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Constructive Problems

This problems involve explicit construction of functions, or inductive
arguments.

Problem 1. Let k be an even positive integer. Find the number of
all functions f : N0 → N0 such that

f(f(n)) = n + k

for any n ∈ N0.

Solution. We have

f(n + k) = f(f(f(n))) = f(n) + k

and it follows by induction on m that

f(n + km) = f(n) + km

for all n, m ∈ N0.
Now take an arbitrary integer p, 0 ≤ p ≤ k−1, and let f(p) = kq+r,

where q ∈ N0 and 0 ≤ r ≤ k − 1. Then

p + k = f(f(p)) = f(kq + r) = f(r) + kq.

Hence either q = 0 or q = 1 and therefore

either f(p) = r, f(r) = p + k or f(p) = r + k, f(r) = p.

In both cases we have p 6= r which shows that f defines a pairing of
the set A = {0, 1, . . . , k}. Note that different functions define different
pairings of A.

Conversely, any pairing of A defines a function f : N0 → N0 with
the given property in the following way. We define f on A by setting
f(p) = r, f(r) = p + k for any pair (p, r) of the given pairing and
f(n) = f(q) + ks for n ≥ k + 1, where q and s are respectively the
quotient and the remainder of n in the division by k.

Thus the number of the functions with the given property is equal
to that of all pairings of the set A. It is easy to see that this number

is equal to
k!

(k/2)!
.

Remark. The above solution shows that if k is an odd positive
integer then there are no functions f : N0 → N0 such that

f(f(n)) = n + k

for all n ∈ N0. For k = 1987 this problem was given at IMO ’1987.
1
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Problem 2. (IMO ’1996). Find all functions f : N0 → N0 such that

f(m + f(n)) = f(f(m)) + f(n)

for all m, n ∈ N0.

Solution. Setting m = n = 0 gives f(0) = 0 and therefore f(f(n)) =
f(n), i.e. f(n) is a fixed point of f for any n. Hence the given identity
is equivalent to

f(0) = 0 and f(m + f(n)) = f(m) + f(n).

It is obvious that the zero function is a solution of the problem.
Now suppose that f(a) 6= 0 for some a ∈ N and denote by b the

least fixed point of f . Then

2f(b) = f(b + f(b)) = f(2b)

and it follows by induction that f(nb) = nb for any n ∈ N0. If b = 1
then f(n) = n for any n ∈ N0 and this function is also a solution of
the problem. Hence we may assume that b ≥ 2. Let c be an arbitrary
fixed point of f . Then c = kb + r, where k ∈ N0, 0 ≤ r < b, and we
get

kb + r = c = f(c) = f(kb + r) = f(f(kb)) + f(r) = kb + f(r).

Thus f(r) = r and therefore r = 0 since r < b. Hence any fixed point
of f has the form kb. Now the identity f(f(i)) = f(i) implies that
f(i) = bni for all i, 0 ≤ i < b, where ni ∈ N0 and n0 = 0. Thus if
n = kb + i then f(n) = (k + ni)b. Conversely, it is easily checked that
for any fixed integers b ≥ 2, n0 = 0 and n1, n2, . . . , nb − 1 ∈ N0 the

function f(n) =
([n

b

]
+ ni

)
b has the given property.

Problem 3.Find all functions f : N → R\{0} which satisfy

f(1) + f(2) + . . . + f(n) = f(n)f(n + 1)

Solution. If we try to set f(x) = cx we compute that c = 1
2
.

However the condition of the problem provides a clear recurrent relation
for f , therefore there are as many solutions as possible values for f(1).
So set f(1) = a. Then setting n = 1 in the condition we get a = af(2)
and as a 6= 0 we get f(2) = 1. Then setting n = 2 we get f(3) = a + 1.
Setting n = 3 we get f(4)(a + 1) = a + 1 + (a + 1) so f(4) = 2 as
a + 1 = f(3) 6= 0. Now we see a pattern: for even numbers k f(k) = k

2
as desired, whereas for odd numbers k we have an additional a, and
we can suppose that f(k) = [k

2
] + (k mod 2)a = k

2
+ (k mod 2)(a− 1

2
).

Let’s now prove by induction on k this hypothesis. Clearly we have to
consider two cases according to the parity of k.
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a) k = 2n. Then we have f(1) + f(2) + . . . + f(k) = f(k)f(k + 1) or
1
2
+ 2

2
+ . . .+ 2n

2
+n(a− 1

2
) = nf(2n+1) so 2n(2n+1)

4
+na− n

2
= nf(2n+1)

which gives us f(2n + 1) = n + a, as desired.
b)k = 2n + 1. This case is absolutely analogous.
Hence all desired functions are of form f(k) = [k

2
] + (k mod 2)a for

some a. They clearly satisfy the conditions of the problem provided
that a is not a negative integer (in which f(−2a + 1) = 0).

Problem 5.Find all functions f : N → N for which

f 3(1) + f 3(2) + . . . + f 3(n) = (f(1) + f(2) + . . . + f(n))2

Solution. The function f(x) = x comes to the mind of everyone

who knows the identity 13 +23 + . . .+n3 = (n(n+1)
2

)2 = (1+2+ . . .+n)2.
We shall prove this is the only solution, proving in the meantime the
identity, too. By setting n = 1 we get f(1) = 1. If we subtract
the identity for n from the identity for n + 1 we get f 3(n + 1) =
f(n+1)(2f(1)+2f(2)+ . . .+2f(n)+f(n+1)) so we get an identity of
a smaller degree: f 2(n+1) = 2f(1)+2f(2)+ . . .+2f(n)+f(n+1) (*).
Doing the same procedure (subtracting (*) for n from (*) for n+ 1) we
get f 2(n + 2) − f 2(n + 1) = f(n + 2) + f(n + 1) and reducing we get
f(n + 2) − f(n + 1) = 1. It’s thus clear by induction that f(n) = n.
The verification is clear by the same induction, as we actually worked
by equivalence.

Problem 6.Find all non-decreasing functions f : Z → Z which sat-
isfy

f(k) + f(k + 1) + . . . + f(k + n− 1) = k

, for any k ∈ Z, and fixed n.

Solution. Again subtracting the condition for k from the condition
for k + 1 we get f(k + n) = f(k) + 1. Therefore f is determined by
its’ values on {0, 1, . . . , n− 1} and the relation f(k) = [ k

n
] + f(kmodn).

As f is non-decreasing and f(n) = f(0) + 1, we see that there is a
0 ≤ m ≤ n − 1 such that f(0) = f(1) = . . . = f(m), f(0) + 1 =
f(m + 1) = . . . = f(n). Now by writing the condition for k = 0 we
get nf(0) + (n − m − 1) = 0 which implies m = n − 1 thus f(0) =
f(1) = . . . = f(n − 1) = 0. It’s now clear that f(k) = [ k

n
]. This

value clearly satisfies the condition, as it is a consequence of Hermite’s
Identity [x] + [x + 1

n
] + . . . + [x + n−1

n
] = [nx]. Note that we have also

proven the identity by induction during the proof.

Remark In this problem and in preceding ones, we could replace the
function f by the sequence an, so transforming a functional equation
into a sequence problem. It can be therefore asked if this kind of
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problems are functional problems or problems on sequences? While the
answer is insignificant and is left at the mercy of the reader, sequences
in general play a very important role in many functional equations, as
we shall see in a lot of examples.

Problem 7.Find all functions f : N → R for which we have f(1) = 1
and ∑

d|n

f(d) = n

whenever n ∈ N .

Solution. Again a little mathematical culture helps us: an example
of such a function is Euler’s totient function φ. So let’s try to prove that
f = φ. As φ is multiplicative, let’s firstly show that f is multiplicative,
i.e. f(mn) = f(m)f(n) whenever (m, n) = 1. We do this by induction
on m + n. Note that when one of m,n is 1 this is clearly true. Now
assume that m, n > 1, (m, n) = 1. Then the condition written for mn
gives us

∑
d|mn f(d) = mn. But any d|mn can be written uniquely

as d = d1d2 where d1|m.d2|n. If d < mn then d1 + d2 < m + n and
by the induction hypothesis we get f(d) = f(d1d2) = f(d1)f(d2) for
d < mn. Therefore mn =

∑
d|mn f(d) =

∑
d|mn,d<mn f(d) + f(mn) =∑

d1|m,d2|n f(d1)f(d2)−f(m)f(n)+f(mn) = (
∑

d|m f(d))(
∑

d|n f(d)) =

mn − f(m)f(n) + f(mn), so f(mn) = f(m)f(n), as desired. So it
suffices to compute f for powers of primes. Let p be a prime. Then
writing the condition for n = pk we get f(1) + f(2) + . . . + f(pk) =
pk. Subtracting this for the analogous condition for n = pk+1 we get
f(pk+1) = pk+1−pk = φ(pk+1), and now the relation f = φ follows from
the multiplicativity. It remains to verify that

∑
d|n φ(d) = n. There are

many proofs of this. One of the shortest is evaluating the numbers of
subunitary (and unitary) non-zero fractions with denominator n. On
one hand, this number is clearly n. On the other hand, if we write each
fraction as k

l
in lowest terms, then l|n and the number of fractions with

denominator l is φ(l)-the number of numbers not exceeding l which are
coprime with l. So this number is also

∑
d|n φ(d).

Problem 8.Find all functions f : N → N for which we have f(1) = 1
and

f(n + 1) = [f(n) +
√

f(n) +
1

2
]

n ∈ N .

Solution. f(n + 1) depends on [
√

f(n) + 1
2
]. So suppose that

[
√

f(n)+ 1
2
] = m, thus (m− 1

2
)2 ≤ f(n) < (m+ 1

2
)2 or m2−m ≤ f(n) ≤
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m2 + m, then f(n + 1) = f(n) + m so m2 ≤ f(n + 1) ≤ m2 + 2m <

(m+1)(m+2). Then [
√

f(n + 1)+ 1
2
] is either m or m+1 hence f(n+2)

is either f(n)+2m or f(n)+2m+1, so m2+m ≤ f(n+2) ≤ m2+3m+1
so m(m + 1) ≤ f(n + 2) ≤ (m + 1)(m + 2). Thus if we denote

g(x) = [
√

x + 1
2
] then g(f(n + 2)) = g(f(n)) + 1. As g(f(1)) =

1, g(f(2)) = 1, we deduce that g(f(n)) = [n
2
] by induction. Hence

f(n + 1) = f(n) + [n
2
]. Then f(n + 2) = f(n) + [n

2
] + [

n+1
2] = f(n) + n

(Hermite). So f(2k + 2) = f(2k) + 2k, f(2k + 1) = f(2k − 1) + 2k − 1
thus f(2k) = (2k − 2) + (2k − 4) + . . . + 2 + f(2) = k(k − 1) + 1 and
f(2k + 1) = (2k− 1) + (2k− 3) + . . . + 1 + f(1) = k2 + 1. This can be
summed up to f(n) = [n

2
][n+1

2
] + 1.

Problem 9.Find all functions f : N → N that satisfy f(1) = 2 and

f(n + 1) = [1 + f(n) +
√

1 + f(n)]− [
√

f(n)]

Solution. As [
√

1 + f(n)] = [
√

f(n)] unless 1 + f(n) is a perfect
square, we deduce that f(n + 1) = f(n) + 1 unless f(n) + 1 is a perfect
square, in which case f(n) + 1 is a perfect square. Thus f jumps over
the perfect squares, and f(n) is the n-th number in the list of numbers
not perfect squares. To find an explicit expression for f , assume that
f(n) = k. Then there are [

√
k] perfect squares less than k so k − [

√
k]

numbers which are not perfect squares. As k is the n-th number we
get k − [

√
k] = n so k −

√
k < n < k −

√
k + 1. We claim that

k = n + [
√

n + 1
2
]. Indeed n + [

√
n + 1

2
] is not a perfect square, for if

n+[
√

n+ 1
2
] = m2 then we deduce n < m2 so [

√
n + 1

2
] ≤ m−1 so n ≥

m2−m+1 and then [
√

n+ 1
2
] ≥ m which implies n+[

√
n+ 1

2
] ≥ m2 +1.

Next we have to prove that [
√

n + [
√

n + 1
2
]] = [

√
n + 1

2
]. Indeed, if

m(m−1) ≤ n ≤ m(m+ 1) then [
√

n+ 1
2
] = m so n+ [

√
n+ 1

2
] = n+m

hence m2 ≤ n + [
√

n + 1
2
] ≤ m2 + 2m so [

√
n + [

√
n + 1

2
]] = m and we

are finished.

Problem 10.Find all functions f : N0 → N0 that satisfy f(0) = 1
and

f(n) = f([
n

a
]) + f([

n

a2
])

.

Solution. Partition N into sets Sk = {ak, ak + 1, . . . , ak+1− 1}. We
see that if n ∈ Sk then [n

a
] ∈ Sk−1, [ n

a2 ] ∈ Sk−2 (for k ≥ 2). Next we see
that if k ∈ S0 then f(k) = 2 and if k ∈ S1 then f(k) = 3. So we can
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easily prove by induction that f is constant on each Sk. If we let g(k)
be the value of f on Sk, then g(k) = g(k− 1) + g(k− 2) for k ≥ 2. It’s
clear now that g(k) = Fk+2 where (Fn)n∈N0 is the Fibonacci sequence.
So f(n) = F[logan]+2 for n ≥ 1.

Problem 11.Let f : N0 → N0 be a function such that f(0) = 1 and

f(n) = f([
n

2
]) + f([

n

3
])

whenever n ∈ N . Show that f(n − 1) < f(n) if and only if n = 2k3h

for some k, h ∈ N0.

Solution. The solution if by induction (recall f is non-decreasing
by the same induction). The basis for n ≤ 6 is easy to check. Now let’s
perform the induction step. For [n

2
] and [n

3
], the residue of n modulo 6

matters. So we distinguish 6 cases:
a) n = 6k. Then f(n) = f(2k) + f(3k) while f(n − 1) = f(2k −

1) + f(3k− 1). So f(n− 1) < f(n) if and only if f(2k− 1) < f(2k) or
f(3k − 1) < f(3k) thus 2k or 3k is of form 2i3j, which is equivalent to
n = 6k being of the same form.

b)n = 6k + 1. In this case n is not of form 2i3j, and f(n − 1) =
f(n) = f(2k) + f(3k).

c)n = 6k + 2. Then f(n) = f(3k + 1) + f(2k) while f(n − 1) =
f(3k) + f(2k) and f(n− 1) < f(n) if and only if 3k + 1 is of form 2i3j,
which is equivalent to n = 6k + 2 being of the same form.

d)n = 6k + 3. f(n) = f(3k + 1) + f(2k + 1) and f(n − 1) =
f(3k + 1) + f(2k), so f(n− 1) < f(n) if and only if f(2k) < f(2k + 1)
or 2k + 1 = 2i3j, which is equivalent to 6k + 3 = 2i3j+1.

e)n = 6k + 4. We have f(n)− f(n− 1) = (f(3k + 2) + f(2k + 1))−
(f(3k + 1) + f(2k + 1)) = f(3k + 2)− f(3k + 1) which is possible if and
only if 3k + 2 is of form 2i3j, or the same condition for n = 2(3k + 2).

f)n = 6k + 5. Like in case b) we have f(n) = f(n− 1) and n is not
of the desired form, since it’s neither even nor divisible by 3.

The induction is finished.

Problem 12.Find all functions f : N → [1;∞) for which we have
f(2) = 4,

f(mn) = f(m)f(n)

f(n)

n
≤ f(n + 1)

n + 1
.

Solution. It’s clear that g defined by g(n) = f(n)
(

n) is increasing and

multiplicative. Therefore g(1) = 1. Also g(2) = 2 and we try to prove
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that g is the identity function. Indeed, assume that l = g(k) 6= k. We
are done if we find such x, y that satisfy (2x− ky)(2x− ly) < 0 because
then the monotonicity is broken. Now as k and l are distinct we can
find a positive integer such that the ratio between the largest of ky, ly

and the smallest of them is greater than 2. Then there exists a power
of two between them, and taking 2x to be that power we get the desired
conclusion.

Problem 13. Find all functions f : : Z → Z that obey

f(m + n) + f(mn− 1) = f(m)f(n) + 2

Solution. If f = c is a constant function we get 2c = c2 + 2 so
(c − 1)2 + 1 = 0 impossible. Now set m = 0 to get f(n) + f(−1) =
f(0)f(n) + 2 so f(n)(1− f(0)) = 2− f(−1). As f is not constant we
get f(0) = 1, f(−1) = 2. Next set m = −1 to get f(n − 1) + f(−n −
1) = 2f(n) + 2. If we replace n by −n the left-hand side does not
change therefore right-hand side does not change too so f is even. So
f(n− 1) + f(n+ 1) = 2f(n) + 2. Now we can easily prove by induction
on n ≥ 0 that f(n) = n2+1 and the evenness of f implies f(n) = n2+1
for all n.

Problem 14. Find all functions f : : Z → Z that obey

f(m + n) + f(mn− 1) = f(m)f(n)

.

Solution.If f = c is constant we have 2c = c2 so c = 0, 2. If f
is not constant setting m = −1 gives us f(n)(1 − f(0)) = −f(−1)
possible only for f(−1) = 0, f(0) = 1. Then set m = −1 to get
f(n − 1) + f(−n − 1) = 0. Now set m = 1 to get f(n + 1) + f(n −
1) = f(1)f(n). This is a quadratic recurrence in f(n) with associated
equation x2−f(1)x+1 = 0. If f(1) = 0 we get f(n−1)+f(n+1) = 0
which implies f(n+2) = −f(n) so f(2k) = (−1)2kf(0) = (−1)k, f(2k+
1) = (−1)kf(1) = 0. This function does satisfy the equation. Indeed,
if m, n are both odd then mn − m − n − 1 = (m − 1)(n − 1) − 2
and so m + n, mn − 1 are even integers which give different residues
mod 4 hence f(m + n) + f(mn − 1) = 0 while f(m)f(n) = 0, too. If
one of m, n is odd and the other even then m + n, mn − 1 are both
odd hence f(m + n) + f(mn − 1) = f(m)f(n) = 0. Finally if m, n
are even then f(mn − 1) = 0 and we have f(m + n) = 1 if 4|m − n
and −1 otherwise, and the same for f(m)f(n). If f(1) = −1 then
we get f(n) = (n − 1)mod3 − 1 for all n by induction on n. It also
satisfies the condition as we can check by looking at m,n modulo 3. If
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f(1) = 2 then f(n + 1) − 2f(n) + f(n − 1) = 0 and f(n) = n + 1 by
induction on |n|. It also satisfies the condition as (m + n + 1) + mn =
(m + 1)(n + 1). If f(1) = 1 then we have f(n + 1) + f(n− 1) = f(n).
So f(−2) + f(0) = f(−1) so f(−2) = −1. Then f(−3) + f(−1) =
f(−2) so f(−3) = −1. f(−4) + f(−2) = f(−3) so f(−4) = −2.
Also f(0) + f(2) = f(1) so f(2) = 0. But then f(2) + f(−4) 6= 0,
contradiction. If f(1) = −2 then f(n + 1) + f(n − 1) + 2f(n) = 0
and f(−2) + 2f(−1) + f(0) = 0 so f(−2) = −1 and then f(−3) +
2f(−2) + f(−1) = 0 so f(−3) = 3 and we have f(−3) + f(1) 6= 0,
again contradiction. Finally if f(1) 6= 0, 1,−1, 2,−2 then the equation

x2 − f(1)x + 1 = 0 has two solutions
f(1)±

√
f2(1)−4

2
, one of which is

greater than one in absolute value and one is smaller. If we solve the
recurrence we find that f(n) = crn + dsn where c, d 6= 0 and without
loss of generality |r| > 1, |s| < 1. In this case we have f(n) ∼ crn

for n → ∞. Then f(m + n) + f(mn − 1) = f(m)f(n) cannot hold
because the left-hand side is asymptotically equivalent to crmn−1 for
m = n → ∞ while the right-hand side is asymptotically equivalent to
c2rm+n and mn− 1 is much bigger than m + n.

Problem 15.Find all functions f : Z → Z that verify

f(f(k + 1) + 3) = k

.

Solution. Let us start by noting that f is injective, as if f(m) =
f(n) then plugging k = m− 1, n− 1 we get m = n. Therefore if we set
k = f(n) we get f(f(f(n) + 1) + 3) = f(n) and the injectivity implies
f(f(n) + 1) + 3 = n or f(f(n) + 1) = n− 3. By plugging k = n− 3 in
the condition we get f(f(n− 2) + 3) = n− 3 and the injectivity gives
us f(n−2)+3 = f(n)+1 so f(n) = f(n−2)+2. From here we deduce
that if f(0) = a, f(1) = b then f(2n) = 2n + a, f(2n + 1) = 2n + b.
Also from the given condition f is surjective so a and b have distinct
parities and we encounter two cases:

a) a is even and b is odd. Plugging k = 2n we get f(f(2n+1)+3) =
2n or f(2n + b + 3) = 2n so 2n + b + 3 + a = 2n hence a + b + 3 = 0.
Plugging k = 2n−1 we get f(f(2n)+3) = 2n−1 or f(2n+a+3) = 2n−1
so 2n + a + 2 + b = 2n − 1 and again a + b + 3 = 0. Conversely, if
a + b + 3 = 0 the f defined by f(2n) = 2n + a, f(2n + 1) = 2n + b
satisfies the condition.

b) a is odd and b is even. Then plugging k = 2n we deduce f(2n +
b + 3) = 2n so 2n + 2b + 2 = 2n hence b = −1 which contradicts the
evenness of b.
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To conclude, all solutions are given by f(2n) = 2n + a, f(2n + 1) =
2n + b where a us even, b is odd and a + b + 3 = 0.

Problem 16. Find all functions f : N → Z verifying f(mn) =
f(m) + f(n)− f(gcd(m, n))

Solution. Again we smell some dependency between f and the
prime decomposition of n. Let’s set m = pk, n = pl, k ≤ l where
p is some prime. Then f(pk+l) = f(pk) + f(pl) − f(pl) = f(pk),
so whenever t ≤ 2k we deduce f(pt) = f(pk), and from this rela-
tion we immediately get f(pk) = f(p) for any k > 0. Next consider
two coprime numbers m, n. Then f(mn) = f(m) + f(n) − f(1) and
we easily deduce the more general version f(m1m2 . . . mk) = f(m1) +
f(m2)+ . . .+f(mk)−(k−1)f(1) when m1, m2, . . . ,mk are pairwise co-
prime. Particularly if n =

∏m
i=1 pki

i (pi are distinct primes) then f(n) =∑m
i=1 f(pki

i )−(m−1)f(1) =
∑m

i=1 f(pi)−(m−1)f(1). A more comfort-
able setting is obtained if we work with f(x)− f(1). Indeed, if we de-
note g(x) = f(x)−f(1) then we get f(x) =

∑
p|x g(p)+f(1) where the

sum is taken over all prime divisors of n. It’s straightforward to check
that this function satisfies the condition: If m =

∏k
i=1 pki

i

∏l
i=1 qmi

i , n =∏j
i=1 rji

i

∏l
i=1 qni

i where pi, qi, ri are distinct primes and ki, mi, ji, ni > 0

then gcd(m, n) =
∏l

i=1 q
min{mi,ni}
i and we have f(mn) =

∑k
i=1 f(pi) +∑l

i=1 f(qi) +
∑j

i=1 f(ri) + f(1) =
∑k

i=1 f(pi) +
∑l

i=1 +f(qi)f(1) +∑j
i=1 f(ri) +

∑l
i=1 f(qi) + f(1)− (

∑l
i=1 f(qi) + f(1)) = f(m) + f(n)−

f(gcd(m, n)).

Problem 17.Find all surjective functions f : N → N such that m|n
if and only if f(m)|f(n) for any m, n ∈ N .

Solution. f is actually a bijection, as if f(k) = f(l) for k < l then
f(l)|f(k) so l|k impossible. Since 1 divides every number, f(1) = 1.
Now we also see that f(n) has as many divisors as n because f pro-
vides a bijection between the set of divisors of n and the set of divisors
of f(n). Next, let’s prove that f is multiplicative. If (m, n) = 1
then (f(m), f(n)) = 1 because if f(e) = d|(f(m), f(n)) then e|m, e|n
so e = 1. Hence if (m, n) = 1 then f(m)|f(mn), f(n)|f(mn) so
f(m)f(n)|f(mn). As f(m) has as many divisors as m, f(n) as many di-
visors as n and f(m), f(n) are coprime, f(m)f(n) has as many divisors
as mn, hence f(mn) = f(m)f(n) thus f is multiplicative. Now if p is
prime then f(p) must also be a prime, and the converse is also true, so
f is a bijection on the set of all prime numbers. We prove that if n is a
prime power then f(p) is a prime power of the same exponent. Indeed,
we’ve just proven the basis. Now if we have proven that f(pk) = qk,
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then qk|f(pk+1) so f(pk+1) = qk+rM where M is a number coprime to
q. As f(pk+1) has k + 2 divisors, we must have (k + r + 1)t = k + 2
where t is the number of divisors of M . If t ≥ 2 then this is impossible.
So t = 1, M = 1 and k + r + 1 = k + 2 hence f(pk+1) = qk+1 as desired.
Now using the multiplicativity of f we deduce f(

∏
pki

i ) =
∏

qki
i where

qi = f(pi). Any f defined by this relation and by a bijection on the
set of primes clearly satisfies the relation, and so this is the form of all
solutions.

Problem 18. (ISL 2001)Find all functions f : N3
0 → R that satisfy

f(p, q, r) = 0

if pqr = 0 and

f(p, q, r) = 1+
1

6
(f(p+1, q−1, r)+f(p−1, q+1, r)+f(p−1, q, r+1)+

+f(p + 1, q − 1, r) + f(p, q + 1, r − 1) + f(p, q − 1, r + 1))

otherwise.

Solution. It’s clear that the second most important condition com-
putes f(p, q, r) in terms of f(p+ 1, q− 1, r) etc. and the sum of coordi-
nates remains the same: if p + q + r = s then (p + 1) + (q − 1) + r = s
etc. This implies that it suffices to compute f on each of the planes
p + q + r = s, as the conditions take place within this planes. Also the
fact that f(p, q, r) = 0 when pqr = 0 may suggest that f(p, q, r) = kpqr.
So let’s try to set f(p, q, r) = kpqr. Then 1

6
(f(p + 1, q − 1, r) + f(p −

1, q + 1, r) + f(p− 1, q, r + 1) + f(p + 1, q − 1, r) + f(p, q + 1, r − 1) +
f(p, q−1, r + 1))−f(p, q, r) = k

6
((p+ 1)(q−1)r + (p−1)(q + 1)r + (p+

1)q(r− 1) + (p− 1)q(r + 1) + p(q− 1)(r + 1) + p(q + 1)(r− 1)− 6pqr) =
k
6
(6pqr + 2p + 2q + 2r − 6pqr) = k

3
(p + q + r) so k = 3

p+q+r
. So we

have found a solution f(p, q, r) = 3pqr
p+q+r

and we try to prove now it’s

unique. As it satisfies the condition, it suffices to show that the val-
ues of f may be deduced inductively on each (x, y, z). Indeed, we can
perform an induction on s2 − (x + y + z)2. When it’s zero, the con-
dition follows from the condition as two of the numbers must be zero.
Now assume we have proven the claim when the minimal number is
s2 − (x + y + z)2 ≤ k and let’s prove it when the minimal number is
s2 − (x + y + z)2 = k + 1. Without loss of generality x ≤ y ≤ z. If
x = 0 we are done otherwise set p = x − 1, q = y, r = z + 1. We
see (p2 + q2 + r2) − (x2 + y2 + z2) = 2(z − x + 1) > 0 and so the
induction assumption applies to (p, q, r). Moreover it also applies for
(p−1, q+1, r), (p−1, q, r+1), (p, q−1, r+1), (p, q+1, r−1), (p+1, q+1, r)
as it’s easy to check, because the sum of squares of coordinates of each



11

of these numbers equals p2 + q2 + r2 plus one of 2(p − q + 1), 2(q −
p + 1), 2(q − r + 1), 2(r − q + 1), 2(p − r + 1), whereas the sum of
squares of coordinates of x, y, z is p2 + q2 + r2 + 2(r − p + 1) and is
clearly less than all the others, because p < q < r. So the induction
assumption allows us to say f is computed on all points (p, q, r), (p −
1, q, r+1), (p, q+1, r−1), (p, q−1, r+1), (p−1, q, r+1), (p+1, q−1, r)
and writing the condition for (p, q, r) allows us to compute the value of
f(p+ 1, q, r−1) = f(x, y, z). Therefore f is unique and it equals 3pqr

p+q+r

when (p, q, r) 6= (0, 0, 0) and 0 when p = q = r = 0.

Problem 19.Find all functions f : Z → Z that satisfy the relation

f(m + n) + f(m)f(n) = f(mn + 1)

whenever m, n are integers.

Solution. By setting m = n = 11 we get f(2) + f 2(1) = f(2) so
f(1) = 0. Now let m = 0 to get f(n) + f(0)f(n) = 0. Therefore either
f(0) = −1 or f is identically zero. Excluding this trivial case we get
f(0) = −1. Now take m = −1 to get f(n− 1) + f(−1)f(n) = f(1−n)
so f(n− 1)− f(1− n) = −f(−1)f(n) and we have two cases:

a) f(−1) = 0. In this case we have f(−x) = f(x). Firstly let’s try
to settle the unicity of f . Set f(2) = f(−2) = a. Then by setting
m = 2, n = −2 we compute f(3) = f(−3) = a2−1. Set m = 2, n = −3
to get f(5) = f(2)f(3) = a(a2 − 1). Set m = n = 2 to compute
f(4) = a3− a2− a. Set m = 3, n = −3 to get f(8) = a4− 2a2. Next by
setting m = 4, n = −4 and m = 6, n = −2 we get f(15) = f 2(4)− 1 =
f(6)+f(8)f(2) which allows us to deduce that f(6) = a3 +a2−1. Next
by setting m = 2, n = 3 we get f(7) = f(5) + f(2)f(3) = 2a(a2 − 1).
Also by setting m = 4, n = −2 we get f(7) = f(2) + f(2)f(4) =
a4 − a3 − a2 + a. Thus we get 2a2(a2 − 1) = a4 − a3 − a2 − a = 0 or
a(a−1)(a+1)(a−3) = 0 so we have four values for a. Next we feel that
all values of f can be determined from the value of a only. Indeed, let’s
prove by induction on |n| that f(n) is uniquely determined by f(2) = a
for each n. We see this holds true for any n with |n| ≤ 8. Now assume
this holds whenever |n| ≤ k−1 and let’s prove it for n = k ≥ 9 (n = −k
is the same). We seek numbers 0 < x < u < v < y with x+y = k, xy =
uv. Then applying the condition for m = x, n = y and m = u, n = v we
get f(x+y) +f(x)f(y) = f(xy + 1) = f(uv + 1) = f(u+v) +f(u)f(v)
so f(k) = f(x+ y) = f(u+ v) + f(u)f(v)− f(x)f(y) and we can easily
prove that u, v, x, y, u+v < k so f(k) is determined and the induction is
finished u+v < k = x+y because u+v−x−y = (u−x)+(v−y) = u−
x+(uv

u
− uv

x
) = (u−x)− uv(u−x)

ux
= (u−x)(x−v)

vx
< 0. Now if k = (2a+1)2b
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for a > 0 then we can set x = 2b, y = 2b+1a, u = 2b+1, v = 2ba. If k is
a power of 2 then either k = 3p + 1 and x = 1, y = 3p, u = 3, v = p or
k = 3p + 2 with x = 2, y = 3p, u = 3, v = 2p.

So at most one f stems from each value of a. Surprisingly, each
of them gives one value of f , so the general set of solutions is quite
unexpected. Let’s analyze them one by one:

i) a = 0. By substituting we get f(0) = f(3) = f(6) = −1, f(1) =
f(2) = f(4) = f(5) = f(7) = f(8) = 0. We guess the solution
f(x) = −1 when x is divisible by 3 and f(x) = 0 otherwise. Indeed
it satisfies the conditions: If both m,n are divisible by 3 we get the
identity −1 + 1 = 0 as 3|m + n but mn + 1 is not divisible by 3; if
one of m, n divisible by 3 and the other is not we get 0 + 0 = 0 as
neither mn + 1 nor m + n are divisible; finally if both neither of m, n
is divisible by 3 the either they give the same residue mod 3, in which
m + n and mn + 1 are not divisible by 3 and we get 0 + 0 = 0 or they
give different residues mod 3 which means m + n, mn + 1 are divisible
by 3 so 1 + 0 = 1.

ii) a = 1. By substituting we get f(2) = f(6) = 1, f(4) = f(8) =
−1, f(1) = f(3) = f(5) = f(7) = −1 so we suppose f(4k + 2) =
1, f(4k) = −1, f(2k + 1) = 0. Indeed, if m, n are both odd then m + n
and mn + 1 give the same residue modulo 4 as mn + 1 − m − n =
(m− 1)(n− 1) is a product of two even integers, so the equality holds.
If one of m, n is odd and the other is even then mn + 1, m + n are
both odd and again the equality holds. If both m, n are even then
either they give the same residue mod 4 in which we have the identity
−1 + 1 = 0 or they give different residues which implies 1 + (−1) = 0,
again true.

iii) a = −1. By substituting we get f(2) = f(4) = f(6) = f(8) =
−1, f(1) = f(3) = f(5) = f(7) = 0 so we guess f(2k) = −1, f(2k +
1) = 0. Indeed, if at least one of m,n is odd then (mn+1)− (m+n) =
(m− 1)(n− 1) is even so the identity holds true, while when they are
both even we get the true −1 + 1 = 0.

iv) a = 3. We compute f(3) = 8, f(4) = 15 and so on, guessing
f(x) = x2 − 1. Indeed, (m + n)2 − 1 + (m2 − 1)(n2 − 1) = m2 + n2 +
2mn− 1 + m2n2 −m2 − n2 + 1 = m2n2 + 2mn = (mn + 1)2.

This case is exhausted.
b) f(−1) 6= 0. Then we have f(n) = −f(n−1)−f(−(n−1))

f(−1)
. Therefore we

get f(−n) = f(n+1)−f(−n−1)
f(−1)

. If we set an = f(n) − f(−n) we observe

by subtracting the previous two results the nice recursive identity an =
a(an−1 +an+1) where a = − 1

f(−1)
. We can write it as an+1 = ban−an−1

where b = 1
a

= −f(−1). Also a0 = 0, a1 = b. Then a2 = b2, a3 =



13

b3−b, a4 = b4−2b2, a5 = b5−3b3+b and so on. Next f(n) = an−1

b
. Hence

f(2) = 1, f(3) = b, f(4) = b2 − 1, f(5) = b3 − 2b, f(6) = b4 − 3b2 + 1.
Setting m = n = 2 we get f(4) + f 2(2) = f(5) or b2 − 1 + 1 = b3 − 2b
so b2 = b3 − 2b and as b 6= 0 we get b2 = b + 2 so b = 2 or b = −1.

i) b = 2. In this case we can guess the identity f(x) = x−1. It holds
by induction as we prove that an = 2n by induction (another proofs
can be obtained by using the same unicity idea that we deduced in case
a) ). Indeed f(x) = x− 1 satisfies the condition as (m + n− 1) + (m−
1)(n− 1) = mn = (mn + 1)− 1.

ii) b = −1. We compute that f(−1) = 1, f(0) = −1, f(1) = 0, f(2) =
1, f(3) = −1, f(4) = 0, f(5) = 1, f(6) = −1. We conjecture that
f(3k) = −1, f(3k + 1) = 0, f(3k + 2) = 1. Indeed, this can be either
proven by showing inductively that b3k = 1, b3k+1 = 0, b3k+2 = 1, or by
using again the unicity idea after we verify that f satisfies our equation:

3|m, 3|n then we get −1 + 1 = 0. 3|m, 3|n − 1 or 3|n, 3|m − 1 then
we get 0 + 0 = 0. 3|m, 3|n−2 or 3|n, 3|m−2 then we get 1 + (−1) = 0.
3|m−1, 3|n−1 then 1+0 = 1. 3|m−1, 3|n−2 or 3|m−2, 3|n−1 then
we get 0− 1 = −1. 3|m− 2, 3|n− 2 then 0 + 1 = 1. All the identities
are true so this function is indeed a solution.

Concluding, we have plenty of different solutions: f(x) = x2 −
1, f(x) = x−1, f(x) = (x+1) mod 2, f(x) = x mod 3−1, f(x) = ((x+1)
mod 2)(x mod 4 + 1), f(x) = (x mod 3)2 − 1.

Problem 20.Find all functions f : R\{0; 1} → R satisfying

f(x) + f(
1

1− x
) =

2(1− 2x)

x(1− x)

for all x in the domain of f .

Solution. The condition links f(x) to f( 1
1−x

) and only. Set g(x) =
1

1−x
, h(x) = g−1(x) = 1− 1

x
. Using the condition we can establish a de-

pendance only between f(x), f(g(x)), f(h(x)), f(g(g(x))), f(h(h(x))), . . ..
So we have to look at properties of g or h. We see that g(g(x)) = x−1

x
=

1− 1
x

= h(x) so g(g(g(x))) = x and we know f(x) + f(g(x)), f(g(x)) +
f(g(g(x))), f(g(g(x))) + f(x). From here we can find f(x) by solving
the linear system. We can do this manually by substituting into the
condition, and we get f(x) = x+1

x−1
. It satisfies the conditions because

we worked by equivalency.

Problem 21.Find all functions f : R → R that satisfy

f(−x) = −f(x)
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for all real x;
f(x + 1) = f(x) + 1

for all real x and

f(
1

x
) =

f(x)

x2

for all non-zero x.

Solution. All the conditions are in one variable: x. In this case,
some graph theory helps us understand the path to the solution. Con-
sider the reals as vertices of a graph, and connect x with x + 1,−x, 1

x
.

The conditions link two values of the function in two vertices joined by
an edge. So if we pick up a x0, we can deduce from f(x0) the values of
f on C where C is the set of numbers connected to x0 by some chain
of edges. Now we can get a contradiction if and only if there is a cycle
somewhere. So finding a cycle would impose a condition on f(x0) and
maybe would exactly find the value of f(x0). So let’s try to construct
such a cycle for any x. After some tries we see x → x + 1 → 1

x+1
→

− 1
x+1

→ 1 − 1
x+1

= x
x+1

→ x+1
x

= 1 + 1
x
→ 1

x
→ x. Set f(x) = y.

Then f(x + 1) = y + 1, f( 1
x+1

) = y+1
(x+1)2

, f(− 1
x+1

) = − y+1
(x+1)2

, f( x
x+1

) =
x2+2x−y
(x+1)2

, f(x+1
x

) = x2+2x−y
x2 , f( 1

x
) = 2x−y

x2 , f(x) = 2x − y. So y = 2x − y

thus y = x. Note that we need to have x 6= 0,−1 in order not to divide
by zero. This is no problem for us, as f(0) + 1 = f(1) and we know
that f(1) = 1 so f(0) = 0, also f(−1) = −f(1) = 1 hence f(x) = x for
all x, and it satisfies the condition.

Problem 22.Let f be an increasing function on R such that f(x +

1) = f(x) + 1. Show that the limit limn→∞
fn(x)

n
exists and is indepen-

dent of x, where fn is f iterated n times.

Solution. The clear properties of the function are that if x < y
there is a k = [y−x] such that x + k ≤ y < x + k + 1 hence f(x) + k ≤
f(y) < f(x) + k + 1 so k ≤ f(y) − f(x) ≤ k + 1 hence y − x −
1 ≤ f(y) − f(x) ≤ y − x + 1 .It’s easier to set the independence.

Indeed if for a fixed x0 we have limn→∞
fn(x0)

n
= a then if [x− x0] = k

we have [f(x) − f(x0)] = k from the above result and by induction
[fn(x)− fn(x0)] = k thus |fn(x)− fn(x0)| < |k|+ 1 is bounded, hence

limn→∞
fn(x)−fn(x0)

n
= 0 so limn→∞

fn(x)
n

= limn→∞
fn(x0)

n
= a.

Now let’s prove that the limit exists for some fixed x, say x = 0.
Let ai = fi(0),. Then we have proven above that [fk(x) − fk(y)] =
[x − y], particularly [fk(ai) − fk(0)] = [ai − 0] hence [ai+k − ak] = [ai]
so ak + ai − 1 ≤ ai+k ≤ ak + ai + 1. Now we prove that an

n
converges.

Indeed, if n = km + r then we can deduce mak + ar −m − 1 ≤ an ≤
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mak + ar + m + 1 so n−r
k

ak + ar − n
k
− 1 ≤ an ≤ n−r

k
ak + ar + n

k
+ 1

hence n−r
n

ak

k
+ ar

n
− 1

k
− 1

k2 ≤ an

n
≤ n−r

n
ak

k
+ ar

n
+ 1

k
+ 1

k2 . Now choosing n

sufficiently big such that |ar| < n
k
, r

n
|ak|
k

< 1
k

for all r = 0, 1, 2, . . . , k− 1

we ensure that |an

n
− ak

k
| < 4

k
hence all an

n
starting from some position

on belong to a closed interval Ik of length less than 8
k
. The intervals

Jk = I1

⋂
I2

⋂
. . .

⋂
Ik have non-empty intersection for all k because

infinitely many an

n
belong to them, however their length tends to 0 and

Jk ⊂ Jk−1 hence their intersection is a single point, which then should
be the limit of our sequence.

Problem 23. Find all functions f : Q+ → Q+ that satisfy

f(x) + f(
1

x
) = 1

and f(1 + 2x) = f(x)
2

for all x in the domain of f .

Solution. Let’s firstly try to guess the function. It’s natural to
suppose f(x) = ax+b

cx+d
. The condition f(x) + f( 1

x
) = 1 now translates as

(ax+b)
(cx+d)

+ bx+a
dx+c

= 1 and we conclude that c = d. We can assume c = d = 1

otherwise divide a, b by c to see ax+b
cx+c

=
a
c
x+ b

c
x

x+1
. Next we need to have

ax+b
x+1

+ bx+a
x+1

= 1 which is possible for a + b = 1. Now the condition

f(1 + 2x) = f(x)
2

means a(1+2x)+b
2x+2

= 1
2

ax+b
x+1

or a(1 + 2x) + b = ax + b

a = 0 hence f(x) = 1
x+1

which satisfies the conditions. Indeed, if we set

x = 1 we get 2f(1) = 1 so f(x) = 1
2
. The hint here is that all the values

of f are positive. So we try to prove that if f(x) 6= 1
1+x

then some of

values of f should be negative. Indeed, set g(x) = f(x) − 1
x+1

. Then

g( 1
x
) = −g(x), g(1 + 2x) = g(x)

2
. As g(x) + 1 > g(x) + 1

x+1
= f(x) > 0

we see that g(x) > −1 and as g(x) = −g( 1
x
) we deduce g(x) < −1 so

|g(x)| < 1. Now the second condition can be rewritten as g(x−1
2

) =
2g(x) for x > 1. Now if g(x) = a 6= 0 we find by induction the numbers
xn such that |g(xn)| = 2na. We set x0 = x. Now assume we found
xk. Then xk 6= 1 as g(1) = 0. If xk > 1 then g(xk−1

2
) = 2g(xk) and

we set xk+1 = xk−1
2

. If xk < 1 then 1
xk

= 1, g( 1
xk

) = −g(xk) therefore

g(
1

xk
−1

2
) = −2g(xk) and we set xk+1 =

1
xk
−1

2
. Then if we find k such

that 2k|a| > 1 we obtain a contradiction. Thus g(x) = 0 for all x and
f(x) = 1

x+1
.

Problem 24.(China)Find all functions f : [1,∞) → [1,∞) given
that

f(x) ≤ 2(1 + x)
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and
xf(x + 1) = f 2(x)− 1

for all x in the range of f .

Solution. We can guess the solution f(x) = x + 1 and now we
try to prove this is the only. As in many other situations we assume
that f(x0) 6= x0 + 1 and try to obtain a x such that f(x) < 1 or
f(x) > 2(1 + x). Indeed, we observe that xf(x + 1) = f 2(x)− 1 can be

interpreted as a recurrence on an = f(n+x0) by an+1 = a2
n−1

n+x0
. Consider

now bn = an

n+1+x0
. Then bn+1 = (n+1+x0)2b2n−1

(n+x0)(n+2+x0)
= b2

n + b2n−1
(n+2)(n+2+x0)

. If

now b0 > 1 then we prove by induction that bn > 1 and then bn+1 > b2
n

which implies that bn > 2 for some n hence f(n + x0) > 2(1 + n + x0),
contradiction. If b0 < 1 then we prove by induction that bn < 1 and
therefore bn+1 < b2

n so bn < b2n

0 so 1
bn

> ( 1
b0

)2n
. However 1

bn
= n+1+x0

f(n+x0)
<

n+1+x+0 and as b0 < 1, ( 1
b0

)2n
> n+1+x0 contradiction. So b0 = 1

hence f(x0) = x0 + 1. As x0 was picked up at random, f(x) = x + 1.
Another solution is as follows:
We have

f(x) =
√

xf(x + 1) + 1 ≤
√

2x(x + 2) + 1 <
√

2(x + 1)

and it follows by induction that

f(x) < 2
1

2n (x + 1)

for all n ∈ N . Hence f(x) ≥ x+1 which shows that f(x) = x+1. It is
easy to check that this function satisfies the conditions of the problem.

Problem 25. Find all functions f : : N0 → R that satisfy f(4) =
f(2) + 2f(1)

f(

(
n

2

)
−

(
m

2

)
) = f(

(
n

2

)
)− f(

(
m

2

)
)

for n > m

Solution. f(x) = cx clearly satisfy the condition. Set f(1) =
a and f(2) = b. It’s natural to try to prove that b = 2a. To do
this, we have to compute some values of f . If S = {

(
n
2

)
|n ∈ N} =

{0, 1, 3, 6, 10, 15, 21, 28, . . . , } then f(x− y) = f(x)− f(y) for x, y ∈ S.
Now we can find f(3) = f(2) + f(1) = a + b, f(4) = 2a + b, f(6) =
2f(3) = 3(a + b), f(5) = f(6)− f(1) = a + 2b, f(10) = f(6) + f(4) =
4a + 3b, f(7) = f(10)− f(3) = 3a + 2b. If we continue like this, we will
not find a contradiction, a fact that leads us to the conclusion that there
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are more functions that satisfy the condition. If we look attentively at
the list of computed value, we see that f(3k) = k(a + b), f(3k + 1) =
(k + 1)a + kb, f(3k + 2) = ka + (k + 1)b so we are led to looking at the
residues of n modulo 3, and find another example g(x) = x mod 3 where
we set 2 mod 3 = −1. It satisfies the conclusion because S does not
contain numbers congruent to 2 modulo 3. So f(x) = cx + dg(x) also
satisfies the conclusion. Now we can try to prove that this are the only

solutions. Let c = a+b
3

, d = 2(a−b)
3

, and let h(x) = f(x)− cx− dg(x). It
satisfies the conclusion and also h(1) = h(2) = h(3) = . . . = h(7) = 0.
We need to prove that h(x) = 0 for all x. We do this by induction
on x. Suppose that we have f(x) = 0 for all x = 1, 2, . . . , n and let’s
prove that f(n + 1) = 0. Firstly, as

(
m+1

2

)
−

(
m
2

)
= m we deduce that

f(
(

k
2

)
) = 0 for k ≤ n + 1, and we need to prove that f(

(
n+2

2

)
) = 0.

It could be done if we would find k, x, y ≤ n + 1 such that
(

n+2
2

)
−(

n+2−k
2

)
=

(
x
2

)
−

(
y
2

)
then we are done. This relation is equivalent to

k(2n + 3 − k) = (x − y)(x + y − 1). Now let’s find a k ≤ 3 such that
3|2n + 3 − k. Then k(2n + 3 − k) = 3k(2n+3−k

3
) and 3k, 2n+3−k

3
have

opposite parities, hence we can set 2x = 2n+3−k
3

+ 3k, 2y = 2n+3−k
− 3k.

We only need to verify that x, y ≤ n + 1 (we could also have y < 0 but
then

(
y
2

)
=

(−y+1
2

)
so there is no problem here) which is equivalent to

2n+4 > 2n+3−k
3

+3k or 6n+12 > 2n+8k +3 or 4n+9 > 8k. As k ≤ 3
this is satisfied when n ≥ 4. Since we have already f(1), f(2), f(3), f(4)
zero, we are done.

Problem 26. Find all continuous functions f : : R → R that satisfy

f(1 + x2) = f(x)

Solution. Set g(x) = 1 + x2. As g is even we see that f(x) =
f(g(x)) = f(−x) so f is even thus we need to find f only on [0;∞).
Now we know that f(gk(x)) = f(x). Also g(x) is increasing and g(x) >
x as 1 + x2 > x for x ≥ 0. Set x = 0 to get f(0) = f(1). Nest
set xk = gk(0) so that x0 = 0, x1 = 1. Then g maps [xk−1; xk] into
[xk; xk+1] so gk maps [0; 1] into [xk; xk+1]. As g(x) > 0 is increasing and
g(x) > 1 we cannot establish any condition between f(x) and f(y) for
0 < x < y < 1 because we cannot link x and y by operating with g: if
gk(x) = gl(y) then as gk(x) ∈ (xk; xk+1); gl(y) ∈ (xl; xl+1) we conclude
k = l and by injectivity x = y. Thus we may construct f as follows:
define f a continuous function on [0; 1] with f(0) = f(1) and extend
f to R+ by setting f(gk(x)) = f(x) and f(−x) = −f(x). Indeed f
satisfies f(1+x2) = f(x). Moreover it’s continuous: the graphs of f on
[xk; xk+1] are continuous as they are the composition of the continuous
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functions f on [0; 1] and g−1
k on [xk; xk+1]. As f(xk) = f(xk+1) the

continuous graphs of f on intervals [xk; xk+1] unite to form a continuous
curve, and reflecting it with respect to the y axis we get the continuous
graph of f .

Exercises

Problem 27.Find all functions f : N → R which satisfy f(1) 6= 0
and

f 2(1) + f 2(2) + . . . + f 2(n) = f(n)f(n + 1)

Problem 28.Find all functions f : N → R for which f(1) = 1 and∑
d|n

f(d) = 0

whenever n ≥ 2.

Problem 29.Find all functions f : N → N that satisfy f(0) = 0
and

f(n) = 1 + f([
n

k
])

for all n ∈ N .

Problem 30. Let k ∈ Z. Find all functions f : Z → Z that satisfy

f(m + n) + f(mn− 1) = f(m)f(n) + k

Problem 31. Find all functions f : Z → Z that satisfy

f(m + n) + f(mn) = f(m)f(n) + 1

Problem 32.Find all functions f : Z → R satisfying

f(a3 + b3 + c3) = f(a3) + f(b3) + f(c3)

whenever a, b, c ∈ Z.

Problem 33. Let f be a strictly increasing function on N with the
property that f(f(n)) = 3n. Find f(2007).

Problem 34. Find all functions f : N → N satisfying

f(m + f(n)) = n + f(m + k)

for m, n ∈ N where k ∈ N is fixed.
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Problem 35. Let f, g : N0 → N0 that satisfy the following three
conditions:

i) f(1) > 0, g(1) > 0;
ii) f(g(n)) = g(f(n))
iii) f(m2 + g(n)) = f 2(m) + g(n);
iv) g(m2 + f(n)) = g2(m) + f(n).
Prove that f(n) = g(n) = n.

Problem 36.Find all functions f : : Q+ → Q+ that satisfy f(x) +

f( 1
x
) = 1 and f(f(x)) = f(x+1)

f(x)
.

Binary (and other) bases

Problem 37.Find all functions f : N0 → N0 such that f(0) = 0 and

f(2n + 1) = f(2n) + 1 = f(n) + 1

for any n ∈ N0.

Solution. The statement suggests that we look at the binary expan-
sion of f . As f(2n+1) = f(n)+1 and f(2n) = f(n) it’s straightforward
to observe and check that f(n) is the number of ones (or the sum of
digits) of the binary representation of n.

Problem 38. (China)Find all functions f : N → N for which f(1) =
1, f(2n) < 6f(n) and

3f(n)f(2n + 1) = f(2n)(3f(n) + 1)

.

Solution. Rewrite the main condition as f(2n+1)
f(2n)

= 3f(n)+1
3f(n)

, or
f(2n+1)−f(2n)

f(2n)
= 1

3f(n)
. Thus f(2n+1)−f(2n) > 0 and 3f(n)(f(2n+1)−

f(2n)) = f(2n). As f(2n) < 6f(n) we deduce f(2n + 1) − f(2n) < 2
thus the only possibility is f(2n + 1)− f(2n) = 1 and f(2n) = 3f(n).
We have already encountered this problem, whose solution is: f(n) is
the number obtained by writing n in base 2 and reading the result in
base 3.

Problem 39. (ISL 2000) The function f on the non-negative inte-
gers takes non-negative integer values and satisfies f(4n) = f(2n) +
f(n), f(4n + 2) = f(4n) + 1, f(2n + 1) = f(2n) + 1 for all n. Show
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that the number of non-negative integers n such that f(4n) = f(3n)
and n < 2m is f(2m+1).

Solution. The condition suggests us look at the binary decomposi-
tion of n. Firstly as f(4n) = f(2n) + f(n) we can easily deduce that
f(2k) = Fk+1, where (Fn)n∈N is the Fibonacci sequence. Indeed, set-
ting n = 0 we get f(0) = 0 thus f(1) = 1, f(2) = 1. Now the conditions
f(4n + 2) = f(4n) + 1 = f(4n) + 2, f(2n + 1) = f(2n) + 1 may suggest
some sort of additivity for f , at least f(a + b) = f(a) + f(b) when a
do not share digits in base 2. And this is indeed the case if we look
at some small particular values of f . So we conjecture this assertion,
which would mean that f(n) is actually n transferred from base 2 into
”Fibonacci base”, i.e. f(bk2k+. . .+b0) = bkFk+1+. . .+b0. This is easily
accomplished by induction on n: if n = 4k then f(n) = f(2k)+f(k), if
n = 2k+1 then f(n) = f(2k)+1 and if n = 4k+2 then f(n) = f(4k)+1
and the verification is direct.

Now as we found f , let’s turn to the final question. It asks when
f(4n) = f(3n). Actually f should be some sort of increasing function,
so we could suppose f(3n) ≤ f(4n). Indeed this holds true if we check
some particular cases, with equality sometimes. Now what connects
4n and 3n? The condition says us that f(4n) = f(2n) + f(n) but we
have 3n = 2n + n. So we can suppose that f(a + b) ≤ f(a) + f(b) and
look for equality cases.

We work of course in binary. The addition of two binary numbers
can be thought of as adding their corresponding digits pairwise, and
then repeating a number of times the following operation: if we have
reached a 2 in some position, replace it by a zero and add a 1 to the
next position. (Note that we will never have digits greater than two
if we eliminate the 2 at the highest level at each step). For example
3+9 = 112 +10012 = 10122 and then we remove the 2 to get 10202 and
again to get 11002 = 10 so 3 + 7 = 10. We can extend f to sequences
of 0’s, 1’s and 2;s by setting f(bk, . . . , b0) = bkFk+1 + bk−1Fk + . . . + b0.
Then we can see that if S is the sequence obtained by adding a and b
componentwise (as vectors), then f(s) = f(a) + f(b). And we need to
prove that the operation of removing a 2 does not increase f . Indeed,
if we remove a 2 from position k and add a 1 to position k + 1 the f
changes by Fk+2 − 2Fk+1. This value is never positive and is actually
zero only for k = 0. So f indeed is not increased by this operation
(which guarantees the claim that f(a+b) ≤ f(a)+f(b)), and moreover
it is not decreased by it only if the operation consists of removing the 2
at the units position. So f(a+ b) = f(a)+f(b) if and only if by adding
them componentwise we either reach no transfer of unity, or have only
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one transfer at the lowest level. Hence f(4n) = f(3n) if and only if
adding 2n + n we can reach at most a transfer at the lowest level. But
it cannot occur as the last digit of 2n is 0. So f(4n) = f(3n) if and
only if by adding 2n and n we have no transfer i.e. 2n and n don’t
share a unity digit in the same position. But as the digits of 2n are just
the digits of n shifted one position, this is possible if and only if n has
no two consecutive unities in its binary representation. So we need to
prove that there are exactly f(2m+1) = Fm+2 such numbers less than
2m. Let g(m) be this numbers. Then g(0) = 1, g(1) = 2. Now note that
if n is such a number and n ≥ 2m−1 then n = 2m−1+n′ where n′ < 2m−2

(as it cannot have a unity in position m − 1 that would conflict with
the leading unity), so we have g(m− 2) possibilities for this case. For
n < 2m−1 we have g(m−1) possibilities. So g(m) = g(m−1)+g(m−2)
and an induction finishes the problem.

Exercises

Problem 40. (Iberoamerican)Find all functions f : N → R for
which f(1) = 1 and

f(2n + 1) = f(2n) + 1 = 3f(n) + 1

n ∈ N .

Problem 41. (IMO 1978)Find all functions f : N → N that satisfy
f(1) = 1, f(3) = 3 and

f(2n) = f(n)

f(4n + 1) = 2f(2n + 1)− f(n)

f(4n + 3) = 3f(2n + 1)− 2f(n)

for any n ∈ N .

Constructing functions by iterations

There is a class of functional equations, most of them on N , like
f(f(x)) = g(x). They can be solved by constructing the ”orbits” of x:
O(x) = (x, g(x), g(g(x), . . .)) and investigating the relations determined
by f on this orbits. This type of equations will be exemplified here.

Problem 42. Show that there are infinitely many odd functions
g : Z → Z for which g(g(k)) = −k, k ∈ Z.

Solution. We may set g(0) = 0. Then Z \ {0} can be divided into
an infinite number of pairs (a1,−a1), (a2,−a2), . . . where a1, a2, . . . , is
some enumeration of N . We can then set g(a2k) = a2k+1, g(a2k+1) =
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−a2k, g(−a2k) = −a2k+1, g(−a2k+1) = a2k and check that the condition
is verified.

Problem 43.Find all functions f : N → N that verify

f(f(n)) = an

for some fixed a ∈ N .

Solution. If a = 1 then f(f(x)) so f is an involution and is obtained
by paring all the natural numbers into pairs and mapping one element
of a pair into another. Next, suppose a > 1. If f(x) = y then f(y) =
ax, f(ax) = f(f(y)) = ay and we prove by induction on k the following
statement: (*) f(akx) = aky, f(aky) = ak+1x. Let S be the set of all
numbers not divisible by a. Every natural number can be represented
uniquely as akb where b ∈ S. Now let s ∈ S and f(s) = akt where
t ∈ S. If we set u = f(t) then using (*) we get f(akt) = aku. But
f(akt) = f(f(s)) = as therefore aku = as so as s is divisible by u we get
either k = 1, u = s or k = 0, u = as. In the first case f(t) = s, f(s) = at
and in the second case f(s) = t, f(t) = as. In any case, f maps one
of s, t into another. Therefore S separates into pairs (x, y) that satisfy
f(x) = y, f(y) = x, hence by (*) f(akx) = aky, f(aky) = ak+1x. It’s
clear that all such functions satisfy our requirements.

Problem 44. (Romanian TST 1991) Let n ≥ 2 be a positive integer,
a, b ∈ Z, a /∈ {0, 1}. Show that there exist infinitely many functions
f : Z → Z such that fn(x) = ax + b for all x ∈ Z, where fn is the n-th
iterate of f . Show that for a = 1 there exist b such that fn(x) = ax + b
has no solutions.

Solution. The second part of the problem is already known for us
when n = 2, n is odd, and the procedure is the same. If b = n − 1
and we let ai = fi(0) (ai+n = ai + b), then for some 0 ≤ i < j ≤
n we have ai ≡ aj (mod n), thus ai = aj + hb, hence ai+hn = aj,
and thus ar+hn+i−j = ar for all sufficiently big r, which in turn as
hn+ i− j 6= 0 imply ar+n(hn+i−j) = ar which contradicts the conclusion
that ar+n(hn+i−j) = ar + b(hn + i − j). Actually with one more effort
one can prove that f exists if and only if n|b.

Now let’s turn to the first part, which seems more challenging but
bear also some similarity to the simpler case a = 1, n = 2. Let g(x) =
ax+b. Firstly consider the case a 6= −1 (it is special because g(g(x)) =
x in this case, whereas in the general case |gn(x)| tends to infinity for
almost all x). We see that gn(x) = an(x − b

a−1
) + b

a−1
. Particularly

this guarantees our claim that |gn(x)| tends to infinity for almost all
x, particularly for all x except maybe x = b

a−1
(if it’s an integer).
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Now call C(x) = {x, g(x), g2(x), . . . , gn(x), . . .} the chain generated by
x and call a chain maximal if it is not a proper subchain of another
chain (to put it otherwise, if x 6= g(y) for some y ∈ Z). We claim
that maximal chains constitute a partition of N \ {− b

a−1
}. Indeed,

firstly pick up a number n 6= − b
a−1

. Then n = gk(m) is equivalent to

n = ak(m+ b
a−1

)− b
a−1

, or (a−1)n+ b = ak((a−1)m+ b). So take k be

the greatest power of a dividing (a−1)n+b and let s = (a−1)m+b
ak . Then

s is not divisible by a and moreover s− b is divisible by a− 1. Hence
if we set m = s−b

a−1
+ b then m is an integer and the equation g(t) = m

has no solutions in N (because otherwise at = m− b = s−b
a−1

so s− b is
divisible by a). So C(m) is the desired maximal chain. Next, let’s prove
that two distinct maximal chains do not intersect. If C(x) and C(y)
intersect for x 6= y then gm(x) = gn(y) for some m 6= n. Without loss of
generality m ≥ n. Then as g is invertible on R we deduce gm−n(x) = y
hence C(y) ⊂ C(x) contradicting the fact that C(y) is a maximal chain.
Now consider all the maximal chains (there are infinitely many of them
since every element x such that the equation g(y) = x has no solutions
in N generates such a chain). We can group then into n-uples. Now we
define f on each of the n-uples. Let (C(x1), C(x2), . . . , C(xn)) be such
an n-uple. Then we define f(gk(xi)) = gk(xi+1) for i = 1, 2, . . . , n − 1
and f(gk(xn)) = gk+1(x1). Define also f(− b

a−1
) = − b

a−1
. f is seen to

satisfy our requirements.
Let’s investigate now the case a = 1. In this case, N \{ b

2
} splits into

infinitely many disjoint pairs (x, y) with x+y = b. Again we can group
the pairs into n-uples and define f on each n-uple (x1, y1), . . . , (xn, yn)
as f(xi) = xi+1, f(yi) = yi+1 for i = 1, 2, . . . , n − 1 and f(xn) =
y1, f(yn) = x1. Define f( b

2
) = b

2
if necessary. Again we see that f

satisfies the conditions.
Finally in both cases as we can group the chains or the pairs into n-

uples in infinitely many ways, we have infinitely many such functions.
It can be also proven that all functions with the desired property are
of form we found.

Exercises

Problem 45. Let n ∈ N . Find all continuous f : R → R that
satisfy fn(x) = −x where fn is the n-th iterate of f .

Problem 46.Show that there exist functions f : N → N such that

f(f(n)) = n2, n ∈ N

.
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Problem 47.Let f : N → N ne a function satisfying

f(f(n)) = 4n− 3

and
f(2n) = 2n+1 − 1

Find f(1993). Can we find explicitly the value of f(2007)? What
values can f(1997) take?

Approximating with linear functions

There are some weird functional equations on N that seem untouch-
able. But sometimes we can prove that they are unique. In this case
guessing the function would be very helpful, and very often, the so-
lutions are linear, thus it’s natural to try f(x) = cx. But sometimes
c can be rational or even irrational, and we can have formulae like
f(x) = [cx]. To overpass this difficulty, we write f(x) ∼ cx meaning
that |f(x) − cx| is bounded. Now we can guess c from the condition
and then look at some initial case to guess the exact formula. The
examples are given below.

Problem 48.Find all increasing functions f : N → N such that the
only natural numbers who are not in the image of f are those of form
f(n) + f(n + 1), n ∈ N .

Solution. Firstly, let’s assume f(x) ∼ cx. Let’s compute the ef-
fective value of c. If f(n) = m then there are exactly m − n natural
numbers up to m that are not values of f . Therefore we conclude that
they are exactly f(1) + f(2), . . . , f(m − n) + f(m − n + 1). Hence
f(m − n) + f(m − n + 1) < m < f(m − n + 1) + f(m − n + 2).
Now as f(x) ∼ cx we conclude m ∼ cn so we get 2c(m − n) ∼ m or
2c(c− 1)n ∼ cn which means 2c− 2 = 1 so c = 3

2
. Hence we make the

assumption that f(x) = [3
2
x+a] for some a. Let’s search for a. Clearly

f(1) = 1, f(2) = 2 as 1, 2 must necessarily belong to Imf . Then 3
does not belong to Imf hence f(3) ≥ 4 so f(2) + f(3) ≥ 6. Thus
4 belongs to Imf and f(3) = 4. We continue to f(4) = 5, f(5) = 7
and so on. So [3

2
+ a] = 1, [3 + a] = 2 which implies a ∈ [−1

2
; 0).

And we see that for any a, b in this interval, [3
2
x + a] = [3

2
x + b]. So

we can assume a = −1
2

and infer f(n) = [3n−1
2

], and try to prove it.

Firstly we wish to show that [3n−1
2

] satisfies the conditions. Indeed,

[3n−1
2

] + [3(n+1)
2

] = [3n−1
2

] + 1 + [3n
2

] = 3n + 1 by Hermite’s Identity,

and we need to prove that the only numbers that are not of form 3n−1
2
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are those that give residue 1 to division by 3. Indeed, if n = 2k then
[3n−1

2
] = 3k− 1 and if n = 2k + 1 then [3n−1

2
] = 3k, and the conclusion

is straightforward.
The fact that f(n) = [3n−1

2
] stems now from the inductive assertion

that f is unique. Indeed, if we have determined f(1), f(2), . . . , f(n−1)
then we have determined all f(1)+f(2), f(2)+f(3), . . . , f(n−2)+f(n−
1). Then f(n) must be the least number which is greater than f(n−1)
and not among f(1)+f(2), f(2)+f(3), . . . , f(n−2)+f(n−1). This is
because if m is this number and f(n) 6= m then f(n) > m and then m
does not belong neither to Im(f) nor to the set {f(n)+f(n+1)|n ∈ N},
contradiction. Hence f(n) is computed uniquely from the previous
values of f and thus f is unique.

Problem 49.(IMO 1979)Find all increasing functions f : N → N
with the property that all natural numbers which are not in the image
of f are those of form f(f(n)) + 1, n ∈ N .

Solution. Again f is unique. If f(x) ∼ cx then we conclude that
m ∼ c2(m − n) where m = f(n) so c = c2(c − 1) or c2 − c − 1 = 0

so c = 1+
√

5
2

∼ 1.618, the positive root of the quadratic equation. So
we try to set f(x) = [cx + d] for some constant d. Now we compute
f(1) = 1, f(2) = 3, f(3) = 4, f(4) = 6, f(5) = 8, and we can try to
put d = 0, so f(n) = [cn]. Let’s prove that it satisfies the hypothesis.
If f(n) = m then m < cn < m + 1 so m

c
< n < m+1

c
. As 1

c
=

c − 1 we get (c − 1)m < n < (c − 1)(m + 1) and so m is in Im(f) if
an only if the interval (cm; cm + c − 1) contains an integer which is
equivalent to the fact that {cm} > 2 − c. And if f(f(n)) + 1 = m
then [c[cn]] = m − 1 so [cn] ∈ ((m − 1)(c − 1); m(c − 1)) so n ∈
((m−1)(c−1)2; m(c−1)2+(c−1)) = ((2−c)m+c−2; (2−c)m+c−1), so
n = [(2−c)m+c−1] = 2m− [c(m−1)]−2. Therefore m = f(f(n))+1
if and only if the number n = 2m− [c(m−1)]−2 satisfies the condition
f(f(n))+1 = m. Set u = {c(m−1)}. Then n = (2−c)m+c−2+u so
f(n) = [c(2−c)m+cu−2c+c2] = [(c−1)m+cu−c+1] = [(c−1)(m−
1) + cu] = [c(m−1)−m+ 1 + cu] = c(m−1)−m+ 1 + cu−{u(c+ 1)}.
Set s = {u(c+1)}. Then f(f(n)) = [c(c−1)(m−1)+ c2u− cs] = [m−
1+(c+1)u−cs]. So f(f(n))+1 = m if and only if 0 < (c+1)u−cs < 1.
If t = u(c + 1) ∈ (0; 1 + c) this is equivalent to t− c{t} ∈ (0; 1). When
t < 1 this is false as the requested value is negative. When 1 < t < 2 we
have t−c{t} = t−c(t−1) = c−(c−1)t ∈ (0; 1). When t > 2 t−c{t} =
t−c(t−2) = 2c−(c−1)t > 2c−(c−1)(c+1) = 2c−c2 +1 = c > 1. So
our condition is equivalent to t ∈ (1; 2) or u ∈ ( 1

c+1
; 2

c+1
) = (2−c; 4−2c)
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so {cm− c} ∈ (2− c; 4− 2c) or {cm} ∈ {0; 2− c} So this condition is
equivalent to {cm} < 2− c.

Thus we see that the condition m = f(n) is equivalent to {cm} >
2− c and the condition m = f(f(n)) + 1 is equivalent to {cm} < 2− c.
So these two conditions are complementary and the proof is finished.

Exercises

Problem 50.Find all increasing functions f : N → N such that the
only natural numbers who are not in the image of f are those of form
2n + f(n), n ∈ N .

Problem 51.Find all functions f : N → N such that

f(f(n)) + f(n + 1) = n + 2

for n ∈ N .

Problem 52. Find all functions f : : N → N that satisfy f(1) = 1
and f(n + 1) = f(n) + 2 if f(f(n) − n + 1) = n, f(n + 1) = f(n) + 1
otherwise.

Extremal element method

Problem 53.Find all bijections

f, g, h : N → N

for which

f 3(n) + g3(n) + h3(n) = 3ng(n)h(n)

whenever n ∈ N .

Solution. f = g = h satisfies the condition. Next, by AM-GM
we have f 3(n) + g3(n) + h3(n) =≥ 3f(n)g(n)h(n) with equality if and
only if f(n) = g(n) = h(n). Therefore f(n) ≥ n with equality if and
only if f(n) = g(n) = h(n) = n. The problem now follows clearly from
the fact that f is a bijection: if f(a) = 1 then 1 ≥ a so a = 1 and
then equality holds so f(1) = g(1) = h(1) = 1. We then proceed by
induction: if we have shown that f(k) = g(k) = h(k) = k for k ≤ n
then if f(m) = n + 1 then n + 1 ≤ m (all numbers less than m are
already occupied) but from the other side n + 1 ≥ m hence equality
holds and then we have f(n + 1) = g(n + 1) = h(n + 1) = n + 1, as
desired.
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Problem 54. Find all functions f : N → N such that

f(f(f(n))) + f(f(n)) + f(n) = 3n

for all n ∈ N .

Solution. We shall show by induction that f(n) = n for all n ∈ N .
We have

f(f(f(1))) + f(f(1)) + f(1) = 3

and therefore
f(f(f(1))) = f(f(1)) = f(1) = 1.

Suppose that f(k) = k for all k ≤ n. It follows by the given condition
that the function f is injective. This implies that f(m) > n for m > n.
Hence

f(n + 1) ≥ n + 1, f(f(n + 1)) ≥ f(n + 1) ≥ n + 1

and
f(f(f(n + 1))) ≥ f(n + 1) ≥ n + 1.

Summing up gives

f(f(f(n + 1))) + f(f(n + 1)) + f(n + 1) ≥ 3(n + 1).

On the other hand we have that

f(f(f(n + 1))) + f(f(n + 1)) + f(n + 1) = 3(n + 1)

and
f(f(f(n + 1))) = f(f(n + 1) = f(n + 1) = n + 1.

Hence it follows by induction that

f(n) = n

for all n ∈ N .

Problem 55.(Ukraine) Find all functions f : Z → N0 for which we
have

6f(k + 3)− 3f(k + 2)− 2f(k + 1)− f(k) = 0

.

Solution. This looks like a recurrence relation, but it’s not! Indeed,
the first inconvenience is that we have f defined on Z, not on N , so
computing f inductively would lead to induction in both directions,
and the second is the 6 before f(k + 3) which implies that if we would
try to compute f inductively, we could obtain non-integer numbers.
That’s why we must use another idea. As surprisingly the range of
f is in N (not in Z like usually when functions are defined on Z),
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we might try to use some of the properties of N that distinguish it
from Z. A first that comes to our mind is that N contains a minimal
element, and indeed as 6 = 1 + 2 + 3 this is the best idea. So let a =
min{Imf}, f(x) = a. Then writing the conditions for k = x−3 we get
6a = 3f(x−1)+2f(x−2)+f(x) ≥ 3a+2a+a = 6a. So equalities hold
everywhere thus f(x−1) = f(x−2) = f(x−3) = a. A straightforward
induction now shows that f(y) = a whenever y ≤ x. Another simple
induction using the recurrence relation shows that f(y) = a for y > x
(the conditions written for k = x− 2 gives us f(x + 1) = a and so on).
It’s clear that constant functions satisfy our claim.

Exercises

Problem 56. (IMO ’1977). Let f : N → N be a function such that
f(n + 1) > f(f(n)) for all n ∈ N . Show that f(n) = n for all n ∈ N .
Problem 57. (BMO ’2002) Find all functions f : N → N such that

2n + 2001 ≤ f(f(n)) + f(n) ≤ 2n + 2002

for all n ∈ N .

Multiplicative Cauchy Equation

Problem 58. (IMO ’1990) Construct a function f : Q+ → Q+ such
that

yf(xf(y)) = f(x)

for all x, y ∈ Q+.

Solution. Let f be a function with the given properties. Then
setting x = 1 gives yf(f(y)) = f(1). Hence the function f is injective
and from f(f(1)) = f(1) we get f(1) = 1. Thus

yf(f(y)) = 1. (1)

Now replacing x by xy and y by f(y) in the given identity gives

f(xy) = f(x)f(y). (2)

Conversely, it is easy to check that any function f : Q+ → Q+ satis-
fying (1) and (2) satisfies the given condition as well.
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It follows by (2) that 1 = f(1) = f(y)f

(
1

y

)
and using (2) again we

get that f

(
x

y

)
=

f(x)

f(y)
. This shows that if the function f is defined

on the set P of the prime numbers then it has a unique continuation
on Q+ given by: f(1) = 1; if n ≥ 2 is an integer and n = p1

α1 . . . pk
αk

is its canonical representation as a product of primes then f(n) =

(f(p1))
α1(f(p2))

α2 . . . (f(pk))αk ; if r =
m

n
∈ Q+ then f(r) =

f(m)

f(n)
. If

moreover f satisfies (1) for all p ∈ P then one checks easily that (1)
and (2) are satisfied for all x, y ∈ Q+.

Hence we have to construct a function f : P → Q+ which satisfies
(1). To this end let p1 < p2 < . . . be the sequence of prime numbers.

Set f(p2n−1) = p2n and f(p2n) =
1

p2n−1

for all n ≥ 1. Then it is obvious

that f(f(p)) =
1

p
for all p ∈ P , i.e. the identity (1) is satisfied.

Problem 59. (IMO ’1998) Consider all functions f : N → N such
that

f(n2f(m)) = mf 2(n)

for all m, n ∈ N . Find the least possible value of f(1998).

Solution. Let f be an arbitrary function satisfying the given con-
dition. Set f(1) = a. Then setting n = 1 and m = 1 gives f(f(m)) =
a2m and f(an2) = f 2(n). Then f 2(m)f 2(n) = f 2(m)f(an2) = f(m2f(f(an2))) =
f(m2a3n2) = f 2(amn), i.e. f(m)f(n) = f(amn). In particular,
f(am) = af(m) and therefore

af(mn) = f(m)f(n). (1)

We shall prove that a divides f(n) for all n ∈ N . Let p be a prime
number and let α ≥ 0, β ≥ 0 be the degrees of p in the canonical
representations of a and f(n), respectively. It follows by induction
from (1) that fk(n) = ak−1f(nk) for all k ∈ N . Hence kβ ≥ (k− 1)α,
which implies that β ≥ α. This shows that a divides f(n).

Set g(n) =
f(n)

a
. Then g : N → N satisfies the conditions

g(mn) = g(m)g(n) (2)

g(g(m)) = m (3)



30

for all m, n ∈ N . Conversely, given a function g with the above prop-
erties then for any a ∈ N the function f(n) = ag(n) satisfies the given
condition.

Setting m = n = 1 in (2) gives

g(1) = 1. (4)

No we shall prove that g(p) ∈ P for all p ∈ P . Indeed, let p ∈ P and
g(p) = uv. Then it follows from (3) and (2) that p = g(g(p)) = g(uv) =
g(u)g(v). We may assume that g(u) = 1. Hence u = g(g(u)) = g(1) =
1 and therefore g(p) ∈ P . Now let n ≥ 2 and n = p1

α1 . . . pk
αk be the

canonical representation of n as a product of prime numbers. Then it
follows from (2) that

g(n) = gα1(p1) . . . gαk(pk). (5)

Hence we have proved that any function f : N → N with the given
property is uniquely determined by its value f(1) and a function g : P →
P such that g(g(p)) = p, i.e. by a pairing of the set of prime numbers.

We shall show now that the least possible value of f(1998) is 120.
We have that

f(1998) = f(2.33.37) = f(1)g(2)g3(3)g(37).

Since g(2), g(3) and g(37) are different prime numbers it follows that

g(2)g3(3)g(37) ≥ 3.23.5 = 120,

i.e. f(1998) ≥ 120. To construct a function f satisfying the given
condition and f(1998) = 120 set a = f(1) = 1, g(2) = 3, g(3) =
2, g(5) = 37, g(37) = 5 and g(p) = p for all prime numbers p 6=
2, 3, 5, 37. Then g(g(p)) = p for all p ∈ P and as we said above these
data determine uniquely a function f : N → N with desired properties.

Substitutions

Problem 60.Find all functions f : : R → R such that

f(x + y)− f(x− y) = f(x)f(y)

Solution. Set x = y = 0 to get f 2(0) = 0 so f(0) = 0. If we
set y → −y we get f(x − y) − f(x + y) = f(x)f(−y) = −f(x)f(y).
Particularly f(y)f(−y) = −f(y)2, f(−y)2 = −f(y)f(y) so f(y)(f(y) +
f(−y)) = f(−y)(f(y) + f(−y)) = 0, so either f(y) + f(−y) = 0 or
f(y) = f(−y) = 0 and again f(y) + f(−y) = 0 thus f is odd. Now set
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y = x so get f(2x) = f(x)2. Then f(−2x) = f(−x)2 = f(x)2 = f(2x).
As f(−2x) = −f(2x) we deduce f(2x) = 0 and f is identically zero.

Problem 61.(Vietnam 1991)Find all functions f : : R → R for
which

1

2
f(xy) +

1

2
f(xz)− f(x)f(yz) ≥ 1

4

Solution. If we set x = y = 1 the condition is equivalent to−(f(1)−
1
2
)2 ≥ 0 possible only for f(1) = 1

2
. Next set y = z = 1 to get f(x) −

1
2
f(x) ≥ 1

4
so f(x) ≥ 1

2
. Set y = z = 1

x
, x 6= 0 so get f(1)−f(x)f( 1

x2 ) ≥
1
4
. But f(x) ≥ 1

2
, f( 1

x2 ) ≥ 1
2
, f(1) = 1

2
so f(1) − f(x)f( 1

x2 ) ≥ 1
4
. Thus

equalities hold and f(x) = 1
2

for x 6= 0. Next set y = z = 0, x 6= 0 to

get f(0)− 1
2
f(0) ≥ 1

4
so f(0) ≤ 1

2
. As we have proven f(x) ≥ 1

2
we get

f(0) = 1
2
. So f(x) = 1

2
which satisfies the condition.

Problem 62. Find all functions f : R → R that are continuous in
zero and satisfy f(x + y)− f(x)− f(y) = xy(x + y)

Solution. We can guess the solution x3

3
, thus g(x) = f(x) − x3

3

is additive. Now we claim f(x) = cx for c = f(1). Indeed, assume
that d = f(t) 6= ct. If t is irrational then we can find m,n ∈ Z
with |m + nt| < ε for any ε > 0. Then f(m + nt) = mc + nd =
c(m + nt) + n(d− ct). But now if we take ε small enough we force n to
be as big as we wish and thus |f(m + nt)| > n|d− ct| − cε increases to

infinity which contradicts the continuity of f in 0. So f(x) = x3

3
+ cx.

Problem 63.Find all functions f : : R2 → R which satisfy the fol-
lowing conditions:

i)f(x + u, y + u) = f(x, y) + u
ii) f(xu, yu) = f(x, y)u

Solution. Firstly according to ii) f(x, 0) = f(1, 0)x so f(x, 0) = cx
for some c. Next according to i) f(x, y) = f(x−y, 0)+y = c(x−y)+y =
cx + (1− c)y. Conversely, any function of form cx + (1− c)y obviously
satisfies the conditions.

Problem 64. (Belarus 1995)Find all functions f : : R → R for
which

f(f(x + y)) = f(x + y) + f(x)f(y)− xy

Solution. Set y = 0 to get f(f(x)) = f(x)(1 + f(0)). So f(x) =
(1+f(0))x on Im(f). Substituting we get f(x)f(y)−xy = f(x+y)f(0).
Set a = f(0). Now set x = −a, y = a to get a2f(−a) + a2 = a2 so
f(−a) = 0. Therefore 0 ∈ A hence f(0) = (1 + a)0 = 0 so a = 0.
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Hence we get f(x)f(y) = xy. Hence for x 6= 0 we have f(x) 6= 0 and if

we set g(x) = f(x)
x

we get g(x)g(y) = 1 for all x, y. Keeping y fixed we
get that g(x) = c is constant. Then c2 = 1 so c = ±1 hence f(x) = x
or f(x) = −x. As f(x) = x on Im(f), f(x) = x is the only solution.

Problem 65. Find all continuous functions f : R → R that satisfy

f(x + y) =
f(x) + f(y)

1− f(x)f(y)

Solution. We know that tan x satisfies this equation. Therefore if
we set g(x) = arctanf(x) then g(x + y) = g(x) + g(y) ± 2kπ. As a
multiple of 2π does not matter to us we can show in the usual way that
g(x) = cx mod 2π and hence f(x) = tan cx.

Problem 66. Let f, g be two continuous functions on R that satisfy

f(x− y) = f(x)f(y) + g(x)g(y)

Find f, g.

Solution. Set y = x to conclude that f(x)2 + g(x)2 = c = f(0).
Particularly for x = 0 we get c2 + g2(0) = c so c ≤ 1. If c < 1 we
set y = 0 to get f(x) = cf(x) + g(0)g(x) so g(x) = 1−c

g(0)
f(x). Then

f 2 + g2(x) = f 2(x)(1 + (1−c)2

g2(0)
) = f 2(x)(1 + (1−c)2

c−c2
) = f2(x)

c
so f 2(x) = c2

thus f(x) = ±c and by continuity f(x) = c, g(x) =
√

c− c2 or g(x) =
−
√

c− c2. We have left to investigate the case c = 1 in which case we
get f(0) = 1, g(0) = 0, f2(x) + g2(x) = 1. This already suggests the
sine-cosine formula. Indeed, let’s prove the ”sister” identity g(x−y) =
g(x)f(y)−g(y)f(x). If holds for y = 0. Note that f 2(x−y)+g2(x−y) =
1 so g2(x−y) = (f 2(x)+g2(x))(f 2(y)+g2(y))−(f(x)f(y)+g(x)g(y))2 =
(g(x)f(y) − g(y)f(x))2. Thus g(x − y) = ±(g(x)f(y) − g(y)f(x)).
Suppose g(x − y) = −(g(x)f(y) − g(y)f(x)) for some x, y. Let A be
the set of such (x, y) and B be the set of (x, y) for which g(x − y) =
g(x)f(y) − g(y)f(x). Then A, B are closed and A

⋂
B = R2 thus

there is a point (u, v) which belongs to both A, B. Then g(u − v) =
(g(u)f(v) − g(v)f(u)) = −(g(u)f(v) − g(v)f(u)) possible only when
g(u−v) 6= 0. If we interchange x with y we get that f is even. If we set
y → −y we get f(x+y) = f(x)f(y)+g(x)g(−y) and analogously f(x+
y) = f(x)f(y) + g(−x)g(y). Thus g(x)g(−y) = g(y)g(−x)so g(−y) =

g(y)g(−x)
g(x)

if g(x) 6= 0. If g(x) = 0 for all x we immediately conclude that

f(x) = 1. If g(x0) 6= 0 then as f 2(x0) +g(x2
0) = 1 = f(−x0)

2 +g(−x0)
2

we get g(−x0)
g(x0)

= ±1 thus g is either even or odd. If g is even by setting

y → −y we get f(x + y) = f(x)f(y) + g(x)g(y) = f(x + y) and so f is
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constant. If f is not constant then g is odd. We can now set y → −y
to get f(x + y) + f(x − y) = 2f(x)f(y) and solve it by the familiar
D’Alembert’s Equation (see the chapter ”Polynomial recurrences and
continuity”), or we can proceed by another way. Set z = x− y. Then
f(y) = f(x− z) = f(x)f(z) + g(x)g(z) = f(x)(f(x)f(y) + g(x)g(y)) +
g(x)g(z) = f 2(x)f(y)+f(x)g(x)g(y). So g(x)g(z) = f(y)−f 2(x)f(y)−
f(x)g(x)g(y) = g2(x)f(y)−f(x)g(x)g(y) thus if g(x) 6= 0 we get g(x−
y) = g(x)f(y) − f(x)g(y). Now if g(x) = 0 but there is a sequence
xn → x such that g(xn) 6= 0 we can conclude g(x − y) = g(x)f(y) −
f(x)g(y) by continuity. Otherwise there is a non-empty open interval
(a, b) on which g vanishes. Then if x ∈ (a, b) we get f(x + x) =
f 2(x)− g2(x) = f 2(x) + g2(x) = 1 hence f(2x) = 0 thus on (2a; 2b) we
have f identically 1 and g identically zero. Setting now y ∈ (2a; 2b)
we deduce f(x − y) = f(x) for all x thus if |u − v| < 2(b − a) we
can find x and y1, y2 ∈ (2a, 2b) with u = x − y1, v = x − y2 hence
f(u) = f(v) = f(x). We deduce from here that f is constant so f is
identically 1 and g identically zero. If not, then we have proven g(x−
y) = g(x)f(y)−f(x)g(y) for all x, y. Now set u(x) = f(x)+ig(x). Then
u(x + y) = f(x)f(y) − g(x)g(y) + i(g(x)f(y) − f(x)g(y)) = u(x)u(y).
So u is multiplicative. Since it is also continuous we get u(x) = ekx by

using the lemma. Now as |u(x)| =
√

f 2(x) + g2(x) = 1 we must have
k ∈ iR thus u(x) = eαix and we conclude f(x) = cos αx, g(x) = sin αx.

Problem 67.(Ukraine 1997)Find all functions f : : Q+ → Q+ such
that f(x + 1) = f(x) + 1 and f(x2) = f(x2)

Solution. From the first condition we conclude that f(x + k) =
f(x) + k for k ∈ N by induction on k. Assume that f(p

q
) = r. Then

f(p
q

+ kq) = a + kq so f((p
q

+ kq)2) = a2 + 2kaq + k2q2 for k ∈ N . But

(p
q

+ kq)2 = p2

q2 + 2pk + k2q2 hence f((p
q

+ kq)2) = f(p2

q2 ) + 2pk + k2q2 =

q2 + 2pq + k2q2. So 2kaq = 2pk thus a = p
q
. The identity function

clearly satisfies the condition.

Problem 68.Find all functions f : : R → R that obey

(x− y)f(x + y)− (x + y)f(x− y) = 4xy(x2 − y2)

Solution. The substitution u = x+y, v = x−y is immediately seen
and it simplifies our condition to uf(v)− vf(u) = uv(u2 − v2). Now if
we set v = 0 we get uf(0) = 0 for all u so f(0) = 0. Now if uv 6= 0 we

divide by uv to get f(v)
v
− f(u)

u
= u2 − v2 hence f(v)

v
+ v2 = f(u)

u2 for all

u, v 6= 0. Therefore f(x)
x

+ x2 = c for some fixed c and all x 6= 0. Then
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f(x) = cx − x3 and this relation holds even for x = 0. We substitute
to have u(cv− v3)− v(cu−u3) = u3v− v3u which is true. All solutions
are therefore of form f(x) = cx− x3.

Problem 69.Find all pairs of functions f, g : : R → R such that g
is a one-one function and f(g(x) + y) = g(x + f(y)).

Solution. As g is injective, g(x) + y = g(z) + t implies x + f(y) =
z + f(t). This can be written as f(y + g(x) − g(z)) = f(y) + x − z.
Leaving y and x constant we deduce that f is surjective. Then so is g,
as seen from the main condition. Then picking up z0 with g(z0) = 0
we get f(y + g(x)) = f(y) + x− z0. But f(y + g(x)) = g(x + f(y)). So
g(x+f(y)) = x+f(y)−z0 and then g(x) = x−z0. Hence f(x+y−z0) =
x + f(y) − z0 and if we set y = z0 we get f(x) = x + f(z0) − z0. We
conclude that both f, g are of form f(x) + c. Indeed all such pairs of
functions satisfy the problem.

Problem 70.Let g : C → C be a given function, a ∈ C and w the
primitive cubic root of unity. Find all functions f : : C → C such that

f(z) + f(wz + a) = g(z)

Solution. Let h(z) = wz + a. Then f(z) + f(h(z)) = g(z). Now
h(h(z)) = w(wz + a) + a = w2z + (w + 1)a, h(h(h(z))) = w(w2z + (w +
1)a)+a = w3z+(w2+w+1)a = z. Therefore h(h(h(z))) = z. So f(z)+
f(h(z)) = g(z), f(h(z)) + f(h(h(z))) = g(h(z)), f(h(h(z))) + f(z) =
f(h(h(z))) + f(h(h(h(z)))) = g(h(h(z))). If we solve the obtained
non-singular linear system in f(z), f(f(z)), f(f(f(z))) we get f(z) =
g(z)+g(w2z+(w+1)a)−g(wz+a)

2
, and similar expressions for f(h(z)), f(h(h(z))).

As the system is non-singular, this f satisfies the condition.

Problem 71.Find all functions f : : R0 → R0 that satisfy the con-
ditions

i)f(xf(y))f(y) = f(x + y) for x, y ≥ 0
ii) f(2) = 0
iii) f(x) > 0 for x ∈ [0; 2)

Solution. Setting y = 2 into i) we get f(x+2) = 0 so f is identically
zero on [2;∞). Thus f(x) = 0 if and only if x ≥ 2. Now consider a
fixed y < 2. From condition i) we deduce that f(xf(y)) = 0 if and
only if f(x + y) = 0, or xf(y) ≥ 2 if and only if x + y ≥ 2. Hence
if x < 2 − y then xf(y) < 2 so f(y) < 2

x
. Taking x → (2 − y)−

we deduce f(y) ≤ 2
2−y

. But setting x = 2 − y we get x + y = 2 so

xf(y) ≥ 2 and f(y) ≥ 2
x

= 2
2−y

. We conclude that f(y) = 2
2−y

. Indeed



35

the function f with f(x) = 0 for x ≥ 2 and f(x) = 2
2−x

otherwise
satisfies the conditions: if y ≥ 2 this is trivial and if y < 2 we need
to check f( 2x

2−y
) 2

2−y
= f(x + y). If x ≥ 2 − y then 2x

2−y
≥ 2 and

x + y ≥ 2 and we get the true 0 = 0. If x < 2 − y then 2x
2−y

< 2 so

f( 2x
2−y

) = 2−y
2−x−y

and x + y < 2 so f(x + y) = 2
2−x−y

and so we get the

identity 2
2−y

2−y
2−x−y

= 2
2−x−y

, which is true.

Problem 72.Find all functions f : R → R that satisfy

f(f(x− y)) = f(x)− f(y) + f(x)f(y)− xy

.

Solution. By setting y = x we get f(f(0)) = f 2(x)−x2 thus f(x) =
±
√

x2 + d for any x where d = f(f(0)). d ≥ 0 otherwise we couldn’t

extract square root for x = 0. Now for x = 0 we get f(0) = ±
√

d and

for x = f(0) we have f(f(0)) =
√

2d. So d =
√

2d which is possible
for d = 0, d = 2. Now let’s consider y = x − 1. We get f(f(1)) =
f(x)−f(x−1)+f(x)f(x−1)−x(x−1). Consider x be sufficiently big.
Then f(x) and f(x−1) have the same sign otherwise f(f(1)) = (f(x)−
1)(f(x−1)−1)−x(x−1) < −x(x−1) as |f(x)|, |f(x−1)| > 1 thus f(x)−
1, f(x− 1)− 1 would have the same signs as f(x), f(x− 1) so (f(x)−
1)(f(x− 1)− 1) would be negative. However |x(x− 1)| > |f(f(1))| =√

1 + 2d for sufficiently big x, contradiction. Thus f(f(1)) = f(x) −
f(x− 1) + f(x)f(x− 1)− x(x− 1) = ±(

√
x2 + d−

√
(x− 1)2 + d) +√

(x2 + d)((x− 1)2 + d)) − x(x − 1). Now we use the identity a −
b = a2−b2

a+b
to get

√
x2 + d −

√
(x− 1)2 + d = 2x−1√

x2+d+
√

(x−1)2+d
∼ 1,√

(x2 + d)((x− 1)2 + d)) − x(x − 1) = d(2x2−2x+1)√
(x2+d)((x−1)2)+d+x(x−1)

∼ d.

Therefore when x is sufficiently big right − handside ∼ ±1 + d so
actually f(f(1)) = ±1 + d. But f(f(1)) = ±

√
1 + 2d, which holds

only for d = 0, as
√

5 6= ±1 + 2 which would hold for d = 2. So we
have f(x) = ±x. Now we prove f(x) = x. Indeed assume f(x0) =
−x0.x0 6= 0. Then f(f(x − x0)) = f(x) − f(x0) + f(x)f(x0) − xx0 =
(f(x) − 1)(f(x0) + 1) − xx0 + 1 = (x − 1)(−x0 + 1) − xx0 + 1 or
(−x−1)(−x0 +1)−xx0 +1. But f(f(x−x0)) ∈ {x−x0, x0−x}. Thus
{x−x0, x0−x}

⋂
{(x−1)(−x0+1)−xx0+1, (−x−1)(−x0+1)−xx0+1} =

{−2xx0 + x + x0, x0− x}, as the common value f(f(x− x0)) = f(x)−
f(x0)+f(x)f(x0)−xx0 belongs to both sets. Now the equalities x−x0 =
−2xx0 +x+x0, x−x0 = x0−x, x0−x = −2xx0 +x+x0 are equivalent
to x = 1, x = x0, x(x0−1) = 0 which have at most one solution each for
x0 6= 1, therefore for x0 6= 1 we have f(f(x− x0)) = x0 − x, f(x) = −x
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for all x except three values. However this is impossible: if we take
x such that neither x nor x0 − x is among these three values then
f(f(x−x0)) = f(x0−x) = x−x0 while we have f(f(x−x0)) = x0−x.
Contradiction. So f(x) = x for all x 6= 1. Finally if we set x = 3, y = 1
we get 2 = f(2) = f(3)− f(1) + f(3)f(1)− 3 = 3− f(1) + 3f(1)− 3 =
2f(1) hence f(1) = 1. Thus f is the identity function. The identity
function satisfies the condition.

Problem 73. Find all functions f : Q → Q such that

f(
x + y

3
) =

f(x) + f(y)

2
for all non-zero x, y in the domain of f .

Solution. If we set 2x = y we get f(x) = f(x)+f(2x)
2

for any x
therefore f(2x) = f(x). This suggest the fact that f is a constant
function. Indeed, let S be the set of all integers k for which f(kx) =
f(x) for all x. Then we know that 1, 2 ∈ S. Also if a, b ∈ S then
3a− b ∈ S (just set x → (3a− b)x, y → bx), and clearly if a, b ∈ S then
ab ∈ S. Now we can prove by induction on |k| that k ∈ S for all k ∈ Z∗.
Indeed, 4 = 2 · 2 ∈ S, −1 = 3 · 1− 4 ∈ S,−2 = 3 · (−1)− (−1) ∈ S and
the basis in proven. To prove the induction step, we have to show that
every k with |k| ≥ 3 can be written as 3a− b where |a|, |b| < k. Indeed,
if we denote a = [k

3
], b = −3{k

3
} then k = 3a−b and |a| ≤ |k

3
| < k, |b| ≤

2 < k. Thus Z∗ ⊂ S. Therefore if a, b ∈ Q \ {0} and a
b

= p
q
, p, q ∈ Z

then qa = pb f(a) = f(qa) = f(pb) = f(b) so f is constant on Q \ {0}.
Also if x 6= 0 then setting y = 0 we get f(x

3
) = f(x)+f(0)

2
which as

f(x
3
) = f(x) implies that f(0) = f(x). So f in constant on Q and all

constant functions satisfy the requirements.

Problem 74. Find all polynomials P (x, y) ∈ R2[x, y] that satisfy
P (x + a, y + b) = P (x, y) where a, b are some reals, not both zero.

Solution. Assume that b 6= 0. Consider the polynomial R ∈ R2[x, y]
defined by R(x, y) = P (x + a

b
y, y). Then we can tell P (x, y) = R(x −

a
b
y, y). So P (x + a, y + b) = P (x, y) can be rewritten in terms of R

as R((x + a) − a
b
(y + b), y + b) = R(x − a

b
y, y) or R(x − a

b
y, y + b) =

R(x− a
b
y, y). If we set x → x− a

b
y we get R(x, y) = R(x, y + b). Then

by induction on n R(x, y) = R(x, y + b) = . . . = R(x, y + nb). Set
Qx(y) = R(x, y). Then Qx(y) = Qx(y + b) = . . . = Qx(y + nb) and
taking n > degQx we get Qx is constant so Qx(y) = Qx(0) = R(x, 0).
As R(x, 0) is a polynomial in x, R is a polynomial in x so R(x, y) =
Q(x) for some polynomial Q ∈ R[x]. Then P (x, y) = R(x − a

b
y, y) =

Q(x− a
b
y) = Q(bx− ay). Any such polynomial satisfies the condition,
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as P (x + a, y + b) = Q(b(x + a) − a(y + b)) = Q(bx − ay) = P (x, y).
If b = 0 then a 6= 0 and we repeat the reasoning by replacing b with a
and y with x to get again P (x, y) = Q(bx− ay).

Problem 75. (ISL 1996) Find a bijection f : N0 → N0 that satisfies
f(3mn + m + n) = 4f(m)f(n) + f(m) + f(n).

Solution. If we denote g(3k+1) = f(k) then the condition becomes
g((3m + 1)(3n + 1)) = 4g(3m + 1)g(3n + 1) + g(3m + 1) + g(3n +
1). Next if we denote 4g(x) + 1 = h(x) the condition is rewritten
as h((3m + 1)(3n + 1)) = h(3m + 1)h(3n + 1). Now we understand
that we need to construct a multiplicative bijection of A into B where
A = {3k + 1|k ∈ N}, B = {4k + 1 ∈ N}. We can set h(1) = 1. Now
consider U the set of all primes of form 3k− 1 , V the set of all primes
of form 3k + 1, X the set of all primes of form 4k − 1, Y the set of
all primes of form 4k + 1. All these four sets are infinite. So we can
provide a bijection h between U and X and between V and Y . Now
we extend it by multiplicativity to the whole A. We prove this is the
required bijection. Indeed, assume that 3k + 1 =

∏
pai

i

∏
qbi
i where

pi ∈ U, qi ∈ B. Then pi are 1− mod 3, qi are 1 mod 3 so
∑

ai must be
even. Then h(3k+1) =

∏
h(pi)

ai
∏

h(qi)
bi where h(pi) ∈ X, h(qi) ∈ Y .

As h(pi) is −1 mod 4 and h(qi) is 1 mod 4 but
∑

ai is even we conclude
that h(3k + 1) is 1 mod 4 so h(3k + 1) ∈ B. We can analogously
prove the reverse implication: assume that 4k + 1 =

∏
pai

i

∏
qbi
i where

pi ∈ X, qi ∈ Y . As pi are −1 mod 4 but qi are 1 mod 4
∑

ai must
be even. Then x =

∏
h−1(pi)

ai
∏

h−1(qi)
bi satisfies h(x) = 4k + 1.

Moreover as h−1(pi) are−1 mod 3, h−1(qi) are 1 mod 3 and
∑

ai is even,
we conclude that x is 1 mod 3 so x ∈ A. Finally h is injective because
of the uniqueness of the decomposition of a number into product of
primes.

Problem 76. (IMO ’1999) Find all functions f : R → R such that

f(x− f(y)) = f(f(y)) + xf(y) + f(x)− 1

for all x, y ∈ R.

Solution. Setting x = f(y) in the given equation gives

f(x) =
c + 1− x2

2
, (1)

where c = f(0). On the other hand if y = 0 we get f(x− c)− f(x) =
f(c) + cx − 1. Hence f(−c) − c = f(c) − 1 which shows that c 6= 0.
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Thus for any x ∈ R there is t ∈ R such that x = y1 − y2, where
y1 = f(t− c) y2 = f(t). Now using the given equation we get

f(x) = f(y1 − y2) = f(y2) + y1y2 + f(y1)− 1 =

=
c + 1− y2

2

2
+ y1y2 +

c + 1− y1
2

2
− 1 =

= c− (y1 − y2)
2

2
= c− x2

2
.

This together with (1) gives c = 1 and f(x) = 1− x2

2
. Conversely, it is

easy to check that this function satisfies the given equation.

Problem 77. Find all functions f : R0
+ → R0

+ such that

f(y)f(xf(y)) = f(x + y)

for all x, y ∈ R0
+.

Solution. Setting x = 0 gives f(0)f(y) = f(y). Hence f 2(0) = f(0).
If f(0) = 0 then f(y) = 0 for all y ∈ R0

+. Hence we may assume that
f(0) = 1. We shall consider two cases.

1. Let f(y) = 0 for some y > 0. Set a = inf{y > 0 : f(y) = 0}. For
any x > a there is y such that a < y < x and f(y) = 0. Then

f(x) = f(y)f((x− y)f(y)) = 0.

So, if a = 0 then f(x) = 0 for all x > 0.
Suppose now that a > 0 and let 0 < y < a. For any ε > 0 we have

f(y)f((a + ε− y)f(y)) = f(a + ε) = 0.

Hence (a + ε− y)f(y) ≥ a since f(y) > 0. On the other hand

f

(
a + ε

f(y)
+ y

)
= f(a + ε)f(y) = 0

and therefore
a + ε

f(y)
+ y ≥ a. Now letting ε → 0 in the above two

inequalities gives f(y) =
a

a− y
for any 0 < y < a. In particular

f
(a

2

)
= 2 and setting x = y =

a

2
in the given equation gives 2f(a) =

f(a), i.e. f(a) = 0.
2. Let f(y) > 0 for any y > 0. First we shall show that f(y) ≤ 1

for any y ≥ 0. Indeed, assume that f(y) > 1 for some y > 0. Then we

set x =
y

f(y)
in the given equation and get f(y) = 1, a contradiction.
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The inequality f(y) ≤ 1 together with the given equation shows that
the function f is decreasing.

Suppose that f(y) = 1 for some y > 0. Then f(x + y) = f(x) for
any x ≥ 0 and using the fact that the function f is decreasing we get
that f(x) = 1 for all x ≥ 0.

It remains to consider the case when f(y) < 1 for any y > 0. Then
the function f is strictly decreasing and hence injective. Now the iden-
tity

f(y)f(xf(y)) = f(x + y) = f(xf(y) + y + x(1− f(y))) =

= f(xf(y))f((y + x(1− f(y)))f(f(xf(y)))

implies that

y = (y + x(1− f(y)))f(xf(y)).

Setting y = 1, xf(1) = z and
f(1)

1− f(1)
= a we get that f(z) =

a

a + z
for any z > 0.

Thus all the functions we have found are the following:

f(x) = 0, f(x) = 1, f(x) =
a

x + a
,

f(x) =

{
1 for x = 0
0 for x > 0,

f(x) =

{ a

a− x
for 0 ≤ x < a

0 for x ≥ a,

where a > 0 is an arbitrary constant. It is easy to check that the first
four functions are solutions of the problem. Now we shall show that
the fifth function also gives a solution.

If x, y ≥ 0 and x + y < a then

f(y)f(xf(y)) =
a

a− y
f

(
ax

a− y

)
=

a

a− y
.

a− y

a− (x + y)
= f(x + y).

Let x, y ≥ 0 and x + y ≥ a. Then f(x + y) = 0. If y ≥ 0 then

f(y) = 0. If y < a then
ax

a− y
≥ a and xf(y) ≥ a. Hence f(xf(y)) = 0.

Therefore in both cases we have

f(y)f(xf(y)) = 0 = f(x + y).
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Remark. The above problem under the additional conditions f(2) =
0 and f(x) 6= 0 for 0 ≤ x < 2 is a problem from IMO ’1986 and was
solved before, the only solution being the function

f(x) =

{ 2

2− x
for 0 ≤ x < 2

0 for x ≥ 2.

Exercises

Problem 78. Find all continuous functions f : R → R that satisfy

f(x)y + f(y)x = (x + y)f(x)f(y)

Problem 79. Find all continuous functions f : R → R for which

f(x + y)− f(x− y) = 2f(xy + 1)− f(x)f(y)− 4

Problem 80.(ISL 2000)Find all pairs of functions f : : R → R that
obey the identity

f(x + g(y)) = xf(y)− yf(x) + g(x)

Problem 81. If a > 0 find all continuous functions f for which

f(x + y) = axyf(x)f(y)

Problem 82. Find all continuous functions f : R → R that satisfy

f(x + y)
f(x) + f(y) + 2f(x)f(y)

1− f(x)f(y)

Problem 83. Find all continuous function f ·(a; b) → R that satisfy
f(xyz) = f(x) + f(y) + f(z) whenever xyz, x, y, z ∈ (a; b), where 1 <
a3 < b.

Problem 84. Find all continuous functions f : R → R that satisfy

f(xy) = xf(y) + yf(x)

Problem 85.Find all functions f : Q+ → Q+ that obey the relations

f(x + 1) = f(x) + 1

if x ∈ Q+ and
f(x3) = f(x)3
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if x ∈ Q+.

Problem 86. Show that if f : R → R satisfies

f(xy) = xf(x) + yf(y)

then f is identically zero.

Problem 87. Find all functions f : R → R that obey the condition

f(f(x) + y) = f(x2 − y) + 4f(x)y

.

Problem 88.Let k ∈ R+. Find all functions f : [0, 1]2 → R such
that the following four conditions hold for all x, y, z ∈ [0; 1]:

i)
f(f(x, y), z) = f(x, f(y, z))

ii)
f(x, y) = f(y, x)

iii)
f(x, 1) = x

iv)
f(zx, zy) = zkf(x, y)

Problem 89. Find all continuous functions f : R → R that satisfy
3f(2x + 1) = f(x) + 5x.

Problem 90. (Shortlisted problems for IMO ’2002) Find all func-
tions f : R → R such that

f(f(x) + y) = 2x + f(f(y)− x)

for all x, y ∈ R. Problem 91. (Bulgaria, 1996) Find all functions

f : R → R such that

f(f(x) + xf(y)) = xf(y + 1)

for all x, y ∈ R.

Problem 92. (BMO ’1997 and BMO ’2000) Find all functions
f : R → R such that

f(xf(x) + f(y)) = f 2(x) + y

for all x, y ∈ R.



42

Problem 93. (USA, 2002) Find all functions f : R → R such that

f(x2 − y2) = xf(x)− yf(y)

for all x, y ∈ R.

Fixed Points

Problem 94. (IMO ’1983) Find all functions f : R+ → R+ such
that:

(i) f(xf(y)) = yf(x) for all x, y ∈ R+;
(ii) lim

x→+∞
f(x) = 0.

Solution. It follows from (i) that f(xf(x)) = xf(x) for all x > 0.
Then it follows by induction on n that if f(a) = a for some a > 0 then
f(an) = an for any n ∈ N . Note also that a ≤ 1 since otherwise

lim
n→∞

f(an) = lim
n→∞

an = +∞,

a contradiction to (ii).
On the other hand a = f(1.a) = f(1.f(a)) = af(1). Hence

1 = f(1) = f(a−1a) = f(a−1f(a)) = af(a−1),

i.e. f(a−1) = a−1. Thus we have (as above) f(a−n) = a−n for all
n ∈ N and therefore a−1 ≤ 1.

In conclusion, the only a > 0 such that f(a) = a is a = 1. Hence the

identity f(xf(x)) = xf(x) implies that f(x) =
1

x
for any x > 0. It is

easy to check that this function satisfies the conditions (i) and (ii) of
the problem.

Problem 95. (IMO ’1994) Let S be the set of all real numbers
greater than −1. Find all functions f : S → S such that

(i) f(x + f(y) + xf(y)) = y + f(x) + yf(x) for all x, y ∈ S;

(ii)
f(x)

x
is strictly increasing in the intervals (−1, 0) and (0, +∞).

Solution. If x = y > −1 we have from (i) that

f(x + (1 + x)f(x)) = x + (1 + x)f(x). (1)

On the other hand (ii) implies that the equation f(x) = x has at
most one solution in each of the intervals (−1, 0) and (0, +∞).
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Suppose that f(a) = a for some a ∈ (−1, 0). Then (1) implies that
f(a2 + 2a) = a2 + 2a and therefore a2 + 2a = a since a2 + 2a =
(a + 1)2 − 1 ∈ (−1, 0). Hence a = −1 or a = 0, contradiction. The
same arguments show that the equation f(x) = x has no solutions in
the interval (0, +∞).

Then we conclude from (1) that x + (1 + x)f(x) = 0, i.e. f(x) =

− x

1 + x
for any x > −1. It is easy to check that this function satisfies

the conditions (i) and (ii) of the problem.

Problem 96. (Tournament of the towns ’1996) Prove that there is
no function f : R → R such that

f(f(x)) = x2 − 1996

for any x ∈ R.

Solution. We shall prove the following more general result.

Proposition. Let g(x) be a quadratic function such that the equa-
tion g(g(x)) = x has at least three different real roots. Then there is
no function f : R → R such that

f(f(x)) = g(x) (1)

for all x ∈ R.

Proof. The fixed points of g(x) are also fixed points of the forth
degree polynomial h(x) = g(g(x)). Hence it follows by the given con-
ditions that g(x) has one or two real fixed points. Denote them by x1

and x2. Then h(x) has one or two real fixed points, different from x1

and x2. Denote them by x3 and x4. The identity

f(g(x)) = f(f(f(x))) = g(f(x))

implies that {f(x1), f(x2)} = {x1, x2}. On the other hand we have

f(f(g(x))) = f(g(f(x))) and f(f(f(g(x)))) = f(f(g(f(x)))),

i.e. f(h(x)) = h(f(x)). Hence {f(x3), f(x4)} ∈ {x1, x2, x3, x4}. Sup-
pose that f(xl) = xk for some k ∈ {1, 2} and l ∈ {3, 4}. Then

xl = h(xl) = f(f(f(f(xl)))) = f(g(xk)) = f(xk) ∈ {x1, x2},
a contradiction. Hence f(x3) = x3 if x3 = x4 and {f(x3), f(x4)} =
{x3, x4} if x3 6= x4. In both cases we have g(x3) = f(f(x3)) = x3, a
contradiction. Thus the proposition is proved. Turning back to the
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problem we note that the equation g(g(x)) = (x2 − 1996)2 − 1996 = x
has four different real roots since (x2−1996)2−1996−x = (x2−1996−
x)(x2 + x− 1996).

Remark. Set g(x) = ax2 + bx + c. Then

g(g(x))− x = (ax2 + (b− 1)x + c)(a2x2 + a(b + 1)x + ac + b + 1).

Therefore the four roots of the equation g(g(x)) = x are equal to:

1− b +
√

D

2a
,

1− b−
√

D

2a
,
−1− b +

√
D − 4

2a
and

−1− b−
√

D − 4

2a
,

where D = (b− 1)2− 4ac. All these roots are real if and only if D ≥ 4.
If D > 4 then all the roots are different whereas for D = 4 one of them

is equal to
3− b

2a
and the other three are equal to −1 + b

2a
.

The proposition proved above says that if D > 4, then there are no
functions f : R → R such that f(f(x)) = g(x) for all x ∈ R. On the
other hand if D = 4 then there are infinitely many continuous functions
f : R → R satisfying the above equation.

Additive Cauchy Equation

Problem 97. (AMM 2001) Find all functions f : R → R if

f(x2 + y + f(y)) = 2y + f 2(x)

for all reals x, y.

Solution. If we fix x then the right-hand side is surjective on R
therefore f is surjective. Also if y1 + f(y1) = y2 + f(y2) then writing
the condition for some x and y = y1, y2 the get 2y1 = 2y2 thus x+f(x)
is injective. Thus for some c we have f(c) = 0. This implies f(c2 + y +
f(y)) = 2y. Pick up now two fixed a, b. Set c = b+f(b)−a−f(a) > 0.
If x > a + f(a) then there is an u such that x = u2 + a + f(a), x + d =
u2 +b+f(b). Then f(x) = 2a+f 2(x), f(x+c) = 2b+f 2(x). Therefore
we conclude that f(x + c) − f(x) = 2(a − b) for all sufficiently big x.
This means that f(x + c) = f(x) + d for d = 2(b − a) and c + d =
3(b − a) + f(b) − f(a) and from here f(x + nc) = f(x) + nd for all
sufficiently big x and any fixed natural n. If d < 0 then f(x + nc) < 0
for all sufficiently big n. However if x+nc > f(0) then x+nc = u2+f(0)
and applying the condition for u and 0 we get f(x + nc) = f 2(u) > 0
contradiction. So d > 0. Then f(x+nc)+x+nc = f(x)+x+n(c+d).
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This means f(x) + x takes arbitrarily large values. Take now a y. We
then get f((x + c)2 + y + f(y)) = 2y + (f(x) + d)2 for x ≥ x0. Assume
now that we have f(x+u) = f(x) for all sufficiently big x when u > 0.
Then we get f((x + u)2 + y + f(y)) = f(x2 + y + f(y)). However
we can choose x such that 2xu + u2 = lc, l > 0 and then choosing y
such that y + f(y) is big enough we have f((x + u)2 + y + f(y)) =
f(x2 + 2xu + u2 + y + f(y)) = f(x2 + y + f(y)) + ld contradiction.
Consider now g(x) = x + f(x). Take a fixed s and x 6= y with g(x +
s) − g(x) ≤ g(y + s) − g(y). Then we have f(t + g(x + s) − g(x)) =
f(t) + 2s, f(t + g(y + s)− g(y)) = f(t) + 2s for all t ≥ t0 and if we set
z = t+g(x+s)−g(s)), v = (g(y+s)−g(y))−(g(x+s)−g(x)) then the
identity turns to f(z + v) = f(z) for all z ≥ 0. As v ≥ 0 we must have
v = 0 as we have proven such a relation is impossible for v 6= 0. Hence
g(x + s) − g(x) = g(y + s) − g(y). As x, y were chose arbitrarily we
conclude that g(x+s)−g(x) is independent of x thus g(x+s)−g(x) =
g(s) − g(0) so g(x + s) + g(0) = g(x) + g(s) thus h(x) = g(x) − g(0)
is an additive function, hence so is f(x) − g(0) = f(x) − f(0). We
then get f(x2 + g(y)) = f(x2) + f(g(y)) − f(0) = 2y + f 2(x) hence
f(x2) − f 2(x) = 2y − f(g(y)). If we now fix y then we get f(x2) =
f 2(x) + e for fixed e hence f(x) ≥ −e for x ≥ 0. Hence f(x)− f(0) is
additive and bounded below, and then using an already known problem
we deduce f(x)− f(0) = rx for some r hence f = rx + s is linear. The
condition f(x2)−f 2(x) = 2y−f(g(y)) now implies rx2+s−(rx+s)2 =
2y−r((r+1)y+s)−s or r(1−r)x2−2rsx−s2 = (2−r(r+1))y−(r+1)s
which is possible only when r(1 − r) = 2rs = 2 − r(r + 1) = 0. Then
r = 0 or r = 1. If r = 0 then 2 − r(r + 1) 6= 0. So r = 1 and then
s = 0. So f is the identity function. It can be easily verified that the
identity function satisfies the condition.

Problem 98. Find all functions f, g, h : R → R such that

f(x + y) = f(x)g(y) + h(y)

Solution. Set y = 0 to get f(x) = f(x)g(0) + h(0) so f(x)(1 −
g(0)) = h(0) and either 1 − g(0) = 0 or f(x) = h(0)

1−g(0)
. In the second

case f is a constant then if we set f(x) = c we get c = cg(y) + h(y)
and any functions g, h with h(x) = c− cg(x) satisfy the condition. So
assume that f is not constant thus g(0) = 1 and h(0) = 0. Now set
x = 0 to get f(y) = f(0)g(y) + h(y). Set f(0) = c. Then f(x) =
cg(x) + h(x) so we substitute to get cg(x + y) + h(x + y) = cg(x)g(y) +
h(x)g(y)+h(y). Symmetrize the condition to get cg(x+y)+h(x+y) =
cg(x)g(y) + h(x)g(y) + h(y) = cg(x)g(y) + h(y)g(x) + h(x) therefore
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h(x)g(y)+h(y) = h(y)g(x)+h(x) hence h(x)(g(y)−1) = h(y)(g(x)−1).
Now we distinguish some cases:

a) g(x) = 1 for all x. Then the condition transforms to h(x + y) =
h(x) + h(y) hence h is an additive function, f = h + c, g = 1 and we
check that this functions indeed satisfy the conditions.

b) h(x) = 0 for all x. Then the condition becomes cg(x + y) =
cg(x)g(y) which implies that either c is zero so f = h = 0, g is any
function, which satisfy the condition or c 6= 0 and g is a multiplicative
function while f = cg, h = 0, again satisfy the condition.

c) There are x0, y0 for which g(x0) 6= 1, h(y0) 6= 0. If we set x =
x0, y = y0 we deduce that h(x0)(g(y0)−1) 6= 0 so h(x0), g(y0)−1 are not
zero. Now set y = y0 and we get h(x)(g(y0)−1) = h(y0)(g(x)−1) thus

h(x) = (g(x) − 1) h(y0)
g(y0)−1

. If we set h(y0)
g(y0)−1

= d then h(x) = dg(x) − d.

Thus our condition becomes (c+d)g(x+ y)−d = cg(x)g(y) + (dg(x)−
d)g(y) + dg(y) − d = (c + d)g(x)g(y) − d hence either c + d = 0 or
g is additive multiplicative. In the first case we get d = −c so f =
cg(x) − cg(x) + c = c, h(x) = −cg(x) + c which satisfy the condition.
In the second case we get g a multiplicative function, h = dg − d, f =
cg + h = (c + d)g − d and again they satisfy the condition.

We have exhausted all solutions. Note that we have used the terms
”additive function” and ”additive multiplicative” function for the so-
lutions because these function cannot be otherwise defined. In fact
there are many different additive functions, even non-continuous, and
the same with additive multiplicative functions (g(x) is additive mul-
tiplicative then g(x) = g2(x

2
) so g(x) ≥ 0. If g(x0) = 0 then g(x) =

g(x−x0)g(x0) = 0, otherwise g(x) > 0 and then ln(g) makes sense and
is an additive function).

Problem 99. Prove that any additive function f on R+ which
is bounded from below (above) on an interval of R+ has the form
f(x) = f(1)x for all x ∈ R+.

Solution. Set g(x) − f(1)x. Then g(x) is an additive function
with g(1) = 0. It follows by induction that g(nx) = ng(x) for any
x ∈ R+, n ∈ N . In particular g(n) = 0. Moreover, for any k, l ∈ N

we have lg

(
k

l

)
= g(k) = 0, i.e. g

(
k

l

)
= 0. Without loss of generality

we may assume that there are constants c and d such that f(x) > c and
f(1)x < d in an interval of R+. Then the identity g(x + r) = g(x) for
all x ∈ R+, r ∈ Q+ shows that g(x) > c− d for all x ∈ R+. Hence

g(x) =
g(nx)

n
>

c− d

n
for any n ∈ N , i.e. g(x) ≥ 0 for any x > 0.
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This implies that the function g(x) is increasing since for x > y > 0
we have g(x) = g(x − y) + g(y) ≥ g(y). Now for any x ∈ R+ take
r, s ∈ Q+ such that r > x > s. Then 0 = g(r) ≥ g(x) ≥ g(s) = 0
which shows that g(x) = 0.

Remark. Note that the statement of Problem 99 holds true if we
replace R+ by R. Note also that any function which is continuous at
a part or monotone in an interval of R+(R) satisfies the conditions of
the problem. On the other hand there are additive functions that are
unbounded in any interval of R(R+).

Problem 100. (Tuymaada 2003) Find all continuous functions
f : R+ → R that satisfy

f(x +
1

x
) + f(y +

1

y
) = f(x +

1

y
) + f(y +

1

x
)

for any x, y ∈ R+.

Solution. Linear functions satisfy our condition, and we prove that
only these do. If we replace y by 1

y
we can enhance the condition:

f(x +
1

x
) + f(y +

1

y
) = f(x +

1

y
) + f(y +

1

x
) = f(x + y) + f(

1

x
+

1

y
)

Now pick up a fixed 1 < y < C for some C > 1 and let x be sufficiently
big. Rewriting the second two parts of the condition as

f(x + y)− f(x +
1

y
) = f(

1

x
+ y)− f(

1

x
+

1

y
)

Now as f is continuous then f is uniformly continuous on [ 1
C

; 2C] hence
for any desired ε > 0 there exists an a > 0 such that |f(x)− f(y)| < ε
whenever x, y ∈ [ 1

C
; 2C], |x − y| < a. Thus taking x > max{C, 1

a
}

we deduce that |f( 1
x

+ 1
y
) − f( 1

y
)|, |f( 1

x
+ y) − f(y)| < ε. This means

(f( 1
x

+ y) − f( 1
x

+ 1
y
)) − (f(y) − f 1

(
y)) < 2a and we have proven that

limx→∞ f(x + y) − f(x + 1
y
) = f(y) − f( 1

y
) and the convergence is

uniform on any interval [1; C] for y. Now any b > 0 can be written as
y − 1

y
in a unique way for y > 1. Set g(b) = f(y)− f( 1

y
). Then we see

that g(b) = limx→∞ f(x + b) − f(x). It is from here pretty clear that
g(a+ b) = g(a) + g(b) and since g is continuous we find that g(x) = cx.
Now we can suppose that c = 0 otherwise take f(x)− cx instead of f .
So we then have f(x) = f( 1

x
) and also limx→∞(f(x + a) − f(x)) = 0

uniformly for a ∈ [0; C]. Now take y be fixed and let x → ∞. The
condition f(x + 1

x
) + f(y + 1

y
) = f(x + 1

y
) + f(y + 1

x
) is rewritten as
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f(x + 1
x
) − f(x + 1

y
) = f(y + 1

x
) − f(y + 1

y
). The right-hand side now

tends to zero according to the limit result obtained just before, and the
left-hand side tends to f(x + 1

x
) − f(x). Thus f(x + 1

x
) = f(x). This

is enough to prove that f is constant. Indeed, let 1 ≤ a < b. Consider
x0 = a, y0 = b, xi+1 = xi + 1

xi
, yi+1 = yi + 1

yi
. As x + 1

x
is increasing for

x ≥ 1 and also (x+ 1
x
)2 ≥ x2+2 we have xi < yi and xi, yi grow infinitely

large. Finally we can note that |x + 1
x
− y − 1

y
| < |x − y| for x, y ≥ 1

therefore |xi−yi| ≤ |a− b|. Therefore limn→∞(f(xn)−f(yn)) = 0. But
f(xn) = f(a), f(yn) = f(b). We conclude that f(a) = f(b) and this
finishes the proof.

Problem 101. (Sankt-Petersburg) Find all continuous functions
f : R → R that satisfy

f(f(x + y)) = f(x) + f(y)

Solution. We observe that f satisfies the equation if and only if
f + c satisfies it, where c is any real. Therefore we can suppose that
f(0) = 0. Then by letting x = 0 we get f(f(x)) = f(x). Therefore f is
the identity function on Im(f). We now try to prove f is the identity
function, or f = 0. To do this, it suffices to prove that Im(f) = R or
Im(f) = 0. Indeed, as f is continuous, we see that if f(t) 6= 0 then
Im(f) contains the image of [0; t] under f which is an interval which
contains zero. Without loss of generality f(t) > 0 otherwise assume
work with −f . Let A be the set of all a for which [0; a] belongs to Imf .
Let b = supA. If b < ∞ then we may find c = f(x) such that c? b

2
.

Then f(f(2x)) = 2c > b therefore from the continuity of f we deduce
[0; 2c] which contradicts the maximality of b. Therefore b = ∞ and
R+ belongs to Imf , and we are done after noting that 0 = f(f(0)) =
f(f(x − x)) = f(x) + f(−x) so f(−x) = −f(x). To conclude, f can
be a constant function or a function of the form f(x) = x + a. A
generalization of this equation comes next.

Problem 102. Find all pairs of continuous functions f, g : R → R
that satisfy

f(x) + f(y) = g(x + y)

Solution. We remark that f(x+y) +f(0) = f(x) +f(y) = g(x+y)
therefore f(x) − f(0) + f(y) − f(0) = f(x + y) − f(0) so f(x) − f(0)
is an additive function, therefore f(x) = x + c for some c and hence
g(x) = x + 2c.
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Problem 103. Find all functions f : : N → N that satisfy

f(m2 + f(n)) = f(m)2 + n

Solution. It’s clear that f is injective as if f(n1) = f(n2) set
n = n1, n2 to get n1 = n2. Therefore applying the condition and
the injectivity of f we find that f(m1)

2 + n1 = f(m2)
2 + n2 if and

only if m2
1 + f(n1) = m2

2 + f(n2). This can be restated as: n1 − n2 =
f(m2)

2 − f(m1)
2 if and only if f(n1)− f(n2) = m2

2 −m2
1. Particularly

if x − y ∈ S where S = {a2 − b2|a, b ∈ N} then f(x) − f(y) depends
only on x− y so we can write f(x)− f(y) = g(x− y). But S consists
precisely of those integer numbers that are not 2 mod 4 or ±1 or ±4 (in
the latter two cases this would force a or b equal zero). If x−y = 1 then
f(x)−f(y) = f(x)−f(x−1) = f(x)−f(x+7)+f(x+7)−f(x−1) =
g(−7) + g(8). If we set g(−7) + g(8) = a then f(x)− f(x− 1) = a so
f(x) = ax+b. We substitute to find a(m2 +an+b)+b = (am+b)2 +n
or am2 + a2n + a(b + 1) = a2m2 + 2abm + n + b2 and comparing the
corresponding coefficients we get a2 = a so a = 1 (a cannot be zero
because the function cannot be constant as easily seen), 2ab = 0 so
b = 0. Hence f(x) = x and it satisfies the condition.

Problem 104. Find all functions f : R → R that satisfy

f(f(x) + yz) = x + f(y)f(z)

Solution. f is injective as setting x = x1, x2 for f(x1) = f(x2)
would immediately imply x1 = x2. f is also surjective because if we
fix y, z right-hand side runs over the whole R, hence so does left-hand
side. Now pick up z1 with f(z1) = 1 and set x = x1, z = x1 to get
f(f(0) + yz1) = f(y) so the injectivity implies f(0) + yz1 = y for any
y, possible only for f(0) = 0, z1 = 1. So f(0) = 0, f(1) = 1. Next
set y = 0 to get f(f(x)) = x. Also set z = 1, x = f(u), y = v to get
f(u + v) = f(u) + f(v). Hence f is additive. Now if we set x = 0
we get f(yz) = f(y)f(z) so f(y2) = f(y)2 hence f is positive on R+

thus as f is additive, f is increasing. So f(x) = cx and as f(1) = 1 we
conclude that f is the identity function.

Problem 105.Find all functions f : : R → R such that

f(f(x)2 + y) = x2 + f(y)

Solution.If f(x1) = f(x2) then setting x = x1, x2 we get x2
1 = x2

2

so x2 = ±x1. Now consider the function h : : R+ → R+ defined by
h(x) = f 2(

√
x). We can rewrite the condition as f(h(x)+y) = x+f(y)

for x > 0. Then f(h(u) + h(v) + y) = u + f(h(v) + y) = u + v +
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f(y) = f(h(u + v) + y). Therefore h(u) + h(v) + y = ±(h(u + v) + y).
h(u) + h(v) + y = −(h(u + v) + y) cannot hold for all y, so for at least
one y we have h(u) + h(v) + y = h(u + v) + y. Thus h is additive.
As h is non-negative by definition, h(x) = cx where c ≥ 0. Therefore
we can deduce that f(x) = ±

√
cx. Hence f(cx2 + y) = x2 + f(y). If

f(y) = −
√

cy, y 6= 0 then f(cx2 + y) = x2 −
√

cy so f 2(cx2 + y) =
(x2 −

√
cy)2 6= (cx2 + y)2 for at least some x, because (x2 −

√
cy)2 =

(cx2 + y)2 is equivalent to the not identically zero polynomial equation
(c1 − 1)x4 + 2(c +

√
c)yx + (1− c2)y2 = 0. So f(y) =

√
cy. In this case

we get analogously (x2 +
√

cy)2 = (cx2 + y)2 which for x = 0 becomes
cy2 = y2 so c = 1. Hence f(x) = x for all x. The identity function
satisfies our requirements.

Problem 106. (generalization of Problem 92) Find all functions
f : R+ → R+ such that

f(xf(x) + f(y)) = f 2(x) + y

for all x, y ∈ R+.

Solution. This problem differs from Problem 92 only by the fact
that the set R is replaced by R+ but this increases it difficulty consid-
erably. For example we can not use the value f(0) (as we did in the
solution of Problem 92) as well as to compute directly the value of f
at some particular positive number. That is why we shall first reduce
the given equation to the additive Cauchy equation.

To this end we set f(1) = a. Then

f(f(y) + a) = a2 + y (1)

and

f(xf(x) + a) = f 2(x) + 1. (2)

It follows from (1) that

f(y) + a + a2 = f(f(f(y) + a) + a) = f(y + a + a2).

Now induction on n gives

f(y + n(a + a2)) = f(y) + n(a + a2) (3)

for any n ∈ N . On the other hand (1) and (2) imply that xf(x) + a +
a2 = f(f(xf(x) + a) + a) = f(f 2(x) + 1 + a). This together with the
given equation gives

f(f(f 2(x) + 1 + a) + f(y)) = f(xf(x) + a + a2 + f(y)) =

= f 2(x) + y + a + a2. (4)
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It follows from (1) that the function f(x) attains any value greater than
a2 and therefore the function f 2(x) + 1 + a attains any value greater
than an + a + 1. Hence (4) shows that

f(f(x) + f(y)) = x + y + a2 − 1 (5)

for any x > a4 + a + 1, y > 0. Now it follows from (3) that (5) is
fulfilled for any x, y > 0. Indeed, given x, y > 0 choose an n ∈ N such
that x + n(a + a2) > a4 + a + 1. Then

f(f(x) + f(y)) = f(f(x + n(a + a2)) + f(y))− n(a + a2) =

= x + n(a + a2) + y + a2 − 1− n(a + a2) = x + y + a2 − 1.

Replacing x and y respectively with f(x) and f(y) in (5) we get

f(x + y + 2a2) = f(x) + f(y) + a2 − 1. (6)

Hence

f(x + 2a2) + f(y − 2a2) = f(x + y + 2a2) + 1− a− a2 = f(x) + f(y).

This shows that f(x + 2a2) − f(x) = b for any x ∈ R+ where b is a
constant. Set g(x) = f(x) + c where c = a2 + a− 1− b. Then (6) can
be rewritten as g(x + y) = g(x) + g(y) for all x, y ∈ R+. Taking into
account that f(x) > 0 we see that g(x) > c for any x ∈ R+. Hence it
follows from Problem 99 that g(x) = g(1)x, i.e. f(x) = g(1).x − c for
any x ∈ R+. Now it is easy to check that this function satisfies the
given conditions if and only f(x) = x for any x ∈ R+.

Problem 107. (Bulgaria ’2004) Find all functions f : R → R such
that

(2) (f(x)− f(y))f
(x + y

x− y

)
= f(x) + f(y)

for any x 6= y.

Solution. It follows by (2) that if x 6= y and f(x) = f(y), then
f(x) = f(y) = 0. Assume now that f(a) = 0 for some a 6= 0. Then ei-

ther f(x) = 0, or f
(x + a

x− a

)
= 1. So, if f(x) 6= 0 for some x, then

f
(x + a

x− a

)
= f

(1 + a

1− a

)
= 1. Then the proved above implies that

x + a

x− a
=

1 + a

1− a
, that is, x = 1. Hence f(x) = 0 for x 6= 1. Now (2)

shows that f(1) = 0. Thus, either f ≡ 0, or f(x) 6= 0 for x 6= 0. The
zero function obviously satisfies (2).
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Let now f(x) 6= 0 for x 6= 0. Then f is an injection. For y = 0 we
get that f(x)(f(1)− 1) = f(0)(f(1) + 1). Since f is not constant, then
f(1) = 1 and f(0) = 0. Replacing y by xy in (2), we obtain that

f
(1 + y

1 + y

)
=

f(x) + f(xy)

f(x)− f(xy)
.

In particular,

f
(1 + y

1 + y

)
=

f(1) + f(y)

f(1)− f(y)
.

Since f(1) = 1, it follows that

f(x) + f(xy)

f(x)− f(xy)
=

f(1) + f(y)

f(1)− f(y)
.

It is easy to see that this equality is equivalent to

f(xy) = f(x)f(y),

that is f is an multiplicative function. Then f(x2) = f 2(x) = f 2(−x)
and the injectivity of f implies that f(x) = −f(−x) > 0 for x > 0.
Now (2) shows that f(x) > f(y) for x > y > 0. Then lg f(ex) is an
additive strictly increasing function and hence f(x) = xα for x > 0.
Substituting this function in (2) shows that α = 1, that is f(x) = x for
any x.

Problem 108. (India ’2003) Find all functions f : R → R such that

(3) f(x + y) + f(x)f(y) = f(x) + f(y) + f(xy)

for any x, y.

Solution. Using (3) several times, we obtain that

f(x + y + z) = f(x) + f(y + z) + f(xy + xz)− f(x)f(y + z) =

f(x) + (1− f(x))(f(y) + f(z) + f(yz)− f(y)f(z))

+f(xy) + f(xz) + f(x2yz)− f(xy)f(xz) =

f(x) + f(y) + f(z) + f(xy) + f(yz) + f(zx) + f(x)f(y)f(z)

−f(x)f(y)− f(y)f(z)− f(z)f(x)

+f(x2yz)− f(xy)f(xz)− f(x)f(yz).

Hence the term in the last line is a symmetric function of x, y z, which
implies that

f(x2yz)−f(xy)f(xz)−f(x)f(yz) = f(xy2z)−f(xy)f(yz)−f(y)f(xz).

For y = 1 we get that

f(x2z) = (a− 1)f(xz) + f(x)f(xz),
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where a = 2− f(1). On the other hand, again (3) shows that

f(x2z) = f(x + xz) + f(x)f(xz)− f(x)− f(xz).

Therefore,
f(x + xz) = af(xz) + f(x).

For z = 0 we obtain that af(0) = 0.
If a = 0, then f(1 + z) = f(1), that is, f ≡ 2.
Let f(0) = 0. Then f(x) = −af(−x) = a2f(x) and hence either

f ≡ 0, or a2 = 1.

If a = −1, then −3 = f(1) = f

(
1

2

)
− f

(
1

2

)
= 0, a contradiction.

Let a = 1. Setting z =
y

x
leads to

f(x + y) = f(x) + f(y)

for any x 6= 0 and any y. The same remains true holds if x = 0. It
follows now by (3)that

f(xy) = f(x)f(y).

Then f(x + y) = f(x) + (f(
√

y))2 ≥ f(x) for y ≥ 0. Hence f is an
additive increasing function and therefore f(x) = f(1)x = x.

So, f ≡ 2, f ≡ 0 or f(x) ≡ x. It clear that all the three functions
satisfy (3).

Exercises

Problem 109. (Bulgaria, 1994) Find all functions f : R → R such
that

xf(x)− yf(y) = (x− y)f(x + y)

for all x, y ∈ R.

Problem 110.Find all functions f : : R → R that satisfy

f(x + y) + f(xy) = f(x)f(y) + 1

Problem 111.Find all functions f : N → N such that

f(f(m) + f(n)) = m + n

for all m, n ∈ N .

Problem 112. Denote by T the set of real numbers greater than 1.
Given on n ∈ N find all functions f : T → R such that

f(xn+1 + yn+1) = xnf(x) + ynf(y)
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for all x, y ∈ T .

Problem 113. (Russia ’1993). Find all functions f : R+ → R+ such
that

f(xy) = f(x)f(y)

for all x, y ∈ R+.

Problem 114. (generalization of Problem 94) Find all functions
f : R+ → R+ which are bounded from above on an interval and such
that

f(xf(y)) = yf(x)

for all x, y ∈ R+.

Problem 115. (generalization of Problem 95) Let S be the set of
all real numbers greater than −1. Find all functions f : S → S which
are bounded from above on an interval and such that

f(x + f(y) + xf(y)) = y + f(x) + yf(x)

for all x, y ∈ S.

Problem 116. (IMO ’2002) Find all functions f : R → R such that

(f(x) + f(z))(f(y) + f(t)) = f(xy − zt) + f(xt + yz)

for all x, y, z, t ∈ R.

Problem 117. (Korea 1998) Find all functions f : N0 → N0 that
satisfy

2f(m2 + n2) = f(m)2 + f(n)2

for all m, n ∈ N0.

Problem 118. Find all functions f : R → [0;∞) that satisfy

f(x2 + y2) = f(x2 − y2) + f(2xy)

Problem 119. Find all functions f : : R → R that satisfy

f(y + zf(x)) = f(y) + xf(z)

Problem 120. Find all functions f : : R → R that satisfy

f(xf(z) + y) = zf(x) + y



55

Problem 121. Find all continuous functions f : Rn → R that sat-
isfy

f(x1, x2, . . . , xn) + f(y1, y2, . . . , yn) = f(x1 + y1, . . . , xn + yn)

Problem 123. Given an integer n ≥ 2 find all functions f : R → R
such that

f(xn + f(y)) = fn(x) + y

for all x, y ∈ R.

Problem 124. Let n ≥ 3 be a positive integer. Find all continuous
functions f : [0; 1] → R for which f(x1) + f(x2) + . . . + f(xn) = 1
whenever x1, x2, . . . , xn ∈ [0; 1] and x1 + x2 + . . . + xn = 1.

Functional Equations for Polynomials

Problem 125. (Romania ’2001) Find all polynomials P ∈ R[x]
such that

P (x)P (2x2 − 1) = P (x2)P (2x− 1)

for all x ∈ R.

First Solution. It is obvious that the constant polynomials are
solutions of the problem. Suppose now that degP = n ≥ 1. Then
P (2x − 1) = 2nP (x) + R(x) where either R ≡ 0 or degR = m <
n. Assume that R 6≡ 0. It follows from the given identity that
P (x)(2nP (x2) + R(x2)) = P (x2)(2nP (x) + R(x)), i.e. P (x)R(x2) =
P (x2)R(x) for all x ∈ R. Hence n + 2m = 2n + m, i.e. n = m, a con-
tradiction. Thus R ≡ 0 and P (2x−1) = 2nP (x). Set Q(x) = P (x+1).
Then

Q(2x) = 2nQ(x) (1)
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for any x ∈ R. Set

Q(x) =
n∑

k=0

akx
n−k.

Then comparing the coefficients of xn − k on both sides of (1) gives
ak2n−k = 2nak, i.e. ak = 0 for k ≥ 1. Hence Q(x) = a0x

n and therefore
P (x) = a0(x− 1)n.

Second Solution. Suppose that P 6≡ 0 and set

P (x) =
n∑

k=0

akx
n−k

where n = degP and a0 6= 0. Then
n∑

k=0

akx
n−k

n∑
k=0

ak(2x2 − 1)n−k =
n∑

k=0

akx
2(n−k)

n∑
k=0

ak(2x− 1)n−k.

Comparing the coefficients of x3n−k, k ≥ 1, on both sides gives

aka0 + R1(a0, . . . , ak−1) = a0ak2n−k + R2(a0, . . . , ak−1)

where R1 and R2 are polynomials of k − 1 variables. Hence ak is
determined uniquely by a0, . . . , ak−1. This shows that for given a0 and
n there is at most one polynomial satisfying the given condition. On the
other hand it is easy to check that the polynomials P (x) = a0(x− 1)n

are solutions and therefore they give all the solutions of the problem.

Third Solution. Suppose that the polynomial P (x) has a complex
root α 6= 1. Of all these roots take that for which the number |α−1| 6= 0
is the least possible. Let β be a complex number such that α = 2β2−1.

Setting x = ±β in the given equation we see that either P

(
α + 1

2

)
= 0

or P (2β − 1) = P (−2β − 1) = 0. The inequality

∣∣∣∣α + 1

2
− 1

∣∣∣∣ < |α− 1|

shows that P

(
α + 1

2

)
6= 0, i.e. P (2β − 1) = P (−2β − 1) = 0. Then

2|(β − 1)(β + 1)| = |α− 1| ≤ min(|(2β − 1)− 1|, |(−2β − 1)− 1|)
and β 6= ±1 imply that max(|β − 1|, |β + 1|) ≤ 1, i.e. β = 0. Hence
α = −1 and therefore P (x) = (x+1)kQ(x) where k ≥ 1 and Q(−1) 6= 0.
Substituting in the given identity gives

(x + 1)kxkQ(x)Q(2x2 − 1) = (x2 + 1)Q(x2)Q(2x− 1).

Setting x = 0 in this identity gives Q(0) = 0 since Q(−1) 6= 0. Thus
P (0) = 0 which contradicts the choice of α = −1 since |−1−1| > |0−1|.
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Hence all the roots of the polynomial P (x) are equal to 1 and therefore
P (x) = a0(x− 1)nfor some real constant a0.

Problem 126. (Bulgaria ’2001) Find all polynomials P ∈ R[x]
such that

P (x)P (2x2 + 1) = P (x2)(P (2x + 1)− 4)

for all x ∈ R.

First Solution. This solution is similar to the first solution of
Problem 26. It is obvious that P ≡ 0 is a solution. Suppose now that
P 6≡ 0. Then P (2x + 1) = 2nP (x) + R(x) where n = degP and either
R ≡ 0 or degR = m < n. It follows from the given identity that

P (x)R(x2) = P (x2)(R(x)− 4x).

Hence R 6≡ 0 since otherwise P ≡ 0. Suppose that m ≥ 2. Then
comparing the degrees of both sides gives n+2m = 2n+m, i.e. n = m,
a contradiction. Thus m ≤ 1 and 1 ≥ k = deg(R(x) − 4x). Now the
equality n+ 2m = 2n+k shows that n = 2, m = 1, k = 0 and therefore
P (x) is a quadratic function such that

P (2x + 1) = 4P (x) + 4x + c. (1)

On the other hand setting x = 1 on the given identity gives P (1) = 0,
i.e. P (x) = a(x − 1)(x − b). Substituting this in (1) implies that
P (x) = x2 − 1 and one checks easily that this polynomial is a solution
of the problem. Thus P ≡ 0 or P (x) = x2 − 1.

Second Solution. (based on an idea of M. Manea) First we shall
show that if P is a nonconstant solution then all the roots of the poly-
nomial P (x) are real. Assume the contrary and let α ∈ C be a root
of P (x) with argument ϕ ∈ (0, 2π). Since the coefficients of P (x) are
real it follows that α is a root of P (x). Hence we may assume that
ϕ ∈ (0, π) and that ϕ is the least possible argument of the complex
roots of P (x). It follows from the given identity that at least one of the

complex numbers
√
|α|

(
cos

ϕ

2
+ i sin

ϕ

2

)
and 2α + 1 is a root of P (x).

This is a contradiction since the arguments of both numbers belong to
the interval (0, ϕ).

Suppose now that degP = n > 2 and set

P (x) =
n∑

k=0

akx
n−k.
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Then comparing the coefficients of x3n − 1 on both sides of the given

identity we get 2na0a1 = a0(n.2n−1a0 +2n−1a1), i.e.
a1

an

= n. Hence the

sum of all roots of P (x) is equal to −n. Since 1 is a root of P (x) (set
x = 1 in the given identity) we conclude that the least root α of P (x)
is less than −1. On the other hand it is easily seen that at least one of
the numbers i

√
−α and 2α+1 is a root of P (x). This is a contradiction

since i
√
−α is not a real number and 2α + 1 < α.

Finally, we see as in the first solution that if degP ≤ 2 then P ≡ 0
or P (x) = x2 − 1.

Problem 127. Let {Pn}∞n=1 be the sequence of polynomials defined
by:

P1(x) = x, Pn+1(x) = P 2
n(x) + 1, n ≥ 1.

Prove that a polynomial P satisfies the identity

P (x2 + 1) = P 2(x) + 1

for all x ∈ R if and only if P belongs to the above sequence.

Solution. Let P satisfies the given identity. Then P 2(x) = P 2(−x),
hence for any x either P (x) = P (−x) or P (x) = −P (−x). It follows
that P (x) ≡ P (−x) or P (x) ≡ −P (−x). In the second case we get
P (0) = 0 and an easy induction shows that P (n) = n for any n ∈ N .
Hence P (x) = x for all x ∈ R and this polynomial belongs to the given
sequence. In the first case it follows easily that P (x) = Q(x2) where Q
is a polynomial. Then

Q((x2 + 1)2) = P (x2 + 1) = P 2(x) + 1 = Q2(x2) + 1

and setting R(x) = Q(x − 1) we see that R(y2 + 1) = R2(y) + 1 for
y = x2 + 1. Hence R(y2 + 1) = R2(y) + 1 for all y ∈ R. Thus

P (x) = R(x2 + 1) = R2(x) + 1

where degR =
degR

2
and the polynomial R satisfies the given condition.

Conversely, if R is a polynomial satisfying the given identity then the
same is true for the polynomial P (x) = R(x2 + 1). Now the statement
of the problem follows by induction on the degree of P .

Problem 128. (Bulgaria 2003) Assume that P ∈ Z[X] is a polyno-
mial such that P (x) = 2n has at least one integer root for all natural
n. Prove that P is linear.
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Solution. We use the following lemma, approximating polynomials
by powers of linear functions:

Let P (x) = axn + bxn−1 + . . . , a > 0, n ≥ 2. Set u = n
√

a, v = b
nan−1 .

Then

lim
|x|→∞

| n
√

P (x)− ux− v| = 0

(note that if n is even then P (x) > 0 for all sufficiently big |x| so
n
√

P (x) makes sense. We also have two values of n
√

P (x) for n even,
we pick up the logical one)

Proof: consider (ux + v)n. It’s leading two coefficients coincide with
those of P hence (ux + v)n − P (x) has degree at most n − 2. Let
n
√

P (x) = uf(x). If |f(x) − ux − v| > ε then |(ux + v)n − P (x)| =
|(ux + v)n − fn(x)| = |(ux + v)− f(x)|(fn−1(x) + . . . + (ux + v)n−1) >
ε(ux + v)n−1 is |x| is big enough so that f(x) and ux + v have the
same sign (positive if x > 0 and negative if x < 0. For n even we have
two complementary possible values for f , we choose the one which has
the same sign with ux + v). But ε(ux + v)n−1 has degree bigger that
(ux + v)n − P (x) so our inequality can hold only x < C for some C
thus for x > C we get |f(x) − ux − v| < ε and taking ε → 0 we get

the result. Note that we might have f(x) = − n
√

P (x) if n is even and
x < 0, it’s still a n-th root of P .

Now assume deg(P ) ≥ 2 and approximate P by (ux + v)m as in the
lemma. Let kn ∈ Z such that P (kn) = 2n. Clearly |kn| → ∞ because

(kn) is a sequence of distinct numbers. Thus if f(x) = m
√

(P (x)) (if n is
even consider only |x| sufficiently big such that P (x) > 0) then we have
limn→∞ |f(kn)−ukn− v| = 0. Now f(kn) = m

√
2n. If u is rational, pick

up q ∈ N suck that uq ∈ Z then we have limn→∞ |qf(kn)−qukn−qv| =
0 so limn→∞ |q m

√
2n − qukn − qv = 0| thus limn→∞{q m

√
2n} = {qv}. If

we take m|n we see that the Left-Hand Side is zero so {qv} = 0. Now
take m = ln + 1 to deduce that liml→∞{q2l m

√
2} = {qv}. Now q m

√
2 is

irrational hence its representation in base 2 has infinitely many digits
of 1 and 0 so infinitely many blocks 10. If the digit on position l + 1
after zero is 1 and the digit on position l + 2 after zero is 0 then
1
2

< {q2l m
√

2} < 3
4

and it cannot tend to zero, contradiction. If u is

irrational then we can take n = lm to get liml→∞ |2l − uklm − v| = 0
so lim l →∞|2l 1

u
− v

u
− klm| = 0 which implies liml→∞{2l 1

u
} = { v

u
}.

Now let’s look at the irrational number 1
u

in base 2. It must have
infinitely many ones and zeroes. Now if the block 11 or 00 would meet
in the binary representation a finite number of times, then starting
from some point the digits of 1

u
would be 101010 . . . so 1

u
would be

rational, impossible. So one of them, say 11 meets an infinite number
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of times. As we have infinitely many zeroes and ones, the blocks 01
must also occur an infinite number of times. So if the l + 1th, l + 2th

digits of 1
u

are 1 we get 3
4

< {2l 1
u
} < 1 but if l + 1th, l + 2th digits of

1
u

are 0 and 1 we have 1
4

< {2l 1
u
} < 1

2
. So {2l 1

u
} has infinitely many

members in the disjoint intervals [1
4
; 1

2
] and [3

4
; 1] thus cannot converge.

We derive an analogous contradiction if 00 meets infinitely many times.
[Remark: The conclusion limn→∞{xn} = x if limn→∞xn = x is

inaccurate as seen by the example xn = 1 − 1
n
, x = 1 so {xn} →

1, {x} = 0. This is however the only possible kind of counter-example,
and it doesn’t affect our reasonings above, as you can check.]

Problem 129. (Belarus ’1996) Prove that if P, Q ∈ R[x] and P (P (x)) =
Q(Q(1−x)) for all x ∈ R then there exists R ∈ R[x] such that P (x) =
Q(x) = R(x(1− x)) for all x ∈ R.

Solution. Set F (x) = P

(
x +

1

2

)
− 1

2
and G(x) = Q

(
x− 1

2

)
− 1

2
.

Then

P (P (x)) = F

(
P (x)− 1

2

)
+

1

2
= F

(
F

(
x− 1

2

))
+

1

2
.

Analogously Q(Q(x)) = G

(
G

(
x− 1

2

))
+

1

2
. Hence

F

(
F

(
x− 1

2

))
= G

(
G

(
1

2
− x

))
,

i.e.
F (F (x)) = G(G(−x)) (1)

for all x ∈ R.
We shall show that F (x) = G(x) = G(−x). It is obvious that

degF = degG. Set

F (x) =
n∑

k=0

akx
n−k, G(x) =

n∑
k=0

bkx
n−k

where a0, b0 6= 0. Then comparing the coefficients of xn2
on both sides

of (1) gives an+1
0 = bn+1

0 (−1)n2
. Hence n is an even number and a0 = b0.

Now rewrite (1) as

a0(F
n(x)−Gn(−x)) = b1G

n−1(−x) + · · ·+ bn − a1F
n−1(x)− · · · − an.

It is clear that the degree of the polynomial on the right hand side is
less or equal to n(n− 1). On the other hand

F n(x)−Gn(−x) =
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(F (x)−G(−x))(F n−1(x)+F n−2(x)G(−x)+· · ·+F (x)Gn−2(−x)+Gn−1(−x))

and the coefficient of xn(n−1) in the second factor on the right hand
side is equal to nan−1

0 since n is even and a0 = b0. This shows that
G(−x) = F (x) + c, where c is a constant, If F is a constant, then G
is the same constant by (1). If F is not a constant, then neither is
G, so F (y) = G(y + c) for infinitely many y by (1), hence for any y.

Thus, G(−x)− c = G(x + c) and for x = − c

2
we get that c = 0. Hence

G(−x) = F (x) = G(x). It follows that G(x) is an even function hence
there is a polynomial H(x) such that F (x) = G(x) = H(x2). Then

P (x) = Q(x) = R(x(1− x)) where R(x) = H

(
1

4
− x

)
+

1

2
.

Another solution is also possible, based on the lemma established
while solving the previous problem. Let n = deg(f) = deg(g) > 0 (if
f, g are constants the problem is trivial). Let a be the leading coefficient
of P , b the leading coefficient of Q. As the leading coefficient of P (P (x))
is an+1 while the leading coefficient of Q(Q(1 − x)) is (−1)nbn+1 we
get a = ±b. If a = −b then we get an+1 = (−1)2n+1an+1 so a = 0
impossible. Thus a = b and n is even. If a > 0 approximate P (x) by

(ux+v)n and Q(x) by (ux+w)n. We get limx→∞| n
√

P (P (x))−uP (x)−
v| = limx→∞ | n

√
Q(Q(1− x))− uQ(1− x)− w| = 0. As n

√
P (P (x)) =

n
√

Q(Q(1− x)) we conclude that limx→∞|uP (x)+v−uQ(1−x)−w| = 0
possible only when Q(x) = P (1− x) + c for c = v−w

u
. Thus P (P (x)) =

Q(Q(1−x)) can be rewritten as P (P (x)) = Q(P (x)+c) and we deduce
from here P (x) = Q(x + c). Particularly if 1 − x − c = x which
holds for x = 1−c

2
we have P (x) = Q(x + c) = P (1 − x − c) + c

so c = 0. Thus we get P (x) = Q(x) and Q(x) = P (1 − x). As
P (x) = P (1− x) if r is a root of P then so is 1− r and 1− r 6= r for
r 6= 1

2
. So all roots not equal to 1

2
group into pairs (r, 1 − r). Hence

P (x) = a(x− 1
2
)m

∏
(x−r)(x−1+r). As n is even, m is also even so we

get P (x) = Q(x) = a((x− 1
2
)2)

m
2

∏
(x2 − x + r(1− r)) = aR(x(1− x))

where R(x) = (−1)
n
2 (−1

4
− x)

m
2

∏
(x− r(1− r)).

Problem 130. Find all polynomials P with rational coefficients
that satisfy

P (x) = P (
−x +

√
3(1− x2)

2
)

whenever |x| ≤ 1.
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Solution. We have (*) P (
−x+

√
3(1−x2)

2
) = Q(x) +

√
3(1− x2)R(x)

(this can be proven by Newton’s Binomial Formula) hence R = 0 and

Q = P and then P (x) = P (
−x+

√
3(1−x2)

2
) = P (

−x−
√

3(1−x2)

2
). The

condition holds for all x if we extend it to complex number. Let r(x) =
−x+

√
3(1−x2)

2
. We have r3(x) = 1. This can be checked manually but

can also be prove if we note that P (cos t) = cos(t + 2π
3

). If w is a root
of p then so is P (r(w)) = 0 from (*) and then P (r(r(w))) = 0. Then
(x−w)(x− r(w))(x− r(r(w)))|P . But Qw(x) = (x−w)(x− r(w))(x−
r(r(w))) = (x3 − 3

4
x − w3) satisfies our conditions and hence so does

P
Qw

. Continuing this operation we shall reach a constant at some point

hence P =
∏

Qw = R(x3 − 3
4
x) where R =

∏
(x− w3). We must have

R ∈ Q[x] otherwise if ak is the irrational coefficient at the smallest
power k then the coefficient of xk in R(x3 − 3

4
x) would be irrational.

It’s clear from the proof that R(x3 − 3
4
x) satisfies our hypothesis.

Problem 131. Find all polynomials P with only real zeroes that
satisfy

P (x)P (−x) = P (x2 − 1)

Solution. If r is a root of P the by setting x = r we conclude
that g(r) = r2 − 1 is also a root of P . Then g(g(r)) is also a root
of P and so on. As we may have a finite number of roots, we may
encounter a root for a second time, so g(g(. . . (s))) = s for some s
in the sequence. Now let’s find r. g(r) − r = (r − u)(r − v) where

u = −1−
√

5
2

, v = −1+
√

5
2

. g(g(r))− r = r(r + 1)(r− u)(r− v). If r < −1

then set x =
√

1 + r to obtain that ±
√

1 + r is a root of P but it is not
real so this case is not possible. If r = −1 then g(r) = 0, g(g(r)) = −1
so x(x + 1)|P . If r ∈ (−1; u) then g(r) ∈ (u; 0) and g(g(r)) ∈ (−1; u)
but g(g(r))− r = r(r + 1)(r− u)(r− v) < 0 so g(g(r)) < r. We repeat
the reasoning with g(g(r)) and so on to obtain and infinite decreasing
sequence of roots of P in (−1; u) contradiction. If r = u then u− x|P .
If r ∈ (u; 0) then g(r) ∈ (−1; u) and we have shown no root can occur
in (−1; u). If r = 0 then g(r) = −1 and x(x + 1)|P . If 0 < r < v then
±sqrt1 + r is a root of P . As P has no roots less than −1,

√
1 + r

is a root of P . Also r <
√

1 + r,
√

1 + r < v and we can build an
increasing sequence of roots of P in (0; v). If r = v then v − x|P . If
r > v then g(r) > v is a root of P and continuing this operation we
get an infinite increasing set of roots of P greater than v. So all roots
can be −1, 0, u, v. As x(x + 1), u − x, v − x all satisfy the condition,
we can divide P by any of them and repeat of reasoning to get that
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P (x) = xm(x + 1)m(u− x)q(v − x)q. If P is a constant then P = 0 or
P = 1.

Problem 132. Suppose that f is a rational function in x that
satisfies f(x) = f( 1

x
). Prove that f is a rational function in x + 1

x
.

Solution. For a polynomial P with P (x) 6= 0 let P ∗ be xdeg(P )P ( 1
x
).

We directly prove that (PQ)∗ = P ∗Q∗ and if P (x) = anx
n+. . .+a0 then

P ∗(x) = a0x
n+. . .+an where a0an 6= 0. Next if P = a2nx

2n+. . .+a0 is a
polynomial of degree 2n that satisfies P = P ∗ we conclude an+k = an−k

thus P (x)
xn = an +

∑n
i=1 an−i(x

i + 1
xi ). Now for any k xk + 1

xk is a

polynomial in x + 1
x
. This is proven by induction on n: if we set

qn = xn + 1
xn then qn+1 = qnq1 − qn−1 and from here it’s clear how

to show that qn is a polynomial in q1. Therefore P (x)
xn is a polynomial

in x + 1
x
. Finally let f = g

h
where g, h are coprime polynomials. Set

deg(g) = k, deg(h) = l. We can assume g, h are monic. We distinguish
three cases:

a) h(0) 6= 0. Then let g = xmg1(x) where g1(0) 6= 0. We have
xmg1(x)

h(x)
=

g1( 1
x
)

xmh( 1
x
)

thus x2mg1(x)h∗(x) 1
xk = h(x)g∗1(x) 1

xl−m so xl+m−kg1(x)h∗(x) =

g∗1(x)h(x). We get l + m = k and g∗1(x)h∗(x) = g∗1(x)h(x). Now as
(g1, h) = 1 we conclude g1|g∗1 so g∗1 = kg1 then h∗ = kh. Then the roots
of g1group into pairs w, 1

w
which consist of different numbers unless

w = ±1 hence the free coefficient of g1 is ±1 depending on whether
1 is a root of g1. So k = ±1. If k = −1 then 1 is a root of g1 and
analogously a root of h contradicting the coprimality of g, h. So k = 1.
Also note that deg(g1) = deg(h1) − 2m. We can suppose deg(g1) and
deg(h) are even because otherwise we can multiply g1, h by x + 1 and
still have g∗1 = g1, h

∗ = h because of the multiplicativity of ∗ and since
(x + 1)∗ = x + 1. Therefore g1

x
1
2 deg(g1)

, h

x
1
2 degh

are polynomials in x + 1
x

as

we have proven above. Thus g1

h
x

1
2
(deg(h)−deg(g1)) = xm g1(x)

h(x)
= f(x) is a

rational function in x + 1
x
, as desired.

b) h(0) = 0. Then g(0) 6= 0 as (g, h) = 1. We repeat the argument
of a) for 1

f
.

Problem 133. (Bulgaria ’2006) Find all polynomials P and Q with
real coefficients such that for infinitely many x ∈ R one has that

P (x)

Q(x)
− P (x + 1)

Q(x + 1)
=

1

x(x + 2)
.
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Solution. Set R(x) =
P (x)

Q(x)
. Then

R(x)−R(x+n) =
n−1∑
i=0

(R(x+ i)−R(x+ i+1)) =
n−1∑
i=0

1

(x + i)(x + i + 2)

=
1

2

n−1∑
i=0

(
1

x + i
− 1

x + i + 2

)
=

1

2

(
1

x
+

1

x + 1
− 1

x + n
+

1

x + n + 1

)
.

Therefore,

lim
n→∞

R(x + n) = R(x)− 1

2x
− 1

2(x + 1)
.

Since this limit does not depend of x (why?), we conclude that R(x) =

c +
1

2x
+

1

2(x + 1)
. Thus,

P (x)

Q(x)
=

P0(x)

Q0(x)
, where

P0(x0) = x +
1

2
+ cx(x + 1), Q0(x) = x(x + 1).

Since P0 and Q0 are relatively prime, then for infinitely many x, hence
for any x, one has that P (x) = R(x)P0(x) and Q(x) = R(x)Q0(x),
where R is an arbitrary nonzero polynomial and c ∈ R. Conversely, the
polynomials of these forms satisfy the given condition.

Remark. One can show the following:
Let a ∈ R and R be a rational function with real coefficients such

that R(x) − R(x + 1) =
1

x(x + a)
for infinitely many x ∈ R. Then

a ∈ Z, a 6= 0. Moreover, if a > 0, then R(x) = c +
1

a

a−1∑
i=0

1

x + i
, and if

a < 0, then R(x) = c− 1

a

a∑
i=−1

1

x + i

Exercises

Problem 134. (Bulgaria ’2001) Find all polynomials P ∈ R[x]
such that

P (x)P (x + 1) = P (x2)

for all x ∈ R.

Problem 135. (IMO ’1979, Shortlisted Problem) Find all polyno-
mials P ∈ R[x] such that

P (x)P (2x2) = P (2x3 + x)
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for all x ∈ R.

Problem 136. (Romania ’1990) Find all polynomials P ∈ R[x]
such that

2P (2x2 − 1) = P 2(x)− 2

for all x ∈ R.

Problem 137.Let k, l ∈ N be integers. Find all polynomials P for
which xP (x− k) = (x− l)P (x)

Problem 138.Find all nonconstant polynomials P that satisfy P (x)P (x+
1) = P (x2 + x + 1).

Problem 139. Find all polynomials P ∈ C[X] that satisfy P (x)P (−x) =
P (x2)

Problem 140. Find all polynomials P (x) which are solutions of the
equation P (x2 − y2) = P (x− y)P (x + y)

Problem 141. Find all polynomials P ∈ C[X] that satisfy P (2x) =
P ′(x)P”(x)

Iterations and Recurrence Relations

Problem 142.(Nordic Contest 1999)A function f : N → R satisfies
for some positive integer m the conditions f(m) = f(1995), f(m+1) =

1996, f(m+2) = 1997 and f(n+m) = f(n)−1
f(n)+1

. Prove that f(n+4m) =

f(n) and find the least m for which this function exists.

Solution. If h(x) = x−1
x+1

then f(n + m) = h(f(n)) so f(n + 4m) =

h4(f(n)). We need to check that h4(x) = x. Indeed h2(x) =
x−1
x+1

−1
x−1
x+1

+1
=

−1
x

and therefore h4(x) = h2(h2(x)) = x. We’ve solved the first part of
the problem. The least possible value of m is 1. Then f(n + 4) = f(n)
so f(1997) = f(5) = f(1). But we know that f(1997) = f(3) =
h2(f(1)) = −1

f(1)
. Thus m = 1 gives us f(1) = −1

f(1)
so f(1)2 = −1

impossible. similarly m = 2 gives f(1995) = f(3) = f(2), f(1996) =
f(4) = f(3), f(1997) = f(5) = f(4) thus f(2) = f(3) = f(4) = f(5).
Then h(f(2)) = f(2). But the equation x−1

x+1
= x gives us x−1 = x2 +x

so again x2 = −1 impossible. Finally if m = 3 then for any value of
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f(1), f(2), f(3) we can compute f inductively. Because 12|1992, we get
f(1995) = f(3) = f(m) and so on so m = 3 is the answer.

Problem 143. Find all f : N → N that satisfy f(n) + f(n + 1) =
f(n + 2)f(n + 3)− k where k + 1 is a prime number.

Solution. This is mainly a sequence problem. Set an = f(n) to
get an + an+1 = an+2an+3 − k. Writing this condition for n− 1 we get
an + an−1 = an+2an+1 − k. Subtracting them we get (an+1 − an−1) =
an+2(an+3−an+1). So if we set bk = ak+2−ak we get bn−1 = an+2bn+1 so

bn+1 = bn−1

an+2
so |bn+1| = |bn−1|

|an+2| . So |bn+1| ≤ |bn| and if bn−1 6= 0, an+2 6= 1

then |bn+1| < |bn−1| and bn+1 6= 0. Then again if an+4 6= 1 we will get
|bn+3| < |bn+1|, bn+3 6= 0 and so on. This would produce an infinite
sequence of decreasing positive integers which is impossible. Therefore
either bn−1 = 0 or the sequence an+2, an+4, . . . , becomes eventually 1.
Set n = 3 to see that (*) either a2 = a4 or a2m+1 = 1 for all m ≥ m0.
Likewise if we set n = 2 we see that (**) either a3 = a1 or a2m = 1 for
all m ≥ m0.

a) Assume that a2 = a4. Then b2 = 0 and hence by induction b2m = 0
so a2m+2 = a2m hence a2m = a2. If a2 6= 1 then we must have a1 = a3

by (**) and hence by induction a2m+1 = a1. Thus the condition written
for n = 1 becomes a2+a1 = a2a1−k or (a2−1)(a1−1) = k+1. As k+1
is prime, one of a2−1 is k+1 and the other is 1. So either f(n) = k+2
for even n and f(n) = 2 for odd n or viceversa: f(n) = 2 for odd n
and f(n) = 2 for even n. Both functions satisfy the condition. Now if
a2 = 1 then a2m = 1 and we have 1 + f(2m + 1) = f(2m + 3) − k so
f(2m+3) = f(2m+1)+k+1. We conclude that f(2m) = 1, f(2m+3) =
m(k +1)+a where a = f(1). This function also satisfies the condition.

b) Assume that a2m+1 = 1 for all m ≥ m0. By (**) either a2p = 1 for
all p ≥ p0 or a3 = a1. If a2p becomes eventually 1 set n ≥ 2m0 + 1, 2p0

to get 1 + 1 = 1 − k impossible. Hence a3 = a1 and like in a) we
conclude a2m+1 = a1. As a2m+1 is eventually 1 we have a1 = 1. Then
like in a) we conclude that f(2m) = (m−1)(k−1)+a where a = f(2).
It also satisfies the condition.

Problem 144. Find all functions f : N → N such that

f(f(f(n))) + f(f(n)) + f(n) = 3n

for all n ∈ N .

Second Solution. In this case we get the recurrence relation

ak+3 + ak+2 + ak+1 = 3ak
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with characteristic equation x3 + x2 + x = 3. Its roots are equal to 1
and −1±

√
2, i.e.

ak = c0 + c1(−1 +
√

2)k + c2(−1−
√

2)k, k ≥ 0.

Since ak > 0 and | − 1−
√

2| > 1 > | − 1 +
√

2| we conclude as in the
solutions of the previous two problems that c2 = 0 from where c1 = 0.
Hence a1 = a0, i.e. f(n) = n for all n ∈ N .

Problem 145. (BMO ’2002) Find all functions f : N → N such
that

2n + 2000 ≤ f(f(n)) + f(n) ≤ 2n + 2002

for all n ∈ N .

Second Solution. Fix an n and set

a0 = n, ak+1 = f(ak), ck = ak+1 − ak − 667, k ≥ 0.

Then
2ak + 2001 ≤ ak+2 + ak+1 ≤ 2ak + 2002,

0 ≤ ck+1 + 2ck ≤ 1, k ≥ 0.

We shall prove that c0 = 0. Assume the contrary. Then we may assume
that c0 ≥ 1 since otherwise c1 ≥ −2c0 ≥ 2 and we consider the sequence
c1, c2, . . . We have

c2k+2 ≥ −2c2k + 1 ≥ 4c2k − 2 ≥ 2c2k

and it follows by induction that c2k ≥ 2k, k ≥ 0. Hence

a2k+2 = a2k + c2k + c2k + 1 + 1334 ≤ a2k + 1335− c2k ≤
≤ a2k + 1335− 2k, k ≥ 0.

Summing up these inequalities gives

a2k ≤ a0 + 1335k − 2k, k ≥ 0.

This inequality shows that a2k ≤ 0 for all sufficiently large k, a contra-
diction. Thus c0 = 0 and f(n) = n + 667 for all n. It is easy to check
that this function satisfies the given conditions.

Problem 146. (IMO ’1997, shortlisted problem) Prove that if the
function f : R → R is such that |f(x)| ≤ 1 and

f(x) + f

(
x +

13

42

)
= f

(
x +

1

6

)
+ f

(
x +

1

7

)
for all x ∈ R then it is periodic.
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Solution. We have

f

(
x +

1

6
+

1

7

)
− f

(
x +

1

7

)
= f

(
x +

1

6

)
− f(x)

which implies

f

(
x +

k

6
+

1

7

)
− f

(
x +

k − 1

6
+

1

7

)
= f

(
x +

k

6

)
− f

(
x +

k − 1

6

)
for 1 ≤ k ≤ 6. Summing up these inequalities gives

f

(
x + 1 +

1

7

)
− f

(
x +

1

7

)
= f(x + 1)− f(x).

Set g(x) = f(x + 1) − f(x). Then g

(
x +

1

7

)
= g(x) which implies

g(x) = g

(
x +

1

7

)
= g

(
x +

2

7

)
= · · · = g(x + 1). Hence g(x) =

g(x + n) for any n ∈ N . Then

f(x + n)− f(x) = (f(x + n)− f(x + n− 1)) + · · ·+ (f(x + 1)− f(x)) =

= g(x + n− 1) + · · ·+ g(x) = ng(x),

i.e.
f(x + n)− f(x) = ng(x)

for any x ∈ R and n ∈ N . Hence

n|g(x)| = |f(x + n)− f(x)| ≤ |f(x + n)|+ |f(x)| ≤ 2,

i.e. n|g(x)| ≤ 2 for any x ∈ R and n ∈ N . This shows that g(x) = 0
for any x ∈ R, i.e. f(x + 1) = f(x).

Problem 147 Let 0 < a1 < a2 < . . . < ak be integer numbers,
b0, b2, b3, . . . , bk be reals such that bk = ±1 and b0 + b1x

a1 + . . . + bkx
ak

has all roots of absolute value 1. Let f be a bounded function such
that

b0f(x) + b1f(x + a1) + . . . + bkf(x + ak) = 0

Show that f is periodic.

Solution This is a generalization of the previous problem. (Set
g(x) = f( x

42
) to obtain g(x + 13) + g(x) = g(x + 6) + g(x + 7) and the

polynomial x12−x6−x7 +1 = (x6−1)(x7−1) has all roots of absolute
value 1). However the method is hard to generalize as here we have a
very vague and complex relation. The fact that ai are rational can help
us to reduce the problem to a polynomial recurrence. Now we employ
two lemmas which will help us. Both are well-known.



69

Lemma 1: If w1, w2, . . . , wk have absolute value 1 and an = wn
1 +

wn
2 + . . . + wn

k is not identically zero then there exists an ε > 0 such
that |an| > ε for infinitely many n.

Proof: Let wi = e2πiai where ai ∈ R. For any n, consider the k-uple
({na1}, {na2}, . . . , {nak}). If we divide [0; 1)k into Nk boxes [ i

n
; i+1

n
)×

[ j
n
; j+1

n
)× . . . then taking n > Nk we deduce that for some i, j < n the

k-uples ({ia1}, {ia2}, . . . , {iak}) and ({ja1}, {ja2}, . . . , {jak}) will fall
into the same box, and this means that |{iam}−{jam}| < 1

N
therefore

〈(i − j)am〉 < 1
N

where we denote 〈x〉 = min({x}, 1 − {x}). We thus

conclude that |wi
m−wj

m| = |1−wi−j
m | < |1− e

2πi
N | = 2 sin π

N
< 2π

N
hence

if we denote by r = i−j we get |ai−ai+r| < 2πk
N

. Now if we take ai such

that ai 6= 0 we can denote ε = |ai|
2

. Now taking N1 such that 2πk
N1

< ε
2

we find r1 such that |ai+r1 − ai| < ε
2

so |ai+r1 | > (1 + 1
2
)ε. Now taking

N2 such that 2πk
N2

we analogously find r2 such that |ai+r1+r2| > (1 + 1
4
)ε.

Reasoning by induction we find r1, r2, . . . , rl such that |ai+r1+...+rl
| >

(1 + 1
2l )ε and this guarantees the claim.

Lemma 2: If P ∈ Z[X] is monic and has all roots of absolute value
1 then this roots are roots of unity.

Proof: Let P (X) = (x − w1)(x − w2) . . . (x − wn). Let Pk(X) =
(x − wk

1)(x − wk
2) . . . (w − wk

n). As Pk is symmetric in w1, w2, . . . , wn

its coefficients express as integer polynomials in the symmetric sums
of w1, w2, . . . , wn. These sums are integers as P ∈ Z[X] thus Pk ∈
Z[X]. However [xm]Pk(x) = |

∑
1≤i1<i2<...<im≤n wk

i1
wk

i2
. . . wk

im| ≤
(

n
m

)
as |wi| = 1. So the coefficients of Pk(X) are bounded and therefore for
some k < l we have Pk(X) = Pl(X). This means that (wk

1 , w
k
2 , . . . , w

k
n)

is a permutation of (wl
1, w

l
2, . . . , w

l
n). So wk

i = wl
i1

. Then wk
i1

= wl
i2

so

wk2

i = wl2

i2
. Reasoning inductively we get wkj

i = wlj

ij
. Eventually we

return to i (ij = i) so we get wkj

i = wlj

i so wlj−kj

i = 1 so wi is a root of
unity.

Now we return to the problem. If we set cn = f(x + n) then this
is a polynomial recurrence with associated polynomial b0 + b1x

a1 +
. . . + bkx

ak . Then cn =
∑l

i=1 pi(n)wn
i for wi the roots of the equation.

Now we claim that pi are constants. Indeed, assume not. Then cn =
(d0(n)nm + d1(n)nm−1 + . . . + dm(n)) where d0, d1, . . . , dm are simple
polynomial recurrences in w1, w2, . . .. Now if k is the smallest such that
dk is not identically zero, then applying lemma 1 we get infinitely many

n for which |dk(n)| > ε. Then cn

rnnk = dk(n) + dk+1(n)

n
+ . . .. Also |di(n)|

is bounded because wi have absolute value 1. Now it’s clear that for
sufficiently big n we have | cn

nk − dk()| < ε
2

thus for infinitely many n
we have cn

nk > ε
2

which contradicts the boundedness of f unless k = 0.
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Thus cn = d0(n) and this guarantees the claim. Now as wi are roots
of unity according to Lemma 2 we have N such that wN

i = 1 hence
cn = cn+N . As N does not depend on x we get f(x) = f(x + N) as
desired.

Problem 148. (Belarus ’1997) Let f : R+ → R+ be a function such
that

f(2x) ≥ x + f(f(x))

for all x ∈ R+. Prove that f(x) ≥ x for any x ∈ R+.

Solution. First note that f(x) >
x

2
and let f(x) > anx for all

x ∈ R+ where an is a constant. Then

f(x) ≥ x

2
+ f

(
f

(x

2

))
>

x

2
+ anf

(x

2

)
>

1 + a2
n

2
x.

Consider the sequence {an}∞n=1 defined by: a1 =
1

2
, an+1 =

1 + a2
n

2
, n ≥

1. Then an+1 − an =
(1− an)2

2
≥ 0, i.e. the sequence is monotone in-

creasing. Moreover, it follows by induction on n that an < 1 for any
n ∈ N . Hence the sequence is convergent and denote by a its limit.

Then a =
1 + a2

2
, i.e. a = 1. Now letting n → ∞ in the inequality

f(x) >
1 + a2

n

2
x gives f(x) ≥ x.

Problem 149. (China ’1998) Let f : R → R be a function such that

f 2(x) ≤ 2x2f
(x

2

)
for all x ∈ R and f(x) ≤ 1 for x ∈ (−1, 1). Prove that f(x) ≤ x2

2
for

all x ∈ R.

Solution. It is obvious that f(0) = 0. Hence we have to prove the

desired inequality for x 6= 0. Set g(x) =
2f(x)

x2
for x 6= 0. Then

g2(x) ≤ g
(x

2

)
and it follows by induction that

g2n

(x) ≤ g
( x

2n

)
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for all x 6= 0 and n ∈ N . Note that g(x) ≥ 0. Hence

g(x) ≤ 2n

√
g

( x

2n

)
≤ 2n

√
22n+1

x2

if
x

2n
∈ (−1, 1). Now letting n →∞ and using the fact that lim

n→∞

n

2n
=

0 we get g(x) ≤ 1. Thus f(x) ≤ x2

2
for all x ∈ R.

Problem 150. (Bulgaria ’1996) Find all strictly monotone functions
f : R+ → R+ such that

f

(
x2

f(x)

)
= x

for all x ∈ R+.

Solution. We shall show that the function g(x) =
f(x)

x
is a con-

stant. We have g

(
x

g(x)

)
= g(x) and it follows by induction that

g

(
x

gn(x)

)
= g(x), i.e. f

(
x

gn(x)

)
=

x

gn−1(x)
for any n ∈ N . On the

other hand the given condition gives f

(
f 2(x)

f(f(x))

)
= f(x). Since the

function f is injective we get
f 2(x)

f(f(x))
= x, i.e. g(xg(x)) = g(x). Now it

follows by induction that g(xgn(x)) = g(x), i.e. f(xgn(x)) = xgn+1(x)
for any n ∈ N . Denote f (m)(x) = f(f . . . f(x) . . . )︸ ︷︷ ︸

m−times

. Then

f (m)(xg−k(x)) = xgm−k(x) (1)

for any k,m ∈ N .
Now suppose that the function g(x)is not constant. Then g(x1) <

g(x2) for some x1 6= x2. Now choose a k such that

(
g(x2)

g(x1)

)k

≤ x2

x1

.

Since the function f is monotone it follows that f (2m) is a strongly

increasing function and (1) implies that

(
g(x1)

g(x2)

)2m−k

≥ x2

x1

for all

m ∈ N . On the other hand for m large enough the converse inequal-
ity holds, a contradiction. Thus the function g(x) is a constant and
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therefore f(x) = Cx where C > 0. It is easy to check that these
functions satisfy the given conditions.

Exercises

Problem 151. (Bulgaria ’1996) Find all functions f : Z → Z such
that

3f(n)− 2f(f(n)) = n

for all n ∈ Z. Problem 152. Find all functions f : R+ → R+ such

that
f(f(x)) + f(x) = 6x

for all x ∈ R+. Problem 153. Find all functions f : R+ → R+ such

that
f(f(f(x))) + f(f(x)) = 2x + 5

for all x ∈ R+. Problem 154. Find all continuous functions f : R →

R that satisfy
f(f(x)) = f(x) + 2x

for any x ∈ R.

Problem 155. Find all increasing bijections f of R onto itself that
satisfy

f(x) + f−1(x) = 2x

where f−1 is the inverse of f .

Problem 156. (M+209) Find all functions f : R → R such that

f(x + 1) ≥ x + 1 and f(x + y) ≥ f(x)f(y)

for all x, y ∈ R.

Problem 157. (Belarus ’1998) Prove that:
a) if a ≤ 1 then there is no function f : R+ → R+ such that

f

(
f(x) +

1

f(x)

)
= x + a (1)

for all x ∈ R+;
b) if a > 1 then there are infinitely many functions f : R+ → R+

satisfying (1).
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Problem 158. (Bulgaria ’2003) Find all a > 0 for which there exists
a function f : R → R having the following two properties:

(i) f(x) = ax + 1− a for any x ∈ [2, 3);
(ii) f(f(x)) = 3− 2x for any x ∈ R.

Polynomial recurrences and continuity

We have already seen that sequences help solving functional equa-
tions. Up to now, this was only for functional equations on N . How-
ever they can be also used for functions on R, provided continuity. We
already saw a simple example in Cauchy’s equation, as we have estab-
lished that f(nx) = nf(x) which is a basically a sequence relation if
we denote an = f(nx). Now we shall see how much more complicated
sequences apply to difficult functional equations.

Problem 159. (D’Alembert’s functional equation)Find all contin-
uous f : R → R if

f(x + y) + f(x− y) = 2f(x)f(y)

Solution. We rely heavily on sequences for this problem. Set y = 0
to get f(0) = 1 unless f is identically zero, case we disregard as trivial.
Firstly let’s settle f on N . Set an = f(n), a1 = a. We then get
an+1 + an−1 = 2ana hence an+1 = 2ana − an−1. If a = 1 then we
get an = 1 by induction, if a = −1 we get an = (−1)n. Otherwise
consider the equation x2− 2ax + 1 = 0 with different roots w, 1

w
. Then

an = cwn + d 1
wn for some c, d. As a0 = 0, a1 = a we get c + d =

1, cw + d
w

= a. This is a linear equation in c, d which has a unique
solution for w 6= 1,−1, which holds as a 6= 1,−1. The solutions are

c = 1
2
, d = 1

2
. Therefore an = f(n) =

wn+ 1
wn

2

Analogously we can show that f(nx) =
wn

x+ 1
wn

x

2
for some wx, this

formula holds even in the case wx = ±1. If we set x = 1
k

we get f(n) =
wnk

k + 1

wnk
k

2
. It is clear then that w = wk

k or w = 1
wk

k
. We can assume it’s

the former as there is symmetry between wk and 1
wk

. We now want to

show that there exists a number a such that wk = e
a
k . Let ak = ln(wk).

Then kak−a1 = rk2πi where rk is an integer, because wk
k = w1. We may

assume −k
2
≤ rk ≤ k

2
otherwise subtract from ak a suitable multiple

of 2πi. Then ak = a1

k
+ rk

k
2πi. Also as 1

k
→ 0, f( 1

k
) → f(0) = 1

which implies that e
a1
k e

rk
k

2πi → 1. As ak

k
→ 0, e

ak
k → 1 hence e

rk
k → 1

therefore rk

k
→ 0. Analogously as for the case k = 1 we conclude that
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lalk − ak is a multiple of 2πi which implies that rkl − rk is a multiple
of k hence rk − rl is a multiple of gcd(k, l). Particularly r2k − rk is a

multiple of k. But for all sufficiently big k0
|rn|
n

< 1
3

for n ≥ k0 therefore
|r2k−rk|

k
≤ 2 |r2k|

2k
+ |rk|

k
< 21

3
+ 1

3
= 1 hence r2k−rk = 0. We then conclude

r2mk = rk for all m when k ≥ k0. Now pick up k ≥ k0, m > k. Then
r2mk = rk but 2m|r2mk − r2m . As |r2mk | = |rk| < |k

3
|, |r2m| < 2m

3
we

conclude that |r2mk − r2m| < k
2

+ 2m

3
< 2m so rk = r2m . Analogously we

conclude rk+1 = r2m so rk = rk+1 and thus rk is eventually constant.
Now we claim that rk can be made in fact constant by changing ak

by an irrelevant 2πi multiple. Indeed, let a be the eventual value of
(the initial) rk and let m be the smallest integer with am 6= a. Then
m|rm−r2m so we can change am by 2πi r2m−rm

m
to have rm = a. Keeping

doing this operation we will have rk = a for all k ≥ 1. Then by setting
t = a1 + a we ensure our claim.

We then deduce f(r) = ert+e−rt

2
for some t and rational r.

Then using the continuity of f and the continuity of the function
ext+ext

2
since Q is dense in R we conclude that f(x) = ext+e−xt

2
. Now

et = w is the solution to the equation x2 − 2ax + 1 = 0. If a > 1
w is real and if a < 1 then w is a complex number of absolute value
1. This means t is either real or completely imaginary. So either
f = eixt+e−ixt

2
= cos(xt) for real t or f = ext+e−xt

2
= cosh(xt) again for

real t. Both this functions satisfy the equation.

Remark: D’Alembert’s Equation is considered only for real-valued
functions. However our method works well for complex-valued func-
tions too: the solutions will be f(x) = eax+e−ax

2
for any complex number

a.

Problem 160.Find all continuous functions f : R → R if

f(x + y)f(x− y) = f 2(x)− f 2(y)

for all x, y ∈ R.

Solution. Disregard the trivial solution f = 0. If we interchange
x and y we deduce f is an odd function thus f(0) = 0. Without loss

of generality f(1) 6= 0. Next let a = f(1), an = f(n)
a

for n ∈ Z. The
condition written for x = n, y = 1 turns to the recurrence an−1an+1 =
a2

n−1. If a2 = 2 then an = n by induction otherwise set a2 = x+ 1
x

and

we prove by induction an =
xn− 1

xn

x− 1
x

. We then conclude that f(n) = an or

f(n) = a sin (nu) or f(n) = asinh(nu), like in D’Alembert’s equation.
And if f(1) = 0 then the relation f(3)f(1) = f(2)2−f(1)2 tells us that
f(2) = 0 and then using the relation f(n + 1)f(n− 1) = f 2(n)− f 2(1)
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we show by induction that f(n) = 0. We can proceed analogously to
show that f(nx) = a sin (nux), asinh(nux), anx.

Now we distinguish two cases:
a) There is some x0 6= 0 for which f(nx0) = anx0, a 6= 0. With-

out loss of generality x0 = 1. Then if f(n
k
) = bsin(nu) we conclude

bsin(nu) = n for all n, impossible. The same if f(n
k
) = bsinh(nu). So

f(n
k
) = bn and we conclude b = a

k
. Hence f(x) = ax for all rational x

and by continuity f(x) = ax.
b) There are no such x0. Without loss of generality f(1) 6= 0 so

f(n) = a sin (nu) or f(n) = asinh(nu).
i) f(n) = a sin (nu). For x = 1

k
we conclude f(n

k
) = ak sin (nuk) or

f(n
k
) = aksinh(nuk). The latter is impossible, as aksinh(nuk) would be

unbounded for k|n whereas it must be bounded as it equals a sin (nu).
So f(n

k
) = ak sin(nuk). Now we prove ak = a. Indeed we have f(n) =

a sin (nu) = ak sin (nkuk). We use the property limn→∞

∑n
i=1 sin(ia)

n
= 1

2

for a 6= 0 to conclude that limn→∞

∑n
i=1 f2(i)

n
= a = ak so a = ak.

Therefore f(n
k
) = a sin (nuk). Therefore g(x) = a2−2f2(x)

a2 satisfies
f(n

k
) = cos(nuk). Like in the proof of D’Alembert’s equation we find

a t such that g(x) = cos (xt) for rational x. Then f(x) = a ± sin(xt
2

)
for rational x. But as we have f(x + y)f(x − y) = f 2(x) − f 2(y)
we conclude that we either have f(x) = a sin(xt

2
) for all rational x or

f(x) = −a sin(xt
2

) for all rational x. Then f(x) = asinux for some a, u
and all rational x and by continuity this holds for all x.

ii) f(n) = asinhu. Like in i) we prove f(n
k
) = aksinh(nuk). We

then have f(n) = aksinh(nkuk) which is asymptotically equivalent to
ake

nkuk . As f(n) = a sinh(nu) is asymptotically equivalent to aeku we
conclude uk = u

k
, ak = a. We then get f(x) = nsinh(ux) for all rational

x and this holds by continuity for all x.
To conclude, the solutions are given by f(x) = ax, f(x) = a sin ux), f(x) =

asinh(ux).

After solving these problems we felt a strong connection between
them, namely that their solutions were very similar to each other.
Based on this, we deduce the main result of this chapter which helps us
solve a lot of functional equations, including those mentioned above.

Problem 161. Prove the following general Lemma: Assume that
f : R → C is a continuous function that satisfies the following condi-
tion: for any x, there is a number w and p1, p2, p3 ∈ C[X] polynomi-
als, such that f(nx) = p1(x)wnx + p2(x)w−nx + p3. Prove then that
f(x) = p1(x)etx + p2(x)e−tx + p3 for some fixed t, p2, p2, p3 and all x.
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Solution. We use the following helpful result: if
∑k

i=1 p(n)wn
i =∑m

i=1 q(n)rn
i for all n where ri and wi are two sequences of distinct

numbers then for (qi, ri) are some permutation of (pi, wi).

Proof: assume not. Then we can write
∑k

i=1 p(n)wn
i −0

∑m
i=1 q(n)rn

i =∑l
i=1 s(n)un

i where si are not zero. Then the generating function of
this recurrent sequence is also zero. However we know that the gen-

erating function of it can be written as
∑l

i=1
fi(x)

(x−ui)deg(si+1) where fi 6=
0, deg(fi) ≤ deg(si) and is not zero (if we multiply it by (x−ui)

deg(si+1)

then we get all terms divisible by (x−ui)
deg(si)+1 except the term fi(x),

so the sum cannot be zero).

Let’s return to the problem. We shall consider only x = 1
k
. If for all

rational x we have p1 = p3 = 0 then f(nx) = p3(nx) for all n. Moreover
p3 does not depend on x, because if x, x′ are rational, p3 is defined for
x and p′3 for x′ then if x

x′
= p

q
then qnx = pnx′ so p3(qnx) = p′3(qnx′)

so p3 coincides with p′3 for infinitely many n so p3 = p′3. So assume for
some x we have p1 or p2 non-zero. Without loss of generality x = 1.
Let wk be the value of w defined for x = 1

k
. We claim we can pick up wi

in such a way that wl
kl = wk by induction on i. Assume we can proven

this for i < k and let’s prove it for i = k. We have f(n
k
) = p1(

n
k
)wn

k +
p2(

n
k
)w−n

k + p3(
n
k
) and if d|n then f(n

d
) = q1(

n
d
)wn

d + q2(
n
d
)w−n

d + q3(
n
d
).

But f(n
d
) = p1(

n
d
)w

k
d
n

k + p2(
n
d
)w

− k
d
n

k + p3(
n
d
). This applying the helpful

result we deduce w
k
d
k = wd or w

k
d
k = 1

wd
. In the second case we can

replace wk by 1
wk

to ensure w
k
d
k = wd, so we conclude that wl

dl = wd if we

set l = k
d
. So we deduce p1 = q1, p2 = q2, p3 = q3. Thus p1, p2, p3 also do

not depend on k thus we have f(n
k
) = p1(

n
k
)wn

k +p2(
n
k
)w−n

k +p3(
n
k
). We

can continue the proof just like in the proof of D’Alembert’s Equation
to conclude that wk = e

t
k for some w and we are done for x ∈ Q. As f

is continuous and Q is dense in R, we are done for all x.

Problem 162. Find all continuous functions f, h, k : R → R that
satisfy f(x + y) + f(x− y) = 2h(x)k(y)

Solution. The problem is a generalization of the already difficult
D’Alembert Equation. However as we shall soon see, the solution is
not very difficult and quite analogous to D’Alembert’s Equation’s one.
Pick up an x and set an = f(nx). The condition written for nx instead
of x and x instead of y gives us an+1 + an−1 = 2h(nx)k(x). However
if we write the condition for nx instead of x and 0 instead of y we get
2f(nx) = 2h(nx)k(0). If k(0) = 0 then f is identically zero and it’s
clear from here that either h or k is identically zero (otherwise pick up x
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with h(x) 6= 0 and y with k(y) 6= 0 to get a contradiction). Otherwise

we get the linear recurrence an+1 + an−1 = ban where b = k(x)
k(0)

. It’s

associated polynomial is x2 − bx + 1 and thus either an = αwn + β 1
wn

where w 6= 1
w

are the solutions of the equation, or if x2 − bx + 1 has
a double root −1 or 1 then an = (cn + d) or an = (cn + d)(−1)n.
Now apply the previous result to conclude that f(x) = αeax + βe−ax

for some constants α, a, β or f(x) = ax + b. In the first case we get
f(x + y) + f(x − y) = (αeax + βe−ax)(eay + e−ay) = h(x)k(y). If we
set y = 0 we get h(x) = c(αeax + βe−ax) where c = 2

k(0)
and from here

we deduce k(y) = 1
c
(eay + e−ay). It’s clear such functions satisfy the

condition. If f(x) = ax+b then f(x+y)+f(x−y) = 2ax+2b possible
only when h(x) = c(ax + b) and k is identically 2

c
.

Problem 163. Find all continuous functions f : R → R that satisfy

f(x + y) + f(y + z) + f(z + x) = f(x + y + z) + f(x) + f(y) + f(z)

Solution. If x = y = z = 0 we get 3f(0) = 4f(0) so f(0) = 0. Set
z = −y to deduce f(x+y)+f(x−y)+f(0) = f(x)+f(x)+f(y)+f(−y).
So f(x+y) +f(x−y)−2f(x) = f(y) +f(−y). Then if we set an = nx
and x → nx, y → x we get an+1−2an+an−1 = b where b = f(x)+f(−y).
If we set bn = an − b

2
n2 then we check that bn+1 − 2bn + bn−1 = 0

so bn = cn + d because the quadratic recurrence bn+1 − 2bn + bn−1

has associated polynomial (x − 1)2. Thus f(nx) = b
2
n2 + cn + d and

applying the lemma we get f(x) = ax2 + bx + c. As f(0) = 0 c = 0 so
f(x) = ax2 + bx which satisfies the condition.

Problem 164. Find all differentiable functions f : R → R that
satisfy

f(x + y)− f(x− y) = y(f ′(x + y) + f ′(x− y))

Solution. Set g(t) = f(x + t)− f(x− t). Then g′(t) = f ′(x + t) +

f ′(x− t) so the condition tells us that g(y) = yg′(y) thus (g(y)
y

)′ = 0 so

g(y) = cy. Thus f(x + y)− f(x− y) = cy for a fixed x. Next by taking
y → 0 we find c = 2f ′(x). So f(x + y) − f(x − y) = 2f ′(x)y. As we
know f(x + y)− f(x− y) = y(f ′(x + y) + f ′(x− y)) we conclude that
f ′(x + y) + f ′(x − y) = 2f ′(x). If we denote an = f(nx), bn = f ′(nx)
we get bn+1 + bn−1 = 2bn so bn = an + b thus an+1 − an−1 = x(an + b)
and from here we deduce a2n = ux2 + vx + w for some u, v, w. Now
by applying the lemma we get f(x) = ux2 + vx + w and it satisfies the
condition.

Exercises
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Problem 165.Find all continuous functions f, g : R → R that sat-
isfy

f(x + y) + f(x− y) = 2f(x)g(y)

Problem 166.Find all continuous functions f, g, h : R → R that
satisfy

f(x + y) + g(x− y) = 2(h(x) + h(y))

Problem 167. Find all continuous functions f, g, h, k : R → R that
satisfy f(x + y) + g(x− y) = 2h(x)k(y)

Problem 168. Find all continuous functions f, g, h : R → R that
satisfy

f(x + y) + f(y + z) + f(z + x) = g(x) + g(y) + g(z) + h(x + y + z)

Problem 169. Find all continuous functions f ·R → R that satisfy

f(x + y)f(x− y) = f 2(x)f 2(y)

The odd and even parts of functions

This chapter exemplifies using the even part of a function (fe(x) =
f(x)+f(−x)

2
) and the odd part of a function (fo(x) = f(x)−f(−x)

2
) to find

the function. The main advantages are that fe and fo are even, respec-
tively odd, so they might be easier to find.

Problem 170. Find all continuous functions f : R → R for which

f(x + y) + f(x)f(y) = f(xy + 1)

Solution. If we replace x, y by −x,−y and compare with the initial
condition we get f(x+y)+f(x)f(y) = f(−x−y)+f(−x)f(−y). Now

write f = g + h where g(x) = f(x)+f(−x)
2

, h(x) = f(x)−f(−x)
2

are the
even and odd parts of f .So g(x + y) + h(x + y) + (g(x) + h(x))(g(y) +
h(y)) = g(x + y) − h(x + y) + (g(x) − h(x))(g(y) − h(y)) so we get
2h(x + y) + 2g(x)h(y) + 2h(x)g(y) = 0. Next we replace y by −y to
get 2h(x − y) − 2g(x)h(y) + 2h(x)g(y) = 0 and from here h(x + y) +
h(x − y) = −2h(x)g(y). We have solved this problem, with h being
c cos ax + d sin ax or ccoshax + dsinhax and g = coshx which does
satisfy the original condition, or h(x) linear and g(x) = 1 or h(x) = 0
and any g. If h = a + bx is linear then a = 0 as h is odd. As
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f(x) = g(x) + h(x) f(x) = 1 + bx and substituting into the original
condition we see that only 1+x satisfies the condition. If h(x) = 0 then
f is an even function. We then deduce f(x+y)+f(x)f(y) = f(xy +1)
and if we replace y by −y we get f(x − y) + f(x)f(y) = f(xy − 1)
so f(x + y) − f(x − y) = f(xy + 1) − f(xy − 1) = t(4xy) where
t(x) = f(x

4
+ 1) − f(x

4
− 1). Then we set r(t) = f(

√
t) for t > 0 we

conclude that r(x)− r(y) = t(x− y) for all x, y ≥ 0 due to the identity
(x+y)2−(x−y)2 = 4xy hence r(x)−r(y) = r(x−y)−r(0) and thus r is
a linear function on R. We conclude that f(x) = a + bx2 and replacing
into the original condition we get f(x) = x2 − 1 or f(x) = 0. Hence
there are three solution: f(x) = 1− x, f(x) = x2 − 1 and f(x) = 0.

Exercises

Problem 171. Find all continuous functions f, g, h : R → R that
obey

f(x + y) + g(xy) = h(x)h(y) + 1

Problem 172. Find all continuous functions f, g, h : R → R that
obey

f(x + y) + h(x)h(y) = g(xy + 1)

Solution. This problem is very similar to the previous. Set y = 0
to get f(x) + h(x)h(0) = g(1). From here f(x) = g(1) − h(x)h(0).
Again we can suppose g(1) = 1 because otherwise we an subtract
g(1) from both g and f and the condition will still hold. So we get
h(x)h(y)−h(0)h(x+y) = g(xy +1). If h(0) = 0 we deduce h(x)h(y) =
h(xy)h(1) = g(xy + 1) so h(x) = axb, g(x) = a2(x− 1)b. Otherwise we
can suppose h(0) = 1. Then h(x)h(y)−h(x + y) = g(xy + 1). If we set
y = 1 we get g(x + 1) = ah(x) − h(x + 1) so g(x) = ah(x − 1)− h(x)
where a = h(1). Exactly like in the previous problem we conclude that
either h(x) = 1 + cx or h is even. For h(x) = 1 + cx we get (1 + cx)(1 +
cy)− 1− c(x + y) = (1 + c)(1 + cxy)− 1− c(xy + 1) and by looking at
the coefficient of xy we get c = 1 so h(x) = 1, f(x) = −1, g(x) = 0. If
h is even then we get h(x)h(y) − h(x + y) = ah(xy) − h(xy + 1) and
h(x)h(y)− h(x− y) = ah(xy)− h(xy − 1) thus h(x + y)− h(x− y) =
h(xy + 1) − h(xy − 1) again so h(x) = cx2 + 1. We easily draw the
conclusions from here.

Symmetrization and additional variables

Sometimes we have a condition in x, y, say u(x, y) = v(x, y) such that
one side of it is symmetric in x, y but the other is not (or we can obtain
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such a condition by an appropriate substitution). Then swapping x
with y we get a new condition, which might prove helpful. For example
if u(x, y) = u(y, x) then as u(x, y) = v(x, y) and u(y, x) = v(y, x) thus
v(x, y) = v(y, x). In other cases we might need to add one additional
variable to get one side of the equation symmetric. See the examples
below.

Problem 173. Find all continuous functions f, g, h : R → R that
satisfy

f(x + y) + g(xy) = h(x) + h(y)

Solution. Set y = 0 to get f(x) = h(x) + h(0) − g(0). So the
condition rewrites as h(x+y)−h(x)−h(y) = g(xy) where replace g by
g−g(0)−h(0) for simplicity. Thus h(x+y+z) = h(x)+h(y+z)+g(xy+
xz) = h(x) + h(y) + h(z) + g(yz) + g(xy + xz). Symmetrizing this we
conclude that g(yz)+g(xy+xz) = g(xz)+g(xy+yz) = g(xy)+g(xz+
yz). As for a, b, c > 0 we can find x, y, z with yz = a, xz = b, xy = c we
get g(a) +g(b+ c) = g(b) +g(a+ c) +g(c) +g(a+ b) and taking c → 0+

we get g(a + b) + g(0) = g(a) + g(b). Next if we take a > 0, b < 0, c < 0
we can also find x, y, z with yz = a, xz = b, xy = c so g(a) + g(b + c) =
g(b)+g(a+c)+g(c)+g(a+b). Now taking c → 0− we get g(a)+g(b) =
g(0)+g(a+b). Finally if we take a < 0, b < 0, c > 0 and take c → 0+ we
get g(a)+g(b) = g(a+b) in this case too. So g(a+b)+g(0) = g(a)+g(b)
holds for all non-zero a, b by continuity and then f(x) = ax+b is linear.
So h(x+y)−h(y)−h(z) = axy+b. If we consider H(x) = h(x)− a

2
x2+b

then we see that H(x) + H(y) = H(x + y) so H(x) = cx. Therefore
we find a representation h(x) = ux2 + vx + w, g(x) = 2ux − w. The
problem is now solved.

Problem 174.Find all continuous f : R → R, solutions of the equa-
tion

f(x + y) + f(xy) = f(x) + f(y) + f(xy + 1)

Solution. Set g(x) = f(x+1)−f(x). Then f(x+y)−f(x)−f(y) =
g(xy). Then f(x + y + z)− f(x + y)− f(z) = g(xz + yz) so f(x + y +
z) − f(x) − f(y) − f(z) = g(xz + yz) + g(xy). Due to the symmetry
among x, y, z we conclude that f(x + y + z) − f(x) − f(y) − f(z) =
g(xz + yz) + g(xy) = g(xz + xy) + g(yz) = g(xy + yz) + g(xz). Now if
we set a = xy, b = yz, c = xz we get g(a + b) + g(c) = g(a + c) + g(b) =
g(b + c) + g(a). The condition that a = xy, b = xz, c = yz can be

satisfied if abc > 0 by setting x =
√

abc
c

, y =
√

abc
b

, z =
√

abc
a

. Thus we get
g(a + b) + g(c) = g(a + c) + g(b) = g(b + c) + g(a) for abc > 0. Now we
claim g(x + y) + g(0) = g(x) + g(y) for xy 6= 0. Indeed either for z < 0
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or for z > 0 we have xyz > 0 thus g(x+y)+g(z) = g(x+z)+f(y). Now
taking z → 0 we obtain g(x + y) + g(0) = g(x) + g(y). This also holds
by continuity even when xy = 0. Hence g(x) − g(0) is additive thus
g(x) = ax + b is linear. Hence f(x + y)− f(x)− f(y) = axy + b. Now
if we set h = f(x)− a

2
x2 + b then we see that h(x + y)− h(x)− h(y) =

f(x+ y)− a
2
(x+ y)2 + b− f(x) + a

2
x2− b− f(y) + a

2
y2− b = (f(x+ y)−

f(x)−f(y))+ a
2
(x2+y2−(x+y)2)−b = axy+b−axy−b = 0. Hence h is

additive so h(x) = cx. We conclude that f is a polynomial of degree at
most 2. Let f(x) = ax2+bx+c. We have f(x+y)+f(xy) = a(x+y)2+
b(x+y)+c+ax2y2+bxy+c = a(x2+y2)+ax2y2+(2a+b)xy+b(x+y)+2c
while f(x)+f(y)+f(xy+1) = ax2 +bx+c+ay2 +y2 +c+a(xy+1)2 +
b(xy + 1) + c = a(x2 + y2) + ax2y2 + (2a + b)xy + b(x + y) + a + b + 3c.
Therefore by comparing the two expressions we get a + b + c = 0 hence
f(x) = ax2 + bx− a− b. These functions clearly satisfy the condition.

Problem 175.Find all functions f : R → R obeying

f((x− y)2) = f 2(x)− 2xf(y) + y2

Solution. Symmetrize the condition to get f((x − y)2) = f 2(x) −
2xf(y) + y2 = x2 − 2f(x)y + f 2(y) and the equality of the last two
expressions can be written as (f(x) + y)2 = (f(y) +x)2. One can guess
that only the function f(x) = x + a, f(x) = −x satisfy the condition.
Indeed, assume that f(a) 6= −a. Let f(a) = b. Pick up another c
and let f(c) = d. We wish to prove that d = c + b − a. Indeed, we
have (a + d)2 = (b + c)2 so either d = c + b − a or d = −a − b − c.
If it is the latter, pick up any x. We have (f(x) + a)2 = (x + b)2

so either f(x) = x + b − a or f(x) = −x − b − a. We also have
(f(x) + c)2 = (x − a − b − c)2 so either f(x) = x − a − b − 2c or
f(x) = a + b− x. It follows that the sets {x + b− a,−x− a− b} and
{x−a−b−2c, a+b−x} must intersect. We can pick up such an x that
satisfies x+b−a 6= a+b−x and also −x−a−b 6= x+a−b−2c. Then
either x + b− a = x− a− b− 2c or −x− a− b = a + b− x thus either
b+c = 0 or a+b = 0. a+b 6= 0 as f(a) 6= a. Hence b+c = 0 and in this
case d = −a− b− c = c+ b−a. Hence d = c+ b−a so f(c) = c+ b−a.
As c is arbitrary, we get f(x) = x + b− a. This guarantees our claim,
so f(x) = −x or f(x) = x + a. It remains only to check which of them
satisfies the condition. f(x) = −x then f(x − y)2 = −(x − y)2 while
f 2(x) − 2xf(y) + y2 = x2 + 2xy + y2 = (x + y)2 and the condition is
not satisfied. f(x) = x + a then f((x− y)2) = x2 − 2xy + y2 + a while
f 2(x)−2xf(y)+y2 = (x+a)2−2x(y+a)+y2 = x2−2xy+y2+a2 so the
identity hold if and only if a2 = a or a = 0, 1. So f(x) = x, f(x) = x+1
are the solutions of the problem.



82

Exercises

Problem 176.Find all functions f : : R → R for which

f(x + y) = f(x)f(y)f(xy)

Problem 177. Find all continuous functions f : R → R such that

f(x + y) + f(xy − 1) = f(x) + f(y) + f(xy)

Problem 178. (Hosszu’s functional equation) Show that a function
f : : R → R which satisfies

f(x + y − xy) + f(xy) = f(x) + f(y)

is an additive function plus some constant.

Problem 179.Find all functions f : : R → R for which

xf(x)− yf(y) = (x− y)f(x + y)

holds.

Functional Inequalities without Solutions

Problem 180. (Bulgaria ’1998) Prove that there is no function
f : R+ → R+ such that

f 2(x) ≥ f(x + y)(f(x) + y)

for all x, y ∈ R+.

Solution. Suppose that there is a function f with the given prop-
erties. Then

f(x)− f(x + y) ≥ f(x)y

f(x) + y
(1)

which shows that f is a strictly increasing function. Given an x ∈ R+

we choose an n ∈ N such that nf(x + 1) ≥ 1. Then

f

(
x +

k

n

)
− f

(
x +

k + 1

n

)
≥

f(x + k
n
). 1

n

f(x + k
n
) + 1

n

>
1

2n
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for any k ∈ N . (Note that nf

(
x +

k

n

)
> nf(x + 1) > 1.) Summing

up these inequalities for k = 0, 1, . . . , n− 1 we get

f(x)− f(x + 1) >
1

2
.

Now take an m ∈ N such that m ≥ 2f(x). Then

f(x)−f(x+m) = (f(x)−f(x+1))+· · ·+(f(x+m−1)−f(x+m)) >
m

2
≥ f(x).

Hence f(x + m) < 0, a contradiction.

Problem 181. Prove that there is no function f : R → R such that
f(0) > 0 and

f(x + y) ≥ f(x) + yf(f(x)) (1)

for all x, y ∈ R.

Solution. Suppose that there is a function f with the given prop-
erties. If f(f(x)) ≤ 0 for any x ∈ R then

f(x + y) ≥ f(x) + yf(f(x)) ≥ f(x)

for any y ≤ 0 and the function f is decreasing. Now the inequalities
f(0) > 0 ≥ f(f(x)) imply f(x) > 0 for any x, a contradiction to
f(f(x)) ≤ 0. Hence there exists z such that f(f(z)) > 0. Then the
inequality

f(z + x) ≥ f(z) + xf(f(z))

shows that lim
x→+∞

f(x) = +∞ and therefore lim
x→∞

f(f(x)) = +∞. In

particular, there exist x, y > 0 such that

f(x) ≥ f(f(x)) > 1, y ≥ x + 1

f(f(x))− 1
, f(f(x + y + 1)) ≥ 0.

Then
f(x + y) ≥ f(x) + yf(f(x)) ≥ x + y + 1

and therefore

f(f(x + y)) ≥ f(x + y + 1) + (f(x + y)− (x + y + 1))f(f(x + y + 1)) ≥
≥ f(x+y+1) ≥ f(x+y)+f(f(x+y)) ≥ f(x)+yf(f(x))+f(f(x+y) > f(f(x+y)),

a contradiction.

Remark. Note that the only function f : R → R with f(0) = 0 and
satisfying the inequality (1) is the constant 0. Indeed, as in the second
part of the above solution we conclude that f(f(x)) ≤ 0 for all x ∈ R.
On the other hand setting x = 0 in (1) gives f(y) ≥ 0 for all x. Hence
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f(x + y) ≥ f(x) for any x, y ∈ R which easily implies that f(x) = 0
for all x.

It is not known to the authors if there is a function f : R → R with
f(0) < 0 and satisfying the inequality (1).

Exercise

Problem 182. (Romania ’2001) Prove that there is no function
f : R+ → R+ such that

f(x + y) ≥ f(x) + yf(f(x))

for all x, y ∈ R+.

Miscellaneous

Problem 183. (Iran 1998)Let f : R+ → R+ be a decreasing func-
tion that satisfies

f(x + y) + f(f(x) + f(y)) = f(f(x + f(y)) + f(y + f(x)))

Show that f(f(x)) = x.

Solution. Set y = x so get E = f(2x) + f(2a) = f(2f(a + x))
where a = f(x). Now replace x by f(x) to get F = f(2b) + f(2a) =
f(2f(a + b)) where b = f(f(x)). If b < x then f(a + b) > f(a + x) so
f(2f(a+ b)) < f(2f(a+x)) as f decreasing. Also f(2b) > f(2x) hence
we get f(2x) + f(2a) < f(2b) + f(2a). So we get F > E from the first
relation and F < E from the second, contradiction. If b > x then we
change the signs to get F < E and F > E again contradiction. So
b = x.

Problem 184. Find all continuous functions f : R → R that satisfy
the equation

f(x + yf(x)) = f(x)f(y)

Solution. f = 0 or f = 1 satisfy the condition. Next set y = 0 to
get f(x) = f(x)f(0) thus if f is not identically zero we get f(0) = 1. If
f(x) = 1 + ax is linear then we get f(x + yf(x)) = f(x + y(1 + ax)) =
f(x + y + ax) = 1 + ax + ay + a2x = (1 + ax)(1 + ay) = f(x)f(y). If
f(x) 6= 1 and y = x

1−f(x)
then we get x+yf(x) = y hence the condition

says f(x)f(y) = f(y). As f(x) 6= 1 we get f( x
1−f(x)

) = 0. So if f is not

identically 1 then the set A of t for which f(t) = 0 is not empty. Now if
t ∈ A, x /∈ A then set y = t−x

f(x)
to get x+yf(y) = t and from here we get

0 = f(t) = f(x)f(y) so f(y) = 0 so t−x
f(x)

∈ A If t−x
f(x)

is constant then f
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is linear but linear functions were already investigated by us, otherwise
t−x
f(x)

is a continuous non-constant function so A contains infinitely many

numbers. Without loss of generality A contains infinitely many positive
positive numbers (the second case is analogous). Let b = infA

⋂
R+.

As A is closed b ∈ A but [0; b) does not intersect A. As f(0) = 1 we
deduce f is positive on [0; b). Thus if x in [0; b) then g(x) = c−x

f(x)
∈ A

where c ∈ A, c > b. But g(0) = b, limx→b g(x) = ∞ hence we conclude
that [b;∞) ⊂ A. Then if x /∈ A we get hx(y) = x + yf(x) ∈ A if and
only if y in A. Therefore hx(y) /∈ A as y < b but hx(b) ∈ A which is
possible only when hx(b) is a bordering point of A as A is closed. But
hx(b) is continuous in x. As b cannot be written as a limit of bordering
points of A except b itself, we conclude that hx(b) = b for all x ∈ [0; b].
So x+bf(x) = b hence f(x) = b−x

b
for x in [0; b]. If A contains negative

points let −c ∈ A, c > 0. Then set y = −c to get f(x − (b−x)c
b

) = 0.

But is x is sufficiently close to b and less than b, 0 < x − (b−x)c
b

=< b.
Contradiction. Hence A contains no point in R− and by continuity
of h on (−∞; b) we conclude h is constant so f(x) = b−x

b
for x ≤ b,

f(x) = 0 for x ≥ b. If A contains negative numbers, we get analogously
that f(x) = b−x

b
for x ≥ b, f(x) = 0 for x ≤ b, where b is negative.

These two functions can be checked to verify the problem. Together
with f = 0 and f = 1 they form the answer set.

Problem 185. Suppose f : Q → {0, 1} is such that f(1) = 1, f(0) =
0 and if f(x) = f(y) then f(x+y

2
) = f(x) = f(y). Prove that f(x) = 1

whenever x ≥ 1.

Solution. Let A = {x|f(x) = 1}, B = {x|f(x) = 0}. We have
that if x, y belong to a set, then x+y

2
also belongs to the same set. If

2 ∈ B then 1 = 2+0
2
∈ B, contradiction, so 2 ∈ A. Next we prove by

induction on n that n ∈ A. If n = 2k then as 0 ∈ B, 2k ∈ B would
imply 2k+0

2
= k ∈ B contradicting the induction step. If n = 2k + 1

then we prove like above that 2k, 2k + 2 ∈ A so 2k + 1 = 2k+2k+2
2

∈ A.
Now assume that f(1 + a) = 0 for a > 0. We prove by induction on n
that 1 + na ∈ B like above: if n = 2k then 1 + 2ka ∈ A together with
1 ∈ A would imply 1 + ka ∈ A contradicting the induction hypothesis,
and if n = 2k + 1 then we show that 1 + 2ka, 1 + (2k + 2)a ∈ B hence
their mean 1 + (2k + 1)a is also in B. Finally if n is such that na ∈ N
then 1 + na which contradicts our conclusion above that all natural
numbers are in A. QED.
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Problem 186.Find for which a there exist increasing multiplicative
functions on N (i.e. f(n) < f(n+1), f(mn) = f(m)f(n) if (m,n) = 1)
with f(2) = a.

Solution. We claim the function must be f(n) = nk for some k.
Assume f(x) = xu, f(y) = yv. If xk < yl then xuk < yvl and if xk > yl

then xuk > yvl. Pick up now k and let l be the biggest for which yl < xk.
Then xk ≤ yl+1 so we get yvl+l > xuk > yvl. Now if v > u we cannot
have xuk > yvl for sufficiently big k, as xuk > yvl > yul+l(v−u) > yu(l+1)

for l ≥ u
v−u

. If u > v then yvl+l > xuk so yvl > xuk−1 > xvk for k ≥ 1
u−v

again contradiction. Thus taking k > 1
u−v

if u > v or k such that

xk > y
u

v−u
+1 if u < v we would obtain contradiction. So u = v and

hence f(x) = xu for all x. As f is from N to N , we must have u integer.
So a must be a power of 2, and conversely if a = 2k then f(x) = xk is
good.

Problem 187. (Russia ’2005; a slight generalization) Let f : R → R
be a bounded function such that

f 2(x + y) ≥ f 2(x) + 2f(xy) + f 2(y)

for any x, y. Prove that −2 ≤ f(x) ≤ 0 for any x.

Solution. First, we shall prove that f(x) ≤ 0 for any x. Let M =
sup
x 6=0

|f(x)|. Then there is a sequence x1, x2, . . . of non-zero real numbers

such that |f(xn)| → M. Fixing an x, it follows that

M2 ≥ f 2

(
xn +

x

xn

)
≥ f 2(xn) + 2f(x) + f 2

(
x

xn

)
≥ f 2(xn) + 2f(x) → M2 + 2f(x).

Thus, f(x) ≤ 0.
Then M = − inf

x 6=0
|f(x)|. Now the inequalities

M2 ≥ f 2(2xn) ≥ 2f 2(xn) + 2f(x2
n) ≥ 2f 2(xn) + 2M → 2M2 + 2M

imply that M2 ≥ 2M2 − 2M, that is M(M − 2) ≤ 0. Since M ≥ 0,
then M ≤ 2, which means that f(x) ≥ −2 for any x 6= 0. It remains to
observe that the inequalities f 2(0) ≥ f 2(0)+2f(0)+f 2(0) and f(0) ≤ 0
implies that f(0) ≥ −2, too.

Remark. Obviously the constant function 0 and -2 satisfy the given
inequality. We claim that the unbounded functions x and −x also
satisfy it.
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Problem 188. (IMO ’2005, shortlisted problem) Find all functions
f : R → R such that

(1) f(x + y) + f(x)f(y) = f(xy) + 2xy + 1

for any x, y.

Solution. It is easy to check that the functions f(x) = 2x − 1,
f(x) = −x−1 and f(x) = x2−1 satisfy (1). We shall prove that there
are the only solutions of the problem.

Setting y = 1 gives

(2) f(x + 1) = af(x) + 2x + 1,

where a = 1 − f(1). Then we change y to y + 1 in (1) and use (2) to
expand f(x + y + 1) and f(y + 1). The result is

a(f(x + y) + f(x)f(y)) + (2y + 1)(1 + f(x)) = f(x(y + 1)) + 2xy + 1,

or, using (1) again,

a(f(xy) + 2xy + 1) + (2y + 1)(1 + f(x)) = f(x(y + 1)) + 2xy + 1.

Set now x = 2t and y = −1

2
to obtain

a(f(−t)− 2t + 1) = f(t)− 2t + 1.

Replacing t by −t gives also

a(f(t) + 2t + 1) = f(−t) + 2t + 1.

We now eliminate f(−t) from the last two equations. Then

(3) (1− a)2f(t) = 2(1− a)2t + a2 − 1.

Note that a 6= 1 (or else 8t = 0 for any t, which is false). If additionally
a 6= 1, then 1− a2 6= 0; therefore

f(t) = 2
1− a

1 + a
t− 1.

Setting t = 1 and recalling that f(1) = 1 − a, we get a = 0 or a = 3,
which gives the first two solutions.

Let a = 1. Then (1) implies that f is an even function. Set now
y = x and y = −x in the original equation. It follows that

f(2x) + f 2(x) = f(x2) + 2x2 + 1, f(0) + f 2(x) = f(x2)− 2x2 + 1,

respectively. Subtracting gives f(2x) = 4x2 + f(0). Set x = 0 in (2).
Since f(1) = 1−a = 0, this yields f(0) = −1. Hence f(2x) = (2x)2−1,
i.e., f(x) = x2 − 1. This completes the solutions.
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Problem 189. (IMO ’2005, shortlisted problem) Find all functions
f : R+ → R+ such that

f(x)f(y) = 2f(x + yf(x))

for any x, y > 0.

Solution. First, we shall show that f is increasing. Indeed, suppose
that f(x) < f(z) for some x > z > 0. Setting y = (x−z)(f(x)−f(z)) >
0, it follows that x + yf(x) = z + yf(z). Then

f(x)f(y) = 2f(x + yf(x)) = 2(f(z + yf(z) = f(z)f(x),

therefore f(x) = f(z), a contradiction.
Assume now that f is not strictly increasing, i.e., f(x) = f(z) for

some x > z > 0. If y ∈ (0, (x−z)/f(x)], then z < z +yf(z) ≥ x. Hence

f(z) ≥ f(z + yf(z)) ≥ f(x) = f(z)

and therefore f(z + yf(x)) = f(x). Thus,

f(z)f(y) = 2f(z + yf(z)) = 2f(x) = 2f(z)

which implies that f(y) = 2 for all y in the above interval.
But if f(y0) = 2 for some y0 > 0, then

4 = f 2(y0) = 2f(y0 + y0f(y0)) = 2f(3y0).

So, f(3y0) = 2 and by induction f(3ny0) = 2 for any n ∈ N. Since f is
increasing, it follows that f ≡ 2. Obviously, this function satisfies the
given equation.

Assume now that f is a strictly increasing function. Then

f(x)f(y) = 2f(x + yf(x)) > 2f(x)

implies that f(y) > 2 for any y > 0. On the other hand,

2f(x + f(x)) = f(x)f(1) = f(1)f(x) = 2f(1 + xf(1))

and since f is injective, we obtain x + f(x) = 1 + xf(1). Thus, f(x) =
x(f(1)−1)+1 for any x > 0. Taking a small x, we get the contradiction
f(x) < 2.

Remark. Similar arguments if k > 0, k 6= 1 and f : R+ → R+

satisfies the equation f(x)f(y) = kf(x + yf(x)) for any x, y > 0, then
f ≡ k. On the other, the case k = 1 is the Go lab-Schinzel equation and
its solutions are f ≡ 1 and f(x) = x + 1.

Problem 190. (Romania ’1998) Find all functions f : R → R+
0

such that f(x2 + y2) ≡ f(x2 − y2) + f(2xy) for any x, y.
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Solution. It is easy that for any a, b there are x, y such that x2−y2 =
a and 2xy = b. Since x2 + y2 =

√
a2 + b2, the given equations becomes

f(a) + f(b) = f(
√

a2 + b2).

In particular, f(a) = f(−a), i.e., f is an even function. For a ≥ 0 set
g(a) = f(

√
a). Then g(a2) + g(b2) = g(a2 + b2), i.e., g is a non-negative

additive function on R+
0 . Therefore g(x) = cx and hence f(x) = cx2,

where c ≥ 0 is a constant.

Exercises

Problem 191. (IMO ’2003, shortlisted problem) Find all function
f : R+ → R+, which are increasing in the segment [1,∞) and such that

f(xyz) + f(x) + f(y) + f(z) = f(
√

xy)f(
√

yz)f(
√

zx)

for any x, y, z > 0.

Problem 192. (AMM 1998) Find all functions f : N2 → N that
satisfy:

a) f(n, n) = n;
b)f(m, n) = f(n, m);

c)f(m,n+m)
f(m,n)

= n+m
n

.

Problem 193.Find for which a there exist increasing multiplicative
functions on N (i.e. f(n) < f(n+1), f(mn) = f(m)f(n) if (m, n) = 1)
with f(2) = a.

Problem 194. Find all functions f : Z → Z that satisfy:
a) if p|m− n then f(m) = f(n).
b) f(mn) = f(m)f(n)

Problem 195. Find all f : N0 → N0 that satisfy

f(f 2(m) + f 2(n)) = m2 + n2

Problem 196. (Bulgaria ’2003) Find all functions f : R → R such
that

(1) f(x2 + y + f(y)) = 2y + f 2(x)

for any x, y
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Problem 197. (Bulgaria ’2006) Let f : R+ → R+ be such a function
that

f(x + y)− f(x− y) = 4
√

f(x)f(y)

for any x > y > 0.
a) Prove that f(2x) = 4f(x) for any x > 0.
b) Find all such functions f.

Problem 198. (Ukraine ’2003) Find all functions f : R → R such
that

f(xf(x) + f(y)) ≡ x2 + y

for any x, y (compare with Problem 92).

Problem 199. (Bulgaria ’2004) Find all non-constant polynomials
P and Q with real coefficients such that

(1) P (x)Q(x + 1) = P (x + 2004)Q(x)

for any x ∈ R.

Solutions to exercises
Constructive Problems

Problem 3.Find all functions f : N → R which satisfy f(1) 6= 0
and

f 2(1) + f 2(2) + . . . + f 2(n) = f(n)f(n + 1)

Solution. It’s clear that f(n) 6= 0 as the RHS of the condition
is positive. Now by subtracting the condition written for n from the
condition written for n+1 we get f(n+1)2 = f(n+1)(f(n+2)−f(n))
thus reducing by f(n + 1) 6= 0 we get the Fibonacci-type relation
f(n+2) = f(n+1)+f(n). If we set a = f(1) then taking n = 1 we get
f(2) = a, thus f(n) = aFn by induction using the recurrent relation.
It’s clear that this function satisfies the condition by induction, as this
is clear for n = 1 and the induction step was proven to be equivalent
to the true relation f(n + 2) = f(n + 1) + f(n).

Problem 7.Find all functions f : N → R for which f(1) = 1 and∑
d|n

f(d) = 0

whenever n ≥ 2.
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Solution. A good example is the Mobius function, which is multi-
plicative. The fact that f is multiplicative too i.e. f(mn) = f(m)f(n)
for (m,n) = 1 can be proven by induction on m + n just like in the
previous problem. Indeed, if m, n > 1 we get 0 =

∑
d|mn f(d) =∑

d1|m,d2|n f(d1d2) = f(mn)− f(m)f(n) + (
∑

d|m f(d))(
∑

d|n f(d)) = 0

so f(m)f(n) = f(mn). Next writing the condition for n = pk (p-
prime) for k ≥ 1 and subtracting it from the condition for pk+1 we
get f(pk+1) = 0. Therefore f(pk) = 0 for k ≥ 2. And writing the
condition for p prime we get f(p) = −1. Therefore if n =

∏
pi

ki

then f(n) =
∏

f(pki
i ) so f(n) = 0 if some of ki is greater than 1 and

f(n) = (−1)k where k is the number of prime divisors of n otherwise.
This is Moebius function.

Problem 8.Find all functions f : N → N that satisfy f(0) = 0 and

f(n) = 1 + f([
n

k
])

for all n ∈ N .

Solution. This is seen as a recurrence. To compute f(n), we need to

compute f([n
k
]) first. To compute f([n

k
]) we need to compute f([

[n
k
]

k
]) =

f([ n
k2 ]) and so on. Thus if n ≥ kr−1, by repeating this argument we get

f(n) = r + f([ n
kr ]). Thus if kr ≤ n < f r+1 then f(n) = r + 1 + f(0) =

r + 1, so f(n) = 1 + [logkn] for n > 0. It clearly satisfies the condition.

Note We have used in the proof the identity [
[ x
m

]

n
] = [ x

mn
] where

m,n ∈ N . Indeed, if a = [ x
mn

], b = [ x
m

] then mna ≤ x < mna + mn,

thus na ≤ x
m

< na + n hence na ≤ b < n(a + 1) so [ b
n
] = a, and we are

done. The problem could be solved without this identity, if we would
look at the representation of x in base k.

Problem 87. Let k ∈ Z. Find all functions f : Z → Z that satisfy

f(m + n) + f(mn− 1) = f(m)f(n) + k

Solution. This is a generalization of the previous problems. We
have already investigated the cases k = 2, k = 0 so we shall not deal
with them any more. If f = c is constant then 2c = c2 +k so (c−1)2 =
1 − k hence f(x) = 1 ±

√
1− k if

√
1− k is an integer. So assume

f is not constant. Set m = 0 to get f(n)(1 − f(0)) = k − f(−1),
possible only for f(0) = 1, f(−1) = k. Next set m = −1 to get
f(n− 1) + f(−n− 1) = kf(n) + k. If we replace n by −n the left-hand
side does not change hence neither does the right-hand side so f is
even (recall that k 6= 1). Therefore we can write f(n− 1) + f(n + 1) =
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kf(n) + k. If k = −1 we get f(n − 1) + f(n) + f(n + 1) = −1 and
we deduce f(3k) = 1, f(3k ± 1) = −1 which satisfies the equation. If
k = 1 we get f(n − 1) + f(n − 1) = f(n) + 1. In this case we prove
by induction on |n| that f(n) = 1 so f is not constant. If k = −2
then we have f(n − 1) + 2f(n) + f(n + 1) = −2 so an = f(n) + 1

2
satisfies the equation an−1 +2an +an+1 = 0 whose polynomial equation
x2 + 2x + 1 has double root −1 thus an = (an + b)(−1)n. As f is
even an = a−n which is possible only for a = b = 0 so an = 0 hence
f is identically −1

2
, which is not possible. Finally if |k| > 2 then set

an = f(n) + k
k−2

. It satisfies the condition an−1 − kan + an+1 = 0

with associated equation x2 − kx + 1 = 0. This equation has two
roots r, 1

r
where |r| > 1. Then we find an to be crn + d(1

r
)n. As f

is even, an = a−n so crn + d 1
rn = c 1

rn + drn or (c − d)(rn − 1
rn ) so

c = d 6= 0 as the function is not constant. Then f(n) ∼ crn for
n → ∞. We set m = n → ∞ to get f(2n) + f(n2 − 1) = f 2(n) + k.

But f(2n) + f(n2 − 1) crn2−1, f2(n) + k c2r2n, and for n → ∞ we get
contradiction. So are there are no solutions in this case.

Problem 88. Find all functions f : Z → Z that satisfy

f(m + n) + f(mn) = f(m)f(n) + 1

Solution. Set m = 0, n = 0 to get 2f(0) = f 2(0) + 1 so f(0) = 1.
Next set m = −1, n = 1 to get f(0) + f(−1) = f(1)f(−1) + 1 so
f(−1)(f(1) − 1) = 0. If f(1) = 1 then set m = 1 to get f(n + 1) +
f(n) = f(n) + 1 hence f is identically 1 which satisfies our condition.
If f(−1) = 0 set m = −1 to get f(n − 1) + f(−n) = 1. Also set
m = 1 to get f(n + 1) = f(n)(f(1) − 1) + 1. If a = f(1) − 1 we get
f(n + 1) = af(n) + 1. From here (a− 1)f(n + 1)− 1 = a((a− 1)f(n)−
1). We conclude that (a − 1)f(n − k) − 1 = ak

(
(a − 1)f(n) − 1). So

ak|(a − 1)f(n) − 1 for any k which is possible only when f(n) = 1
a−1

or a = ±1. If f(n) = 1
a−1

then f(1) = a + 1 = 1
a−1

so a2 = 2
impossible. Hence a = ±1. If a = 1 we get f(n + 1) = f(n) + 1
so f(n) = n + 1 by induction on |n|, which obeys the equation as
(m + n + 1) + (mn + 1) = (m + 1)(n + 1) + 1. If a = −1 we get
f(n + 1) = 1 − f(n). We conclude by induction on |n| that f(n) = 1
if n is even and f(n) = 0 if n is odd. Indeed, if m,n have the same
parity then m+n is even so f(m+n) = 1 and also f(m)f(n) = f(mn)
so the condition holds, while if one of m, n is even and the other odd
we get f(m + n) = 0, f(mn) = 1, f(m)f(n) so the condition holds
again. Hence all solutions are given by f(n) = 1, f(n) = n + 1 and
f(n) = 1− n mod 2.
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Problem 28.Find all functions f : Z → R satisfying

f(a3 + b3 + c3) = f(a3) + f(b3) + f(c3)

whenever a, b, c ∈ Z.

Solution. If we try to set f(x) = cx we get c = 0, 1,−1. If we
try to set f(x) = c we get c = 0, c = ± 1√

3
. We try to prove that this

are the only solutions. Firstly we want to find a way of computing
f(n) by induction on |n| (we note that f(0)3 = f(n3 + (−n)3 + 03) =
f(n)3 + f(−n)3 + f(0)3 so we can easily compute f(−n) from f(n).
To do this, note that if a3 + b3 + c3 = m3 + n3 + p3 then f(a)3 +
f(b)3 + f(c)3 = f(m)3 + f(n)3 + f(p)3. So if we can write n3 as a
sum of five cubes of numbers having absolute value less than n, or we
can write n as sum of three cubes of numbers having absolute value
less than n, then we are done. So let’s find such representations. We
note 53 = 43 + 43 − 13 − 13 − 13, 73 = 63 + 43 + 43 − 13 + 03, 63 =
33 +43 +53, hence for all numbers multiples of 5, 7, 6 we are done. Also
32 = 33 + 23−13−13−13, 64 = 33 + 33 + 23 + 13 + 13, 16 = 23 + 23, 8 =
23 + 03 + 03, therefore this also holds for n = 2k for k ≥ 4. Finally
if we have n = 2m(2a + 1), then if a is 1, 2, 3 then n is a multiple
of 5, 7 or 6 and we have proven this case, otherwise if a ≥ 4 then
(2a + 1)3 = (2a − 1)3 + (a + 4)3 − (a − 4)3 − 53 − 13 and we get the
result by multiplying by 2m. So f is uniquely determined by f(0), f(1)
(since then we compute f(2) = f(13 + 13), f(3) = f(13 + 13 + 13) and
use the method above to deduce f). So let’s look at f(0) and f(1).
By setting a = b = c = 0 then we get f(0) = 3f(0)3 thus f(0) = 0
or f(0) = ± 1√

3
. If f(0) = 0 then setting a = 1, b = c = 0 then

f(1) = f(1)3 hence f(1) = 0, 1,−1 in which case we get the solutions
f(x) = x, f(x) = −x, f(x) = 0. Now assume f(0) 6= 0. Without
loss of generality let f(0) = 1√

3
(the second case is analogous since

we could look at −f instead). Then by setting a = 1, b = c = 0
we deduce f(1) = f(1)3 + 2f(0)3, which is a polynomial equation in
f(1) with solutions 1√

3
, −2√

3
. If f(1) = 1√

3
then we get the solution

f(x) = 1√
3
. We are left with the case f(1) = − 2√

3
. Also f(0) = f(−x3+

x3 + 03) = f(−x)3 + f(x)3 + f(0)3 therefore f(−x)3 = −f(x)3 + 2
3
√

3
.

Thus f(−1)3 = 2√
3

+ 2
3
√

3
= 8

3
√

3
so f(−1) = 2√

3
= −f(1). Then

f(x3) = f(x3+13+(−1)3) = f(x)3+f(1)3+f(−1)3 = f(x)3. From the
other side, f(x3) = f(x3+03+03) = f(x)3+f(0)3+f(0)3 = f(x)3+ 2

3
√

3
,

contradiction. All the cases are now investigated.
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Problem 31. Let f be a strictly increasing function on N with the
property that f(f(n)) = 3n. Find f(2007).

Solution. We have f(f(1)) = 3. If f(1) = 1 this is impossible.
Hence f(1) > 1 and then f(f(1)) > f(1) so f(1) < 3 and f(1) = 2.
So f(2) = 3. Then f(3) = f(f(2)) = 6 and we get by induction on
k f(3k) = 2 · 3k, f(2 · 3k) = 3k+1. Then f(3) = 6, f(6) = 9 and as f
is increasing we get f(4) = 7, f(5) = 8. Thus f(7) = 12, f(8) = 15.
We then come to the following hypothesis: If 3k ≤ n < 3k+1 then
f(n) = n + 3k for n ≤ 2 · 3k , f(n) = 3(n − 3k) for n ≥ 2 · 3k. Indeed
this function is increasing and the assumption holds for k = 1. We now
reason by induction: Assume that it holds for k = m−1 and let’s prove
it for k = m. Assume 3m ≤ n < 2 · 3m. If n = 3s then f(n) = f(3s) =
f(f(f(s))) = 3f(s) = 3(s+3m−1) = n+3m by the induction hypothesis.
If 3s < n < 3s + 3 then f(3s) < f(3s + 1) < f(3s + 2) < f(3s + 3).
But we have proven f(3s) = 3m + 3s, f(3s + 3) = 3m + 3s + 3. As f
is increasing, we can only have f(3s + 1) = 3m + 3s + 1, f(3s + 2) =
3m + 3s + 2 and so f(n) = n + 3m. If now 2 · 3m ≤ n < 3m+1 then
3m ≤ n− 3m < 2 · 3m+1 thus f(n− 3m) = n so f(n) = f(f(n− 3m)) =
3(n − 3m). The induction step is proven and so we have found f . It
remains to see that 2 · 36 = 1458 < 2007 < 37 = 2187 so f(2007) =
3(2007− 36) = 3(2007− 729) = 3834.

Problem 36. Find all functions f : N → N satisfying

f(m + f(n)) = n + f(m + k)

for m,n ∈ N where k ∈ N is fixed.

Solution. It’s clear that f is injective (if f(n1) = f(n2) taking
n = n1, n2, the left-hand side of the condition stays the same, while
right-hand side is n1+f(m+k), respectively n2+f(m+k), so n1 = n2).
Now let’s symmetrize the condition, by taking n → f(n + k). We get
f(m + f(f(n + k))) = f(n + k) + f(m + k). Tossing m and n we get
f(n+f(f(m+k))) = f(n+k)+f(m+k) and the injectivity of f gives us
n+f(f(m+k)) = m+f(f(n+k)), or if we take x = m+k, y = n+k we
deduce f(f(x))−x = f(f(y))−y = a so f(f(x)) = x+a. Then a ≥ 0.
Now set n → f(n) to get f(m+n+a) = f(n)+f(m+k). Interchanging
m, n we get f(m + n + a) = f(m) + f(n + k) so f(n + k) − f(n) =
f(m + k) = b. So f(n + k2) = f(n) + bk thus f(f(n + k2)) = f(f(n) +
bk) = f(f(n)) + b2. But f(f(n + k2)) = n + k2 + a, f(f(n)) = n + a
which implies b2 = a2 so b = a as b is clearly non-negative. Therefore
f(m + n + a) = f(m) + f(n) + a. This Cauchy-type equation can be
solved in a usual way: f(m + n + a) = f(m + n − 1) + f(1) + a =
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f(m) + f(n) + a so f(m + n − 1) + f(1) = f(m) + f(n). Now set
m = 2 to get f(n + 1) + f(1) = f(2) + f(n), and therefore f is a linear
function. If f(x) = cx + d then substituting into the condition we get
c(m + cn + d) + d = n + c(m + k) + d so c(cn + d − k) = n which is
possible only for c = 1 (as c ≥ 0) and d = k. So f(x) = x + k and it
satisfies the requirements.

Problem 77. Let f, g : N0 → N0 that satisfy the following three
conditions:

i) f(1) > 0, g(1) > 0;
ii) f(g(n)) = g(f(n))
iii) f(m2 + g(n)) = f 2(m) + g(n);
iv) g(m2 + f(n)) = g2(m) + f(n).
Prove that f(n) = g(n) = n.

Solution. If we set m = 0 into iii) and iv) and compare them we
get f 2(0) + g(n) = f(g(n)) = g(f(n)) = g2(0) + f(n) so f(n)− g(n) =
f 2(0) − g2(0). Particularly if we set n = 0 we get f(0) − g(0) =
f 2(0)−g2(0) or (f(0)−g(0))(f(0)+g(0)−1) = 0 so either f(0) = g(0)
or f(0) + g(0) = 1. If it is the latter the one of f(0), g(0) is 1 and
the other is 0. As the conditions are symmetric in f, g we can suppose
f(0) = 1, g(0) = 0. Then set m = 1, n = 0 into iii) to get f(1) = f 2(1)
so f(1) = 1. Now we set m = 1, n = 1 into iv) to get g(1) = 1.
So g(1) = f(1). But this contradicts the fact that f(n) − g(n) =
f 2(0) − g2(0) = 1. Hence we have f(0) = g(0) and thus f(n) = g(n).
So the conditions iii) and iv) merge into f(m2 + f(n)) = f 2(m) + f(n).
Next let A = {f(x)− f(y)}. If u = f(x)− f(y) ∈ A then u + f 2(1) =
f(1 + f(x))− f(y) ∈ A hence A contains all multiples of k = f 2(1) as
it contains 0. Now let f(a) = b. Assume that b 6= a. Pick up n > a2, b2

and pick up x, y with f(x) − f(y) = (nk + a)2 − a2, so f(x) + a2 =
f(y)+(nk+a)2. Then f(f(x)+a2) = f(f(y)+(nk+a)2) so f(x)+b2 =
f(y) + f(nk +a)2 hence (nk +a)2−a2 = f(x)− f(y) = f(nk +a)2− b2

or b2−a2 = f(nk + a)2− (nk +a)2. As b 6= a, f(nk + a) 6= nk + a. But
then |f(nk +a)2− (nk +a)2| ≥ 2(nk +a)−1 > max{a2, b2} > |b2−a2|
contradiction. This shows that b = a so f is the identity function, and
so is g.

Problem 95.Find all functions f : : Q+ → Q+ that satisfy f(x) +

f( 1
x
) = 1 and f(f(x)) = f(x+1)

f(x)
.

Solution. We have already encountered a function that satisfies
f(x)+f( 1

x
) = 1, namely f(x) = 1

x+1
. There are of course many of them,

but this seems more comfortable, as it indeed satisfies the condition.
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So let’s prove f(x) = 1
x+1

. If we set x = 1 we get f(1) + f(1) = 1 so

f(1) = 1
2
. Let A be the set of all x that satisfy f(x) = 1

x+1
. If x ∈ A

then f( 1
x
) = 1− f(x) = 1− 1

x+1
= x

x+1
= 1

1+ 1
x

. Also writing the second

condition for x yields f( 1
x+1

) = f(x+1)
1

x+1

so f( 1
x+1

) = (x + 1)f(x + 1). As

f( 1
x+1

) = 1 − f(x + 1) we get (x + 2)f(x + 1) = 1 so f(x + 1) = 1
x+2

.

Thus if x ∈ A then 1
x

and x + 1 also belong to A. It remains to show
that every positive rational number p

q
can be obtained from 1 by means

of operations x → 1
x
, x → x + 1. This can be proven by induction on

p + 2q ≥ 3. For p + 2q = 3, p = q = 1 and the basis holds true. Next if
p > q then p−q

q
obeys the induction step and the operation x → x + 1

turns p−q
q

to p
q
. If p < q then q

p
obeys the induction step and the

operation x → 1
x

turns q
p

to p
q
. The verification is easy.

Binary (and other) bases

Problem 14. (Iberoamerican)Find all functions f : N → R for
which f(1) = 1 and

f(2n + 1) = f(2n) + 1 = 3f(n) + 1

n ∈ N .

Solution. Again the problem is pretty directly solved if we look at
the binary representation of n. f(n) is obtained by writing n in base 2
and reading the result in base 3.

Problem 15. (IMO 1978)Find all functions f : N → N that satisfy
f(1) = 1, f(3) = 3 and

f(2n) = f(n)

f(4n + 1) = 2f(2n + 1)− f(n)

f(4n + 3) = 3f(2n + 1)− 2f(n)

for any n ∈ N .

Solution. Again the function is uniquely determined, and the key
to finding it should be the binary representation of n. By direct com-
putation we get that f(1) = 1, f(2) = 1, f(3) = 3, f(4) = 1, f(5) =
5, f(6) = 3, f(7) = 7, f(8) = 1, f(9) = 9, f(10) = 5, f(11) = 13. Up
to f(11) we could conjecture that f(n) is obtained from n by delet-
ing the zeroes at the end. However if we write 11 in base 2 we get
11 = 10112 and f(11) = 13 = 11012. So it’s natural to suppose that
f(n) is obtained by reversing the digits of n. Indeed, this is confirmed
by all the previously computed values of f , since all numbers less than
11, if we delete their last zeroes, become palindromes. This claim is



97

easy to verify by strong induction. Indeed assume that it’s true for all
numbers less than k − 1 and let’s prove it for k. Of course we need to
consider three cases according to the three cases of the condition:

a) k is even. In this case f(k) = f(k
2
) and the claim follows from the

induction step.
b) k is of form 4n + 1. Assume that n has r digits, and let m = f(n)

be obtained from n by reversing its binary digits. Then the number
obtained from k by reversing its digits is 2r+1 + m. Also f(2n + 1) =
2r + m so f(k) = 2f(2n + 1)− f(n) = 2r+1 + 2m−m = 2r+1 + m and
the claim holds in this case.

c) k is of form 4k + 3. Again assuming that n has k digits, and
m = f(n) then the inverse of k is 2r+1 + 2r + m, while f(k) = 3f(2n +
1) − 2f(n) = 3(2r + m) − 2m = 2r+1 + 2r + m, and this case is true,
too.

Constructing functions by iterations

Problem 69. Let n ∈ N . Find all continuous f : R → R that
satisfy fn(x) = −x where fn is the n-th iterate of f .

Solution. f is clearly injective, so is monotonic. As it cannot be
increasing (otherwise fn(x) = −x would be increasing too) we conclude
that f is decreasing. Set am = fm(x). Then f2n(x) = −fn(x) = x.
Hence the set A = {ak|k ∈ N} is periodic of period 2n so is finite. Let
ak be the smallest number of a. The as f is decreasing we conclude
that ak+1 = f(ak) is the largest in A. However as ak is the smallest, we
have ai+n ≥ ak hence ai = −ai+n ≤ −ak so ak+n = −ak is the largest.
Hence f(ak) = −ak. Also f(ak+1) should be the smallest in A hence
f(−ak) = ak and by induction on p that ak+p = (−1)pak. Since A is
periodic ak+p = a0 = x for some p and therefore f(x) = −x. This
function satisfies the conditions if and only if n is odd.

Problem 26.Show that there exist functions f : N → N such that

f(f(n)) = n2, n ∈ N

.

Solution. The problem presents no difficulty to us once we have
enough experience in solving this kind of problems. If m is not a perfect
square, define a ”chain” C(m) as the sequence (xn)n∈N with xi = m2i

.
The chains partition all N \ {1} (1 presents no problem as we can
merely set f(1) = 1 and ignore this number). Then by pairing the
infinitely many chains: (C(x1), C(y1)), (C(x2), C(y2)), . . . and setting

f(x2k

i ) = y2k

i , f(y2k

i ) = x2k+1

i we construct the desired function. It
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presents no difficulty proving that all solutions can be written in such
form by merely copying the reasoning from the previous problems.

Problem 23.Let f : N → N ne a function satisfying

f(f(n)) = 4n− 3

and
f(2n) = 2n+1 − 1

. Find f(993). Can we find explicitly the value of f(2007)? What
values can f(1997) take?

Solution. It’s clear that f(x) = 2x−1 satisfies the condition, so we
try to prove that f(993) = 1995. Now if we can prove f(t) = 2t− 1 by
using the first condition we prove that f(2t− 1) = 4t− 3, f(4t− 3) =
8t − 7 and so on, so f(tn) = 2tn − 1 for tn being recurrently defined
as t0 = t, tk+1 = 2tk − 1. We know f(2n) = 2n+1 − 1, so it seems
natural to try to write 993 = tn where t0 = 2k for some k. Let’s
try to go backwards: 993 = 2 · 497 − 1, 497 = 2 · 249 − 1, 249 =
2 ·125−1, 125 = 2 ·63−1, 63 = 2 ·32−1 and 32 is a power of two. This
procedure works for any number of form 2m(2n − 1) + 1. But if we try
to obtain f(2007) by this procedure we fail because 2007 = 2 · 1004− 1
and at 1004 we stop. Now we try to construct a different function
than 2x − 1 to answer negatively to the second question. Consider a
number n > 1 which is not 1 mod 4 then we can define a sequence
S(x) = (xn)n∈N for x0 = x, xk+1 = 4xk − 3, and call x the ancestor of
the sequence. It’s easy to prove that g is injective (thus so is f) and
these sequences partition N \{1}. Let g(x) = 4x−3, gn(x) be g iterated
n times. Now we can prove that if f(n) = m then f(m) = g(n) then
f(g(n)) = g(m) and so on, to get f(gk(n)) = gk(m). Hence f provides
a pretty comfortable intuitive mapping between these sequences, which
we shall define now. Let x, y be ancestors of two sequences and assume
f(x) = ym. Let f(y) = u then f(gm(y)) = gm(f(y)) = gm(u), as proven
just before. However f(gm(y)) = f(ym) = g(x). So g(x) = gm(u) hence
x = gm−1(u) (if m > 0). As x is not 1 modulo 4 this is only possible
for m = 1 or m = 0. In the first case we have f(y) = x and in
the second f(x) = y. In any case, we see that f maps one ancestor
into another ancestor, and then f can be defined recursively without
contradiction on the sequences of these ancestors. In the condition
we have defined f for the powers of two and for powers of two minus
one. However we have infinitely many ancestors left which we can pair
up as we want, constructing many different functions. Particularly
pairing up 2007 with different ancestors we can obtain different values
for f(2007), so f(2007) can not be uniquely determined. Now if 2007 is
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paired with another ancestor u then either f(2007) = u or f(u) = 2007
and f(2007) = 4u− 3. Hence all possible values for f(2007) are either
u or 4u − 3 where u is a number not 1 modulo 4 and not a power of
two or one less a power of two.

Approximating by linear functions

Problem 19.Find all increasing functions f : N → N such that the
only natural numbers who are not in the image of f are those of form
2n + f(n), n ∈ N .

Solution. Like in the previous problem we prove that f is unique.
It remains now to find it. Again setting f(x) ∼ cx we get m ∼ 2(m−
n) + c(m − n) where m = f(n) so c = 2(c − 1) + c(c − 1) so c2 = 2.
Therefore f(n) ∼

√
2n so we can suppose that f(n) = [

√
2n + a]. By

computing some values of f we can even infer a = 0 so f(n) = [
√

2].
To prove that this function satisfies the condition we must prove that
the sets {[

√
2n]|n ∈ N} and {[(2 +

√
2)n]|n ∈ N} partition N . This

follows from the more general Beatty Theorem: If α, β ∈ R+ \ Q and
1
α

+ 1
β

= 1 then the sets A = {[nα]|n ∈ N} and B = {[nβ]|n ∈
N} partition N , as 1√

2
+ 1

2+
√

2
= 1√

2
+ 2−

√
2

2
= 1. To prove Beatty

Theorem, note that |A
⋂
{1, 2, . . . , n}| = [n+1

α
] (the number of numbers

m that satisfy mα < n + 1)and |B
⋂
{1, 2 . . . , n}| = [n+1

β
]. Therefore

|A
⋂
{1, 2, . . . , n}|+ |B

⋂
{1, 2, . . . , n}| = [n+1

α
] + [n+1

β
]. And as [n+1

α
] ∈

( n+1
alpha

− 1; n+1
α

) and n+1
β

∈ (n+1
β
− 1; n+1

beta
− 1) thus [n+1

α
] + [n+1

β
] ∈

(n+1
α

+ n+1
β
−2; n+1

α
+ n+1

β
) = (n−1; n+1). As this number is an integer,

we finally conclude that |A
⋂
{1, 2, . . . , n}|+|B

⋂
{1, 2, . . . , n}| = n. By

writing the condition for n and for n+1 and subtracting them we deduce
that |A

⋂
{n}|+ |B

⋂
{n}| = 1 which implies that A, B partition N .

Problem 34.Find all functions f : N → N such that

f(f(n)) + f(n + 1) = n + 2

for n ∈ N .

Solution. We firstly note that f(n+1) ≤ n+1 and f(f(n)) ≤ n+1
from this relation. Hence f(k) ≤ k for k > 1. If we try to set f(x) ∼ cx
then we get f(f(n)) ∼ c2n thus c2n + cn ∼ n so c2 + c = 1 hence

c =
√

5−1
2

. Let’s compute now f(1). Assume that f(1) = a. Then
f(a) + f(2) = 3. We have two cases:

a) f(2) = 1, f(a) = 2. Immediately a ≥ 3. Set n = a − 1 to get
f(f(a − 1)) + 2 = a so f(f(a − 1)) = a − 2. This is possible only
when f(a − 1) = a − 2, f(a − 2) = a − 2. Then set n = a − 2 to get
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a− 2 + a− 2 = a so a = 4. But this contradicts the fact that f(2) = 1
as we got f(a− 2) = 2. So this case is impossible.

b) f(2) = 2, f(a) = 1. We claim a = 1. Indeed assume for sake of
contradiction that a ≥ 3. Set n = a− 1. Then f(f(a− 1)) + a = a + 1
so f(f(a − 1)) = 1. Let f(a − 1) = b. Then f(b) = 1 so b ≥ 3. Set
n = b− 1 to get f(f(b− 1)) = b. As f(k) ≤ k for k ≥ 2 this is possible
only when f(b − 1) = 1 so b = a. But then f(a − 1) = a, impossible.
So f(1) = 1.

Thus we can conclude that f(k) ≤ k for any k and we can determine
f(n) by strong induction on n: if we have found f(1), f(2), . . . , f(k)
then by setting n = k + 1 we compute f(k + 1). So f is uniquely
determined and it remains to find an example. We seek f(x) ∼ cx

where c =
√

5−1
2

. As f(1) = 1, f(2) = 2 we get f(3) = 2 then f(4) = 3,
f(5) = 4, f(6) = 4. We can conjecture that f(x) = [cx] + 1, as this
holds for x = 1, 2, 3, 4, 5, 6. Indeed, we prove f(x) = [cx] + 1 satisfies
the condition. f(f(n)) + f(n + 1) = [c([cn] + 1)] + 1 + [cn + c] + 1
so we need to show that [c[cn] + c] + [cn + c] = n. We prove this by
induction on n by showing that either [c(n + 1) + c] = [cn + c] + 1
and [c[c(n + 1)] + c] = [c[cn] + c] or [c(n + 1) + c] = [cn + c] and
[c[c(n + 1)] + c] = [c[cn] + c] + 1. Indeed, set x = cn. Then [c(n + 1) +
c] − [cn + c] = [x + 2c] − [x + c]. It equals 0 when {x + c} < 1 − c
and 1 otherwise, thus 0 when 1 − c < {x} < 2 − 2c and 1 otherwise.
[c[c(n + 1)] + c]− [c[cn] + c] = [c[x + c] + c]− [c[x] + c]. Let {x} = t. If
t < 1−c then t < c [c[x+c]+c]− [c[x]+c] = [c[x]+c]− [c[x]+c] = 0. If
2−2c > t > 1−c then [c[x+c]+c]− [c[x]+c] = [c(x−t+1)+c]− [c(x−
t)+c] = [cx+2c−ct]−[cx+c−ct]. Now cx = c2n = n−cn = n−x so we
substitute to get [n−x+2c−ct]−[n−x+c−ct] = [2c−ct−x]−[c−ct−x].
As {x} = t it equals [2c−(c+1)t]−[c−(c+1)t]. Now t ∈ (1−c; 2−2c) so
2c− (c+ 1)t ∈ (2c− 2(1− c2); 2c− (1− c2)) = (0; c) while c− (c+ 1)t ∈
(−c; 0) and the difference is 1. Finally if t > 2 − 2c then we get
c− 1 < 2c− (c + 1)t < 0 and −1 < c− (c + 1)t < −c and the difference
is zero. The condition we seek therefore holds and f(x) = [cx] + 1.

Problem 78. Find all functions f : : N → N that satisfy f(1) = 1
and f(n + 1) = f(n) + 2 if f(f(n) − n + 1) = n, f(n + 1) = f(n) + 1
otherwise.

Solution. Let’s put f(n) ∼ cn. Then 1 < c < 2. Also f(f(n)−n+1)
must equal n an infinite number of times so c(cn − n + 1) ∼ n or

c(c − 1) = 1 hence c = 1+
√

5
2

. Next we compute f(2) = 3, f(3) = 4 so
we suppose that f(n) = [cn]. Firstly we prove that [cn] satisfies the
condition. Indeed, let t = {cn}. Then [c(n + 1)]− [cn] = [cn + c]− [cn]
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is 2 when t ≥ 2 − c and 1 otherwise. However [c([cn] − n + 1)] =
[c(cn− t−n+1)] = [(c2−c)n+c−ct] = [n+c(1− t)]. It equals n when
1− t < 1

c
or t > 1

−
1
c

= 1− (c−1) = 2−c and n+1 otherwise. Hence we
see that both conditions [c(n + 1)]− [cn] = 2 and [c([cn]− n + 1)] = n
are equivalent to the same condition {cn} > 2−c and thus [cn] satisfies
the condition.

Now we prove f(n) = [cn] by induction on n. It’s true for n ≤ 3.
Next assume it holds for all n ≤ k. We prove it for k+1. We have f(k+
1) = f(k)+2 = [ck]+2 if f(f(k)−k+1) = k and f(k+1) = f(k)+1 =
[ck]+1 otherwise. But f(k)−k+1 < ck−k+1 = k+1−(2−c)k < k+1
hence f(f(k)− k + 1) = [c(f(k)− k + 1)] = [c([ck]− k + 1)] using the
induction step. However we have proven that [c(n + 1)] = [cn] + 2 if
[c([ck] − k + 1)] = k and [c(n + 1)] = [cn] + 1 otherwise. Therefore
f(k + 1) = [c(k + 1)] and the induction is finished.

The Extremal Principle

Problem 4. (IMO ’1977). Let f : N → N be a function such that
f(n + 1) > f(f(n)) for all n ∈ N . Show that f(n) = n for all n ∈ N .

Solution. First note that if f(n) ≥ k for all n ≥ k, then

f(n + 1) > f(f(n)) ≥ f(k) ≥ k.

Hence it follows by induction on k thatf(n) ≥ k for all n ≥ k. In
particular, f(k) ≥ k for all k ∈ N. Suppose that f(k) > k for some
k ∈ N . Denote by f(m) the least element of the set A = {f(n) : n ≥
k}. If m − 1 > k then f(m − 1) ≥ m − 1 > k and if m − 1 = k
then f(m− 1) = f(k) > k. Hence f(m− 1) ∈ A. On the other hand
f(m) > f(f(m − 1)) which is a contradiction. Thus f(k) = k for all
k ∈ N .

Problem 5. (BMO ’2002) Find all functions f : N → N such that

2n + 2001 ≤ f(f(n)) + f(n) ≤ 2n + 2002

for all n ∈ N .

Solution. First we shall show that f(n) > n for all n ∈ N . Assume
the contrary and let m ∈ N be such that f(m) ≤ m and k = f(m) be
the least possible. Then for l = f(k) we have

k + l ≥ 2m + 2001 and f(l) + l ≤ 2k + 2002.
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Hence

2k + 2002 ≥ f(l) + 2m + 2001− k

and we get
f(l) ≤ 3k − 2m + 1 < k < m < l,

a contradiction. Hence the function g(n) = f(n) − n is positive. Let
g(p) be its least value and set q = f(p). Then it follows by the given
condition that

2g(p) + g(q) ≥ 2001 and 2g(q) + g(f(q)) ≤ 2002.

These inequalities imply that

4g(p) ≥ 4002− 2g(q) ≥ 2000 + g(f(q)) ≥ 2000 + g(p),

i.e. g(p) ≥ 667. Now it follows by the inequality

2g(n) + g(f(n)) ≤ 2002

that g(n) = 667, i.e. f(n) = n + 667 for all n ∈ N . Conversely, it is
easy to check that this function satisfies the given conditions.

Substitutions

Problem 123. Find all continuous functions f : R → R that satisfy

f(x)y + f(y)x = (x + y)f(x)f(y)

Solution. If f(y) = 0 then yf(x) = 0 so if y 6= 0 then f is identically
zero. Otherwise f is non-zero on R \ {0}. Then set y = x to get
2xf(x) = 2xf 2(x) so f(x) = 1. As f is continuous, in this case f is
identically 1.

Problem 119. Find all continuous functions f : R → R for which

f(x + y)− f(x− y) = 2f(xy + 1)− f(x)f(y)− 4

Solution. If we set x = 0 we get f(y)−f(−y) = 2f(1)−f(0)f(y)−
4. If we set y = 0 we get 2f(1) − f(x)f(0) − 4 = 0, so if f is not
constant then f(0) = 0 hence f(1) = 2 and from the first relation
we get f(y) − f(−y) = 0 so f is even. (Note that if f = c then
2c − c2 − 4 = 0 which has no real roots so f cannot be constant).
Next set y = 1 to get f(x + 1)− f(x− 1) = 2f(x + 1)− 2f(x)− 4 so
f(x + 1) − 2f(x) + f(x − 1) = 4. From here we deduce by induction
that f(n) = 2n2 for all integers n and that f(x + n) = 2n2 + bn + c
for some b, c depending only on x and not on N ∈ N . For x = 1

2
we

have b = 0 because f(1
2
) = f(−1

2
). Next set y = 1

2
to get f(x + 1

2
) −

f(x− 1
2
) = 2f(x

2
+ 1)− f(x)f(1

2
)− 4. If now x = 2k where k ∈ N we
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get (2(2k + 1
2
)2 + c) − (2(2k − 1

2
)2 + c) = 2(k + 1)2 − 8k2(1

2
+ c) − 4

and we deduce c = 0 so f(k + 1
2
) = 2(k + 1

2
)2. Now we prove that

f(t) = 2t2 for all t = a
2k where a, k ∈ N by induction on k. The basis is

proven. For the induction step, write the previously obtained relation
f(x + 1

2
)− f(x− 1

2
) = 2f(x

2
+ 1)− f(x)f(1

2
)− 4. Now if t = a

2k where
k > 1 and a is odd then taking x = 2(t − 1) and plotting it into the
relation we get f(t) = 2t2 as desired. As the numbers a

2k are dense in
R f(x) = 2x2.

Problem 104.(ISL 2000)Find all pairs of functions f : : R → R that
obey the identity

f(x + g(y)) = xf(y)− yf(x) + g(x)

Solution. If f is identically zero then so is g. Now assume f is not
identically zero. Let’s prove g take the value zero. Set x = 0 to get
f(g(y)) = −yf(0) + g(0). Particularly f takes the value 0 because if
f(0) 6= 0 then −yf(0) + g(0) is surjective. Next setx → g(x) to obtain
f(g(x)+g(y)) = g(x)f(y)−yf(0)+xyf(0)+g(g(x)). Swapping x and y
we get f(g(x)+g(y)) = f(x)g(y)−xf(0)+xyf(0)+g(g(y)). Therefore
g(x)f(y)− yf(0) + f(f(x)) = g(y)f(x)− xf(0) + g(g(x)) (1). Now set
y = t with f(t) = 0 to get −tf(0)+g(g(x)) = g(t)f(x)−xf(0)+g(g(t))
so g(g(x)) = c−ax+uf(x) where c = tf(0)+g(g(t)), a = f(0), u = g(t).
If we substitute into (1) we get g(x)f(y) + uf(x) = g(y)f(x) + uf(y)

hence (g(x) − u) = g(y)−u
f(y)

f(x) if f(y) 6= 0. Taking a fixed value of

y in which f does not vanish we get g(x) − u = kf(x) so g(x) =
kf(x) + u or g depends linearly on f . If k = 0 then g is constants and
f(x + u) = xf(y) − yf(x) + u so setting y = x gives us f(x + u) = u
so f = g = u. Now assume k 6= 0. We have g(g(x)) = c− ax + uf(x)
and also f(g(x)) = −xf(0) + g(0). But g(g(x)) = kf(g(x)) + u =
k(−xf(0) + g(0)) + u = −kf(0)x + kg(0) + u. So c − ax + uf(x) =
−kf(0)x + kg(0) + u. If u 6= 0 then we express f as a linear function
hence so is g. If u = 0 then g(t) = 0 and −kf(0)x + g(0) = c − ax
hence f(0) = a = −kf(0), c = g(0). Then set y = t to get f(x) =
−tf(x) + kf(x) = (k− t)f(x) so k− t = 1. Now the original condition
can be rewritten as f(x+kf(y)) = xf(y)−yf(x)+kf(x). Particularly
we deduce f is injective as if f(y1) = f(y2) then by setting y = y1, y2

we conclude y1f(x) = y2f(x) for all x hence y1 = y2. If f(0) = 0 then
f(g(y)) = g(0) so the injectivity of f implies g is constant hence so is
f . Otherwise we get f(kf(y)) = −yf(0) + g(0) = (k−y)f(0). Now set
x → kf(x) to get f(kf(x) + kf(y)) = kf(x)f(y) + (k − y)f(kf(x)) =
kf(x)f(y) + (k − y)2f(0). By symmetry we deduce also f(kf(x) +
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kf(y)) = kf(x)f(y) + (k − x)2f(0) so (k − x)2f(0) = (k − y)2f(0) for
all x, y which is impossible.

We have thus proven that f, g are linear functions. Set f(x) =
ax + b, g(x) = cx + d. We substitute to get f(x + cy + d) = x(ay + b)−
y(ax + b) + cx + d or ax + acy + ad + b = (b − d)x − by + d + cx so
(a+d− b− c)x+(ac+ b)y +ad+ b−d = 0. So b = −ac, d = b+ c−a =
c−ac−a. Then ad + b−d = 0 so a(c−ac−a)−ac− c + ac + a = 0 or

ac− a2c− a2 − c + a = 0 so c(a2 − a + 1) = a(1− a) hence c = a(1−a)
a2−a+1

.

Problem 136. If a > 0 find all continuous functions f for which

f(x + y) = axyf(x)f(y)

Solution. The function g(x) = f(x)

a
x2
2

will satisfy g(x + y) = g(x)g(y)

hence g(x) = abx for some b so f(x) = a
x2

2
+bx.

Problem 138. Find all continuous functions f : R → R that satisfy

f(x + y)
f(x) + f(y) + 2f(x)f(y)

1− f(x)f(y)

Solution. If we let t(x) = x
x+1

then we observe that t(f(x + y)) =

t(f(x)) + t(f(y)). Thus t(f(x)) = ax hence f(x) = t(x)
1−t(x)

= ax
1−ax

.

Problem 130. Find all continuous function f · (a; b) → R that
satisfy f(xyz) = f(x) + f(y) + f(z) whenever xyz, x, y, z ∈ (a; b),
where 1 < a3 < b.

Solution. Let a = ek, b = el with 0 < 3k < l. Consider the
function g : (0; l − k) → R, g(t) = f(ek+t). The condition rewrites as
g(u + v + w + 2k) = g(u) + g(v) + g(w) whenever u + v + w < l − 3k.
Particularly g(u + v + 2k) = g(u) + g(v) + g(0) = g(u + v) + 2g(0) for
u+v < k−2l. (Note that g(0) is actually not defined but we can define
g(0) = 1

3
g(2k) and observe that when c → 0 we have g(3c+2k) = 3g(c)

so by continuity g(x) → g(2k)
3

= g(0). The condition g(u)+g(v)+g(0) =
g(u+v)+2g(0) is then obtained by taking c → 0 in g(u)+g(v)+g(2c) =
g(u+v)+2g(c))). Then g−g(0) is additive and continuous on [0; l−3k)
which implies g(x) = cx + d on [0; l − 3k]. Then if t < l − 3k then we
have g(2k + t) = g( t

3
) + g( t

3
) + g( t

3
) = ct + 3d. So f(x) = c ln x + d

for x ∈ (a; b
a2 ) and f(x) = x ln x + 3d for x ∈ (a3; b). Note that if

b < a5 then the condition says nothing about f on ( b
a2 ; a3) except that

it’s continuous: if xyz ∈ (a; b) then xyz > a3 x, y, z < b
a2 because

b > xyz > xa2, ya2, za2. So in this case every continuous function
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that satisfies f(x) = c ln x + d for x ∈ (a; b
a2 ) and f(x) = c ln x + 3d for

x ∈ (a3; b) is a solution. If b ≥ a5 then b
a2 > a3 hence f( b

a2 ) = c ln( a
b2

)+d
from one side and c ln( a

b2
) + 3d from the other side. So d = 0 and since

the intervals (a; b
a2 ] and [a3; b) cover (a, b) we have f(x) = c ln x the

only solutions.

Problem 131. Find all continuous functions f : R → R that satisfy

f(xy) = xf(y) + yf(x)

Solution. If y = 0 we get f(0) = xf(0) so f(0) = 0. If x, y 6= 0

then divide the condition by xy to get f(xy)
xy

= f(y)
y

+ f(x)
x

. Hence if we

denote g(u) = f(eu)
eu we get g(u + v) = g(u) + g(v). As g is additive and

continuous we get g(x) = cx thus f(x) = cx ln x for x > 0. For x < 0

set y = x to get f(x2) = 2xf(x) so f(x) = f(x2)
2x

= cx2 ln−x2

2x
= cx ln |x|.

So f(x) = cx ln |x| for all x 6= 0, f(0) = 0. We only need to check
the continuity in zero which is equivalent to limt→0+ t ln t = 0. But if
t = 1

ex this turns to limx→∞
x
ex = 0 which is true.

Problem 46.Find all functions f : Q+ → Q+ that obey the relations

f(x + 1) = f(x) + 1

if x ∈ Q+ and

f(x3) = f(x)3

if x ∈ Q+.

Solution. It’s clear that the identity function satisfies the condition.
Now pick up any rational number r = p

q
. Then we must have f(r+k) =

f(r) + k for k ∈ Z and then f((r + k)3) = f(r + k)3 = (f(r) + k)3 =
f 3(r) + 3kf 2(r) + 3k2f(r) + k3 = f(r3) + 3kf 2(r) + 3k2f(r) + k3. But
f((r + k)3) = f(r3 + 3r2k + 3rk2 + k3) and if q2|k then r2k, rk2, k3 are
integers hence f((r + k)3) = f(r)3 + 3r2k + 3rk2 + k3. So the identity
3kf 2(r)+3k2f(r)+k3 = 3r2k+3rk2 +k3 holds for all k divisible by q2.
The identity can be rewritten as (f(r)−r)(3k2 +3k(f(r)+r)) = 0 and
3k2 + 3k(f(r) + r) as a quadratic in k will not vanish for all k divisible
by q2 (there are infinitely many of them). Therefore f(r)− r = 0 so f
is the identity function.

Problem 89. Show that if f : R → R satisfies

f(xy) = xf(x) + yf(y)

then f is identically zero.
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Solution. Set y = 1 to get f(x) = xf(x) + f(1) so (1 − x)f(x) =
f(1). For x = 1 we get f(1) = 0 so (1− x)f(x) = 0 hence f(x) = 0 for
x 6= 1. Hence f is identically zero.

Problem 44. Find all functions f : R → R that obey the condition

f(f(x) + y) = f(x2 − y) + 4f(x)y

.

Solution. We can guess the solution f(x) = x2 together with the
trivial f = 0. By setting y = 0 we get f(f(x)) = x2. If f would
be injective, we would immediately conclude that f(x) = x2. Assume
not that f(x1) = f(x2). Then substituting x = x1, x = x2 into the
condition we get f(x2

1 − y) = f(x2
2 − y) so f(t) = f(t + b) where

b = x2
1 − x2

2. If b 6= 0 then we can find t0 such that (t0 + b)2 − t20 = a

where 0 ≤ a ≤ b2

2
is a fixed number, thus setting x1 = t0, x2 = t0 + b we

get f(t+a) = f(t). Hence if |x−y| ≤ b2

2
we can assert that f(x) = f(y)

hence f is a constant function c and substituting into the condition
we get c = 0 which contradicts the fact that we’ve picked up f not
identically zero. The contradiction arose from the fact that we assumed
that f(x1) = f(x2) and x2

1 6= x2
2. Thus f(x) = f(y) can hold only if

y = ±x. Returning to f(f(x)) = f(x2) we deduce f(x) = ±x2 for any
x. Now assume for some x0 6= 0 we have f(x0) = −x2

0. Then setting
x = x0 we get f(−x2

0 + y) = f(x2
0 − y)− 4x2

0y therefore f(−x2
0 + y)−

f(x2
0−y) = −4x2

0y. As f(−x2
0+y) = ±(x2

0−y)2, f(x2
0−y) = ±(x2

0−y)2,
we have f(−x2

0+y)−f(x2
0−y) = 0, 2(x2

0−y)2 or −2(x0−y)2. So for any
y, −4x2

0y ∈ {0, 2(x2
0 − y)2 or −2(x0 − y)2}. However for x0 6= 0 each of

−4x2
0y = 0,−4x2

0y = 2(x2
0− y)2,−4x2

0y = −2(x2
0− y)2 is an equation in

y which is either linear or quadratic hence has at most two solutions as
it’s leading coefficient is not zero. Therefore we have at most 6 values
of y for which the assertion holds, contradiction. So f(x) = x2.

Problem 52.Let k ∈ R+. Find all functions f : [0, 1]2 → R such
that the following four conditions hold for all x, y, z ∈ [0; 1]:

i)
f(f(x, y), z) = f(x, f(y, z))

ii)
f(x, y) = f(y, x)

iii)
f(x, 1) = x

iv)

f(zx, zy) = zkf(x, y)
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Solution. Assume that x ≤ y (the second case is reduced to the first
by ii) ). Then set z = y and we have f(x, y) = f(z x

y
, z) = zkf(x

y
, 1) =

yk x
y

= xyk−1. Hence we have f(x, y) = min{x, y}max{x, y}k−1. This

function clearly satisfies the last three conditions. We’ve got just the
first one to check. Assume that x < y = z. Then f(f(x, y), z) =
f(xyk−1, z) = f(xyk−1, y). If x < ( 1

y
)2−k then xyk−1 < y hence

f(f(x, y), z) = xyk−1yk−1 = xy2k−2. From the other side f(x, f(y, z))) =
f(x, yk) and if x < yk then f(x, f(y, z)) = xyk(k−1). So xy2k−2 =
xyk(k−1) for all x, y ∈ [0; 1]2 that satisfy x < yl, x < y2−k. This is pos-
sible only when k(k − 1) = 2k − 2 so k = 1 or k = 2. If k = 1 then
f(x, y) = min{x, y} and if k = 2 then f(x, y) = xy. It’s obvious that
both functions satisfy the first condition.

Problem 68. Find all continuous functions f : R → R that satisfy
3f(2x + 1) = f(x) + 5x.

Solution. If we seek f(x) = ax+b then we must have 3(2ax+a+b) =
(a + 5)x + b hence 3b + 3a = b, 6a = a + 5 hence a = 1, b = −3

2
. Then

if we set g(x) = f(x) + 3
2
− x then we get 3g(x) = g(2x + 1). If we

let h(x) = g(x− 1) we get 3h(x + 1) = h(2x + 2) or 3h(2x) = h(x) or
h(x) = 1

3
h(2x) thus h(x) = 1

3n h( x
2n ). As x

2n tends to zero, f( x
2n ) tends

to f(0) so 1
3n f( x

2n ) tends to zero. Hence h = 0 thus f(x) = x− 3
2
.

Problem 8. (Shortlisted problems for IMO ’2002) Find all functions
f : R → R such that

f(f(x) + y) = 2x + f(f(y)− x)

for all x, y ∈ R.

Solution. Setting y = −f(x) in the given equation gives

f(f(−f(x))− x) = −2x + f(0)

for all x ∈ R. Hence the function f(x) is surjective since the function
−2x + f(y) takes all real values when x runs over R. Hence there is
a ∈ R such that f(a) = 0. Setting x = a in the given equation gives

f(y) = 2a + f(f(y)− a)

for all y ∈ R. Set z = f(y) − a. Then f(z) = z − a for all z ∈ R
since the function f(y)− a takes all real values. Conversely, it is easy
to check that for any a ∈ R the function f(x) = x − a satisfies the
given condition.
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Problem 9. (Bulgaria, 1996) Find all functions f : R → R such
that

f(f(x) + xf(y)) = xf(y + 1)

for all x, y ∈ R.

Solution. Set f(0) = a. Then the given equation for x = 0 gives
f(a) = 0 and setting y = a gives

f(f(x)) = xf(a + 1). (1)

We shall consider two cases.
1. Let f(a + 1) = 0. Then f(f(x)) = 0 for all x ∈ R. Suppose that

f(y + 1) 6= 0 for some y ∈ R. Then the given equation shows that the
function f(x) is surjective. Then the function f(f(x)) is also surjective
which contradicts to f(f(x)) ≡ 0. Thus f(x) ≡ 0.

2. Let f(a + 1) 6= 0. Then it follows from (1) that the function f(x)
is injective (if f(x1) = f(x2) then x1f(a + 1) = f(f(x1)) = f(f(x2)) =
x2f(a + 1), i.e. x1 = x2). Setting x = 1 in the given condition gives

f(f(1) + f(y)) = f(y + 1),

i.e. f(1)+f(y) = y+1. In particular, f(1)+f(1) = 1+1, i.e. f(1) = 1.
Hence f(y) = y for all y ∈ R.

Thus there are two functions satisfying the given functional equation
- f(x) = 0 and f(x) = x.

Problem 10. (BMO ’1997 and BMO ’2000) Find all functions
f : R → R such that

f(xf(x) + f(y)) = f 2(x) + y

for all x, y ∈ R.

Solution. Setting x = 0 in the given equation gives f(f(y)) =
f 2(0) + y. In particular, f(b) = 0 for b = −f 2(0). Then

f(f(y)) = f(bf(b) + f(y)) = f 2(b) + y = y

which shows that f(0) = 0 and f(f(y)) = y for all y ∈ R. Now setting
y = 0 in the given equation we get f(xf(x)) = f 2(x). Hence

f 2(x) = f(xf(x)) = f(f(x)f(f(x))) = f 2(f(x)) = x2,

i.e. f(x) = ±x for all x ∈ R. Suppose that f(x) = x and f(y) = −y
for some x and y. Then we get from the given equation that±(x2−y) =
x2 + y which implies x = 0 or y = 0.
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Thus the only solution of the problem are the functions f(x) = x
and f(x) = −x.

Problem 13. (USA, 2002) Find all functions f : R → R such that

f(x2 − y2) = xf(x)− yf(y)

for all x, y ∈ R.

Solution. Setting y = 0 gives f(x2) = xf(x) which implies f(0) = 0.
If x 6= 0 then xf(x) = f(x2) = −xf(−x), i.e. f(−x) = −f(x). Hence
f(−x) = −f(x) and f(x2−y2) = f(x2)−f(y2) for all x, y ∈ R. These
two equations imply that

f(x) + f(y) = f(x + y)

for all x, y ∈ R. Note that the above equation together with f(x2) =
xf(x) is equivalent to the given equation. For any x and y = 1− x we
get

f(x)− f(y) = f(x− y) = f(x2 − y2) = xf(x)− yf(y) =

= xf(x)− (1− x)f(y) = x(f(x) + f(y))− f(y) = xf(1)− f(y),

i.e. f(x) = xf(1). Hence f(x) = cx, where c ∈ R is a constant.

Additive Cauchy Equation

Problem 12. (Bulgaria, 1994) Find all functions f : R → R such
that

xf(x)− yf(y) = (x− y)f(x + y)

for all x, y ∈ R.

Solution. It follows from the given equation that

(x + y)f(x + y)− yf(y) = xf(x + 2y).

Subtracting this from the given equation gives

f(x) + f(x + 2y) = 2f(x + y)

which is equivalent to

f(x) + f(y) = 2f

(
x + y

2

)
(1)

for all x, y ∈ R. Set b = f(0). Then

f(x) + b = 2f(
x

2
)
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which together with (1) gives

f(x) + f(y) = f(x + y) + b.

Now using the given equation we get

x(f(y)− b) = y(f(x)− b).

Hence f(x) − b = x(f(1) − b, i.e. f(x) = ax + b, where a and b are
constants.

Conversely, it is easily checked that any linear function satisfies the
given equation.

Problem 109.Find all functions f : : R → R that satisfy

f(x + y) + f(xy) = f(x)f(y) + 1

Solution. We can guess f(x) = x + 1 as a solution. If x = y =
0 we get 2f(0) = f(0)2 + 1 so f(0) = 1. If we set y = 1 we get
f(x + 1) + f(x) = f(x)f(1) + 1. Set f(1) = a. Then we get f(x + 1) =
(a − 1)f(x) + 1. If a = 1 we get f(x + 1) = 1 so f is identically 1.
Otherwise we get 1 = f(−1 + 1) = (a − 1)f(−1) + 1 so f(−1) = 0.
Also f(2) = a(a− 1) + 1 = a2− a + 1. f(3) = (a− 1)(a2− a + 1) + 1 =
a3−2a2 +2a, f(4) = (a−1)(a3−2a2 +2a)+1 = a4−3a3 +4a2−2a+1.
Now set x = y = 2 into the condition to get 2f(4) = f(2)2 + 1 so
2(a4−3a3+4a2−2a+1) = a4−2a3+3a2−2a+2 so a4−4a3+5a2−2a = 0
so a(a−2)(a−1)2 = 0. As a 6= 1 we either have a = 2 or a = 0. If a = 0
we get f(x+1) = 1−f(x) hence f(x+2) = f(x). Then set y = 2 to get
f(x+2)+f(2x) = f(2)f(x)+1 = f(x)+1. As f(x+2) = f(x) we have
f(2x) = 1 and then for x = 1

2
we get f(1) = 1 contradiction. So a = 2

and then f(x+1) = f(x)+1 so f(x) = x+1 for x ∈ Z. Now as x+1 is
a solution, we may suppose f(x) = g(x) + 1 and try to prove g(x) = x.
The condition transforms to g(x + y) + g(xy) = g(x)g(y) + g(x) + g(y).
Then g(x) = x for x ∈ N and g(x + 1) = g(x) + 1. If we set y = k ∈ N
then g(x + k) + g(kx) = kg(x) + g(x) + k so g(kx) = kg(x). Then
y = x gives g(x2) + g(2x) = g(x)2 + 2g(x) and as g(2x) = 2g(x) we get
g(x2) = g(x)2 so g is nonnegative on R+. Now write y → y + 1 to get
g(x+y+1)+g(xy+x) = g(x)g(y+1)+g(x)+g(y+1). As g(x+y+1) =
g(x+y)+1, g(y +1) = g(y)+1 and g(x+y)+g(xy) = g(x)g(y)+g(y),
subtracting these two relations we deduce g(xy + x) = g(xy) + g(x).
Now if u, v 6= 0 we set y = v

u
, x = u to get g(u + v) = g(u + v) for

u, v 6= 0. As g(0) = 0 we conclude that g is additive. And since g is
nonnegative on R+ g(x) = cx. Since g(x) = x for x ∈ N , c = 1. So
f(x) = x + 1 and f(x) = 1 are the solutions.
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Problem 30.Find all functions f : N → N such that

f(f(m) + f(n)) = m + n

for all m, n ∈ N .

Solution. If f(m1) = f(m2) the by setting m = m1, m2 we deduce
m1+n = m2+n so m1 = m2. Thus f is injective. Hence if m+n = k+l
then f(f(m) + f(n)) = f(f(k) + f(l)) so f(m) + f(n) = f(k) + f(l).
Therefore f(m + n− 1) + f(1) = f(m) + f(n). Hence by setting m = 2
we get f(n+1) = f(n)+f(2)−f(1). If we set f(2)−f(1) = a, f(1) = b
we deduce by induction on n that f(n) = a(n−1)+b = an+b−a. Hence
f(f(m)+f(n)) = f(am+b−a+an+b−a) = f(a(m+n)+2(b−a)) =
a(a(m + n) + 2(b − a)) + (b − a) = a2(m + n) + (2a + 1)(b − a). As
f(f(m) + f(n)) = m + n we get a2 = 1 hence a = 1 (a = −1 yields f
negative for sufficiently big n) and (2a + 1)(b − a) = 3(b − a) = 0 so
b = a = 1 and f is the identity function. It satisfies our condition.

Problem 18. Denote by T the set of real numbers greater than 1.
Given on n ∈ N find all functions f : T → R such that

f(xn+1 + yn+1) = xnf(x) + ynf(y)

for all x, y ∈ T .

Solution. The solution is similar to that of Problem 13. Setting
x = y gives f(2xn+1) = 2xnf(x). Hence

2f(xn+1 + yn+1) = f(2xn+1) + f(2yn+1),

i.e.
2f(x + y) = f(2x) + f(2y)

for all x, y > 1. Then

f(x+y)+f(z) = f

(
2.

x + y

2

)
+f

(
2.

z

2

)
= 2f

(
x + y + z

2

)
= f(x)+f(z+y)

for all x, z > 2 and y > 0. This shows that the functions f(x+y)−f(x),
where x > 2, y > 0 depends only on y. Set g(y) = f(x + y) − f(x).
Then

f(2x)

2
+

f(2y)

2
= f(x + y) = f(x) + g(y),

x > 2, y > 1. Hence f(2x) = 2f(x) + a, where a is a constant. Then
it follows by induction that

f(2k) = 2k−2f(4) + a(2k−2 − 1)

for any k ≥ 2. Hence

f(2.4n+1) = f(22n+3) = 22n+1f(4)+a(22n+1−1) = 2.4nf(4)+a(22n+1−1).
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On the other hand we have

f(2.4n+1) = 2.4nf(4)

and therefore a = 0. Then

f(x + y) = f(x) + f(y), f(xn+1) = xnf(x),

x, y > 2. It follows by induction that f(kx) = kf(x) for any k ∈ N .
In particular for any s ∈ N we have f(3s) = 3s−1f(3) = 3s.c where

c =
f(3)

3
. Thus for any x > 2 we have

f(x + 3s) = f(x) + f(3s) = f(x) + 3s.c . (1)

Set k = 3s where s ∈ N . Then
n+1∑
j=0

(
x

y

)
f(xj)kn+1−j = f((x + k)n+1) =

(x + k)nf(x + k) =
n∑

j=0

(
n

j

)
xjkn−j(f(x) + kc),

where in the last identity we have used (1). Comparing the coefficients
of kn on both sides we get (n + 1)f(x) = f(x) + nxc, i.e. f(x) = xc for
all x > 2. Now let x > 1 and take y > 2. Then

c(xn+1 + yn+1) = xnf(x) + ynf(y) = xnf(x) + cyn+1

which shows that f(x) = cx. Thus the solutions of the problem are all
functions f(x) = cx where c is a constant.

Problem 20. (Russia ’1993). Find all functions f : R+ → R+ such
that

f(xy) = f(x)f(y)

for all x, y ∈ R+.

Solution. We shall show that the function f(x) = x is the only
solution of the problem. Suppose that f(a) 6= 1 for some a > 0. Then

f(a)f(xy) = f(axy) = f(ax)f(y) = f(a)f(x)f(y),

i.e. f(xy) = f(x)f(y). Hence

f(a)f(x+y) = f(ax+y) = f(ax)f(ay) = f(a)f(x)+f(y),

i.e. f(x + y) = f(x) + f(y). Now it follows from Problem 19 (f(x) is
bounded from below since f(x) > 0) that f(x) = cx where c = f(1) >
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0. Hence cxy = (cx)cy. In particular c = ccy for all y > 0 which shows
that c = 1.

Problem 21. (generalization of Problem 15) Find all functions
f : R+ → R+ which are bounded from above on an interval and such
that

f(xf(y)) = yf(x)

for all x, y ∈ R+.

Solution. For any z > 0 set x =
z

f(1)
and y = 1. Then

f(f(z)) = f(f(xf(1))) = f(1.f(x)) = xf(1) = z,

i.e. f(f(z)) = z. Hence f(xy) = f(xf(f(y))) = f(y)f(x). Set
g(x) = lg f(10x), x ∈ R. Then g(x) + g(y) = lg f(10x) + lg f(10y) =
lg f(10x)f(10y) = lg f(10x.10y) = lg f(10x+y) = g(x+y), i.e. g(x+y) =
g(x) + g(y) for all x, y ∈ R. Moreover the function g(x) is bounded
from above on an interval since f(x) is so. Then g(x) = cx for all
x ∈ R, where c = g(1) (see the Remark after Problem 19). Hence
lg f(10x) = cx, i.e. f(10x) = (10x)c showing that f(x) = xc for all

x ∈ R+. Now the given equation gives (xf(y))c = yxc, i.e. xc.yc2 =
yxc. Hence c2 = 1, i.e. c = ±1. Thus f(x) = x for any x ∈ R+ or

f(x) =
1

x
for any x ∈ R+.

Problem 22. (generalization of Problem 16) Let S be the set of all
real numbers greater than −1. Find all functions f : S → S which are
bounded from above on an interval and such that

f(x + f(y) + xf(y)) = y + f(x) + yf(x)

for all x, y ∈ S.

Solution. Replacing x and y by x − 1 and y − 1, respectively we
get f(x(f(y − 1) + 1) − 1) = y(f(x − 1) + 1) − 1 for any x, y > 0.
Hence the function g(x) = f(x−1)+1 satisfies the functional equation
g(xg(y)) = yg(x) for x, y ∈ R+. It follows from Problem 21 that either

g(x) = x or g(x) =
1

x
, x ∈ R+. Hence the solutions of the problem

are the functions f(x) = x and f(x) = − x

1 + x
.
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Problem 23. (IMO ’2002) Find all functions f : R → R such that

(f(x) + f(z))(f(y) + f(t)) = f(xy − zt) + f(xt + yz)

for all x, y, z, t ∈ R.

Solution. Setting y = z = t = 0 gives 2(f(x) + f(0))f(0) = 2f(0).

Hence 2(f(0))2 = f(0) and it follows that either f(0) =
1

2
or f(0) = 0.

If f(0) =
1

2
then f(x) =

1

2
for all x ∈ R and this function is a solution

of the problem.
Suppose now that f(0) = 0. Setting z = t = 0 gives f(x)f(y) =

f(xy). In particular, f 2(1) = f(1), i.e. either f(1) = 0 or f(1) = 1. If
f(1) = 0 then f(x) = f(x)f(1) = 0 for all x ∈ R and this function is
also a solution of the problem.

So we may assume that f(1) = 1. Setting x = 0, y = t = 1 gives
f(z) = f(−z), i.e. f is an even function. Then the identity f(x2) =
f 2(x) shows that f(x) ≥ 0 for any x. Now setting x = t, y = z we get

(f(x) + f(y))2 = f(x2 + y2).

Consider the function g(x) =
√

f(x). Then g(x2) =
√

f(x2) = f(x) =
g2(x) and the above identity implies

g(x2) + g(y2) = g(x2 + y2).

Thus g is a non-negative even function which is additive on R+ and
g(1) = 1 (this function is also multiplicative on R+). Now it follows
from Problem 19 that g(x) = x for x ∈ R+ and the fact that g is even
shows that g(x) = |x| for any x ∈ R. Thus f(x) = x2 and it is easy to
check that this function satisfies the given condition (in fact we have
to check the Lagrange identity).

Problem 79. (Korea 1998) Find all functions f : N0 → N0 that
satisfy

2f(m2 + n2) = f(m)2 + f(n)2

for all m, n ∈ N0.

Solution. Again the clue to the problem is not the condition itself
but an observation that follows directly from it: if m2 + n2 = x2 + y2

then f(m)2 + f(n)2 = f(x)2 + f(y)2. Using this we can compute f(n)
from f(0) and f(1): set m = n = 1 to compute f(2), then m = 0.n = 2
to compute f(4), m = 1, n = 2 to compute f(5), then m = 3, n = 4
to compute f(3), m = n = 2 to find f(8), m = 1, n = 3 to get f(10)
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then m = 6, n = 8 to compute f(6). If n > 6 we can compute f(n)
inductively on n as follows: we only need to find x, y, z < n with
x2 + n2 = y2 + z2 or equivalently n2− y2 = z2− x2 or (n + y)(n− y) =
(z − x)(z + x). Set y = n − 2k then (n + y)(n − y) = (2n − 2k)2k so
if we have z + x = n − k, z − x = 4k we satisfy the condition. Now
this implies z = n−k+4k

2
= n+3k

2
, x = n−5k

2
. So this is possible if n − k

is even, n ≥ 5k, n+3k
2

. Now take k = 1 + (n − 1( mod 2 ≤ 1. Then

n > 5 ≥ 5k, n+3k
2

≤ n+3
2

< n so we are done.
It remains therefore to investigate f(0) and f(1). If we set m = n = 0

we get 2f 2(0) = 2f(0) so f(0) = 1 or f(0) = 0. If f(0) = 1 set
m = 1, n = 0 to get 2f(1) = f 2(1) + 1 so (f(1) − 1)2 = 0 hence
f(1) = 1. Now f(x) = 1 satisfies the conditions. As f can be uniquely
computed from f(0) and f(1) we conclude f(x) = 1 is the only solution
in this case. Now if f(0) = 0 then set m = 1, n = 0 to get 2f(1) = f 2(1)
so f(1) = 0 or f(1) = 2. f(x) = 0 satisfies the conditions and f(0) =
f(1) = 0 so it’s the only solution with f(0) = f(1) = 0. f(x) = 2x
also satisfies the conditions and f(0) = 0, f(1) = 2, so it’s the solution
with f(0) = 0, f(1) = 2.

f(x) = 2x, f(x) = 1, f(x) = 0 are therefore the solutions to our
equation.

Problem 91. Find all functions f : R → [0;∞) that satisfy

f(x2 + y2) = f(x2 − y2) + f(2xy)

Solution. If we replace y by −y we see that f(2xy) = f(−2xy) so
f is even. Now set g(x) = f(x2). We claim g(u) + g(v) = g(u + v)
for u, v ≥ 0. Indeed, to prove this we need to find x, y such that
(x2 + y2)2 = u + v, (x2 − y2)2 = u, 4x2y2 = v. Indeed, we get 2x2 =
√

u + v+
√

u, 2y2 =
√

u + v−
√

u thus x =
√√

u+v+
√

u
2

, y =
√√

u+v−
√

u
2

satisfy our claim. Therefore g is additive on R+. Moreover by definition
g is non-negative hence if x > y the g(x) = g(y) + g(x− y) ≥ g(y) so g
is non-decreasing. Therefore g(x) = cx for c ≥ 0 hence f(x) = cx2 for
c ≥ 0. This function satisfies the condition as (x2 + y2)2 = (x2− y2)2 +
(2xy)2. Note that the key to the proof was exactly this well-known
identity which suggested us to substitute g(x) = f(x2) in order to get
additivity.

Problem 92. Find all functions f : : R → R that satisfy

f(y + zf(x)) = f(y) + xf(z)
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Solution. If f is not identically zero then for f(z) 6= 0 f(x1) =
f(x2) implies x1 = x2 if we set x = y1, y2, so f is injective. Also f
is surjective as if we fix y, z with f(z) 6= 0 then the right-hand side
of the condition written for x, y, z will span the whole real line, hence
so will the left-hand side. Thus f is a bijection. Now if x = 0 then
f(y + zf(0)) = f(y) and the injectivity of f implies y + zf(0) = y
for all z, possible only for f(0) = 0. Next if we set y = 0, x = 1 we
get f(zf(1)) = f(z) hence zf(1) = z for all z so f(1) = 1. Next set
y = 0, z = x to get f(f(x)) = x. Hence if we set y = 0, x → f(x) we get
f(zx) = f(z)f(x) so f is multiplicative. If we set z = 1, x → f(x) we
get f(y+x) = f(y)+f(x) so f is additive. As we know the only additive
and multiplicative function is the identity function. Thus f(x) = 0 and
f(x) = x are the only solutions

Problem 93. Find all functions f : : R → R that satisfy

f(xf(z) + y) = zf(x) + y

Solution. f is obviously surjective because the right-hand side runs
through all real numbers when we fix x, z. If f(y1) = f(y2) setting
z = 0, y = y1, y2 and comparing the conditions we deduce y1 = y2. So
f is a bijection. Now set y = 0 to get f(xf(z)) = zf(x). Particularly
for z = 0 we get f(xf(0)) = 0. As f is injective we deduce xf(0) is
constant hence f(0) = 0. Now set x = 0 to get f(y) = y. The identity
function satisfies the condition.

Problem 114. Find all continuous functions f : Rn → R that sat-
isfy

f(x1, x2, . . . , xn) + f(y1, y2, . . . , yn) = f(x1 + y1, . . . , xn + yn)

Solution. If we set fi(x) = f(0, 0, . . . , 0, x, 0, . . . , 0) where x in the
i-th position then f(x1, x2, . . . , xn) = f1(x1) + f2(x2) + . . . + fn(xn).
Now as f is additive so are fi (just set xk = 0, yk = 0 for k 6= i to get
fi(xi) + fi(yi) = fi(xi + yi)). Moreover since f is continuous so are fi

therefore fi(x) = cix. Hence f(x1, x2, . . . , xn) = c1x1 + . . . + cnxn, and
this function clearly satisfies the condition.

Problem 24. Given an integer n ≥ 2 find all functions f : R → R
such that

f(xn + f(y)) = fn(x) + y

for all x, y ∈ R.
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Solution. Set f(0) = a. Then

f(f(y)) = y + an (1).

Applying twice this identity we get

f(f(xn + f(f(y)))) = xn + f(f(y)) + an = xn + y + 2an.

On the other hand using the given identity and (1) gives

f(f(xn + f(f(y)))) = f(fn(x) + f(y)) = fn(f(x)) + y = (x + an)n + y.

Hence xn +2an = (x+an)n for any x ∈ R. Comparing the coefficients
of xn−1 on both sides we conclude that a = 0. Thus (1) takes the form
f(f(y)) = y and the given condition for y = 0 gives

f(xn) = fn(x) (2).

Then for any x ∈ R+
0 and y ∈ R we get

f(x + y) = f(( n
√

x)n + f(f(y))) = fn( n
√

x) + f(y) = f(x) + f(y),

i.e. f(x + y) = f(x) + f(y). Now it follows easily that the function f
is additive on the whole R.

Now we shall show that either f(x) ≥ 0 for any x ∈ R+ or f(x) ≤ 0
for any x ∈ R+. Set f(1) = b. Then for any x ∈ R and r ∈ Q+ we
have

n∑
k=0

(
n

k

)
f(xk)rn−k = f((x + r)n) = fn(x + r) =

= (f(x) + br)n =
n∑

k=0

(
n

k

)
fk(x)(br)n−k.

Comparing the coefficients of rn−2 on both sides gives f(x2) = bn−2f 2(x).
This shows that for any x ∈ R+ the sign of f(x) is that of bn−2.

Thus the additive function f is bounded from below or from above on
R+ and therefore (see the Remark after Problem 19) f(x) = bx for all
x ∈ R. Going back to the given condition we get b(xn +by) = bnxn +y
for all x, y ∈ R. Hence b = bn and b2 = 1 which shows that b = 1 for
n even and b = ±1 for n odd. Thus the solutions of the problem are
the following functions: f(x) = x if n is even; f(x) = x and f(x) = −x
if n is odd.

Remarks.
1. For n = 2 this is Problem 2 from IMO ’1992.
2. If n = 1 the above equation is equivalent to f(x) + f(y) = 0 and

f(f(x)) = 0 for all x, y ∈ R. We should note that there exist functions
which satisfy these conditions and are unbounded on any interval.
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Problem 134. Let n ≥ 3 be a positive integer. Find all continuous
functions f : [0; 1] → R for which f(x1) + f(x2) + . . . + f(xn) = 1
whenever x1, x2, . . . , xn ∈ [0; 1] and x1 + x2 + . . . + xn = 1.

Solution. If x, y ∈ [0; 1] and x+y ≤ 1 then we conclude f(x)+f(y)+
f(1−x−y)+f(0)+ . . .+f(0) = 1 and f(x+y)+f(0)+f(1−x−y)+
f(0)+. . .+f(0) = 1 thus f(x)+f(y) = f(x+y)+f(0) so f(x) = ax+b.
Then f(x1) + f(x2) + . . . + f(xn) = a(x1 + x2 + . . . + xn) + nb = a + nb
for x1 + x2 + . . . + xn = 1 hence a = 1− nb so f(x) = (1− nb)x + b.

Equations for Polynomials

Problem 28. (Bulgaria ’2001) Find all polynomials P ∈ R[x] such
that

P (x)P (x + 1) = P (x2)

for all x ∈ R.

Solution. If P ≡ const then P ≡ 0 or P ≡ 1. Suppose now that
P 6≡ const. Note that the given identity is satisfied for any x ∈ C. If
α ∈ C is a root of P then P (α2) = 0 and it follows by induction that
P (α2n

) = 0. Hence either α = 0 or |α| = 1 since otherwise P would
have infinitely many roots.

On the other hand it follows from the given identity that (α− 1)2 is
a root of P and therefore β((α − 1)2 − 1)2 is also a root of P . Then
either β = 0 or β = 1, i.e. α = 0, α = 2 or |α(α − 2)| = 2. If α 6= 0
then |α| = 1 and |α− 2| = 1, i.e. α = 1.

Hence all the roots of the polynomial P (x) are equal to 0 or 1. Hence
P (x) = cxn(x − 1)m and the given condition implies that P (x) =
xn(x− 1)n where n ∈ N .

Problem 29. (IMO ’1979, Shortlisted Problem) Find all polynomi-
als P ∈ R[x] such that

P (x)P (2x2) = P (2x3 + x)

for all x ∈ R.

Solution. If P ≡ const then P ≡ 0 or P ≡ 1. Now set P (x) =
n∑

k=0

akx
n−k where n = degP ≥ 1 and a0 6= 0. Comparing the coefficients

of x3n on both sides of the given identity we get a2
0 = a0, i.e. a0 = 1.
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Let P (x) = xkP1(x) where k ≥ 0 and P1(0) 6= 0. Then the given
identity can be rewritten as

2kx2kP1(x)P1(2x2) = (2x2 + 1)kP1(2x3 + x).

It follows that k = 0 since otherwise P1(0) = 0, a contradiction. Now
the above identity for x = 0 gives an = P (0) = 1. Hence by the Vieta
theorem we see that the product of all roots of P is equal to 1.

Now let α ∈ C be the root of P whose modulus is a maximum.
Then P (2x3 +α) = 0 and therefore |α| ≤ 1 since otherwise |2α3 +α| ≥
|α|(2|α|2 − 1) > |α|, a contradiction. Hence |α| = 1 and |2α2 + 1| = 1.
Set α = cos ϕ + i sin ϕ. Then 2α2 + 1 = (2 cos 2ϕ + 1)− i.2 sin 2ϕ, i.e.
(2 cos 2ϕ + 1)2 + (2 sin 2ϕ)2 = 1 It follows that cos 2ϕ = −1. Hence
α = ±i and since the coefficients of P (x) are real we conclude that i
and −i are roots of P (x). Set P (x) = (x2 + 1)mQ(x) where m ≥ 1
and Q(i)Q(−i) 6= 0. Then using the identity (x2 + 1)((2x2)2 + 1) =
((2x3 + x)2 + 1) we see that the polynomial Q(x) satisfies the given
conditions. Now the same arguments as above show that Q ≡ 0 or
Q ≡ 1 (recall that Q(i)Q(−i) 6= 0). Hence the solutions of the problems
are the polynomials Q ≡ 0, Q ≡ 1 and Q(x) = (x2 +1)n where n ∈ N .

Another solution is also possible:
If u is a root of P then by setting x = u we get that 2u3 + u is also a

root of P . Let r be the root of largest absolute value. Then |2r3 + r| ≤
|r| hence 2|r|3 − |r| ≤ |r| so |r| ≤ 1. So all roots of P have absolute
value at most 1. Now set x → −x to get P (−x)P (2x2) = P (−2x3−x).

Comparing it with the condition we get P (x)
P (−x)

= P (2x3+x)
P (−2x3−x)

. Now if we

set P (x) = Q(x2)R(x) where R has no two roots that add up to zero

(thus R(x), R(−x) have no common root) then we have P (x)
P (−x)

= R(x)
R(−x)

.

So R(x)
R(−x)

= R(2x3+x)
R(−2x3−x)

. Now R(2x3 + x) and R(−2x3 − x) also have no

common root: if w is a common root of both R(2x3+x) and R(−2x3−x)
then 2w3 + w,−2w3 − w are two solutions of R(x) which add up to
zero. Hence we get R(2x3 + x)R(−x) = R(−2x3 − x)R(x) and thus
R(2x3 + x)|R(x). This is possible only when R is constant because
otherwise the degree of R(2x3 + x) is higher that the degree of R. So
P (x) = Q(x2) and we get Q(x2)Q(4x4) = Q(4x6 + 4x4 + x2). Now
if we replace x2 by x we get Q(x)Q(4x2) = Q(4x3 + 4x + 1). All
roots of Q have absolute value at most 1, as we have shown. Now let
Q(x) = a

∏n
i=1(x − ri) then Q(4x2) = 4na

∏n
i=1(x −

√
ri

4
)(x +

√
ri

4
)

and Q(4x3 + 4x2 + x) = 4na
∏n

i=1(x
3 + x2 + x

4
− ri). Consider now the

sum of roots of Q(x)Q(4x2) and the sum of roots of Q(4x3 + 4x2 + 1).
The sum of roots of Q(x) is

∑n
i=1 ri, the sum of roots of Q(4x2) is

zero, and the sum of roots of Q(4x3 + 4x2 + 1) is −n because we
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have n factors x3 + x2 + x
4
− ri the sum of whose roots is −1. So∑n

i=1 ri = −n and as |ri| ≤ 1 this is possible only when ri = −1. So
Q(x) = a(x + 1)n. Now if Q 6= 0 then we get a2 = a if looking at the
leading coefficient of Q(x)Q(4x2) = Q(4x3 + 4x + x) so a = 1. Finally
as (x+1)(4x2 +1) = (4x3 +4x2 +x+1) we deduce that Q(x) = (x+1)n

satisfies the conditions.
So all solutions to our original problem are P (x) = 0 and P (x) =

(x2 + 1)n.

Problem 30. (Romania ’1990) Find all polynomials P ∈ R[x] such
that

2P (2x2 − 1) = P 2(x)− 2

for all x ∈ R.

Solution. Suppose that P (x) 6= P (1) and set P (x) = (x−1)nQ(x)+
P (1) where n ∈ N and Q(1) 6= 0. Then

4(x− 1)n(x + 1)nQ(2x2 − 1) + 2P (1) =

(x− 1)2nQ(x) + 2(x− 1)nQ(x)P (1) + P 2(1)− 2

and using 2P (1) = P 2(1)− 2 we get

4(x + 1)nQ(2x2 − 1) = (x− 1)nQ(x) + 2Q(x)P (1).

This identity for x = 1 gives Q(1)(2n+1 − P (1)) = 0. Taking into ac-
count that P (1) = 1 ±

√
3 we get Q(1) = 0, a contradiction. Thus

P (x) ≡ P (1) and the only solutions are the constant polynomials
P (x) ≡ 1 +

√
3 and P (x) ≡ 1−

√
3.

Problem 60.Let k, l ∈ N be integers. Find all polynomials P for
which xP (x− k) = (x− l)P (x)

Solution. If the degree of P is n, P (x) = axn + bxn−1 + . . . then
P (x − k) = axn + (b − nak)xn−1 + . . . hence xP (x − k) = axn+1 +
(b − nak)xn, (x − l)P (x) = axn+1 + (b − la)xn + . . . so l = nk. So
xP (x−k) = (x−nk)P (x). Then x|P (x), k is a root of P (x) hence 2k is
a root of P (x−k) and as P (x−k)|(x−nk)P (x) we conclude that if n > 2
then 2k is a root of x and so on, obtaining x(x−k) . . . (x−(n−1)k)|P (x).
If P (x) = x(x − k) . . . (x − (n − 1)k)Q(x) the condition transforms
to Q(x − k) = Q(x) which is possible only for constant Q, so P =
cx(x− k) . . . (x− (n− 1)k), which is clearly a solution.
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Problem 61.Find all nonconstant polynomials P that satisfy P (x)P (x+
1) = P (x2 + x + 1).

Solution. If P is non-constant, let w be its root of maximal absolute
value. Set x = w to conclude that w1 = w2 + w + 1 is a root of P and
x = w − 1 to conclude that w2 = w2 − w + 1 is a root of P . Then
|w1 − w2| = 2|w| but |w1 − w2| ≤ |w1| + |w2| = 2|w|. The equality
can hold only if w1 + w2 = 0 so w2 + 1 = 0 hence w = ±i. In this
case (w1, w2) = (i,−i). Thus x2 + 1|P (x). However Q(x) = x2 + 1
satisfies Q(x)Q(x + 1) = Q(x2 + x + 1), therefore P

Q
satisfies the same

condition. We can repeat the same operation until we reach a constant
polynomial, so P (x) = c(x2 + 1)n, which satisfies the condition.

Problem 126. Find all polynomials P ∈ C[X] that satisfy P (x)P (−x) =
P (x2)

Solution. If P = c is constant then c2 = c so c = 0, 1. Assume
now P is not constant. If r is a non-zero root of P then r2 is also a
root of P (just set x = r). Then r2k

is also a root of P by induction.

As P has finitely many roots, r2k
= r2m

for some k,m hence |r| = 1.
We have found thus a root w for which w2n

= w thus w2n−1 = 1.
If n is minimal with this property, then w, w2, . . . , w2n−1

are different
roots of P hence Q(x) = (x−w)(x−w2) . . . (x−w2n−1

) divides P . Now

Q(x)Q(−x) = (x−w)(−x−w) . . . (x−w2n−1
)(−x−w2n−1

) = (−1)n(x2−
w2) . . . (x2−w2n

) = (−1)nQ(x2) because w2n
= w. Thus (−1)nQ satis-

fies the original condition, so we can divide P by Q and the condition
holds for (−1)n P

Q
. Now repeating this argument as many times as nec-

essary we shall reach a polynomial with no non-zero roots. Then if
P (x) = cxn we have cxncxn(−1)n = cx2n which gives c = (−1)n. Con-
cluding, all set of solutions is given by P (x) = (−x)n

∏
Qi(x) where

each Qi = (w − x)(w2 − x)(w4 − x) . . . (w2m−1 − x) where w2m
= w.

Problem 127. Find all polynomials P (x) which are solutions of the
equation P (x2 − y2) = P (x− y)P (x + y)

Solution. Suppose w is a root of P . Then x − y = w implies
x2 − y2 = w(x + y) = w(2x − w) is also a root of w. Now if w 6= 0
x2− y2 can take any value being a non-constant linear function in x so
P is identically zero. Thus P is either identically zero or has all roots
zero. If P = cxn we get c(x2− y2)n = c(x− y)nc(x+ y)n = c2(x2− y2)n

so c = 1. So all solutions are P (x) = 0, P (x) = xn for n ≥ 0.

Problem 129. Find all polynomials P ∈ C[X] that satisfy P (2x) =
P ′(x)P”(x)
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Solution. If deg(P ) = k > 0 then the degree of P ′P” is 2k−3 (unless
k = 1 when it is zero) so k = 3. Now if the leading coefficient of P
is a then the leading coefficients of P (2x), P ′(x), P”(x) are 8a, 3a, 6a
respectively so 8a = 18a2 hence a = 4

9
. Now let P ′(x) = 4

3
(x− 4a)(x−

4b). Then P”(x) = 8
3
(x − 2a − 2b) and hence P (2x) = 4

9
(x − 4a)(x −

4b)(x − 2a − 2b) so P (x) = 4
9
(x − 2a)(x − 2b)(x − a − b), P ′(x) =

4
9
(3x2 − 6(a + b)x + 2a2 + 2b2 + 8ab). As P ′(x) = 4

3
(x− 4a)(x− 4b) =

4
9
(3x2 − 12(a + b)x + 48ab) we conclude b = −a and −4a2 = −48a2

hence a = b = 0 and P (x) = 4
9
x3.

Iterations

Problem 33. (Bulgaria ’1996) Find all functions f : Z → Z such
that

3f(n)− 2f(f(n)) = n

for all n ∈ Z.

Solution. For a given n set

a0 = n, ak+1 = f(ak), k ≥ 0.

Then the given identity gives

3ak+1 − 2ak+2 = ak, k ≥ 0.

The characteristic equation of this recurrence is 3x−2x2 = 1 with roots

1 and
1

2
. Hence

ak = c0.1
k + c1

(
1

2

)k

, (1)

where c0 = 2a1 − a0 and c1 = 2(a0 − a1). It follows from (1) that 2k

divides c1 for any k ≥ 0. Hence c1 = 0 and ak = c0 = 2a1 − a0 for any
k ≥ 0. In particular a1 = a0, i.e. f(n) = n.

Problem 34. Find all functions f : R+ → R+ such that

f(f(x)) + f(x) = 6x

for all x ∈ R+.

Solution. For a given x ∈ R+ set

a0 = x, ak+1 = f(ak), k ≥ 0.

Then we obtain the recurrence relation

ak+2 + ak+1 = 6ak, k ≥ 0.
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Its characteristic equation

x2 + x = 6

has roots 2 and −3. Hence

ak = c02
k + c1(−3)k

where c0 =
3a0 + a1

5
and c1 =

2a0 − a1

5
. Note that lim

k→∞

3k

2k
= +∞.

Hence lim
k→∞

a2k = −∞ if a < 0 and lim
k→∞

a2k + 1 = −∞ if a > 0. Hence

c1 = 0, i.e. ak+1 = 2ak and therefore f(x) = 2x for any x ∈ R+.

Problem 35. Find all functions f : R+ → R+ such that

f(f(f(x))) + f(f(x)) = 2x + 5

for all x ∈ R+.

Solution. Using the same notation as in the solution of the previous
problem we have

ak+s + ak+2 = 2ak + 5, k ≥ 0. (1)

Subtracting this equality from

ak+4 + ak+3 = 2ak+1 + 5

we get

ak+4 = ak+2 + 2ak+1 + 2ak, k ≥ 0.

The characteristic equation x4 = x2 + 2x + 2 can be written as (x −

1)2(x2 + 2x + 2) = 0, i.e. it has a double root 1 and two complex roots√
2
(

cos
π

4
± i sin

π

4

)
. Hence

ak = c0 + c1k + 2
k
2

(
c2 cos

kπ

4
+ c3 sin

kπ

4

)
where the constants cn, 0 ≤ n ≤ 3 are real and depend only on the
first four terms of the sequence. Considering the subsequences with
indexes congruent respectively to 0, 2, 4, 6 modulo 8 we conclude, as
in the solution of the previous problem, that respectively c2 ≥ 0, c3 ≥
0, c2 ≤ 0, c3 ≤ 0, i.e. c2 = c3 = 0. Thus ak+1 = ak + c1 and using
(1) we get c1 = 1. Hence f(x) = x + 1 for all x ∈ R+.
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Problem 66. Find all continuous functions f : R → R that satisfy

f(f(x)) = f(x) + 2x

for any x ∈ R.

Solution. It is clear that f is injective. Now we prove it’s surjective.
Assume for contradiction that f(x) 6= a. Then as f is continuous we
either have f(x) > a or f(x) < a. If f(x) > a then we deduce f(f(x))−
f(x) = 2x so f(x) > a−2x. Now f is injective and continuous, so either
increasing or decreasing. If f is increasing then f(−n) ≥ 2n+a for n ∈
N hence f(0) > f(−n) ≥ 2n + a for any n ∈ N which is impossible. If
f is decreasing then we get f(f(x)) ≤ f(a) hence f(x) ≤ f(a)−2x < a
when x is sufficiently large contradiction. Assume now that f(x) < a.
We then deduce f(x) < a − 2x, f(f(x)) < 2x − a. If f is increasing
then as f(x) < x for x > a we get 2x = f(f(x)) − f(x) < 0 for
x > a impossible if x > 0. If f is decreasing then f(n) < a − 2n for
n ∈ N hence f(0) < a − 2n for all n ∈ N , impossible. So we have
proven that f is injective and surjective, so has an inverse g. If we
try the usual pattern: setting an = fn(x) and using the recurrence
an+2 = an+1 + 2an, this will lead us nowhere because we cannot link
the recurrence with the continuity of f , as the roots of the equation are
−1 and 2 so the members of the sequence will get larger and sparser
with increasing n. However we may use the backwards formula: if

y = g(x) then 2y + x = f(x) so y = f(x)−x
2

. So if we set an = gn(x)
then an satisfies the recurrence an+2 + an+1

2
− an

2
and the associated

equation x2 + x
2
− 1

2
= 0 has roots −1, 1

2
. The general term has formula

an = u(−1)n + v(1
2
)n hence the odd terms of the sequence converge

to −u and the even to u. As f(an+1) = an using the continuity we
deduce f(u) = −u, f(−u) = u. Now u can be computed from the
initial values: if a0 = f(x), a1 = x we have u + v = f(x),−u + v

2
= x

so u = f(x)−2x
3

. Let h(x) = f(x)−2x
3

, A = Imh. As h is continuous, A
must be connected. Also A is symmetric with respect to the origin,

because if t ∈ A then f(t) = −t hence f(t)−2t
3

= −t so −t ∈ A. A is
also not empty by the definition. Hence either A consists of a single
point 0 so f(x) = 2x or A contains an interval (−a; a). We prove
that if A contains an interval then A = R. Without loss of generality
assume A = [−a; a] or A = (−a; a). Suppose h(x) = t 6= 0, |t| < a.
As a2n → t, a2n−1 → −t, for some n we have a2n ∈ A so a2n−1 ∈ A
thus we have a2n = −a2n−1 and thus we can conclude by induction on
k a2n−2k = a2n, a2n−2k−1 = a2n−1 so f(x) = −x and x is in A. We have
only one trouble: if A is [−a; a] and t = ±a. Then we cannot say a2n ∈ t
for some n as t is in the boundary of A. We can handle it like this: Let
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B be the set of all x for which f(x) 6= −x. B = (−∞;−a)
⋃

(a; +∞).
B can be split in two sets: C of x which satisfy h(x) = a and D
of x which satisfy h(x) = −a. Both sets are connected and closed
therefore either C = B, D = B, C = (−∞;−a), D = (a; +∞) or
D = (−∞;−a), C = (a; +∞). However f(x) = 2x + 3a if x ∈ C and
f(x) = 2x−3a if x ∈ D. Thus if (a; +∞) ⊂ C we get f(x0) = 2x0 +3a
for x0 > a and taking the limit in a we get f(a) = 5a impossible.
Hence (a; +∞) ⊂ D. Analogously (−∞;−a) ⊂ C. Thus we conclude
f(x) = −x if |x ≤ a|, f(x) = 2x−3a if x > a, f(x) = 2x+3a is x < −a.
Now if x > 2a then f(x) = 2x−3a, f(f(x)) = 2f(x)−3a = 4f(x)−9a
but 2x + f(x) = 4x − 3a 6= f(f(x)) for a > 0. So A = R and the
solutions are f(x) = 2x, f(x) = −x.

Problem 67. Find all increasing bijections f of R onto itself that
satisfy

f(x) + f−1(x) = 2x

where f−1 is the inverse of f .

Solution. Set x → f(x) into the condition to get f(f(x)) = 2x −
f(x). Hence if we set an = fn(x) we get an+2 = 2an+1 − an so an+2 −
an+1 = an+1 − an and from here we get an = a1 + (n− 1)(a2 − a1). So
f(x + k(f(x)− x)) = x + (k + 1)(f(x)− x). Now we prove f(x)− x is
constant. Indeed assume that a = f(u)−u < b = f(v)−v. We shall find
such m that satisfy u+ka ≤ v+ lb and u+(k+1)a < v+(l+1)b. If a

b
is

rational then there is an x > 0 such that a = px, v = qx where (p, q) = 1
and p < q. Also set [u−v

x
] = r. Then we take k, l with lq−kp = r hence

lb−ka = rx. So (u+ka)−(v+lb) = (u−v)−(lb−ka) = (u−v)−[u−v
x

]x ≥
0 but (u+(k+1)a)−(v+(l+1)b) = (u−v)− [u−v

x
]+a−b < x+a−b =

x + px− qx = (p + 1− q)x ≤ 0. If a
b

is irrational then by Kronecker’s
Theorem we can find k, l with u − v + a − b < lb − ka < u − v hence
u + ka > v + lb while u + (k + 1)a < v + (l + 1)b.

But f(u+ka) = u+(k+1)a, f(v+lb) = v+(l+1)b and this contradicts
the fact that f is increasing, contradiction. Hence f(x) = x + c and all
such functions satisfy the conditions.

Problem 40. (M+209) Find all functions f : R → R such that

f(x + 1) ≥ x + 1 and f(x + y) ≥ f(x)f(y)

for all x, y ∈ R.
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Solution. The second condition implies that f(x1 +x2 + · · ·+xn) ≥
f(x1)f(x2) . . . f(xn) for any xi ∈ R, 1 ≤ i ≤ n. In particular

f(x) ≥ fn
(x

n

)
for any x ∈ R and n ∈ N . Hence

f(x) ≥ fn
(x

n

)
≥

(
1 +

x

n

)n

and letting n →∞ gives f(x) ≥ ex. In particular f(0) = 1. Now

1 = f(0) ≥ f(x)f(−x) ≥ ex.e−x = 1

which shows that f(x) = ex. It is easy to check that this function
satisfies the conditions of the problem.

Problem 41. (Belarus ’1998) Prove that:
a) if a ≤ 1 then there is no function f : R+ → R+ such that

f

(
f(x) +

1

f(x)

)
= x + a (1)

for all x ∈ R+;
b) if a > 1 then there are infinitely many functions f : R+ → R+

satisfying (1).

Solution. a) Suppose that f : R+ → R+ satisfies (1). Set

g(x) = f(x) +
1

f(x)
.

If f(x) > 1 then y = f(x) − a > 0 and f(g(y)) = f(x). But (1)
implies that the function f is injective and therefore x = g(y) ≥ 2.
Hence f(x) < 1 for any x ∈ (0, 2) with at most one exception. For
any x ∈ (0, 2) we have

y =
1

f(x)
− a > 0, z = f(g(y)) ≥ 2, f(z) =

1

f(x)
,

z + a = f(g(z)) = f(g(x)) = x + a.

Thus 2 ≤ z = x < 2, a contradiction.
b) Let a > 1 and f be an arbitrary strongly increasing continuous

function on the interval [0,2] such that f(0) = 1 and f(2) = a. Then
(1) defines a unique strongly increasing continuous function f on R+

0 .

Indeed, let g(x) = f(x) +
1

f(x)
and define the sequence {an}∞n=0 by:

a0 = 0, an = g(an−1), n ∈ N . Suppose that f has been defined as a



127

strongly increasing and continuous function on the interval (an−1, an]
greater than 1. Then it is easy to check that g(x) is strongly increasing
and continuous function on this interval with g(an−1) = an, g(an) =
an+1. Hence for any x ∈ (an, an+1] there is a unique y ∈ (an−1, an]
such that x = g(y) and set f(x) = y + a. It follows by induction that
the function f(x) is defined on R+

0 and it satisfies (1) on R+.

Problem 42. (Bulgaria ’2003) Find all a > 0 for which there exists
a function f : R → R having the following two properties:

(i) f(x) = ax + 1− a for any x ∈ [2, 3);
(ii) f(f(x)) = 3− 2x for any x ∈ R.

Solution. Set h(x) = f(x + 1)− 1. Then the conditions (i) and (ii)
can be written as h(x) = ax for x ∈ [1, 2) and h(h(x)) = 2x for any
x ∈ R. Then h(−2x) = h(h(h(x))) = −2h(x); in particular h(0) = 0.
It follows by induction that h(4nx) = 4nh(x) for any integer n and
hence h(x) > 0 for x ∈ [4n, 2.4n). On the other hand 0 > −2x =
h(h(x)) = h(ax) for x ∈ [1, 2) and therefore [a, 2a) ⊂ [2.4k, 4k+1) for
an integer k. Thus a = 2.4k. Conversely, let a = 2.4k for some integer
k. Then one checks easily that the function

h(x) =



ax for x ∈ [4n, 2.4n),

−2x

a
for x ∈ [2.4n, 4n+1),

0 for x = 0,
ax for x ∈ (−4n+1,−2.4n],

−2x

a
for x ∈ (−2.4n,−4n]

where n runs over the integers has the desired properties. One can
easily prove that this is the only function with the given properties.

Polynomial Recurrences and Continuity

Problem 56.Find all continuous functions f, g : R → R that satisfy

f(x + y) + f(x− y) = 2f(x)g(y)

Solution. This resembles D’Alembert’s equation, but it’s a general-
ized version of it. We try to reduce it to D’Alembert’s equation. If f is
identically zero, then g could be any function. Otherwise, if f(x0) = 0
we get f(x0 + y) + f(x0 − y) = 2f(x0)g(y) = f(x0 − y) + f(x0 + y) =
2f(x0)g(−y) so g is an even function. Now set y = 0 to get g(0) = 1.
We now distinguish two cases:
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a) f(0) = 0. In this case set x = 0 to get f(y) + f(−y) = 0 so
f is an odd function. Therefore f(x + y) + f(x − y) = 2f(x)g(y)
and f(x + y) − f(x − y) = f(y + x) + f(y − x) = 2g(x)f(y). Hence
f(x + y) = f(x)g(y) + g(x)f(y), f(x− y) = f(x)g(y)− g(x)f(y). This
resembles the formulae for the sine of sum, with f for sine and g for
cosine (this is confirmed by the oddness of f and evenness of g). We
only lack the cosine of the sum formula, so let’s set x → x + y into our
second formula to get f(x) = f(x+y)g(y)−g(x+y)f(y) = (f(x)g(y)+

g(x)f(y))g(y)− g(x + y)f(y) hence g(x + y) = g(x)g(y)− f(x)(1−g2(y))
f(y)

.

This is not really the formula we expected, but if we replace y by −y we

get g(x−y) = g(x)g(y)+ f(x)(1−g2(y))
f(y)

so g(x+y)+g(x−y) = 2g(x)g(y)

for f(y) 6= 0. So g can be found from D’Alembert’s equation but we
have a problem: if f(y) = 0 then the condition g(x + y) + g(x− y) =
2g(x)g(y) may not hold. If there is a sequence yn that tends to y and
f(yn) 6= 0 then it holds by continuity. Otherwise there is an interval I
containing y s.t. f is identically zero on I. Let l be the length of I. If
we denote by X − Y the set {x − y|x ∈ X, y ∈ Y } then the formula
f(x− y) = f(x)g(y)− f(y)g(x) says that if f is zero on X, Y then it’s
zero on X − Y . Hence f is zero on I − I = (−l, l). Then f is zero on
(l,−l) − (l,−l) = (2l,−2l) and so on, f being zero on (2kl,−2kl) for
any k, so f is identically zero, contradiction. Therefore D’Alembert’s
equation is satisfied by g for all x and y hence g(x) = cos(ax) or
g(x) = cosh(ax) for some a. Without loss of generality g(x) = cos(ax),
the second case being handled analogously. For a = 0 g = 1 and we get
f(x + y) = f(x) + f(y) hence f is linear. Now suppose a 6= 0. If now
f(x) = bxsin(ax) for f(x) 6= 0, sin ax 6= 0 then we prove by induction
on n that f(nx) = bxsin(anx), because c sin(ax), cos(ax) satisfy our
initial condition. Now we claim bx = by for all x, y. If x

y
∈ Q then

there is z such that x = mz, y = nz for m, n ∈ N thus bx = bz = by.
If x

y
/∈ Q then there is a sequence xn such that xn

x
∈ Q, xn → y. Then

bxn = x and using the continuity of f we get f(y) = bysin(ay) so
bx = by. We thus conclude that f(x) = bx0 sin(ax) when f(x) 6= 0. If
f(x) = 0 or sin(ax) then there is a sequence xn → x such that f(xn) 6=
0, sin(axn) 6= 0 and by continuity we get f(x) = bx0 sin(ax) therefore
f(x) = b sin(ax), g(x) = cos(ax). It’s clear they satisfy our condition.
For the case g(x) = cosh(ax) analogously we get f(x) = bsinh(ax).

b) f(0) 6= 0. We employ case a. Set f+(x) = f(x) + f(−x), f−(x) =
f(x) − f(−x). If f satisfies the condition then −f also satisfies the
condition, hence so do f+, f− (the condition is linear in f). But f−

falls into case a) Therefore g(x) = cos(ax), f−(x) = b sin(ax) or g(x) =
cosh(ax), f−(x) = bsinh(ax). We can also suppose f+(0) = 1 because
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we can multiply or divide f by any constant we want. Now we have
f+(x + y) + f+(x − y) = 2f+(x)g(y) and f+(x + y) + f+(y − x) =
2g(x)f+(y) if x, y change places. As f+ is even f+(y−x) = f+(x− y),
thus f+(x)g(y) = f+(y)g(x). Particularly f+(x)g(0) = f+(0)g(x). As
f+(0) = g(0) = 1 we have f+ = g.

If we combine all the cases, we get f(x) = bx + c, g(x) = 1, f(x) =
c sin(ax)+d cos(ax), g(x) = cos(ax), f(x) = csinh(ax)+dcosh(ax), g(x) =
cosh(ax). All of these satisfy the condition.

Problem 58.Find all continuous functions f, g, h : R → R that sat-
isfy

f(x + y) + g(x− y) = 2(h(x) + h(y))

Solution. If we interchange x with y we obtain that g is even. Now
set y = 0 to get f(x)+g(x) = 2(h(x)+h(0)). Without loss of generality
h(0) = 0 because otherwise we can work with f(x) − 2h(0), g(x) −
2h(0), h(x)− h(0) instead. So f(x) + g(x) = 2h(x). Now replace y by
−y to get f(x− y) + g(x + y) = 2(h(x) + h(−y)). Adding it with the
original condition we get f(x− y) + g(x− y) + f(x + y) + g(x + y) =
4h(x)+2h(y)+2h(−y) or 2h(x−y)+2h(x+y) = 4h(x)+2h(y)+2h(−y).
Let’s solve this equation. We settle it for h even and for h odd, because

h can be written as h+ +h−, where h+(x) = h(x)+h(−x)
2

is even, h−(x) =
h(x)−h(−x)

2
is odd.

If h is even we get h(x − y) + h(x + y) = 2h(x) + 2h(y). Set y = x
to get h(2x) = 4h(x). Then we can prove by induction on n that
h(nx) = n2x, the induction step following directly from the condition
written for y = nx. If h(1) = a then q2h(1

q
) = a so h(1

q
) = a

q2 hence

h(p
q
) = ap2

q2 . As Q is dense using the continuity we get h(x) = ax2.

If h is odd we get h(x − y) + h(x + y) = 2h(x). Set y = 0 to get
h(2x) = 2h(x) hence h(x−y)+h(x+y) = h(2x) and as 2x = x−y+x+y
we conclude that h is additive so h(x) = bx.

Combining these two results we deduce that h(x) = ax2 + bx. Then
f(x+y) +g(x−y) = 2a(x2 +y2) + b(x+y) so f1(x+y) +g1(x−y) = 0
where f1(x) = f(x) − ax2 − bx, g1(x) = g(x) − ax2. As x + y, x − y
are independent, we conclude f1(u) = −g1(v) for all u, v so f1(x) =
d, g1(x) = −d for some d. We conclude that f(x) = ax2 +bx+d, g(x) =
ax2 − d, h(x) = ax2 + bx.

As we have supposed that h(0) = 0 in the general case if h(0) = c we
get f(x) = ax2 + bx + 2c + d, g(x) = ax2 + 2c− d, h(x) = ax2 + bx + c.
These functions satisfy the condition.
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Problem 113. Find all continuous functions f, g, h, k : R → R that
satisfy f(x + y) + g(x− y) = 2h(x)k(y)

Solution. This is a generalization of the previous problem. In
order to connect it to the previous one we try to eliminate g. Replace
y by −y to get f(x − y) + g(x + y) = 2h(x)k(y). Now subtracting
these conditions and setting u = f − g, l(x) = k(x) − k(−x) we get
u(x+y)−u(x−y) = 2h(x)l(y)(*). From here find u explicitly by using
the same helpful lemma. Indeed if we set an = f(nx) then setting nx
instead of x, x instead of y he get an+1−an−1 = 2h(nx)l(x). If l(x) = 0
then a2n = a0 thus f(2nx) is constant. If l(x) 6= 0 then taking y = 2x
we deduce an+2−an−2 = 2h(nx)l(2x) thus an+2−an−2 = b(an+1−an−1)

where b = l(2x)
l(x)

. The associated polynomial of this quadratic recurrence

is x4−b(x3−x)−1 = (x+1)(x−1)(x2−bx+1). If b 6= ±2 this polynomial
has four different roots 1,−1, w, 1

w
. Thus an = α+β(−1)n +γwn +θ 1

wn .

so a2n = α + β + γwn + θ 1
wn . If b = 2 the polynomial has a triple roots

1 and we have an = p(n) + c(−1)n where p is a polynomial of degree
at most 2. So u(2nx) = p(2nx) where p is some polynomial of degree
at most 2. Finally if b = −2 we get a triple root −1 and a root −1
and similarly u(nx) = p(2nx) where p is some polynomial of degree at
most 2. Thus we can apply the lemma to establish that either u(x)
is a polynomial of degree at most 2 or u(x) = αeax + βe−ax + γ (1).
Now if we add the equalities in the beginning instead of subtracting
them we get v(x + y) + v(x− y) = 2h(x)j(y)(**) where j(y) = k(y) +
k(−y). We proceed exactly like in the previous problem to establish
that v is either linear or α′ea′x + β′e−a′x (2). If v is linear then so
is h. Therefore u cannot be of form αeax + βe−ax for a 6= 0 because

then l(y) = u(x+y)−u(x−y)
2h(x)

= αeax−βeax

2h(x)
(eay − e−ay) and does depend on

x. So u is a polynomial of degree 2 and hence so are f = u+v
2

, g = v−u
x

.
If f(x) = ax2 + bx + c, g(x) = −ax2 + dx + e (the coefficients of
x2 are complementary because they come only from u) then we have
f(x+y)−g(x−y) = a((x+y)2−(x−y)2)+b(x+y)+d(x−y)+c+e =
4axy + (b + d)x + (b− d)y + c + e. As h is linear, h(x) = kx + l then
k(y) is also linear. Thus k(x)h(y) = (kx + l)(my + n) = mnxy +
knx + lmy + ln. Therefore a = mn

4
, b = kn+lm

2
, c = kn−lm

2
, c + e =

ln. Next suppose that v is of form α′ea′x + β′e−a′x then we conclude
h(x) = c(α′ea′x + β′e−a′x). In this case a = a′ or a = −a′ because

then looking at (*) we get k(y) = u(x+y)−u(x−y)
h(x)

. As k does not depend

on x but h depends exponentially on a′x we readily conclude that
u must be of form αeax + βe−ax + γ and then a = ±a′x in order
for h(x) to cancel in the expression for k(y). We substitute u, v into
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f, g to get f(x) = keax + le−ax + m, g(x) = reax + se−ax − m. Then
f(x+y)+g(x−y) = (keay +re−ay)eax +(le−ay +seay)e−ax = h(x)k(y).
If we avoid the trivial case k = r = l = s = 0 then h, k cannot be
identically zero thus selecting x = x0 with h(x0) 6= 0 we can express
k(y) as k1e

ay + k2e
−ay, and selecting y = y0 with k(y0) 6= 0 we can

select h(x) = h1e
ax + h2e

−ax. Thus substituting we get k = h1k1, l =
k2h2, r = h1k2, s = h2k1 to obtain the parametric representation for
f, g, h, k.

Problem 116. Find all continuous functions f, g, h : R → R that
satisfy

f(x + y) + f(y + z) + f(z + x) = g(x) + g(y) + g(z) + h(x + y + z)

Solution. Set x = y = 0 to get 3f(0) = 3g(0) + h(0). Thus we can
assume f(0) = g(0) = h(0) otherwise work with f − f(0), g− g(0), h−
h(0) which satisfy the original condition. Next like in the previous
problem set z = −x to get f(x + y) + f(x − y) = g(x) + g(−y) +
g(y) + h(x). Particularly y = 0 gives us 2f(x) = g(x) + h(x) hence
f(x + y) + f(x− y) = 2f(x) + g(y) + g(−y). Now we proceed exactly
like in the previous problem to conclude that f(x) = ax2 + bx. Now
set u(x) = g(x) − f(x) = f(x) − h(x). As f satisfies the condition
f(x + y) + f(y + z) + f(z + x) = f(x + y + z) + f(x) + f(y) + f(z) of
the previous problem, comparing it with the condition of this problem
yields u(x)+u(y)+u(z) = u(x+y+z). So u is additive and continuous.
From here we establish f, g, h completely: f(x) = ax2 + bx + k, g(x) =
ax2 + (b + c)x + l, h(x) = ax2 + (b − c)x + m where k = f(0), l =
g(0).m = h(0) obey 3k = 3l + m.

Problem 133. Find all continuous functions f ·R → R that satisfy

f(x + y)f(x− y) = f 2(x)f 2(y)

Solution. If f(0) = 0 then we conclude f 2(x) = 0 so f is identically
zero. If f(0) 6= 0 the for some z > 0 we get f(x) 6= 0 for all x ∈ (−z; z).
Now by setting y = x we get f(2x)f(0) = f 4(x) hence if f(x) 6= 0 then
f(2x) 6= 0 and since f is non-zero on (−z; z) on the whole real line.
Also f has constant sign because f(x + y)f(x − y) is positive for all
x, y. Without loss of generality let f > 0 (the second case is analogous
by working with −f instead of f). Let g(x) = ln f(x). Then we get
g(x + y) + g(x − y) = 2g(x) + 2g(y) For x = y = 0 we get g(0) = 0.
Thus if we set an = f(nx) we deduce an+1 − 2an + an−1 = 2g(x) thus
an = n2g(x). We conclude using the lemma that g(x) = ax2. So the

solutions are f(x) = 0, f(x) = eax2
, f(x) = −eax2

.
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The Odd and Even Parts of a Function

Problem 120. Find all continuous functions f, g, h : R → R that
obey

f(x + y) + g(xy) = h(x)h(y) + 1

Solution. If y = 0 then f(x) = h(x)h(0) + 1− g(0). We can assume
g(0) = 0 otherwise replace f by f + g(0), g − g(0) to get the same
condition. We get f(x) = h(x)h(0) + 1 so h(x + y)h(0) + g(xy) =
h(x)h(y). If h(0) = 0 we get h(x)h(y) = g(xy) = h(xy)h(1) so from
were h(x) = axk for some k, g(x) = a2xk. If h(0) 6= 0 we can assume
h(0) = 1 otherwise replace h by h

h(0)
, g by g

g0
to maintain the condition.

So we have h(x + y) + g(xy) = h(x)h(y). If we set y = 1 we get
g(x) = ah(x)−h(x+1) where a = h(1). So we get h(x+y)+ah(xy) =
h(x)h(y) + h(xy + 1). Now let u, v be the even and odd parts of h. We
have u(x + y) + v(x + y) + au(xy) + av(xy) = (u(x) + v(x))(u(y) +
v(y)) + u(xy + 1) + v(xy + 1). Now if we replace x, y by −x,−y we
get u(x + y) − v(x + y) + au(xy) + av(xy) = (u(x) − v(x))(u(y) −
v(y)) + u(xy + 1) + v(xy + 1). Subtracting these two relations we get
2v(x+y) = 2v(x)u(y)+2u(x)v(y). Now replacing y by −y the relation
turns into 2v(x− y) = 2v(x)u(y)− 2u(x)v(y) so v(x + y)− v(x− y) =
2u(x)v(y). We have met this equation before, and have shown that the
only solutions u, v with u even and v odd are v = c sin ax, u = cos ax
or v = csinhax, u = coshax or v = cx, u = 1 or v = 0, u any even
function. We can eliminate the first two solutions immediately, as an
expression of h as sine-cosine surely doesn’t satisfy the condition (just
look that h(xy + 1) − ah(xy) has nothing to share with h(x + y) or
h(x)h(y)). If v = cx, u = 1 then h(x) = 1 + cx, a = 1 + c so we get
1 + c(x + y) + (1 + c)(1 + cxy) = (1 + cx)(1 + cy) + 1 + c(xy + 1) which
satisfies the condition, and g(x) = (1+c)(1+cx)−c(x+1) = c2x+1. If
v = 0 then h is even. Then writing the condition on h for x, y and x,−y
then subtracting them we get h(x+y)−h(x−y) = h(1+xy)−h(xy−1).
This function was solved previously by us with solutions h(x) = ax2+1.
In this case h(1) = a+1 and g(x) = (a+1)(ax2 +1)− (a(x+1)2 +1) =
a2x2 − 2ax.

Problem 121. Find all continuous functions f, g, h : R → R that
obey

f(x + y) + h(x)h(y) = g(xy + 1)

Solution. This problem is very similar to the previous. Set y = 0
to get f(x) + h(x)h(0) = g(1). From here f(x) = g(1) − h(x)h(0).
Again we can suppose g(1) = 1 because otherwise we an subtract
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g(1) from both g and f and the condition will still hold. So we get
h(x)h(y)−h(0)h(x+y) = g(xy +1). If h(0) = 0 we deduce h(x)h(y) =
h(xy)h(1) = g(xy + 1) so h(x) = axb, g(x) = a2(x− 1)b. Otherwise we
can suppose h(0) = 1. Then h(x)h(y)−h(x + y) = g(xy + 1). If we set
y = 1 we get g(x + 1) = ah(x) − h(x + 1) so g(x) = ah(x − 1)− h(x)
where a = h(1). Exactly like in the previous problem we conclude that
either h(x) = 1 + cx or h is even. For h(x) = 1 + cx we get (1 + cx)(1 +
cy)− 1− c(x + y) = (1 + c)(1 + cxy)− 1− c(xy + 1) and by looking at
the coefficient of xy we get c = 1 so h(x) = 1, f(x) = −1, g(x) = 0. If
h is even then we get h(x)h(y) − h(x + y) = ah(xy) − h(xy + 1) and
h(x)h(y)− h(x− y) = ah(xy)− h(xy − 1) thus h(x + y)− h(x− y) =
h(xy + 1) − h(xy − 1) again so h(x) = cx2 + 1. We easily draw the
conclusions from here.

Symmetrization and Additional Variables

Problem 100.Find all functions f : : R → R for which

f(x + y) = f(x)f(y)f(xy)

Solution. If f(u) = 0 then setting y = x − u we deduce f(x) =
0. If f is not identically zero, then f is non-zero on R. We add
again a new variable z: f(x + y + z) = f(x)f(y + z)f(xy + yz) =
f(x)f(y)f(z)f(yz)f(xy)f(xz)f(x2yz). Now if as the left-hand side is
symmetric by swapping x and y we get the relation f(x + y + z) =
f(x)f(y+z)f(xy+yz) = f(x)f(y)f(z)f(yz)f(xy)f(xz)f(xy2z). Hence
f(x2yz) = f(xy2z). Then picking up u, v 6= 0 and setting x = u, y = v
we get x2yz = u2z, y2xz = uv2z so z = 1

uv
implies x2yz = u2z thus

f(u) = f(v). So f is constant on R \ {0}. If f = c then c = c3 so c = 0
or c = ±1. In any case by setting y = −x 6= 0 we get f(0) = c3 = c.
Thus f is either identically zero, or identically 1, or identically -1. All
of them satisfy the condition.

Problem 122. Find all continuous functions f : R → R such that

f(x + y) + f(xy − 1) = f(x) + f(y) + f(xy)

Solution. If g(x) = f(x)− f(x− 1) then we have f(x + y)− f(x)−
f(y) = g(xy). From here f(x+y + z) = f(x) +f(y + z) + g(xy + zz) =
f(x)+f(y)+f(z)+g(yz)+g(xy+xz). We have encountered this sort of
equation before, establishing that g is linear. Hence f(x + 1)− f(x) =
cx + d. Setting y = 1 we get f(x + 1) − f(x) − f(1) = g(x) = cx + d
so f(0) = 0. Then setting y = 0 we get g(0) = 0 so g(x) = cx. We
then have f(x + y) − f(x) − f(y) = cxy thus f(x + y) − c

2
(x + y)2 −
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f(x) + c
2
x2 − f(y) + c

2
y2 = 0 and so f(x) = c

2
x2 + dx. Then we have

f(x)− f(x− 1) = c
2
(2x− 1) + d hence c

2
= d so f(x) = dx2 + dx.

Problem 75. (Hosszu’s functional equation) Show that a function
f : : R → R which satisfies

f(x + y − xy) + f(xy) = f(x) + f(y)

is an additive function plus some constant.

Solution. This problem is of form f(a) + f(b) = f(c) + f(d) where
a + b = c + d. The inconvenience if that (a, b) and (c, d) are linked to
each other, so we cannot state that f(a)+f(b) = f(c)+f(d) whenever
a + b = c + d. We try to eliminate the inconvenience by adding a new
variable and symmetrizing:

f(x) + f(y) + f(z) = f(x + y − xy) + f(xy) + f(z) = f(x + y −
xy) + f(xy + z − xyz) + f(xyz). By symmetry it also equals f(x +
z − xz) + f(xz + y − xyz) + f(xyz) and f(y + z − yz) + f(yz + x −
xyz) +f(xyz). We thus deduce that f(x+ y−xy) +f(xy + z−xyz) =
f(x + z − xz) + f(xz + y − xyz) = f(y + z − yz) + f(yz + x − xyz).
This is again an equation of form f(a) + f(b) = f(c) + f(d) where
a + b = c + d, but this time the restraints are milder. Indeed, let’s
find for which a, b, c, d with a + b = c + d we can find x, y, z with
(1− x)(1− y) = a, (1− z)(1− xy) = b, (1− x)(1− z) = c. For comfort
we set u = 1 − x, v = 1 − y, w = 1 − z to get uv = a, w(u + v −
uv) = b, uw = c. Hence w = c

u
, v = a

u
and c

u
(u + a

u
− a) = b or

(c− b)u2− acu + ac = 0. For this equation to have a non-zero solution
we need to have a positive discriminant so a2c2 − 4ac(c − b) ≥ 0 or
(ac− 2c)2 + 4(abc− c2) ≥ 0. When abc > c2 this is certainly true. Now
consider (a, b) and (c, d) with a + b = c + d. If ab, cd have the same
sign then we can find such an e sufficiently small in absolute value such
that abe > e2, cde > e2. Setting e1 = a + b − e = c + d − e we get
f(a) + f(b) = f(e) + f(e1) = f(c) + f(d) so f(a) + f(b) = f(c) + f(d).
So f(a) + f(b) = f(c) + f(d) when a + b = c + d and abcd > 0. Next
if we have a + b = c + d = s /∈ [0; 4] and abcd < 0 then there are u, v
such that u + v = s u + v − uv < 0 (just take u = v = s

2
). Then

u + v = uv + (u + v− uv) by uvuv(u + v− uv) = u2v2(u + v− uv) < 0.
Without loss of generality ab > 0, cd < 0. Then if s > 0 we have
f(a)+f(b) = f(u)+f(v) = f(uv)+f(u+v−uv) = f(c)+f(d) and if s <
0 we have f(c)+f(d) = f(u)+f(v) = f(uv)+f(u+v−uv) = f(a)+f(b).
Finally, even if s ∈ [0; 4] (we actually cannot have s = 0 and abcd < 0
as abcd = a2c2), we can find a sufficiently big e such that a+c+e, b+d+
e, a+b+2e, c+d+2e > 4 and state f(a+e)+f(b+e) = f(c+e)+f(d+e)
while f(a)+f(c+e) = f(c)+f(a+e) and f(b)+f(d+e) = f(d)+f(b+e)
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hence f(c+e)−f(c) = f(a+e)−f(a), f(b+e)−f(b) = f(d+e)−f(d)
and f(a+ e) + f(b+ e) = f(c+ e) + f(d+ e) implies thus f(a) + f(b) =
f(c) + f(d) in this last case.

So f(a) + f(b) = f(c) + f(d) whenever a + b = c + d and abcd 6= 0.
Now what if abcd = 0? If one of the is zero, say d we must prove
f(a) + f(b) = f(a + b) + f(0) when ab 6= 0. If a + b /∈ [0; 4] we deduce
the existence of x, y 6= 0 s.t. xy = x + y = a + b thus f(a) + f(b) =
f(x) + f(y) = f(x + y− xy) + f(xy) = f(a + b) + f(0). If a + b ∈ [0; 4]
again we find a sufficiently big e to have a + b + e, 2a + b + e > 4 and
conclude f(a+b+e)+f(0) = f(a+e)+f(b) while f(a+e)+f(a+b) =
f(a)+f(a+b+e) hence adding these expressions and cancelling common
terms we have f(a+ b) + f(0) = f(a) + f(b), as desired. If two of them
are zero, then either we get (a, b) = (c, d) or one of (a, b), (c, d) is
(0, 0). The first case is clear. In the second case we need to prove
f(a) + f(−a) = 2f(0) for a 6= 0. In this case f(2a) + f(0) = 2f(a)
while f(2a) + f(−a) = f(a) + f(0). Subtracting this two relations we
get f(0) − f(−a) = f(a) − f(0) so f(a) + f(−a) = 2f(0). If three of
a, b, c, d are zero, the fourth is also zero and the conclusion is clear.

We have established that f(a)+f(b) = f(c)+f(d) whenever a+b =
c+d. Then f(a+b)+f(0) = f(a)+f(b) thus f(x)−f(0) is an additive
function and the conclusion follows.

Problem 98.Find all functions f : : R → R for which

xf(x)− yf(y) = (x− y)f(x + y)

holds.

Solution. We add a new variable to get a relation: xf(x)−zf(z) =
(x−z)f(x+z) but also xf(x)−zf(z) = xf(x)−yf(y)+yf(y)−zf(z) =
(x−y)f(x+y)+(y−z)f(x+z). Therefore (x−z)f(x+z) = (x−y)f(x+
y)+(y−z)f(y+z). If we want x+z = u, x+y = 1, y+z = 0 by solving
the system of equations we get x = u+1

2
, y = 1−u

2
, z = u−1

2
and thus our

condition becomes f(u) = uf(1) + (1− u)f(0). Thus f(x) = ax + b is
a linear function, and linear functions satisfy the condition.

Functional Equations without Solution

Problem 46. (Romania ’2001) Prove that there is no function
f : R+ → R+ such that

f(x + y) ≥ f(x) + yf(f(x))

for all x, y ∈ R+.

Solution. Use the same arguments as in the second part of the
solution of Problem 45.
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Miscellaneous

Problem 1. (IMO ’2003, shortlisted problem) Find all function
f : R+ → R+, which are increasing in the segment [1,∞) and such
that

f(xyz) + f(x) + f(y) + f(z) = f(
√

xy)f(
√

yz)f(
√

zx)

for any x, y, z > 0.

Solution. Replacing x, y and z with
x

y
,

y

x
and xy, respectively, we

get that

(1) 2f(xy) + f

(
x

y

)
+ f

(y

x

)
= f(1)f(x)f(y).

For y = 1 it follows that 3f(x) + f

(
1

x

)
= f 2(1)f(x). In particular,

4f(1) = (f(1))3. Since f(1) > 0, then f(1) = 2. Thus, f(x) = f

(
1

x

)
and (1) can be written as

f(xy) = f(x)f(y)− f

(
x

y

)
.

Further, since e > 1, then f(e) ≥ f(1) = 2 and hence f(e) = eα+e−α

for some α ≥ 0. Using that f(x2) = f 2(x) − 2, it follows by induction
that

f(e2−n

) = eα2−n

+ e−α2−n

for any n ∈ N0. Having in mind the equality

f(e(m+1)2−n

) = f(e2−n

)f(em)2−n

)− f(e(m−1)2−n

),

we get again by induction that

f(em2−n

) = eαm2−n

+ e−αm2−n

for any m, n ∈ N0.
Since the set of numbers of the form m2−n, m, n ∈ N0, is dense in

R+ (use the binary representation of the positive real numbers) and f
is a monotone function in the segment [1,∞), we conclude that f(x) =
xα + x−α in this segment. The same is true in the segment (0, 1) in

virtue of the equality f(x) = f

(
1

x

)
.

Conversely, it is easy to see that any function of this form satisfies
the condition of the problem
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Problem 81. (AMM 1998) Find all functions f : N2 → N that
satisfy:

a) f(n, n) = n;
b)f(m, n) = f(n, m);

c)f(m,n+m)
f(m,n)

= n+m
n

.

Solution. We can immediately see from a) the algorithm of find-
ing f , because the three conditions follow exactly the three possible
steps of the Euclidean Algorithm. Indeed, following the Euclidean Al-
gorithm by means of steps b),c) we shall reach from (m,n) the pair
(d, d) where d = gcd(m, n). Also we note that all steps a),b), c) pre-

serve the quantity f(m,n)
mn

. Therefore f(m,n)
mn

= f(d,d)
d2 = d

d2 = 1
d
. So

f(m, n) = mn
d

= LCM(m, n). Indeed, LCM satisfies trivially the con-
ditions a), b). For c) we use the fact that gcd(m, n+m) = gcd(m,n) or

m(n+m)
LCM(m,n+m)

= mn
LCM(m,n)

which can be rewritten as LCM(m,n+m)
LCM(m,n)

= n+m
n

Problem 29.Find for which a there exist increasing multiplicative
functions on N (i.e. f(n) < f(n+1), f(mn) = f(m)f(n) if (m,n) = 1)
with f(2) = a.

Solution. We claim the function must be f(n) = nk for some k.
Assume f(x) = xu, f(y) = yv. If xk < yl then xuk < yvl and if xk > yl

then xuk > yvl. Pick up now k and let l be the biggest for which yl < xk.
Then xk ≤ yl+1 so we get yvl+l > xuk > yvl. Now if v > u we cannot
have xuk > yvl for sufficiently big k, as xuk > yvl > yul+l(v−u) > yu(l+1)

for l ≥ u
v−u

. If u > v then yvl+l > xuk so yvl > xuk−1 > xvk for k ≥ 1
u−v

again contradiction. Thus taking k > 1
u−v

if u > v or k such that

xk > y
u

v−u
+1 if u < v we would obtain contradiction. So u = v and

hence f(x) = xu for all x. As f is from N to N , we must have u integer.
So a must be a power of 2, and conversely if a = 2k then f(x) = xk is
good.

Problem 83. Find all functions f : Z → Z that satisfy:
a) if p|m− n then f(m) = f(n).
b) f(mn) = f(m)f(n)

Solution. We see that f(n) takes one of the p values f(0), f(1), . . . , f(p−
1). Therefore we can pick up an a for which |f(a)| has the maxi-
mal value. Then |f(a2)| = |f(a)|2 ≤ |f(a)| thus |f(a)| ≤ 1 hence
f(n) ∈ {−1, 0, 1}. Now if we set m = 0 into b) we get f(0)(f(n)−1) = 0
so either f is identically 1 (which is a solution) or f(0) = 0. If f is
not identically 1 then f(0) = 0 hence f(n) = 0 whenever f is divisible
by p. If f(k) = 0 for k not divisible by p then for any n we can find l
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such that p|kl − n so f(n) = f(kl) = f(k)f(l) = 0, so f is identically
zero, a solution. Assume f is not identically zero, so f(n) 6= 0 if n
is not divisible by p. Now if n is a quadratic residue modulo p then
there is a b such that p|n − b2 so f(n) = f(b2) = f(b)2 = 1. Next
pick up a quadratic non-residue r. Then for every n which is a non-
quadratic residue modulo p we can find b such that p|n − rb2 hence
f(n) = f(rb2) = f(r)f(b)2 = f(r). If f(r) = 1 then f(n) = 1 for all n
not divisible by p. If f(r) = −1 then f is 1 for quadratic residues and
-1 for quadratic non-residues.

Concluding, f(n) = 1; f(n) = 0; f(n) = 1 for n not divisible by
p and f(n) = 0 for n divisible by p; and Legendre’s symbol are all
solutions to our problem.

Problem 84. Find all f : N0 → N0 that satisfy

f(f 2(m) + f 2(n)) = m2 + n2

Solution. If f(n1) = f(n2) then setting n = n1, n = n2 we conclude
that n1 = n2 so f is injective. If f(0) = a then f(2a2) = 0 and then
setting m = n = 2a2 we get f(0) = 8a4 so a = 8a4 thus a = 0. Now
is m2 + n2 = x2 + y2 then f(f 2(m) + f 2(n)) = m2 + n2 = x2 + y2 =
f(f 2(x) + f 2(y)). So the injectivity of f implies that f 2(m) + f 2(n)
if m2 + n2 = x2 + y2. Set f(1) = b. If we set m = 0, n = 1 we get
f(b2) = 1. Then set m = 0, n = b2 to get f(1) = b4 so b4 = b. Hence
f(1) = 1 or f(1) = 0. As f(0) = 0 we conclude f(1) = 1. Next set
m = n = 1 to get f(2) = 2. Set m = 2, n = 0 to get f(4) = 4,
m = 2, n = 1 to get f(5) = 5, m = n = 2 to compute f(8). Next
as 32 + 42 = 52 + 02 we get f(3) = 3. Set m = 1, n = 3 to get
f(10) = 10. As 62 + 82 = 102 + 02 we conclude f(6) = 6. Now we
have proven during the proof of a previous problem that the condition
f(m)2 + f(n)2 = f(x)2 + f(y)2 for m2 + n2 = x2 + y2 helps us compute
f(n) inductively on n for n > 6. Therefore f is unique and as the
identity function is a solution, we conclude that f(x) = x.

Problem 3. (Bulgaria ’2003) Find all functions f : R → R such
that

(1) f(x2 + y + f(y)) = 2y + f 2(x)

for any x, y

Solution. It follows by (1) that f is a surjective function. Moreover,
(f(x))2 = (f(−x))2. Let a be such that f(a) = 0. Then f(−a) = 0.
Setting x = 0, y = ±a in (1) gives 0 = f(±a) = (f(0))2±2a, i.e., a = 0.
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Substitute y = −(f(x))2

2
again in (1). It follows that f(x2+y+f(y)) =

0 and hence y+f(y) = −x2. Thus, y+f(y) runs over all the non-positive
real numbers. Since f(0) = 0, (1) implies that

f(x2) = ((f(x))2 ≥ 0 and f(y + f(y)) = 2y.

Setting z = x2, t = y +f(y) and using (1), we conclude that f(z + t) =
f(z) + f(t) for any z ≥ 0 ≥ t. Then for z = −t we obtain that
f(−t) = −f(t). The it is easy to see that f(z + t) = f(z) + f(t)
for arbitrary z and t. Since f(t) ≥ 0 for t ≥ 0, it follows that f is an
increasing function. Assuming now that f(y) > y, then f(f(y)) ≥ f(y)
and we get the contradiction

2y = f(y + f(y)) = f(y) + f(f(y)) > 2f(y).

Similar arguments show that the inequality f(y) < y is impossible.
Therefore, f(x) ≡ x and this function obviously satisfies (1).

Problem 4. (Bulgaria ’2006) Let f : R+ → R+ be such a function
that

f(x + y)− f(x− y) = 4
√

f(x)f(y)

for any x > y > 0.
a) Prove that f(2x) = 4f(x) for any x > 0.
b) Find all such functions f.

Solution. a) Since f(x + y) − f(x − y) > 0, then f is a (strictly)
increasing function. Hence f(x) has a limit l ≥ 0 as x → 0, x > 0

(prove). Letting x, y → 0, x > y > 0 gives l− l = 4
√

l2, i.e., l = 0. Fix
now x. Letting y → 0, y > 0, implies that f(x + y) − f(x − y) → 0.
Since f is a monotonic function, we conclude that it is continuous at
x. Finally, tending y → x, y < x, we get that f(2x) = 4f(x).

b) Put x = ny > 0 and n ≥ 2. Then

f((n + 1)y) = f((n− 1)y) + 4
√

f(ny)f(y).

Using that f(2y) = 4f(y), we conclude by induction that f(ny) =
n2f(y). Set f(1) = c > 0. Then f(n) = n2c. For p, q ∈ N one has that
cp2 = f(q.p/q) = q2f(p/q), i.e. f(p/q) = c(p/q)2. Since f is a continu-
ous function, it follows that f(x) = cx2 for any x > 0. Conversely, the
functions of this form satisfy the given condition.

Problem 6. (Ukraine ’2003) Find all functions f : R → R such that

f(xf(x) + f(y)) ≡ x2 + y

for any x, y (compare with Problem 10).
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Solution. Setting x = 0 in the given equation gives f(f(y)) =.
Then

x2 + y = f(xf(x) + f(y)) = f(f(x)f(f(x)) + f(y)) = f 2(x) + y,

i.e. |f(x)| = |x| for any x. Suppose that f(x) = x and f(y) = −y for
some x and y. Then we get from the given equation that ±(x2 − y) =
x2 + y which implies x = 0 or y = 0.

Thus the only solution of the problem are the functions f(x) = x
and f(x) = −x.

Problem 1. (Bulgaria ’2004) Find all non-constant polynomials P
and Q with real coefficients such that

(1) P (x)Q(x + 1) = P (x + 2004)Q(x)

for any x ∈ R.

Solution. Set R(x) = P (x)P (x + 1) . . . P (x + 2003). It follows by
(1) that if x is greater than the real zeros of P, then

(2).
Q(x)

R(x)
=

Q(x + 1)

R(x + 1)

We conclude by induction that
Q(x)

R(x)
=

Q(x + n)

R(x + n)
for any n ∈ N. Note

that lim
n→∞

Q(x + n)

R(x + n)
is a number independent of x, or ∞. On the other

hand, this limit equals
Q(x)

R(x)
. Hence Q(x) = cR(x) for any x, where

c 6= 0 is a constant. Conversely, if Q(x) = cP (x)P (x+1) . . . P (x+2003),
then (1) is satisfied.

Remark. Using the equality (2), the solution can be also done by
comparing the coefficients of the respective polynomials.
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