{2}+2^{2}-2 \cdot 2 \cdot 7 \cdot \frac{3}{4}}=4 \sqrt{2}
$$

Let $\overline{C F}$ intersect line $A B$ at G. Because $\triangle A C G \sim \triangle F D G$ and $\triangle B C G \sim$ $\triangle F E G$,

$$
3=\frac{A C}{F D}=\frac{C G}{D G}=\frac{G A}{G F} \quad \text { and } \quad \frac{5}{7}=\frac{B C}{F E}=\frac{C G}{E G}=\frac{G B}{G F} .
$$

Therefore

$$
\frac{21}{5}=\frac{E G}{D G}=\frac{E D+D G}{D G} \quad \text { and } \quad \frac{21}{5}=\frac{G A}{G B}=\frac{G B+B A}{G B} .
$$

Solving for $D G$ and $G B$ yields $G D=\frac{5 \sqrt{2}}{4}$ and $B G=\frac{5}{4}$, so

$$
B E=B G+G D+D E=\frac{5}{4}+\frac{5 \sqrt{2}}{4}+4 \sqrt{2}=\frac{5+21 \sqrt{2}}{4} .
$$

The requested sum is $5+21+2+4=32$.

14. Answer (097):

Suppose prime $p>2$ divides $2019^{8}+1$. Then $2019^{8} \equiv-1(\bmod p)$. Squaring gives $2019^{16} \equiv 1(\bmod p)$. If $2019^{m} \equiv 1(\bmod p)$ for some $0<m<16$, it follows that

$$
2019^{\operatorname{gcd}(m, 16)} \equiv 1(\bmod p)
$$

But $2019^{8} \equiv-1(\bmod p)$, so $\operatorname{gcd}(m, 16)$ cannot divide 8 , which is a contradiction. Thus 2019^{16} is the least positive power of 2019 congruent to 1 $(\bmod p)$. By Fermat's Little Theorem, $2019^{p-1} \equiv 1(\bmod p)$. It follows that $p=16 k+1$ for some positive integer k. The least two primes of this form are 17 and 97 . The least odd prime factor of $2019^{8}+1$ is not 17 because

$$
2019 \equiv 13(\bmod 17) \quad \text { and } \quad 13^{2} \equiv 169 \equiv-1(\bmod 17)
$$

which implies $2019^{8} \equiv 1 \not \equiv-1(\bmod 17)$. But $2019 \equiv-18(\bmod 97)$, so

$$
\begin{aligned}
(-18)^{2}=324 & \equiv 33(\bmod 97), \\
33^{2}=1089 & \equiv 22(\bmod 97), \text { and } \\
22^{2}=484 & \equiv-1(\bmod 97)
\end{aligned}
$$

Thus the least odd prime factor is 97 .

In fact, $2019^{8}+1=2 \cdot 97 \cdot p$, where p is the 25 -digit prime

$$
1423275002072658812388593 .
$$

15. Answer (065):

Let O, O_{1}, and O_{2} denote the centers of ω, ω_{1}, and ω_{2}, respectively. Points O_{1} and O_{2} lie on $\overline{A O}$ and $\overline{B O}$, respectively, as shown in the figure below. It is clear that $\triangle A O B, \triangle A O_{1} P$, and $\triangle B O_{2} P$ are isosceles and similar to each other, and $\overline{P O_{2}} \| \overline{A O}$ and $\overline{P O_{1}} \| \overline{B O}$, and therefore $P O_{1} O O_{2}$ is a parallelogram. In particular, O and P lie on opposite sides of line $O_{1} O_{2}$. Also note that P and Q lie on opposite sides of line $O_{1} O_{2}$.

Because $P O_{1} O O_{2}$ is a parallelogram, $O O_{2}=O_{1} P=O_{1} Q$ and $O O_{1}=$ $O_{2} P=O_{2} Q$. It follows from the last two equations that $\triangle O O_{1} O_{2}$ is congruent to $\triangle Q O_{2} O_{1}$ by SSS. Then $O_{1} O Q O_{2}$ is a trapezoid with $\overline{O Q} \| \overline{O_{1} O_{2}}$. Because $\overline{P Q}$ is the common chord of ω_{1} and $\omega_{2}, \overline{O_{1} O_{2}} \perp \overline{P Q}$. Thus $\overline{O Q} \perp \overline{P Q}$, and therefore Q is the midpoint of $\overline{X Y}$ and $Q X=Q Y=\frac{11}{2}$. By the Power of a Point Theorem,

$$
15=A P \cdot P B=P X \cdot P Y=(Q X-P Q)(P Q+Q Y)=\frac{121}{4}-P Q^{2}
$$

so $P Q^{2}=\frac{121}{4}-15=\frac{61}{4}$. The requested sum is $61+4=65$.
MAA Partner Organizations
We acknowledge the generosity of the following organizations in supporting the MAA AMC and Invitational Competitions:
Patron's CircleAkamai Foundation
Innovator's Circle
The D. E. Shaw Group
Two Sigma
Winner's Circle
MathWorks
Tudor Investment Corporation
Achiever's Circle
Art of Problem SolvingJane Street Capital
Sustainer's Circle
American Mathematical SocietyAnsatz CapitalArmy Educational Outreach Program
Collaborator's Circle
American Statistical AssociationCasualty Actuarial SocietyConference Board of the Mathematical SciencesMu Alpha ThetaSociety for Industrial and Applied Mathematics

