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2019 AIME I Solutions

1. Answer (342):

Write

N

(10— 1) + (10> = 1) +--- + (10321 — 1)
=10+ 10% + 10% + 10* + 10° + 10° + --- + 10°2! - 321
= 1110 — 321 + 10* + 10° + 10 4 --- 4 103!

=789 4+ 10* + 10° + 10® + ... + 10°21,

The sum of the digits of N is therefore equal to 7+ 8 + 9 + (321 — 3) = 342.

. Answer (029):

There are (%) = 190 equally likely pairs {J, B}. In 19 of those pairs ({1, 2},
{2,3},{3,4} ..., {19,20}), the numbers differ by less than 2, so the probabil-

ity that the numbers differ by at least 2 is 1 — % = 1%. Then B—J > 2 holds

in exactly half of these cases, so it has probability % . % = %. The requested

sum is 9 4+ 20 = 29.

. Answer (120):

Triangle PQR is a right triangle with area % -15.20 = 150. Each of APAF,
AQCB, and ARED shares an angle with A PQR. Because the area of a
triangle with sides a, b, and included angle y is %a - b - siny, it follows that
the areas of APAF, AQCB,and ARED are each % -5.5. %, where a and
b are the lengths of the sides of A P QR adjacent to the shared angle. Thus the
sum of the areas of APAF, AQCB, and ARED is

150 150 150 2 3 1
Y Y 5. 92524+ = 4 2} =130
5.5 e 505 e+ 505 5( + =+ ) 30

Therefore ABCDEF has area 150 — 30 = 120.

Answer (122):

There is 1 way of making no substitutions to the starting lineup. If the coach
makes exactly 1 substitution, this can be done in 112 ways. Two substitutions
can happen in 112 - 11 - 10 ways. Similarly, three substitutions can happen in
112-11-10- 11 - 9 ways. The total number of possibilities is 1 + 112 + 112 -
11-104+112-11-10-11-9 = 122 + 113(10 + 990) = 122 (mod 1000).

. Answer (252):

All paths that first hit the axes at the origin must pass through the point (1, 1).
There are 63 paths from the point (4,4) to the point (1,1): (§) = 20 that
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take 3 steps left and 3 steps down, (2 g 1) = 30 that take 2 steps left, 2 steps

down, and 1 diagonal step, (1 ‘1‘ 2) = 12 that take 1 step left, 1 step down, and

2 diagonal steps, and 1 that takes 3 diagonal steps. The total probability of
moving from (4, 4) to (1, 1) is therefore

1 1 1 1 245
Multiplying by % gives 25#, the probability that the path first reaches the axes

at the origin. The requested sum is 245 + 7 = 252.

6. Answer (090):

Let P be the intersection of line LO with line KN. Then AKPL ~ AKLN,
so 25 = &Y and KP - KN = 28%. Also AKPO ~ AKMN, so X2 =
8EMO and KP - KN = 8(8 + MO). Thus 282 = §(8 + MO), from which

MO = 90.

M

=

N

Note that the value of M N is irrelevant.

7. Answer (880):

The two equations are equivalent to x (ged(x, y))2 =10%% and y (Icm(x, y))2 =
10379, respectively. Multiplying corresponding sides of the equations leads to
xy (ged(x, y)lem(x, y))? = (xy)? = 1039 s0 xy = 10219, It follows that
there are nonnegative integers a, b, ¢, and d such that (x, y) = (245b,2¢59)
with a + ¢ = b + d = 210. Furthermore,

(lem(x, y)* _ y (lem(x,y))*> _ 10°7°

= = 10,
X Xy 10210

Thus max(2a,2¢) — a = max(2h,2d) — b = 360. Because neither 2a — a
nor 2b — b can equal 360 when a + ¢ = b + d = 210, it follows that
2¢—a = 2d —b = 360. Hence (a,b,c,d) = (20,20, 190, 190), so the prime
factorization of x has 20 + 20 = 40 prime factors, and the prime factorization
of y has 190+ 190 = 380 prime factors. The requested sum is 3-404-2-380 =
880.
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Answer (067):

2

Let ¢ = sin® x - cos2 x, and let S(n) = sin®" x + cos?” x. Then forn > 1

S(n) = (sin®" x + cos®” x) - (sin® x + cos? x)
2n%2 x4 cos?" 2 x 4 sin? x - cos? x(sin®" "2 x 4 cos?" 2 x)
=S+ +cSm—1).

Because S(0) = 2 and S(1) = 1, it follows that S(2) = 1-2¢, S(3) = 1-3c¢,
S(4) =2c?—4c+1,and &£ = §(5) = 5¢2 —5¢ 4+ 1. Hence ¢ = L or 2,
and because 4¢ = sin? 2x, the only possible value of ¢ is é. Therefore

2
S(6)=S(5)—cS(4)=%—é<2(é) _4(é)+1)=g.

The requested sum is 13 4+ 54 = 67.

= sin

. Answer (540):

Let p, ¢, and r represent primes. Because t(n) = 1 only for n = 1, there is
no n for which {t(n), t(n + 1)} = {1,6}. If {t(n), t(n + 1)} = {2, 5}, then
{n,n+ 1} = {p.q*}, so |p — q*| = 1. Checking ¢ = 2 and p = 17 yields
the solution n = 16. If ¢ > 2, then ¢ is odd, and p = ¢g* £ 1 is even, so p
cannot be prime.

If {t(n), t(n+ 1)} = {3,4}, then {n,n+ 1} = {p?,¢3} or {p?, gr}. Consider
P2 —q3| = 1.If p2—1 = (p—1)(p+1) = ¢, then ¢ = 2. This yields the
solution p =3andg =2,s0n =8.If g3 — 1 = (g — 1)(g> +q + 1) = p2,
then ¢ — 1 = 1, which does not give a solution. Consider |p? — qr| = 1. If
p?>—1=(p—1)(p+1) = qr, thenif p > 2, the left side is divisible by 8, so
there are no solutions. Finding the smallest four primes such that p?2 +1 = gr
gives 32 +1=10,52+1 =26, 11> + 1 = 122, and 19> + 1 = 362. The
six least values of n are 8, 9, 16, 25, 121, and 361, whose sum is 540.

Answer (352):

Because each root of the polynomial appears with multiplicity 3, Viete’s For-

mulas show that 50
1+ z2+ -+ Ze73 = 3

and 1 362
B4zt iz, = 3((—20)2—2~19) ==

Then the identity

673 \2 673
(Zzi) :ZZ,»Z—FZ Z ZjZg
i=1 i=1

1<j<k=<673
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11.

shows that 5
T T
) g e Mk w3
, 2 9
1<j<k<673
The requested sum is 343 + 9 = 352.
Note that such a polynomial does exist. For example, let zg73 = —2—30, and for

i=1,2,3,...,336,let

343i

zi = 3% and  zj4336 = —Zi-
92 J
j=1
Then
673 673 336
343i 20 362
ZZ’:__ and Zz _22 336 ( ) -3
i=1 i=1 i=19 Z ]
j=
as required.
OR

There are constants ¢ and b such that
(x —z1)(x — 22)(x — 23) - (x — zg73) = x7% + ax®7% 4+ bx®"! + ...
Then
(X573 4 axS72 4 pxS71 4 ..)3 = x2019 | 902018 | 19,2017 4

Comparing the x2%18 and x2°17 coefficients shows that 3¢ = 20 and 3a? +
3bh = 19. Solving this system yields ¢ = @ and b = 343 . Viete’s Formulas

then give |Zl<j<k<673 zjzk| = |b| = 343 , as above.

Answer (020):

Rescale the triangle so that BC = 1 and AB = AC = x. Then [ABC] =

%,/xz — %. Let the incircle of AABC have center I and radius r. Let the

excircles opposite A and B have centers /4 and /p and radii r4 and rp, re-
spectively. For any triangle ABC witha = BC,b = AC, c = AB, inradius
r, and the radius of the excircle opposite A, 74, the area of AABC is given
by r - “"'zﬂ and by rg - b'"% It follows that

x — 1 [x+3 1
, Ta==,—=, and rp=/x2—-.
X + 2 X—E 4

r =

N | —
N[=|N]=
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[ B

:IB

Let M be the midpoint of BC, and let D be the point of tangency of the
excircle opposite B with line BC. Let point X lie on line /gD so that IX L
IpD. Note that the radius of w is equal to r 4 2r4. Note also that BD is
the semiperimeter of AABC; thatis, BD = x + %, andso /X = MD =
BD — BM = x. The Pythagorean Theorem applied to Al XIp yields

X2+ (rg—r)* = (r +2rq4 +rp)*
Expressing each term in the above equation in terms in x gives

2 2 x+3
X =4rra+4rrg +a4rarp+4ry=14+2x -1+ 2x+ 1)+

1
3
2x+1  8x?

—4x 41 - ,
T T

implying that x = %. Thus the minimum possible perimeter with integer side

lengths occurs when BC =2 and AB = AC = 9, giving a perimeter of 20.

OR

Set T4 and Tp to be the tangency points of w with the excircle opposite 4,
w4, and excircle opposite B, wp, respectively. Note that the homothety H 4
sending w4 to @ has positive scale factor and is centered at T4, while the
homothety H p sending w to wp has negative scale factor and is centered at
Tg. Thus the composition H g o H 4 is another homothety with negative scale
factor and sends w4 to wp. Because w4 and wp have common tangent lines
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12.

AC and BC, the center of this homothety is C and therefore T4, Tp, and C
are collinear. In turn,

/BTyl =90° — —— =

Now note that B/ 4 is a median of ABT4 M, where M is the midpoint of BC;
combining this with Z14BM = 90° — 42—3 yields the trigonometric equation

cot 45°—£ = 2tan 90°—£ :L.
4 2 tanéz—B

Let 8 = %. Then

1 +tanp

COt(45° — ,3) = tan(45° + ,3) = m

and
2 l—an’p

tan(2f)  tanp

This shows that tan § = 3_2“/§ and tan(4f) = tan(ZB) = 4+/5. It follows

that AB = %BC as above.

Answer (230):

The arguments of two complex numbers differ by 90° if the ratio of the num-
bers is a pure imaginary number. Thus three distinct complex numbers A, B,
and C form a right triangle in the complex plane with right angle at B if and
only if % has real part equal to 0. Hence

F(f(2) = f(2) _ (z2 = 192)%2 — 19(z2 — 192) — (z2 — 192)

f(z)—z (z2—-19z) — 2
(22 =192)(z2 - 192 —-19-1)
N z2 — 20z
_z(z—=19)(z + 1)(z — 20)
N z(z —20)
=z2-18z—19

must have real part equal to 0. If z = x + 11i, the real part of z2 — 18z — 19
is x2 — 112 — 18x — 19, which is 0 when x = 9 & 4/221. The requested sum
is 9 + 221 = 230.
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13. Answer (032):

14.

Because quadrilateral DFAC is cyclic, /DFC = ZDAC = ZBAC. Be-
cause quadrilateral EFBC is cyclic, /ZEFC = ZEBC = 180° — ZABC.
Hence ZEFD = ZEFC — ZDFC = 180° — ZABC — ZBAC = ZACB.
Applying the Law of Cosines to ADEF and AABC gives

0 +5 -4 3

ZLEFD = ZACB = = -
cos cos 6.5 1

and

3
DE = \/72+22—2-2~7~Z=4x/§.

Let CF intersect line AB at G. Because AACG ~ AFDG and ABCG ~
AFEG,

j=-A¢c _¢€6_64  , 5_BC_CG_GEB

FD DG GF 7 FE  EG GF
Therefore

21 EG ED+ DG 21 GA GB+BA

5 DG DG and =GB~ GB

Solving for DG and GB yields GD = ¥ and BG = %, SO

5 542 542142
BE:BG+GD+DE:Z+T“/_+4\/§:+T*/_‘

The requested sum is 5 + 21 4+ 2 4+ 4 = 32.

Answer (097):

Suppose prime p > 2 divides 2019% + 1. Then 20198 = —1 (mod p).
Squaring gives 2019'® = 1 (mod p). If 2019 = 1 (mod p) for some
0 < m < 16, it follows that

20192407:16) = | (mod p).
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15.

But 20198 = —1 (mod p), so ged(m, 16) cannot divide 8, which is a con-
tradiction. Thus 201916 is the least positive power of 2019 congruent to 1
(mod p). By Fermat’s Little Theorem, 201971 = 1 (mod p). It follows that
p = 16k + 1 for some positive integer k. The least two primes of this form
are 17 and 97. The least odd prime factor of 2019% + 1 is not 17 because

2019 =13 (mod 17) and 132 =169 = —1 (mod 17),
which implies 2019% = 1 # —1 (mod 17). But 2019 = —18 (mod 97), so

(—18)% = 324 = 33 (mod 97),
332 = 1089 = 22 (mod 97), and
222 = 484 = —1 (mod 97).

Thus the least odd prime factor is 97.

In fact, 20198 4+ 1 = 2-97 - p, where p is the 25-digit prime

1423275002072658812388593.

Answer (065):

Let O, O1, and O, denote the centers of w, @1, and w,, respectively. Points
0, and O, lie on AO and BO, respectively, as shown in the figure below.
It is clear that AAOB, AAO{ P, and ABO, P are isosceles and similar to
each other, and PO, | AO and PO, || BO, and therefore PO; 00, is a
parallelogram. In particular, O and P lie on opposite sides of line O; O5.
Also note that P and Q lie on opposite sides of line Oy O5.
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Because PO; 0O0; is a parallelogram, 00, = O P = 0,0 and 00; =
O, P = 0,0Q. It follows from the last two equations that A O O; O, is con-
gruent to AQ O, O} by SSS. Then O; 0Q 0, is a trapezoid with 0Q || 0, 0.
Because PQ is the common chord of w; and ws, 010, L PQ. Thus
0Q L PQ, and therefore Q is the midpoint of XY and QX = QY = L.
By the Power of a Point Theorem,

15:AP~PB=PX~PY:(QX—PQ)(PQJFQY):%—PQZ,

so PQ? = % —-15= %. The requested sum is 61 4+ 4 = 65.

Problems and solutions were contributed by Evan Chen, Zuming Feng, Zachary Franco,
Ellina Grigorieva, Jerrold Grossman, Chris Jeuell, Jonathan Kane, and Tamas Szabo.
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