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1. (Answer: 334)

Abe paints at the rate of 1
900 of the room per minute, Bea paints at the rate of

1
900 · 3

2 = 1
600 of the room per minute, and Coe paints at the rate of 1

900 · 2 =
1

450 of the room per minute. Thus together Abe and Bea paint at the rate of
1

900 + 1
600 = 1

360 of the room per minute, and all three of them together paint at
the rate of 1

360 + 1
450 = 1

200 of the room per minute. Then in the first hour and
a half Abe paints 1

900 · 90 = 1
10 of the room. So together, Abe and Bea paint

another 4
10 = 2

5 of the room in 2
5 ÷ 1

360 = 144 minutes. Finally, Abe, Bea, and
Coe paint together to paint half the room in 1

2 ÷ 1
200 = 100 minutes. The total

time for painting the room is 90 + 144 + 100 = 334 minutes.

2. (Answer: 076)

For simplicity, assume without loss of generality that the population is 100 men,
and sketch a Venn diagram displaying their risk factors. Each set showing the
three risk factors by themselves must contain 10 men, while each set showing
the intersections of exactly two risk factors must contain 14 men. To make the
intersection of all three sets represent 1

3 of the entire intersection of A and B,
that intersection must contain 7 men. Adding up all the numbers in the Venn
diagram so far shows that the union of the three sets contains 79 men. That
leaves 21 men who have none of the risk factors. Because there are 55 men who
do not have risk factor A, the required probability is 21

55 . The requested sum is
21 + 55 = 76.

3. (Answer : 720)

Let the vertices of the hexagon be labeled A, B, C, D, E, F with AB = BC =
DE = EF = 18, and let the intersections of AC and DF with BE be P and Q,
respectively. See the figure below. With AC = 24, the hexagon has the same
area as the rectangle, which is 36a. It follows by the Pythagorean Theorem that
BP = 6

√
5. The area of the hexagon can be calculated by finding twice the area
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of trapezoid ABEF , so

2 · 12 · a + (a + 2 · 6√5)
2

= 36a.

Solving yields a = 12
√

5, so a2 = 720.

4. (Answer: 447)

Let x = 0.ababab and y = 0.abcabcabc. Then x = ab
99 and y = abc

999 , so

33
37

=
ab

99
+

abc

999
=

111ab + 11abc

33 · 11 · 37
.

Because this fraction must reduce to 33
37 , it must be the case that the numerator

111ab + 11abc is a multiple of 11. Thus 111ab must be a multiple of 11, and
because 111 is relatively prime to 11, it follows that ab is a multiple of 11 and
a = b. Thus

27 · 33
33 · 37

=
33
37

=
111aa + 11aac

33 · 11 · 37
=

111a + aac

33 · 37
=

221a + c

33 · 37
.

Thus, 891 = 33 · 27 = 221a + c, and it follows that a = 4 and c = 7. Therefore
the three-digit number abc is 447.
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5. (Answer: 420)

Because the coefficient of x2 in both p(x) and q(x) is 0, the remaining root of
p(x) is t = −r− s, and the remaining root of q(x) is t− 1. The coefficients of x
in p(x) and q(x) are both equal to a, and equating the two coefficients gives

rs + st + tr = (r + 4)(s− 3) + (s− 3)(t− 1) + (t− 1)(r + 4),

from which t = 4r − 3s + 13. Furthermore, b = −rst, so

b + 240 = −rst + 240 = −(r + 4)(s− 3)(t− 1),

from which rs−4st+3tr−3r+4s+12t−252 = 0. Substituting t = 4r−3s+13
gives

12r2 − 24rs + 12s2 + 84r − 84s− 96 = 0,

which is equivalent to (r − s)2 + 7(r − s) − 8 = 0, and the solutions for r − s
are 1 and −8. If r − s = 1, then the roots of p(x) are r, s = r − 1, and
t = 4r − 3s + 13 = r + 16. Because the sum of the roots is 0, r = −5. In this
case the roots are −5,−6, and 11, and b = −rst = −330. If r − s = −8, then
the roots of p(x) are r, s = r + 8, and t = 4r − 3s + 13 = r − 11. In this case
the roots are 1, 9, and −10, and b = −rst = 90. Therefore the requested sum is
| − 330|+ |90| = 420.

6. (Answer: 167)

The conditional probability that the third roll will be a six given that the first
two rolls are sixes is the conditional probability that Charles rolls three sixes
given that his first two rolls are sixes. This is

1
2

(
2
3

)3 + 1
2

(
1
6

)3

1
2

(
2
3

)2 + 1
2

(
1
6

)2 =
65
432
17
72

=
65
102

.

The requested sum is 65 + 102 = 167.

7. (Answer: 021)

Note that

f(k) = [(k + 1)(k + 2)](−1)k

=
{

(k + 1)(k + 2) if k is even,
1

(k+1)(k+2) if k is odd.

Therefore
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n∑

k=1

log10 f(k) = log10

(
n∏

k=1

f(k)

)
=





log10

(
3·4·5···(n+2)
2·3·4···(n+1)

)
= log10

(
n+2

2

)
if n is even,

log10

(
3·4·5···(n+1)
2·3·4···(n+2)

)
= log10

(
1

2(n+2)

)
= − log10(2n + 4) if n is odd.

For |∑n
k=1 log10 f(k)| to be 1, either n+2

2 = 10 with n even or 2n + 4 = 10 with
n odd, so n = 18 or n = 3. Thus the requested sum is 18 + 3 = 21.

8. (Answer: 254)

Let circles C, D, and E have centers C, D, and E, respectively. Let circle E
be tangent to AB at F . Let circle E have radius s, and circle D have radius
b = 3s. Then CE = 2 − s, DE = b + s = 4s, EF = s, and DC = 2 − 3s. The
Pythagorean Theorem applied to4CEF gives CF =

√
(2− s)2 − s2 =

√
4− 4s

and to 4DEF gives DF =
√

(4s)2 − s2 = s
√

15. Because DF = DC + CF , it
follows that s

√
15 = (2−3s)+

√
4− 4s. Squaring and simplifying twice reduces

this equation to 9s2 + 84s − 44 = 0, which has solutions s = −14±√240
3 . Thus

b = 3s =
√

240− 14, and the requested sum is 240 + 14 = 254.

9. (Answer: 581)

There is one subset of the chairs that contains all ten chairs. If a subset of the
chairs does not contain all ten chairs and contains at least three adjacent chairs,
then there is a sequence of four adjacent chairs where the first chair (counting
clockwise) is not in the subset and the other three chairs are in the subset. There
are ten possible places for this sequence of four chairs, and 210−4 = 64 ways to
determine which of the other 10−4 chairs are in the subset. This double counts
the subsets that contain two disconnected sequences of three or more adjacent
chairs. The number of subsets containing two disconnected sequences of three
or more adjacent chairs can be counted by noting that there are 10·3

2 = 15
ways of selecting the two sequences of four chairs (10 ways to select a first
sequence of 4 chairs times 3 ways of selecting a second sequence of 4 chairs from
the remaining 6 chairs divided by 2 because each pair of 4 chairs gets counted
twice) and 22 = 4 ways to decide which of the other two chairs are in the subset.
It follows that the number of subsets of chairs containing at least three adjacent
chairs is 1 + 10 · 64− 15 · 4 = 581.

10. (Answer: 147)

Suppose that w satisfies the equation. Then z2 + zw + w2 = 0. Multiply both
sides of the equation by z−w to get z3−w3 = 0. Thus, w is z times a cube root
of 1. This means that P is an equilateral triangle inscribed in a circle of radius
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2014. The area of such a triangle is 3(2014)2
√

3
4 = 3(1007)2

√
3. So the requested

remainder is 3 · 72 = 147.

11. (Answer: 056)

Let N be the midpoint of CR and P be the intersection of EM and CR. In
isosceles triangle ARC, median AN is perpendicular to the base CR, implying
that AN ‖ EM . Note that MN is a midline of 4RCD, from which it follows
that NM ‖ CD and CD = 2MN . Therefore MNAE is a parallelogram, and
CD = 2MN = 2AE.

Angle EDR = 180◦ − (75◦ + 45◦) = 60◦. Let ∠DEM = x. Then ∠REM =
45◦ − x, ∠EMR = 60◦ + x, ∠CRD = 90◦ − ∠EMR = 30◦ − x, and, because
4ECP is a right triangle, ∠ACR = 90◦ − x. Applying the Law of Sines in
4REM and 4MED gives

RM

EM
=

sin(45◦ − x)
sin 75◦

and
EM

MD
=

sin 60◦

sin x
.

Multiplying the two equations together yields

1 =
sin(45◦ − x) sin 60◦

sin 75◦ sin x
or

sin 75◦

sin 60◦
=

sin(45◦ − x)
sin x

.

Then

sin 45◦ cos 30◦ + cos 45◦ sin 30◦

sin 60◦
=

sin 45◦ cos x− cos 45◦ sinx

sin x
,

and √
3 + 1√

3
= cot x− 1,

from which it follows that

cot x =
1 + 2

√
3√

3
or tanx =

√
3

1 + 2
√

3
=

6−√3
11

.
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Applying the Law of Sines to 4CDR gives

CD =
CD

RD
=

sin(30◦ − x)
sin(90◦ + x)

=
sin 30◦ cosx− cos 30◦ sin x

cosx
=

1−√3 tan x

2
=

14− 6
√

3
22

,

and because RD = 1 it follows that

AE =
CD

2
=

14− 6
√

3
44

=
7−√27

22
.

The requested sum is 7 + 27 + 22 = 56.

12. (Answer : 399)

The condition cos(3A) + cos(3B) + cos(3C) = 1 implies

0 = 1− cos 3A− (cos 3B + cos 3C)

= 2 sin2

(
3
2
A

)
− 2 cos

(
3
2
(B + C)

)
cos

(
3
2
(B − C)

)

= 2 sin2

(
3
2
A

)
+ 2 sin

(
3
2
A

)
cos

(
3
2
(B − C)

)

= 2 sin
(

3
2
A

)(
sin

(
3
2
A

)
+ cos

(
3
2
(B − C)

))

= 2 sin
(

3
2
A

)(
− cos

(
3
2
(B + C)

)
+ cos

(
3
2
(B − C)

))

= 4 sin
(

3
2
A

)
sin

(
3
2
B

)
sin

(
3
2
C

)
.

Therefore one of ∠A, ∠B, or ∠C must be 120◦. The largest value of the re-
maining side of 4ABC is obtained when the 120◦ angle is between the sides of
lengths 10 and 13. In this case the Law of Cosines implies that the third side
has length

√
102 + 132 + 10 · 13 =

√
399.

13. (Answer: 028)

Let Rj and Lj represent the right and left shoes, respectively, from the jth
adult. Call a set S of k > 0 pairs made by the child good if S contains the shoes
from exactly k adults. The condition to be satisfied is that no good set contains
fewer than 5 pairs. Note that if a set of k pairs is good, then the complementary
set of 10− k pairs is also good. Therefore the required condition can be met in
only one of two ways:
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• The set of all 10 pairs is the only good set. In this case L1 can be paired
with any of 9 right shoes (L1 cannot be paired with R1). Relabeling if
necessary, it may be assumed that L1 is paired with R2. Then L2 can
be paired with any of 8 right shoes (L2 cannot be paired with R1 or R2).
Again by relabeling, it may be assumed that L2 is paired with R3, and L3

can be paired with any of 7 right shoes. Continuing, it is seen that there
are 9! pairings for which the set of all 10 pairs is the only good set.

• There are 2 good sets of 5 pairs each. The set of 10 left shoes can be
partitioned into 2 sets of 5 left shoes in 1

2 ·
(
10
5

)
ways. For each such

partition of the left shoes, the reasoning of the preceding case can be used
to establish that for each of the sets of 5 left shoes, there are 4! possible
arrangements of right shoes that result in a good set of 5 pairs. Thus there
are 1

2 ·
(
10
5

) · (4!)2 = 10!
50 = 1

5 · 9! pairings for which there are 2 good sets of
5 pairs each.

The total number of possible pairings is 10!, so the required probability is
9!+ 1

5 ·9!
10! = 3

25 . The requested sum is 3 + 25 = 28.

OR

There is a permutation π such that the pairs made by the child are of the form
{Lj , Rπ(j)}. There are 10! equally likely permutations. The permutation π will
factor into cycles of various lengths. For the conditions of the problem to be
met, the permutation can have no cycle of length less than 5. This can happen
if the permutation is a single cycle of length 10 where no subset of fewer than all
10 pairs of shoes can all be properly matched such as (1, 3, 8, 6, 2, 9, 7, 5, 4, 10).
It can also happen if the permutation is the product of two cycles of length
5 where the pairs of shoes partition into two groups of size 5, and no proper
subset of either group can be properly matched such as (1, 3, 8, 6, 2)(9, 7, 5, 4, 10).
Counting the number of cycles of length 10 and products of two cycles of length
5 is then the same as the counting in the two cases of the previous solution.

14. (Answer: 077)
Let ω be the circumcircle of4ABC, and let E be the intersection of ray AD and
ω. Because ∠BAE = ∠CAE, E is the midpoint of arc BC, and so EM ⊥ BC.
The projection of three collinear points A, P, and E on line BC are H,N, and
M , respectively, with N the midpoint of segment HM . Thus P is the midpoint
of segment AE. Because they subtend equal arcs, ∠CBE = ∠EAB. By the
Law of Sines

AE

AB
=

sin(∠ABE)
sin(∠AEB)

=
sin(∠ABC + ∠CBE)

sin(∠ACB)

=
sin(∠ABC + ∠EAB)

sin(∠ACB)
=

sin 120◦

sin 45◦
=
√

3√
2

=
√

6
2

,
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implying that AE = 10 ·
√

6
2 = 5

√
6. Thus AP = 1

2AE = 5
2

√
6, and AP 2 = 75

2 .
The requested sum is 75 + 2 = 77.

15. (Answer : 149)

Number the primes as follows: ρ0 = 2, ρ1 = 3, ρ2 = 5, . . .. It turns out that
each xn can be expressed in terms of the digits of the binary representation of
n. That is

* If the binary representation of n = dmdm−1 . . . d1d0 =
∑m

i=0 di2i (di ∈ {0, 1}),
then xn =

∏m
i=0 ρdi

i .

The claim can be proved by mathematical induction on n as follows.

For n = 1 (*) holds true, because x1 = x0p(x0)
X(x0)

= p(1)
X(1) = 2. Proceeding by

induction, assume that (*) holds true for some integer n ≥ 1. If n is an even
integer, then d0 = 0, and so n =

∑m
i=1 di2i and xn =

∏m
i=1 ρdi

i . Therefore
p(xn) = 2, X(xn) = 1, and by the definition of {xn}, xn+1 = 2xn. Because
n + 1 = 20 +

∑m
i=1 di2i, it follows that xn+1 = ρ0

∏m
i=1 ρid

i proving that (*)
holds true for n + 1 if n is even.

Assume now that n is odd, so d0 = 1. Consider two cases: n 6= 2m+1 − 1
or n = 2m+1 − 1 for some positive integer m. In the first case the binary
representation of n contains at least one digit 0. Let j be the smallest number for
which dj = 0, that is n = dmdm−1 . . . dj+1011 . . . 11 =

∑j−1
i=0 2i +

∑m
i=j+1 di2i.

By the induction hypothesis xn =
∏j−1

i=0 ρi ·
∏m

i=j+1 ρdi
i . Thus p(xn) = ρj ,

and X(xn) =
∏j−1

i=0 ρi. It follows that n + 1 = dmdm−1 . . . dj+1100 . . . 00 =
2j +

∑m
i=j+1 di2i, and the recurrence implies xn+1 = xnρj

X(xn) = ρj

∏m
i=j+1 ρdi

i ,
proving (*) in this case.

Consider now the case n = 2m+1− 1, so the binary representation of n contains
only ones, so n = 11 . . . 11 =

∑m
i=0 2i. In this case p(xn) = ρm+1, and X(xn) =∏m

i=0 ρi = xn. Therefore xn+1 = xnρm+1
X(xn) = ρm+1, and n + 1 = 2m+1, proving

(*) in this case and completing the proof by induction.

Note that as a consequence of this claim each xn is a unique square-free integer.

Because 2090 = 2 · 5 · 11 · 19 = ρ0 · ρ2 · ρ4 · ρ7, the requested value of t =
20 + 22 + 24 + 27 = 149.

The problems and solutions in this contest were proposed by Steve Blasberg,
Steve Dunbar, Jacek Fabrykowski, Zuming Feng, Elgin Johnston, Jonathan Kane,
Cap Khoury, Matthew McMullen, Tamas Szabo, Dave Wells, Ronald Yannone.


