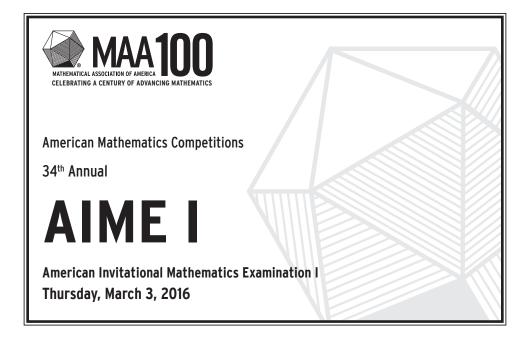
Your Exam Manager will receive a copy of the 2016 AIME Solution Pamphlet with the scores.

CONTACT US – *Correspondence about the problems and solutions for this AIME and orders for any of our publications should be addressed to:*

MAA American Mathematics Competitions 9050 Junction Drive Annapolis Junction, MD 20701 Phone: 800.527.3690; Fax: 240.396.5647; email: amcinfo@maa.org

The problems and solutions for this AIME were prepared by the MAA's Committee on the AIME under the direction of:


Jonathan M. Kane AIME Chair kanej@uww.edu

2016 USA(J)MO – THE USA MATHEMATICAL OLYMPIAD (USAMO) and the USA MATHEMATICAL JUNIOR OLYMPIAD (USAJMO) are each a 6-question, 9-hour, essay-type examination. The best way to prepare for the USA(J)MO is to study previous years of these exams. Copies may be ordered from the web site indicated below.

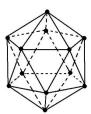
PUBLICATIONS – For a complete listing of available publications please visit the MAA Bookstore or Competitions site at maa.org.

The MAA American Invitational Mathematical Examination A program of the Mathematical Association of America

Akamai Foundation
Akamai Foundation
American Mathematical Society
Art of Problem Solving, Inc.
Dropbox
Jane Street Capital
MathWorks
Simons Foundation
The D.E. Shaw Group
Susquehanna International Group
Tudor Investment Corporation
Two Sigma

- 1. DO NOT OPEN THIS BOOKLET UNTIL YOUR PROCTOR GIVES THE SIGNAL TO BEGIN.
- 2. This is a 15-question, 3-hour examination. All answers are integers ranging from 000 to 999, inclusive. Your score will be the number of correct answers. There is neither partial credit nor a penalty for wrong answers.
- 3. No aids other than scratch paper, graph paper, ruler, compass, and protractor are permitted. In particular, <u>calculators</u>, <u>calculating devices</u>, <u>smart phones or watches</u>, and <u>computers are not permitted</u>.
- 4. A combination of the AIME and the American Mathematics Contest 12 are used to determine eligibility for participation in the USA Mathematical Olympiad (USAMO). A combination of the AIME and the American Mathematics Contest 10 are used to determine eligibility for participation in the USA Junior Mathematical Olympiad (USAJMO). The USAMO and USAJMO will be given on TUESDAY and WEDNESDAY, April 19 and 20, 2016.
- 5. Record all your answers, and identification information, on the AIME answer form. Only the answer form will be collected from you.

The publication, reproduction, or communication of the problems or solutions for this contest during the period when students are eligible to participate seriously jeopardizes the integrity of the results. Dissemination at any time during this period, via copier, telephone, email, internet, or media of any type is a violation of the competition rules.


2016 AIME I Problems 2

1. For -1 < r < 1, let S(r) denote the sum of the geometric series

$$12 + 12r + 12r^2 + 12r^3 + \cdots$$

Let a between -1 and 1 satisfy S(a)S(-a) = 2016. Find S(a) + S(-a).

- 2. Two dice appear to be standard dice with their faces numbered from 1 to 6, but each die is weighted so that the probability of rolling the number k is directly proportional to k. The probability of rolling a 7 with this pair of dice is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m+n.
- 3. A regular icosahedron is a 20-faced solid where each face is an equilateral triangle and five triangles meet at every vertex. The regular icosahedron shown below has one vertex at the top, one vertex at the bottom, an upper pentagon of five vertices all adjacent to the top vertex and all in the same horizontal plane, and a lower pentagon of five vertices all adjacent to the bottom vertex and all in another horizontal plane. Find the number of paths from the top vertex to the bottom vertex such that each part of a path goes downward or horizontally along an edge of the icosahedron, and no vertex is repeated.

- 4. A right prism with height h has bases that are regular hexagons with sides of length 12. A vertex A of the prism and its three adjacent vertices are the vertices of a triangular pyramid. The dihedral angle (the angle between the two planes) formed by the face of the pyramid that lies in a base of the prism and the face of the pyramid that does not contain A measures 60° . Find h^2 .
- 5. Anh read a book. On the first day she read n pages in t minutes, where n and t are positive integers. On the second day Anh read n+1 pages in t+1 minutes. Each day thereafter Anh read one more page than she read on the previous day, and it took her one more minute than on the previous day until she completely read the 374 page book. It took her a total of 319 minutes to read the book. Find n+t.
- 6. In $\triangle ABC$ let I be the center of the inscribed circle, and let the bisector of $\angle ACB$ intersect \overline{AB} at L. The line through C and L intersects the circumscribed circle of $\triangle ABC$ at the two points C and D. If LI=2 and LD=3, then $IC=\frac{p}{q}$, where p and q are relatively prime positive integers. Find p+q.

 $C \neq B$. The three points C, Y, and D are collinear, XC = 67, XY = 47, and XD = 37. Find AB^2 .

2016 AIME I Problems

2016 AIME I Problems

3

7. For integers a and b consider the complex number

$$\frac{\sqrt{ab+2016}}{ab+100} - \left(\frac{\sqrt{|a+b|}}{ab+100}\right)i.$$

Find the number of ordered pairs of integers (a, b) such that this complex number is a real number.

- 8. For a permutation $p = (a_1, a_2, ..., a_9)$ of the digits 1, 2, ..., 9, let s(p) denote the sum of the three 3-digit numbers $a_1a_2a_3$, $a_4a_5a_6$, and $a_7a_8a_9$. Let m be the minimum value of s(p) subject to the condition that the units digit of s(p) is 0. Let n denote the number of permutations p with s(p) = m. Find |m n|.
- 9. Triangle ABC has AB = 40, AC = 31, and $\sin A = \frac{1}{5}$. This triangle is inscribed in rectangle AQRS with B on \overline{QR} and C on \overline{RS} . Find the maximum possible area of AQRS.
- 10. A strictly increasing sequence of positive integers a_1, a_2, a_3, \ldots has the property that for every positive integer k, the subsequence $a_{2k-1}, a_{2k}, a_{2k+1}$ is geometric and the subsequence $a_{2k}, a_{2k+1}, a_{2k+2}$ is arithmetic. Suppose that $a_{13} = 2016$. Find a_1 .
- 11. Let P(x) be a nonzero polynomial such that (x-1)P(x+1) = (x+2)P(x) for every real x, and $\left(P(2)\right)^2 = P(3)$. Then $P(\frac{7}{2}) = \frac{m}{n}$, where m and n are relatively prime positive integers. Find m+n.
- 12. Find the least positive integer m such that $m^2 m + 11$ is a product of at least four not necessarily distinct primes.
- 13. Freddy the frog is jumping around the coordinate plane searching for a river, which lies on the horizontal line y=24. A fence is located at the horizontal line y=0. On each jump Freddy randomly chooses a direction parallel to one of the coordinate axes and moves one unit in that direction. When he is at a point where y=0, with equal likelihoods he chooses one of three directions where he either jumps parallel to the fence or jumps away from the fence, but he never chooses the direction that would have him cross over the fence to where y<0. Freddy starts his search at the point (0,21) and will stop once he reaches a point on the river. Find the expected number of jumps it will take Freddy to reach the river.
- 14. Centered at each lattice point in the coordinate plane are a circle radius $\frac{1}{10}$ and a square with sides of length $\frac{1}{5}$ whose sides are parallel to the coordinate axes. The line segment from (0,0) to (1001,429) intersects m of the squares and n of the circles. Find m+n.
- 15. Circles ω_1 and ω_2 intersect at points X and Y. Line ℓ is tangent to ω_1 and ω_2 at A and B, respectively, with line AB closer to point X than to Y. Circle ω passes through A and B intersecting ω_1 again at $D \neq A$ and intersecting ω_2 again at