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1.

Initially Alex, Betty, and Charlie had a total of 444 peanuts. Charlie had the
most peanuts, and Alex had the least. The three numbers of peanuts that each
person had form a geometric progression. Alex eats 5 of his peanuts, Betty eats
9 of her peanuts, and Charlie eats 25 of his peanuts. Now the three numbers of
peanuts that each person has form an arithmetic progression. Find the number
of peanuts Alex had initially.

. There is a 40% chance of rain on Saturday and a 30% chance of rain on Sunday.

However, it is twice as likely to rain on Sunday if it rains on Saturday than if
it does not rain on Saturday. The probability that it rains at least one day this
weekend is ¢, where a and b are relatively prime positive integers. Find a + b.

. Let z, y, and z be real numbers satisfying the system

logy(zyz — 3+ logsz) = 5
logs(zyz — 3 +logsy) = 4
log,(zyz — 3 +logsz) = 4.

Find the value of |logg z| + |logs y| + [log; 2].

. An a x b x ¢ rectangular box is built from a - b - ¢ unit cubes. Each unit cube

is colored red, green, or yellow. Each of the a layers of size 1 x b x ¢ parallel
to the (b x c)-faces of the box contains exactly 9 red cubes, exactly 12 green
cubes, and some yellow cubes. Each of the b layers of size a x 1 x ¢ parallel to
the (a X ¢)-faces of the box contains exactly 20 green cubes, exactly 25 yellow
cubes, and some red cubes. Find the smallest possible volume of the box.

. Triangle ABCj has a right angle at Cy. Its side lengths are pairwise relatively

prime positive integers, and its perimeter is p. Let Cy be the foot of the al-
titude to AB, and for n > 2, let C,, be the foot of the altitude to C,,_oB in
ACy,_2Cy,_1B. The sum Y.~ | C,_1C,, = 6p. Find p.

. For polynomial P(z) =1 — 3z + 122, define

50
Q(z) = P(2)P(2*)P(z")P(2")P(2°) = > aa’.
=0
Then 21520 |ai| = 2, where m and n are relatively prime positive integers. Find
m -+ n.

. Squares ABCD and EFGH have a common center and AB || EF. The area

of ABCD is 2016, and the area of EFGH is a smaller positive integer. Square
IJKL is constructed so that each of its vertices lies on a side of ABC'D and
each vertex of KF'GH lies on a side of IJK L. Find the difference between the
largest and smallest possible integer values for the area of IJKL.

. Find the number of sets {a,b,c} of three distinct positive integers with the

property that the product of a, b, and ¢ is equal to the product of 11, 21, 31,
41, 51, and 61.

2016 AIME II Problems 4

The maximum possible value of zo = 2. where m and n are relatively prime
) "
positive integers. Find m + n.
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9.

10.

11.

14.

The sequences of positive integers 1, a9, as, ... and 1,by,bs, ... are an increasing
arithmetic sequence and an increasing geometric sequence, respectively. Let
¢n = ay + by,. There is an integer k such that ¢;_; = 100 and ¢xq = 1000.
Find ¢g.

Triangle ABC is inscribed in circle w. Points P and @ are on side AB with
AP < AQ. Rays CP and CQ meet w again at S and T (other than C),
respectively. If AP =4, PQ =3, QB =6, BT' =5, and AS =7, then ST = 2,
where m and n are relatively prime positive integers. Find m + n.

For positive integers N and k, define N to be k-nice if there exists a positive
integer a such that a® has exactly N positive divisors. Find the number of
positive integers less than 1000 that are neither 7-nice nor 8-nice.

. The figure below shows a ring made of six small sections which you are to paint

on a wall. You have four paint colors available and will paint each of the six
sections a solid color. Find the number of ways you can choose to paint the
sections if no two adjacent sections can be painted with the same color.

. Beatrix is going to place six rooks on a 6 x 6 chesshboard where both the rows

and columns are labeled 1 to 6; the rooks are placed so that no two rooks are in
the same row or the same column. The value of a square is the sum of its row
number and column number. The score of an arrangement of rooks is the least
value of any occupied square. The average score over all valid configurations is
;‘;’, where p and ¢ are relatively prime positive integers. Find p + ¢.

Equilateral AABC has side length 600. Points P and @ lie outside the plane of
AABC and are on the opposite sides of the plane. Furthermore, PA = PB =
PC, and QA = QB = QC, and the planes of APAB and AQAB form a 120°
dihedral angle (the angle between the two planes). There is a point O whose
distance from each of A, B, C, P, and Q is d. Find d.

. For1<i<215let a; = 2% and as15 = 55%—5— Let @y, 2, ..., 2916 be positive real

numbers such that
216 216

107 azx?
in,1 and Z 2L = — 27‘
P 215 et 2(1 —a)

1<i<j<216



