1. (Answer: 275)

Under the current system, there are $60 \cdot 24=1440$ minutes in a day. 6:36 AM is 396 minutes after midnight. Because there are 1000 metric minutes in a day, the equivalent metric time is $\frac{396}{1440} \cdot 1000=275$ metric minutes after midnight. The new digital alarm clock should be set at $2: 75$, and the requested answer is 275 .
2. (Answer: 881)

The given equation implies that $\log _{2^{a}}\left(\log _{2^{b}}\left(2^{1000}\right)\right)=1$, then $\log _{2^{b}}\left(2^{1000}\right)=2^{a}$, and $2^{1000}=2^{b \cdot 2^{a}}$. Therefore $b \cdot 2^{a}=1000=125 \cdot 2^{3}$. The possible solutions for (a, b) are $(1,500),(2,250)$, and $(3,125)$. The requested sum is $501+252+128=881$.
3. (Answer: 350)

Let x equal the number of centimeters burned since the candle was lit. The time required to burn down x centimeters when x is an integer is $10+20+30+\ldots+10 x=10 \cdot \frac{x(x+1)}{2}=5 x(x+1)$ seconds. Therefore $T=5(119)(120)$ and $\frac{T}{2}=5 \cdot 60 \cdot 119$.
To find the number of centimeters, x, the candle has burned down in $\frac{T}{2}$ seconds, set $5 x(x+1)$ equal to $5 \cdot 60 \cdot 119$ and note that this implies $x(x+1)=2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 17=\left(2^{2} \cdot 3 \cdot 7\right) \cdot(5 \cdot 17)=84 \cdot 85$. Thus $x=84$, and $h=119-x=119-84=35$. The requested product is $10 h=350$.
4. (Answer: 040)

The midpoint of $\overline{A B}$ is $M=\left(\frac{3}{2}, \sqrt{3}\right)$. Then $\overrightarrow{A M}=\left\langle\frac{1}{2}, \sqrt{3}\right\rangle$ and $\overrightarrow{M P}=$ $\frac{1}{\sqrt{3}}\left\langle\sqrt{3},-\frac{1}{2}\right\rangle$. It follows that $P=M+\overrightarrow{M P}=\left(\frac{5}{2}, \frac{5 \sqrt{3}}{6}\right)$. Thus $x y=$ $\frac{25 \sqrt{3}}{12}$. The requested sum is $p+q+r=25+3+12=40$.

OR

In the complex plane $A=1, B=2+2 \sqrt{3} i$, and $P=x+y i$. Note that a $\frac{2 \pi}{3}$ counterclockwise rotation centered at P maps B to A. Hence

$$
\begin{gathered}
e^{\frac{2 \pi i}{3}(B-P)}=A-P \Rightarrow\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)(2+2 \sqrt{3} i-x-y i)=1-x-y i \\
\frac{x}{2}+\frac{\sqrt{3}}{2} y-4+\left(\frac{y}{2}-\frac{\sqrt{3}}{2} \cdot x\right) i=(1-x)+i(-y)
\end{gathered}
$$

This is equivalent to the conditions $3 x+y \sqrt{3}=10$ and $\sqrt{3} y=x$. It follows by simple substitution that $(x, y)=\left(\frac{5}{2}, \frac{5 \sqrt{3}}{6}\right)$.

OR

Let $O=(0,0)$. Note that $\angle A O B+\angle A P B=60+120=180$. Hence $A O B P$ is a cyclic quadrilateral. Let $A B=\sqrt{3} t$. Now by properties of a $30-30-120^{\circ}$ triangle, $t=A P=B P$. By Ptolemy's Theorem, $t \cdot 1+t \cdot 4=t \sqrt{3} \cdot O P$ and $O P=\frac{5}{\sqrt{3}}$. Because $A O B P$ is cyclic, $\angle A B P=\angle P O A=30^{\circ}$. So $x y=O P^{2} \cos 30 \cdot \sin 30=\frac{25}{3} \cdot \frac{\sqrt{3}}{4}=\frac{25 \sqrt{3}}{12}$.
5. (Answer: 020)

Let $\theta=\angle D A E$. Suppose, without loss of generality, that the triangle has sides of length 6 and that E is between D and C. Applying the Law of Cosines to $\triangle A E C$ gives $A E=\sqrt{6^{2}+2^{2}-2 \cdot 6 \cdot 2 \cdot \cos 60^{\circ}}=2 \sqrt{7}$. The area $[D A E]=\frac{1}{3}[A B C]=\frac{6^{2} \sqrt{3}}{3 \cdot 4}$ is also $\frac{A D \cdot A E \sin \theta}{2}=\frac{(2 \sqrt{7})^{2} \sin \theta}{2}$. Therefore $\sin \theta=\frac{6^{2} \sqrt{3}}{3 \cdot 4} \cdot \frac{2}{4 \cdot 7}=\frac{3 \sqrt{3}}{14}$. The requested sum is $3+3+14=20$.

OR

Let $\theta=\angle D A E$. Suppose, without loss of generality, that the triangle has sides of length 6 and that E is between D and C. Let M be the midpoint of $\overline{D E}$. Then $D M=1, A M=3 \sqrt{3}$, and $\tan \frac{\theta}{2}=\frac{1}{3 \sqrt{3}}$. Because $\tan \frac{\theta}{2}=\frac{\sin \theta}{1+\cos \theta}$,

$$
1+\cos \theta=2 \cos ^{2} \frac{\theta}{2}=2 \frac{1}{\sec ^{2} \frac{\theta}{2}}=\frac{2}{1+\tan ^{2} \frac{\theta}{2}}=\frac{27}{14}
$$

Finally, $\sin \theta=(1+\cos \theta) \tan \frac{\theta}{2}=\frac{27}{14} \frac{1}{3 \sqrt{3}}=\frac{3 \sqrt{3}}{14}$.
6. (Answer: 282)

Assume that integer x satisfies $x^{2} \leq 1000 \cdot N<1000 \cdot N+1000 \leq$ $(x+1)^{2}$. Observe that x^{2} and $(x+1)^{2}$ differ by $2 x+1$. Because $(x+1)^{2}-x^{2}$ must exceed $1000,2 x+1>1000$, and thus $x \geq 500$.

Let $x=500+a$, for some nonnegative integer a. Then $x^{2}=250000+$ $1000 a+a^{2}$ and $(x+1)^{2}=x^{2}+1001+2 a$. Because x^{2} is greater than a multiple of 1000 by the amount of a^{2} and $(x+1)^{2}$ is $1001+2 a$ greater than x^{2}, the requirement will be satisfied by the least value of a such that $a^{2}<1000$ and $a^{2}+1001+2 a \geq 2000$ or equivalently $a^{2}+2 a-999 \geq 0$. The least such positive integer value of a is 31 .

Thus $x^{2}=250000+31000+961=281961<282000$ and $(x+1)^{2}=$ $281961+1001+62=283024 \geq 283000$. The answer is therefore 282 .
7. (Answer: 945)

Let n represent the original number of clerks and k the number of clerks reassigned at the end of each hour. Because a clerk sorts one file every 2 minutes, in 10 minutes each clerk sorts 5 files, so $30 n+$ $30(n-k)+30(n-2 k)+5(n-3 k)=1775$. Then $95 n-105 k=1775$ and $19 n-21 k=355$. Thus $n=\frac{21 k+355}{19}$, and because n and k must both be positive integers, $21 k+355$ must be a multiple of 19 . The only such value of k for which $n, n-k, n-2 k$, and $n-3 k$ are also positive integers is $k=3$. Then $n=22$, and the number of files sorted in an hour and a half is $30 \times 22+15 \times 19=945$.
8. (Answer: 272)

Let r be the radius of the circle, let α be the central angle of each arc cut off by chords of length 22 , and let β be the central angle of each arc cut off by chords of length 20 . Then $4 \alpha+2 \beta=2 \pi$. Thus α and $\beta / 2$ are complementary angles, so that $\cos \alpha=\sin (\beta / 2)$.

By the Law of Cosines, $22^{2}=r^{2}+r^{2}-2 r^{2} \cos \alpha=2 r^{2}(1-\cos \alpha)$, so $\cos \alpha=1-\frac{22^{2}}{2 r^{2}}$. Note that $\sin (\beta / 2)=\frac{10}{r}$.

Together these observations give the equation

$$
1-\frac{22^{2}}{2 r^{2}}=\frac{10}{r}
$$

which implies

$$
r^{2}-10 r-242=0
$$

The solutions are $r=5 \pm \sqrt{267}$. Only the positive sign gives a positive value of r. The requested sum is $5+267=272$.

OR

Note that any diagonal of the hexagon that connects opposite vertices is a diameter of the circle. Let $A B C D$ be the isosceles trapezoid where $A D=B C=22, A B=20$, and $\overline{C D}$ is a diameter of the circle. Let the center of the circle be O, and let H be a point on $\overline{C D}$ such that $\overline{A H} \perp \overline{C D}$. Apply the Pythagorean Theorem to $\triangle A O H$ to get $r^{2}=$ $A H^{2}+O H^{2}$, and to $\triangle A D H$ to get $(r-O H)^{2}+A H^{2}=A D^{2}$. Given that $O H=\frac{1}{2} A B=10$ and $A D=22$, conclude that $r^{2}=22^{2}-(r-10)^{2}+10^{2}$ and $r^{2}-10 r-242=0$, which is the same equation as in the previous solution.
9. (Answer: 106)

With k colors of tile available there are k ways to decide how to color the first square. For each successive square, there are $k+1$ options: one can either extend the current tile, or start a new tile of any of k colors. Thus there are a total of $k(k+1)^{6}$ colored tilings.
The total number of colored tilings in red, blue, and/or green is thus $3 \cdot 4^{6}=12288$, which includes the $2 \cdot 3^{6}=1458$ tilings with no green tiles, and similarly for blue and red. By the Inclusion-Exclusion Principle, the number N of specified tilings is therefore $12288-3 \cdot 1458+3 \cdot 2^{6}=$ 8106. The requested remainder is 106 .
10. (Answer: 146)

Assume, without loss of generality, that point K lies between points L and A. Observe that

$$
\frac{[O A K]}{[B A K]}=\frac{[O A L]}{[B A L]}=\frac{4+\sqrt{13}}{4}
$$

so

$$
\frac{[O K L]}{[B K L]}=\frac{[O A L]-[O A K]}{[B A L]-[B A K]}=\frac{4+\sqrt{13}}{4}
$$

and

$$
[B K L]=[O K L] \frac{4}{4+\sqrt{13}}
$$

Then $[O K L]=\frac{13}{2} \sin \angle K O L$, and therefore the maximum possible value for $[O K L]$ occurs when $\angle K O L=90^{\circ}$ and $[O K L]=\frac{13}{2}$. Thus the maximum value for $[B K L]$ is $\frac{13}{2} \cdot \frac{4}{4+\sqrt{13}}=\frac{104-26 \sqrt{13}}{3}$. The requested sum is $104+26+13+3=146$.
11. (Answer: 399)

Suppose that f is a function from A to A such that $f(f(x))$ is constant. Let $a \in A$ be the constant value of $f(f(x))$. Suppose that $S=\{x \in$ $A \mid f(x)=a\}$ has k elements. Note that $a \in S$, and for $x \notin S$, $f(x) \in S-\{a\}$. It follows that one can choose such a function f by selecting a in one of 7 ways, selecting the other elements of S in $\binom{6}{k-1}$ ways, and selecting values for $f(x)$ for each $x \notin S$ in $(k-1)^{7-k}$ ways. Thus the number of functions is

$$
\begin{array}{rl}
\sum_{k=1}^{7} 7 & 7\binom{6}{k-1} \cdot(k-1)^{7-k} \\
& =0+7 \cdot 6+7 \cdot 240+7 \cdot 540+7 \cdot 240+7 \cdot 30+7 \cdot 1 \\
& =7 \cdot 1057
\end{array}
$$

The requested remainder is then $7 \cdot 57=399$.
12. (Answer: 540)

Let $f \in S$ only have roots with modulus (absolute value) 20 or 13 . If f has all real roots, then they must come from the set $\{-20,-13,13,20\}$. There are 20 possible ways to choose three elements from this set, with replacement, where order is not important.

Suppose f has a nonreal root $z_{0}=r+s i$, where r and s are real. Then $r-s i$ is another root, and there are four possibilities for the third (integer) root, k. Because $(z-(r+s i))(z-(r-s i))(z-k)=$ $z^{3}-(2 r+k) z^{2}+\left(2 k r+r^{2}+s^{2}\right) z-\left(r^{2}+s^{2}\right) k$, it follows that $2 r$ must be an integer. If $\left|z_{0}\right|=20$, then there are 79 possible values for $r: 0, \pm \frac{1}{2}, \pm \frac{2}{2}, \ldots, \pm \frac{39}{2}$. If $\left|z_{0}\right|=13$, then there are 51 possible values for $r: 0, \pm \frac{1}{2}, \pm \frac{2}{2}, \ldots, \pm \frac{25}{2}$. Therefore there are $79 \cdot 4+51 \cdot 4+20=540$ polynomials in S that only have roots with modulus 20 or 13 .
13. (Answer: 010)

Let $A B=2 x$, and $A C=B C=y$. Then $\cos \angle B A C=\cos \angle A B C=\frac{x}{y}$. Applying the Law of Cosines to $\triangle A B D$ yields

$$
\begin{aligned}
A D^{2} & =B D^{2}+A B^{2}-2 B D \cdot A B \cdot \cos \angle A B C \\
& =\frac{y^{2}}{16}+4 x^{2}-2 \cdot \frac{y}{4} \cdot 2 x \cdot \frac{x}{y} \\
& =3 x^{2}+\frac{y^{2}}{16}
\end{aligned}
$$

Because $\overline{C E}$ is a median in $\triangle A D C$, Stewart's Theorem shows that $4 C E^{2}=2 C D^{2}+2 A C^{2}-A D^{2}$, or $28=\frac{18 y^{2}}{16}+2 y^{2}-3 x^{2}-\frac{y^{2}}{16}$. Hence $\frac{49}{16} y^{2}-3 x^{2}=28$. Similarly, in $\triangle A B D, 4 B E^{2}=2 B D^{2}+2 A B^{2}-A D^{2}=$ $\frac{2 y^{2}}{16}+8 x^{2}-3 x^{2}-\frac{y^{2}}{16}$. Hence $\frac{y^{2}}{16}+5 x^{2}=36$. Solving the system

$$
\begin{aligned}
& \frac{49}{16} y^{2}-3 x^{2}=28 \\
& \frac{y^{2}}{16}+5 x^{2}=36
\end{aligned}
$$

yields $y^{2}=16, x^{2}=7$. Thus the area of $\triangle A B C$ is $x \sqrt{y^{2}-x^{2}}=3 \sqrt{7}$, and the requested sum is $3+7=10$.
14. (Answer: 512)

If $m>1$, then

$$
\begin{aligned}
f(3 m, m+1) & =m-2, \\
f(3 m+1, m+1) & =m-1, \text { and } \\
f(3 m+2, m+1) & =m
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
f(3 m, k) & <m-2 \text { for } k \leq m-2, \\
f(3 m, m-1) & =3, \\
f(3 m, m) & =0, \text { and } \\
f(3 m, k) & =3 m-2 k<m-2 \text { for } m+1<k \leq \frac{3 m}{2} .
\end{aligned}
$$

Therefore $F(3 m)=m-2$. Because $F(n+1) \leq F(n)+1$ for all n, it follows that $F(3 m+1)=m-1$ and $F(3 m+2)=m$. Thus

$$
\begin{aligned}
\sum_{n=20}^{100} F(n) & =\sum_{m=7}^{33}(F(3 m-1)+F(3 m)+F(3 m+1)) \\
& =\sum_{m=7}^{33}((m-1)+(m-2)+(m-1)) \\
& =3 \sum_{m=7}^{33}(m-1)-27 \\
& =3 \cdot \frac{27(6+32)}{2}-27=1512
\end{aligned}
$$

The requested remainder is 512 .
15. (Answer: 222)

Notice that

$$
\cos ^{2} A+\cos ^{2} B+2 \sin A \sin B \cos C=\frac{15}{8}
$$

implies

$$
\sin ^{2} A+\sin ^{2} B-2 \sin A \sin B \cos C=\frac{1}{8}
$$

Let R be the circumradius and a, b, and c be the sides opposite A, B, and C, respectively. By the Extended Law of Sines

$$
\frac{1}{4 R^{2}}\left(a^{2}+b^{2}-2 a b \cos C\right)=\frac{1}{8}
$$

and by the Law of Cosines

$$
\frac{1}{4 R^{2}} \cdot c^{2}=\frac{1}{8} .
$$

Thus

$$
\sin ^{2} C=\frac{1}{8} .
$$

Similarly, the second given equation yields $\sin ^{2} A=\frac{4}{9}$, and a similar argument applied to $\cos ^{2} C+\cos ^{2} A+2 \sin C \sin A \cos B$ shows that it equals $2-\sin ^{2} B$. Because

$$
\sin B=\sin A \cos C+\sin C \cos A=\frac{2 \sqrt{14}}{12}+\frac{\sqrt{10}}{12}
$$

it follows that

$$
2-\sin ^{2} B=\frac{111-4 \sqrt{35}}{72}
$$

The requested sum is $p+q+r+s=111+4+35+72=222$.

