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TO
G.H.HARDY, J.E.LITTLEWOOD, AND G.POLYA

FROM TWO FOLLOWERS AFAR






Preface

Since the classic work on inequalities by HARDY, LITTLEWOOD, and
P6éLvA in 1934, an enormous amount of effort has been devoted to the
sharpening and extension of the classical inequalities, to the discovery
of new types of inequalities, and to the application of inqualities in many
parts of analysis. As examples, let us cite the fields of ordinary and
partial differential equations, which are dominated by inequalities and
variational principles involving functions and their derivatives; the
many applications of linear inequalities to game theory and mathe-
matical economics, which have triggered a renewed interest in con-
vexity and moment-space theory; and the growing uses of digital com-
puters, which have given impetus to a systematic study of error esti-
mates involving much sophisticated matrix theory and operator theory.

The results presented in the following pages reflect to some extent
these ramifications of inequalities into contiguous regions of analysis,
but to a greater extent our concern is with inequalities in their native
habitat. Since it is clearly impossible to give a connected account of the
burst of analytic activity of the last twenty-five years centering about
inequalities, we have decided to limit our attention to those topics that
have particularly delighted and intrigued us, and to the study of which
we have contributed.

We have tried to furnish a sufficient number of references to allow
the reader to pursue a subject backward in time or forward in com-
plexity, but we have made no attempt to be encyclopedic in covering
a field either in the text or in the bibliography at the end of the separate
chapters.

As with most authors, we have imposed upon our friends. To Ky FAN
we extend our sincere gratitude for reading the manuscript through
several times and for furnishing us the most detailed suggestions. For
the reading of individual chapters and for many valuable comments and
references, we wish to thank R. P. Boas, P.Lax, L. NIRENBERG, I.
OLkIN, and O. TAUSSKY.

Our hope is that the reading of this book will furnish as much pleasure
to others as the writing did to us.

Los Angeles and Santa Monica, 1961
EpwiN F. BECKENBACH
RICHARD BELLMAN
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Chapter 1

‘The Fundamental Inequalities and Related Matters

§ 1. Introduction

In this initial chapter, we shall present many of the fundamental
results and techniques of the theory of inequalities. Some of the results
are important in themselves, and some are required for use in subsequent
chapters; others are included, as are multiple proofs, on the basis of
their elegance and unusual flavor [1].

We shall begin with the Cauchy inequality and the Lagrange identity,
both of which will be substantially extended in this and the following
chapter. From this we turn to a topic to which a monograph could be
devoted in itself — namely, the famous inequality connecting the
arithmetic and geometric means of # nonnegative numbers. Twelve
proofs will be given of this basic result, not to suggest any lack of con-
fidence in any single proof but rather to illustrate the wide range of
techniques that the algebraist and analyst have at their disposal in
treating inequalities. Of particular interest are the proofs of CAucHY,
Hurwitz, and BoHR.

Leaving this topic, albeit reluctantly, we shall establish the work-
horses of analysis, the inequalities of HOLDER and MINKOWSKI, in both
discrete and continuous versions.

Subsequently, we shall establish some related, but more complex,
results of BECKENBACH and DRESHER. These will be obtained with the
aid of the important technique of quasi linearization, a method initiated
by MINKOWsKI, developed by MAHLER, and used by YOUNG, ZYGMUND,
and BELLMAN.

From this, we jump to the transformations of ScHUR involving
doubly stochastic matrices, and to some results of KaARaAMATA, OSTROW-
skI, and HARrRDY, LITTLEWOOD, and POLYA, pertaining to majorizing
sequences. Continuous versions due to FAN and LORENTZ are also
mentioned.

Our next port of call is in the domain of the elementary symmetric
functions. Here, the results of Marcus and LoPES are considerably more
difficult to establish than might be suspected. Perhaps the most elegant
proof of their inequalities is one that rests on the Minkowski theory of
mixed volumes, a theory we shall discuss at length in our second volume
on inequalities. Results due to WHITELEY are also presented.

Ergebn. d. Mathem. N, F., H. 30, Beckenbach and Bellman 1



2 1. The Fundamental Inequalities and Related Matters

From these matters, we turn to the fascinating questions of converses
and refinements of the classical inequalities. Rather than follow the
methods of BLASCHKE and Pick, and of BUCKNER, or use moment-space
arguments (the principal content of Chapter 3), we shall employ a
method based on differential equations due to BELLMAN for establishing
converse results. As far as the refinements are concerned, we shall merely
mention some results and refer the reader to the original sources.

The last part of the chapter is devoted to some inequalities involving
terms with alternating signs, discussed by WEINBERGER, SzZEGOH, OLKIN,
BELLMAN, and others, all of which turn out to be particular cases of a
novel inequality of STEFFENSEN.

§ 2. The Cauchy Inequality

The most basic inequality is the one stating that the square of any
real number is nonnegative. To make effective use of this statement,
we choose as our real number the quantity y,— v,, where y; and y, are
real. Then the inequality (y,— y,)2= 0 yields, upon multiplying out,

y1+y2> 2y1Y,. (1)

The sign of equality holds if and only if y,= y,. This is the simplest
version of the inequality connecting the arithmetic and geometric means;
following CaucHY, we shall subsequently base one proof of the full
result on this.

To make more effective use of the nonnegativity of squares, we form
the sum

»

x,u + vz—uz x+2uv x; 1+v2 2, 2
Vi iy y

1 i=1

I

i

where all quantities involved are real.

Since the foregoing quadratic form in # and v is nonnegative for all
real values of # and v, its discriminant must be nonnegative, a fact
expressed by the Cauchy inequality [1]:

Fof<(54(E) o

This inequality may be considered as expressing the result that, in
euclidean space of any number of dimensions, the cosine of an angle is
less than or equal to 1 in absolute value. Equality holds if and only if
the sets (x;) and (y,) are proportional, that is, if and only if there are
numbers 4 and g, not both 0, such that

/g.xi—}—/,tyizo, 1_—_ 1,2,.

Still more general results can be obtained by applying the foregoing
argument not merely to an #z-dimensional euclidean space, but to a



§ 4. The Arithmetic-mean — Geometric-mean Inequality 3

general linear space S possessing an inner product for any two elements x
and v, written (x, y), with the following properties:

(a) (%, x) = 0 for each x €S,
(b) (%, ) = (¥, %), (4)
() (x,uy+ vw)=u(x,v) + v(x, w) for all real

scalars # and v.

These properties enable us to conclude that the quadrafic form in # and v,
(ux+ vy, ux 4+ vy) = u?(x, x) + 2uv (x, v) + v2(y, y) , (5)

is nonnegative for all real # and v.
Hence, as above, we obtain the inequality

(%, y)2= (%, %) (v, y), (6)

a result that is, in turn, a particular case of more general results we shall
derive in Chapter 2; see § 2.6.

A large number of results may now be obtained in a routine way by
a choice of S and the inner product (x, y). Thus, we may take

(%, ) = afx(t) y()ac(@), (7)

a Riemann-Stieltjes integral with G (f) nondecreasing for a < ¢ < b, or

(%, ¥) =2"{, A;5%:Yi» (8)

i, =1
where A = (a,,) is a positive definite matrix, and so on.

§ 3. The Lagrange Identity

A problem of much interest and difficulty with surprising ramifica-
tions is that of replacing any given valid inequality by an identity that
makes the inequality obvious. The inequality (2.3) can be derived
immediately from the identity

(; x) (g y;‘-’)— (; xy) = (55— 2 (1

i, i=1
1=

This also is a special case of a more general identity discussed in § 6 of
Chapter 2.

§ 4. The Arithmetic-mean — Geometric-mean Inequality

We shall begin our consideration of results less on the surface by
discussing what is probably the most important inequality, and certainly
a keystone of the theory of inequalities — namely, the arithmetic-mean —
geometric-mean inequality. The result, of singular elegance, follows:

‘l*



4 1. The Fundamental Inequalities und Related Matters

Theorem 1. Let x, x,, ..., x, be a set of n nonnegative quantities,
n=1. Then

ettt 5
BT = (1,5, . . . %), (1)

There is strict inequality unless the x; ave all equal.

Twelve proofs of this basic result will be presented in §§ 5—16, each
based on a different principle or at least using a different device. There
are a number of extensions of (1), involving weights. Amusingly enough,
they are actually particularizations of the inequality, together with
limiting cases. See § 14, below; a full discussion will be found also in [1.1].

§ 5. Induction — Forward and Backward
The following classical proof of Theorem 1 is due to CAuCHY [2.1]. As
noted in (2.1), for any two quantities y, and y, we have
¥+ 82 23y, - (1)

Setting y? = x,, y5 = x, in this last inequality, we obtain
AP > Y ()

valid for any two nonnegative quantities x; and x,. Referring to (2.1),
we see that equality holds if and only if x, = x,.

Now replace x, by the new variable (x;+ x,)/2, and x, by (%34 x4)/2.
Then (2), together with its repetition, yields

¥1+ xo+ x5+ xy ~ (2F x)) (+ 7)) |
4 = 2 2 (3)

= [(x, xz)llz (%3 x4)1/2]1/2 = (%, %, x3x4)1/4.

Proceeding in this way, we readily see that we can establish the inequality
(4.1) for n = 1,2, 4, ..., and, generally, for » a power of 2. This is a
forward induction.

Let us now use backward induction. We shall show that if the in-
equality holds for #, then it holds for » — 1. In (4.1), replace x, by the
value

— ¥+ ¥+ + X1 (4)

n n—1 ’

n = 2, and leave the other x; unchanged. Then, from (4.1), we obtain

the inequality

xl_l_ xz_l_ « . _|_ xn—1+ xl_l_ xzj_"}' + Xp—1

" (5)
Xit Xt 0+ Xy )l-'"

n—1

= (%, %y - . - xn_l)I""(



§ 6. Calculus and Lagrange Multipliers S

or
Mt F ot o A 1 [(Frh Xt A (e
TS lz(xlxg-..xn-l)/"(l S 1). (6)
Simplifying, we obtain

Attt ,

(R 2 (), (7)

the desired inequality.

Combining the result for powers of 2 with this last result, we have an
inductive proof of the theorem. -

It is easy to see that the statement concerning strict inequality can
also be established inductively. '

Another interesting inequality that can be established by forward
and backward induction is the following unpublished result due to
Ky Fan:

“Tft0< 2, 1/2for1=1,2,...,#n, then

n
2] II (1 — x)

= .
(i x‘) L‘ (l_xi)J

with equality only if all the x, are equal.”

ASE

-,

Ige
ﬂ.l\dsll:
)

§ 6. Calculus and Lagrange Multipliers

Let us now approach the arithmetic-mean — geometric-mean in-
equality as a problem in calculus. We wish to minimize the function
%+ %+ -+ -+ x, over all nonnegative x; satisfying the normalizing
condition

XyXg. o Xp—= 1. (1)

Since the minimum clearly is not assumed at a boundary point, we can
utilize the Lagrange-multiplier approach to determine the local minima.
For the function

S (%, %oy o v oy X)) = Xy Xp. . Xy— A (X F+ X+ 000+ %), (2)

the variational equations

aaf:x‘x2x""'x"~ﬂ=0, i=1,2...,n, (3)
X X

yield the result that x;= x,= - -+ = x,. From this we readily see that
x,=1/n,1=1,2, ..., n, is the unique minimizing point, and thus we

obtain the inequality (4.1).
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§ 7. Functional Equations

Theorem 1 can also be established through the functional-equation
approach of dynamic programming [1]. We begin with the problem of
maximizing x;%,. .. %, subject to the constraints

Xt X+ -+ x,=a, %,=0.

Denote this maximum value by f, (@), for n =1,2,..., and a = 0.
In order to obtain a recurrence relationship connecting the functions
fn(a) and f,_;(a), we observe that once x, has been chosen, the problem

that remains is that of choosing x;, x,, . . ., x¥,_; subject to the constraints
Xt Kot F Xpg=a— Xy, szO: (1)
so as to maximize the product x; %, ... %,.
It follows that
fo(@) = max [x,f,1(@—=x,)], n=23, ..., (2)
0=r,=a

The change of variable x,=ay; 1=1,2,..., 7 enables us to
conclude that

fn(a) - anfn(l) . (3)
Using this functional form in (2), we see that
fall) = fua ([ max y (1—ppt] =L O g
0sy=1 "

Since f; (1) = 1, it follows that f,, (1) = 1/n"*, which is equivalent to (4.1).

§ 8. Concavity

Let us now present a proof of Theorem 1 by means of a geometric
argument [1, 2, 3, 4]. Consider the curve y = logzx, shown in Fig. 1.
Differentiation shows that the curve is concave, so that the chord
joining any two of its points lies beneath the curve. Hence, for x;, x, > 0,

log (xl—lz— xz) > logxl-;— log %, , (1)

with strict inequality unless x; = x,.
This result 1s equivalent to

%1+ %,
g = Vx1x2 . (2)




§ 9. Majorization — The Proof of BoHR 7

The same reasoning shows (see page 17) that

Tl e ) log %, + log#s+ - - - + log #,
log( 7" _) g n ’ (3)
for x,, x5, . .., %, > 0, and, generally, that
alx1+ 12x2+”'+2nxn - ;'llogxl+Zzlogxz—f_"'_!_anlogxn
log 3_1_|_12+..._|_).n = ).1_|_22_|_...+}.n ’ (4)

for any combination of values x;= 0, 4; > 0.
J /

pe

% 7 ‘Z} *tzlg ;Z'g A

Fig. 1

This appears to be a stronger result than Theorem 1, but, as remarked
in § 4, it can actually be obtained from (4.1) by specializing the values
of the x; and employing a limiting process; see §§ 14 and 16, below.

§ 9. Majorization — The Proof of Bohr

An amusing proof of Theorem 1 is due to H. Bonr [1].
To begin with, let us introduce the concept of majorization. Let f(y)
and g(y) be two formal power series,

fly) = f any", g(y) = f buy"™, (1)

n=290 n=20

where a,,, b, = 0 for n = 0.
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Ifa,= b, for n = 0, we write

fn>gly) . (2)

If f1(y) > &1(y) and fo(y) > &, (y), then dlearly fi(y) /2 () > & (y) &(9)-
Beginning with the obvious relationship

N N
€Y > ”N3!' , 3)
for N=1,2,...,and », y = 0, we obtain
y-f i N, nN
i=1 N
. > (%1% (N!;(") ¥y (4)

Hence, comparing the coefficients of y*¥, we get

n nN
(‘i flxi> > (xl Xg ... xn)N (5)
mN)! = (N1 ’

or

v

X1 Xg. .. Xy (N YH)»

(17 :gl”")n [ ®N)! ]I/N (6)

for all positive integers N.
Since, as £ — oo, we have STIRLING’s formula,

Rl ~ ket )2k, (7)
we see that
i [(nN) ! ]1/N_
N—leoo (Nl)n - (8)

From (6) and (8) we obtain Theorem 1. This is the only proof we shall
give that does not yield the condition under which the sign of equality
holds.

§ 10. The Proof of Hurwitz

Let us now present an interesting proof due to Hurwirz [1]. This
result was published in 1891, six years before his famous paper on the
generation of invariants by integration over groups [2], and one may
see the germ of the later technique in his earlier analysis, which follows.

For the function f (x,, x5, . . ., x,) of the # real variables x4, x,,..., x,,

let us denote by Pf (x,, X, . . ., X,) the sum of f over the #! quantities
that result from all possible #! permutations of the x,. Thus

Pap=(n— 1! (xf + 23+ + 23),
Pxyxg. .. %, =n! x7%5....%,.

(1)
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Consider the functions ¢, #=1,2,..., n— 1, obtained in the
following manner:

¢y = P [(xF71— x57Y) (— x,)],
G = P [(x772— x572) (2,— xp) %] ,

?.53 = P [(x773— 2573 (¥1— %p) ¥3%4] , (2)
?.Sn—lz P [(x;— x5) (21— %g) X3%g ... %,] .
We see that

¢, = Px}+ Pxp— Pxplxy,— Paplu

=2Px} —2Px¥1x,. 3)
Similarly,
¢ =2Pxp1x,— 2P a0 2x,x,,
s =2Px32x,03— 2P 233 x,25%, (4)

9;511—1 = 2Pxx,%3. .. X%y 17— 2P %, %,. .. %, .
Adding these results, we have
$it Pot G =2PxF —2Pxyx, . .. %y, (5)
or, referring to (1),

R R A 1
x1+sz; + # —x1x2...xn=—m(¢1+¢2+"'+¢n)- (6)

It is easy to see that each of the functions ¢, (x) is nonnegative for
x;= 0, since
b= P [(#77%— 257%) (#1— %) ¥3%q -« « Xppa]
= P [(%— %)® (a7 %714 - oo+ 287 xyxy .o Xpna]

(7)

Thus the difference appearing on the left-hand side of the identity (6)
is nonnegative, whence Theorem 1 follows. This is the only proof we
shall give that establishes the inequality (4.1) by means of an appro-
priate identity.

§ 11. A Proof of Ehlers
We shall prove Theorem 1 by showing that

x1x2 « 0 xn= 1, sz O:
implies that
X+ Xk b x, = n

Assume that the result is valid for #, and let
L TR D B

Let x, and x, be two of the x; with the property that x; = 1 and », = 1.
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Then we have (x,— 1) (x,— 1) < 0, or

X%+ 1 < x4 %, (1)
Hence
Xt et gt X = 1 mxt it F A = 1, (2)
by the inequality for the » quantities %, x,, 3, . . ., %, ¥p4y. Oince the

result is trivial for » = 1, the validity of Theorem 1 follows. See [1, 2].

§12. The Arithmetic-Geometric Mean of Gauss; the Elementary
Symmetric Functions

Let a,, by be two positive numbers with a,= b,, and define the
further elements of the sequences {a,}, {0,} as follows:

@y~ by

an-HZT: bn+1= (anbn)l/z' (1)
It is easy to see that
GyZ 4= =z A= 2b, =202 b, (2)

and it can be shown that the sequences {a,} and {b,} have a common
limit M (a,, b,). This function M (a,, b,) was first investigated by
GAuss [1]. It plays an important role in the theory of elliptic functions,
and, indeed, GAuss showed how the theory could be founded on this
function.

The foregoing result concerning convergence of the sequences {a,}
and {b,} can be greatly extended. For example, if 2,= b,= ¢, > 0, and

a,+b,+ ¢ ab,+ a,c,+ b,c, \': .
Ant1 = : 3l : ! bn+1=( = ’én - » Cut1= (anbncn) /3! (3)

it 1s casy to show that

lim a,= lim b,= lim ¢,= M (a,, b,, ¢); (4)
7 — 0 n— 00 n—> OO
see SCHAPIRA [2], SCHLESINGER [3], and BELLMAN [4], where many
further results concerning symmetric means are established.
One way to establish results concerning symmetric means is to use
a set of interesting inequalities connecting the elementary symmetric
functions of » real quantities. It turns out that the arithmetic-mean —
geometric-mean inequality is merely one of a chain of inequalities.
Following the presentation in [1.1], we use a method based on
Rolle’s theorem. This method shows that valuable consequences can be
derived from knowing that all the roots of a given polynomial equation are
real, as well as from knowing, as in § 2, that there are no real roots. The
same theme will be developed subsequently in the presentation of some
results due to GARDING; see §§ 36—38, below.
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The result we require is the following immediate consequence of
ROLLE’s theorem:
Lemma. If all the roots x[y of the equation

f(x% y) =cpa™+ ca™ 7y + -+ opy™=0 (1)
are real, then the same is true of all the equations of positive degree derived

[from 1t by partial differentiation with vespect to x and y.
Let us apply this lemma to the polynomial

f#xy)=(@+ny) (x+7%y) ... (x+7.9), (2)
where the 7, are real. Writing
F(%y) =27+ pi(7) 2771y + o (8) 2292+ - - -+ pad”, (3)
where
ny n! 4
(k)—k!(n—k)!’ (4)

po=1,and (for k=1,2,..., n—1) p, is the k-th elementary symme-
tric function, suitably weighted to give the average value of the
products involved, we see that the equation

Pra B+ 2Py + prny?=0, (5)
obtained by repeated differentiation, has both its roots real. Thus
we have

Pre1Pen= %, (6)
k=12 ...,n—1. Observe that this result holds for all real 7,
positive, negative, or zero.
For the next result, due to MACLAURIN [5], suppose that all the 7, are
positive. Then from (6), we have

(Bobe) (P13)® (Papa)® - - - (Pratrn)* = PIPE. .. PRF, (7)
or Pl = pLEFD (8)

k=12 ..., n—1.
From (8) we obtain

= pim,

the arithmetic-mean — geometric-mean inequality.

§ 13. A Proof of Jacobsthal

There are a number of proofs of the arithmetic-mean — geometric-
mean inequality based on algebraic relationships connecting these means.
An interesting example is the following [1].

We begin with the identity

A= =1 =+ (=) (1

Gn—l Gn—l
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where
n
‘2 # n 1/n
An:' 1=l s Gn:(nxi> .
" i
We next apply the inequality
Mbn—1=nz, (2)
valid for 2 = 0 and for » = 1. For integral values of », (2) follows
easily from the identity
Mm—nz4+n—1=(z—1)E" 142724+ .-+ 2—nt+1).
If we take

G
‘TG
then we obtain
Gn— An— %Gn

dpz— =) - —(mn—1) + 5|, (3)

or, simplifying,
(n — 1)
An_ Gn = - (A n—1" Gn—l) . (4)

The general result that 4,— G, = 0 follows inductively.

§ 14. A Fundamental Relationship

The remarkable inequalities [cf. (13.2)]
x*—oax+a—1=20, a>1 or a<0, (1)
X—ax+a—1<0, O<a<l, (2)

which hold for x > 0, can be taken to be fundamental to the entire
theory, for quite directly from them follow the arithmetic-mean — geo-
metric-mean inequality and also the basic inequalities of HSLDER and
MINKOWSKI; see §§ 17—18, below.

An easy application of differential calculus establishes (1) for o« > 1 or
o < 0, and (2) for 0 < « < 1; the sign of equality holds if and only if x = 1.

A longer but more elementary proof is the following [1.1]: For y > 0
and 7 a positive integer, the identity

ymi—1 =1  y-—1 I
n+1  n  wmm+1) (nyn—yn=t— —y—1)

shows that

yn+1_ 1 yn__ 1

n+1 n
the sign of equality holding if and only if ¥ = 1. Hence, for any integer
m > n,

v

0,
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and therefore, with y = ! for any x > 0,
amr 11— x—1 =0,
n
whence we obtain (1) for rational values « > 1, namely
m__ " m
X L x o, —1=20, —=>1, (3)

the sign of equality holding if and only if x = 1.

Now (1) follows from (3) for irrational « > 1 as m/n — «, but in the
limiting process the strict inequality is lost for x == 1. In order to regain
it, let & = 7B, where » and g are both greater than 1 and 7 is rational.
Then

*—oax+oa—1=@xF)—rfx+rf—1>rxf—rfx+rf—r=0,

and this completes the proof of (1) for « > 1.
The substitution
= g P=yf 1l g >1,
in (1) yields
yrO—By+E—-1) =0, <0,
so that (1) holds also for a < 0. Similarly, the substitution
¥r= =9 a>1,

shows that (2) holds for 0 < & < 1. As before, the sign of equality holds
in (1) for « < 0 and in (2) for 0 < « < 1 if and only if x = 1. In the
limiting cases « = 0 and « = 1, the sign of equality holds trivially for
all x > 0:

¥*—ax+oa—1=0,a=0 or a=1.

To establish the arithmetic-mean — geometric-mean inequality, we
note first that for positive x;, x,, the substitution

in (2) yields

whence
xS ax+ (1—a) %,0<a< 1,

so that the desired inequality holds for arbitrary x;, x,= 0 and arbitrary
positive weights &, 1 — a; the sign of equality holds if and only if x; = x,.
Mathematical induction now readily gives the general result that

IA

t=1 1=1
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for

1%

xi 0,0(1->0,20(1~=1, (5)
t=1

the sign of equality holding if and only if x,= x; foralls,7=1,2,..., 2.
Thus, if the result is assumed to hold for %, then for

we set

and

yi:xi,ﬂi=ai,i=1,2,...,7’1/—‘1,

o 4 o
yu= o Prxin P Br= ayt opig -

Now we have

yigo:ﬂi>on Zﬂizli

1=

and therefore, by the induction hypothesis, we obtain

n -1 1)
oLy H
I x5 = II y!

= fﬂi}’i

i=1

”n
= D o %+ (ot dpyy) (xZ"/ﬁ" x:’fim")

i=1
n+1
= 2 o X5,

i=1

the sign of equality holding throughout if and only if all the x; are equal.

Thus we have again (cf. § 8) established the arithmetic-mean — geo-
metric-mean inequality (4) for arbitrary x;, «; satisfying (5); but this
time our proof for real (not necessarily rational) «; has been about as
clementary as possible.

The inequalities (1) and (2) are sometimes rewritten symmetrically
by substituting a/b for x (a > 0, b > 0) and letting

Then

1

ocz—b—,l—oc= (p,g+=0o0rl).
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and (1) and (2) may be written equivalently as

b a b
Upplie < 2 4 2 Upplia =2 4 2
a qup-{-qora b‘1=p+q (7)
according as p > 1 or p < 1 (p == 0). The sign of equality holds in the
inequalities (7) if and only if a = b. It is easy to verify that for p > O the
inequality (7) still holds under the slightly more general hypothesis
thata = 0, 5 = 0.

§ 15. Young’s Inequality

Let y = ¢(x) be a continuous, strictly increasing function of x for
x = 0, with ¢(0) = 0. See Fig. 2. Examining the areas represented by
the integrals, we see that

Wb = [0 dx+ [470) dy, (1

0

where ¢71(y) is the function inverse to ¢ (x). It is easily seen that there
is strict inequality unless b = ¢ (a). This is the inequality of Youneg [1].

Y y-3fz)

o)} ——————

] (0,0) T
Fig. 2

Specializing ¢, we obtain a number of interesting results.
With y = x771 p > 1, (1) yields
a? be
<+ -, 2
ab = » + P (2)
This is the first of the inequalities (14.7). From it we can readily obtain
the other results given in § 14.
Choosing y = ¢ (x) =1log (x + 1) in YOUNG’s inequality (1), and
replacing 2 by a— 1, we obtain another interesting result, namely,

ab<aloga—a+ €.

This inequality is frequently used in the theory of Fourier series.
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§ 16. The Means M,(x, &) and the Sums S,(x)

In § 12 we saw that the arithmetic-mean — geometric-mean in-
equality is just one in a chain of inequalities involving the elementary
symmetric functions. It is our purpose now to show how the arithmetic
mean and the geometric mean fit also into a continuous hierarchy of
mean values. Though elementary proofs could be given for the present
results, we shall use differential calculus as our principal tool. We shall
also use the theory of convex functions; in particular, we shall give an
analytic justification of the geometric observations that were made
in § 8. General discussions of convex functions and their applications
have been given by BECKENBACH [8.3] and GREEN [8.4].

For any positive values

(3) = (3, % - - -, %)
and positive weights
() = (o, &g, « - -, %), 21 =1,
=
and any real ¢ = 0, we define the mean of ovder ¢, or the ¢t norm, of the
values (x) with weights («) by

M, (x, a) = <2a x)/

=1

In particular, the means of order —1,1, and 2 are the harmonic mean,
the arithmetic mean, and the root-mean-square.
An easy application of I’'Hospital’s rule shows that

lim M, (x, a) = I x%, (1)
t—0 i=1
the geometric mean. Further, if x,= max(x), then clearly

alltx, < M, (%, o) < x,
for £ > 0, whence

lim M, (x, o) = max (x) . (2)

t— o0
Again, since

1
M_y(%,0) = 3717w ey

we have

lim M,(x, «) = min (x) . (3)

f— — oo

Accordingly, we define
M, (%, o) = II xf,
i=1
Moo( ) = maxX (x) ’
M_, (%, o) = min (x).
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If the x, are assumed merely to be nonnegative, and at least one of
the x; is 0, then M, (x, &) is taken to be 0 for £ < 0; but we shall consider
only positive x,.

We shall show that, for positive values x,, M, (x, o) is a nondecreasing
Sfunction of t for —oo < t < oo, and s strictly increasing unless all the
x; are equal. This result includes the arithmetic-mean — geometric-mean
inequality as a special case.

In order to verify the foregoing statement, we begin with an observa-
tion concerning convex functions. If a function f(x) has a second deriva-
tive satisfying the inequality

af

a x?

>0 (4)

for a < x < b, then the graph y = f(x) is convex in this interval. If the
values

(%) = (%y, %oy « « «) %)
are all in the interval (a, b), and we let
r= D a;x
i=1

then Z is also in («, ), and by the mean-value theorem we have

f) = @) + (x— 7 /(@) + 5
Multiplying by «; and adding, we obtain

e .

n

S a fw) =f7) + 3

=1 t=1

a(x—z)

—5—f" (&),
whence, by (4),
Sofx)z f( S x) 5)

g=1

the sign of equality holding if and only if all the x; are equal; cf. § 8.
In particular, for the function

f(x)=xlogx, x>0,

we have
af 1
iz = x>0
so that by (5), for positive values (x),
2 %, log xig( 2 aixi> log } o;%;, (6)
i=1 i=1 i=1

the sign of equality holding if and only if all the x; are equal.

Ergebn. d. Mathem, N. F., H. 30, Beckenbach and Bellman 2
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Now a computation yields

22 i dM,(x, a) id
ot gt G i log 4
YACES ié; T T iél o; % log x?

n n
—(Zawi) log 3 a;xt,
i=1 ;

7=1

whence an application of (6) to the set of values (x?) yields the desired
result that

_d_lwl(xr a) 2 O
. dt = ’

the strict inequality holding unless all the x; are equal.

Thus if not all the x; are equal, the function M, is a strictly increasing
function of ¢ and has two horizontal asymptotes. It might be expected,
accordingly, that M, has exactly one inflection value and thus that M,
Is a convexo-concave function, but this is not necessarily the case [1].
Differentiation and an application of CAUCHY’s inequality, however,
shows that ¢ log M,(x, o) is a convex function of ¢; accordingly, by (5),
the function M, (x, ) satisfies the inequality

IT Mo (7)

i=1

M7

IA

for arbitrary ¢, and for

Tzzaiti)ai>ox Zaizl' (8)

i1=1 i=1

The sum of order t, defined by
n 1/t
Su(x) =( b x) ,
i=1

behaves rather differently as a function of ¢. It decreases steadily from
min (x) to 0 as ¢ increases from —oo to 0—, and decreases steadily from
oo to max (x) as ¢ increases from 0+ to + oc.
The inequality
Si(x) = Si(x),0< i< iy,

is sometimes called JENSEN’s inequality [2,3], though this name is
usually reserved for the inequality (5§) — which holds for continuous
convex functions generally, not just those having a positive second
derivative.

From the fact that ¢ log M,(x, «) is convex in ¢, it readily follows
that flog S,(x) also is a convex function of ¢, so that (7) still holds with S
in place of M.



§ 17. The Inequalities of HOLDER and MINKOWSKI 19

The function S,(x) is not necessarily concave for ¢t < 0 [5]; but it is
convex for { > 0 [4,5]. Accordingly, S, satisfies the inequality

STé Z v #] St,-
i=1
for arbitrary {,> 0 and for 7 and «, as in (8). In fact (a stronger result),
log S; is a convex function of ¢ for £ > 0, so that by (5) we have

Sp= ITS%.

i=1

§ 17. The Inequalities of Holder and Minkowski
In (14.7) we saw that for

1 1
—+—=1, p>1,
P+q P
we have
allPpin < §+—f_;—, (1)

and that the sign of inequality is reversed for p < 1 (p = 0).
If we set successively

, X =

7

|3

a =

3 _U:ﬂ:
R
R

Ty ot T

1=1

fort=1,2,...,n, and add, we obtain the rcsult
n n n
P X; Vi P x? P ?
Q=1 7 <_Li=1 Li=1y _ (2)
Xupyle = 5 x g Y

for p > 1, and the opposite inequality for p < 1 (p = 0); equality holds
if and only if the sets (x?) and (y?) are proportional. Thus we have
established the classical inequality of HOLDER [1]:

Theorem 2. If x;, y,= 0, p > 1, 1/p + 1jg = 1, then

n n 1/p n 1/q
12:; XY = (4‘:; xf) (121 y?) . (3)
The 1nequality s reversed for p < 1(p & 0). (For p <0, we assume that
x5,y; > 0.) In each case, the sign of equality holds 1f and only if the sets
(x?) and (y?) are proporiional.

To complete the enumeration of the classical inequalities, let us add
that due to MINKOWSKI [2]:

Theorem 3. If x,, y,= 0,p > 1, then

[2 (v + yz-)p]w =(2 xf)”ﬁ ap yf)”‘b- @

1=1 i=1

2%
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The inequality is reversed for p < 1(p =+ 0). (For p < 0, we assume that
%5, ¥; > 0.) In each case, the sign of equality holds if and only if the sets
(x) and (v) are proportional.
We shall first give a very short proof of this result, and then below,
in § 20, show how to derive the result through quasi linearization.
Write

o

(et 907 = 3, (k97 Dyilat 90, 6)

i=1

f

1

and apply HOLDER’s inequality with exponents p and ¢ to each sum on
the right. The result is

/g

n n 1/p [
Dmtyrs ( > P) 50+ 93

1=1 1=1

+ (Znyf)w -

=1 _z

u[\1=

/g

(x; +v)?1

M.

I

which is equivalent to (4). The sign of inequality is reversed for p < 1,
p =+ 0. Equality holds if and only if the sets (¥?) and (y?) are both
proportional to ((x + ¥)9), or equivalently if and only if the sets (%)
and (y) are proportional to each other.

The inequality (4) is sometimes called the “‘triangle inequality”
since, for p =2, it is equivalent to the geometric inequality that in
euclidean # space the sum of the lengths of two sides of a triangle is at
least as great as the length of the third side. In this case p = 2, the
inequality holds for all real, not necessarily positive, values of x,, y,, the
condition for equality being that the sets (x) and (y) are positively
proportional, that is, that there are numbers 4 = 0 and g = 0, not
both 0, such that

Ax;=py;, 1=1,2,...,n.

§ 18. Extensions of the Classical Inequalities

The inequalities we have developed thus far admit many extensions
and generalizations. In this section we shall briefly consider some of the
more important of these.

Simple mathematical induction yields the following extensions of
the inequalities of HOLDER and MINKOWSKI, respectively'

If x;=20fori=1,2,...,nandj=1,2,...,m, and if p,> 1 with

Z 1/p;= 1, then

i=1

n m n 1/p;
2 Mxy= I 3a4) (1

i=137 F=1\i=1
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the sign of equality holding if and only if the m sets (xF3), (x%3),..., (xm)

are proportional, that 1s, if and only if there are numbers 1,, not all 0, such
that ‘

m

2 A2t =0,

. . L¥)
] =1

fori=1,2,..., n
If x;;20fori=1,2,....,nandj=1,2,... m, and if p > 1, then

EE]E(E) .

The inequality s reversed for p < 1(p = 0). (For p <0, we assume that
%;; > 0.) In each case, the sign of equality holds if and only tf the m sets
(%:1), (%52) 5 - - - (%) are proportional.

Extensions to multiple sums and infinite sums can also be given. As
pointed out in § 14, however, in any infinite process special care must
be taken in treating conditions under which the sign of equality holds.
Details can be found in [1.1]. |

Since the foregoing inequalities are “homogeneous in X,” they admit
mean-value analogues. Thus the analogue of (1) is

1 n om mory 1,65 1
o X Hays (5 Sa)", p>1, 051,
i=1j5=1 ji=1 i==1 3
and factors 1/n or 1/m or both may be inserted at appropriate placesin (2).

Quite generally, inequalities that are homogeneous in 2" also admit
integral analogues. Thus the HOLDER and MINKOWSKI inequalities lead
to the following result (the Cauchy inequality is the special case p = 2
of the discrete case of the Hélder inequality; its integral analogue is
variously designated the Cauchy-Schwarz inequality, or the Schwarz
inequality, or the Buniakowsky-Schwarz inequality):

Theorem 4. Let f(P) and g (P) be functions defined for P in a region R,
and let AV be a volume element in this region. Then, whenever the integrals
on the right-hand sides of the inequalities exist, the integrals on the left-hand
sides exist and satisfy the stated inequalities:

[fe 2V = ([IF AV ([lgpavye, )
(BUNIAKOWSKY-SCHWARZ);
D q q i L—
Rffngg (Rf|f[ dV)ll (Rf[gl dV)I/, p>1, p + 7 =1, (4)
(HOLDER);

s ary s (e (e 1

(MINKOWSKI).
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The signs of equality hold in (3), (4), and (5) if and only if the functions f
and g are positively proportional (except at most on a set of measure zero).

The Minkowski inequality can be further extended by replacing the
sums in (5) by integrals:

[1{ ’SfdesP’dVR]l/” ésf [(1{ ]flf’dVR)lfp] aVg,p>1. (6)

Or in (2) the sums with respect to 7 but not with respect to 7 might be
replaced by integrals. In each case, the inequality is reversed for p < 1
(p == 0), but for p < 0 we assume that the functions are nowhere equal
to zero.

There are several ways of demonstrating integral results of this
nature. Either we can derive them as limiting forms of the discrete
versions, or we can establish them directly, utilizing techniques that are
equally applicable to discrete or continuous versions.

To illustrate the first technique, let us sketch a proof of the inequality

(7 el ax)e= (f1rieax) (112 as). )

To begin with, assume that f and g are continuous over [0,1]. Then (7)
follows as the limiting form of
1 N-—1 1 N—1

N—1 2
[%kgoﬂkd) g (k) A] = [ykgo If(kA)PA} [Wkgo Ig(kA)IZA}, )
a consequence of the discrete inequality derived in § 2.

To obtain (7) in full generality, we use the fact that Lebesgue inte-
grable functions can be approximated in L!'-norm by means of poly-
nomials. It is clear that this mode of proof is not very elegant, and can
lead to difficulties when the region R is quite general.

Let us then present an illustrative direct proof. For the Buniakowsky-
Schwarz inequality, we can proceed as follows. For any two real values

u and v we have
4|+ [0]*= 2 |uy]. (9)

Regarding # and v as functions of P and integrating over R, we have

[|u|2dV + [|[opdV = 2f |uv|dV . (10)
R R R

Replace # by [f[/(Rf [f]2 dV)ll2 and v by tgl/(Rf 2|24 V)1/2. Then (10)

yields
[lf[av. [lg[*aV [ 178l aV
R R R

[IFEav T [lafFdv =2 ([ifEavyR | [lgpa vy (11)
R R (R ) (R )

which implies (7).
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Extensive generalizations of the Buniakowsky-Schwarz inequality
may be found in the book by BOCHER [1] and the paper by Ocura [2].
The geometric interpretations given by OGURA for the function-space
inequalities are analogous to those given by BOCHER for the Euclidean
results.

We have pointed out that since the Hélder and Minkowski inequalities
are homogeneous in X, they admit mean-value analogues and also admit
integral analogues. For the same reason, they admit mean-value integral

analogues. We have only to replace
1
R[ by meas R Rf

throughout. The inequality
S(x) = Si(x), »<t<0 or O0<r<t,

of § 14 concerning finite sums is not homogeneous in 2 and does not
have an integral analogue. But the opposite inequality

MT(x) th(x)» —o0 Z ¥ <l = >,
concerning means, while also not homogeneous in X, does have an
integral analogue:
1

(m;RgUWHjmé(m%Rgmwfyﬁ

Here, for M_,, and M, we understand the essential minimum and
essential maximum (the infinum and supremum disregarding sets of
measure zero), and for M, we have the limiting value, or geometric mean,

1
em(mngmmﬂd@.

§ 19. Quasi Linearization

Let us begin our discussion of quasi linearization with the observa-
tion that an equivalent statement of the discrete version of Holder’s
inequality for » > 1 is the following:

Theorem 5. For x;= 0, p > 1, we have the representation

( Z":xf)”f’: max Zn: *: Vi (1)

i=1 R(y) i=1

where R (y) is the region defined by

2 y=1,5=0. (2)

i=1
The importance of this representation lies in the fact that we can
represent a nonlinear function such as that appearing on the left side
of (1) as an envelope of linear functions. Thus, we can establish a number
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of nontrivial properties of the nonlinear function as simple consequences

of trivial properties of the linear function J} x;y,. A more detailed
1 =1
discussion of this technique will be given below in §§ 25 and 26.

Let us now discuss some simple aspects of the above concept.

First, let L(x, y) be a function of two variables x and y, where x
and y are elements of normed spaces R and S, respectively. Let ||y||
denote the norm of the element ¥ € S, and define the new function ¢(x)
of x alone by means of the relationship

¢ (x) = max L(x, ). (3)
vl =1

Simple functional properties of L(x, y) as a function of x, valid for
all vy, such as positivity, linearity, and convexity, will be mirrored in
corresponding properties of ¢(x). In many cases, these properties are
more readily demonstrated for L (x, y) than are the corresponding
properties for ¢(x).

The first and most important case is that in which L (x, y) is linear
in x for all y, that is,

L(ocxy+ By, y) = aL (%, y) + BL(%y, y) . (4)
From this, it follows that

@ (x;+ %,) = max L(x;+ x5, y)

vl =1
= max [L(%;,y)+ L(xs, ¥)] (5)
[yl =1
= max L(x;, y) + max L(x, y)
rlis1 llvit<1
= ¢ (%) + d(x,) .
This is the ‘“triangle inequality”’, or the ‘subadditive property”,

for ¢ (x).

A second case of importance, which plays a central role in the succeed-
ing chapter devoted to matrices (see also § 35 of the present chapter), is
that in which

L(x ) =[ e M@radG(y, ), (©)

where 4G = 0, the integration‘ 1s over a region of z space, and M (x,y,2)
is linear in x for all ¥ and z.
We have then, for 0 < 1 < 1,

LAxi+ (1—A) %5, 9) = [e A M 093) o= (=DM @3, g G (y, 2) . (7)
R

Applying Hélder’s inequality with exponents p = 1/4, ¢ = 1/(1— 2),
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we obtain the relationship

LAx+ (1—2) x5, 9)
< —M(x,9,9) g (3 1 —M (29,0 4 G 1—1
= J e | ®

= L (%, y)* L (g, y)'

Taking logarithms, we see that log L (x, ¥) is a convex function of x
for all y.

In §33 of Chapter 4, we shall employ a quasi linearization of the
maximum functional; and in the book by BELLMAN, GLICKSBERG, and
Gross [1] there will be found some applications of the formula

|x| = max xy 9)
Iyl =1
to the solution of unconventional problems in the calculus of variations.
This technique was extensively used by ZvGMuND [2] in the theory of
Fourier series.

§ 20. Minkowski’s Inequality

As a first illustration of the foregoing type of argumentation, let us
give another proof of the inequality of MINKOWSKI, established above
in § 17.

Theorem 6. For x;, y;,= 0, p > 1, we have

" 1/p n 1/p n 1/p
[Z(xi"*—yi)pjl = (fo) +(23’f) . (1)
i=1 i=1 i=1
Proof. Since by HOLDER's inequality we have
7 1/p "

l 2 (x+ yi)p} =max ' (%;+ y4) %, (2)

i=1 R(z) i=1
where R (z) is the region defined by |

n
2a=1,

i=1
it follows that

"

n 1/p n
[ 2 (%t yi)p} < max ' %7+ max ' y;z;

—

R i=1 R i=1

n 1/p n 1/p
=(Z#) +(Zx)
i=1 i=1
which is the stated result.
It is not difficult to show, by means of the condition for equality in
HOLDER’s inequality, that there is equality in (1) if and only if either
p = 1 or the sets (x) and (y) are proportional.
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§ 21. Another Inequality of Minkowski

Using the same quasi-linearization techniques, let us establish a
result we shall use below in §§ 34 and 35.

Theorem 7. For x;, y,= 0, we have

7 1/n n 1/n n 1/n
[ I (xi+yi)J = ( sz‘) + ( Hyi) . (1)
i=1 1=1 g=1
Proof. The arithmetic-mean — geometric-mean inequality asserts
that
(fix) =min 52 @
xi = min -,
=1 ) R@ i=1 "

where R (2) is now the region defined by

Using (2), we have the desired result that

1/n n o .
[ncn+%ﬁ — min 3 At 2

i=1 R(z) i=1 "
LS WP
= min D —"+ min )] A (4)

R(z) i=1 R i=1"

n v 1/n n /n
(UxJ +(H%).
=1 =1

§ 22. Minkowski’s Inequality for 0 < p < 1
Again using quasi linearization, let us establish the following result:
Theorem 8. If x;, v,= 0, 0 < p < 1, we have

(Y

n 1/p n 1/p n 1/p
[ 3 (ot ym} =(2x) +(2n) (1
1=1 i=1 1=1
Proof, Let x,= u!/?, y;= v!/?. Then we wish to prove that
” 7 1/p " 1/pp
3 (it 0}ty 2 [( Su) +( 3o ] . @)
1 =1 =1 1 =1

Since for 0 < p < 1, we have

(Zo) " (Z0) =ms[a( B ra( S0)] @

where R (2) is defined by 2/ + 25 =1, 25, 2, = 0, ¢ = 1/(1 — p), it follows



§ 23. An Inequality of BECKENBACH

27
that
" 1/p " Hp e n
|( 2%) + ( sz) J = max [ P (21“i+zzvi)}
i=1 i=1 R(#» [i=1
< Y max (zu;+ z,u,)
i=1 R
g Z ( ,P_‘_ vllp
i=1
which is the desired result.
§ 23. An Inequality of Beckenbach
Let us now demonstrate [1] the following result:
Theorem 9. Let 1 < p < 2, and x;, v, >0 for i =1,2,...,n, then
En (x4 )P E x7 E ¥?
i: 1 é 1=1 + 1=1 ) (1)
2 (mt ya)rt E At E yi
i=1

1=1 1 =1

Proof. The inequality is trivial for » = 1. Otherwise, as in § 19, we
have the representation

n 1/p n :
(Exp) =max D %;%, p>1. (2)
1=1 R(z) i=1

Consequently, it is sufficient to prove that

" ? Ll P n 4
Fene]’ (Fae) [ Fae)
1=1 1=1 i
n
z

n ’ (3)
(x4 3,)7 1 T Ay z ypt

i=1
for all z,= 0.

A

In order to simplify these expressions, let us set

p ?
( XZ) ( Yis 1)
=1 1=1
x? = —1——— yz’ = .

b

4)
z x5 b3 yit
i=1 1=1
n
Solving for the quantities } x;z; and 2 ¥:2;, we can write (3) as
i=1 i=1
1jp n 1/p]?
[LZer) oo (Eo)]
1 . =1 g xP + yp. (5)
2 (%t yi)rt
i=1

To demonstrate the validity of inequality (5), we apply HOLDER’s
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inequality for » > 1 to the numerator of the left side, obtaining

{53

t=1 i1=1

1 1j(p—1) n =1 1p—1
= (74 »7) [( 2 x%"l) + ( 2 y?‘l) } :
; =1

(6)

1=1

Hence, (5) holds if we have
" L@p-1) L(p—-1)
(Z=) " (2o

=1 =1

n Li(p—1)
= [ 2 (x+ yi)p_l] .
Q=1

This, however, is MINKOWSKI's inequality, valid for 1 < p < 2.
The inequality sign in (1) is reversed for 0 < p < 1.

§ 24. An Inequality of Dresher

An extension of BECKENBACH’s inequality was obtained by DRESHER
[1] by means of moment-space techniques:
Theorem 10. If p =127 =0, f,g = 0, then
(f |f+ gl"d¢)‘/“’—’)< (ff" d¢ )'/(f’—’)
S+ glrdd [frad o
g7 dg \li—r
o)
This result can be derived through quasi linearization, as in § 23.
It was also established by DANSKIN [2], who employed a combination
of the Holder and Minkowski inequalities.

(1)

§ 25. Minkowski-Mahler Inequality
The technique we have been using in the preceding §§ 19—24 is based

on an idea introduced by MinkowsKI [1]. Let F(x) = F(xq, %5, . . ., X,,)
be a function possessing the following properties:
(a) F(x) >0, for x=+0,
(b) F(tx) =tF(x), for ¢t=0, (1)
(c) FxX)+F(y)=zF(x+y).

Clearly, F(x) is a generalized distance function, or norm, associated
with the #-dimensional vector x; see § 2.

Given a function satisfying the foregoing requirements, we can
introduce a new function G(y), the polar function, defined by the rela-
tionship

)
G(y) = mxax Fr) - (2)
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In the theory of convex bodies (see BONNESEN and FENCHEL [8.1]),
G (y) is called the “‘Stitzfunktion.” It is defined geometrically by means
of the transformation of reciprocal polars with respect to the sphere
(x, x) = 1.

From this fact, we suspect that (2) is a reciprocal relationship in
the sense that

(#, %)
F(x) = max . (3)
y G0

This was proved by MINKOWSKI; see page 24 of [8.1].
It follows that we have

(%) =F(x) G, (4)
an inequality apparently first explicitly stated and used by MAHLER [2]
in the geometrical theory of numbers.

Some interesting extensions of the pole-polar relationship are
discussed in L. C. Youna [3], which we have followed in the preceding
treatment; see also the paper by FEnNCHEL [4], which contains other
references.

A detailed discussion of these matters is given in LorcH [5], [6],
(7], [8.2], where many interesting results may be found, showing the
intimate relation between inequalities, convexity, and the ‘‘mixed
volume” concept of MINKOWSKI. These matters will be discussed in
our second volume.

§ 26. Quasi Linearization of Convex and Concave Functions

The representation of F(x) in the form contained in Equation (25.3)
yields a quasi linearization that was used by L. C. YOUNG [25.3] in a
fashion similar to our use of quasi linearization in §§ 19—24.

Let us now consider a quasi linearization that can be used in treating
convex or concave functions and functionals that are not necessarily
homogeneous. To begin with, let us treat the one-dimensional case.
Take f(#) to be a strictly convex function of # for all #, in the sense
that f"(#) > 0. Then it is easy to see that

J(u) = max [f(v) + (w—v) /'{0)], (1)

and that the unique maximum occurs at v = #. Similarly, for a strictly
concave function we have

f(u) = min [f(v) + (u—v) f'(v)]. (2)
The general result is
Theorem 11. Let f(x) = f (%1, %o, - . ., X,) be a strictly convex function
of x for all x, then
f(x) = max [f(y) + (x— 5, d(¥)], (3)

y
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where ¢(y) = (0f[0y,, 0f[0y,, ..., 0f]0y,), the gradient of f(v). The
unique MAXLIMUM occurs at y = x.

This type of quasi linearization has been extensively used by BELL-
MAN [1], [2] and KALABA [3] in connection with the analytic and
computational treatment of nonlinear functional equations.

§ 27. Another Type of Quasi Linearization

Another kind of quasi linearization, dependent on the use of
random variables, has been employed by ZvGMUND [1] and by ZYGMUND
and MARCIENKIEWICZ [2].

In [2], they establish the following result:

Theorem 12. Let S = {f;} be a linear family of functions belonging to
L?(a,b), p >0, and let T be a linear transformation with the property that
Tf;€ L?(a, b) for each i. If a constant m exists such that

afIsz-l”dx = maf \fi? dx (1)
for all 1, then
b
S (Tf)2plrdx < m [(ZfA)Pdx (2)

for any set of f;in S.
A corresponding result for variations is given in [1].

§ 28. An Inequality of Karamata

As an application of the representation in Theorem 11, we shall
establish a result due to OSTROWSKI [1], a generalization of the following
one of KARAMATA [2]:

Theorem 13. Suppose that we have 2n numbers, {x;, v}, k=1,2,...,n,
satisfying the velations

(a) xlgng”.gx1u_ylg.y22”'2yn’
(b) ¥1= Y1s

Xt X = Y1+ Ve, (1)

X1+ X+ -+ Xp=Y1= Yo+ " Vp -

Then for any continuous, convex function ¢ (x) we have

B(x) + d(xg) + -+ (%) Z(y) () + -+ da). (2

Artificial as these relations may seem, it is nonetheless true that
inequalities of this nature arise in an amazing variety of circumstances [3].
A proof of Theorem 13 is given in § 30.
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§ 29. The Schur Transformation

KARAMATA obtained the result statedin the preceding section by use
of the following theorem, of interest in itself.

Theorem 14. A necessary and sufficient condition that 2n numbers
{%x, Y1} be related by means of the inequalities in (28.1) is that

yk:lzaklxl, k= 1, 2,...,%, (1)
=1
where
(a') aklz O’
(b) 121 ay=1, (2)
(b) Eakl 1

Since transformations of this type were first discussed by ScHUR [1],
we shall follow OsTrRowsKI [28.1] in calling them Schur transformations.
In more recent years, matrices (a;,) of this type have been called doubly —
stochastic. They play an important role in certain combinatorial problems;
see BIRKHOFF [2]. A proof of this result may be found in HARDY, LITTLE-
wooD, and POLyA [1.1], and a simpler proof in OSTROWSKI [28.1]; see
also SCHREIBER [3], MIrskY [4], RyYsER [5], ScHUR [1], and FutcHs
[31.1].

§ 30. Proof of the Karamata Result

Let us now indicate how quasi linearization may be used to establish
the Karamata result of §28. Our starting point is the representation

"

¢ (x1) + P (%) + - -+ + $(x,) = max En¢(zz) +_2 (x—2) ¢'(z) |, (1)

z 1=1 1=1
where we assume initially that ¢ (z) is strictly convex.

Since the maximum is assumed for z;= x,, and we suppose that
2= %= ¢ -+ = x,, it is sufficient to allow the 2, to vary only over the

subset of all z defined by
I -G (2)

To establish the required inequality, we must show that for all
{x1, yi} satisfying (28.1), and all z, satisfying (2), we have
x1¢’(zl) + x2¢’(z2) ERE xn¢l(zn)

3
S 319'(2) + ¥2P (22) + -+ yad (2) - 3
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This, however, is immediate from summation by parts, the Abel-Brunacci
formula,

216 (z) + %4 (2) + -+ - + xn¢l(zn)
= 51 [¢'(21) — ¢ (22)] + 52 [$'(20) — &' (25)] + - - - (4)
+ Sna (@' (2n—1) — B'(2a)] + 828" (24) |
where sp= x;+ %a+ - - + ;. Since ¢'(z) > 0, we see that ¢'(z) <
< @' (254). Since sp(x) = sx(¥), k=1,2,...,n—1, and s,(x) = s,(),
we see that the inequality is valid.

§ 31. An Inequality of Ostrowski

To establish the corresponding result for more general functions, let
us consider a function F (x4, %,, . . ., x,,) that is strictly convex, so that
we may write

" oF
F %y, %y, .o, %) =max | Fzy, 25, ..., 2,) + Y (1,—2) 5| (1)

z 1=1
Once again, the maximum is taken over the region
21§22§'°.§zn1 (2)

since we are interested only is values of the x; of the same monotone
nature. In order to carry through the foregoing argument, we must
have certain inequalities connecting 0F/0z; and 0F/0z;.

In particular, we would like to have

oF oF
(2:—2;) (Ma"z{ - 'a‘;;) =0 (3)
whenever z;= z;. This is the natural extension of the condition that
¢'(2) > ¢'(z;) for z; > z;. If F satisfies this condition, we say that it
satisfies a Schur condition; see OsTrRoOwsSKI [28.1] and ScHUR [29.1].
Having imposed this condition, we easily see that the foregoing
proof extends without difficulty to yield the following result.
Theorem 15. If F satisfies the Schur condition, and the {x;, y;} satisfy
the foregoing conditions (28.1), then

E (2, % ooy %0) Z F (Y1, Y20 -+ ) - (4)

For an interesting proof of Theorem 15 by different means, see
L. FucHs [1]. Some closely related results are due to TATARKIEWICZ and
BEESACK; see BEESACK [4]. See also HARDY, LiTTLEWOOD, and P6Lya
[2], and RUDERMAN [3].

§ 32. Continuous Versions

Continuous versions of the results of §§ 286—31 have been obtained
by Fan and LorenNTz [1]. Write

f<g (1)
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if
_ ff(t)dtgfg(t)dt,0§x§.1, (2)
and
0ff(’f) dtzofg(t) at. (3)

Then the paper [1] cited above gives necessary and sufficient conditions
on the function ¢ (¢, uy, #,, . . ., #,,) in order that

Of¢ &St - oo fa) dt §Of¢ (4, &1 82 - - +» &n) A1 (4)

for every set of decreasing bounded functions f; and g; with f;, <g,,
1=12,...,n

§ 33. Symmetric Functions

Let us now turn to some interesting inequalities of MARcUs and
LopEs [1]. Let x4, %5, . .., ¥, be a set of nonnegative quantities and
denote by E,(x) the »-th elementary symmetric function of these quan-
tities, forr=1,2,...,#%,1. e,

Ei(x) = %+ %+ - -+ xp,
E,(x) = 2 XX (1)
_ it

E (x) =% %...%,.

Let E,(x) = 1. Finally, write (x) ~ () if there exists a quantity 4 such
that
x=2Ay;, 1=12...,n. (2)

The first result we wish to demonstrate is the following:
Theorem 16. For r = 1,2, ..., 0, x;, y;= 0, not all x; or y,= O,

E, (¥ +v) E, (%) E(y)
Er—l (x '{" y) g Er—l (x) + Er—l(y) ) (3)

There is strict inequality unless r = 1, or (x) ~ (), provided that at least r
of the x; and vy, are positive.
Proof. For » = 2, the result follows from the identity

n ( " " 2

P x,-Zy-—y,-Zx-)

Ey(x +3)  Ea(®)  Eyy) _ =1\ j=1"" =1’ (4)
E\ (¥ 4 ) E, (%) E, (y) 2E,(x + y) E (%) Ey(y)

Ergebn, d. Mathem. N, F., H. 30 Beckenbach and Bellman 3
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Let us then assume that » > 2 and that (x) + (y). Write (x;) to denote
the set of (#— 1) quantities xy, %,, . . ., ¥;_4, X1y, . . ., %,. We have the
two results

S i (5)
2B, (%) + Ep(x) = E, () .
We sum the second result in (5) on ¢ to get
= ;‘l xiEr—l(xze) + glEr(x;) , (6)

D E () = (n—1) E, (%) 7)
Since
Er (x) - Er (x;) X; r—l(x;)
= 4Ey () — 2 E, (%), ®
we obtain
VEr(x) = 2 xtEr—l(x) o 2 X% ET—Z(x;) ’ (9)

and therefore

E(x) _ 1] & & AE(#)
— U.=21 S M S ) } (10)
[ n " x?
T =2 "2’_,.§1 %+ Ery <x:>/E,_2<x:>'] '
From this it follows that for » =1, 2, . . ., », and for all x, we have
o E (¥ + ») _ E,(x) _ E.(y)
d(x,y) o Er—l (x _{_ J’) Er—l x) Er—l(y)
_ 1 & x} 3
a 4 § [X+F,_ (Z; +yi+ Fr——l(ys{) (11)

12

(% + y4)® ]
%+ Vit Feoa (X5 + §)

where F,(x) = E, (x)/E . ().

Assume now that the result of the theorem is valid for » — 1; that
1s, assume that

Fr—l (xtl + yz’) > Fr—l(x;') + Fr—l(y@l') ’ (12)

unless (x;) ~ (y{) in which case the sign of equality holds.
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Then, provided that (x{) + (v;) for some 2z, we have

p 12 x? ¥%
(%.5) > 7,-221 [x,.+ Fr_q (%)) - Yi+ Fra(97)
. (2,4 »i)®
i+ Vit Fo_q(x)) + Fr—l(y;):l (13)

2 [x Fr-— (y) - y: (A”i)]2
[+ Froq (2] [3i+ Frea ()] [xmL y,+ Foy (%) + Fooa (9217

1=1

Thus the inequality holds for » prov1ded that (x)) + (yi) for some 7.

4

If (x{) ~ (vi) for each 7, then (x{) = A;(y)) for each 7. Hence

[ Frq (0) — iF g (0) P = (2= A2 Fra (7)) - (14)
But F,_,(y{) = 0, since, by hypothesis, at least » of the y; are positive.
Hence, although (x;) == 4;(y{) implies that the first inequality in (13)
is actually an equality, (14) implies that the right-hand side of (13) is
positive unless x;,= A,7y;, in which case (x;) ~ (4;¥;), a contradiction.

§ 34. A Further Inequality

A further result concerning symmetric functions is the following:
Theorem 17. If {x} and {y} are sets of n positive variables, we have

[Er(x + 3172 [E,(2)]Y+ [E (9) V7. (1)

A stronger result, containing a discussion of equality, is contained
in the paper of LopEs and MARcus [33.1] refered to above. We shall
content ourselves here with the stated result.

The proof rests on a combination of Theorems 7 and 16. Namely, by
these two theorems we have

, [ Ex+9) E =+  E=+y)]Hr
[E.(x + y)]Y _[Er_l(x—{—y) E, y(x + v) 1 ]

r—

E,.(A/’) Er(y) E,,I(X) Fr 1( ) ... L
g”EHw) EHwJ[EMw)+Ewa w“”+Eﬂwﬁ @
y E, 1/r r Ei( ) 1/
= l:tg Ez-—fA({z’)V)—:I - l:i£11 Ei—lj()y) ]: [ET (x)]l/r+ [E' (y)]l/r_

§ 35. Some Results of Whiteley

Similar and further results are obtained by WHITELEY [1,2]. Write

“E§

(1+ a;t)%, k>0,

1

(1—a;t), <0,

X T (a) tn
n=20 7

(1)

'Ms

-
I
—_

3
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where the a; are positive. Then for £ < 0 we have
[T @+ BFn= [T (@) [T ()], e
and for £ > 0 we have the inequality of Theorem 17.
The new result is readily obtained by means of a type of integral-

representation technique we shall exploit in the next chapter. For |
small and £ > 0, write

1 1 .
1 —a)*  T(k) f e s(I—af)gk-14¢ (3)
0
whence
II (1 —a;t)*
i=1
. r @ —F (.gle): (4)
1=1 j= "
:[F(k)-]méf. | 'Ofe ) fgs?"ldsldsz---dsm.

It follows that

T™ (a) = [F(lk)]m%f [ . f (f‘ sjaj)nqs(s) ds, (5)

where

G(s)ds =c¢ Il ¥~ ds ds,. . .ds,. (6)
The inequality of (2) is now a consequence of the Minkowski inequality.

§36. Hyperbolic Polynomials

Let us now discuss an important concept introduced by GARDING [1],
that of a hyperbolic polynomial. Let P (x,, %y, ..., x,) = P(x) be a
homogeneous polynomial of degree # in the x; and let a = (a,,a,, ..., a,)
be a set of real quantities. If the equation in s,

P (sa+ x) =P (say+ xq, SAy+ Xy, . .., SAy+ x,) =0,

has m real zeros for all real x; we say that P (x) is hyperbolic with
respect to @. An equivalent definition is that

P (sa+ x)= Pa) II [s + Ax(a, x)], (1)
=1
where P (a) = 0 and the A;(a, x) are real whenever x is real.

As we shall see, this concept covers a number of results of this chapter
and is also significant in connection with results we shall discuss in the
chapter on matrix theory; see § 2.45.

Starting with one hyperbolic polynomial, we can form new hyperbolic
polynomials by means of the following result:
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Lemma 2. If P (x) is hyperbolic with respect to a, and m > 1, then

00 = 3 ay g Pl ®)

s also hyperbolic with respect to a.
The proof follows from ROLLE’s theorem as in § 12. Repeated applica-
tion of this lemma shows that the polynomials {P,} defined by

P(sa+ 1) — 3 s*Py() 3)
k=1
are hyperbolic.

§ 37. Garding’s Inequality

Let M (1, 2%, ..., x™), where each of the x? is an m-dimensional
vector xf= (x!, 2%, ..., '), be the completely polarized form of the
polynomial P (x),

| S “ 0
2 my — k _
M (2, 2%, ..., &™) = — k]_Tl(jg_,’lx, ax}_)P(x). (1)

Theorem 18. Let P (x) be hyperbolic with respect to a, with P(a) > 0,

m > 1, and let M be the completely polarized form of P. Let x = (x, %, . . ., X,,)
be a set of x; such that P (ta + x) &= 0 whent = 0. Then

M (2, 22,.. ., x™) = [P(a)t/m. .. [P (x™) U™, (2)

Since the proof and discussion of the case of equality require a
detailed analysis, we refer the reader to GARDING’s paper [36.1].

§ 38. Examples
Two interesting examples of hyperbolic polynomials are
Px)y=x}—af— - — a2, (1)

hyperbolic with respect to a whenever P (a) > 0, a quadratic form we
shall treat in the following § 39, and

P(x)=2%,25...%,, (2)

hyperbolic with respect to a for P (a) == 0. Since for the function (2) we
have
P(sa+ x)= 3 s"TE;(x), (3)
i=0
whena = (1, 1, ..., 1), if follows that the F;(x), the elementary symme-
tric functions, are hyperbolic with respect to (1, 1,..., 1).

As Géarding pointed out, if P (x) is hyperbolic with respect to 4, then
the hypersurfaces P(x) = c¢ are convex for x in the set of x; such that
P (ta + x) &= 0 when ¢ = 0. From this, some of the results of §§ 33, 34
can be derived.
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Further examples will be given in Chapter 2 in connection with
positive definite matrices, and in Chapter 3 in connection with the
matrices introduced by LAX. Some applications of GARDING’s inequality
to the field of differential geometry are given in CHERN [2] and in
GARDING [1].

§ 39. Lorentz Spaces

In Chapter 2, we shall restrict our attention to positive definite forms.
Let us now show how certain results can be obtained for indefinite forms.
We wish to demonstrate the following result:

Theorem 19. Let

¢(x):(x115__x125__..__x5)1/p’ p>1: (1)
for x; in the region R defined by
(2) %20, (2)
(b) 2y, > (o 4 b+ - o AP,

Then for x, vy € R, we have
d(x+y) =d(x)+40). (3)

Proof. We shall employ the quasi-linearization technique used above.

Let us demonstrate that
n

¢(x) =min 3'x,z;, (4)
S(z) 1=1
where S (2) is the region defined by
(a) 221,220,

(b) (ZB4- -tz =2—-1, ¢=

p—1-
Using HOLDER’s inequality, we have

b(x) = 22— (k é’zxg)w (k ig";z,‘i)w (6)

7 1/p
= xlzl—( > xg) (A — 1),
k=2

Minimizing the right-hand side over z,, we obtain (4). From this, the
inequality (3) follows immediately. The proof given follows BELLMAN [1].
Further remarks concerning inequalities of this type for the case
p = 2 will be found in MURNAGHAN [2].
These results can be obtained in another fashion using a representa-
tion due to BocHNER [3]. They will be discussed again in the following
Chapter 2; see §§ 2.15 and 2.16.
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The quadratic form 27 + x5 + x2 — #} plays a vital role in relativity
theory (see SYNGE [4]), and, interestingly enough, the inequality (3)
enters into the famous ‘‘twin paradox.”

For a treatment of these inequalities from the standpoint of non-
euclidean geometry, see AczEL and VARGA [3].

§ 40. Converses of Inequalities

In the foregoing §§17, 18, we discussed the Buniakowsky-Schwarz
inequality and its extension, the Ho6lder inequality. It is clear that no
inequality of the form

1 2 1 1
(fuvdx) gk(fuzdx) (fvzdx) (1)
0 0 0
can hold for all # and v in L2(0, 1) with a positive absolute constant x.
It is true, however, that inequalities of this type can hold if # and v
belong to certain subspaces of L2(0, 1).

Problems of this type have been discussed by Frank and Pick [1],
Brascuke and Pick [2], BUckNErR [3] (cf. HArDY, LiTTLEWOOD,
Pérva [1.1]), Favarp [4], BErRwALD [5], KNESER [6], and BELLMAN
[7]. Although these problems may be treated in a systematic fashion
by means of the general theory of moment spaces and convex sets (cf.
the trecatment in DRESHER [24.1]), and greatly extended using the
methods of FaAvArRpD and BErRwALD, we shall follow the treatment in
BerLimaN [7], which permits a different type of generalization at the
expense of less precise results.

Our first result is the following:

Theorem 20. Let u (%) and v (x) be concave functions of x for 0 = x = 1,
normalized by the conditions

1 1
(a) fu2dx=1, [v?®dx=1,
0 0
(b) w(0) =u (1) =0, (2)
(c) v(0) = 2(1) =
Then
1
f uwvdx = —Z— (3)
0
The minimum value % 18 attained for
u(x)=x]/3;0§x<1,u(l)=0 (4)

v(x) =(1—x)/3,0<x<1v(0)=0.
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Proof. Let #(x) belong to the class of functions over [0,1] that are
concave and zero at the endpoints. Consider the subclass of functions
that possess nonpositive second derivatives:

u'(x) =—f(x),f(x) 2 0, (5)
u(0) =u(1)=0.

Minimization over all functions in the larger class is equivalent to the
determination of the infinum over all concave functions satisfying (5).

Let K (x, y) be the GREEN’s function for the operator '’ with the
above boundary conditions, namely

K(x,y)=21—9),0=x=y=1, (6)
—(l—x)y,1=22=2y=0,.

Then u(x) may be written
u(®) = [K (%) f) dy . (7)

Using this representation, let us determine the minimum of the
linear functional

L (u) '=0fu(x) h(x)dx (8)

over all concave functions #(x), normalized as above, where 4(x) is a
given nonnegative function. We have '

L (x) =th(x)'{0fK(x.y) F() dy‘dx 9)

=110 th(x) K (%) dx]dy,

and we wish to determine the infinum over all f = 0 for which

1 11
0fuzdx=0f0fK2(y.Z)f(y)f(Z)dydz:1» (10)

where
1
K,(y,2) = [K(x, y) K(x, Z)dx. (11)
0

Reasoning by analogy with the finite-dimensional analogue, we
easily see that the infinum over f = 0, the minimum over #, is given by

1
[OfK(x,y)h(x)dle. (12)
VKz(y:J/)

We shall not give the proof here, since we shall give a proof valid
for the L? case in the following §41.

min L (#) = min
u y
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Once we have obtained this result, Theorem 20 follows readily. We

have ,
1
1 S E(x y)v(x)dx 13
[ u(x)v(x)dx =min | 2 , , (13)
0 y VE. (. 9)

Applying the same inequality, this time for the nonnegative function
K (x, v) and the concave function v (x), we obtain the end result that

1 le(x,y)K(x,z)dx v 14
[u(x)v(x)dx = min{ min |2 . (14)

0 y VszyVKZZ

It remains to show that this inequahty is nontrival. A direct calcula-
tion, carried out by O. Gross, shows that the minimum is attained at
y =1,z =0 and at the symmetric point y = 0, z = 1, yielding the value
1/2. The minimal functions are as stated.

§ 41. L? Case

Let us now prove the L? generalization of Theorem 20; sce [40.7].
The proof we give is due to WEINBERGER.

Theorem 21. Let u(x) and v(x) be concave functions, normalized by
the conditions '

(a) f[ux)]pdx—lf[v )]2dx = 1,00 >p>1, (1)

(b) #(0)=v(0)=0, %(l)=v(1)=0.

Then

1 /¢
fulyo(s) de = (b + b g1 2

Note that the maximum of the right-hand side is attained at p=¢=2.

Proof. As above, let
1

u(x) =Of K(x, y)u,(y) dy,
(3)

1

v(x)=[K(x, y) v(y)dy;

0
then

fu x)dx = [[[K(x, ) K(x,;)ul(y)vl(z)dxdydz @)

g[mmk Y, 2 ]ff{f[ny]pdx}lfp{[[sz]dx}ul 2)dydz,



42 1. The Fundamental Inequalities and Related Matters

where
jK y) K(x, 2)dx
RO 2 = TR ()P a sy (TR (v, a1 d a7 ©)

All integrals are over the interval [0,1]. Applying HOLDER’s inequality,
we get

x)Pdx= [ [[K(x,y) u,(y) dy] u(x)*1dx
w (y) {f K(x, ) [u(x)]>rdx} dy
wy (V) {S K (x, v)]12dxy/? {[[u(x)]?dx}V1dy (6)
u (y) {/[K(x, y)I? dx}'/?dy .
Similarly we have

1= [v,(2) {[[K(x 9)7dx}le dz. 7)

1A

A

= f
/
/
/

Combining these inequalities with (4), we see that

fu x)dx = min % (y, 2) . (8)

¥,z

A direct calculation, again carried out by O. Gross, shows that the
minimum has the value shown in the right-hand member of (2).

§ 42. Multidimensional Case

The same argument of §§ 40, 41 yields the following general result:

Theorem 22, Let w(P) and v (P) be defined for points P belonging to a
region R and satisfy the following conditions theve:

(a) Au, Av <0, P¢ER,
(b) u,v=0 on B, the boundary of R, (1)
(c) JurdV = [v2dV = 1.
R R
Let K (P, Q) be the GREEN's function for the region R, and
K, (P, Q) =RfK (P, P') K (P, Q)dV". (2)
Then
Ky (P, Q)
uvdV = min : :
J P ocx VE(P, P) VEs(©@, Q) ®)

It does not seem easy to determine whether or not this is a nontrivial
result, and to determine the value of the righthand side for various
types of regions.
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§ 43. Generalizations of Favard-Berwald

Extensive generalizations of the Frank-Pick result of § 40 can be
obtained as special cases of inequalities due to FAVARD [40.4] and BER-
WALD [40.5].

The result of FAvARD is the following:

Theorem 23. Let f(x) be a nonnegative, continuous, concave function
wn [a, b], not identically zero, and set

b
=blaffde. 1)
Let m(y) be a bounded and nondecreasing function tn 0 < y < 2f, and set
=fmmda
for 0 =y < 2f Then ’
27
%u/w )y 2 wUx»wx &

Favard gave corresponding results for functions of several variables,
and also gave the conditions for equality in (2).

The generalization of this result due to BERwWALD [40.5] follows:

Theorem 24. Let f(x) be a nommegative, continuous, concave function
that is not identically zero, for a < x < b. On 0 = y < y,, where v,
ts sufficiently large, let ¢ (y).be strictly monotone and continuous. Then
the equation

— [$)dy =4 3)
0

has exactly one positive root, z = z.
Let m(y) be bounded and monotone for 0 < y < Z, and set

=jmmd¢w, )

a Stieltjes integral. Then

~fw dy_b_awax»w: - )

tf & (y) and m(y) are monotone in the same sense, and

%/zw(y)

1f they are monotone in opposite senses.

) dx (6)
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BERwWALD also determined the cases of possible equality.
As a first application of Theorem 24, take

d(y) =% m(y) = By*a, p(y) =y, 0<a<f. (7)
Then
L [ewray="21, & fw - )
where '
: b 1/o
F= [ ) [ s dx] . ©)

Hence (5) yields
/8

{ff;’/u i

For « =1, f =2, we have the Frank-Pick inequality, while « =1,
f = p > 1 yields the inequality of FAVARD:

b 1/a
e | [f(x)]“dx} (1)

b

b P
e | U dx s (Pifl)[(b_‘a) /f(x)dx]- (1)

a

Further interesting results are

b—a /f X Z 5 max f(x), (12)

due to FAVARD, and
b

/' log f(x)dx b

(b_a)-/f(x)dx, (13)

(a—b) |
€ a =

due to BERWALD, both under the foregoing assumptions concerning f(x).
Many further results, including multidimensional versions, are
contained in the papers by FAvaArD and BERWALD cited above.

§ 44. Other Converses of the Cauchy Theorem

In the preceding §§ 40—43, we considered one type of converse of
CAUCHY’s inequality. Let us now state another, due to P. SCHWEITZER
and POLYA-SzEGO [1], where a proof may be found.

Theorem 25. If O <m, < x,= M, 0 <my< vy, < M, then

1 <

(2 x?) (2” y?) (M1M2)1/2+ ( 17’1111’12 )1/2 2
i=1 i=1 my My My M, .

= ” 2 2
(2 xiyi)
i=1

IA

(1)
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The analogous continuous version also holds.

As in shown by DRESHER [24.1], the classical inequalities of CAUCHY
and HOLDER, and improvements, can be obtained as consequences of
the theory of moment spaces, along the lines we shall discuss in Chapter 3.
The preceding result is of the same nature and can be derived by these
methods. Extensions to the multidimensional case have been given by
MADANSKY [2].

An extension of this result is contained in a paper by G. S. WATSON [3],
with a proof by J. W. S. CasseLs; see also W. GREUB and W. RHEIN-
BOLDT [4].

Theorem 26. Let x;,v,>0,w; = 0,2=1, 2, ..., n, where not all w;=0.
Then
n Hn
( 2 x?wi) ( P y?w,) ( + )2
i=1 i=1 Xi¥i XY
1 2 n B = max —4;7/3}— . (2)
(E”iyiwi> Wi B
i=1

A further result in this direction is due to Ky Fan and J. Toop [5]:

Theorem 27. Let a;, b, ¢ =1, 2, ..., n, be veal numbers with each
a;b,—a;b; =0 (¢ 7). Then

J
()2 Xa} _ v a; 2
Ea? Eb% —_ (Zaibi)2 = Z (2 a]'bi — a; b;) '

This is an extension of an earlier result of J. B. CHASSAN [6].

§ 45. Refinements of the Cauchy-Buniakowsky-Schwarz
Inequalities

Having established the nonnegativity of the functional
1 1 1 2
I (u,v) = (f u? dt) (f vgdt) — (f uv dt) (1)
0 0 0 ’

we naturally are interested in obtaining a more precise lower bound than
zero. We can do this whenever the functions or functionals under
consideration are quadratic in the following fashion.

Reverting to inner products, consider the function

J (. v) = (u, w) (v, v) — (u, v)?, (2)

assumed nonnegative for all # and v.
Replace # by #f + sg, where » and s are scalars. Then [ (#, v) = 0
yields the inequality

r? [(f)f) ('l), 'l)) - (f’ '1))21 + 27s [:(f: g) ('U, 'l)) '_ (f) 'l)) (g) 'l))]

2 R (3)
+ 52 [(g, 8) (v, v) — (g, v)?] = 0,
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which, in turn, leads to

[(f, ) (v, v) — (£, v)*] [(g, &) (v, v) — (&, v)?]
= [(/. &) (v, v) — (f, ) (g, v)]%.

This inequality asserts that a new inner product, defined for fixed v
and any two elements f and g,

(4)

[/, & 0] = (/. 8 (v, ) — (£, v) (& v) (5)
satisfies the same conditions as (f. g), namely
[f.fiv] (g, &: 0] = [f. & v]* (6)

Consequently, we can repeat the foregoing procedure, and obtain
in this way a chain of inequalities, each stronger than the preceding.
These inequalities are equivalent to those given in (§5) of Chapter 2.

§ 46. A Result of Mohr and Noll
The following result was established by MonrR and NoLrL [1], a

b 2 b
refinement of the inequality (ffdt) = (b—a) [ f2dt.
Theorem 28. Let f(£) possess a continuous n-th derivative in [a, b]. Then
b 2 n=1
— (= 1)
(froa) =@—a g L

fo"" (06—t (t—a))tdt+ (—1)*R,,

(1)

where
R,=2(nl)- ff FO(s) (@) [(B—s) (¢ —s)]rdsdt. (2)
altLs<h
That R, is nonnegative follows from the alternative representation
Y1 2

Rn:ff[f f(”)(t)dt] dx,dyy...dx,dy,, (3)

where the integration is over the domain
agxng"‘gxlé‘ylg"'gynéb- (4)

More general results can be obtained by using the inverse operators
associated with the linear differential equation

L (u) = f(t), where L (u) = d®u/dt"+ py(t) d" L w/dt" 2+ - - + p,(H) u

§ 47. Generation of New Inequalities from Old

The inequality (45.4) is a particular case of more general inequalities
that can systematically be generated in the following way. Let

F(u,v) =0 (1)
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be an inequality with the property than equality holds only for # = v.
We now proceed to study the perturbed inequality obtained by setting
u=w-+rf,
(2)
U=1w -+ S¢g,
where w, f and g are elements of the same nature as # and v, and r and s

are scalar quantities. Expanding (1) about the point » = s = 0, we obtain
a result of the form

A(f,gw)r+2B(f,gw)rs+C(f g w) s

+ O (73,725,752, s3) = 0. @
Choosing 7 and s sufficiently small, we see that this implies
A(f,gw)*+2B(f,g,w)rs+ C(f,gw)s*=0 (4)
for all » and s, and thus that
B*(fg,w)=A4(f,&w)C(/gw). ()

The result (45.4) is obtained by applying the technique just sketched
to the Buniakowsky-Schwarz inequality. Other interesting results are
obtained from the Hélder inequality and the arithmetic-mean — geo-
metric-mean inequality.

§ 48. Refinement of Arithmetic-mean — Geometric-mean
Inequality

As we know, the inequality holds in the arithmetic-mean —geome tric-
mean relation unless all the x; are equal. In connection with the theory
of algebraic numbers, it is of some interest to measure the nonequality
of the x; by means of the discriminant

dp= I (x,— x)%, (1)
1<ii<n

and to estimate a lower bound for the ratio

X Xg oo Xy

in terms of d,.. Results of this type were first given by ScHUr [1], and
subsequent investigations were carried out by SIEGEL [2], KOBER [3],
DinGHAS [4].
§ 49. Inequalities with Alternating Signs
The following result was obtained by Szecé6 [1].
Theorem 29. Let a,= a,= ++* = a4y, 1= 0, and let f(x) be a convex
function defined on [0, ay]. Then

D CENHRC] (1
i=1 j=1

/
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An analogous result was derived by BELLMAN [2] by means of a
simple comparison of areas:

Theorem 30. Let a,= ay = -+ = ay, 1= 0, and f(x) be a convex
Sfunction defined on [0, a;]. Then, if f(0) < 0,

; (1)~ f(a) 2f(7ﬁ‘ (—l)f—la,-). @)

The special case f(x) = x7, » > 1, was established independently by
WEINBERGER [3].

Using the Schur majorization of § 19, OLKIN [4] derived a more
general inequality containing the two foregoing results as special cases:

Theorem 31. Letl Zw, = wy= - =2 w,= 0,q, = a,= » = a,= 0,
and let f(x) be a convex function defined on [0, a,]. Then

[1—72"<—1>f-‘w/] )+ 3 0 wf(e) 2£| 3 0w )

o

Rather than follow OLKIN’s procedure, we shall establish an inequality
containing the foregoing result as a special case; see §§ 50, 51.

A number of OLKIN’s theorems are contained in BRUNK [6], where more
general results are given. These are related to the theorems established
earlier in §§ 28—32.

§ 50. Steffensen’s Inequality

Let us establish the following result due to STEFFENSEN [1]. The
proof follows BELLMAN [2].

Theorem 32. Let

(@) f(t) be mommegative and monotone decreasing in [a, b],
(b) g(¢t) satisfy the constraint 0 = g(t) =< 1,tn [a, b].
Then

b a+c
S0 ar= 10w a1 S0 @

where

Proof. Define the function #(s) by means of the relationship

[fOgtat=rfeat. ~ )
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It is easy to see, as a consequence of our assumptions concerning f and g,
that « (@) = a, that #(s) is continuous and monotone increasing as s goes
from a to b, and that #(s) < s. Upon differentiating, we have

f) = f(9) g(s), (5)
whence

= darels) = gls). ®)
Hence

u =< a+fsg(t) dt . (7)

This yields the right-hand side of (2), and the left-hand side is derived
similarly.
§ 51. Brunk-Olkin Inequality

To obtain OLKIN’s inequality (49.3), let g(f) be the function defined
as follows:
g =y < t<ank=12 ..., n—1, (1)
where
A= wy, dp=0,— Wy, hy= w;— wy+ W, (2)

and so on, and let % (f) = f’(¢). This choice actually yields a slightly
stronger result than that contained in Theorem 31.

§ 52. Extensions of Steffensen’s Inequality

Many further results can be established in the same fashion. For
example, there is the following extension of Steffensen’s inequality:

Theorem 33. Letf

(a) f(f) be nonmegative and monotone decreasing in [a, b],
(b) fe€L?[e,b], (1)
(c) g6 =0, fbg"dt =1,
where p>1,q=p/(p—1). Then
b p a+tc
(ffeat) =7 pras, @

where

c=a+(j?gdt)ﬁ. (3)

a

Ergebn. d. Mathem. N. F,, H. 30 Beckenbach and Bellman 4
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Chapter 2

Positive Definite Matrices, Characteristic Roots,
and Positive Matrices

§ 1. Introduction

As soon as we leave the well-traversed fields of real and complex
numbers for the broader and relatively unexplored domains of hyper-
complex numbers, we open the way for the introduction of many
different types of ordering relationships. In this chapter, we shall discuss
a variety of interesting inequalities centering about the theme of matrices.
As we shall see, the basic concept of positive number can be extended
to matrices in many different and significant ways.

The simplest and most immediate extension is the notion of positive
definite matrix. We shall begin by focusing our attention on the character-
istic roots of matrices of this type and on certain functions of the charac-
teristic roots. The most interesting function of this sort is the product
of the characteristic roots, the determinant of the matrix.

Of the many routes that can be followed toward our goal of obtaining
properties of the determinant, we shall pursue one based on integral
representations of determinants. After a few results have been derived
from an elementary representation of the corresponding positive definite
quadratic form as a sum of squares, some more intricate results are
obtained from an integral representation of the determinant, due to
INGHAM and SIEGEL, and from generalizations due to BELLMAN and
OLKIN.

To get corresponding results for positive definite hermitian matrices,
we shall derive a new identity for the determinant of a hermitian matrix.
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This representation enables us to exhibit a number of results by means
of the same type of argument that is valid for symmetric matrices.

Several of the results we derive are due originally to Ky FAN, who
obtained them by means of arguments based on variational formulas
extending FISCHER’s classical min-max determination of the characte-
ristic roots. This is another powerful method that might be systematically
exploited.

Turning from the study of positive definite matrices, we next consider
positive matrices, a class of matrices introduced into analysis by PERRON
and extensively cultivated by FROBENIUS. In recent years, these matrices
have assumed a prominent position in the study of computational
algorithms for the numerical solution of partial differential equations
in the study of branching processes, in the theory of games and linear
programming, and in mathematical economics.

In the case of positive matrices, we are able to obtain a variational
determination of one characteristic root, the root of largest absolute
value, which turns out to be real. The representation thus obtained
enables us to establish an interesting result concerning the behavior of
this root as a function of the matrix.

The theory of positive matrices is only the surface outcropping of
two extremely rich veins, the theory of positive operators and the theory
of variation-diminishing transformations. We shall have only some very
brief remarks to make concerning these fields in which GANTMACHER,
KREIN, SCHOENBERG, KARLIN and McGREGOR, and others have done
so much. These two theories merit treatises of their own.

In addition to the foregoing concepts of positivity, there are also the
domain of positivity introduced by KOECHER, which is connected with
the integral of INGHAM and SIEGEL, and the positive transformations of
LoEwNER, which turn out to have great significance in the scattering
theory of quantum mechanics and also in the analysis of linear electrical
networks.

We shall briefly mention the recent results of Lax concerning a class
of matrices of importance in the field of hyperbolic partial differential
equations. The general results of GARDING, discussed in §§ 36—38 of
Chapter 1, show the reason for the similarity that exists between the
theory of the characteristic roots of these matrices and the theory of the
characteristic roots of hermitian matrices.

It will be apparent from our brief sketch of some results, our hints
of others, and our references to still others, that the study of the many
different types of order relationships associated with finite-dimensional
and infinite-dimensional operators has just begun, and that many
beautiful ideas and elegant results lie ahead. In view of the great number
of inequalities that exist relating to determinants and characteristic
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roots of matrices, our aim has been to indicate some of the many different
approaches that can be used, rather than to attempt an encyclopedic
account.

§ 2. Positive Definite Matrices

Let us begin by recalling some fundamental notions and exhibiting
the symbolism we shall employ.

A real, square matrix, 4 = (a;;), 1,7=1,2,...,n, is said to be
symmetric provided a;;= a;,. A real, symmetric matrix is said to be
positive definite provided the quadratic form

Q) = 3 a5, (1)

i, j=1
is positive for all nontrivial sets of values of the real variables #,, i. e.,
for (%4, %o, . .., %,) = (0,0, ...,0)[1].
A complex matrix H = (h;,), 4,7 = 1,2, ..., n,is said to be hermitian
provided the 4;; and k;; are conjugate imaginaries, i.e., h;;=h;,.
A hermitian matrix is said to be positive definite if the hermitian form

PE) = 3 hin @)

i j=1
is positive for all nontrivial sets of values of the complex variables z;.
Of course, the hermitian form (2) reduces to (1) when the z; and 4,;
are real.

If the quadratic or hermitian form is merely nonnegative, we call the
corresponding matrix positive semudefinite or nonnegative definite.

Let us, as usual, write

(9 = 3 513 )

for any two n-dimensional vectors x and y, the inner product of x and y.
Then we may write the compact and illuminating representations

Q(x) = (x, 4%),
P(z) = (z, HZ) .

Finally, let us write |4| to denote the determinant of the matrix 4.
This convention will be followed throughout Chapter 2; when vertical
bars denote absolute value, this will be explicitly stated.

In discussing positive definite forms, we shall first restrict our
attention to the real case, though analogous results hold quite generally
for hermitian forms.

(4)

§ 3. A Necessary Condition for Positive Definiteness

Let us begin by proving that it 4 is positive definite then |4| > 0.
It is first of all easily seen that |4| 4- 0 if 4 is positive definite. Thus,
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if we should have [4| = 0, we could choose a nontrivial set of values x;
so that the equations

n

Z,'a“x,—O 1=1,2,...,n, (1)

would be satisfied. For these values, we would have

n

(x, d%) = 3 x (]élawx,-): 0, @

i=1
a contradiction.

To show that [4] > 0, we employ a continuity argument that can
often be used in similar situations. Consider the matrix A1 + (1— 1) 4
where 0 < 1 = 1 and I is the identity matrix. Clearly this matrix is
positive definite if A is positive definite. Hence |[A] + (1 — A4) 4] is
nonzero. Since this determinant is continuous as a function of 4 and
positive at A = 1, it necessarily is positive at 1 = 0.

It follows that if 4 is positive definite, then all the determinants

|Ak|:|ai5[,1.,].:1,2,...,]3;k:1,2,...,%, (3)

must be positive.

If it is given only that A is nonnegative definite, then A7 + (1— 1) 4
is positive definite for 0 <A < 1, and the foregoing proof applies to
show that the determinants (3) must all be nonnegative.

§ 4. Representation as a Sum of Squares

Let us now see if a positive definite quadratic form can be represented
in a fashion that makes its positivity obvious. We shall see, in fact,
that such a form can be exhibited as a sum of squares of linear functions.
This type of investigation is in line with some of the remarks we have
made in Chapter 1; see §§ 1.3 and 1.10. Obvious representations of
this type are not always possible when we are dealing with general
classes of functions; see [2.1], where further references will be found.

For n = 2, we may write the identity

2
ay.%; \2 a1z 2
a3 xl + 2ay5 %y %5 + “229‘2 = dan (x1+ ) =+ (‘122— ) X9, (1)

a a1

provided that @,; & 0, whether or not the form is definite.
Note that

0 ay11 Q19
_ Gp | |Gyp Agy| (2)
an an
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The relationship (1) admits the following important extension:
Theorem 1. (LAGRANGE, BELTRAML.) If none of the determinants

Ayy Ayp " " " Ay
lAkI T (a1 %2 " " Aokl (3)
a'klakz' T Ak
k=1,2,...,n—1, are zero, then Q(x)= (x, Ax) can be expressed in
the form
00) = 3 L o7 @)
k=1 [Ax-al 7#2
where |Ay| =1,
n
V= %+ 3 byix;, R=1,2,...,n, (5)
j=k+1

and the by ; are rational functions of the a,;.
This result is readily established via an inductive argument; see [2.1].

§ 5. A Necessary and Sufficient Condition for Positive
Definiteness

As an immediate consequence of the representation (4) of §4 and
the results of § 3, we derive the following fundamental characterization:

Theorem 2. A necessary and sufficient condition that the symmetric
matrix A be positive definite is that

|4, >0, k=1,2,...,n. (1)

Actually, for the necessity we can omit the assumption that 4 is
symmetric since, as OsTRowskI and TAUSSKY [1] have shown,if A = B4 C,
where B is positive definite and C is skew symmetric, then |4| = |B|.

The foregoing proof can readily be adapted to show that 4 is non-
negative definite if and only if the determinants in (1) are all nonnegative.

Theorem 2 plays an important role in the study of moment spaces.
The method that is universally employed is that of reducing the positivity
of a function to the positive definite character of a matrix. In this way,
the relations (1) yield a set of necessary and sufficient conditions.

§ 6. Gramians

In the results of Theorem 2, we have a systematic method for
generating chains of inequalities by means of matrices that obviously are
positive definite. Consider, for example, a real, square matrix X, which
we assume to be nonsingular; i. e., we assume that

det X = |X|+0.



60 2. Positive Definite Matrices, Characteristic Roots, and Positive Matrices

If X’ denotes the transpose of X, then XX’ is symmetric and positive
definite. This follows from the identity

(x, XX'2) = (X'x, X'x), (1)

and from the fact that, since X’ is nonsingular, we have X’ x = 0 only
for the trivial vector x = 0.

Let X have the form

prsd)
-177). @
o
where the x¢) are row vectors. Then we may write
XX'=((#9,20), 4,;=12,...,n. 3)

Accordingly, we see that if the vectors x(¥) are linearly independent,
then all the determinants, the Gramzans,

Gr= (20, x|, 4,;=12,...,%, (4)
k=1,2,...,n, are positive.
The case & = 2 yields the result

1 1=

”n n
2
E/'V,' Elx,- Vi

> 0, (5)

EAE(Eof

provided that the vectors x and y are linearly independent. This is the
Cauchy inequality; see § 2 of Chapter 1.

or

Just as in the case of the Cauchy inequality, for which we have
previously noted the Lagrange identity

n n n 2 n
(Z'l xf) (Z‘l}’f) — (Z; X yi) = '21 (%:iyi— %;5)% (7)
1= 1= 1= 1, 1=
there is a representation of G,, for arbitrary %, as a sum of squares;
see page 16 of HARDY, LiTTLEWoOD, POLYA ([1.1] in Chapter 1).

Actually, the representation 4 = T L T, where T is a real, orthogonal
matrix and L is a diagonal matrix with positive elements down the main
diagonal, is valid for any positive definite matrix 4. It shows that any
matrix of this type may be considered, relative to a generalized inner
product, to be a Gramian. This observation furnishes another proof of
Theorem 2.



§ 7. Evaluation of an Infinite Integral 61

A number of interesting results can be derived from the following
rcpresentation theorem:

b b |f1(%) fi{x) .. - f1(%)

__/ ffz D fa (%) - fa(%)

“fa(x) fa(xe) - fa()

‘gl (#1) &1 (%3) - . - &1(¥n)
- 182(%1) 82(%2) - - 2(n)| d %,

/fz (x) g;(x)dx

8n(21) 8a(%2) - - - 8n (%)

whered x denotesd x,d x, ... d x,; see POLYA and SzeGO ([44.1]in Chap. 1),
page 48. See also ANDREIEF [l], DE Bruijn [2], Jacosson [3],
MacDurrEE [4], and KoLMOGOROFF [5]. From (8), it is clear that if we set

gl= affz-(x) g;(%) dx

then all the results valid for the usual scalar inner product (f, g) are
valid for this generalized inner product. For example, an inequality
due to Davis, given also by EVERITT [6], namely

fgl*= [/ flg &l, (10)

is an immediate consequence. Further resultsmaybefound in MOFFERT [7].

Generally, we shall avoid any detailed discussion of inequalities
involving determinants and minors. The interested reader may consult
DE Bruijn [8].

, 4,7=1,2,...,n, 9)

§ 7. Evaluation of an Infinite Integral

A number of the results that follow depend on the explicit evaluation
of the multidimensional integral

Ja= [0+ [e®ad, (n

where A is a positive definite matrix and the integration is over the
entire real n-dimensional space.

Theorem 3. If A is a positive definite matrix of order n, then the
wntegral J,, can be expressed as

0 n
a2
(_ofoe x d;v) 2
]n= 1/2 = vz (2)
4] |4]

Proof. Using the representation of Q(x) = (x, Ax) as a sum of
squares as given in (4.4), perform the change of variables

Vo= %+ 2 buyx;, R=1,2,...,n, (3)

=k +1
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in the multiple integral. Since the value of the JACOBIAN of the trans-
formation is 1, we obtain

”

o — 2 (14x!Ag=1)) i

Jn= f f e 77 dy
® (4)
( {oe y dy) iz
ﬁ (e AT

Actually, the precise Value of the constant
[evdy

is unimportant to us insofar as our subsequent use of this evaluation
of [, is concerned.

§ 8. Complex Matrices with Positive Definite Real Part
With a bit more effort, we can establish the following result:

Theorem 4. If A and B are real, symmetric matrices of orvder n, with
A positive definite, then

oQ o0
o [ owmarinn g T (1)
*= 4 B
— —00

m which the principal values of the square roots are understood to be used.

An immediate consequence of this, foreshadowing our subsequent
use of the identity (1), is the following result due to OSTROWSKI and
Taussky [6.1]; see also Taussky [1] and BELLmaN and HorrFman [2].

Theorem 5. If A and B are real, symmetric matrices with A positive
definite, then the absolute value ||A + i B|| of the determinant |A + i B|
satisfies the inequality

|4 +iB|| = @)
the sign of equality holding if and only if B is identically zero.
Proof. We have
‘ f fe—(x,(A—l—iB)x)dx < f f6 (x, Ax) , (3)

\—oo — 00 — 0
in which the vertical bars denote absolute value. From (3), the result of
Theorem 5 follows immediately.

§ 9. A Concavity Theorem

Again using the representation of Theorem 3, along the lines sketched
in § 19 of Chapter 1, let us demonstrate a result of Ky Fan [1].
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Theorem 6. If A and B are real, positive definite matrices, then
A4 + (1—24) B| = |A|*|Bf2 (1)
for0 1= 1.
Proof. We have

PP ) —4(x,Ax) = (1-2) (x,Bx) ] , (2)
L ) — (1—4) (x,
Ad + (1 — A) B2 / / ‘ '

Since the result is obviously valid for A = 0 and for 4 = 1, it is sufficient
to consider values A satisfying 0 <A< 1 Let us apply HOLDER’s
inequality with exponents p = 1/4, ¢ = 1/(1 — A) to the integral in (2).
The resulting inequality is

j.er/2

A4 + (1 — 4) B|™

(_70' " fooe‘("’ 4%) dx)l1 (_Z . '_fooe_("’B") alx)l_l1 (3)

oo — o0 0]

IA

nnlz
é |A lﬁ.lz IBlu—A)/z 3

which is equivalent to (1). This proof is given in [2.1].

§ 10. An Inequality Concerning Minors

Continuing in the same vein, let us demonstrate the following result:
Theorem 7. If A is a real, positive definite matrix of order n, then

[A1al < |A1al * [Arsa, al (1)
where the determinant |A, | vs defined by
|4,l = |a;;l, &, 7=r,r+1,...,s. (2)
In particular,
| < ayay ..y (3)

Proof. In the integral for /,,, make the change of variables
Xi=—2x; t=12,...,Fk,
xi:xi, i:k+],...,17/,

and add the integral thus obtained to J,.
The result is
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where U is the exponential

k n " k
—(,2 P E LT I P D) ﬂij-fifj)
(]: e i=1 j=k+1 i=k+1 j=1 (6)
Since for all positive U we have
U+U1l= 2, (7)
from (5) we obtain the inequality
(o] (o] 5
- Z_‘ Aj XX
= ce e e W71 dx
(8)

. - _27;: a;; X; xX;
oo | og BITEFE dx| s
which yields (1).

Using (1) for £ = 1, and proceeding inductively, we derive (3). For an
alternative proof of (3), extended to positive definite hermitian matrices,
see BECKENBACH [1]; see also § 14, below.

§ 11. Hadamard’s Inequality

The inequality (10.3) permits us to obtain the most famous of all
determinantal inequalities:

Theorem 8. If |x;,| is a veal determinant of order n, then
n #n 1/2
beall S 21 ( 35 5) m
1= i=

Proof. Let X = (x,,). Since the result is trivial if |[X| =0, let us
assume that [X| 4= 0. Then X X' is positive definite. Applying (10.3), we
obtain HADAMARD’s inequality (1). See HapAMARD [1], [2]. The proof
given here follows BELLMAN [3]. For alternative proofs, see MARCUS [4]
and OSTROWSKI [5].

§ 12. Szasz’s Inequality

HaDpAMARD's inequality, like the inequality connecting the arithmetic
mean and the geometric mean, caught the fancy of mathematicians,
with the result that there are a wide range of different proofs and
numerous extensions of this result. See FiscHER [1], WILLIAMSON [2],
ScHUR [3], and BusH and OLKIN [4].

A particularly interesting extension due to SzAsz is the following:
Let P, denote the product of all principal k-rowed minors of A. If A4 1s
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positive definite, then

9

n—1 n—1
po= U2 p U)o
A recent proof of (1) is due to Mirsky [5].

§ 13. A Representation Theorem for the Determinant of a
Hermitian Matrix

Let us now establish an analogue of Theorem 3.

Theorem 9. If H is a positive definite hermitian matrix, then

Jull) = [ [ o=@ 5 ax dy— anj|H], (1)

where 2= x + 1y, and dx and dy denote integration over the real n-di-
mensional volume.
Proof. The proof is in two stages. We begin by showing that

Jn (H) = [A] [T + Ai_ll BAV-fB]W s (2)
where H = A + ¢ B, and A and B are real. Since
(2, Hz) = (x, Ax) + 2 (Bx, y) + (y, 4y) . (3)

The result (2) is a consequence of a double application of Theorem 3;
see page 61.
To complete the proof, observe that
|H|=|A+iB|= |A| | +14A1'B|, 4
|H|=|4A—iB|=|A||I—{A'B|, @
and thus that
[H| |H'| = |H|* = |A]*|(I + 1A' B) (I —iA ' B)| 5
= |A]*|I+ A'BA1B|. (5)
This result is given by BELLMAN [1], partially extending a theorem of
Hua [2].
§ 14. Discussion
Having obtained Theorem 9, we can now proceed, as in §§ 7—12, to
derive extensions, to hermitian matrices, of the preceding results stated
only for real, symmetric matrices.

In the following section, we shall discuss some more versatile re-
presentations due to INGHAM, SIEGEL, BELLMAN, and OLKIN.

§ 15. Ingham-Siegel Integrals and Generalizations

We have seen in the foregoing sections that a number of interesting
results can be obtained from the quasi-linear representation for |4|-V/2.
Ergebn. d. Mathem. N. F., H. 30 Beckenbach and Bellman 5



66 2. Positive Definite Matrices, Characteristic Roots, and Positive Matrices

It is natural then to ask whether or not further results of this type can
be obtained from other representations.

To obtain these representations, we turn to integrals introduced by
SIEGEL [2] in connection with his theory of matrix modular functions,
and by INGHAM [1] in connection with statistical problems of multi-
variate analysis.

The classical integral of EULER is

o]

[e=vxstdx = T(s) y=5, R(s), R(y) > 0. (1)

An extensive generalization of this, due to SIEGEL [2], is
f 6Z—tr(XY) IXl s—(n+1)/2 av
x>0
ntnotys DO T = 1D -+ Tls — (0~ 1/2)
IYI
Here X and Y are positive definite matrices of order », tr(X) denotes
the trace of X,

(2)

av =1I1dx,;,
=]

and the integration is over the region where X is positive definite. The
real part of s is to be greater than (» — 1)/2. :

The integral equivalent to the Laplace inverse of (2) was given by
INGHAM [1] in connection with a problem arising in multivariate analysis.

The integrals of INGHAM and SIEGEL, in turn, can be extended,
following a suggestion of SELBERG; see BELLMAN [6] and OLKIN [3].
A typical result is

gk —(n+1)/2
|X| =1 . —tr (XY)
| X @]k IX(a)Iic;'_ X @ av
x>0 3
- id n 1
(Y )rr-D2D (k) T(kp+ hpey — 1/2) - [f o ?]
B VAR A=A

Here
| X®)| = x50, Gj=kEk+1,...,n,

|Ykl:|yz‘j‘, ,7=12,...,k.

The restriction on the %, is that each of the expressions &2, + %k, + - - - +
+ k,— 7/2 be positive.

A number of further extensions were given by OLKIN [7]; see also
BOCHNER ([39.3] in Chapter 1), GARDING [4], and AITKIN [5].

We shall not prove any of these identities, since the results will not
be used. It is clear that we can establish a variety of concavity theorems
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using the representation (3). It turns out, however, that more extensive
results can readily be established by use of a simpler technique; see
BELLMAN [6].

Finally, let us mention the representation used by Hua to obtain
additional determinantal inequalities. Some of his results follow also
from the representation of § 13; see BELLmAN [13.1].

§ 16. Group Invariance and Representation Formulas

In his paper [39.3] in Chapter 1, BocaNER discussed group invariance
and a number of representation formulas of the foregoing general type,
demonstrating their common origin. Thus, for example, he derived the
formula

fe—(xlyx'i'xzfl’a'i' v +xnyn)dx1dx2 “ e dxn
R
2 2 2 ()
=Ca—ya—" )"
where R is the region in (%, y) space defined by -
B> (B4 > (nt oy, (2)
Cp=2a™ W2 " (n—1)/I"[(n + 1)/2] . (3)

From this, we can readily demonstrate the result given in § 39 of Chap-
ter 1.

§ 17. Bergstrom’s Inequality

As another example of the quasi-linearization technique, let us
establish the following result of BERGSTROM [1]; the proof is due to
BELLMAN [2].

Theorem 10. Let A and B be positive definite matrices, and let A,;, B;
denote the submatrices obtained by deleting the i-th row and column. Then

448 _ 14| 1B
4+ B = 4] V1B )

Proof. Consider the problem of minimizing the positive definite
quadratic form

n
Q(x) =_'Z] a;;%;%5= (%, Ax), (2)
1, 1=
over all x,,, k= 1,2, ..., n, subject to the restriction that x;= 1.

It is easy to see, via a Lagrange multiplier or otherwise, that

min Q(x) = % . (3)

x;=1

, whence the

We thus have a quasi-linear representation for |A4|/|4,
inequality (1) follows immediately.
5%
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§ 18. A Generalization

Let us now demonstrate a simultaneous generalization, suggested by
Ky FaN, of the foregoing result and of Theorem 6 of § 9.

Let A® denote the principal submatrix of A obtained by deleting
the first (j— 1) rows and columns of A4; in particular, let A®M= 4.
Let BY) and C® have similar meanings, with C = 24 + (1 — 1) B,
0 < A= 1. Itis assumed that A and B are positive definite. Then we
have the following result.

Theorem 11. Under the foregoing conditions, the inequality

ﬁ |CO = ﬁ |4 Ok | B@)|1=hk (1)
i=1 '

j=1

holds for any set of n real numbers k; such that
;
2k
i=1

Proof. According to BERGSTROM’s inequality in § 17, we have

v

0, 7=1,2,...,n. (2)

C9] o a4 0= B
|COtD| = |14UtD)] [(1 — 2) BU+D)
[AD) | B9

= )’V(:i-i-l)' + (1—2) | BO+D) (3)

- (L ()

the last inequality holding by the arithmetic-mean — geometric-mean
inequality.
The stated inequality (1) follows when we write

n - |C(1)| \ Ry IC(2)l )kl + ke
. 1lC(7)l j — ( IC‘ )l) (!C(ml / ) (4)
7=
(||CC"(;I| )k‘+k’+ St e Cft bt -+

and use the inequality (3).

§ 19. Canonical Form

So far, we have been concentrating on the determinant of the
matrix A and on its various minors. We now wish to study the character-
istic roots of A as functions of 4. In order to do this, we require the
fundamental connection between A and its characteristic roots, which
we write as A, Ay, . . ., A4,. If A is positive definite, we know that all
the A, are positive. Let us then order them so that

M= A== A,. (1)
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There exists an orthogonal matrix 7 such that
/P
, As 0
T"AT=| o . ‘ ) . (2)
A

Equivalently, there is an orthogonal transformation, x = Ty, such that
(%, A2) = Ay + Ays+ "+ LuYn, (3)

another representation as a sum of squares if 4 is positive definite.
Similarly, if H is hermitian, we can find a unitary matrix U such that

A
R 0
ZﬂHU—(O - ), 4)
I8

where U¥* is the transpose of the matrix conjugate to U. Proofs of these
results may be found in [2.1].

The identity {3) shows that a necessary and sufficient condition that
a real symmetric matrix A be positive definite is that its characteristic
roots be postive.

§ 20. A Generalization of Bergstrom’s Inequality

Using the fundamental canonical form (2) of § 19, we can derive the
following inequality, of which the Bergstrom inequality is a special case.

Theorem 12. If the real matrix A s positive definite, then
(x, A2} (v, A7y) = (%, 9) (1)
Jfor all veal x and y.

Proof. Reducing 4 to diagonal form by means of the orthogonal
transformation x = T#, and setting y = Twv, we have to show that

(ié As %?) (1Z,n’ I;) > (Tu, Tv)= (u, v)2. 2)

=1 ()

This result, however, is a special case of the Cauchy inequality.
Since equality is obtained for a suitable choice of x, we can write

. (x,A4Ax)
— —1A\-1__ M
v(d) = O, A7y)™ = min " (3)
From this it is clear that
p (4 + B) = p(d) + p(B). (4)
If y is chosen to be the vector with the components
Yi= 1».')’9':0»]'4“‘1'» (5)

we obtain Theorem 10.
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As in Chapter 1, we can refine Theorem 12 in various ways; see
GREUB and RHEINBOLDT [44.4] in Chapter 1. Thus, for example, we have
the following result.

Theorem 13. Let A and B be real, positive definite matrices of order
n. If mI <A< myl, and mq, myg > 0, then

L+ Mmy)?
Tt (x, %) ©)

If AB=BA, mI <A < myI, mg, my >0, and myl < B < m,I, then

(x, x)2< (Ax, %) (A%, %) <

(Ax, Ax) (Bx, Bx) < ara b mamd® g\ B (7)

my My My M,

§ 21. A Representation Theorem for |A|!/»

Prior to presenting an inequality of MINKOwsKI, which admits a
number of interesting extensions, let us establish a representation
theorem of a type different from any of the preceding ones.

Theorem 14. If A is a real, positive definite matrix of ovder n, then

|A|**= min tr (A B)/n , (1)
|B|=1
where B is positive definite.

Proof. In view of the identity tr (T"ATB) =tr (ATBT’), it is
sufficient to consider that A is in diagonal form. Then

tr (A B) = 32 2; by, . (2)
i=1
Using the arithmetic-mean — geometric-mean inequality, we see that
n 1/n n 1/n n 1/n
D o ni) (4 b) = dpin Ib,-,-) .
r i=1 i=1 i=1

Referring to § 10, we see that
i=1

whence (1) follows.

§ 22. An Inequality of Minkowski

From the representation (21.1), we obtain immediately a result due
to MINKOWSKI:

Theorem 15. If A and B are positive definite matrices of ovder n, then
|4+ Btz |A[tin+ |Btn. (1)
For an extension of this result to matrices that are not necessarily

symmetric, see HAYNESWORTH [1], [2], where many additional reference
will be found.
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§ 23. A Generalization due to Ky Fan

Ky Fan [1] has given a simultaneous generalization of the foregoing
inequality (22.1), and of the inequality of BERGSTROM referred to above
in § 17, namely the following:

Theorem 16. Let A, denote the principal submatrix of A formed by
taking the first k rows and columns of A. If C = A + B, where A and B
are positive definite matrices of order n, then

(l|gll)1/(n—k) > (l|;14k|I )ll(n—k) n ( ||};3k|l )1/(n—k). (1)

The proof is based on a minimum property of a type that generalizes
(17.3). See also Ky FAN [2] and Mirsky [3].

§ 24. A Generalization due to Oppenheim

A generalization of a different type is due to OPPENHEIM [2]; see
also his earlier paper [1].

Theorem 17. Let A and B be positive definite matrices of order n, and

let M= 2oz Z Ay 2 Yo" 2= g, V= V= -0 2=, be the
characteristic roots of A, B, and A + B, respectively. Then
koo 1k Eoo\ Uk kEo\ 1k
(nm) g(na) +(Hu0 , (1)
i=1 i=1 i=1

fork=1,2,..., n
This result may be derived either by reduction to diagonal form or
by a representation of the type appearing in Theorem 25 of § 34, below.

§ 25. The Rayleigh Quotient

The characteristic roots are initially determined as the roots of the
polynomial equation

A — AT =0,

the characteristic equation of A. If A is real and symmetric, we know
that the A, are all real.

Since it is not at all easy to obtain the properties of the ; as functions
of A from this description, we look about for other characterizations.
The key to these is the representation in diagonal form given in § 19,
together with a variational characterization of the 4,. From either the
physical point of view (characteristic frequencies) or the geometric
picture (axes of an ellipsoid), we are led to introduce the Rayleigh
quotient, (x, 4 x)/(x, x).
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We can then state a striking result:

Theorem 18. If A is a real, symmetric matrix, then

1 (x, A x)
1= mix TR 1
. (x, Ax) ( )
A,= min .
(%, %)

x

The proof can be obtained in many ways. One method uses the
representation of § 19, namely,

(%, A%) = Wy + Ayl + -+ Auyn,
for (x, x) = (v, y), x = Ty.

When A, and 2, are regarded as functions of A4, the foregoing quasi-
linear representation (1) shows that if B is a nonnegative definite matrix,
then

h(A+B) = h(4),
ho (4 + B) = 1, (4) .
Furthermore, (1) yields the inequalities
M(AA 4+ (1—2) B) < AA4,(4) + (1—2) A4,(B),
Aw (A4 + (1 —2) B) =2 A4,(A4) + (1—4) 4,(B),
for any two symmetric matrices 4 and B. In other words, 4,(4) is a
convex function of 4, while 4,,(4) is a concave function of 4.

(2)

(3)

§ 26. The Fischer Min-max Theorem

The representation given in Theorem 18 can be extended in the
following fashion. Let x® be a characteristic vector associated with A,,
normalized by the condition that (x®, x®) = 1. Then, from either
analytic or geometric considerations, it is clear that

Jo= max 2 (1)

where x is constrained by the orthogonality condition (x, x®) = 0.
Let x® be a normalized characteristic vector associated with A,, yielding
the maximum in (1). Then we can write

, A
Ay = max 50 @

x

where x is now constrained by the two orthogonality conditions,
(z, xM) =0, (x, x®) = 0, and so on.

The difficulty in using this apparently quasi-linear representation
of the 4, lies in the fact that the characteristic vectors, x®, x®, .. .
also depend on A. Consequently, in place of this inductive definition of
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the 4;, we need a representation that yields 4; without implicit or explicit
dependence on 4,, 4,, . . ., 4;4.

Such a representation was obtained by FisCHER; it plays a vital role
in the further analytic theory of matrices. The generalization, yielding
corresponding results for the characteristic values of wide classes of
symmetric operators, is due to COURANT [1]; for FISCHER’s original
paper, see [2].

Theorem 19. For any real, symmetric matrix A, the characteristic
roots A= Ay = - - = A, may be obtained as follows:

A= max (x, A x),

(%, x)=1
Ay= min max (x, 4Ax), (1)
(¥, 9)=1 (x,x)=1
(*,9)=0
A= min max (x, 4 %) .
(y(l‘)yy(i)):l (x,x)=l
i=1,2,..., -1 (x,9)=0
i=1,2,... k1

Equivalently, the roots may be represented as

A, = min (x, A%),
(¥, x)=1 (2)
Ap_y= max min (x, Ax),
¥, 9)=1 (x, 2)=1
(y, ©)=0

and so on.
For proof of Theorem 19, we refer to [1] and to [2.1].
From this result, we readily see that

A+ B) = A4, k=12 ...,n, (3)
for any real, symmetric matrix 4 and any real, nonnegative definite

matrix B, a monotonicity result that is physically obvious since “‘stiffen-
ing” a rod or plate increases all of its characteristic frequencies.

§ 27. A Representation Theorem
Let us introduce the notation
|A|k: Anln—lo.'zn—k-i-lr (1)

the product of the first 2 smallest characteristic roots of the real, positive
definite matrix 4.

Denote by R, a k-dimensional subspace of the #-dimensional x; space
defined by the # — & relations

(x,a)=0, 7=12,...,n—Fk, (2)

where the a; are n — k linearly independent vectors.
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Then the result we wish to demonstrate is this

Theorem 20. For any real, positive definite matrix A,

L —(x, Ax
(e = max [e = ANgV ., (3)
Ry

where the integration is over a k-dimensional subspace defined by (2), and
the maximazation is over all such R,.

Proof. It is clear that we can begin by taking (x, 4 x) to have the
form A, a3 4+ 4,45 + + -+ + A, 22 Consider the volume, V,(p), contained
in the region determined by the condition :

Mxt+ dpxd 4+ o+ 2,22 < 9,

. (4)
(x,a)=0, 1=12,...,n—k%.
Then, clearly, '
Vi) = 0**V (1) . (5)
Hence,
—.):1' 227 _
/e =AY fe-edva@
R -0
g % (6)
k L -1
=5 V(1) e 2 ‘dp].

To complete the proof, we must show that the maximum of V,(1) is
obtained when the relations (2) are

K= Xg= """ =% =0, (7)

This, however, is an immediate consequence of the formula for the
volume of the ellipsoid described by the quadratic form

(x, Bx) =1, (8)

where B is positive definite, and of the results of FISCHER given in § 26.

§ 28. An Inequality of Ky Fan

With the aid of Theorem 20 and the method employed in §9, we
establish the following concavity theorem of FAN [1].

Theorem 21. If A and B are real, positive definite matrices of order n,
and 0 < A < 1, then

24 + (1—12) Bl = |4]; |BI{ =7 (1)

FAX’s proof is based on the representation given in § 32, below.
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§ 29. An Additive Version

Let us now obtain an additive version of Theorem 21. If in place of 4
we consider the matrix I 4+ ¢4, and in place of B the matrix I + ¢B, for
e > 0, the result of Theorem 21 reads

I+e(AAd+ (1—2) B),= I+ eA|}|[I+¢eB|,~* (1)

The characteristic roots of I +¢eA are 1+ed, = 1+¢ed, > ... =1+ ¢4,,
and similarly those of I + eB are 1 +eyy = 1+ ep, = ... 2 1+ ep,.
Hence, for small positive ¢ we obtain the result that

’I+8Al£: 1+ Ae (A‘n_l' An—1+"'+ An~k+1)+0(82)’ (2)
I+ eBl, =14 (1=A) e (Un+ o1t + Honogr) 0 (7).
Letting ¢ — 0, from the inequality of (28.1) we obtain a further
inequality:

Theorem 22. Let
Sk(A) = An+ }'n—1+ e + An—'k-i-l (3)

for any real, symmetric matrix A. If A and B are matrices of order n, and
0< A=< 1, then

Se (AA+ (1—2) B) = AS,(4) + (1— 1) S.(B) . (4)

This result is also due to Fan [9.1]. The proof given here follows
BELLMAN [2.1].

§ 30. Results Connecting Characteristic Roots of A, AA*, and
(A + 4%)2

In addition to the results described in §§ 19—29, a great many relations
have been established between the characteristic roots of 4 and thosc
of AA* and (4 + A*)/2. Here A* is the conjugate of the transpose of
A A*¥= A",

For an account of these results and additional sources, the reader is
referred to the papers by WEYL [1], Ky FAN [2], Lipskn (3], HorN [4],
WIELANDT [5], AMIR-MOEz [6], and MIRrsKY [7].

Observe that, as in the foregoing sections, every inequality for 4 A*
yields a corresponding inequality for (4 + A4%*)/2.

§ 31. The Cauchy-Poincaré Separation Theorem

An immediate consequence of FISCHER's min-max characterization
(§ 26) is the following result of CAUCHY [1] and POINCARE [2], which we
shall use in § 32.
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Theorem 23. Let {x0}, j=1,2,..., k8 < n, be a set of k ovthonormal
vectors, and set
Then '
(x, A x) = ZI: i uy (2, 4 x0) . (2)

i =1
Consider the k-dimensional symmetric matvix B defined by
B=(xD,4x®)), 7,i=12,...,k. (3)
Then
A(B) = 4,(4), 1=1,2,...,k,
Mimi(BY = 4,-;(4), 7=0,1,2,...,k—1.

See also POLYA [3] and HAMBURGER and GRIMSHAW [4].

§ 32. An Inequality for 4,4, _1... 4

Using the foregoing theorem, we can demonstrate the following result
of Ky Fan [1]:

Theorem 24. Let A be a positive definite matrix. Then

Aphp—v1... Ag=min Il (x®, Ax@®), k=1,2,...,n, (1)

1=~k
where the minimum is taken over all n — k 4 1 orthonormal vectors {x}.

Proof. We know from Theorem 7 of § 10 that
3

k
IT 2,(B) = |B| < Il (x®, A x®) . (2)
i=1 t=1

Since A,(B) = 4,(4), 44-1(B) = 4,-;(4), and so on, as in (31.4), the

inequality (2) yields the desired result, since equality can actually be

obtained by suitable choice of the x®. Reference to further results will

be found in § 36.

§ 33. Discussion

It is clear that there are many interrelations between a number of
the results we have obtained. For the benefit of the reader, let us present
a ‘“flow chart.” The logical relations are

Theorem 21 ——> Theorem 6
Theorem 24
Theorem 5

and, as we shall see in § 34,

Theorem 24 ——> Theorem 25 —— Theorem 22.
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§ 34. Additive Version

Replacing A by I 4 ¢ A, and proceeding as in § 21, we readily derive
the additive complement of Theorem 24, also due to FANx [9.1]; see
Mirsky [1].

Theorem 25. For any real, symmetric matrix A of order n,

k k
' A= max D} (x¥), A x®),

i=1 i=1

3 dyiga= min 3 (v, 436)

i=1 i=1

(1)

where in both cases the variation is over all sets of k orthomormal vectors.
Theorem 22 is a direct consequence of this representation.

Observe that it is not necessary to impose the condition that 4 be
positive definite, since I + ¢ A is positive definite for ¢ sufficiently small.
An immediate consequence of Theorem 25 is the analogue of (10.3),

.gklié.éaii’ k:1,2,..A,n. (2)

§ 35. Multiplicative Inequality Derived from Additive

Let us now show that not only can we derive the additive inequality
from the multiplicative, but that also we can derive the multiplicative
one from the additive; see BELLMAN [1]. In what follows, the matrix A
will be positive definite.

Consider the following summation by parts:
Crdet Crar Apwrt A Cady = G (At Apgr 000 4 4y)
+ (Cer1— ) (Apsat -+ 4) (1)
SRR S (e )y S

Assume for the moment that 0 < ¢, < ¢, < - - - < ¢,. Then, referring
to § 34, we see that

Cehpt Crirhprr + 0 F A S G I:Z (2@, Ax(i))]

i=k

+<ck+1—ck>[ > (xm,AM)] @)
k41

b (egta_y) (2, A x)

< e (2@, Ax®) 4 cpyy (FFD), A xEHD) 4o oe g (20, A x0),

for any set of orthonormal vectors {x®}.
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From (2) we deduce that

min ( Zn’ci/'li) < min [Zn' ¢; (2@, Ax("))] , (3)

R i=k R i=k
where R is the region in ¢, space defined by the relations

<Cn:

(a) O<Ck§ ck+1§"'
n (4)
by Hc¢;=1.
i=k
The arithmetic-mean — geometric-mean inequality, which we thor-
oughly proved in Chapter 1, tells us that

n
_Ekctﬂ.- no o \1n—k+1) n o \1n—k+1)
i= = _ ]
e (2 () B

n
and thus that the minimum of }; ¢; 4, is assumed at the points

i=k
" 1/(n—k+ 1)
(52
6= L i=k...,n. (6)
Since 4= A, ;= - - - = A, wesee that therestrictionec, < ¢, .,/ < -+~ =Z¢,

does not exclude the minimum point on the left-hand side. This is a
device we used in § 30 of Chapter 1. In order to maintain this restriction
on the right-hand side, let us temporarily impose the additional restriction

(x®), A 20) < (xE+D, 4 x6+D) < oo = (20, AxW) . (7)

Then (3) yields the relation

N«

IT A, < IT (2, A x®) (8)

7 1=k

for any orthonormal set {x{} satisfying (7).
From the symmetry of the condition, we see that this is no essential
restriction.

§ 36. Further Results

The results of Ky FAN concerning variational characterizations of
such functions as A,4,-,- -4, and A,+ A,_;+ -+ + 4, have been
extensively generalized. In the first place, we can ask for a representation
of a sum such as A4,+ A;+ 4,,. In the second place, we can ask for a
representation of a product such as 4,454,

Next, we can consider more general symmetric functions, such as

2 2,4;, and so on.Fora number of results of this nature, see OSTROWSKI
7
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[28.1], Marcus and Lopes [33.1] (both in Chapter 1), MArRcUS and
McGREGOR [1], MArRcUs and MovLrs [2], MARcus, MovLs, and WEST-
wick [3], [4], and ALl R. AMIR-MOEZ [7], where results of WIELANDT
are extensively generalized.

§ 37. Compound and Adjugate Matrices

Associated with a linear transformation, y = A x, there are a number
of important associated or induced transformations, which can often
be effectively used to study various properties of the original trans-
formation [1]. Of these, perhaps the most important are the adjoint trans-
formations.

The adjoint operator, A’, is obtained by means of the relation
(Ax, y) = (%, A’ y). This defines the matrix A’ in the finite-dimensional
case, and the same technique is used in more general situations.

Other important transformations, ‘‘induced transformations,” are
obtained by considering certain functions of ¥ and studying the trans-
formations effected upon the quantities by means of the relations y = 4 «.

For example, given the two transformations

Zaw _Zbijz:i’ i=1,2,...,1’b, (1)
=1 1 =1
we may write
yiwj:k 2 Airbir %z, . (2)
yr=1

Hence, if we introduce the two #?-dimensional vectors with components

y;w;and x;2;, 1,7 =1,2,..., n, these are related by a matrix, which we
call the Kronecker product of A and B, the n2-dimensional matrix
A X B ={(a;;B). (3)

See [2], [3], and [2.1] for further details and references.

In place of these simple functions, we can introduce higher-dimen-
sional products. A particularly interesting and important choice is the
szt of 2 by 2 determinants
¥ Vi
% Yi’
and generally the » by r determinants formed in an analogous fashion.
These introduce the ccmpound or adjugate matrices of I. SCHUR [1] and
MACDUFFEE [2].

To define these formally, we proceed as follows. Let 4 be an #» by =
matrix, and let » be an integer between 1 and ». Denote by S, the
ensemble of sets of 7 distinct integers chosen from the integers 1,2,...,#%.
Let s and ¢ be two elements of S, and let A, denote the matrix formed
from A by deleting all rows having indices that do not belong to s and
all columns having indices that do not belong to .

i=1,2...,n, (4)
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Enumerating the elements of S, in some fixed order, s, S, . . ., S,
where m = n!fr! (n — 7)!, construct the m by m matrix
C,(4) = (455D - (1)

This is called the #-th compound or adjugate of 4.

Its importance stems from the fact that the characteristic roots of
C,(A) are the m expressions of the type A; 4, ... 4, constituting the »-th
elementary symmetric function of the A, For an application of these
matrices to the derivation of various inequalities, see RYSER [3]. Further
ramifications can be found in BELLMAN [4], [5], KERNER [6], MONTROLL
and Warp [7], FEyNmaN [8], and KArRLIN and McGREGOR [9].

LN

§ 38. Positive Matrices

We turn now to the study of entirely different classes of matrices,
which also enjoy an ordering relation.

A square matrix 4 with the property that all its elements are positive
will be called a positive matrix. These matrices were introduced by
PErrON [1l], in connection with his thesis on the multidimensional
continued fractions of JacoBi. He demonstrated the following funda-
mental result.

Theorem 26. A positive matrix A possesses a unique characteristic
root of lavgest absolute value. This root, which we shall call p (A), 1s positive
and has associated with 1t a positive characteristic vector, unique up to a
multiplicative factor.

FroBENIUS [2] weakened the restriction on the a,; from positivity
to nonnegativity and made an intensive study of this wider class of
matrices. Here we shall study only positive matrices. A particularly
important class of nonnegative matrices is the class of Markoff matrices or
stochastic matrices of probability theory, determined by the condition
that the a,; represent transition probabilities,

dlagy=1, 7=1,2,...,n. (1)
i=1
Theorem 26 can be demonstrated in a variety of ways ranging from
methods drawn from the theory of differential equations by HARTMAN
and WINTNER [3], and methods drawn purely from algebra by BRAUER [4],
GAaNTMACHER and KREIN [5], and PERRON [1], to fixed-point techniques
by ALEXANDROFF and HorfF [6], Ky Fax [7], BIRKHOFF [8], and
BerLLMAN [9]. The proof presented below uses the fundamental ideas
of the general theory of positive operators. This proof, which was
communicated to us by BOHNENBLUST, is contained in BELLMAN and
DanskiN [10].
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For relations of positive matrices with the branching processes of
mathematical physics, see BELLMAN and HARRiS [11], and HaARrris [12].
For economic connections, see VON NEUMANN [13], WALD [14], LEON-
TIEFF [42.1], MORGENSTERN [42.2], ARROW and NERLOVE [42.3], and
DORFMAN, SAMUELSON, and Sorow [42.4]. Further, see KARLIN [15],
DEBREU and HERSTEIN [16], SAMUELSON [17], KREIN and RUTMAN [18],
and MEWBORN [19].

§ 39. Variational Characterization of p(A)

In this section we shall discuss a representation for p(4) as the
solution of a variational problem. This representation will permit us
to derive some basic properties of p(4) in a routine fashion.

Theorem 27. Let A be a positive matrix, let S(A) be the set of non-
negative A for which there exist nonnegative vectors x such that Ax = Ax,
and let T (A) be the set of positive A for which there exist positive vectors x
such that Ax = Ax. Then

p(4) =max i, A1€S(4),

— mi (1)
=mind, A€T(4).

Alternatively,

n

2a;; x

. ij i
$(4) = max min% ,

x i ¢

n
Za” X;
. j=
— min max ——— ,
. X,
X 1

n
where, in each case, the variation is over x, = 0, 3 x,= 1.
i=1
The result seems to have been discovered independently by a number
of authors. The first published statement appears to be that of
CorraTz [1]; see also WIELANDT [2].

Proof. By a positive vector we mean one of which all the components
are positive, with nonnegativity defined similarly. The relation ¥ > y is
equivalent to the statement that x — y is nonnegative, or x — y = 0,
where 0 denotes the null vector. Let us normalize the vectors we consider

” ”n
by the condition ||x|| = }) x;=1, and let ||4]| = }, ;-

1=1 ,7=1
If Ax < A x, we obtain

Allal] = [[A ] = [l4]] [1=]} , (3)

Ergebn. d. Mathem. N. F., H, 30 Beckenbach and Bellman 6
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where 0 < 1 < ||4]]. Hence S(A4)is a bounded set. It is easy to see that
do=sup 4, A € S(A), is actually 2 maximum. Let x® be a vector associ-
ated with 4,; i. e., let A, 2@ = 4 x®,

Let us now demonstrate that this relation is actually an equality.
Suppose, without loss of generality, that

n
2 ay; %0 — 2y, =d; >0,
7=1

n
2 a5 O — Ayt M= 0, k=2,...,%.
1=1

Consider the vector

dy/2 Agy
0

y=xO0+1 ) (5)
0

It is clear that Ay > A,y, since the elements of A are all positive.

This, however, contradicts the maximum property of A, Thus, the
assumption that d, satisfies the inequality 4, > 0 leads to a contradiction.
Similarly, we see that all the relations in (4) must be equalities.

It remains to show that 4,= p(A4). Let 2z be a characteristic vector
associated with p(A4), so that p(A) z = Az Let |z| denote the vector
having comronents that are the absolute values of the components of z.
Then the inequality |p (4)] |2| = 4 |z| leads to the result that |p (4)| = 4,.
If |p(A)| = Ay, then the relation |p(A4)| [2| = A4 |z| must be an equality.
This requires that |Az| = A4 |z|, which means that z = ¢;w, where w
is a nonnegative -vector satisfying Aw = p(A4). This, however, implies
that p(A) is real and equal to A,

To verify that the minimum definition of p(A4) is valid, we can either
proceed along similar lines or use a more elegant argument based on the
transpose matrix, or adjoint transformation, and the fact that
pA) = p(A).

The proof that the associated characteristic vector is unique up to a
multiplicative factor follows the preceding lines.

§ 40. A Modification due to Birkhoff and Varga

It was shown by BIRKHOFF and VARGA [1] that p(4) may be written
in the more elegant form

" n
2 oa;x ;s . _Zlaz'j Xy ¥y
. dg=1 : i,j=
p(A) =max min Ty, T = min max e (1)
=0 yi=0 ixiy‘ yiz0 %20 ; i Ve
(x,2)=1 (3,9} =1 ry)=1 (xnx=1
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In this form, the equality of the two variational expressions is an
immediate consequence of the extended min-max theorem of voN NEU-
MANN, which we shall discuss again in § 23 of Chapter 3.

§ 41. Some Consequences

The variational expression immediately yields the following results,
which are intuitively clear from economic considerations.

Theorem 28. If B is nonnegative and A 1s positive, then

p A+ B)=pd). (1)
If A, is a positive matrix of dimension n— 1 formed by striking out one
column and the row of like index of A, then

pd) =p(4). (2)

Using the inequality (2), we can show that p(4) is a simple root of
the characteristic equation.

Another deduction is the fact that the dominant characteristic
value of a matrix A is majorized by the dominant characteristic value
of the matrix of the absolute values of the elements of A.

In recent years, positive matrices have assumed an important role
in mathematical economics. The matrix function p(4) is connected
with the concept of an expanding economy (see VON NEUMANN [38.13])
and thus to the theory of games discussed in § 23 of Chapter 3.

§ 42. Input-output Matrices

Let us now consider a closely related class of square matrices defined

by the conditions
a;; >0 for <57, a;; real (1)
A matrix satisfying these conditions we shall call an input-output matrix.
Again, economic considerations suggest the following result. See
LEONTIEFF [1], MORGENSTERN [2], ARROW and NERLOVE [3], and DoORF-

MAN, SAMUELSON, and SoLow [4].

Theorem 29. If A is an input-output matriz, then A possesses a
characteristic root, v (A), with largest veal part; this voot v (A) is real. The
associated charactevistic vector is positive, unique up to a multiplicative
factor.

Proof. We shall obtain this result as a limiting form of Theorem 27.
Consider the matrix

fd=T L84+, (2)
which is positive for small positive 4. It is clear that
p (e24) = 7. (3)

6%
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Since this is true for a range of values of 6§, #(4) must be real; and
¥ (A) > 0 since p (e%4) > 1.

To obtain a variational characterization of #(4), let us employ (39.2).
We have

x4+ tﬁl Zla“ %
. 7=
edr(4) = I’nilX m:n ” + 0(8?) . (4)
Hence, letting d — 0, we obtain
] £' a;; Xj
7(4) = max min 71)(——— , (5)

from which the conclusion of the theorem is immediate.
From this, it is easily seen that

r (4 + B) = v(4) (6)

if A is an input-output matrix and B is a positive matrix.

§ 43. Discussion

That p(A) satisfies the variational equation given in (39.2) is a
consequence of the fact that the orthant x,= O is transformed into a
subregion of itself by the transformation 4 when A4 is a positive matrix.
Similarly, as we shall see in § 6 of Chapter 4, there is an invariant trans-
formation associated with input-output matrices. Namely, a necessary
and sufficient condition that the solution of the vector-matrix equation

dx
= Ax x(0) =c, (1)

be nonnegative for { = 0, whenever ¢ = 0, is that 4 be an input-output
matrix. See BELLMAN, GLICKSBERG, and GRross [1], and ARrow [2].

§ 44. Extensions

The foregoing results concerning positive matrices can be extended
in a number of ways. In the first place, we have the results of Ky Fan [1]
concerning the existence and characterization of values of satisfying the
#n equations

— . 0
i (%y, Koy o ooy X)) = ARy (%, %y, ..o, %), 1=1,2,...,m, (1)
where g, and %; are continuous functions defined on the simplex S formed

by all points (x;, %5, ..., %,) with x; = 0 and X'x; = 1, the g; are
concave and > 0 on S, and the %; convex on S, with 4, < 0 for x, = 0.
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In the second place, we have the results from dynamic programming,
in particular, the theory of MARKOVIAN decision processes; see BELL-
MAN [38.9] and HowARD [2] concerning the solutions of the equations

max[Za”(q)x,]zxi, 1=1,2,...,n. (2)

q i=1

§ 45. Matrices and Hyperbolic Equations

In {1], P. LAX proved the following result:

Theorem 30. Let { X} be a linear space of n-dimensional matrices over the
reals with the property that every X has only real characteristic values.
Then Ay, (X), the largest characteristic value, is a convex funclion of X,
and A, (X), the smallest characteristic function, is a concave function
of X.

In addition, LAx gave a representation of 4, (X) as a supremum
over linear functions. Since this representation and his proof depend
heavily on the theory of linear partial differential equations of hyper-
bolic type, we shall omit any further details; but see WIELANDT [3]
and GERSTENHABER [4].

A simple direct proof of the monotonicity of the characteristic roots
of A (sX;+ X,) as s increases may be found in WEINBERGER [2]. GAR-
DING pointed out that this result and the corresponding result for
characteristic roots of symmetric and hermitian matrices are particular
cases of his general theorem for hyperbolic polynomials; see [36.1] and
[38.1] in Chapter 1.

§ 46. Nonvanishing of Determinants and the Location of
Characteristic Values

Equally as important as the problem of determining upper bounds
for |4| is the problem of determining lower bounds, i. e., upper bounds
for |A-!|. Alternatively, we may wish merely to find conditions which
ensure that [4] is nonzero.

Perhaps the best-known result of this type is the following:

Theorem 31. If
|a;) > Xlasl, 1=1,2,...,n, (1)
K+

then |A| % 0.

A most interesting account of this oft-discovered result, together
with many other results, is contained in the expository paper by
Taussky [1]; see also TAUSSKY [2].

Closely related is the problem of determining regions of the 1 plane
that must contain characteristic values of 4. A discussion of some of the
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extensive work on this question may be found in PARKER [3], BRAUER [4],
Ky FaN [5], and HAYNESWORTH [6]. Additional related results appear in
OsTROWSKI [7], SLEPIAN and WEINBERG [8], [9], and Ky Fan [10].

A striking consequence of the preceding theorem is the fact that the
characteristic values of A are contained in the circles determined by the
relations of GERSGORIN

|A—a;| = 2] |a;,
k+i

, 1=1,2 ...,n. (2)

§ 47. Monotone Matrix Functions in the Sense of Loewner

Suppose we write 4 = B whenever 4 and B are real symmetric
matrices and 4 — B is nonnegative definite. It is easy to show by
means of simple examples that 4 = B does not necessarily imply that
A2 = B2

The problem of investigating the class of functions f(z) with the
property that 4 = B implies that f(4) = f(B) was first considered by
LoewNER [1], [2]. The class of functions enjoying this property for
matrices of all dimensions turns out to play a prominent role in mathe-
matical physics and in electrical network theory, where they crop up
under the name of ‘“‘positive real”’ functions.

It is easy to see that ¢,z +4 ¢,, where ¢, > 0, is a function of the
required type, but not quite as easy to see that — 2z~ is a function with an
equivalent property. Namely, if 4 = B > 0, then 4-1< B-1. We can
establish this by using the quasi-linearization technique. We first demon-
strate that

— A7) = min [{x Ax)—2 (x y)], (1)

provided that 4 > 0. The minimum occurs at the value of x given by
A x = y, whence (1) follows readily; the desired result is a consequence
of (1).

It turns out that the two functions ¢,z + ¢, and —z~! are essentially
the generators of the class of monotone matrix functions. See the papers
by LOEWNER referred to above, and BENDAT and SHERMAN [3], where
extensions to infinite-dimensional operators and other questions are
discussed. Further references and discussion may be found there, and
in Kraus [4], DosscH [5], WIGNER [6], LOoEWNER [7], DurriN [8],
ANDERSON [9], and LANE and THOMAS [10].

§ 48. Variation-diminishing Transformations

A natural extension of a positive transformation — which is to say,
a transformation that preserves the property of no variation in sign — is
that of a variation-diminishing transformation. An excellent exposition
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of the range of problems centering about this idea is given in SCHOEN-
BERG [1], where many other references may be found; see also his earlier
paper [2], and MAIRHUBER, SCHOENBERG, and WILLIAMSON [10].
Alternatively, the study of linear vibrating circuits led GANTMACHER
and KREIN to the development of ‘“‘matrices complétement nonnegatives’;
see [5] and [38.5]. This concept was previously developed by KELLOGG
[3], [4] in connection with integral equations. The theory of convolution
transforms, initiated by HiIRscHMAN and WIDDER [6], also leads naturally
to the study of variation-diminishing transformations. From another
direction, namely the field of Markov processes, KARLIN and MCGREGOR
[8] were led to further results; see also KARLIN [9]. Remarkably, there
are many geometric connections; see SCHOENBERG [7]. Once again we
must restrict our treatment to these sketchy comments since any
adequate description of this field would require a monograph on its own.

§ 49. Domains of Positivity

Closely related to positive definite matrices is the notion of the
domain of positivity associated with a given matrix 4. We say that R
1s such a region if x, y ¢ R implies that (x, Ay) = 0. Problems arising
from this concept have been studied by KoecHER [1], [2].

In what has preceded, we have observed that we can generalize the
concept of a positive transformation by requiring that 7 be a trans-
formation that preserves an order relation, 1. e.,

x=zy—->Tx=Ty. (1)

Another way of “inducing” positivity — which is to say, carrying
over the property from one space to another — is the following. Let x
and y be elements of two spaces S; and S,, respectively, with the pro-
perty that a scalar inner product, (#, y), is defined whenever x ¢ S,
Y €S,

Then, provided we have a notion of positivity for all x € S;, we can
define a “‘positive’” element y of S, by the requirement that

(x, %) =20 (2)

for all positive x € S;. This idea is a particular case of the main theme
of the following Chapter 3.

As a particular instance, it is well known that a necessary and
sufficient condition that a symmetric matrix B be positive definite is
that the inequality

tr(4B) =0 3)

hold for all positive definite matrices A. In this case, 4 and B are
elements of the same space and no new positivity concept is gencrated.
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Our pursuit of extensions of the notion of positivity to the vast
domain of matrices has thus led us far, yet much has been left unsaid.
The interested reader might consult BELLMAN [2.1] regarding stability
matrices, PHILLIPS [3] regarding dissipative operators, and WIENER and
MasaNt [4], HELsON and LOWDENSLAGER [5], and MARSHALL and
OLkIN [6], [7] regarding statistical and probabilistic considerations.
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Chapter 3
Moment Spaces and Resonance Theorems

§ 1. Introduction

A central idea of analysis, which can be used to connect vast fields
of study that at first glance may seem quite unrelated, can be expressed
in the following simple form:

“An element of a linear space S can often be characterized most
readily and revealingly in terms of its interaction with a suitably chosen
set of elements in a dual space S".”

This principle rather naturally finds its source in geometry, in the
concept of poles and polars, the most important case of which is the
point-tangent relationship. We have already used this idea in Chapter 1
in our discussion of the Minkowski-Mahler inequality, and in our repeated
appeal to quasilinear representations in Chapters 1 and 2. The duality

Ergebn. d. Mathem. N. F., H. 30 Beckenbach and Beliman 7
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between point and line characterizations permeates algebra, geometry,
and analysis. In all likelihood, it is the single most ramified concept in
mathematics.

Many instances of this “projection” technique may be found in the
theory of Fourier series, and more generally in the theory of orthogonal
expansions. The concept reaches its full flowering, however, only in the
theory of Banach spaces, and it is in the theory of Hilbert spaces that
it is most powerful. Elegant applications have been made in the theory
of partial differential equations, where the techniques of orthogonal
projection, weak solutions, and generalized solutions play dominant
roles. See BanacH [1] and ZveMUND [2].

In this chapter we shall discuss a number of ‘‘interaction” theorems,
tracing some of their common origins and their many interconnections,
and exhibiting their relations to the theory of inequalities. These relations
arise from the fact that in many important cases the interaction between
x € S and y € S’ is expressed by an inequality of the form

(x,5) =2 0, (1
with a suitable definition of the inner product.

Occasionally, as in various quasilinear representations, a more
complicated expression is required.

When problems are phrased in the foregoing fashion, it is reasonable
to expect that arguments borrowed on the one hand from the theory
of convex sets and on the other hand from the theory of linear spaces
will have a unifying and simplifying role. This is certainly the case. The
method of orthogonal projection, the Banach-Steinhaus theorem and
the Hahn-Banach extension theorem, and the notion of the ‘‘separating
plane’” all play fundamental and interchangeable parts.

It is important to note that in studying these basic questions of
mathematics, the artificial boundaries of algebra, geometry, and an-
alysis melt away. There are certain major problems and methods of
solution that cover and unite all these subdomains. For an excellent
exposition of the solution of a number of significant problems in analysis
from this unified point of view, see RosenBLOOM [3].

In view of the many different regions of analysis that are penetrated
and illuminated by these algebraic-geometric ideas, it is equally logical
and equally profitable to begin our discussion in any of a number of ways.

We shall motivate our discussion initially as a continuation of the
Cauchy-Schwarz-Buniakowsky and Hélder inequalities. In place of the
particular results we have previously obtained for the power sums

Sp= X5 + x5+ - -+ af, (2)

k=1,2,..., where the x; are nonnegative quantities, we wish to
determine a complete set of inequalities. By a complete set of inequalities,
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we mean a set of relationships of the form
Ri(81,32,...,8k);0, i=1,2,..., (3)

that are satisfied by all sequences of the form appearing in (2), and that,
conversely, ensure that any sequence {s;} satisfying these relationships
can be represented in the form given in (2); see, for example, URSELL[2.1].

This problem is, of course, fundamental in the theory of moment
spaces. Our aim is not to enter this rather vast field in any depth or
in any force, but rather to indicate how these questions are related to
the study of inequalities, what general methods can be used to investigate
them, and what types of results can be obtained. For detailed investiga-
tions of the variety of results that exist, we shall refer the reader to a
number of excellent treatises and books.

It is soon seen that we may just as well consider the more general
problem of determining complete sets of inequalities for general

“moments’’,
me= (%, v, k=1,2,... (4)

As above, x €S, y,€S’, and S and S’ are two spaces for which an inner
product of respective elements can be defined.

The problem formulated in this fashion furnishes an excellent
setting for the introduction of simple and intuitive geometric ideas
centering about the concept of convexity. After introducing these
ideas, we derive, as an immediate consequence, a well-known theorem
of F. Rigsz; this is a completion and extension of the inequality of
BEesseL in the theory of orthogonal series, and also of the HOLDER
inequality.

Following this, we turn to the problem of determining complete sets
of inequalities for the ordinary moments

mkzofl x*dG(x), (5)

and for the trigonometric moments
1
my= [ 2™k 4G (x) . (6)
0
We linger long enough in this area to exhibit the connection between
these problems and the problem of the representation of positive func-
tions, ‘‘positive’’ in some sense or other, as squares and sums of squares.
These questions, of great fascination and importance in their own right,
have been briefly touched upon in Chapter 2 in connection with positive
definite quadratic forms. Consequently, representations of nonnegative
functions as sums of squares link the investigations of this chapter with
those of Chapter 2. A surprising result is that complete sets of inequalities
7*
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can be obtained directly from the determinantal inequalities charac-
terizing positivedefinite quadratic forms, established in§§ 3—50f Chapter 2.

The concept of a positive definite function, introduced by MATH1AS [4]
and refined by BocHNER [5], plays a paramount role in many parts of
modern analysis, as a consequence of a fundamental representation
theorem due to BOCHNER [5]; see also COOPER [6]. For some of its
varied extensions, see the papers by GOoDEMONT [9], and CARTAN and
GODEMONT [10], where work of GELFAND and RAIKOV is covered. We
shall also refer the reader to some work of BOCHNER, VON NEUMANN and
SCHOENBERG on Hilbert spaces and positive definite functions [15.4],
[15.5], [15.6], and to work by ARONSzZAJN and SMITH on reproducing
kernels [16.1], [16.2]. Additional material will be found in FAN [7] and
WIDDER [8].

The theory of moments has been so thoroughly and elegantly treated,
in a number of easily available sources, that we shall bypass the principal
questions completely. We shall present some results for trigonometric
moments showing the connection between the representation theorem
for a positive trigonometric polynomial and theorems of this nature.
The theory is much simpler for trigonometric polynomials than for
ordinary polynomials, due to the simpler representations that exist for
trigonometric polynomials. See WIDDER [8], SHOHAT and TAMARKIN
[11], and KARLIN and SHAPLEY [12].

In passing, we shall indicate the rather unexpected connection
between this problem area and the classical results of PiIcARD and LANDAU
concerning entire functions that omit particular values. At the conclusion
of the chapter, we shall briefly indicate relations to the theory of TOEPLITZ
matrices; see the recent book by GRENANDER and Szec6 [13.11].

An excellent survey of the origin of extensive classes of questions
in moment theory within the framework of classical probability theory
is contained in the expository paper by MALLows [13], where many
further references are given. Here one will find a discussion of the
determination of moment spaces connected with unimodal distributions,
and so on.

As an example of the use of convexity arguments in a setting in
which at first sight they do not seem to apply, we consider the problem
of determining the range of the moments determined by expressions of
the form

m,c:flgb(x) xdx, k=12 ..., (7)

where the function ¢ (x) is a characteristic function of aset S D [0,1], i. e.,
d(x)=1, x¢8S,

¢(x) =0, otherwise. (8)
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Turning from these questions, which as mentioned above could be
dwelt upon at great length, we examine an interesting theorem due to
LanpAvu, which completes the Holder inequality in an appropriate
sense. The content of this result is that a vector x, with components
%1, X9, -+ -, X, . . ., Delongs to /7, the space of sequences {x,} for which
D |%,|? <00, p>1, if and only if its projections on all vectors in /9,

n

where ¢ = p/(p — 1), are finite. We recognize this, of course, as a fore-
runner of the elegant theorem of BANACH and STEINHAUS [1], useful
in many areas of analysis. Clearly it is closely connected to the result of
F. Riesz mentioned above, and presented below in § 7.

The theme of resonance theorems takes us next into the domain of
linear inequalities, where an analogue of the Landau theorem is a basic
discovery of Minkowski. This, in turn, is a particular result in the
general theory of linear inequalities, a classical discipline that in recent
years has been revitalized in connection with the theory of games of
BoreL and voN NEUMANN and the theory of linear programming. Here
again, since so much work has been published recently, questions will
be discussed in quite cursory fashion. For basic theory and many
references, the reader is referred to KARLIN ([38.15] in Chapter 2) and to
DoORFMAN, SAMUELSON and SoLow ([42.4] in Chapter 2).

There are many discussions of the connection between the general
theory of convex functions and linear inequalities. The recent work of
Ky Fan [15], [16], and Ky FAN, GLICKSBERG, and HoFFMAN [14] in
this field draws upon both convexity arguments and the theory of linear
and Banach spaces. In particular, the Hahn-Banach theorem plays a
vital role, demonstrating once again the intimate relation between this
result and the theorem of the separating hyperplane.

To illustrate the difference between the techniques used and the
results obtainable in the theory of linear inequalities, and those of
classical theory, we shall state and prove the Neyman-Pearson lemma.
This result, which has its origin in the field of mathematical statistics,
has recently become of importance in connection with economic and
engineering control processes. See [17], and also [19.1] in Chapter 1.

We shall close the chapter with some brief remarks concerning the
technique of orthogonal projection foreshadowed by ZAReEMBA and
developed by WEvL [18], Lax [19], and others; the connection of this
method with Du Bois REyMoND’s “fundamental lemma’’ of the calculus
of variations, for which see GRaVEs [20] and BERWALD [21]; and finally
the relationship between these ideas and the generalized solutions of
partial differential equations, developed by BoCHNER and FRIEDRICHS
and systematized in the form of the theory of distributions by L. ScHwARTZ
[22].
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Throughout, our aim will be to spotlight fundamental concepts and
to illustrate their interrelations and farreaching applications.

§ 2. Moments

Consider the expression

Sp=xF+ xb 4+ oo &k, (1)
k=1,2,..., where the x, are nonnegative quantities. When we write
Spr= x5 2 Fakal 44 A A, (2)

the Cauchy-Schwarz inequality yields the result

Sk 41 = SaxSay- (3)

Furthermore, we have the additional set of relationships
§; = s;ﬂg...gs;m?_..., (4)

and 1t is clear that many more inequalities can be obtained from these.

The question arises then as to whether there exists a complete set of
inequalities in the sense described in the introductory § 1 of this chapter.
It is interesting to observe that this problem, which appears so nonlinear
in form, can be transformed into a lnear problem. In order to do this,
we proceed in the following way. We first observe that s; may be written
as a Riemann-Stieltjes integral,

sk=0fo°x’° dG(x), (5)

where G(x) is a step function with a jump of 1 at the points x = x,,
1=1,2, ..., n, assumed to be distinct and taken, with no loss of gener-
ality, to be monotone increasing, 0 < x, < x, < - -+ < x,. If the x; are
constrained to lie between 0 and 1, the upper limit in (5) will be 1. The
general case, where the x; are not required to be distinct, can be subsumed
under the problem of studying the power sums

b= A xF 4 Apxl 4 oo+ A2, (6)

where A; > 0 and the x; are distinct.
Let us begin, then, by investigating the relationships that exist
among the elements of the sequence {m;} determined by the integrals

mkz({lx’ch(x), (7)

where G(x) is a monotone increasing bounded function over [0,1]. We
shall call this sequence a moment sequence, and shall say that the m,
constitute thc moments of the distribution function 4G (x).
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This problem, of great importance in probability theory (see SHOHAT-
TAMARKIN [1.11] and Marrows [1.13] for a discussion of it), has far too
many ramifications to be adequately treated within the confines of one
chapter of this monograph. What we propose to do here is to consider
a few basic aspects of the area of research, with particular emphasis
on some of the versatile techniques that can be applied and on their
relevance to inequalities. For a discussion of the original problem
connected with the s, defined in (1), and also for some recent results, see
URrseLL [1].

The fundamental and elegant idea that we shall exploit here is
convexity, following MINKOWSKI, CARATHEODORY, and others.

§ 3. Convexity

Let (my, m,, ..., m,) be the first # moment of the function G (x),
and (mq, my, . . ., m,) the corresponding first # moments of the function
H (x), where the moments are now computed by means of the formula
(2.7). The linearity of the integrals in (2.7), as functionals of G (x) and
H (x), enables us to assert that the quantities Am,+ (1—4) my, . .., Ame,+
+ (1 — A) m,, constitute the first # moments of the function AG(x) +
+ (1— 2) H(x). Furthermore, if 0 £ A <1, AG(x) + (1—4) H (%) is
a monotone increasing bounded function of x in [0,1] whenever G (x)
and H (x) are functions of this sort.

It follows that if we compute the first # moments of all distribution
functions G (x) defined over [0,1], where G(x) is monotone increasing
and bounded there, and regard these » quantities as coordinates of a
point in #-dimensional Euclidean space, then the set of points obtained
in this way as G (x) ranges over all functions of this type is convex. By
this we mean, as usual, that whenever P = (m, m,, ..., m,) and
Q = (m{, m3, . . ., m,) belong to this set, then all points A P+ (1—4)Q,
0 < 12 = 1, on the line segment joining P and () are also members of
this set.

Let us now observe that this is not an isolated property of the
moments defined above, but a general property shared by large classes
of sequences defined by linear functionals.

Let f be an element in a space S, and let {¢,} be a sequence of
elements in a dual space S’, where S and S’ possess the property that an
inner product (x, ¥) may be defined for any x € S and any y ¢ S".
Consider then the generalized moments

mp=(f,dx), k=12, ... (1)

If the elements ¢, possess no special properties, and the set S likewise
has no distinguishing features, it is not to be expected that any inter-
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esting properties of the sequence {m,} will be uncovered. Suppose,
however, that S possesses the important property that f€S and g€ S

implies that
h(x) = Af(x) + (1 —2) g(x)

is also an element in S for all A satisfying the inequalities 0 < 4 < 1.
If S possesses this property, we shall say that it is convex. See BONNESEN
and FENCHEL ([8.1] in Chapter 1) and EGGLESTON [1].

Then, just as above for the ordinary moments, it follows that the
points (my,, m,, . .., m;) swept out as f runs through all elements in S
constitute, for each %, a convex set of points in A-dimensional Euclidean
space.

Our treatment of moment problems will hinge upon this fundamental
notion of convexity, reinforced at various points by the equally funda-
mental idea of positivity.

§ 4. Some Examples of Convex Spaces

Let us now present some important examples of convex spaces and
associated moment sequences.

A. fes i flfz(x)dxgl; e (%) € L2(0,1) .

The Cauchy-Schwarz inequality asserts the existence of the moments

mk=0f1f¢kdx; (1)

and the triangle inequality, MINKOWSKI’s inequality for p = 2, yields
the convexity of the set S.

In the most important cases in which these moments occur, they are
the Fourier coefficients corresponding to an orthonormal sequence

B. f¢S if Ofllf( )P dx = 1; gule) €L001) p=1, Ly Lo

The Holder inequality asserts the existence of the moments, and the
Minkowski inequality yields the convexity of S.

C. f€S if ess. supremum |f(x)| < 1; ¢, (x) €L (0,1).
[y |
D. fesS if df;O,fdf=l;¢k(x)=62”ik$.
0

This furnishes an example of a complex moment sequence.
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§ 5. Examples of Nonconvex Spaces
Two interesting examples of nonconvex sets are the following:

A f(x) €S if f(x) assumes only two values, 0 or 1, for

0= x< 1; ¢ (x) = 2%

B. f(x) € S if f(x) is a continuous unimodal function in [0,1],

i. e., a function possessing a single extremum in [0,1];
& (%) = =~

Both of these spaces can be made, by means of various artifices, to
depend on convex spaces. We shall discuss one briefly (BELLMAN and
BrackweiLL [1]), and shall refer the reader to the comprehensive paper
by MaLrLows [1.13] for the other and for further references; see also
RovyDEN [2].

§ 6. On the Determination of Convex Sets

As we have stated in the foregoing sections, our aim is to present a
method that can be used to generate a complete set of inequalities. To
this end, we shall study the problem of determining the set of points
produced by the set of moments (m,, m,, . . ., m,), considered as a point
in n-dimensional space, as f runs through the elements of a space S.

To determine this region, we seek to specify the boundaries of the
region. In order to do this, we must exploit certain intrinsic properties
of S. In particular, if S is convex, which implies that the set of points
generated by the moments is convex, the following simple geometrical
idea will play an essential role.

To locate the boundary points of a convex region R in #-dimensional
space, take a plane P and move it parallel to itself until it contains
extreme points of R. The set of extreme points obtained as we apply
this procedure to all planes constitutes the boundary of R. This intuitive
characterization is not always precise. For a rigorous and detailed
discussion of this property, and for many further applications, see the
book by BONNESEN and FENCHEL ([8.1] in Chapter 1) and the papers by
Rosensroom [1.3].

As an example, consider a two-dimensional case. The lines L, and Ly
represent extreme positions of the line L, with P and P’ determined as
points belonging to the boundary B of the convex region R shown in
Fig. 3 on the next page.

In general, each point on the boundary of R is furnished by a function
f € S that yields a “tangent’ plane. A tangent plane, in turn, is character-
ized very simply by the fact that its distance from the origin is a maxi-
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mum or a minimum within the set of distances to the members of the
family of parallel planes containing elements of the region R.

14

Fig. 3

Difficulties arise as far as this intuitive description is concerned
when the boundary region has sharp corners and flat parts.

§ 7. LP-Space — A Result of F. Riesz

As a first example of the technique introduced in § 6, consider the
set S consisting of real functions f(x) satisfying the constraint

Jiparst, ()

for a given $ > 1.

Let {¢,(x)} be a sequence of functions in L? [0,1], and consider the
moments determined by the integrals

1
my= [ fépdx, k=12, ... (2)
0
Let 4, A, . . ., 4, be the direction numbers of a family of parallel
planes
Mt Agdpt o+ Apxy=17, (3)
as 7 varies between — oo and 4 co. Let (my, m,, . . ., m,) be the coordinates

of a point in the #-dimensional moment space determined by (2). Then
for some f(x) satisfying (1) we have

1

/ £ LZ It (x)J ds—7. )
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It remains to determine the elements in S that maximize or minimize
7, a quantity directly proportional to the distance of the plane (3) from
the origin. Using HOLDER’s inequality, we see that the extremal distances

are furnished by the functions

n 1/(p—1) n
P }"k ¢L‘ sgn ( Py Ak ¢k)
h=1 R=1

f(x) = 1 TR
( / DI qu)
J k=1
0
1 1/q
” q
7’max= (/Ak;‘l }"k¢k dx) * (6)
. =

7 —

min rmax :

with

In order to make use of this result, we observe that a point is in the
set R if and only if any plane through the point is at a distance from the
origin that is between the 7, and 7, computed for the family of
parallel planes determined by this plane.

We have thus established the following result; see F. RiEesz [1],
[38], HELLY [2], and Banach [1.1].

Theorem 1. The point (mq, my, . . ., m,) is an element of the n-dimen-

stonal moment space determined as in (1) and (2) if and only if

1 1/q
< ( / qu> (7)

for every set of real numbers (Ay, Ay, . . ., Ay).

Although this is an interesting and elegant result, it is only rarely
applicable for p == 2; but see Boas [4].

If, for a given infinite sequence {m;}, (7) is satisfied for all #, then
we can assert the existence of a function f € L? [0,1], satisfying (1), for
which (2) is valid. To see this, let {f,} be a sequence of functions such
that

n
): Ay,
k=1

k=1

1
mp= [ fubrdx, R=12,...,n, (8)
0
with
1
f lf'nlpdx é 1 ]
0
for n=1,2,... The sequence {f,} then possesses a subsequence {f,,}
weakly converging to a limit f(x) for which
1 1
mp=1lim [ f,,dx= [ fé,dx. 9)

n—>0 0 0
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§ 8. Bounded Variation

Let us now consider the situation (which turns out to be more
fruitful analytically) in which f(x) is a member of the set of monotone
increasing functions over [0,1] having total variation 1, and in which
{d:(x)} is a sequence of real continuous functions over this same interval.

The moment sequence is now determined by the Riemann-Stieltjes
integrals

me=[ $e(¥) af (), k=12,... (1)

To determine the boundary of the convex set in #-dimensional space
determined by (m,, m,, . . ., m,), we shall determine the maximum and

minimum of the expression
1

r=/L§nmm}mm @)

as f(x) varies over all functions f(x), monotone increasing and bounded
in [0,1].
It is clear that

e [ it

021 Lk=1

(3)

In cach case, the extremum is furnished by a function f(x) that possesses
a unit jump at a maximum or minimum, respectively, of the function

n
2 Axdi(x), and is constant elsewhere. If several maxima or minima
K=1
exist, we obtain families of step functions that yield the extremum
values.

We have thus derived the following result.
Theorem 2. A mnecessary and sufficient condition that the points

(my, my, . . ., m,) belong to the n-dimensional moment space determined
as 1n (1) is that
n n n
min 3 4,4 (%) = 3 Am, <max ) A, (x) (4)
0<r<1 k=1 k=1 0<r<1 k=1

for all real sets of parameters (A1, Ay, . . ., Ay)-

A precise determination of the boundary by means of the foregoing
result depends on a knowledge of the possible number of maxima or
minima that a function of the form

gx) = 3 Mdi(x) )

k=1
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can possess. Problems of this nature arise in the theory of best approxi-
mation initiated by CEBYSHEV; see S. BERNSTEIN [1]and J. L. WALsH [2].
A detailed investigation of these questions for the case in which ¢, (x) = x*
is given in KARLIN and SHAPLEY [1.12], where other references may be
found. An interesting investigation of the connection between these
matters and the classical inequalities may be found in DRESHER
({24.1] in Chapter 1).

Questions of this type are also of interest in the determination of
optimal strategies in the theory of games; see DRESHER and KARLIN [3]
and KARLIN ([38.15] in Chapter 2).

§ 9. Positivity
Pursuing a different path, which will enable us to interlink these
questions with the theory of positive definite quadratic forms, let us
establish a variant of Theorem 2, namely, the following result:
Theorem 3. A necessary and sufficient condition that (my, my, . . ., m,)
be a point in the n-dimensional moment space determined as in (8.1) 1s that

Ao+ X Agmp= 0 (1)
k=1
for all values of Ay, Ay, - . ., A, such that
}*o‘l‘ké‘llkﬁ[’k(x) =0 (2)

for all x n [0,1].

Proof. It is clear that the condition is necessary. Let us then show
that it is also sufficient. To do this, we show that (8.4) is implied by the
conditions (1) and (2).

Suppose that (2) implies (1) and that there exists a set of parameters
(A}, A3, . - ., A;) such that

2 Ay > max 3 Ay () . (3)
k=1 o< r=1k=1
Add a quantity A, determined by the condition that
Ao+ max 3 Ay di(x)=0. (4)
0sas1h=1

Then we have a sequence of values (A, 4, . . ., 4;) possessing the property
that

M+ 2 Aymy >0, (5)
k=1
but
A +kglz,’; i(%) = 0 (6)

for all x in [0,1].



110 3. Moment Spaces and Resonance Theorems

This contradicts the fact that (2) implies (1), since an obvious
consequence of this condition is that

Ao +k2”11kmk§ 0 (7)
for all values of 4, 4,, ..., 4, for which
b+ §1 Aede(x) < 0. )
The proof that our condition implies that
min S i) = 3 dim, ©)

is precisely the same.

It is interesting to note that whereas we have used convexity argu-
ments, this result maybe readily derived from the Hahn-Banach theorem,
as in SHOHAT-TAMARKIN [1.11]; see also BaAnacH [1.1]. This interchange
of convexity and projection arguments with the fundamental theorem
concerning the extension of linear functionals will be observed again
in what follows; see Lax [1.19], LorcH ([25.5] of Chapter 1), WESTON
[1], and Ky Fan [1.15], each paper dealing with a different area of
analysis.

The proof that the validity of these conditions for all # ensures the
existence of a function f(x), monotone increasing and bounded, follows
the same lines as in § 7 if we replace the weak convergence theorem of L?
with the Helly convergence theorem for functions of bounded variation.

§ 10. Representation as Squares

To apply the critecrion of Theorcm 3, we must determine some
necessary and sufficient conditions that a function of the form

g(x) = )“0+ }'l¢1 (x) i An¢n(x) (1)

be nonnegative in [0,1]. Although no simple criteria exist for general
sequences {¢, ()}, very elegant criteria exist for the two mostimportant

cases,
i (x) =cos2mkx, P (x) = 2% k=12 ... (2)

The general problem is itself, apart from any applications, one of
great intrinsic interest, and one that lies at the very heart of the theory
of inequalities.? Since the fundamental inequality, and one from which
all others are deduced, states that a square of a real quantity is nonnega-
tive, the problem naturally arises concerning the representation of a
particular nonnegative quantity as a square. The problem in this general

1 Cf. our discussion in §§ 45 and 47 of Chapter 1 and § 4 of Chapter 2.
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form is trivial, i. e.,

x=(yx)2, (3)
for x = 0. More subtle questions arise, however, when we turn to the
possibility of this representation under the further condition that }x
be an element of a certain preferred set, such as the set of polynomials,
polynomials with real coefficients, rational functions, trigonometric
polynomials, and so on.

Barring this, we may ask whether a nonnegative element can be
written as a sum of squares,

=it a3+ (4)
We have already met an example of this representation in §§ 3—5 of
Chapter 2 on quadratic forms.

The general problem occurs in many fields of mathematics — e. g.,
WARING’s problem in analytic number theory, the Hilbert-Artin problem
in algebra, and the representation of nonnegative harmonic functions
in analysis (see the discussions given in the book by Szeco [1]).
Here we shall merely cite two specific results, one pertaining to the
sequence {cos 2k xx}, and one to the sequence {«*}. Proofs of these
results, and a number of further results, may be found in P6rva and
SzeGO ([44.1] of Chapter 1); see also KARLIN and SHAPLEY [1.12], and
SHOHAT and TAmArRkIN [1.11].

§ 11. Nonnegative Trigonometric and Rational Polynomials

The first result we shall require for the representation of nonnegative
polynomials is due to F. RiEsz:

Theorem 4. If g,(x) is a nonnegative cosine polynomial,

En(%) = Ag+ Aycos2mx + - + A, cos 2nmx, (1)
Jor 0 < x < 1, then
gn(%) = |xg+ 2, 27854+ o+ | x,, ERINTY2, (2)

where the x; are real.
The second result, which is a consequence of Theorem 4, is the

following :

Theorem 5. If g,(x) is a rational polynomial,

gn(x) = Ao+ A+ o+ + A 27, (3)
that is nonnegative in —1 < x < 1, then
&n(%) = [P (%) ]2+ (1 — &%) [g(x)]%, (4)

where p(x) and q(x) are polynomials of degree n or n— 1 with veal coef-
[icients.
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For proofs, the reader may consult POLyA and SzeGO ([44.1] of
Chapter 1). These results, together with the results of the foregoing
sections, can be used to obtain a number of necessary and sufficient
conditions in the theory of moments.

§ 12. Positive Definite Quadratic Forms and Moment Sequences

A fundamental result is the following theorem of CARATHEODORY:

Theorem 6. A necessary and sufficient condition that the sequence {m,}
be representable as a sequence of trigonometric moments,

1
my= [ cos2m kxdf(x), (1)
0
where df = 0, 1s that the quadratic forms
e X ) 2)
k=0 li—f] =k

be nonnegative, or, equivalently, that we have the determinantal inequalities
]mli_j||>0, i,j=0,1,...,n; n=12 ... (3)

The necessity is obvious, as we see upon forming the quadratic form
1

/

The sufficiency requires more.

There are a number of interesting ways of establishing this result of
CARATHEODORY. A direct proof based on the canonical representation
of positive definite quadratic forms may be found in FiscHER [1]. It is
reproduced in [2.1] of Chapter 2, where a number of further references
to works of SzAsz, FEJER, SCHUR, and CARATHEODORY are given. For
other proofs, see the books by Ky FaAN [1.7] and SHOHAT-TAMARKIN
[1.11].

Caf (). )

n
2 xk ezﬂtk$
k=0

§ 13. Historical Note

In a brief paper that gave little indication of the important role
it would play in the development of mathematical analysis, PICARD [1]
established in a very simple fashion his famous theorem concerning the
set of values that may be omitted by an entire function. Both the
elegance of the result and the depth of the method used to prove it
gave rise to a series of interesting and significant investigations devoted
to the understanding and extension of theorems of this nature; see
BoreL [2], LANDAU [3], [9], and BIEBERBACH [8].

In the course of sharpening PICARD’s theorem, LANDAU was led to
the study of harmonic functions that are nonnegative inside the unit



§ 14. Positive Definite Sequences 113

circle. Following the type of investigation made classic by the thesis
of HADAMARD, the question arose as to whether this property could be
detected by a knowledge of the Fourier coefficients of the function.
This problem was studied intensively by FEJ£R [4], CARATHEODORY [5],
CARATHEODORY and FEjJER [6], HERGLOTZ [7], FiscHER [12.1], and F.
Riesz [7.3].

It was recognized by CARATHEODORY that this was a moment
problem. Introducing the techniques of convexity that we have used in
the foregoing §§ 3—12, he furnished a rigorous foundation for these
methods.

Closely related to the researches mentioned above is the study
initiated by ToeprLITZ. Let f(6) be a real function of 6 defined over

0<0<2m and let {c,}, n=0 41, +2,..., be the sequence of
Fourier coefficients 9n
1 7 .
anz—n'/ f(6) e~ "%40. (1)
0
The finite matrices T,,= (¢;—;), 8, 1= 0, 1, ..., n— 1, are called Toeplitz

maltrices. The characteristic roots of these matrices are closely related to
the values assumed by f(f) in the interval [0, 2x]; see G. P6LvA and
G. SzeGO ([44.1] of Chapter 1).

The study of these matrices has been resumed in recent years because
of their important role both in probability theory and in statistical
mechanics in the study of certain idealized ‘“‘order-disorder’’ problems;
see the papers by Kac, MurDOCK, and Szecd [10], and MARADUDIN
and WEIiss [12], and the book by GRENANDER and SzeGdo [11].

§ 14. Positive Definite Sequences

It is clear from what has preceded that a concept important in its
own right is that of a positive definite sequence:

A sequence of complex numbers {a,}, # = 0, - 1, £ 2,..., is called
positive definite 1f

(a) a-—n= a_'n, )

. 1
(b) 3 ap_;2,%;=0, (1)

ki1
for all sets of complex z,.
The fundamental representation theorem is due to F. Riesz [7.1]:

Theorem 7. A necessary and sufficient condition that a sequence {a,}
be positive definite is that

4= [E04V(0), @)

where V (0) is a real monotone nondecreasing function of bounded variation.
Ergebn. d. Mathem. N. F., H. 30 Beckenbach and Bellman 8
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It is interesting to note that HERGLOTZ's paper [13.7] is also devoted
to the Picard-Landau-Carathéodory problem area. Furthermore, a deri-
vation of this result using only the representation theory of positive
definite quadratic forms, plus the Helly selection theorem, may be found
in the paper by FiscHER [12.1] to which we have previously referred;
a more accessible reference is BELLMAN ([2.1] in Chapter 2).

An excellent demonstration of the central role that this representation
plays in the field of modern analysis is contained in the paper by Ky
Fan [1], where many references are given to its use in probability
theory; see also the book by GRENANDER and Szecd [13.11].

§ 15. Positive Definite Functions

A natural and most important extension of the concept introduced
in the foregoing section is that of a positive definite function. As defined
by MaTHIAS [1.4], a complex function defined for all real x is said to be
positive definite if it satisfies the following conditions:

(@) f(x) is bounded and continuous for all x, — oo < x < 0o.

(b) f{—=x)=/(x).
(c) For any set of real values %, «,, . . ., %, and any complex values
¢y, Coy - - -, C,, We have

n

2 Crc_sf (x'r_ xs)

7, s=1

v

0.

The fundamental representation theorem is due to BOCHNER; see
Fawn [1.5].

Theorem 8. Under the above conditions (a), (b), (c), there exists a
nondecreasing bounded function g(y) such that

7(3) = [ eiv=dg ()

Jor all veal x.

This result occupies a basic position in the modern theory of harmonic
analysis. It has been extensively generalized; see COOPER [1.6], LooMis
[1], WEIL (2], ScawaARTZz [1.22], and the papers by GODEMONT [1.9],
CArTAN and GODEMONT [1.10], GELFAND, and RAIKOV referred to in
the introductory section of this chapter. More recent results may be
found in DeviNATZ [3].

Generalized positive definite functions arise in connection with the
problem of determining when a scalar complex function, defined for
elements of a topological space, is a Hilbert distance function. See
BOCHNER [4], SCHOENBERG [5], and SCHOENBERG and VON NEUMANN [6]
for a discussion of these matters.
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Positive definite functions of generalized type also play a role in the
Pick-Nevanlinna interpolation theory; see Sz.-Nacy and KorRANYI [7].
Since these problems can also be considered to be moment problems,
(see WEYL [8]), we once again see an interweaving of different strands
of analysis.

§ 16. Reproducing Kernels

A complex function &(x, y) is called a reproducing kernel if
k(xy)= [ k(x1)k{t, y)dt (1)

for all real x and y. These kernels enter analysis by way of the study of
GREEN’s functions; see ARONSzAJN and SMITH [2].
The basic representation theorem is due to ARoONSzAJN [1]:

Theorem 9. A complex function k (x, y) 1s a reproducing kernel if and
only if
2 citik (%, %) = 0 (2)

Jor all complex c; and all veal x,.

§ 17. Nonconvex Spaces

It can happen that the #-dimensional moment region is convex, even
though the underlying space S is not. An interesting example of this
phenomenon is the first example discussed in § 5. There we consider
the space S of all characteristic functions f(x) defined as follows:

f(x) = 11if x € E, where E is a given subset of [0,1], .

= 0 otherwise, (1)
and the sequence of functions is given by ¢, (x) = x*. The problem we
set ourselves is that of determining the region swept out by the points

(Efdx,Efxdx,...,Efx"dx)’ )

as E ranges over all BOREL subsets of [0,1].

A theorem of A. L1IaAPOUNOFF [1] guarantees that this region is
closed and convex, despite the fact that the space of characteristic
functions f(x) clearly is not convex. Using this fact, we can easily derive
(BELLMAN and BLACKWELL [5.1]) the following result.

Theorem 10. Let X ; denote the interval{a; < x < a; ,} forj =0,..., n,
where ag=0=<a,< a,< - - = a,.,=1. The sets E,, E,, defined by

E0:X0UX2U"°,

E - X )
1= 1UX3U"',

8*
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yield boundary points of the moment space, and every E yielding a boundary
point is, except for sets of measure zero, of one of these forms.

It follows that a parametric representation of the boundary — which
conststs of two parts, D, and Dy — is given by

Dy: x;=17;0(a) +7:9(a) + - - -,

Dy: x,=r,4(a) +7,;3(@)+--+, ¢=0,1,...,n,
where
a;:-*—l . a;-}—l o
rlj(a):—-*—;Tl——', 'I/,]:O,l...,n. (5)
Proof. The functional
r:/(_ZZiti) at (6)
P 1==0
is minimized over all E for the set
E:(t,Z‘Aitig 0). (7)
i—0

This set is of form either E, or E; for suitably chosen «;, and conversely
every E, or E; furnishes a boundary set for suitably chosen 4;. Observe
that in this case the parametric representation of boundary elements
is obtained most easily in coordinates that are quite different from
the A;.

The same type of argument yields the region swept out by

(fdxfxdxfxndx) (8)
E, E, E, ’
as (Eq, Eq, ..., E,) varies over all partitions of 0 < x = 1 into n + 1

disjoint Borel sets E, E,, . . ., E,. Details may be found in [5.1].

The second example mentioned in § 5, continuous functions over
[0,1] that possess a unique extremum, may be treated in the above
fashion by first considering the subspace of functions possessing a unique
maximum at a fixed point ¥ = a, and then taking the envelope over a.
For a thorough exposition of moment problems in probability theory,
see the previously cited paper by MarLLows [1.13] and ROYDEN [5.2].

§ 18. A *“Resonance’’ Theorem of Landau

Let us now consider some ‘‘interaction’” theorems of a different type,
beginning with a convergence result due to LANDAU [1]. As in the case
of the Picard theorem, the result seems quite special, and does not in
any way presage its many significant extensions.

Theorem 11. A necessary and sufficient condition that the series

Slas, p>1,

n=1
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converge is that the series

[e )

2 anby,

n=1

converge for all sequences {b,} for which

3 (b,

n=1

converges, q = p[(p — 1) .

The necessity we recognize as an immediate consequence of the
Hoélder inequality. The sufficiency is the meat of the result. It is not
difficult to give a proof by means of contradiction, using an interesting
result due to Abel concerning the convergence and divergence of series
of the form

e o}

D8 0<a<oo, (1)

a
n=1 °

where s,= #;+ #,+ + + * + u,. As we shall see in § 19, however, the result
is actually a special case of a very powerful theorem of analysis, and any
local proof only obscures the significance of the result. Sce Banach [1.1]
for a proof using the Banach-Steinhaus theorem.

Along the same lines, we mention a generalization of classical results
concerning Cauchy products.

0

Theorem 12. A necessary and sufficient condition that the series 3 c,,
n=1
where
n
Cn= 2 ay bn—k ’ (2)
k=0
o0
converge for all convergent series D b, is that
n=0
2 Ian[ < oo .

n=0

There are extensive generalizations to various modes of summability.
All these are particular applications of the Hurwitz-Silverman-Toeplitz
summability theorem (see ZyGmuND [1.2]), which is, in turn, a parti-
cular application of the theorem we shall discuss immediately below.

Results of this nature have been discovered and rediscovered by so
many mathematicians, in published and unpublished form, that it is
difficult to assign authorship.
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§ 19. The Banach-Steinhaus Theorem

Consider the Banach space I?, p > 1, consisting of all sequences {a,}

for which the series 2 |a,|? satisfies

n=1
D |a,]? <.
n=1
For an infinite sequence b = {b,;}, consider the linear functional defined
by the inner product

f(a) = (a, b) = i a,b, . (1)

Theorem 11 asserts that the finiteness of f(a) for all elements & €19
ensures the uniform boundedness of f(a) for all b in the sphere |8]| = 1,
where

ol = ( 2 |bn|q)”". @

n=1

This is equivalent to the statement that

o 1/p
al| = ( 2|an|p)

n=1
is finite.

Stated in these terms, the result of LANDAU is a forerunner, and
particular example, of the Banach-Steinhaus theorem concerning linear
functionals; see BANACH [1.1] and ZvyeMunD [1.2].

This result occupies a fundamental place in the theory of orthogonal
series, in connection with multipliers and Lebesgue constants, in the
theory of summability, as mentioned above, and even enters into the
theory of differential equations. BeErLman [1], and MASSERA and
SCHAFFER [2], [3], characterized the solutions of the homogeneous vec-
tor-matrix equation, or more generally, an equation in Banach space,

dx

2 =40 x, (3)

in terms of the solutions of all equations of the form
ay
=A@y +f0) . (4)

The original results in this field were obtained by PERRON. See also
Cesarl [4] and COrRDUNEANU [5]. Further references will be found in
the papers cited above.

§ 20. A Theorem of Minkowski

Directly in line with the foregoing ideas, but with a quite different
measure of interaction, is the following elegant result of MINKOWSKI.
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Theorem 13. Let x and y be n-dimensional vectors, and let A be an m
by n matviz. Then a necessary and sufficient condition that (x,y) = 0
for all y such that Ay = 0 is that x = A'b, where b is an m-dimensional
vector satisfying b = 0.

The notation b = 0 for vectors means that each component of b is
nonnegative.

Proofs of this result may be found in the recent book of D. GALE [1],
and H. WEYL [2]. See FAN [1.15] for detailed discussions of this field.

It is interesting to note that the arguments concerning convex sets,
which play such a dominant role in these papers, were, as indicated
above, first developed by CARATHEODORY in his paper devoted to the
trigonometric moment problem, while the support function of MiN-
kowsKI, used by WEYL in his paper, is precisely the function utilized
for quasi linearization in previous chapters. As we repeatedly see, a few
basic techniques, themselves closely intertwined, dominate the field of
inequalities and, indeed, much of classical and modern analysis.

It is also interesting to note the repeated parallelism between the
theory of Hermitian operators and the theory of positive operators.

§ 21. The Theory of Linear Inequalities

The theorem of MiNKOWSKI in § 20 is a particular result in the
general theory of linear inequalities, much of which centers about the
problem of maximizing a linear form

n

L(x)= 2 c;x;, (1)

=1

over all x; satisfying a set of linear inequalities

n
Dagx,<b;, 1=12,...,m. (2)
=1
An enormous amount of work has been done in this field in recent years.
Some particularly noteworthy papers ranging over the years are MIN-
kowsKI [1], FaArkas [2], STiEMKE [3], Dines [4], CARVER [5], MoTZKIN
6], Cernikov [7], Fan [1.15], and NIkAIDd [12].

In recent years, the subject has again become a focus of attention
as a consequence of its many applications in applied mathematics, par-
ticularly in the theory of games.

The emphasis has shifted to the problem of dctermining algorithms
that yield numerical solutions of the maximization problem described
above, with particular reference to operations that quickly and accur-
ately can be performed by means of digital computers. The principal
technique at the moment is the “simplex method” of G. DanTziG (8],
together with its refinements and extensions by CHARNES, LEMKE,
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BEALE, and others. For problems of this general class with various types
of structure, there exist special algorithms; see FORD and FULKERSON
[9] and BELLMAN ([7.1] of Chapter 1).

The topic of obtaining algorithms yielding computational solutions
of the foregoing minimization problem is called ‘“‘the theory of linear
programming.”” It occupies an important place in operations research
and mathematical economics. See DANTZIG, ORDEN, and WOLFE [8],
RiLEY and Gass [10], KARLIN ([38.15] in Chapter 2), and DORFMAN,
SAMUELSON, and SoLow ([42.4] in Chapter 2).

For an interesting application of inequalities of this nature to the
foundations of probability theory along the lines of ‘rational betting,”
see LEHMAN [11].

§ 22. Generalizations

There have been two types of generalizations of the theory referred
to in § 21. The first goes in the direction of nonlinear functions (see GALE,
Kunn, and TuckeRr [1], and FAN, GLICKSBERG, and HorFrFMaN [1.14]),
while the second studies linear functionals in more general spaces
(see FAN [1.15], DUFFIN [2], LEHMAN [3], and BELLMAN and LEHMAN
[4]). In § 24, below, we shall discuss a significant extension of the latter
type.

The work of AN [1.15] is particularly interesting in view of what
we have discussed in the foregoing §§18—21,in that his work brings
together linear inequalities and approximation theory by way of the
general theory of linear and Banach spaces. In particular, the Hahn-
Banach extension theorem and convexity theorems play vital roles.

§ 23. The Min-max Theorem of von Neumann

As commented in § 21, there is a close connection between the
theory of linear inequalities and the theory of games created by von
NEUMANN; see VON NEUMANN and MORGENSTERN [1], WILLIAMS [3],
and earlier work by E. BoreL [2].

The cornerstone of the theory of games is a variational problem of
deceptively simple appearance:

Theorem 14. Let x denote the set of values satisfying the conditions
(@) %,=0,

0 3x-1,

1=1

(1)

and let v denote a similar set. If (a;;) 1s any matrix of real quantities, then

n n
min max Q, 4;;%;y,= max min Q] a,;%;y; - (2)
y x i =1 7 y 4,7=1
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Proofs of this result may be found in [1], [4]. The result may be
derived in a number of ways from the theory of linear inequalities
referred to in the foregoing §§ 21, 22; established by means of fixed-point
theorems, a method that leads to many generalizations; established
inductively (LooMmis [4]); or derived variously as the ‘“steady state”
of a dynamic process {J. RoBinsoN [5]). An interesting proof based on
the laws of static mechanics is due to Gross [6].

§ 24. The Neyman-Pearson Lemma

The classical inequalities can be established by standard variational
techniques because of the occurence of nonlinearities. These nonlinearities
play essential roles in the derivation of the conditions that characterize
an extremum.

A number of interesting questions in analysis and applications — in
particular, the theory of control processes — give rise to problems in
which we wish to minimize a linear functional of the form

1

[/(#) at) at (1)

0

over all functions f(f) subject to the constraints

@ 0<f()=1,0=<t=<T1,
1 (2)
(b) 0ff(lf)b(lf)dzféc,

where a(t) and b(f) are given functions, and ¢ is a known constant.

As we know from the preceding discussion, this problem is equivalent
to that of determining the region in two-dimensional space spanned by
the moments

my= (1) alt dt,
0

my = [f(1) b(t) dt

0

as f(¢) ranges over the space S of functions satisfying the constraint (2a).

In order to furnish a sample of the results that are obtained in
variational problems of this type, and the methods used, we shall give a
detailed proof of the following result.
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Theorem 15. The solution to the foregoing variational problem, under
the further conditions that
=0, (4)
0

15 determined as follows:
Let set functions E-=E (k), E = E(kR), Et= E*(R) be defined as

follows for —oo < k < oo
E=(k) = [t;a() <k0()],
E()—[ta() ko)1, (5)
E*(k) = [t;a(t) > kb(1)] -

Determine kg by the condition that k, be the supremum over all nonpositive k

satisfying the inequality

Il

Jowmdt=c, (6)

and let
E—(ko) = E,, E(ko) = E,, E+(ko) = E0+ . (7)
Then the set of minimazing functions f* is given by
(a)  f*() = 1 on Eg,

(b)  f*@#) =0omEg, (8)

()  f*@t) = arbitmry on E,, satisfying only the conditions (2a) and
ff* t)ydt=rc if ky< 0, or the conditions (2a) if
k =0.

The solution to the corresponding maximization problem is determined
simularly.

Proof. For any f(¢) satisfying (2), we write

[/ a) dt~f+f+f+ [/

-+ &y [ f(2) dt+ff al(t) dt. ®
Since N
(70t at= +f
= [a@ dt+ ko [0 b() d (10)

—[a ) dt -+ k, ff* b(t) dt

_E[_a()dt-i—k [c—Efo_b dt],
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we have
A= 10 ) d1— [0 a0
=[O —11a()dt+k [ [t)b(t) dt (11)
+E{°f(t> o) a1t o Eftl: 0 @

Using the fact that a(f) > &, b(f) on E;, we obtain the continued
inequality

Az [[ft)—1]a() dt

+ &y [Eff(t) b(t) dt +E[f(t) b(t) dt] — ky [c— {_b (2) dt]
= [ /@) —1]a(t) dt + k [c—Ef_f(t) b(?) dt] (12)

— [c—— [b() dt]
= [/ —11a@di+h [ 1=/ b() dt

= [[1—f()] ko b() —a(t)]dt = 0.

o

Since the signs of equality hold throughout if and only if f(¢) is an
1*(t), we see that the f*(#) constitute the totality of minimizing functions.

§ 25. Orthogonal Projection

* In the preceding sections, we have examined a number of situations
in which a function f has been characterized by means of moments,
(f, ¢,), taken with respect to a sequence of functions {@,,}. These moments
may be regarded as projections of f on the “axes” ¢,. The theory of
orthogonal series (ZYGMUND [1.2] and KAczMARZ and STEINHAUS [1]),
vast as it is, is only a particular study of this type.

The idea can be extended considerably. One of the most fruitful
extensions is to the theory of partial differential equations, starting with
the concept of orthogonal projection due to WEYL [1.18]. Preliminary
results in this direction were obtained by ZAREMBA; see ROSEN-
BLOOM [1.3] and ForsYTHE and RoSENBLOOM [2].

The basic idea is the following. If # is a solution of the linear equation
L (1) = 0, then clearly

(L (), v) =0 (1)
for all v for which the inner product is defined. If, in addition, v permits
the application of the operator adjoint to L, which we call M, then (1)
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leads to the result

(L (u), v) = (u, M(v)) = 0. (2)
Suppose then we begin with the relation
(u, M(v)) =0, (3)

for all v in a suitably chosen set. Under favorable conditions, this forces u
to be a solution of L (u) = 0.

It is interesting to note that a number of problems that have been
treated by the methods of orthogonal projection can also be treated by
means of the Hahn-Banach extension theorem; see Lax [1.19].

When we state the results of the previous type in the foregoing
fashion, we see their abstract identity with various versions of what is
often called the fundamental lemma of the calculus of variations; see
CoURANT and HILBERT, ([26.1] in Chapter 2) and BERwWALD [1.21]. Here,
the aim is to conclude that the Euler equation, E(#) = 0, is a conse-
quence of relations of the form

(E(u),v) =0, (1)

for all v in a prescribed set of functions.
The foregoing ideas lead naturally to the concept of generalized
solutions of linear and nonlinear operator equations, a basic contribution

of BocHNER and FrRIEDRICHS. The organization of these ideas leads to
the theory of distributions of SCHWARTZ [1.22].

§ 26. Equivalence of Minimization and Maximization Processes

Intimately related to the duality we have constantly emphasized
and exploited is the fact that a number of minimization problems can
be shown to be equivalent to maximization problems. The importance
of this identity for the derivation of upper and lower bounds is clear.
A discussion of results of FRIEDRICHS in the calculus of variations will
be found in COURANT and HIiLBERT ([26.1] in Chapter 2), and appli-
cation and further references in LAx
[1]and RoGoSINSKI and SHAPIRO [2].

A common origin of many of
these results is the following simple
geometrical property. Let R be a

8 convex region with boundary B,

Fig. 4 and let p be a point outside R, as

shown in Fig. 4. Consider the problem

of minimizing the distance, ||[p — ¢||, between p and a point ¢ € R. The

minimum will be attained for a point ¢,€ B, and the line pg, will be
orthogonal to the tangent plane at g,.
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Now consider the set of tangent planes to B, and the distances
from p to these planes; see Fig 5. It is clear that a local maximum
for these distances will be fur-
nished by the distance, ||p — g,ll,
to the plane tangent at g,

We see then how the dual
description of a surface, locus
of points = envelope of tangents,
naturally leads to the equiva-
lence of certain minimization
and maximization problems. The
abstract-space version of this result leads to a number of interesting
and important results.

Fig. 5
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Chapter 4
On the Positivity of Operators

§ 1. Introduction

In this chapter, we shall explore the following theme: ““Given a set
of functions {u} satisfying certain side conditions, and an operator L
that can be applied to the functions of this set, determine when the
inequality

L) =0 (1)
implies that # = 0.” An operator will be said to be “‘positive” if this
condition is satisfied, although it might be more reasonable to call the
inverse operator L positive. We shall focus our attention upon ordinary
differential and partial differential operators.

Problems of this general nature were studied extensively by Cap-
LYGIN [1], who thereby developed techniques for obtaining useful
approximations to the solutions of differential equations of complicated
nature. We shall discuss some of his results below, together with some
later refinements.

We shall begin our discussion with first-order ordinary differential
operators and then turn to closely related results of GRoNwWALL [2],
BerLrmAN [3], Bigarl [4], and LANGENHOP [5], of importance in the
study of the existence, uniqueness, and stability of solutions of ordinary
differential equations.

The problem for higher-order linear differential operators isintim-
ately connected with characteristic values and two-point boundary-value
questions. To begin with, we shall consider the second-order ordinary
differential inequality

w'+g(x)u=0, u(0)=u(l)=0, (2)
O*
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using a variety of techniques; some of these carry over to partial differ-
ential operators, while others do not.

We shall first present some very simple arguments of the type that
are used in the study of the oscillation and nonoscillation of solutions
of second-order differential equations. Extension of these arguments
can be used to establish a number of ““maximum principles” for solutions
of partial differential equations. Following this, we shall give a proof of
CapLyGIN [1], based on an integral identity, and a proof of BELLMAN
[12.1] that uses a closely related variational argument. We shall refer
to other proofs by PETROV [15.1] and WILKINS [15.2], based on the
Riccati equation, and finally to a proof employing factorization of the
operator, as suggested by work of POINCARE [6].

This method of factorization of the operator was used by P6rva [7]
to study generalized ROLLE’s theorems and interpolation problems for
n-th order linear differential operators. The results of PoLvya were
extended to partial differential operators by a number of mathematicians.
Full references and a unified presentation will be found in a paper by
HArTMAN and WINTNER [8].

The study of these questions brings us in a very natural way to the
concept of generalized convexity and the investigations of BECKEN-
BACH [17.1], Boxsarr [17.4], PEixoro [17.5—17.7], Rem [17.11],
HARTMAN [17.12], and others. These results make precise some of the
initial results of Caplygin mentioned above.

Let us also note that these questions are intimately connected with
generalizations of the Taylor expansion, along the lines of PéLya [7],
DEersarTE [20.1], PETERSSON [16.1], LEviTAN [20.2], and WiDDER [20.3].

We also present some positivity results for vector-matrix differential

equations of the form

G AW x x0)=c, (3)

where x(f) is a vector function and A4 (f) a matrix function.
Next we turn our attention to partial differential operators, consider-
ing only the classical equations

Uy go— Uyy— U, — G (X, ¥, 2) u =0, )

Ugot Uyy+ t— ¢ (%,5,2) u=0,
although the more general Beltrami equations can be treated by several
of the techniques presented. The positivity of the associated operators
is, of course, equivalent to the positivity of the GREEN’s function. This
topic has been approached in a number of different ways; see ARONSZAJN
and SMITH ([16.2] of Chapter 3) for references. As we shall see, a number
of the methods applicable to the study of ordinary differential operators
carry over.
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A very elegant and penetrating way to establish the positivity of
GREEN’s functions is to exhibit the probabilistic interpretation of these
functions. An excellent exposition of this modern approach is given by
Kac [9]. For an analogous use of probability theory to derive the
positivity of certain expressions, sec KARLIN and MCGREGOR ([37.9]
of Chapter 2).

Our excursion into this field of partial differential inequalities will
be brief. We shall only mention the fundamental positivity results of
Haar [29.1], WEsTPHAL [29.2], ProDI [29.3], and MrAK [29.5], of
importance in the stability theory of parabolic partial differential
equations. These are, of course, only particular results in the domain of
“maximum principles” of partial differential equation theory; see
NURENBERG [21.1], WEINBERGER [21.2], and Pucci [29.4], where many
other references will be found.

We have felt that these, as well as the extensions of the classical
Sturmian theory for ordinary differential equations, due to HARTMAN
and WINTNER [8], and to REDHEFFER [35.9], belong more to the theory
of partial differential equations than to the theory of inequalities, and
so have omitted any discussion of them.

Finally, we have indicated briefly how positive operators may be
used in the study of nonlinear functional equations, in connection with
the quasi-linearization techniques mentioned in Chapter 1 and 2.

It is clear from the foregoing how difficult it would be to trace ail
the tributaries of this mainstream of analysis, the thcory < pusitive
operators. We hope that we have sufficiently indicated some of the
principal currents, and given sufficient references so that the interested
reader can journey on his own. Let us observe in passing that the results
we have presented can all be greatly extended by replacing the concept
of a positive operator by that o. . variation-diminishing operator, along
the lines of the work of SCHOENBERG [10] and others to which we have
previously referred in [48.1], [48.2], and [48.10] of Chapter 2.

§ 2. First-order Linear Differential Equations
Our first result concerning differential operators is the following:

Theorem 1. If the linear differential equation

%za(t) u, u(0)=c, (1)

and the linear differential inequality
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are both valid for 0 <t < T, then
v() = u(), 0s=t=T. (3)

Proof. The proof is an immediate consequence of the fact that the
solution of the linear inhomogeneous equation

S —a vt £, v0)=c, )

has the form

.t
jla(s)ds fla(s)ds -
v=ce + /e f(r)dr. (3)
0
The positivity of the kernel
[a(s)ds

e’

is the key to the result.

§ 3. Discussion

The result presented in the preceding section, although quite simple
to prove, is important for two reasons. In the first place, it illustrates
the type of result we wish to establish; and in the second place, it sets
the following pattern for a type of proof that can be used in many
situations.

The inequality L (#) = 0, where L is a linear differential operator, is
converted into the inhomogeneous equation

L(u)=f(p), (1)
where f(p) is nonnegative. Solving for #, we obtain a relation of the type
u=T(f). (2)

The problem has then been converted to that of studying the positivity
properties of the operator T, or, equivalently, those of the GREEN’s
function associated with L. Occasionally, as in § 2, these properties are
apparent, but in the majority of cases an artifice of one type or another
is required to complete the proof.

§ 4. A Fundamental Result in Stability Theory

Closely related to the foregoing Theorem 1 is the following result of
BeErLMAN [1.3].

Theorem 2. If the functions g (t) and u (t) are nonnegative fort = 0, and
if ¢ = 0, then the inequality

u(t)gc—l—ftg(s)u(s) ds, t=0, (1)
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implies that
fets)ds

¢
u(t) = ce’ , t=0. (2)

This result may be established either directly or by means of the
technique of § 2; see also GRONWALL [1.2] and GUILIANO [3]. In view
of the frequent occurrence of the result, let us give a quick proof [1]:

From (1), we have

u(t) £(9)

[
o+ gl u(s) ds

=g, (3)

whence, integrating from 0 to ¢, we obtain

log [c + [g(5) w(s) ds] —log ¢ = [g(s) ds. )
This yields

t
(g5
¢+ /g(s)u(s) ds < ce’ . (5)
0

The desired inequality (2) follows from (1) and (5).

Various applications of this result to the study of stability of the
solutions of linear and nonlinear differential equations may be found
in BELLMAN [1]. Numerous applications to existence and uniqueness
theory of differential equations may be found in NEMYCKII-STEPANOV
[2], BiaARI [1.4], and LANGENHOP [1.5]; see also LAX [4] for an applica-
tion to the establishment of a prior7 bounds for the solutions of a class
of partial differential equations.

§ 5. Inequalities of Bihari-Langenhop

The following generalization of the foregoing Theorem 2 was obtained
by BIiHARI [1.4].

Theorem 3. If k, m = 0, and g(s) s positive for s > 0, then the in-
equality
u(t)§k+mftv(s)g(u(s))ds, a=t=b, (1)
implies that ’
w() = GG +m [ vls) ds), @

where
1%

dat
GWVi/aﬁ,u>%>O. 3)

o
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This result was used by BIHARI in the way mentioned above. Closely
related is the following result due to LANGENHOP [1.5]. Let
(a) x be areal variable and z and F be finite-dimensional
complex vectors with # components z; and F,,
respectively; (4)
(b) F be continuous in (x, z) for all z and all x € [a, b],
ie,a < x < bwith a < b;

(c) for some norm, say ||z|| = }] |z,], F satisfy
i—1
I1E (% 2)l| = »(x) g (ll]]) ,
where
v(x) is continuous, v(x) = 0 for x € [a, b],
g (u) is continuous and nondecreasing for » = 0,
and g(u#) > 0 for » > 0.

If z(x) is continuous, and is a solution of dz/dx = F (x, 2} for x € [a, b],
where F satisfies the conditions above, then, for x € [a, b], 2(x) satisfies
the inequality

X

(%)) = G (G (|z(@))) — fo(s) ds),

a
where

=f" g(B]dt, ug= 0,

for all x € [a, ] for which G (|z(a fv S) ds is in the domain of G1.

Whereas the Bihari result furmshes upper bounds, the Langenhop
result yields lower bounds.

§ 6. Matrix Analogues

Let us now discuss a vector-matrix analogue of Theorem 1. Consider
the vector-matrix inequality

Al x(0)=c, (1)

where A (f) is a matrix function, and x a vector function, of order #.
In the one-dimensional case, this inequality implies that x is bounded
from below by the solution of the equation

D4y, yO) =c. 2)

In the multidimensional case, no such uniform result holds. For the
case in which 4 is a constant, however, there is a simple result of interest.
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Theorem 4. Let A = (a;;) be a constant matrix. A mnecessary and
sufficient condition that a solution of the inequality

dx

dt

be bounded from below over t = 0 by the solution of the equation

= Adx x(0)=c, (3)

d
—-=Ay, y(0)=c, (4)
is that
a;; =0, 174, a;; real. (5)

Proof. Since the solution of the inhomogeneous equation

Y Ax+fO), x0)=c, ©6)

has the form
t
x=edtc + [ed ) f(s)ds, (7)
0

where e4t is the matrix exponential (see [43.1] in Chapter 2), we see
that it is essential to determine when the elements of ¢4 are nonnegative
fort = 0.

The expansion
edt=T+ At + - -, (8)

for small positive ¢, shows that the condition in (5) is necessary. To see
that it is sufficient, we can use either the system of differential equations

d /3 5 .
djt =Z‘lawy9, 1:1,2,...,77!, (9)
7:
yi (O) = (g,
as indicated in § 8, below, or the identity
gdt— (cAtIN)N, (10)

Let us use the identity first. We can assumethat a,; > 0, 7 4 7, since
the result for a;;= 0 can then be obtained via a limiting procedure.
For fixed ¢, we see from the expression (8) that e4/¥ is positive, in the
sense that all elements are positive, for N sufficiently large. Since the
product of positive matrices is positive, it follows that e4? is positive if
a;; >0, ¢ &= 7. This proof is due to KARLIN.

Theorem 4 is intimately connected with the Perron theorem concern-
ing positive matrices, and with its extension, given in Chapter 2; see
also [38.3] in Chapter 2, where the Perron theorem is derived from
results pertaining to linear differential equations. Let us note that the
result is intuitively clear once the probabilistic or economic origin of
equation (9) is made clear; cf. RoMaNoVsKY [1] and Op1AL [2].
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§ 7. A Proof by Taussky

The following short unpublished proof by TAUssKy possesses the
merit of being applicable to the derivation of a number of results for
input-output matrices directly from the corresponding results for
positive matrices.

Let & be a scalar. Then

gAt— g(A+kD)t p—ETt (1)

If % is chosen large enough so that 4 + %I is nonnegative, we see that
eld+kDt will be a nonnegative matrix. Sincee=%7t> (, it follows that e4?
1S nonnegative.

§ 8. Variable Matrix

If A () is a variable matrix, the solution of the linear inhomogeneous
equation
a
=AW 5+ 1), x(0)=c, (1)

may be written
¢

x=Y@t)c+ [Y () Y(s) f(s)ds, (2)

0

where Y (¢) is the solution of the matrix equation

ax
— =4 X, X(0)=1I. (3)
From this representation, we see that a necessary and sufficient condition

that

dx

=40 % x2(0)=0, (4)
imply x = 0 for = 0 is that Y () = 0, while a necessary and sufficient
condition that

d
2z A% x0)=0,

imply x = 0 for £ = O is that Y () Y-1(s) = Ofort = s = 0.

These two conditions do not seem to be equivalent as they are in
the case in which A4 (f) is constant. A simple sufficient condition that
Y(#) = Ofort = Oisayyt) = 0, 7 &4, as may be seen from the following
simple argument. Suppose, without loss of generality, that all of the
x,(0) are positive, and let x,(f) be the component that is zero for the
first time at a point #,. Then at £, we have

dx,
at

:a12x2+"'+a1nxn>0’ (5)

a contradiction to the fact that x; must be decreasing as ¢ approaches #,.
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This sufficiency condition is important in the study of the equation

ax

= max[d(g x+b(g], %(0)=c, (6)

arising in the theory of MARKOVIAN decision processes ([6.1], [7.1] of
Chapter 1, and [44.2] of Chapter 2), and in the use of quasi-linearization
techniques.

§ 9. Discussion

The results in § 8 concern only one particular problem arising in the
study of Equation (8.1). One may also ask for necessary and sufficient
conditions that the solution x(f) be bounded for { = 0 whenever f(¢) is
bounded for f = 0, or that x(f) € L? (0, o) whenever f(¢) € L2 (0, o),
and so on. Generally, one can ask when f¢€ S implies x € S’, where
S and S’ are Banach spaces. This study was initiated by PERrRON [1],
who used direct methods, and continued through Banach-space techniques
by BerLLMAN ([19.1] of Chapter 3) and Massera (2], [3]. The work

of Massera covers operator equations as well.

§ 10. A Result of Caplygin

Let us begin our study of the second-order linear differential operator
by establishing a slight extension of a result due to CapLyGIN [1.1]. The
first method we employ is widely used in the study of the oscillation of
the solutions of linear and nonlinear second-order differential equations.
In many cases, it can be carried over in foto to establish analogous
results for partial differential equations.

Theorem 5. If

(a) w'+p(t)u'—q()u=>0, ¢t

by v'+p@)v'—qt)v=0, ¢

() ¢ =0, t=0,

(d)  »(0) =»(0), »'(0)=(0),
then w > v for t = 0.

v

%

Proof. Subtracting, we have
w'+ pt) w—gq(t)w=>0, (2)

where w = u — v, with w(0) = w’' (0) = 0. It follows that w > 0 in some
initial interval (0, £,]. Suppose that w eventually becomes negative, so
that w must have a local maximum at some point #,. At this point, we
would have w'= 0, w > 0, and therefore, by (2), w" > 0. This, however,
contradicts the assumption that ¢, is a local maximum.



140 4. On the Positivity of Operators

CAPLYGIN's proof, for the special case in which p(f) = 0, depends on
an important identity,

a

Su(u'—qu)dt = [un']l— [ (424 qu?) dt . (3)
0 0
Let a be the first positive value of ¢ for which # = 0. Then, if %(0) = 0,

we have
fu u"'—qu)dt = f (w'2+ qu?) dt (4)

If w’'—gqu > 0in [0, a], and # = 0 in this same interval, we clearly have
a contradiction. Hence, such a point a does not exist.

For a study of the converse problem of dertermining when positive
operators have the foregoing form, see FELLER [1].

§ 11. Finite Intervals

Analyzing the foregoing proof, we see that the condition ¢ = 0 can
be considerably relaxed, provided that we confine our attention to finite
intervals. This is a consequence of the fact that the inequality

a

[ (w4 qu?)dt = 0 (1)

0
can hold for negative g, provided that |g| is not too large. This is a
corollary of the Wirtinger inequality, which we shall discuss in detail
in the following chapter, and which is itself a corollary of general Sturm-
Liouville theory.
From (10.4) we readily obtain the following result:

Theorem 6. If
(@) uw'—qu=0 0=¢t=a
(b) u(0)=u(a)=0, (2)

a

(c) [?+qu?)di=0,

0

then u < 0 for 0 < ¢ < a.
As we shall see in § 12 of Chapter 5, a sufficient condition for (2c)
to hold is

2
g) =2 —2-+6, 650, 0=t=a (3)
The magic quantity z?%/a? is, of course, the first characteristic value
associated with the Sturm-Liouville equation
u'+ Au=0,

u(0) =u(@)=0. @
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§ 12. Variational Proof

Let us now present a variational argument that can be used to
obtain a number of further results concerning the GREEN’s function

associated with
W'+ gty = J0) 0
u(0) =u(a)=20.

We change the sign of ¢ (#) in order to indicate that it is positive in many
significant cases.

If ¢g(¢) =0, 1t is clear that the inequality f({) = 0 for 0 < ¢ < a
implies that # (f) < 0 in this interval. A more precise result is the follow-
ing.

Theorem 7. If

@) 9() =-5—d, 4
(by f&)=0, 0=it=a,
then u(t) < 0,0 =t < a.

Proof. Consider the problem of minimizing the functional

T () =Of“[u'2— g(t) wt 2£(8) u] dt 3)

over all # satisfying the constraints #(0) = »(a) = 0, and for which
the integral exists.

Since
a a

/q(t) wdi = (%5 —d) / w2 dil = (“2/:;/;ﬂfu'2 i, (4
0 0 0

by virtue of WIRTINGER’s inequality mentioned above, it follows via
standard variational arguments that the minimum of J(u) exists and
is furnished by a unique function #. The Euler variational equation for
this function is precisely (1).

Thus, to demonstrate that the solution of equation (1) is nonpositive
for 0 < ¢ < 1 whenever f(f) = 0in [0,1], it is sufficient to show that the
function that minimizes J (#) is nonpositive whenever f(¢) is nonnegative.

This, however, is easily established. Assume that [a,, b,] is an interval
within [0, a] with the property that «(f) > 0 in [4,, b,]. Replace « (f) by
a new function equal to —u%(f) in [4,, b;], and preserving the old values
elsewhere. Although this introduces a possible discontinuity into #’(f),
it does not affect L2-integrability. This change does not affect the
quadratic terms, and it diminishes the term involving f(¢). Consequently,
if f(f) is positive on a set of positive measure in [a,, b;], we obtain a
contradiction. See BELLMAN [1] and STIELTJES [2].
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To establish the theorem, it is clearly sufficient to consider only
functions f(¢) that are positive within [0, a].

§ 13. Discussion

It is easy to see that the foregoing Theorem 7 is the best possible
in the sense that if (12.2a) is violated, the conclusion is not necessarily
true. As an instance of this, consider the solution of

i1
u' '+ ku= sin-_—,

u(0) =u(a) =0,

(1)

given by
sin mtla
= % — nta® (2)
If 2> n?/a?, then u is positive for 0 <t < a, although sin n¢ja = 0
in [0, a].
As mentioned above, the quantity m2/a? enters as the smallest
characteristic value of the Sturm-Liouville equation

' +Au=0 0t a, 3
u(0) =u(a) =0. 3)
The positivity result of Theorem 7 will be obtained from another

direction, through a quite different technique, in the following § 14.
Since the solution of

w' -+ q(l)u=/1{), n

u(0) =ua) =0,
may be written in the form
u—=[k(s)fls)ds, (5)
0

where %(¢, s) is the GREEN’s function associated with the equation cum
boundary conditions, it is clear that any assertion concerning the
solution of (4) for all nonnegative f is an assertion concerning the non-
negativity of % (¢, s).

Finally, let us note that the argument given above is similar to one
used by STIELTJES [12.2] in the discussion of systems of linear equations
and inverses of matrices. His result has been greatly extended; see [2.1]
of Chapter 2 for many further references.

§ 14. Linear Differential Equations of Arbitrary Order

Iet us now consider a more general version of the problem. Let L
be a linear differential operator of order =,

-1

ar d
L) ="+ ay(8) G+ -+ () u, (1)
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where the a4, (f) are, let us say, continuous over an interval [0, ¢,], and
let uy, u,, . . ., u, represent # linearly independent solutions of L (#) = 0.
Introduce the Wronskian determinants,

1) (2)

wp =1 (1) up=D(f) ... uP—Dt)
The WRONSKIAN of order # has the well-known evaluation

— ftal(s)ds
0

W,(t)=e ) (3)

a result due to JAcosl, and we take W (f) = 1.

Our results concerning the positivity of the operator L hinges
upon the following interesting representation.

Theorem 8. If the W, (t), 1 =1,2,...,n— 1, are positive in [0, ¢,],
then, in this interval, we may write

L_%Wn a | Wi 4 ( wW§ a W%) ) 4
T Waoy dt | W_,W, at \w, W, dt \ W, . (4)

Proof of this result may be found in P6LYA and SzecO ([44.1] of
Chapter 1).

§ 15. A Positivity Result for Higher-order Linear Differential
Operators

It is not difficult to obtain the following theorem from the foregoing
result.

Theorem 9. A sufficient condition that the inequality
Lu)=0, u0 =w0)=---=ur-10)=0, (1)

for O < t < t, imply that u = 0 in [0, t,] is that there exist a set of linearly
independent solutions u,, u,, ..., u, for which the W, (1) are positive in [0,1,].

This result generalizes corresponding results obtained for the case
of second-order linear differential operators by PETrROV [1] and WILKINS
[2]. In the paper by WILKINS, the condition is stated in terms of the
associated Riccati equation. Whether or not the condition is necessary
in general, as it is in the case # = 2, 1s not immediately clear.

An extensive discussion of results of the foregoing nature is contained
in the monograph by CapLyGin [1.1], where analytic and geometric
arguments are given, together with a number of applicatione
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§ 16. Some Results of Pélya

The property used in Theorem 8, namely the assumption that there
exist # linearly independent solutions #,, #,, ..., #, for which the
WRONSKIANS W, (¢) are positive in [0, ¢,], was called by POLvA [1.7]
property W. Using this condition, he established the following results.

Theorem 10. If the linear differential operator
L(u) = u+ ay () w0 + -+ + a, (b 1)

possesses property W, then given any function f(i) defined over [0,¢,], n
times differentiable there, and vanishing at n + 1 points in [0, t,], there
exists an internal potnt s such that

L (u(s))=0. (2)
This is an extensive generalization of RoLLE’s Theorem.

Theorem 11. If property W holds, than there exists one and only one
solution of L (1) = O that takes on n given values at n given points of [0, ¢,].

This is an existence and uniqueness proof for the Lagrange inter-
polatin theorem. See PETERSSON [1].

Theorem 12. Assuming property W, let v be a solution of L(v) = 0,
possessing the same values as a function u at n given points of [0,1,].
Let w(t) be the solution of L(u) = 1 that vanishes at these same n points.
Then there is a point s = s(t) tn [0, t,], corresponding to each t in [0, 1],
such that

wlt) = v() + w(o) L (u(s (1)) 3)

This is a generalized mean-value theorem. The special case corres-

ponding to the operator
u' + u (4)

was established by Poincarg [1.6] and furnished the stimulus for
PoLyA’s investigations. For some further results, see HARTMAN [17.12]
and the papers cited in §§ 19, 20 pertaining to generalized Taylor
expansions.
An interesting corollary of these results is the fact that the deter-
minant |¢¥%] satisfies
] 4 0 5

if o, <Xy <o <X, ¥, <Yy <*-+<y, This type of result is also a
consequence of the theory of variation-diminishing transformations,
and, as pointed out by SCHOENBERG [1.9], there are many points of
contact between the two studies.
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§ 17. Generalized Convexity

Let us now, following the ideas of BECKENBACH [1], BECKENBACH
and BING [2], VALIRON [3], BonsaiL [4], Peixoro [5], [6], [7],
Mortzkin [8], TorNHEIM [9], CurTIs [10], REID [11], and HARTMAN [12],
discuss briefly the concept of generalized convexity, as introduced by
BECKENBACH [1], and its relevance to the foregoing topics.

A function #(?) that is convex for a = ¢ < b may be described in the
following fashion. Let a < f; < ¢, < b, and let v(f) be the solution of the

linear equation
d?u
di?

=0 (1)

passing through the two points (¢, # (%)), (£, % (¢,)). Then
u(t) = »(), (2)
for {;, = ¢t < ¢,. See IFig. 6.

To generalize the concept of
convexity, we need merely generalize

the differential operator under con- v (t)
sideration. BoNSALL [4] considered uflt)
the second-order linear differential '
equation Flg. &
Wt PO g u=0, 3)
while PE1xoTO [7] used the more general nonlinear differential equation
W= gt u, ). ()

The following result was established by PEIxXoTO.

Theorem 13. Assume that the equation in (4) possesses the following
properties:

@) g (¢t u, w)is continuous in t, u, and u’ for (5)
a<t<b —oco<u<oo,—co<u <oo,

(b)  Corresponding to any point a < t, < b,
— 00 < Uy < 00, — 00 < Yy < 00, there 1S a unique
solutton of (4) satisfying the conditions u(ty) = u,,
w (L) = vg, for a <1t <b.

(c) Given any two points a <1t <b, — oo < u; < oo,
— o0 < v; < 00,1=1,2 there is a unique solution
of (4) satisfying the conditions u(t;) = u,;, u'(t;) = v,
1=1,2.

If w(t) is a function with continuous second derivatives for a < t < b, then
a necessary and sufficient condition that w(t) < u(t), t, < t < ¢,, where u
Ergebn. d. Mathem. N. F., H. 30 Beckenbach and Bellman 10



146 4. On the Positivity of Operators

1s determined by the conditions of (5¢) and w(t;) = u(t,), 1 =1, 2, 1s that
w'zgltww) a<t<bd. (6)

BonsaLL [4] established the corresponding result for the second-order
linear equation (3) without the requirement that w possess a continuous
second derivative. In a subsequent paper [19], he discussed corresponding
problems associated with partial differential operators. In this way, we
enter the domain of subharmonic and superharmonic functions and their
generalizations, a subject we shall discuss in our second volume on
inequalities. See Riesz [13], Rapé [14], BECKENBACH and Rapé [15],
[16], BECKENBACH [17], READE [18], Tautz [20], BECKENBACH and
Jackson [21], Jackson [22], [24], and INONE [23].

§ 18. Discussion

As indicated in the introduction to this chapter and also in § 15,
CapPLYGIN [1.1] studied the relation between functions satisfying the
inequality

uw™—g (L u,u, ..., u®"D) >0, (1)
and functions satisfying the equation
v —g (Lo, 0, ..., v-1)) =0, (2)

Let u®(0) =v®(0) =¢; for k=0,1,...,2— 1. Then, as pointed
out by CapPLYGIN, it is clear that there is some #-interval, 0 < ¢ < tos
in which # = v, for we may write

n_ltn—-l 0 (0)
w=cot el f kT O 1R,

Cn_ltn—l .v(n) (O) " (3)
v=00+clt+---+(n__l)!—}— a1 S

Since #®(0) > v (0), by virtue of (1) and (2), and |R,| = O (i**1),
IS, = O (»*1) for small ¢, we see that our assertion is valid.

A number of applications of inequalities to the problem of obtaining
upper and lower bounds for solutions of ordinary differential equations
were given by CAPLYGIN [1.1] and also by a number of other authors;
see PoLvya [1.7], BonsarLL [17.4], PeTrOV [15.1], WILKINS [15.2],
HarTtMAN [17.12], and Krimko [1], ARTEMOV [2], and PAroDI [3].

§ 19. The Generalized Mean-value Theorem of Hartman and
Wintner

The mean-value theorem for linear differential operators presented
in § 18 possesses various analogues for partial differential operators, as
was indicated by PoLyaA [1]; see also BLEULER [2].
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A generalized mean-value theorem, due to HARTMAN and WINTNER
[1.8], which abstracts the essence of POLYA’s results and methods, is the
following.

Theorem 14. Let {u (p)} be a set of functions defined for p in a region R,
and admitting a linear operator L. Let B be the boundary of R, and denote
by S the set of functions satisfying a fixed boundary condition. Let the
linear operator L possess the following two properties:

(@) Thereexists a solutrion of L (v) =1, p €ER, withv € S.
by IfucS, and L(u) =0 1n R, then u 40 i1n R.

For a given u(p), let u, (p) be a solution of L (u)) =0, uy— u € S. Then
theve exists a function w(p), defined for p € R, such that

u(p) = uy(p) + v (p) L (u (w (p))) - (2)
Proof. Since v(p) cannot vanish for p € R, by virtue of the assump-
tion of (1b), for every p € R there exists a number a = a(p) such that

u(p) = uy (p) + av(p). (3)

Since [u(p) — u, (p) —av(p)] €S, it follows from (1b) that we have
L [u(p) —uy (p) — av(p)] = 0 at some point in p. Call this point w(p).
Then, at this point,

0= L [u(p) — () —av(p)] = L() —a. (4)

From this we see that a = L (u(w(p))). This completes the proof.

Note that the burden of the proof of the mean-value theorem has been
shifted to establishing the requisite positivity property. We shall discuss
this point in some detail in § 21.

In their paper, HARTMAN and WINTNER presented a number of
interesting examples associated with work of BLASCHKE [3], ZAREMBA [4],
and others.

(1)

§ 20. Generalized Taylor Expansions

A generalized mean-value theorem is, of course, the first step toward
a generalized Taylor expansion. Although it would take us too far off
course to discuss these matters, we would like to refer the interested
reader to the papers by DELSARTE [1], LEviTAN [2], PETERSSON [16.1],
and WIDDER [3].

§ 21. Positivity of Operators

In the rest of the chapter, we shall devote our attention in the
main to a survey of some techniques that can be used to establish the
positivity of the classical operators of mathematical physics. We shall

10*
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omit any discussion of direct verification by means of an explicit re-
presentation of the solution, omit the standard techniques of the theory
of partial differential equations based on maximum principles (see
NURENBERG [1] and WEINBERGER [2]), and, finally, omit the intuitive
proofs based on the connection between GREEN’s functions and stoch-
astic processes (see Kac [1.9]).

We shall instead indicate the extension of the variational approach
of § 8, as given by BELLMAN-BOCHNER [3], [4], and sketch a proof based
on finite differences [5]. This last uses the idea of a random-walk process
without explicitly mentioning the fact.

§ 22. Elliptic Equations

It is easily seen that the method presented in § 12 in connection with
the second-order ordinary differential equation (12.1) may be applied
to the multidimensional equation

Upet Uyy+ ¢ (X, )0 =f (%), % yER,

(1)
u=0, x,y€B,

where B is the boundary of R.
Considering the quadratic functional J(#), given by

](%)=Rf[%§+%§—4(x,y) ut+ 2f (%, y) uldxdy, (2)

we readily derive the following result.

Theorem 15. Let A, be the smallest characteristic value of the Sturm-
Liowville equation

Uppt Uyy+ A =0, %, yER,

(3)
u=0, xyEB.
If
g(x,y)=A—d, d>0, x,y€R, (4)
then the tnequality
uxx+”vﬂ+q(x’y)u">—“0" x’yER’ (5)
’MZO, x;yeB!
impliestkat
=0, xy€ER. (6)

The foregoing result is due to BELLMAN [12.1]. It is easy to see that
it can be extended to Laplace-Beltrami operators for general domains.
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§ 23. Positive Reproducing Kernels

A general theory of positive reproducing kerncls that yields results
concerning the positivity of GREEN’s functions as special cases is due
to ArRoNsza]JN and SmITH ([16.2] of Chapter 3). An interesting history
of this problem and further references will be found there.

§ 24. Monotonicity of Mean Values

The following result, due to BELLMAN [21.3], in one sense belongs
more properly in the following Chapter 5. As we shall see, however, follow-
ing BoCHNER [21.4] in his discussion of quasi-analytic functions, it
can be used to establish the positivity properties for parabolic operators.
Let us begin with the simplest case.

Theorem 16. If
U= Upy, 0< x<1, £>>0,
u(0,8)=u(l,8)=0, t>0, (1)
u(x,0=g(x), O<x<1,
then

:Of[u(x,t)]zndx, n=12..., (2)

1s a monotone decveasing function of t for ¢t = 0.
From this it follows that
max |u (%, t)| (3)
0=x=1

ts a monotone decreasing function of ¢ for t = 0.

The result can easily be extended to cover general types of parabolic
equations, as will be seen from the proof (cf. also BOCHNER’s paper [21.4],
cited above). The result that the function (3) is monotone decreasing
had previously been obtained by P6LyA and SzeGd [1], who used a differ-
ent technique.

Proof. We have

ar,
= an[u x, )] tu,dx

= an[u (%, t)]2“~1 Upp A X (4)
1

=2n {{u (%, 812" Yu ) —2n 2n—1) [[u (x, §)]2"~2uldx
0

1
=—2n2n—1)[utr2uldx.
0
Hence, d1,/dt < 0.
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To show that the function (3) has the desired property, we use the
following lemma, of interest in itself.!

Lemma. If v(x) is a continuous function in a finite interval [a, b], then

2n

lim {f[v ]“dx} = max [v(x)] . (5)

n—oola a<x<1D

The proof is easily obtained. Let m = max |v(x)| in [a, b]; then
m2" (b — a) f[v ]2"dx>f[v )2rdx, (6)

where [¢, d] is a subinterval of [a, 5] within which |v(%)| = m — ¢. Thus

1/2n
m (b—a)li?n = {f[v ]Z”dx} = (m—e) (d—c)'/2n. (7)
Since
lim g'/2n=1, (8)

for any ¢ > 0, we see that (5) holds.

Combining the two results, we have a proof of the theorem. The
preceding lemma appears first to have been used by M. RiEesz.

§ 25. Positivity of the Parabolic Operator

Let us now, following BOCHNER [21.4], use the monotone behavior
of the function
max |u (¥, )],
0=xx1
established above, to show the positivity of the parabolic operator with
appropriate boundary conditions.
The solution of

U= Ugpqy U (x: O) :f(x) ’ (1)
t > 0, f(x) periodic in x of period 2z, is given by
1 T
w(n ) =gz [ Gl 2 070)dy, &
0
where
G(x,8)=1+2p3 e "lcosrx. (3)

r=1

1 This is in the same spirit as the quasi linearization used in Chapter 1. A
functional of complicated structure is written as a limit of functionals of simpler

type.
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The positivity of G (, ¢) follows directly from the functional equation
for the theta function, namely, the fundamental transformation formula

oo

1/2 (% — 27y)2
G(x,t)z(%) 3 exp 2R (4)

= — 00

Relations of the type (4), however, are not available for general
regions, whereas the following argument is independent of the region.

Suppose that G(x, ) were negative for some £ > 0 and some x. If
this value of ¢ is kept fixed, the normalization condition

2n
1
o [ G dy—1 )
0
implies that there must be an open set R such that
1
7;fG@ﬁdy>l. (6)
R

Hence, there is an interval I C R such that
1
?;/GUﬁdy>1. 7)
i

We now proceed along classic lines in the theory of partial differential
equations. It is possible to construct a continuous smoothing function

f(x) such that
(@) 0=f(x) =<1 forallu,
(b) f(x)=1, x¢cl, (8
(c) f(x) =0 outside R.

For this function, and for all ¥ and ¢, we have
[ (%, 1)] < max |f(x)| =1; (9)

x

but for the value of ¢ for which G (x, £) is assumed to be negative, we have

w08 =5 [ Gly.0f0) &l
: (10)

1
=3;fcwwdy>1,
i
a contradiction.

§ 26. Finite-difference Schemes

Consider, as an approximation to the solution of the parabolic
equation (25.1), the finite-difference scheme

u{x+6,t) +ux—961

u(x,t+ 0% = 3 , (1)
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defined over the grid
x=0,0,...,n6=1,
t=0,06%...,
with the boundary values
@ u0,f)=u(l,t)=0,
(b) (% 0)=f(#),

holding over the set of discrete x-values.

(3)

It is clear that the solution of the recurrence relation is nonnegative
if f(x) = 0. Since the limit of the recurrence relation as é -0 is the
partial differential equation, it is plausible that the limit of the solution
of the recurrence relation is the solution of the partial differential
equation.

There are several ways that we can proceed. We can prove that the
statement above is valid under reasonable conditions on f(x) without
assuming the existence of a solution of the partial differential equation
(see JOHN [1]); or we can prove that it is valid on the assumption that
the solution does exist -—— a much simpler result; or we can show that
the kernel function for the discrete case approaches the kernel function
for the continuous case as d - 0. This last approach is not difficult to
carry out for the case of constant coefficients.

Using the finite-difference algorithm,

u(x,t—|—52) _ u(x—l—é,t)—;—u(x—&t)
x+qd (4)
+ S o gay,
x—gq

we can establish the following result on the assumption that we have
already established the existence of a solution of the partial differential
equation.

Theorem 17. If
(a) %—-m+9Lﬂ% 0
(b)  wu(x,0) = 0=x=1, (5)
(c) (Ot)—u(l f)=0, ¢t>0,
d) gx)=—k(T)>—00, 0=x=1, 01T,
for any T >0,

then u(x,t) =0, 0<x<1,t>0.

The proof is easily carried through, once we note that a transforma-
tion of the form u = eA*y permits us to assume that ¢(x, ) = 0.
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The point of the formula (4) is that by choice of the appropriate
difference relation we can make nonnegativity of the solution apparent.
We shall discuss this method again in § 27, below.

§ 27. Potential Equations
The technique of §26 can be used to treat the potential equation

Uprt “uu:f(x: y) ’ (x’ y) ¢€R,
u=0, (x99 €B.
Consider the recurrence relation

wipy) = LEFONFUC O ulmy D bulry =0 2

—2f (%) 0,
defined over an (x, y)-grid, %, y = + k4d, which reduces formally to (1)
as d - 0.

In place of this stafic recurrence relation, which does not render the
positivity property at all obvious, consider the dynamic relation

un(x+ 6: y) +un(x _ 6’ y) + un(x'y + 6) +un(x»y_ 6)
Up11(%,Y) = 4 3

—2f (%, y) 6%
If ,(x,y) < 0 and f(x, y) = 0, it is clear that «, ., (%, y) = 0.
In this way we can establish the fact that the inequality
Upet Uyy =0, (%,9) €R,
u=20, (xry)EB’
implies that # =< 0 under appropriate assumptions concerning the
boundary B, again easily on the assumption that we have by other

means established the existence of a solution of the partial differential
equation, or by more difficult arguments if we wish to start ab initio.

(1)

(4)

§ 28. Discussion

Once again, we wish to emphasize the fact that there are often many
discrete versions of the same continuous equation, with the obvious
consequence that some are better suited than others for analytic or
computational purposes.

As a further example, consider the nonlinear equation

u,= ung, u(x, 0)=g(x). (1)

In place of one of the usual schemes, we can employ the difference
equation
u(x,t+ 0) =u(x+ du(x 1,1, (2)
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which renders the nonnegativity of the solution, and its uniform bound-
edness, apparent.
Similarly, one can treat the equation of BURGERS,

Up= Uyt Uy, (3)

by the same method. The relation (2) has been used for computationale
purposes with considerable success [1].

§ 29. The Inequalities of Haar-Westphal-Prodi

The results of §§ 24 to 26 concerning the linear parabolic equation
are special cases of more general theorems connected with the nonlinear
inequality

Uy < 8 (uwz: Ug, U, X, t) . (1)

This study was initiated by HaAr [1] and continued by WESTPHAL [2],
Prop1 [3], Puccr [4], and MLAK [5]. The resultant inequalities play an
important role in the study of the stability of the solutions of nonlinear
parabolic equations; see BELLMAN [6], NARASIMHAN [7], and McNABB [8].

§ 30. Some Inequalities of Wendroff

The results of § 4 can be extended in a number of ways. Following
are some unpublished inequalities due to WENDROFF:
If

u (%, c+ff u(r,s)drds, (1)

where ¢ = 0, u (#, s), v (, s) = O, then

f fzv r,s)drds

u = ce’’ . (2)
If
u(x,y) = a(x)+ b(y) + fyfxv (,s) u(r,s)drds, (3)
00

where a(x), b(y) > 0, a’(x), b'(y) = 0, u, v = 0, then

[a(0) +b(y)] [a(x) + 5(0)] €°
= a(®) + 5(0) “
If
(xy)_c+af xyds+bf s)ds, (5)
then

u (%, y) < cet¥toytabry, (6)
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If
% y
u(x,y) = a(x)+b(y)+afuls,y)ds+bfu(xs)ds, (7)
0 0

then

u(xy) = Q) (8)
where Q (x, y) denotes the function
y x

[“(0) + 5(0) +0f8*””lb’(y1) dy1] [[a(o) + 5(0) +0fe””la'(x1) dx:] ed® ¥ by tabry
[4(0) 4 5(0)] )

§ 31. Results of Weinberger-Bochner

It was shown by WEINBERGER [21.2] that some results of BOCHNER [1],
[3], which in turn are generalization of earlier results of FEJER, concern-
ing nonnegativity properties of trigonometric polynomials could be
interpreted in terms of positivity properties of solutions of hyperbolic
equations and the associated Riemann function. These results tie
together in a very interesting fashion the positivity results for poly-
nomials and trigonometric polynomials mentioned in §§ 10 and 11 of
Chapter 3 and the positivity properties of linear differential operators.

§ 32. Variation-diminishing Transformations

A natural extension of the concept of a positive transformation is
that of a variation-diminishing transformation. By this we mean a
transformation of the type

v(%) =afk (%, y) u(y)dy, (1)

possessing the property that the number of changes of sign of v(x) in the
interval [a, b] is less than or equal to the number of changes of sign of
u(y) in this interval.

An interesting and comprehensive expository discussion of various
problems arising in this way may be found in SCHOENBERG [1.10].

§ 33. Quasi Linearization

One reason for our interest in the nonnegativity of solutions of linear
inequalities lies in the fact that results of this nature can be used in
obtaining representations of solutions of nonlinear differential equations.

Consider, for example, the Riccati differential equation

D wtal), w(0)=c. (1)
Since
#?= max (2uv — v?), (2)

v
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a particular case of the quasi-linear representation of convex functions
referred to in § 26 of Chapter 1, we may write (1) in the form

Y~ max [2uv—vi+ a()], wu(0)=c. (3)
v
Hence for any function v(¢), we have the inequality
du
E—é 2uv —vit+a(t), u(0)=c. (4)

Referring to Theorem 1 of §2, we see that this means that » = U,
where U is the solution of the equation

a;—lt]—ZUv——v“r at), U@O0)=c. (5)

Since U may be written

2fuvds 2]"vds
U = € 0 (4 + . [a (tl) — '4’)2] 14 4 dtl N (6)
’ 0

we see that we can express #, the solution of (1), in the form

¢
2 flva!s vads
u=max|e® + | [a(t)—]e’ di| (7)
v 0

The maximum is attained for v = u.

A further discussion of these matters may be found in BELLMAN [1]
and CoLLATZ [2]. See also [26.1], [26.2], and [26.3] of Chapter 1, where a
number of other types of functional equations are discussed.

§ 34. Stability of Operators

The questions we study in this chapter may be considered to be
particular cases of a still more general class of problems concerning the
stability of functional transformations.

Given an operator 7 and a solution class {#} with the property that
T (u) = 0, when does ||[T(v)|| = e (where || || denotes some suitable
norm) imply that |jv — «|| < d(c) for some u?

For example, if f(x) is a real continuous function of x over (—oc, 00),
and

[+ )=/ —fO) = e, (1)

it was shown by HvErs and UrLam [1] that there exists a constant £
such that

|f(x) — kx| = 2¢. (2)

For some results pertaining to approximately convex functions,

see GREEN [2]. Although a great deal of work in this direction has been
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done in connection with ordinary and partial differential equations,
little has been done for other types of functional equations. For the
classical results, see the books by CoDDINGTON-LEVINSON [3], LEF-
sCHETZ [4], CESARI ([19.4] of Chapter 3), and BerLrmaN [1.3].

§ 35. Miscellaneous Results

The subject of functional inequalities is full of isolated results,
indicative of the existence of general theories, but as yet incompletely
related.

There are many connections with Tauberian theory; see WIDDER ([1.8]
of Chapter 3), DoETscH [1], and the paper by WrIGHT [2], in which a
differential inequality leading to the prime-number theorem along the
ERDOS-SELBERG path is discussed. See also SHAPIRO [3].

A most interesting result, with a number of immediate applications,
is the following: If #,, = 0, and

um+n§ um—l— un: (l)
for m, n = 0, then
) u,
fm 2 e

exists. For a proof, see POLYA-SzEGO ([44.1] of Chapter 1); for applica-
tions, see FURSTENBERG and KESTEN [4], and BELLMAN [5].

Further developments, by BECKENBACH and RaApo6 [17.15], [17.16],
BeCKENBACH [17.17], CALABI [6], YANO and BOCHNER [7], OSSERMAN
[8], REDHEFFER [9], [14], SACKSTEDER [10], Boas and Pérvya [11],
DUFFIN and SERBYN [12], PAYNE and WEINBERGER [13], and LOEWNER
[47.2] of Chapter 2, are indicated in the bibliography.
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2 ayfu(%) fo(y) 20
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and again to [47.2] in Chapter 2, a paper first cited in connection with monotone

matrix functions.

Chapter 5
Inequalities for Differential Operators

§ 1. Introduction

In this concluding chapter, we shall pursue some variations on yet
another central theme in analysis. The present theme can be described
in the following general terms. Consider a set of ordinary differential
operators, {7;}, and a set of functions, {#}, admitting these operators.
These give rise to a new set of functions {7,;u#}. We have already con-
sidered the problem of determining when nonnegativity of the 7,u
induces a corresponding property in the #. In this chapter, we shall
consider the problem of determining when the fact that 7,u € L?(0, oc)
implies that « ¢ L7(0, o), where the value of » depends, of course,
on p. More gencrally, given that T,u € L?i(0,0), 2 =1,2,...,k, we
wish to determine the L-class of T u.

This problem, in turn, is a particular case of the problem of obtaining
a complete set of inequalities of the form

Of}TkHu[T at < g(Of[Tlu P dt, .. .,Of | T\, u|Px d¥) . (1)
We shall not discuss this type of question, although we shall inaicate
some of the inequalities of this nature that can be obtained.

Perhaps the most famous inequality of the foregoing type is the
classical one due to S. BERNSTEIN: If

N
u= X a, e,
n=20
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a trigonometric polynomial of degree N, then

max |u ({)] = N max [|u(f)]. (2)
0<t=2n 0<t<2=n

A corresponding result, due to MARKOFF, holds for ordinary polynomials
over a finite interval; see MANDELBROJT [1].

There are numerous extensions of these results — to other norms, to
generalized trigonometric polynomials, to entire functions of finite
order, and so on. We shall not enter into any of these matters here,
since they have been thoroughly and elegantly treated in the book by
Boas [2] and in the expository paper by SCHAEFFER [3]. A host of
references to the enormous work in this field will be found in these two
sources. See also Sz.-NAGyY [4].

As in the other parts of this monograph, our aim is to focus attention
upon results and methods that have not heretofore been collected or
analyzed in any detail. Furthermore, it is our aim to present particular
methods that can be used in a variety of ways.

Also as in the other parts of this monograph, it has been difficult to
draw a sharp distinction between inequalities of general interest through-
out analysis, and those useful only in specialized fields. Despite their
great elegance and importance, we have somewhat relucantly decided
to omit any of the numerous inequalities concerning partial differential
operators. A discussion of the inequalities of PoiNCcARE, KORN, FRIED-
RICHS, and others, may be found in the papers by ARONSzZAJN [5],
NIRENBERG [6], and FRIEDRICHS [7]; see also COURANT-HILBERT ([26.1]
of Chapter 2). We feel that these results lie most firmly imbedded in
the domain of partial differential equations.

The results we shall begin with have their inception in the investiga-
tion of HADAMARD concerning relations that exist between bounds for
u(t), #' (f), and "’ (f) for ¢ in a finite interval. A discussion of this is
contained in HArDY, LITTLEWOOD, and Pérva ([1.1] of Chapter 1).
For an indication of how results of this nature are connected with
Tauberian theory, see the book by TiTcHMARSH [8].

Generalizations of these results were given by ESCLANGON and
Lanpau [9]. The problem of determining best possible inequalities
connecting various norms of #, #’, and #” was undertaken by Kormo-
GOROFF [10]. As mentioned above, we shall not discuss any questions of
this type.

Problems of the sort we are considering in this chapter are intimately
connected with the theory of linear differential equations, as has been
noted by a number of authors (Beesack [11], [12], CorauTtI [13],
REIDp [14], BErLMAN [15], and others), and we shall exploit this connec-
tion.
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Following a treatment of results concerning L?-norms, due to
NAGy [16], HALPERIN and VON NEUMANN [17], HALPERIN and P1T1T [18],
and BELLMAN [15], we shall turn to a class of inequalities associated
with the name of CARLSON [19]. As pointed out by NaGgy [16], these are
related to the Hadamard-type inequalities; and, as pointed out by
KJELLBERG [20], they are also related to the moment problems discussed
in Chapter 3.

Extensions of CARLSON’s inequality were given by HarDY [21],
GABRIEL [22], BEURLING [23], CATON [24], NAGY [16], KJELLBERG [20],
LeviN [26], and BELLMAN [25]. Without paying any attention to the
determination of best possible constants, a problem solved by LEVIN [26],
we shall follow a method that furnishes a simple means of obtaining
results of this nature.

Next we turn to WIRTINGER's inequality, a result used in the preceding
Chapter 4, and to its numerous extensions. We shall employ an interesting
method based on explicit identities to establish these results. Although
they can readily be obtained by means of the theory of Sturm-Liouville
equations, it is important to use this elementary method, due to BEE-
SACK [12], since it covers a number of cases that would otherwise require
an extensive background in analysis. The method was highly developed
by CorauTTI [13] and REID [14], who obtained numerous inequalities
of the extended Wirtinger type.

In the final part of the chapter, we shall establish some particular
inequalities of this nature due to NORTHCOTT [27] and BELLMAN [28],
and the more interesting discrete versions due to FAN, TAUssKky, and
TopD [29]. Related results are due to OsTROWSKI [20.1] and Brock [30].

As discussed in some detail by HARDY, LITTLEWOOD, and PéLva,
and as we shall briefly sketch below, the problems we have been discuss-
ing can be treated by means of the calculus of variations; but for a
number of reasons this is not a satisfactory procedure to employ, and
little use will be made of it. Finally, we have omitted the results of
Bora [31], extensions of the original result of LyapuNov, which are of
great importance in the theory of linear differential equations with
periodic coefficients; see STARZINSKII [32] for a survey of these matters,
and many further results.

§ 2. Some Inequalities of B. Sz.-Nagy

Let us begin by discussing interesting inequalities of Nacy [1.16].
Analogous results were established by E. ScHMIDT [1] for the case of
finite intervals.
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Theorem 1. Let vy (x) be a function defined over [— oo, o], for which
the integrals

Jo= [Dledx, K,= [[|y|rdx (1)
exists for some a > 0 and some p = 1. Then
max |y < ( ) J@=vlen g1fen @)
—oo ¥ 0o
where v =14 (p—1)a[p,; further, for b >0,
v —1
Jois = [%H (b p )] ]1+b ®r ]{L/(br) , (3)
where
—(u+v)
H(u,v)z(u—i—v)(Jf F+wudtv) (4)

w14+ u) I (1 4+ v)
Proof. Consider first the case » = 1 and the inequality (2). Since ],
is finite, there exist sequences {a,}, {b,}, possessing the property that

y(dn)—>~0, y(bn)_>'0 as a, > oo, bn—“>——-00.
Then

.Hny>$fydxi/ydx—hm(¢fi4)ydx>izym 5)

n—> 00 z a,

Hence, for arbitrary z we have

+ 2y (2) f ly'ldx, (6)

the stated inequality for p = 1.
Now take p > 1. Using HOLDER’s inequality, we have

oo oo (p—1)/p oo , 1/p
Flyl-naisly| ax < ( f\yl“d") ( / '”"”)

= JaP- 02 K}JP (7)
Also, we have

o o) 01
[ly|e=n1r |y dx = [—f + [|(sgny) |y|-1 elry’ dx

0
oo 01
—_ 1 _ 4 o+ (r=1)a/
1+4p_nam[ 0 +;l‘dxﬂﬂ Ndx  (8)

4 [P —1im Iy o —lim Iy )] = -1y (011

1~—>00 H—>00

Since the integrals are invariant under the transformation y(x) — y(x + 4),
we see that (2) holds.

The proof of (3) is more complicated and we refer the reader to the
original paper [1.16].
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~

§ 3. Inequalities Connecting #, #’, and «”

Let us now derive some inequalities connecting #, #’, and u”. We
shall begin with some inclusion remarks and then show that these
may be refined to yield inequalities.

Theorem 2. If u €L?[0,00], p=1, #'€L7[0,00], ¥ =1, then
u € L™ [0, co] for m = max (p, 7).

If p =00, the condition u €LP? [0,00] 15 fo be interpreted as
max || = a < co.
t20

The two most interesting cases of this result, p =7 =m = oo,
p =r=m=2, were presented by BELLMAN in [1.3] of Chapter 4. We
follow the method given there.

The bound max (p, #) can be improved. It was shown by NURENBERG,
in unpublished work, that techniques similar to those used by Nagcy,
based on integration by parts and elementary estimates, can be used to
obtain extensions of the following results.

Proof. Write

w'—u—=f+g, (1)

where f € L™ and g € L?. Considering this relation to be alinear differential
equation for #, with forcing term f -} g, we can write # in the form

t
u = ¢ et+ cyet - % / [et=9)— == [f(s) + g(s)]ds. (2
0
The assumption that f € L™ and g € L? implies that the integral

b;"e_s F(s) + g(s)] ds

converges and that
t
et [ [/(5) + g (5)] ds

is bounded as ¢{— co. Hence in order that « € L7, it is necessary that
1
ety | et Fels)lds = 0. )
0
Using this relation, we find that (2) takes the form

o5} 14
1 -
u:cze—t#%/e—s [f+g]ds——th /es [f+glds, (4)
; 0

which yields

i

Wty [ f+gds+ G [efrgds. 6

0
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From this representation, we readily derive the stated results. To
begin with, consider the case in which m = co. Since, by HOLDER’s

inequality,
(f |f|1’ds> (/ooe‘qsds) '
e b
_q( / Ifl”dS) , o
< (f eqsds) (/st)
( / lflf’ds) ,

with corresponding results for integrals involving g, we see that |#| and
ju’| are uniformly bounded for £ = 0.

‘sfds

¢

0/ e fds

[|/\

If 1 < m < o0, we have

[’ (B)|™ < ca(m) [e_mt L gt (fe_s y ds)m

0

+ em? (fme‘s 2l dS)m
4 emt (Oftes lflds)m

senfene ]

Consider a typical term on the right-hand side. We have

I
m

Ofwemt(tfme—s ] ds) it

mlq

oo oo mlg ; oo
femt (fe—qsﬂds) ([ is) " at ®
0 i 0

A

IIA

o0 oo mip
cs [ emti? (fe—PS/Z |f|7’ds) dt.
0 0
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Integrating by parts, we obtain

oo oo mip
/emt/z(/ e~ Pl ]f[f’ds) dt
0 0
ol oo mfp—1
m
= [ etm=ntz|f] (/ e—Dsl2 |f]1’ds) dt
v ; (9)

caf (/fwmywqw
0 m/p
CGP (/ |f[1’ds) < 0.

We see that the condition m = p plays an essential role. This completes
the proof.

Observe that we have actually established a stronger result than
stated. It is not necessary that » ¢ L? and »'' ¢ L", but only that

MZka:
kz‘ (10)
u’ =2gk:

k=1
with
fkeLPk; gkeery ?k;rk% 1,
and
m = max [py, ] . (11)

1Sh<n
§ 4. Inequalities Connecting #, #®, and %™

To obtain a corresponding result for the more general triplet of
derivatives, #, #®, and ™, n > k > 1, we use the equation

u—u=f+g (1
if n=4m 4 2 or » 1s odd, and
uW+u=f+g (2)

if n = 4m.

The reason for this change of equation lies in our desire to avoid the
case in which the characteristic equation contains a root with zero
real part. The result corresponding to Theorem 2 is the following:

Theorem 3. If w ¢ L?, uMCLT pr =1, n>1, then u® L™ for
m = max [p,7] and k=0,1,2,...,n— 1.
The proof follows the same lines as in § 3.
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§ 5. Alternative Approach for «, ', and u”’

If in place of the statement of Theorem 2 we wish to obtain actual
inequalities, we can proceed as follows. From the relation

% [e=t(u' + u)] = et (u'' —u), (1)

for u(#) satisfying the hypothesis of Theorem 2, we obtain the relation

[e¢]

w=—u—efesu'—ulds. (2)
i

This result is also obtainable from (3.5) upon integrating by parts
and observing that ¢, = [1#(0) — «’ (0)]/2.
Hence
max [#'| < 2 max |#| + max |»"|. (3)
t=0 t=0 t=0

Replacing «(f) by u(rt) for » > 0, we obtain the relation

y max |u'| < 2 max |u| + 7> max |u"'|, (4)
=0 =0 >0
for » > 0. From this it follows that
(max |#'|)2< 8 (max |#|) (max |u"|} . (5)
t=0 t=0 t=0

Similarly, we can obtain an inequality connecting [ |#'|™d¢, [ |u|?dt,
0 0

oo

and [ |#”'|" dt; see the arguments given in [1.25]. To obtain a result corre-
0

sponding to (5), we use the lemma of §9, below. Unfortunately, this
method does not yield best possible constants.

Perhaps the easiest way to obtain extensions of equation (2) is to
use the vector-matrix relation

LA tn) = Al dx t #) ©)

where x is an n-dimensional vector, or
o0Q
x=c4t[eds(Ax + x') ds, (7)
t

where A is a stability matrix.
Choosing A4 suitably, and
u
ul
X = (: , (8)
wn =1

Ay

we obtain a variety of relations connecting #*) with linear combinations
of # and the derivatives of #. In this way, we can derive a number of
extensions of (5).
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§ 6. An Inequality of Halperin and von Neumann and
Its Extensions

An extension of the foregoing techniques yields a generalization of
the previous results.

Theorem 4. If
(a) '+ ay(t) 0+ ay(t) u €L,
(b) weln, (1)
(© e [a(f)f = 1 <00, 0=1,

then u, w' € L™ for m = max (7, p).

Proof. Let us discuss only the case in which m = oo, which means that
we are studying the uniform boundedness of |#’|. The general case can
be treated in the same fashion. In addition to the device we have been
using 1n the previous sections, we must introduce an additional one.

We write
w'— M?*u = u" -} a, () W'+ a,(t) u (2)

— [a, (t) '+ ay(t) w + M2u]

=fl) —a (),
where f(f) € B [0, o], the space of functions uniformly bounded over
[0, c], by virtue of the assumptions in (1). Here M is a parameter to
be chosen in an expeditious fashion.

Solving for «, we write
t
u=cpe Mt L cyeM?t 4 ﬁ/ [eM(“S)-e—M(t*s)] f(s) ds
: ’ (3)

1 r
[eM(t—s)_ g—M(t~8)] ay(s) u'(s)ds.

- 2M
0
Since it is easily established that the relations
[%”+ al(t) H’—}— P (t) %:l E B [O: oo] ’ di(t) 6 B [O: OOJ ’ 7= 1: 2;

imply that
[t ()] < c5ed?

for some constants ¢; and b, we sce that the integrals

[eMs g (s)u' (s) ds and Fe—Msf(s) ds

0
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converge, provided that M is sufficiently large. Consequently (3) has
the form

¢
1
u=c e Mt — oo [ e~ MieMs f(s) ds

0
1 t
—|—W/e-M*eM3a1(s)u’(s)ds (4)
0

£ 20 [ M f(s) — ay(5) ' (5)] s

and accordingly

i
u’=—Mcle—Mt—|——;—'/e-Mt eMsf(s) ds
0
4
——;—/e*MteMsal(s) u'(s)ds (5)
0

[ e 9 — a9 () ds.

¢

From this it follows for an appropriate constant c, that
Wl e [ermeg et foe (9 ds
0
+ e—l‘“oftel‘ls |’ (s)| ds (6)
+ eMttfwe*Ms |£(s)] ds

+ eM‘tfooe‘Ms |%’ (s)]| ds] :

Thus, for an appropriate c,,

max |#’| < ¢; + [ max |u'|\M~?
0SIST 0SIST

- (7)
+ max (eMtf e~ M|y’ (s)| ds) ,
0SIST ‘
whence, for M > 1,
max |#'| < ¢g (1 — 1/M)?
0<IST 8)

+ max (eM*f e~ Ms |y’ (s)] ds)(l— 1/M)-1.
=T ]
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Assuming now that M = 3, we have

o0
max |u'| < c,+ ¢, max (‘el‘“/zfe—l‘“/2 |4’ (s)] ds) . (9)
0<tsT 0<t<T ¢

On the other hand, returning to (6), we obtain
[ e M2 |y ()| dt < cz[f e=3Mt2 ¢
¢ ¢
¢

+ oo ([ 17(s) ds)
1

0

N fooe_th/z (fteMs |’ (s)| ds)) dt (10)
L [emer (fe—Ms 1£(9)] ds) it

+ [eMin (f e=Ms |y (s)| ds) dt] .
t ¢

Integrating by parts, we get

e~ M2 |y (t)| dt
i

13 oc
2
< cz[?jv, esanr 2 eaan [ oo |f(s)] ds o [ e Mo f(s)]ds
0 i
¢ 00
2 ’ 2 9 ’
+ 337 6"3Mt/2/6M3 |u’(s)| ds -|—3—M/ e~ M32 |y (s)| ds (11)
é i

2o ~Ms d 2 —Mt2 d
+—— [ M) ds+ 57 [ e | ()] 4t
? i

oo oo
zeMl/;Z

' 2 o ’
7 fe—Mslu () ds +—5p | e M |u (s)fds}.

¢ t

It follows that
M t/Zf eMY2 ' (1) dt < ¢,
i

e~ Mt 4
1+ —— [ eMefu’(s)[ds].  (12)
o

Hence

1
max |eM t/2f e~ M2 |u'(f)| dt| = ¢+ 55 max [u'(s)].  (13)
0St< T : 0LIST
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Combining (8) and (13), we see that max |#’(s)| isuniformly bounded
oSt T

for T = 0. This completes the proof.
The proof of the general result for linear differential operators of
arbitrary order proceeds in similar fashion.

§ 7. Results Analogous to Those of Sz.-Nagy

Let us indicate briefly how we can obtain results similar to those of
NaGy given in § 2.
Write
wu=f+g, (1)

where f¢€LP[—o0,00], g €L [—o00,00], p,7# = 1. Then, arguing as
above, we find that # must have the form

u=e* ftf(s)esds+e-t ftg(s) e ds . (2)

The conditions imposed upon f and g yield the uniform boundedness
of u. Hence u € L? (—oo, o0) and #’ € LT (—oo, o0) imply that # ¢ LP+?
[—oc, o] for b = 0. This result, however, is not as strong as that given
in § 2.

§ 8. Carlson’s Inequality

An inequality due to CARLSON [1.19] is the following.
Theorem 5. If g(t) = O and the integrals on the right exist, then
1/4

© _{ © 1/4 ( o©
Ofg(t)dtéVn {Of[g(tnzdt} {()f[tg(t)?dt} : (1)

As pointed out by NaGy [1.16], the result follows from Theorem 1
when we take

2_ e %]
f(x):l/; /g(t) cosxtdt, (2)
0
p = a =2, and apply the Parseval-Plancherel formula [1].

§ 9. Generalizations of Carlson’s Inequality

CARLSON’s inequality can be substantially extended. The general

problem is that of determining bounds for [ f(x) d x, given the existence
0

of [ xf°dx and [ x°f%d x. Results in this direction have been obtained
0 0

by Harpy [1.21], GaBRIEL [1.22], BEURLING [1.23], CaTOoN [1.24],
Sz. NAGy [1.16], BELLMAN [1.25], and KJELLBERG [1.20]. As indicated
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by KJELLBERG, this is a moment problem and can thus be treated by
the techniques described in Chapter 3. See also Boas [1].

Here we shall present, following [1.25], a simple technique for
obtaining results of this type when optimum bounds are not of interest.
For a derivation of the best inequality, see LEVIN [1.26]. Let us demon-
strate the following result:

Theorem 6. If f(x) = 0and p,g >0,0<Ai<p+1,0<pu<g+1,

then
oo pputagltu+i
[ d)
0o u 00 A
_g_K(p,q,/l"u) (fxp—lfm-ldx) (fx‘”“f““dx) . (1)
0 0
Proof. We write
~ - #2=DG+D £ g5 C:O FO+HWI@+D f gy v
()/f(x) dx 25/ A@=DIG D (1  z) +6/ Zer i@t (1 f 1/x) (2)

Then, using HOGLDER's inequality, we have

oo Rty £g co /(p+1)
x®— M x '
-2
f AP-DI@ED (1 1 z) = / aP=tfrildx
0 0
oo 1+ 1)
f ax
) K 1=DD (1 x)1+1n )
; ‘ 3

F e f @ g+ 1)
alet wite+ dx
/x(¢+y)/(q+1)(x+ 1/z) = ([ xUHH fatldy
0

0
0o 1/(g+ 1)
ax
’ f ALEWIL (1 - 1]x)1+e ’

0

We thus obtain the preliminary result that

[o¢]

oo e+ 1)
[f(x)dx < ¢ (Of xf’—"f”“dx)

0

% /e+1)
0

where ¢, and ¢, are the integrals independent of f in (3).
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Let us now employ a device that is useful in many similar situations.
When f(x) is replaced by f(«x/f), t > 0, (4) yields, after a change of variable,

[o¢]

r 1/(p+1)
t [ f(x)dx < ¢ te—2+D/(r+1) (f xp—;'fp“dx)
0 0
o (g + 1) (5)
+ ¢y tlatrt /@t (fxqwﬂfqﬂ dx) ’
0

forall £ > 0.
To obtain the stated result, we employ the following lemma:

Lemma. Ifv>u >0,a,b,¢ >0, and
bxv< ¢+ axv (6)
for all x >0, then
cvmugh =k (u, v) b. (7)
The lemma follows upon setting ¥ = (bu/av)t/¢—% and this completes
the proof of the theorem. The result is an extension of the well-known
fact that 82< 4ac if bx < c-+ax? for all x =0, and a,b,c = 0.
It is clear that corresponding inequalities may be obtained for
infinite series by means of the same techniques.

§ 10. Wirtinger’s Inequality and Related Results

In a number of cases, in addition to obtaining inclusion results and
explicit inequalities, we are able to derive precise inequalities, together
with a determination of the class of functions for which equality occurs.
In general, this involves a certain amount of ingenuity, and occasionally
an appeal to the apparatus of the calculus of variations. Sometimes,
however, the results can readily be obtained in a number of ways. This
is particularly true of inequalities involving quadratic functionals.

Perhaps the most interesting example, and one that is widely used
in analysis, is the Wirtinger inequality; see HARDY, LITTLEWOOD, and
Pérva ([1.1] of Chapter 1) BrascHKE [1], and FaN, TAussky, and
Topp [1.29].

Theorem 7. If u(t) has period 27, and

fzxu(t) dt =0 (1)
then
JLu@rars [ (v, (2)

with strict tnequality unless
u (f) = ¢, cost + ¢, sint . (3)
Ergebn. d. Mathem. N. F., H. 30 Beckenbach and Bellman 12



178 5. Inequalities for Differential Operators

Let us give three proofs, the first based on the theory of Fourier
series, a method used by Hurwitz [2] to establish the isoperimetric
inequality in the plane and in space, the second on Sturm-Liouville
theory, and the third on an integral inequality. This last method was
extended by BEEsAck [1.12]. The three proofs are given in §§ 11—13,
below.

We shall discuss the isoperimetric inequality in detail in our second
volume. For extensions of this inequality, see [1.16] and the paper by
SCHOENBERG ([48.7] of Chapter 2) to which we have already referred
in connection with determinantal inequalities.

For a discussion of the related inequality of WEVYL, see SLEPIAN and
Porrak [3], LANDAU and PorrAk [4], and WHITTLE [5].

§ 11. Proof Using Fourier Series

Let us write, for #(f) a real function,

u(t) ~ 2 apeint, | (1)

n=0

where the term involving # = 0 does not appear, by virtue of the condi-
tion (10.1). Then
uw' (t) ~ ) ina,eint, (2)
w0
and PARSEVAL's relation yields

2n
Of [u(f)]* dt = %‘Olanl2 ;

’ @
Of [’ (£))2dt = 3 n?|a,|®

n=0
From these, we obtain the desired relationship (10.2), with strict in-

equality unless
a,=0, |n|=2. 4)

§ 12. Sturm-Liouville Theory

Let p(¢) be a bounded positive function, and consider the problem
of obtaining an inequality connecting

f%;l’[%(t)]2 dt and fh[u’(t)]2 dt .

Let us assume that #(0) = #(2x) =0, and ask for the minimum of
2
[ [#'(f)]2 d?, subject to the normalization

0
2n

[puwdi=1. (1)
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Then, proceeding formally, and using a Lagrange multiplier, we are led
to the problem of minimizing the quadratic functional
2n

.]W):quﬁ—lﬁuﬂd% (2)

over all # (¢) for which the integral exists, and which satisfy (1) and the
foregoing end-point conditions.
The Euler equation is
uw'+ Apu=0. (3)

If u satisfies this equation, we have

0= 7nu (M“‘I“ A?M) dt = [Mu’jgn_ _2/‘:‘[%1 (t)]z di + Affnpuz at , (4)
0 0 0
or

A= [ dr. (5)

Hence, the required minimum value is the smallest characteristic value
of the Sturm-Liouville problem associated with (1) and the two-point
boundary values
u(0) =u(2n) =0. (6)
For a discussion of problems of this nature, see INCE [1] and
CODDINGTON-LEVINSON ([34.3] of Chapter 4).

§ 13. Integral Identities

A third approach to these problems, and to a variety of similar
problems involving higher-order derivatives, i1s based on a class of
identities due to BEEsack [1.12]; see also HarpY, LitTLEWOOD, and
Pérya ([1.1] of Chapter 1).

Let v (¢) be a real function satisfying the Riccati equation

V4 v p(t) =0, (1)

with an initial condition we shall subsequently discuss. Then, proceeding
formally, we get

27 2 ’ 2r

[ —v (u—b)2dt = [ w?dt+ [ v2(u—0b)?dt
0 0

° o @
—2 [ vu'(u—0b)dt.
0
Integrating by parts, we see that
2 2r
—f 200 (u—Db)dt = [—v (u—b)*12"+ [ v'(u—b)2dt
0 02n (3)

= v (O] 24 p) (D)t

12%
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Using this result in (2), we obtain the identity
27 2n
[ [W—v(u—0)2dt= [ [u2—p (u—>0)2]dt
0 0 (4)
+ [~ v (w—)"]5"
Suppose that v (# — b)%is zero at £ = 0, and that v (f) exists for 0 < 1< 27
and is nonnegative there. Then (4) yields

fﬂ[u'— v (u—b)2] dt + v(2n) [u(27) — b]?

0

2m (5)
= [ [u2—p (u—0)2]dt.

Y
A special case of this identity is given in HArRDY, LITTLEwoOD, and
PéLya to establish WIRTINGER’s inequality. In his paper, BEESACK
[1.11] gives an analogue of this result for fourth-order equations of the form
wV + pu =0, (6)

2%

and uses this to establish a number of inequalities connecting [ «''2 d¢

0
27

and [ p(f) u?dt. He also discusses the rigorous derivation of (4). Further
0

results for ordinary and partial differential equations are given in REID
[1.14] with application to isoperimetric problems.

§ 14. Colautti’s Results

As might be expected, the identity (13.6) associated with the self-
adjoint equation #”'+ pu = 0 is a special case of the identities that can
be obtained with the aid of a linear differential equation L () and its
adjoint equation L*(u) = 0. This theme has been extensively and
adroitly developed by CoLAUTTI [1.13], who used the resultant identities
to derive a variety of interesting inequalities of the type we have been
discussing. Related results are given in HORMANDER [1].

§ 15. Partial Differential Equations

BEeEsAcK [1.11] pointed out in passing that identities similar to (13.5)
can be derived for partial differential equations. Thus, if

Vpat Uyy T P =0 (1)
for (x, ) € R, and v = O on the boundary B of R, then we have
[+ ul—pud)dd = [[(u,— wu)+ (u,— z0)?]d4,  (2)
R

R
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wheré
, =T, (3)

provided that # = 0 on R, and that the various functions and integrals
exist. Similarly, the techniques of CoLAuTTI [1.13] can be extended to
partial differential equations. Note that the ‘“Riccati equation’ is now

Wyt 2y+ W2+ 22+ p=0. (4)

§ 16. Matrix Version

A systematic way of obtaining analogues of (13.5) for higher-order
linear differential equations, and for linear operator equations in general,
is to use vector-matrix notation. Let ¥ and b be #-dimensional vectors,
x variable and b constant, and Z an # by # symmetric matrix satisfying
the equation

'+ 7224+ Pty =0. (1)

Then, proceeding as above, we get
2n

[(¥—Z (x—b), ¥'—Z (x— D)) dt
2m 2n

= [ (&, x)dt+ [(Z(x—0b), Z(x—D))dt (2)
27 )

—2[ (&, Z (x— b)) dt .
0

Since

d p oz

i (x—08),Z(x—=08)=2(x,Z(x—0) + (x—b,2"(x—b)), (3)
we have, after the same manipulations as in the scalar case, the identity
2n

[ U, &) — (% P(f) x)] dt = }n(x'—Z (x—0), ' —Z (x— b)) dt

0

4)
+(x—b,Z (x—b));= 2,
provided that (x — b, Z (x — b)) vanishes at ¢ = 0, and Z (27) is positive
definite.
To use this identity to obtain analogues of (13.5) for higher-order

linear differential equations, we first convert the equation into a second-
order vector-matrix equation,

X'+ P(l)x=0, (5)

use (4), and then convert back. Generally, we shall have to use both
the original linear differential equation and its adjoint.
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§ 17. Higher Derivatives and Higher Powers

Having obtained precise results for squares and first derivatives, we
naturally turn to the problem of relating the two means

Of”[u(t)w i, Of” W] di | )

Problems of this type, although simple in principle as far as variational
analysis is concerned, pose certain difficuties if precise inequalities are
desired. A detailed analysis of many problems of this type may be found
in the previously cited book by Harpy, LITTLEWOOD, and P6LvA, and
in papers by KoLmoGoroFF [1.10] and BeEesack [1.11], [1,12].

Here we wish to present two readily derived results due respectively
to NorTHCOTT [1.27] and BELLMAN [1.28]; see also OsTrROWSKI [20.1].

Theorem 8. If u(t) = u (¢ + 2x), tf u (), u' (f), ..., u®~1) (f) are abso-
lutely continuous, and if

2n
[ u(s)ds =0,
0
then
max |u(t)]| < a, max |[u®()], (2)
0t 2n 0t 2n

where {a,} is the following prescribed sequence:
4 2 78
M=3» G="g,» B~y (3)
This vesult is the best possible in the sense that for any k, there is a function
u(t) for which equality 1s attained.
Theorem 8 may be considered a limiting case of the following result:

Theorem 9. If u(t) = u (¢ + 27x), if u(t), #' (t), ..., uE~V() all exsst,
of u—1)(4) is the integral of a function wn L27 [0, 2], and +f
27
[ u(s)ds=0,
0
then
2n 2n
[ Tul)Prdt < a2 f [u® () ]rde. (4)
g

0
Here the results are no longer the best possible.

§ 18. Discrete Versions of Fan, Taussky, and Todd

As is frequently the case, discrete versions of inequalities are more
interesting in that they are usually more difficult to establish and
require more effort in the determination of best constants and extremal
functions.
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An early result in this direction is due to BLAsCHKE [10.1]:

Theorem 10. If I is the length of an equilateral polygon with n sides
and avea A, then

L2= [4n tan %] 4, (1)

with strict inequality unless the polygon is regular.

Let us now discuss a number of results due to FAN, TAUSsSKY, and
TopD [1.29]. These results could equally well have been part of Chapter 2,
which was devoted to inequalities pertaining to matrices. Their proofs
depend on a detailed analysis of the characteristic roots and vectors
of various special classes of symmetric matrices.

Theorem 11. If x,, x,, . . ., x,, ave n real numbers, %= 0, then
n—1 ”n
—_— . 2 in2 T 2
ié: (x’t x2+1) é 4 sin 9 (Zn - 1) ié:le ) (2)
with equality only of x;=cx;, 1=1,2,...,n, where
R O V .
xp=sin—5 —5-, t=12...,n. 3)

The structure of the symmetric matrices arising in this and related
variational problems discussed by FAN, TAussky, and Topp had been
investigated by RUTHERFORD [1] because of their great importance in a
number of mathematical models of chemical and physical processes.

In addition to the foregoing result, a number of related results are
given, corresponding to different conditions imposed upon x; and x,.

§ 19. Discrete Case — Second Differences

A further analysis of the same kind yields the following result; see
the paper by FAN, Taussky, and TopD [1.29] referred to above.

Theorem12. If x,, x,, . .., x, are nreal numbers, wheve xy= x, ., =0, then
n—1 ”

x,— 2%, X;00)2 16sint T 3742 1

i§0( z Z+1+ l+2) = 2(%+1) 1}§0 ( )

with equality if and only if

%)
w417
There are analogous results given for other boundary conditions.

x;= ¢ sin 1=1,2,...,n. (2)

§ 20. Discrete Versions of Northcott-Bellman Inequalities

Let us now consider the discrete versions of some of the results given
in § 17. The first result is an analogue of Theorem 9:
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Theorem 13. If x4, %,, . . ., x,, are n complex numbers such that

then, for any positive integer v, we have

”n "

.§1|xi|7§ [al(n)]’_§1|xi— Xipa|” (2)

and
é’llxil’é [“z(”)]r'g:l %y — 2%+ Xpa]”, (3)

where

X0= Xp» X1= Xps1> (4)

and

n—1 n:—1

ay(n) = g ax(n) = —5— - (5)

The tnequalities (2) and (3) are the best possible of this form.

The second result is an analogue of Theorem 8, and of a continuous
result due to OSTROWSKI [1]:

Theotem 14. If n (n = 2) real numbers vary under the conditions

(a) 2 x;=0,
i=1

(b) max|x|=1, (6)
1£i<n

(©)  %pi1= %,
then the minimum of
J (%) = max |x,— %, (7)
1<i<n
28
4 . .
—1f n 1s even,
”n
in 8)
a1 Y nisodd

Proofs of these results, as well as some generalizations, may be found
in the paper by FaN, Taussky, and Topp [1.29].

§ 21. Discussion

Results of the type presented in §§ 18—20 are important in connection
with the numerical integration of ordinary and partial differential
equations. Thus, for example, if a principal characteristic value for a
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region R is defined as the minimum of the quotient
[J [z + wldxdy
R
](M) = [[urdxdy ) (1)
R

over functions # satisfying the condition
# = 0 on B, the boundary of R, (2)

(see [44.1] of Chapter 1 for a systematic discussion of problems of
this nature), it is essential to know the connection between min J (%)

and the corresponding constant obtained from a discrete version of the
problem.

Questions of this nature have also been discussed by FOrsyTHE [1],
KREeIN [2], and ScHWARZ [3].
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N \p N
( 2 ak) = A,(p, 40 X atkrlLp>1,

N \p N

(k =2Mak> < A4, A b)k =21;4 /fgg A1 0 < p < 1.

Note the analogy to the result by Gauss quoted at the end of this bibliography.
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York: Chelsea Publishing Co. 1949,
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2. Hurwitz, A.: Sur le probléme des isoperimetres. C. R. Acad. Sci. (Paris) 132,
401-—403 (1901) (Werke, I, 490—491).

The inequality of WevL (Theorem 226, p. 165 of [1.1] in Chapter 1),

o0 2 o0 o0 \
(ff2dx) <4 (fx2f2dx) (ff'zdx) ,
0 0 0

is a quantitiative expression of the HEISENBERG uncertainty principle of quantum

mechanics. For further *“‘uncertainty principles,” see

3. SLeriaN, D, and H. PoLLaK: Prolate spheroidal wave functions, Fourier
analysis and uncertainty I. Bell System Tech. J. 40, 43-—64 (1961),

4. Lanpau, H. J., and H. PoLLAk: Prolate sheroidal wave functions, Fourier
analysis and uncertainty II. Bell System Tech. J. 40, 65—84 (1961).

See also

5. WHITTLE, P. : Continuous generalizations of TCHEBYCHEFsinequality. Probability
Theory and Appl. (Russian) 3, 385—394 (1960).

§ 12.

1. Incg, E. L.: Ordinary differential equations. New York: Dover Publications
1944.
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§ 14.
1. HorRMANDER, L.: On the regularity of solutions of boundary problems. Acta
Math. 99, 225—264 (1958).

§ 18.

1. RuteERFORD, D. R.: Some continuant determinants arising in physics and
chemistry, I, II. Proc. Roy. Soc. Edinburgh, 62 A, 229236 (1947); 63 A,
232—241 (1952).

§ 20.
1. Ostrowski, A. M.: Uber die Absolutabweichung einer differentierbaren Funktion
von ihrem Integralmittelwert. Comment. Math. Helv. 10, 226—227 (1937).

§ 21.

See [44.1] of Chapter 1 and ,

1. ForsytHE, G.: Asymptotic lower bounds for the frequencies of certain polygonal
membranes. Pacific J. Math. 4, 467—480 (1954).

2. KRN, M. G.: On certain problems in the maximum and minimum of charac-
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lations (2) 1, 163—187. New York: American Mathematical Society 1955.

3. Scawarz, B.: On the extrema of the frequencies of nonhomogeneous strings
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of Technology 1959.

As we have indicated many times before, we are omitting a large number of inter-

esting inequalities arising from probability theory and statistics. One of historical

interest is due to GAUSsS:
(o 0]
4 , i
Y *u(x)dx,
0
if ¥ > 0 and #(¥) is nonincreasing. See
4. CRAMER, H.: Methods of mathematical statistics, p. 256, ex. 4. Princeton, N. J.:
Princeton University Press 1946.

The functional-equation technique of dynamic programming can be used to obtain a
nonlinear partial differential equation for the function f(u, v, {) defined by

[o¢]

2 / u(x) dx

y

IA

¢
f(u, v, 1) = max [ x"g" dx,
g O

where g (#) is subject to the constraints

0.

v

: t
({xangzdxéu,ofxmgbgdxgvy g()V)

See
5. BELiman, R.: Adaptive control processes: a guided tour. Princeton, N. J.:
Princeton University Press 1961.



Name Index

Abel, N. H., 32, 117, 129

Aczel, J., 39, 53

Aitkin, A. C., 66, 90

Alexandroff, P., 80, 93

Amir-Moez, A. R., 75, 91

Anderson, T. W_, 86, 96

Andreief, C., 61, 88

Aronszajn, N., 100, 115, 129, 132, 149,
165, 185

Arrow, K. J., 81, 83, 84, 94, 95, 159

Artemov, G. A., 146, 161

Artin, E., 111

Banach, S., 94, 98, 101, 107, 110, 117,
118, 120, 124, 125, 127, 129, 139

Beale, E. M. L., 120

Beckenbach, E. F., 1, 16, 27, 28, 50, 51,
64, 89, 132, 145, 146, 157, 160

Beesack, P. R., 32, 53, 165, 166, 178 to
180, 182, 185

Bellman, R., 1, 2, 10, 25, 30, 38, 39,
48—55, 62—67, 75—95, 105, 114 to
120, 126—--135, 139, 141, 148, 149,
154168, 175, 182—188

Beltrami, E., 59, 132, 148, 161

Bendat, J., 86, 96

Bergman, S., 130

Bergstrom, H., 67—69, 71, 90

Bernstein, S., 109, 127, 128, 164, 185

Berwald, L., 39, 43, 44, 54, 101, 124, 126

Bessel, F. W., 51, 99, 162

Betti, E., 163

Beurling, A., 55, 166, 175, 186, 187

Bieberbach, L., 112, 127

Bihari, I., 131, 135, 136, 157

Bing, R. H., 145, 160

Birkhoff, G., 31, 52, 80, 82, 93, 94

Blackwell, D., 52, 105, 115, 126

Blaschke, W., 2, 39, 53, 147, 161, 177,
183, 187

Bleuler, K., 146, 161

Black, H. D., 166, 186

Boas, R. P., 107, 127, 157, 164, 165, 176,
185, 187

Bécher, M., 23, 51

Bochner, S., 38, 53, 66, 67, 100, 101,
114, 124—126, 128, 148—150, 155,
157, 161—163

Bohnenblust, H. F., 52, 80, 94

Bohr, H., 1,7, 50

Bonnesen, T., 29, 50, 51, 104, 105

Bonsall, F. F., 132, 145, 146, 160

Borel, E., 94, 101, 112, 115, 120, 127,
130, 1589

Borg, G., 166, 186, 187

Brauer, A., 80, 86, 93, 95

Brenner, J. L., 90

Brouwer, L. E. J., 93

de Bruijn, N. G, 61, 88

Brunacci, V., 32

Brunk, H. D., 48, 49, 54

Biickner, H., 2, 39, 54, 186

Bullen, P., 53

Buniakowsky, V., 21—23, 39, 45, 47, 98

Burgers, J. M., 154

Burton, L. P., 159

Bush, K. A., 64, 89

Calabi, E., 157, 163

CGaplygin, S. A, 131, 132, 139, 140, 143,
146, 157, 159, 161

Carathéodory, C., 103, 112—114, 119,
127

Carlson, F., 166, 175, 186

Cartan, H.,, 100, 114, 125

Carver, W. B,, 119, 129

Cassels, J. W. S,, 45

Caton, W. B., 166, 175, 186

Cauchy, A. L., 1, 2, 18, 21, 45, 50, 53, 60,
69, 75, 90, 91, 98, 102, 104, 117, 158,
161

Cayley, A., 83

Cebyshev, P. L., 97, 109, 126, 127, 187

CGernikov, S. N., 119, 129

Cesari, L., 118, 129, 157

Charnes, A., 119

Chassan, J. B., 45, 54

Chern, S., 38, 53, 90, 95

Cherry, 1., 162

Chevalley, C. C., 131

Coddington, E., 167, 163, 179



190 Name Index

Colautti, M. P., 165, 166, 180, 181, 186
Collatz, L., 81, 94, 156, 163

Cooper, J. L. B, 100, 114, 125
Corduneanu, C., 118, 129

Courant, R., 73, 91, 124, 165

Cramér, H., 188

Curtis, P. C., Jr., 145, 160

Danskin, J. M., 28, 51, 80, 93

Dantzig, G., 119, 120, 129

Davis, C. S., 61

Debreu, G., 81, 94

Dellac, H., 158

Delsarte, J., 132, 147, 161

Devinatz, A., 114, 128

Diananda, P. H., 50

Dines, L.. L., 119, 129

Dinghas, A., 47, 54

Dirichlet, P. G. L., 54, 160

Dobsch, R., 86, 96

Doetsch, G., 157, 163

Dorfman, R., 81, 83, 95, 101, 120
Dresher, M.. 1 28, 39, 45, 51, 109, 127
du Bois-Reymond, P., 101, 126
Duffin, R. J., 86, 96, 120, 130, 157, 164
Duporcq, E., 158

Eggleston, H. G., 104, 126
Ehlers, G, 9, 50

Erdos, P., 157

Esclangon, E., 165

Euclid, 23, 53, 97, 103, 104
Euler, L., 66, 89, 124, 141, 179
Everitt, W. N., 61, 88

Fan, K, 1, 5, 32, 45, 50—56, 62, 68, 71,
74—80, 84, 86, 89—96, 100, 101,
110—114, 119, 120, 125128, 166,
177, 182—186

Farkas, J., 119, 129

Favard, J., 39, 43, 44, 54

Fejér, L., 112, 113, 127, 155

Feller, W., 140, 159

Fenchel, W, 29, 50—52, 104, 105

Feynman, R. P., 80, 92

Fichera, G., 186

Fischer, E., 56, 64, 72—75, 89, 91,
112—114, 127, 130

Folges, M., 50

Ford, L. R., Jr.,, 120, 129

Forsythe, G. E., 123, 131, 185, 188

—T

Fourier, J. B. J., 15, 25, 51, 97, 98, 104,
113, 125, 127, 128, 178, 186, 187

Frank, P., 39, 43, 44, 53

Fredholm, I., 89

Friedrichs, K. O., 101, 124, 126, 131,
165, 185

Frobenius, G., 56, 80, 93, 94, 128

Fuchs, L., 31, 32, 53

Fulkerson, D. R., 120, 129

Furstenberg, H., 157, 163

Gabriel, R. M, 166, 175, 186

Gale, D., 119, 120, 129, 130

Gantmacher, V., 56, 80, 87, 93, 96

Garding, L., 10, 36—38, 53, 56, 66, 85,
90, 95

Garner, J. B, 159

Gass, S. 1., 120, 130

Gauss, C. F., 10, 50, 187, 188

Gelfand, 1., 100, 114

Gersgorin, S., 86

Gerstenhaber, M., 85, 95

Glicksberg, I., 25, 51, 84, 91, 95, 101,
120, 126

Godemont, R., 100, 114, 125

Gram, K. P, 51, 59, 60, 88

Graves, L. M., 101, 126

Green, G., 40, 42, 93, 115, 128, 129, 132,
133, 141, 142, 148, 149, 159, 161

Green, J. W., 16, 50, 156, 163

Grenader, U., 100, 113, 114, 128

Greub, W., 45, 54,70

Grimshaw, M. E., 76, 91

Gronwall, T. H., 131, 135, 157, 158

Gross, O., 25, 41, 42, 51, 84, 91, 95, 121,
130

Guiliano, L., 135, 158

Haar, A., 126, 154, 162

Hadamard, J., 64, 89, 95, 113, 158, 165,
166, 185

Hahn, H., 98, 101, 110, 120, 124

Halperin, J., 166, 172, 186

Hamburger, H. L., 76, 91

Hardy, G. H., 1, 31, 32, 39, 50, 51, 53,
60, 129, 159, 165, 166, 175, 177, 179,
180, 182, 186

Harris, T. E., 81, 93, 94

Hartman, P., 80, 93, 132, 133, 144 to
147, 158, 160

Hausdorff, F., 128, 164

Haviland, E. K., 163



Name Index 191

Hayes, W. D, 50

Haynesworth, E. V., 70, 86, 90, 95

Heisenberg, W., 187

Helly, E., 107, 110, 114, 126

Helson, H., 88, 97

Herbrand, J., 131

Herglotz, G., 113, 114, 127

Hermite, C., 53, 55—57, 64, 65, 69, 85,
89—92, 119, 128

Herstein, I. N., 81, 94

Hilbert, D., 52, 91, 98, 100, 111, 114,
124, 128, 165

Hirschman, I. I., 87, 96

Hitchcock, H. P, 129

Hoffman, A., 62, 88, 101, 120, 126

Hslder, O., 1, 12, 19—21, 23, 25, 27, 28,
38, 39, 45, 47, 51, 54, 63, 98, 99, 101,
104, 107, 117, 167, 169, 176

Hopf, E., 163

Hopf, H., 80, 93

Hormander, L., 180, 188

Horn, A., 75, 91

Howard, R., 85, 95

Hua, L. K., 65, 67, 89

Hurwitz, A., 1, 8, 50, 88, 117, 178, 187

Hyers, D., 156, 163

Ince, E. L., 179, 187
Ingham, A. E., 55, 56, 65, 66, 89, 90
Inone, M., 146, 160

Jackson, L. K., 146, 160
Jacobi, K. G., 62, 80, 143
Jacobson, N., 61, 88
Jacobsthal, E., 11, 51
Jensen, J. L. W. V., 18, 51
Jentzsch, R., 93

John, F., 152, 162

Kac, M., 113, 128, 133, 148, 158

Kaczmarz, S., 123, 131

Kalaba, R., 30, 52, 55, 163

Kantorovich, L. V., 54

Karamata, J., 1, 30, 31, 52, 88

Karlin, S., 56, 80, 81, 87, 92, 94, 97, 100,
101, 109, 111, 120, 125, 127, 133, 137

Kellogg, O. D., 87, 96

Kemeny, J. G., 94

Kerner, E. H., 80, 92

Kesten, H., 157, 163

Kjellberg, B., 166, 175, 176, 186

Klein, F., 53

Klimko, E. Y., 146, 161

Kneser, H., 39, 54

Kober, H., 47, 54

Koecher, M., 56, 87, 97

Kolmogoroftf, A., 61, 88, 165, 182, 185

Konyushkov, A. A., 187

Koranyi, A., 115, 128

Korn, A., 165

Kraus, F., 86, 96

Krein, M. G., 56, 80, 81, 87, 93, 94, 96,
185, 188

Kronecker, L., 79, 92

Kuhn, H., 120, 130

Lagrange, J. L., 1, 3, 5, 59, 60, 67, 179

Landau, E., 100, 101, 112, 114, 116, 118,
127—129, 165, 185

Landau, H. J., 178, 187

Lane, A. M., 86, 96

Langenhop, C. E., 131, 135, 136, 157

Langer, R., 163

Laplace, P. S. (Le marquis de), 66, 125,
148, 161, 163

Lasalle, J. P., 158

Lax, P. D, 38, 56, 85, 95, 101, 110, 124,
126, 131, 135, 158, 162

Lebesgue, H., 118

Lees, M., 158

Lefschetz, S., 157, 158, 163

Lehman, S., 120, 130

Leipnik, R., 55

Lemke, C. E., 119

Leontieff, W. W., 81, 83, 94, 159

Levin, V. 1., 166, 176, 186

Levinson, N., 157, 163, 179

Levitan, B., 128, 132, 147, 161

L’Hospital, G. F. A, 16

Liapunov, A,, 115, 129, 158

Lidskii, V. B., 75, 91

Liouville, J., 140, 142, 148, 159, 162,
166, 178, 179

Lipschitz, R., 90

Littlewood, J. E., 1, 31, 32, 39, 50, 51,
53, 60, 129, 165, 166, 177, 179, 180,
182, 186

Loewner, C., 56, 86, 96, 157, 159

Y.ojasiewicz, S., 187

Loomis, L. H., 114, 121, 128, 130

Lopes, L., 1, 33, 35, 53, 79

Lorch, E. R., 29, 50, 52, 90, 92, 110

Lorentz, G. G., 1, 32, 53

Lorentz, H. A., 38, 53



192 Name Index

Lowdenslager, D., 88, 97
Liroth, J., 51
Lyapunov, A., 92, 166, 188

McGregor, J. L., 56, 79, 80, 87, 92, 97,
133

McNabb, A., 154, 162

Mac Duffee, C. C,, 61, 79, 88, 92

Maclaurin, C., 11, 50

Madansky, A., 45, 54

Mabhler, K., 1, 29, 51, 97

Mairhuber, J. C., 87, 97

Mallows, C. L., 100, 103, 105, 116, 126

Mandelbrojt, S., 165, 185

Maradudin, A., 113, 128

Marcienkiewicz, J., 30, 52

Marcus, M., 1, 33, 35, 53, 64, 79, 89, 92

Markoff, A. A., 80, 85, 87, 88, 92, 93,
139, 158, 165, 185

Marshall, A., 88, 97

Masani, P., 88, 97

Massera, J. L., 118, 129, 139, 159

Mathias, M., 100, 114, 125

Menger, K., 55

Mewborn, A. C., 81, 94

Minkowski, H., 1, 12, 19—29, 36, 51, 70,
89, 90, 94—97, 101—104, 118, 119,
129, 159

Mirsky, L., 31, §3, 65, 71, 75, 77, 89, 91,
92

Mlak, W., 133, 154, 162

Moffert, C. F., 61, 88

Mohr, E., 46, 54

Montroll, E. W., 80, 92

Morgenstern, O., 81, 83, 94, 120, 129, 130

Motzkin, T., 119, 129, 145, 160

Moyal, J. E., 55

Moyls, B. N., 79, 92

Murdock, L., 113, 128

Murnaghan, F. D., 38, 53

Murray, F. J., 94

Narasimhan, R., 154, 162

Nemyckii, V. V., 135, 158

Nerlove, M., 81, 94

Neuman, J. von, 81, 83, 93, 94, 100, 101
114, 120, 128, 130, 166, 172, 186

Nevanlinna, R, 115, 128

Newman, J., 130

Newton, I., 53, 163

Neyman, J., 101, 121, 126

Nikaid6, H., 119, 130

y

Nirenberg, L., 165, 185

Noll, W., 46, 54

Northeott, D. G., 166, 182, 183, 186
Nurenberg, L., 133, 148, 161, 168

Ogura, K., 23, 51

Olkin, I., 2, 48, 49, 54, 55, 64—66,
88—90, 97

Opial, Z., 137, 159

Oppenheim, A, 71, 91

Orden, A., 120, 129

Osserman, R., 157, 163

Ostrowski, A., 1, 30—32, 52, 59, 62, 64,
78, 86, 88—90, 95, 166, 182, 184,
186, 188

Parker, W. W., 86, 95

Parodi, M., 146, 161

Parseval, M. A., 175, 178

Payne, L. E., 157, 164

Pearson, E., 101, 121, 126

Peixoto, M., 132, 145, 160

Perron, O., 56, 80, 93, 94, 118, 129, 137,
139, 159

Petersson, H., 132, 144, 147, 159

Petrov, V. N, 132, 143, 146, 159

Phillips, R. S., 88, 97

Picard, E., 100, 112, 114, 116, 127

Pick, G., 2, 39, 43, 44, 53, 115, 128

Picone, M., 130

Pitt, H. R., 166, 186

Plancherel, M., 175

Pliicker, J., 92

Poincarg, H., 75, 91, 132, 144, 158, 165

Poisson, S. D., 90

Pollak, H., 178, 187

Pélya, G., 1, 31, 32, 39, 44, 50--54, 60,
61, 76, 91, 97, 111—113, 129, 132,
143—149, 157, 158, 161—166, 177 to
182, 186

Price, G. B., 90

Pringsheim, A, 51

Prodi, G., 133, 154, 162

Protter, M. H., 162

Pucci, C., 133, 154, 162, 186

Rads, T., 146, 160

Raikov, D, 100, 114

Rayleigh, J. W. 5., 71

Reade, M., 146, 160

Redheffer, R., 133, 157, 163, 164

Reid, W. T., 132, 145, 160, 165, 166,
180, 186



Name Index 193

Rheinbolt, W., 45, 54, 70

Riccati, J. H., 132, 143, 155, 164, 179,
181

Riemann, G. F. B,, 3, 102, 108, 155, 163

Riesz, F., 90, 99, 101, 106, 107, 111, 113,
126—128, 146, 160

Riesz, M., 52, 150

Riley, V., 120, 130

Robinson, J., 121, 130

Rogosinski, W. W., 124, 131

Rolle, M., 10, 11, 37, 132, 144, 161

Romanovsky, E. R., 137, 158

Rosenbloom, P., 98, 105, 123, 125, 126,
131

Roux, J., 158

Royden, H., 105, 116, 126

Ruderman, H. D, 32, 53

Rutherford, D. R., 183, 188

Rutman, M. A., 81, 94

Ryser, H. J., 31, 53, 80, 92

Sacksteder, R., 157, 163

Samuelson, H., 81, 83, 94, 95, 101, 120

Savage, L. J., 130

Schaeffer, A. C., 165, 185

Schiffer, J. J., 118, 129, 159

Schapira, H., 10, 50

Schiffer, M. M., 130

Schlesinger, L., 10, 50

Schmidt, E., 166, 187

Schneider, H., 90

Schoenberg, 1. J., 56, 87, 92, 96, 97, 100,
114, 128, 133, 144, 155, 158, 178

Schreiber, S., 31, 52

Schur, 1., 1, 31, 32, 47, 48, 52, 54, 64, 79,
89, 92, 112, 128

Schwartz, L., 101, 114, 124, 126

Schwarz, B., 185, 188

Schwarz, H. A., 21—23, 39, 45, 47, 53,
54, 98, 102, 104

Schweitzer, P., 44

Schweizer, B., 55

Selberg, A., 66, 157

Serbyn, W. D., 157, 164

Shapiro, H. N., 157, 163

Shapiro, H. S., 124, 131

Shapley, L., 100, 109, 111, 125

Sherman, S., 52, 86, 96

Shiffman, M., 130

Shniad, H., 51

Shohat, J., 100, 103, 110—112, 125

Siegel, C. L., 47, 54—56, 65, 66, 89, 90

Silverman, L. L., 117

Sklar, A., 55

Slepian, P., 86, 95, 96, 178, 187

Smith, K. T., 100, 115, 129, 132, 149

Solow, R., 81, 83, 95, 101, 120

Starzinskii, V. M., 166, 187

Steffensen, J. F., 2, 48, 49, 54

Steinhaus, H., 98, 101, 117, 118, 123,
129, 131

Stepanov, V. V., 135, 158

Stieltjes, T. J., 3, 97, 102, 108, 141, 142,
159

Stiemke, E., 119, 129, 130

Stirling, J.. 8

Strutt, J. W, 71

Sturm, C., 140, 142, 148, 159, 162, 166,
178, 179

Synge, J. L., 39, 53

Szasz, O., 64, 89, 112

Szego, G., 2, 44, 47, 54, 61, 100, 111 to
114, 127, 128, 143, 149, 157, 162

Sz.-Nagy, B., 115, 128, 165, 166, 168,
175, 185—187

Tamarkin, J., 100, 103, 110—112, 125

Tatarkiewicz, XK., 32

Tauber, A., 157, 163, 165

Taussky, O., 59, 62, 85, 88, 90, 95, 138,
159, 166, 177, 182—184, 186

Tautz, G., 146, 160

Taylor, B., 132, 144, 147, 161

Thomas, R. G., 86, 96

Thompson, G. L., 94

Titchmarsh, E. C., 165, 185, 187

Todd, J., 45, 54, 166, 177, 182—184, 186

Toeplitz, A., 100, 113, 117, 128

Tornheim, L., 145, 160

Tucker, A. W, 120, 130

Ulam, S., 156, 163
Ursell, H. D., 99, 103, 126

Valiron, G., 145, 160
Varga, O., 39, 53, 82, 94

Wald, A., 55, 81, 94
Walsh, J. L., 109, 127
Walter, W., 163
Ward, J. C., 80, 92
Waring, E., 111
Watson, G. S, 45, 54
Weil, A, 114, 128

Ergebn. d. Mathem. N. F., H. 30 Beckenbach and Bellman 13



194 Name Index

Weinberg, L., 86, 95, 96

Weinberger, H. F., 2, 41, 48, 54, 85, 95,
133, 148, 155, 157, 161, 164

Weinstein, A., 162

Weiss, G. H., 113, 128

Wendroff, B., 154

Weston, J. D., 110, 127

Westphal, H., 133, 154, 162

Westwick, R., 79

Weyl, H., 75, 89, 91, 101, 115, 119, 123,
126, 128, 129, 131, 178, 187

Whiteley, J. N., 1, 35, 53

Whittle, P., 178, 187

Widder, D. V., 87, 96, 100, 125, 128, 132,
147, 157, 161, 164

Wieldandt, H., 75, 81, 85, 91, 94, 95

Wiener, N., 88, 97

Wigner, E., 86, 96

Wilkins, J. E., Jr., 132, 143, 146, 159

Williams, J. D., 120, 130

Williamson, J., 65, 89

Williamson, R. E., 87, 97

Wing, G. M., 162

Wintner, A., 80, 93, 132, 133, 146, 147
158

Wirtinger, W., 140, 141, 166, 177, 180
185, 186

Wishart, J., 90

Wittich, H., 163

Wolfe, P., 120, 129

Wong, Y. K., 129, 159

Woodbury, M. A., 129, 159

Wright, E. M., 54, 157, 163

Wronski, J. H., 143, 144, 159

Yano, K., 157, 163
Young, L. C., 29, 52
Young, W. H,, 1, 15, 51

Zaremba, S., 101, 123, 130, 147, 161
Zygmund, A, 1, 25, 30, 51, 52, 117, 118
123, 125



Subject Index

Adjoint transformation 79, 80

Adjugate matrix 79, 80

Arithmetic-geometric mean 10, 11

Arithmetic-mean—geometric-mean in-
equality 3, 4

—, refinement of 47

Backward induction 4, 5
Banach-Steinhaus theorem 98, 118
Beckenbach’s inequality 27
Bergstrom'’s inequality 67—71
Bernstein’s inequality 164, 165
Berwald’s inequality 43—44
Bihari-Langenhop inequality 135, 136
Bounded variation 108

Branching process 81, 93, 94
Brunk-Olkin inequality 49
Buniakowsky’s inequality 2123

Canonical representation of quadratic
form 68, 69
Carlson’s inequality 166, 175—177
Cauchy inequality 2, 3, 60, 61, 69, 70
Cauchy-Buniakowsky-Schwarz in-
equality 21—23
—, refinement of 45, 46
Cauchy-Poincaré separation theorem
75,76
Characteristic equation 71
Characteristic root 55, 56, 68—86
— of largest absolute value 80—83, 85
— with largest real part 83, 84
— of smallest absolute value 85
Characteristic vector 82, 83
Complete set of inequalities 98, 99, 102
Completely positive matrix 96
Compound matrix 79, 80
Concave function 6, 16—19, 29, 30,
39—44
— of a matrix 75, 85
Concavity theorem for matrices 62, 63,
66-——68, 74, 75
Converse inequality 39—45
Convex function 16—19, 29, 30, 48, 50,
51, 84
—, generalized 132, 145, 146

Convex function of 2 matrix 85

Convex set 39, 99, 103—106, 108, 119,
126

Convex space 103, 104

Convexo-concave function 18, 51

Correlation coefficient 50

Cosine, generalized 2, 3, 50

Decision process 85

Determinant of a matrix 55

Differential equation 84, 135, 144

—, partial 96

-—, —, of hyperbolic type 85

Differential inequality 17, 18, 131—134,
168—171

Differential operator 131—134, 142 to
144, 164—188

Discrete inequality 182—185

Dissipative operator 88

Distance function 28

Domain of positivity 56, 87, 88

Doubly stochastic matrix 31

Dresher’s inequality 28

Dual space 97

Duality 124, 125

Dynamic programming 85, 95, 188

Economy, expanding 83

Elementary symmetric function 10, 11,
33—35, 78—80

Elliptic equation 148

Entropy 55

Ergodic theory 55

Expanding economy 83

Fan’s inequality 63, 74, 75

Favard’s inequality 43,44

Fischer min-max theorem 72, 73

Form, quadratic 3

Forward induction 4, 5

Frank-Pick inequality 39—44

Fredholm theory 89

Function, concave 6,
3944

—, —, of a matrix 75, 85

—, convex 16—19, 29, 30, 48, 50, 51, 84

13*

16—19, 29, 30



196

Subject Index

Function, convex, generalized 132, 145,
146

—, —, of a matrix 85

—, convexo-concave 18, 51

—, distance 28

—, entropy 55

—, Green’s 40—42, 93

— of a matrix 75, 85, 86

-— —, concave 75, 85

— —, monotone 86

—, polar 28, 29

—, positive 99

—, positive definite 100, 114, 115

-, positive real 86

—, subharmonic 146

—, superharmonic 146

Functional equation 6

Games, theory of 7, 83, 101, 120, 121

Garding’s inequality 37

Gersgorin’s inequality 85

Gramian 59, 60

Green’s function 40—42, 93, 132—134,
141

Group invariance 67

Haar-Westphal-Prodi inequality 154
Hadamard’s inequality 64, 89
Hermitian matrix §5—57

-, positive definite 57, 64

Hermitian quadratic form 57

Hoélder’s inequality 19—24
Homogeneity in 2’2123

Hyperbolic polynomial 36--38, 85, 90
Hypercomplex number 55

Identity of Lagrange 3

Induced transformation 79

Induction, backward 4, 5

—-, forward 4, §

Inequality 2

-, additive from multiplicative 77

— with alternating signs 47, 48

— between arithmetic and geometric
means 3, 4

—, refinement of 47

for characteristic roots 68—80

—, complete set of 98, 99, 102

—, converse 39—45

—, differential 17, 18, 131—144, 168 to
171

—, discrete 182-—185

Inequality, integral 21—23

—, linear 119—121

— for matrix differential
136, 137

—- for matrix minors 63, 64

—, mean-value 23

— for minors of a determinant 63

-, multiplicative from additive 77, 78

—, new from old 46, 47

— operator 131

—, partial differential 146, 163

— for polygons 183

— for squares 2

—, triangle 20, 24, 55

Information theory 55

Ingham-Siegel integral 65

Inner product 3, 45—47, 57, 60, 61, 87

98

Input-output matrix 83, 84, 95

Integral equation, Fredholm theory of
89

—, Kellogg kernel in 96

Integral inequality 21—23

Integration over groups 8

Interaction theorem 98

Ising problem 94, 128

equation

Jensen’s inequality 18

Karamata’s inequality 30—32

Kellogg kernel 96

Kernel, reproducing 115, 128, 129, 149
Kronecker product 79

Lagrange identity 3, 60

Lagrange multiplier 5
Lagrange-Beltrami theorem 59
Linear inequalities 119—121

Linear programming 94, 95, 101, 120
Lorentz space 38

LP-space 106, 107, 166—175

Majorization 7, 8

Markoff matrix 93

Markovian decision process 85, 87
Marcus-Lopes inequality 33—35
Matrix, adjugate 79, 80

—, completely positive 96

—, complex 55, 57

—, —, with positive definite real part 62
—, compound 79, 80

—, doubly stochastic 31



Subject Index 197

Matrix, hermitian 55—57

—, —, positive definite 57, 64

—, input-output 83, 84, 94, 138

—, Markoff 80, 93

— modular function 90

—, nonnegative 93

—, nonnegative definite 57

—, —, principal minors of 58

-—, orthogonal 93

—, positive 56, 80

—-, positive definite 3, 55—64, 87

—, -—, principal minors of 57—59

-, -——, as sum of squares 58, 59

—, positive indefinite 57

—, stability 88

—, stochastic 80

-—, symmetric 57

—, Toeplitz 113, 128

—, trace of 66, 70, 87

-—, unitary 93

Matrix exponential 137

Maximum principle 132, 133

Mean, arithmetic-geometric 10, 11

Mean of order ¢ 16

Mean-value inequality 23

Mean-value theorem 144, 146, 147, 149,
150, 161

Minkowski’s inequality 19—27

—— -— for products 26

Min-max theorem, of FISCHER 72, 73

— of von NEUuMAaNN 83, 120, 121

Mixed volume 29, 90

Moment 99

—, trigonometric 99

— sequence 102, 112

— space 28, 39, 45, 99, 102—110

New inequalities from old 46, 47

Neyman-Pearson lemma 121—123

Nonconvex space 105, 115, 116

Noneuclidean geometry 39

Nonlinear function, as envelope of
linear functions 23

Nonnegative definite matrix 57

—, principal minors of 58

Nonnegative matrix 93

Norm 16, 28

Northcott-Bellman inequality 183, 184

Operator, adjoint 79
—, differential 131—134, 142—144,
164—188

Operator, dissipative 88

—, parabolic 150—153

—, partial differential 132

—, positive 56, 93, 131, 140, 147—157
—, variation-dimishing 86, 87, 133
Operator inequality 131
Oppenheim’s inequality 71
Order-disorder theory 113, 128
Orthant 84, 93

Orthogonal matrix 93

Orthogonal projection 123, 124
Ostrowki’s inequality 32
Ostrowski-Taussky inequality 59

Parabolic operator 150—153

Parseval’s equation 178

Partial differential equation 180, 181

—- of hyperbolic type 85

Partial differential inequality 146, 163

Polar function 28, 29

Polygonal inequality 183

Polynomial, hyperbolic 36—38, 85, 90

Positive definite function 100, 114, 115

Positive definite matrix 3, 55—64, 87

—, principal minors of §7—5§9

—, as sum of squares 58, 59

Positive definite quadratic form 55, 112

Positive definite sequence 113, 114

Positive function 99

Positive indefinite matrix 57

Positive matrix 56, 80

Positive operator 56, 93, 131,
147—157

Positive real function 86

Positive transformation 56

Positivity, domain of 56, 87, 88

Potential equation 153

Probability theory 55

Programming, dynamic 85

Projection technique 98, 123, 124

140,

Quadratic form 3

—, canonical representation 68, 69

—, hermitian 57

—, indefinite 38, 39

—, positive definite 57

Quasi linearization 23—33, 52, 139, 155,
156

— of convex and concave functions 29,

30

Rational betting 120
Rational polynomial 111—112



198 Subject Index

Rayleigh quotient 71, 72

Relativity theory 38, 39

Representation theorem 55

— for arithmetic-mean — geometric-
mean inequality 9

— for Cauchy’s inequality 3

— of Ingham-Siegel 65, 66

— for integrals 61

— for matrices 58—61, 63, 66, 67, 70

— — hermitian 65

— for positive definite functions 100

— for quadratic forms 58, 59

-— —, canonical 68, 69

— in quasi linearization 23—32

Reproducing kernel 115, 128, 129, 149

Resonance theorem 98—102

— of LaNDpAU 116, 117

Rolle’s theorem 11, 37, 132

Root, characteristic 55, 56, 68—86

— of largest absolute value 80—83, 85

— of smallest absolute value 85

— with largest real part 83, 84

Schur condition 32

Schur transformation 31

Schwarz’s inequality 21—23

Separating plane 98

Simplex method 119, 129

Space, dual 97

—-, LorENTZ 38

—, LF 106, 107, 166—175

—, moment 28, 39, 45, 99

—, statistical metric 55

Stability matrix 88

Stability theory 134, 135, 156, 157

Statistical metric space 55

Steffensen’s inequality 48, 49

—, extensions of 49

Sturm-Liouville theory 140, 142, 148,
159, 162, 166, 178, 179

Stiitzfunktion 28, 29

Subadditivity 24

Subharmonic function 146

Sum of order ¢ 18

Superharmonic function 146

Symmetric function, elementary 10, 11,
33—35, 78—80

Symmetric matrix 57

Szasz’s inequality 64, 65

Sz.-Nagy’s inequality 166, 167, 175

¢ norm 16

Taylor expansion, generalized 132, 147
Theory of games 83

Toeplitz matrix 113, 128

Trace of a matrix 66, 70, 87
Transformation, adjoint 79, 80

—, induced 79

—, positive 56

— of Scuur 31

—, variation-dimishing 56, 86, 87, 92
Triangle inequality 20, 24, 55
Trigonometric moment 99
Trigonometric polynomial 111, 112, 155
Twin paradox 39

Unitary matrix 93

Variation-diminishing transformation
56, 86, 87, 92, 133, 155, 159

Variational methods 81—83, 141

Vector, characteristic 82, 83

Vector-matrix differential
132, 136—139

Volume, mixed 29, 90

inequality

Wendroff inequality 154, 155

Whiteley’s inequality 36

Wirtinger’s inequality 140, 141, 166,
177, 180, 185, 186

‘Wronskian 143, 159

Young’s inequality 15



