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Preface

This book is intended as a text for a problem-solving course at the first-
or second-year university level, as a text for enrichment classes for talented
high-school students, or for mathematics competition training. It can also
be used as a source of supplementary material for any course dealing with
algebraic equations or inequalities, or to supplement a standard elementary
number theory course.

There are already many excellent books on the market that can be used
for a problem-solving course. However, some are merely collections of prob-
lems from a variety of fields and lack cohesion. Others present problems
according to topic, but provide little or no theoretical background. Most
problem books have a limited number of rather challenging problems. While
these problems tend to be quite beautiful, they can appear forbidding and
discouraging to a beginning student, even with well-motivated and carefully
written solutions. As a consequence, students may decide that problem
solving is only for the few high performers in their class, and abandon this
important part of their mathematical, and indeed overall, education.

One of the reasons why problem solving is often found to be difficult is
the fact that in recent decades there has been less ernphasis on technical
skills in North American high-school mathematics. Furthermore, such skills
are rarely taught at university, where most courses are quite theoretical or
structure-oriented. As a result, a lack of “mathematical fluency” is often
evident even in upper years at university; this reduces the enjoyment of the
subject and impairs progress and success.

A second reason is that most students are not used to more complex or
multi-layered problems. It would certainly be wrong to give the impres-
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sion that all mathematical problems should succumb to a straightforward
approach. Indeed, much of the attractiveness of mathematics lies in the
satisfaction derived from solving difficult problems after much effort and
several futile attempts. On the other hand, being “stuck” too often and
for too long can be very discouraging and counterproductive, and is ulti-
mately a waste of time that could be better spent learning and practicing
new techniques.

This book attempts to address these issues and offers a partial remedy.
This is done by emphasizing basic algebraic operations and other techni-
cal skills that are reinforced in numerous examples and exercises. However,
even the easiest ones require a small twist. We therefore hope that this pro-
cess of practicing does not become purely rote, but will retain the reader’s
interest, raise his or her level of confidence, and encourage attempts to solve
some of the more challenging problems.

Another aim of this book is to familiarize the reader with methods for
solving problems in elementary mathematics, accessible to beginning uni-
versity and advanced high-school students. This can be done in different
ways; for instance, the authors of some books introduce several general
methods (e.g., induction, analogy, or the pigeonhole principle) and illus-
trate each one with concrete problems from different areas of mathematics
and with varying degrees of difficulty.

Our approach, however, is different. We present & relatively self-contained
overview over some parts of elementary mathematics that do not receive
much attention in high-school and university education. We give only
enough theoretical background to make these topics self-contained and rig-
orous, and concentrate on solving particular problems in the three main
areas corresponding to the first three chapters of this book.

These chapters are fairly independent of each other, with only a limited
number of cross-references. Within each chapter, clusters of sections and
subsections are tied together either by topic, or by the methods needed to
solve the examples and exercises. The problem-book character of this text
is underlined by the large number of exercises; they can be sclved by using
a method or methods previously introduced. We suggest that the reader
first carefully study any relevant examples, before attempting to solve any
of the exercises.

The individual problems (divided into approximately 330 examples and
760 exercises) are of varying degrees of difficulty, from completely straight-
forward, where the use of a method under consideration will immediately
lead to a solution, to much more difficult problems whose solutions will
sometimes require considerable effort. The more demanding exercises are
marked with an asterisk (*). Answers to all exercises can be found in the
final chapter, where additional hints and instructions to the more difficult
ones are given as well.

The problems were taken from a variety of mainly Eastern European
sources, such as Mathematical Olympiads and other competitions. Many
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of them are therefore not otherwise easily accessible to the English-speaking
reader. An important criterion for the selection of problems was that their
solutions should, in principle, be accessible to high-school students. We
believe that even with this limitation one can successfully stimulate creative
work in mathematics and illustrate its diversity and richness.

One of our objectives has been to stress alternative approaches to solving
a given problem. Sometimes we provide several different solutions in one
place, while at other times we return to a problem in later parts of the
book.

This book is a translation of the second Czech edition of Metody Tedent
matematickyjch dloh 1 (“Methods for solvirig mathematical problems I”)
published in 1996 at Masaryk University in Brno. Apart from the correction
of some minor misprints, the main material has been left unchanged. Three
short sections with “competition-type” problems at the ends of the chapters
were deleted, but some of these problems were incorporated into the main
body of the book. An alphabetical index was added.

The Czech editions of this book have been used by the authors in spe-
cial enrichment classes for secondary-school students and for Mathematical
Olympiad training in the Czech Republic. It has also been used on a regular
basis at Masaryk University in courses for future mathematics teachers at
secondary schools. A preliminary English version of the first two chapters
was successfully tried out by the translator in a newly created problem-
solving course in the Fall of 1998 at Dalhousie University, in Halifax,
Canada_ It was felt that a course partly based on this book worked quite
well even in a class with a wide range of mathematical backgrounds and
abilities. The book’s structure, the worked examples, and the range in level
of difficulty of the exercises make it particularly well suited as a source for
assigned readings and homework exercises.

The translator also feels that, following the Czech example, this book
may be suitable for a course in a teachers’ education program for high-
school mathematics teachers. Finally, we hope that the reader will find this
book a rich source of useful identities, equations, and inequalities.

Brno and Halifax Jifi Herman
July 1999 Radan Kuéera
Jaromir Simsaa

Karl Dilcher
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Symbols

In addition to usual mathematical notation, the following symbols for sets
of numbers will be used:

2

the sét {1,2,3,...} of all natural numbers, or positive integers
the set of all nonnegative integers

the set of all integers

the set of all rational numbers

the set of all positive rational numbers
the set of all real numbers

the set of all positive real numbers

the set of all negative real numbers
the set of all nonnegative real numbers
the set of all nonpositive real numbers
the set of all complex numbers
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1
Algebraic Identities and Equations

In contrast to the other chapters of this book, this first chapter will not be
restricted to one topic; rather, it is devoted to several relatively disparate
matters. The emphasis lies on finite sums, polynomials, and solutions of
systems of equations. The final section deals with several types of problems
that can be solved by using compler numbers.

1 Formulas for Powers

This is a short preparatory section. We introduce several identities that
will be used throughout this text.

1.1 Combinatorial Numbers

Definition. For an arbitrary number n € Ny we define the number n!
(read n factorial) as follows: 0! = 1, and for n > 0 we let n! be the product
of all natural numbers not exceeding the number n:

nl=1:2---(n—1)-n.

Factorials help us define combinatorial numbers (}) (read n choose k) by
the relation

n ___n!_ where n,k € Ny, k <
k)~ Rn—K) R
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From this definition we obtain directly the identities

(3)=(:)=1 and (2)=(nik), where0< k<n; (1)

in the case where 0 < k < n, we have furthermore

n! n!

n n I
(k) * (k—l) ~ K(n—k) + (k—1)(n—k+1)!
! +1
=k!(n_nk+l)![(n—k+l)+k]=(nk )_ (2)

These identities enable us to show that combinatorial numbers are the
coefficients in the expansion of the nth power of a binomial expression.
Therefore they are often called binomial coefficients. In the following theo-
rem, which generalizes the known formula (A + B)? = A2 + 2AB + B2, we
can take A, B to be numbers or expressions.

1.2 The Binomial Theorem

Theorem. For an arbitrary naturel number n we have

(A+B)* = (g) A"+ (':)A"“B + (’2") A2B2 4.4 (:')B".

PROOF. Since () = (}) = 1, the theorem is certainly true for n = 1. We
assume that it is true for some fixed n > 1; we will prove that it holds for
n + 1. If we add the two identities

A-(A+B) = (A4 (JAB +---+ ()AB™,
B-(A+B)" = ®)AB+---+( ,)AB" + (V) B+,

we obtain on the left-hand side the power (A + B)™+!, while the sum on
the right is, according to (2), equal to

(A + (*HYAB+ (F)AIBR 4 4 (AR 4 (B,

Since () = 1= (“3'1) and ) =1= :ii), the statement of the theorem

holds also for n + 1, which completes the proof by induction. (m

1.8 Ezamples

(i) fweset A=B =1, resp. A =1, B = —1, we obtain interesting
identities between combinatorial numbers, valid for all n € N:

=)+ +---+ () + O 3)
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0=(3) - () +--- +(=)"1(,") + ()" () (4)

(ii) We will determine the largest summand in the expansion of (1++v/2)%.
To do this, we determine the quotient of the {i+1)th and the ith summand
(0 < i < 100) of the expansion, namely

()2 _ 1000 G-1ao-it o

100)(/2)-1 — i1(100 — )t 100!
101 —3
=— V2.

This quotient is bigger than 1 exactly when (101 —i)/2 > {, that is, exactly
when Y

101v2

i< = 101(2 — v2) ~ 59.1644,
1+ V2 ( )

and so for i < 59 the (i + 1)th summand is bigger than the ith. Similarly,
we convince ourselves that for ¢ > 60 the (i + 1)th summeand is less than
the ith. Therefore, the largest summand is (%) - (v2)%°.

1.4 Ezercises
Show that (i)—(iii) hold for arbitrary natural numbers n:

0 () +(@)+ @) +-=2
@ D+E+E)+--- =21
(the sums in (i), (ii) end with (%) or (_.”,)).

@) (o) + (T + )+ + () =4

(iv) Find the largest summand in the expansion of (/2 + 1/3)5.

(v) Determine all natural numbers m, n satisfying
n+ly _ n+ly __ 5(n+l
m+1 _(m)_g( -1

The binomial theorem is going to be used extensively in what follows,
in particular in Sections 2.9 and 2.10, where we find identities similar to
(3) and (4). Also, in Section 3.7 of Chapter 2 we show how the binomial
theorem can be used to prove inequalities. Now, however, we introduce a
generalization of the known identity A> — B2 = (A— B)-(A+ B). Asin
1.2, the letters A, B may denote numbers or expressions.

1.5 A Factorization

Theorem. For an arbitrary natural number n we have

A"—B"=(A-B)- (A" '3+ A" 2B+--.+ AB™ 24+ B"1).  (5)
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Proor. By direct calculation: If we subtract the identities

A'(An—l+An-2B+---+Bn_l)=An+An_lB+---+AB"'_l,
B-(A"'4+ A" 2B +4-.-+B" )= A" 'B4...4+ AB" 1+ B",

we immediately obtain (5). =

1.6 Ezample
Find the coefficients of the polynomial

Fz)=Q1+z) +(1+z) ™ +.--+ (1 +2)*,
where r, s are integers, 0 <r < s.
SoLuTION. If we factor out (1 + z)”, we obtain
Fz)=(14+z) -N+QQ+z)+---+ (1 +2z)*").
Replacing A=1+2z,B=1,n=3s5—r+1 in (5), we get
A+z) P —1=z-[1+z)*" "+ A+z) " +---+ (A +2)+1],
hence
F@) == (1 +a)[1+2)* ™ —1] = 2. [(1+2)"* — (1 +2)].
According to the binomial theorem 1.2,
_H-l s+ o1 (T i1
ra=$ (1) £ (0

and therefore the coefficient of z7 in F(z) is (;Ii — (J._';_l) for0<j<r

and (;_‘:_'i) forr<j<s. O

1.7 Ezercises

Show that for an arbitrary natural number m we have

(i) A?m _ pim _ (A+B)(A2m—1 — A?m—2p o= B2m-1)’ (6)
(ii) A2m—1 L p2m—1 _ (A+ B)(A2m—2 —A2m-3g 4 ... + B2m-—2). )
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2 Finite Sums

In this section we give several methods for obtaining formulas for some
interesting finite sums, that is, sums with finitely many summands. We
point out that we avoid on purpose the use of mathematical induction,
since in many cases it is quite difficult to obtain the necessary hypothesis on
how the result should look. This does not mean, however, that this method
could not be used for certain problems. Indeed, the many examples in this
section would be very useful for practicing this important method of proof.
For the remainder of this section, let k, m, n be natural numbers.

2.1 Ezample
Determine S;(n)=1+2+3+---+ n.

SOLUTION. We write out the sum S; (n) twice, with the second one written
in opposite order; then we add the two expressions:

Si(n)= 1 + 2 4+ 3 +4+---+(n-1)+ =n
Sifn)= n +(n-1)+(n-2)+---+ 2 + 1

2S5 (n)=(n+1)+{(n+1)+n+1)+---+ (n+1) + (n+1).

That is, 25;(n) = n(n + 1), and therefore

n{n+1)

. (®)

S (n)=14+243+---4n=

We were able to determine this sum very easily, simply by changing the
order of the summands. It is now clear that this method can be used for
summing finitely many terms of any arithmetic progression. If an arithmetic
progression is determined by its first term a, and difference d, then we get
for the sum S, of its first n terms,

Sa= ax +  [ea+d] 4o+ [+ (n-1)d
Sa=[a1+(n—1)d + [a1+(n—2)d] +---+ a;

284 = [2a1 + (n — 1)d] + [201 + {n — 1)d] +--- + [281 + (n —1)d],

that is,
n T Tl
Sa= 5[2(11 +(n—1)d) = EI‘“ +a1+(n—1)d] = 5(01 +as), (9)

where we have used the fact that @, = a; + (n — 1)d. a
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2.2 Remark

If we change the above procedure a little, we can also determine the sum
of the first n terms of a geometric progression. If a geometric progression
is determined by its first term a; and quotient g # 1, we obtain a formula
for the sum S of its first n terms as follows:

Se= o1 + ag+ ag +--+ag""
q-Sc= a1q + 618% +---+ ag” ! + ad”
g-S¢—Sc= —a1 + a19".

Since ¢ # 1, we obtain

n_1
Sc=01 +——. (10)
q—l

The trick that led to the expression (10) is based on an appropriate
multiplication of the original expression for S¢, followed by a subtraction
of the two equations, so that on the resulting right-hand side all but two
terms disappear. We note that if we begin by factoring out a; in the sum
Sc, then formula (10) can be obtained directly from (5) by setting A =1,
B=g.

2.8 Ezercises

Evaluate the following sums:

(i) S=14+3+5+---+(2n—1).

(ii) S=1-2+3—-44---+ (-1)"1n.

(i) S=n+n+3)+(n+6)+---+4n.

(iv) S=(-31)+(-27) +(—23) +---+ 29+ 33.

(V) S=24224+2% ... 4 2n.

(Vi) S=1—-3+ @ —m+--+ (1)1 Fy
(vii) S=2454114---4+(3- 221 _1).
(viii)S:(:r+%)2+(1:2+£;)2+---+(:c“+zl,.)z,where:relk,:c;éO.

2.4 Some Combinatorial Identities

The methods of changing the order of summands or appropriate multipli-
cation of the sum can also be applied to certain combinatorial sums, that
is, sums that contain factorials or binomial coefficients. In some cases both
methods can be combined in an appropriate way.
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2.5 Ezample

Determine
S=1-()+2- Q) +3- ) +---+n- (7).

(i) FIRST SOLUTION. If we use the fact that k- (}) = k- (,,%,), we can
write the given sum in a different way, as

S=n-Q+(n-1)-Q+n-2)-)+---+1-(;2)-
We then add both expressions of the sum S:

o= 1) o+ 2@ 4+ m-D(") + 0 ()
S=n@Q)+m-1)(G)+n-2-G)+--+ 1.(I)

=G+ w) + w@ + o+ alm) o0
Hence, according to (3),
S=tr [+ @+ Q)+ + Q= n2=n2t

(if) SECOND SOLUTION. Each term in the sum 8 is of the form k- (}) (for
k=1,2,...,n) and we have

n{n—1)! n—1

k'mr_:%z)_!=k'k-(k—lln— i=n-("1)-
Then
S=1-(D+2-G+---+(n-1-(2,)+n-(3)
(5 4n (7) 4t ()

=n- [+ )+ + (D] =n-. O

2.6 Ezample
Determine

S=1-(})-2-(+3-G) —4- D+ + (=D .n-(7).

SOLUTION. If we try the method of 2.5.(i), we notice that it works only
for even n, in which case according to (4) we obtain S = (. Let us instead
rewrite each term in the sum S exactly as in 2.5.(ii); then we get

S=1-(1)-2-(3)+3-(5) —4- Q) +---+ ()™ -n- ()
=n- [0 - ()4 03D - (5 +- -+ )

and so, according to (4), S=0forn>2andalso S=1forn=1. (]
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2.7 Ezample
Determine
S=1Q)+ D+ + -+ 22 (-

SOLUTION. Here each summand is of the form £1; - (7). We immediately
reach our goal if we multiply each summand (and thus the whole sum) by
the number n + 1, since

1 1 ! _ n+1)! __ n+l
(n+1)- k_-H(:) = %i_l ) 'k'!'(':_—k'j! - UE+15!(n')_‘—k)! = ('l:.+1 :

Then we have
(1) § = BE) + 252 + 2P+ + 2(0) + 2
=+ +CF) -+ O+ G
- [(ﬂ-(l)-l) + (n-:-l) + (n;—l) -+ (:Ii)] _ (n-(|)-1)
=2nt 1.

gn+l__g
nt+l ° D

From this we obtain § =

2.8 Ezercises
Determine the following sums:
() S=1-() +2-() +3- )+ +(n+1)- ).

(i) §=1-(G)~2-G) +3-() —4- () +-- +(="(n-1)- ()
forn > 2.

(iii) S=2-(0)+6-(P+12- Q) +---+n(n—1)- () forn> 2.
*av) S=1- () +22- () 3 )+ 0 ()

) S=3() - 36) +16) - 4@+ + Q).

V) $=3@) +3(Q) +16) + -+ 0)-
") S=Z()+FE) + TG+ + 550

e _ 1 1 1
(viil) = g1y + s +mm)‘g+"'+“(2n‘—5"i—ll -

2.9 Applications of the Binomial Theorem

The binomial theorem 1.2 can be used successfully for deriving sev-
eral combinatorial identities. We consider the binomial expansion of the

expression
k

(1+z)*= Z (f):ri,

=0
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which is & polynomial of degree k in the variable x. If we succeed in express-
ing this polynomial in a different form for certain k, then by equating the
coefficients of equal powers z* we can obtain interesting formulas between
binomial coefficients. For example, let us prove the identity

2 2 2 2
n + n + n oot n\" _ 2n
0 1 2 n n}
Here the appropriate exponent is k = 2n since clearly (1 + z)** =
(1+z)" - (1 + ). After expanding both sides of this equation accord-

ing to the binomial theorem, we obtain the required identity by equating
the coefficients of z™:

A +2)™ =)+ )+ + Bz + -+ GR)2™,
A+a)m- @+ = () + Dz + + (2)2" 1+ (D)=)
(@ + @z +-+ (22" + ()2")
=@+ + O]+
+H@E+ O+ + Q)]+
+@E@) -2

Therefore, we have

) =@ +DG2) ++ 2O + Q) E)
ny2 n\2 n 2 ny 2
= 0) +(l) +“-+(n—1) +(n) ¥
where in the last equality we have again used (1).
In general, the two expressions of this polynomial form the basis of the
method of generating functions. With the help of this method one can

obtain a large number of interesting identities. The interested reader is
encouraged to consult, e.g., the books [9] and [6).

210 FEzercises

Using the method of 2.9, prove (i) and (ii), where p,r e N, p<m, p <m,
andr <n:

M @)+ +GCI) +---+ ()@ = ("3,
@ )+ D6+ G5 ++ Q) = m=er

(iii) Determine the sum §=1- ()’ +2- (3)*+3- (3’ +---+n- (V)
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2.11 Ezample
Let us determine the sum
@+ M+ )+ (MR-
Using (1), we rewrite this sum as
G+ + R+ (M)
and we see that it is the coefficient of z™ in the polynomial
Q+z)™ +Q+2)" N + A+ )2+ + QA +2)™,

which, according to Example 1.6 with r = m and 8 = m +n — 1, is equal
to '""'“). This solves the problem. For later use, we write the result as

m+41
)+ I+ ) + -+ (M) = (R5)- (11)

2.12 Remark

We can convince ourselves that the sum in Example 2.11 in its original
form can be found as the coefficient of z” in the polynomial

A+2)™ +2" A +2)" P + 220+ )2 4+ 2 (A )L
This polynomial is equal to
z(1 + )™ — (1 4+ )™

Formula (11), by the way, is easy to prove by induction with respect to n;
it suffices to use formulas (1) and (2). It also has a nice combinatorial inter-
pretation, but we will not pursue this further in this book. In Section 7 of
this chapter we will return to some problems concerning sums that involve
binomial coefficients.

2.18 The Sums B(k,n)
With the help of relation (11) we now derive a formula for the sum
B(k,n)=1-2-3---k+2-3-4---(k+1)+---
+nn+1)(n+2)---(n+k-—1),

which will be used in Sections 2.14 and 2.15. If we put m = k in (11), then
upon multiplying by k! we obtain

B(k,m) = M(517) = etligid-tosn, (2)
Let us note that according to the definition we have
n{n+1)

B(1,n) = 51(n)= 7

Therefore, the derivation of (12) for k = 1 constitutes another proof of
formula (8).
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2.14 The Sums Si(n)

Now we turn our attention to the sum Si(n) of kth powers of the first n
natural numbers:

Si(n) =1F + 25 4 35 ... + 0%,

where k € Ng. This notation is consistent with that in Section 2.1, where
we showed that

1
Sl(ﬂ)=11+21+31+...+n1=_‘—n(n2+ )

Furthermore, it is clear that
So(n)=1°+4+2°4+3"+---+n%=n.

Let us now determine Sz(n) = 12 4 22 + 32 + . .- + n2. According to (12)
we have for k = 2,

B(2,n)=1-24+2-3+3-44+---+n{n+1)
=1-14+1)+(2-242)+(3-34+3)+---+(n-n+n)
=(12+22+3%+---+n®)+(1+2+3+---+n)

— Sa(n) + Sa(n) = n{n+ 1§(n+ 2)’

from which we get

Sz(n) — B(2, ﬂ) _ Sl(ﬂ) . ﬂ(n+13)(ﬂ+2) _ ﬂl!‘;}-ll — ﬂ(ﬂ+l)6(2n+l)‘ (13)

2.15 FEzxercises
Using the method in 2.14, show:

() Sa(n) =13 +2% + 3% .-+ nd = Bl (14)
(i) Sa(n) =10+24+3% +--- 4 n? = HOHNCEHLETHIn-1) (15)
(ifi) S(n) =15 +25 +35 4 --. 4 nb = POH @nTean-1) (16)

2.16 Alternative Derivation of Expressions for Si(n)

Expressions for Si(n) can also be obtained by using a binomial expansion
for the term (i + 1)**!, where we replace i successively by 1,2,3,...,n.
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Thus, for computing Sa(n) we add the following n equations:

(1+1)°= 2 = 1® + 312 + 3.1 +
2+1)® = 3° = 28 + 3.22 + 3.2 + 1
(3+1)°= 4 = 3 + 3-32 + 3.3 + 1
3 __ s _ .3 2 ] 1
(n+1)°= (n41]1) = n° + 3.-»* 4+ 3-n +

S3(n+ 1) — 13 = S3(n) + 3- S2(n) + 3- S1(n) + So(n),

from which, in view of the equation S3(n + 1) — Sz(n) = (n+1)3, it follows
that
3-82(n) = (n+ 1)® — 13 — 381(n) — So(n)
=n®+3n?+3n+1-1- gn(n+1)—n.

From this we easily obtain formula (13) for the sum Sa(n).

2.17 FEzercise
Use the method of 2.16 to determine S3(n) and S;(n).

2.18 Remark

Both methods for determining Sx(n) that we have used in 2.14 and 2.16
are recursive: The sum Si(n) can be found if we have already determined
So(n), Si(n), ..., Sx—1(n). In general, one can use the method of paragraph
2.16 to show that the recurrence relation

(1)8) + (*5)Sk-1(n) +--- + (*£)S1(n) + (531) So(n)
=(n+1)F! -1
holds. Looking at formulas (8) and (13)-(16) one might expect that Sy.(n)
for each k is a polynomial in the variable n of degree k + 1. That this is
indeed true follows from the above recurrence relation by induction on k.

Finally, we have the following theorem, which we state without proof (see,
e.g., [2], Section 5.8, Theorem 3).

2.19 Bernoulli’s Formula

Theorem. If k > 2, then for the sum Si(n) = 1¥ + 2% + ... 4 7k the
Jollowing formula holds:
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Sk(n) = J::; +%5 +(k+l) Bs- k—l—l +(k+l) -B3-% k+l
(k+l)-Bk‘m (17)

k41—4

l:+l k41
= k+l +5 +21—2( H ) Bi nk+1 ’

where B; is the so-called ith Bernoulli number.

2.20 Remark on Bernoulli Numbers

Bernoulli numbers are rational numbers; they occur in many fields of
mathemetics. The first few Bernoulli numbers are

1
BO . 11 Bl =5 B2 -
12 1

B5 — 0, Bﬁ = E, B Bg —%, Bg = 0.
'We notice that starting with Bs, all Bernoulli numbers in the above list with
odd index are zero. This is no coincidence. In general, it is true that for an
arbitrary natural number k we have Boxy1 =0, Byr—2 > 0, and By < 0.
The Bernoulli numbers can be defined by the following recurrence relations:

‘We set By = 1 and require that for an arhitrary natural number & we have
L ()8 + (5 Bat-+ (B =0

(compare this with (17) for n = 1, keeping in mind that Si(1) = 1 and
B, = —31). We can use this to compute Bernoulli numbers with even index
that are not in the above list. For instance,

L
6’
=0,

By = ——l-(Bo + 11B; + 5582 + 330B, + 4628 + 16585)

1\ 5
(-———+——1+1—§)_%.

2.21 Remark

If we know the first (k + 1) formulas for Sp(n), S1(n), -.., Sk(n), we can
easily determine the value of the sum F(1)+ F(2)+- - -+ F(n), where F(z)
is an arbitrary polynomial of degree k. If F(z) = ap + 612 + -+ + axz¥,
then

EF(‘I) Z(au + ayi + - - - + axi¥)

i=1

"aoZt +0121+ +ak21

=1 i=1

= apSe(n) + 0181 (n) + -+ + arSk(n).
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Thus, for example,

i(h’— 1)=2-81(n)-S(n)=nn+1)—n= n?

i=1

(compare with 2.3.(i)).

2.22 Fzercises
Following Remark 2.21, determine the following sums:

G) S=1+4+3+7+---+(n®*—n+1).
(ii) S=1+15+65+---+ (4n® — 60 +4n —1).
(iii) S=5+35+113+---+ (40> +2n - 1).

2.23 Ezample
Determine S =12 —22 + 32 —42 +.-- 4+ (2n— 1)2 — (2n)%.

(i) FIrRST SOLUTION. Using appropriate rules of summation, we get

$=12-224+32_4%+... 4+ (2n —1)%2 — (2n)?
=2 +224+3%+--+(2n-1)2 + (2n)*] —2- [22 + 4% +--- + (2n)F)
=[124+2243 4+ +(2n-1)2 4+ (2n)?] - 8- 12+ 22 +--- 4+ 1]
= S2(2n) — 8- Sa(n)
. 2n(2n+1)}{4n+1) 8. n(n+ 1)}(2n + 1)
6 6

(ii) SECOND SOLUTION. We divide the 2n terms into n pairs. First we
find the values of each of these pairs and add the results:

g

=-—n(2n+1).

2-22 = —2-1)-@+1) = -3
2_g2 - ~(4-3)-(4+3) = -1
52_g2 = —(6—5)-(6+5) = -11,

(2n—-12—(2n)* = —[2n— (2n—1)]- [2n+ (2n—1)] = —(4n—1).
Then, adding the n equations by way of identity (9), we obtain

S=-[3+7+11+---+(4n—1)]=—§[4n—1+3]=—n(2n+1)- =
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2.24 Remark

Both methods in the previous paragraph can be used to find expressions for
alternating sums 3o~ (—1)*+1F (i) with an even number of terms, where
F(z) is a polynomial (in 2.23 we had F(z) = 2?%). In 2.23.(i) we used the
fact that

2n

2n n
Y (1) FG) =) F@)-2- ) F(2i),

i=1 i=1 i=1

and in 2.23.(ii) also the fact that

2n n
Y (—1FGE) =) G(i),
i=1 i=1

with G(#) = F(2i — 1) — F(2i), where in both cases the sums on the right
sides were determined according to Section 2.21.

If the number of terms in the alternating sum is odd, we separate out
the last term and thus reduce the problem to the above case.

2.25 Fxercises

Find the following sums:

(i) S=12+3+52+---+(2n—1)2
(ii) $=2-12+3-2244-3%2+--- 4+ (k+1) - k2.
(iii) S=13+33+53+"'+(2ﬂ—1)3_
(iv) S_13 23+33-—43+...+(_1)n+1_n3
2 2,02, 92 297,93, 13
*(")S— —"i+1_+%:l'3_+.__+1+ 48

2.26 The Sums Ri(q,n)
We now study the sums Ri(q,n) defined by

Ri(g,n)=1F-q+2* -2 +3* - * +---+n* - g~

We will further assume that g # 1, since for ¢ = 1 we have Ri(1, n) = Si(n);
Sections 2.14-2.20 were devoted to this case. Furthermore, for k = 0 we
obviously have

q

Ro(g,n) =1%+2%* +---+n%" =g+ ¢*+---+q" =¢- . (18)
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2.27 FEzample
Determine Ry(g,n) =1-¢+2-¢*+3-¢+---+n-g" {(g#1)-
(i) FIRST SOLUTION. We use partial summation, where step by step we

will sum the terms of n geometric progressions (see 2.2). Consider the
following n equations:

n__ ntl __
g+ +e+- -+ g = Q'gq_—ll = 4,
— n—1__ ntl_ 2
@+t +q" = 02'9—,,_—11= Lq—_rq—,
n4ld__ 3

_ u—‘l_l
¢+--+¢ +g= ¢ = 5t

. x__ nyl  _n—a
qn—1+q'n= P l_qq_ll — 9 q_g ,
—1 . nydl__=n
= q -1 = l—q:f—-
This sum is
+1__ n+l__ ndl__ ¥
Rl(q,n)-g?l—q+9ﬁqh+ O o 1
=2y ln-¢" —(g+g*+---+ V)
1 1 n+1__
] q—_l [ﬂ-qﬂ+ —_ Q?__l_q ,
from which we obtain
q
Ri(g,n) = Go1F [n-g"*' —(n+1)-¢" +1]. (19)

D

(ii) SECOND SOLUTION. We determine the difference between the sum
Ri(g,n) and its product with g (this is the same trick that led to the sum
of Sg in Section 2.2). If we write equal powers ¢* underneath each other,

Ri(gn)= ¢+2¢°+3¢ +---+ n-g",
¢-Ragn) = F+283+--+ (n—1)-¢" +n-g"H,

then by subtracting the first equation from the second, we obtain

(¢—1)-Rilg:n)=—(¢+@*+¢*+---+¢") +n-g"*!
n+l _
=n_qn+1_q q
g—1
q

=1 -+,
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which leads to (19). -
(iii) THIRD SOLUTION. We use differential calculus: We have
Rl(q'ln) =q+2q2+3q3+---+n-q" =q- (1 +2q+3q2 +"'+n'qn_l):

where the sum C(g, n) = 1+2¢+ 3¢ +---+ng" ! is clearly the derivative
n+4t
of the sum Ry(g, n) with respect to the variable g. Since Ry{(q,n) = b

by (18), we have ot
_4d _ln+1)g" —1(g—1) —(¢"*' —q)
Cla.n) = 1 [Ro(g,n)] = T
_n-gt—(n+1)-q"+1
- (g—1)?
Since Ry(q, n) = g- C(g,n), we again obtain relation (19). O

2.28 FEzample

Determine
Ry(g,n) =1°¢" +2°¢* + 3%¢* +--- +n?-q".

To solve this problem, we follow the ideas of the second solution in 2.27,
where we derived the recurrence relation

(g—1)- Ri(g,n) =n-¢"" — Ry(q,n).

We determine the difference between the sum R2(g, nn) and its product by g;
in a similar fashion as in solution (ii} in Example 2.27 we obtain

(@—1)-Ra(gn) = —12-q+ (22 - 1°) + (32 - 2%)g° +---
+ (n2 _ (ﬂ. _ 1)2) qn] +n2 : qn+l_
Here each of the n summands between the square brackets is of the form
(¥*-(k-1)3?)-F=@2k-1)-¢* =2k-¢*— ¢~
"Therefore,
(¢—1)- Ry(g,n) = —[(2¢— @) +(2-2¢° — ¢°) +(2-3¢° —¢°) + - --
+ (2ng" — ¢")] +n*- "
=n?g"*! —[2(g+2¢* +3¢° +---+n-¢")
— g+ 4+ +---+4")]
=n?-¢"*! — 2Ry (g, 1) + Ro(g,n).
If we now substitute Ry(g,n) and R;(g, n) according to (18) and (19), we
obtain
Ry(g,n) = gy - [R?-¢"2 —(@2n2 4+ 2n—1)- "+ (n+1)*-q" —¢—1].
(20)
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2.29 Remark

The method of solution in the previous example can also be used for deter-
mining Ry(g,n) for k > 3. This will be a recursive method, similar to the
method for finding Sx(n) that was explained in 2.18.

2.80 FEzxercises

In problems (i) and (ii} find the sums by using the method of 2.27.(iii); use
any method to find the sums in (iii)—(iv):

(3) Ra(q,n).

(i) S(g) =2+69g+12¢>+---+n(n—1)g" 2, wheren>2and g # 1.
(iii) S(¢)=1+2t+3t24+--- + (n — " 2.
(iv) S(W)=12+22. 943202 +... 4 n2. "L,

(v) For z # 0 determine

S@)=(@E""+77)+2- (=" 2+ A=) +---
+(n-1)-(z+ 1) +n

(vi) Determine the sum R3(g,n) =13-¢' +23.¢2 4+ 33 . +-- -+ n?-¢".

*(vii) Express Ri(g,n) recursively in terms of Rg(g,n), Ri(g,n),...,
R.k—l(q'l n)-

2.81 The Sums S(g,n)

Let us now consider the sums
S(g,n) = P(1)q + P(2)¢* + P(3)¢® +--- + P(n)q",

where ¢ # 1 and P(z) = ap+812+822% 4 - - +apz™ is a given polynomial
of degree n. Clearly,

S(a,m) =Y P(i)g' = 3 (a0 + a1i + 62i% + .- + ami™)g’

i=1 i=1

=aozﬂ:q"+al Zn:iq‘+azzn:i2q‘+---+amzn:imq"

=1 i=] i=1 i=1

= aoRo(g, 1) + 61 R1(g,n) + a2R2(g,n) + - - - + an Rin(g, ).

We can therefore express each sum S(g,n) as a linear combination of the
sums Rx(g,n) (k = 0,1,2,...,m) which we already investigated in 2.26-
2.30.
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2.532 Ezample

Evaluate — . "
n+
S—§+2—2+§+---+ on

SOLUTION. According to 2.31 we obtain

$=322=3 2 42.) 2 = Rihn) +2Re(dn),

and therefore, using (18) and (19) with ¢ = %,

S=@-_%—i-)_2. [n_(%)““_(n+1)-(%)n+1] +2-%.%-;_il

___2""‘2—-11—4 O
2n ’

2.883 Fzercises

Determine the following sums:

G) S=2'4+2-2243-24+..-+n-2"

(ii) S=2'21+6'22+12-23+-..+n(ﬂ+1)_2‘!’!_
(iii) S=1+3+5+---+ 2=

(iv) S=1-3+5-Z+---4 (-1 2]

2.34 Remark

The evaluation of S{g,n) by way of the sums Ri(g,n) may require some
work because of the form of the expression egRp(g,n) + a1 Ri{g,n) +--- +
o, R, (g,n). If, in addition, we do not have tables of the necessary formulas
for Ri(q, n), we can use the method of undetermined coefficients to find the
sum of S(g,n). This method is based on the following theorem, which we

state without proof.

2.85 Transforming S(q,n)

Theorem. Let P(z) be a polynomial of degree m, and g # 1 a real number.
Then there erist a polynomial Q(z) of degree m and a number d € R such
that for each n we have

S(g,n) = E P(i)¢' = d+ Q(n)q".
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2.36 The Method of Undetermined Coefficients

We assume that in Theorem 2.35 we have P(z) = ap + a1 + axz? +
--+ + amx™. Then the polynomial Q(z) is of degree m; we will therefore
try to determine it in the form Q(z) = bp + by + boz® + - - - + bma™. To
evaluate the sum S(g, n1), we must find the constant d and m+1 coeflicients
by, b1,...,bm. First we find the coefficients b; from the following pairs of
expressions for the differences S{g,n + 1) — S(g, n):

n+l n
S(g,n+1)— S(g,n) = ¥ _ P(i)g* — ¥ _ P(i)g* = P(n +1)¢"*!,
i=l i=1

S(g,n +1) — S(g,n) = d+ Q(n + 1)¢"*! — (d + Q(n)g")
= [Q(n + 1)g — Q(n)]q¢"-

Therefore, P(n + 1)g = Q(n + 1)g — Q(n). From the polynomial equation
P(z +1)qg = Q(z + 1)g — Q(z) we determine the coefficients by, by, .. ., bn.
Finally, we obtain the constant d from the equation S(g,1} = d + Q(1)q.
We illustrate the use of this method in the following example.

2.87 Exzample
Determine thesum S =1+ F + & +--- + &.

SOLUTION. We have
E (3 ‘i k()
S=Sthm =35 =3 id)
i=1 i=1
We will therefore attempt to find the sum in the form

S(%,n)=d+“’2'f".

Since
n+1

S(%!”"‘ 1) - S(%!n) . F_'__l:

for each n we must have

n+l a+bn+1) a+bn
2ntl — ondl T Tgm

that is, n +1 = —bn + (b — a). The polynomials z +1 = ~bx + (b — a) are
equal if and only if 1 = —b, 1 =b— @, that is, b= —1, @ = —2. From the
formula for n = 1, namely ; = d+ 242, we finally obtain d = 2. Therefore,
S(3,n) =2 — 22 Let us add that the above can also be considered to be
a proof by induction. O
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2.38 FEzercises

Use the method of undetermined coefficients to find the sums in Exer-
cise 2.33.

For the remainder of this section we will be interested in sums of the
form Y7, g—g}, where P(x), Q(x) are polynomials and Q(x) has degree
at least 1. In some (rather exceptional)} cases one can write the result in

the form —g—%}, where F(z) and G(z) are appropriate polynomials. Such

expressions, however, may not exist even for simple sums, such as 7., 4
or 3, & In the case where such an expression exists, we use the method

of partial fraction decomposition to actually find it.

2.89 FErample
FindthesumS=ﬁ+T13+3+4+---+Fl_‘_ﬂ.

SoLuTION. In this example we have P(z) = 1, Q(z) = z(z + 1). We
decompose the fraction ;Tz%.'i)' into partial fractions. If

1
z(z +1)

b
z+1’

I

2+
I

then 1 = (a + b)z + @, that is, a = 1 and b= -1, and therefore

Lol
z(z+1) =z zT4+1°
(This expression is, of course, easy to “guess” by way of the calculation
;(zlﬁ)- = ZHUo= — 1 1. ) We have therefore
1 1 1 1
=12tz t3at  tamEm
1 1. 1 1 1 1 1 1
=1 3tz stz it otnTaa

In this sum of 2n summands we split off the first and the last term and
collect the remaining 2n — 2 summands into n — 1 pairs of neighboring
terms, with each pair adding up to zero. We obtain therefore

1___n o
n+1 n+1’

S=1-

2.40 FEzercises

Determine the following sums:
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- 1 1 1 1
0 = + we e ot sy Where kS -

Gi) S=5+35+37 + -+ EnE-
L, S=i'3§+z—h+3%5+---+m.

(iv) S=i4+37 t7g + - + G-
() S=qis+zdataast +m

(vi) S= 1.r,'*'a:.w'l'.':?g"' “+ @ 1)(2n+1)(2n+§)'

241 FEzample

Determine the sum
3 5 7 2n+1
S=Z+ztmt 1
SoLuTION. Here each summand is of the form ;,%ﬁ%, (i=12,...,n),
and we have

2i+1 424142 (@41)2-2 1 1
2(i4+1)2 23 4+1)2 0 2(@i+1)2 0 2 (:4+1)2
so that
3 b5 7 2n+1
S=atmtmt Y Eny e
22__12 32_22 42_32 12__ 2
. toe st 32 2+"'+(ﬂ+) .
12.22 © 22.3 32.4 n2(n+ 1)2
1 1,1 1.1 1, L1 1
12 22 22 32 T 32 42 n2 (n+1)2
—1_ 1 _n(n+2) O

(n+1)2  (n+1)%

2.42 FExercises

Evaluate:
3 2
() S=F+5+35+ -+ L0
3 13 37 8, 2
() S=g3+33+35+ -+ 50
(i) S=5+ 8 +58 +- +21::n11;1
2.48 Ezample
Let us determine
12 2f 32 2
S = + + 4o+ 2

1-3 3.5 5.7 (2n—1)(2n+1)
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SoLUTION. In this sum each term is of the form ZT—I%'IJH = g If
we consider the sum 4.5, we can write each term in the form

4i2 42 —1+1 1 1
2 = T a2 =l+ m =1+ : :
4i2 -1 432 —1 4i2 -1 (2 —1)(21 +1)

Therefore, we have, by Exercise 2.40.(ii),

45 = (1+ ) + 1+ %)+ + (1+ mglgmrm) =0+ =21

So finally, § = ZEA 0

2.44 Fzercises

Evaluate
1 2 3 n
*(3) S =
O S=135tss7 579 "t @moDeni@Emsd)
B 14 24 34 nt
@) S=13+tzstsrt -t (2n—1)-(2n+1)

3 Polynomials

The search for zeros of polynomials was for many centuries the basic prob-
lem of all of algebra. Even when algebra in its development departed to a
great extent from this problem, polynomials continued to play an impor-
tant role in algebra as well as in a number of other areas (among the more
remarkable occurrences are the Taylor polynomial for the approximate eval-
uation of functions, and the use of polynomials in interpolation questions).
In this section we recall some basic terms connected with polynomials,
and also several methods for finding their zeros. However, we are not con-
cerned with providing a well-rounded theory of polynomials; instead, we
limit ourselves to some properties that receive relatively little attention in
basic algebra courses but that are useful for solving certain problems.

Although we have already used polynomials in the preceding sections,
we will first recall some basic terms from their theory.

8.1 Definitions

A polynomial in the variable z is an expression that can be written in the
form

F(z) = apza"™ + en1Z” 1 +---+ a1z +aq, (21)
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where n € Ng and a; (i =0,1,...,n), called coefficients, are numbers from
some number domain (Z, Q, R, C). The expressions a;z* are called terms of
the polynomial F(z), and ay is called the constant term. Those terms a;z°
whose coefficients a; are zero can be disregarded in (21). A polynomial all
of whose coefficients are zero (F(z) = 0) is called the zero polynomial. After
dropping possible zero terms, any nonzero polynomiat can be written in the
form (21) with the additional condition a, # 0. In this case the number
n is called degree of the polynomiel F(z), denoted by n = deg F(z). The
degree of the zero polynomial will remain undefined. Polynomials of degree
1 are called linear, those of degree 2 quedratic, and of degree 3 cubic.

We remark that the polynomial F(z) is uniquely determined by its
coefficients, although it can be expressed in a variety of different forms.

3.2 Frample
Show that the polynomial
F@)=(1—-z+z*—---—22 +2'9 - (1+z+ 2% +---+2°° + 2199
has zero coefficients for all odd powers of z.
SoLuTION. Using (5) and (7) with A =1 and B = z, we get
14+gl01 101 3 _ 5202
i+ 11—z = 1-z2°
from which, using (5) with A =1, B = z% and n = 101, we get
Fiz)=1+z+z%+.- + 219 4 20,

F(z) =

Thus we have proved the statement of this example, and at the same time
we also found the coefficients of the even powers of z in F(z). Let us add
that in general, the following is true: The coefficients of the odd powers of
z in F(z) are zero exactly when F(—z) is identical with F(z). O

3.8 FEzercises
For arbitrary k € N find the coefficients of the polynomials
(i) F(z) = (1+ )% + (1 — 2)%* — (1 + z?)*,

(i) Gz) =(1+2)-1+2z2)-(1+2%)---(1+227").
*(iii) Decide which of the two polynomials

F(z) = (1 + 7% — £5)1000, Giz)=(1-z°*+ 13)1000

has the larger coefficient of z2°.
(iv) For each k € N consider the polynomial

Fi(z)=(@?—z+1)z* -2 +1)--- (:1:2.' —z27 1).
Determine the coefficients of all polynomials (z? + z + 1) Fy(z).
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3.4 Zeros of Polynomials

We can substitute any number for the variable z and carry out the required
operations. If F(z) = anz" + apn_12" 1 + --- + a3z + a9 is a polynomial
and ¢ a number, then the number

F(o)=an-c"+an_1-¢" 1+ ---+ayct+ag

is called the value of the polynomial F(z) at the number ¢. If F(c) = 0,
then the number ¢ is called a zero of the polynomial F(z) (or a root of the
polynomial equation F(z) = 0).

The following paragraphs will be devoted to the problem of finding zeros
of polynomials, which is, as we already mentioned, one of the basic problems
of algebra.

Finding the (single) zero of a linear polynomial is very simple. We also
have a formula for determining the zeros of a quadratic polynomial: The
polynomial ez? + bz + ¢ with real coefficients a,b,c and discriminant
D = b? — 4dac has the zeros (—b + v/D)/2a, which are real if and only
if D > 0. Formulas for determining the zeros of polynomials of degree 3
and 4 do exist, but their application is so cumbersome that they are al-
most useless. For n > 5 the young Norwegian mathematician Niels Henrik
Abel (1802-1829) showed in 1823 that there does not exist a formula that
would allow one to evaluate the zeros of an arbitrary polynomial of de-
gree n from its coefficients with the help of algebraic operations, including
roots of arbitrary degree. This is why the approximate evaluation of zeros
of polynomials belongs to the basic problems of numerical mathematics.

3.5 Ezamples

(i) Which conditions will the real numbers a;, a3, a3, b, be, b3 have to
satisfy so that the polynomial

(21 + b1z)? + (ag + boz)? + (a3 + bsz)?
is the square of some linear polynomial with real coefficients?

SOLUTION. We assume that there exist real numbers ¢,d with d # 0 such
that

(a1 + 12)? + (a2 + b27)* + (a3 + b37)? = (c + dz). (22)

If the two polynomials are equal, then their values for any number must
also be equal, in particular for —%. Therefore,

(01—51-3)2+(ﬂz—bz'g)2+(as—bs'§)2=0,
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from which in view of the fact that the numbers in parentheses are real, it
follows that

ay=¢-b, a2=g-b, az=4¢-bs, (23)
where g = §. Furthermore, if we equate the coefficients of z? in (22), we
obtain

B 4+b2+b2=d>#0. (24)

Conversely, if (24) and (23) are satisfied, then (22) holds for ¢ = g - d. The
required condition for the numbers a;,az, aa, by, bz, ba is therefore b3 + b3 +
b2 # 0 and the existence of a real number q satisfying (23). O

(ii) Find a real number p such that the difference between the real zeros
of z° — pr + p— 9 is equal to 6.

SoLuTION. The zeros z;,z; of the polynomial are given by z; = ﬂ'-f"@

and T3 = P:T‘/ﬁ, where D = p? — 4p + 36. Since in this notation we have
1 > x2, the condition of the problem can be written as

6=z —x2= (p+\/ﬁ);(p—\/1_)) =D,
which holds if and only if D = 36. From the equation 7 — 4p + 36 = 36
we find the values p = 0 and p = 4, and therefore obtain the polynomials
z2— 9= (z+3)(z — 3) and 22 — 47 + 5 = (z + 1)(z — 5) with the sets of
zeros {—3,3} and {-1,5}. O

3.6 FEzercises
(i) Find the sum S of the coefficients of the polynomial

F(z) = (1 — 3z + 32%)1988 . (1 + 3z — 32%)1988,

(ii) Show that for arbitrary real numbers a,p,q with @ # 0 and p # gq,

the equation
1 1 1

t 2
T—p T—q a
has two distinct real roots.

*(iii) Decide whether there exist real numbers a,b,¢ such that for each
A € R* the polynomial az? + bz + ¢ + A has exactly two distinct
positive real zeros.

*(iv) Determine the numbers a, b, p,g¢ € R such that

(22— 1)* — (az + b)* = (z% + pz + ¢)'°.
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In analogy to Section 3.4, where we substituted a number for the variable
Z in F(z) = anz™ + @n_12""1 + --- + a1z + a9, we can also substitute a
polynomial G(z) for z. We thus obtain the polynomial

F(G()) = aa(G(2))" + 82-1(G(z))" ! + - - - + a1 G(2) + 0.

8.7 FEzample
Find those nonzero polynomials F(z) for which F(z?) is equal to (F(z))>

SOLUTION. We will try to find the polynomial F(z) in the form
(21), where a, # 0. We assume that at least one of the coefficients
Gn_1,Gpn_2,.-.,01,ap is different from 0 and we denote by k < n the largest
k for which a;, # 0. Then the condition F(z2) = (F(z))? can be written as

anT®™ + 322 4 - -« 4 012% + ag = (822" + arz* + - - + @17 + ap)>.

If we compare the coefficients of z"t*, we obtain 0 = 2a,ax, which
contradicts the assumption. Therefore, a@n—y = --- = a = ag = 0
and F(z) = a,z". The condition F(z) = (F(z))?® thus takes the form
2,7°" = a2z®", which holds if and only if a, = a2, that is, a, = 1.
The required polynomials are therefore exactly the polynomials ™, where
n € Np. o

3.8 FEzercises
Find all polynomials F(x) that satisfy:

(i) F(z+3) =22+ 7Tz + 12.
(ii) F(z?+1) = z'' — 82" 4 62° — 4.
(iii) F(z — 1)+ 2F(z + 1) = 322 — 7=.
*(iv) F(z?— 2z) = (F(z — 2))>.
*(v) F(F(z)) = (F(z))" for a given n € N (deg F(z) > 0).

8.9 Polynomaial Division with Remainder
Theorem. Let F(z),G(z) be polynomials, with G(z) nonzero. Then there
erists a unique pair of polynomials H(z), R(z) such that

F(z) = H(z) - G(z) + R(3), (25)

where R(z) = 0 or deg R(z) < degG(z). The coefficients of the polyno-
mials H(z), R(z) belong to the same number domain Q, R, or C as the
coefficients of F(z), G(z).
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A proof can be found in [4]; the polynomials H(z), R(z) can be deter-
mined by way of the well-known division algorithm, which we will not
introduce here.

We remark that the polynomial H(z) is called the (incomplete) guotient
and R(z) the remainder from the division of the polynomial F(z) by the
polynomial G(z).

If R(z) = 0 in (25), we say that the polynomial G(z) divides the polyno-
mial F(x), which we denote by G(z) | F(z). If furthermore F(x} is nonzero,
then the inequality deg G(z) < deg F'(x) is true.

If, using Theorem 3.9, we divide F(z) by (z — c) with remainder, then
R(z) = 0 or deg R(x) = 0; hence R(z) = r for some real number r. If in
(25) we substitute the number c for x, then

F(c)=H(c)-(c—c)+r;

hence F{c) = r. We have thus derived the following theorem.

8.10 Bézout’s Theorem

Theorem. The remainder in the division of the polynomial F(z) by (z—c)
is equal to F(c). The polynomial F(z) is divisible by (x — c) if and only if
the number ¢ is e zero of F(z).

8.11 Multiple Roots

It can happen that the number ¢ is a zero not only of the nonzero polyno-
mial F(z), but also of the polynomial F(z)/(z — c). Then (z — ¢)? | F(z),
and the number c is called a multiple zero of the polynomial F(z). Obvi-
ously, there exists a largest k < deg F(z) such that (z — c)* | F(z); the
number ¢ is then called a k-fold zero (or zero with multiplicity k) of the
polynomial F(z). In the case where (z — ¢)* | F(z), it is appropriate to
call the number ¢ an at least k-fold zero of the polynomial F(x). We also
remark that a zero that is not multiple, that is, a zero with multiplicity 1,
is called a simple zero.

3.12 FEzample

Determine the values a,b,n with a,b € R, n € N, for which the number 1
is at least a double zero of the polynomial

F(z)=2"—az" ' +bz—1.

SOLUTION. F(z) has 1 as a zero if and only if F(1) = b—a = 0, hence
a = b. For F(z) to have a double zero, we need deg F(x) = n > 2. For
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n =2 we have F(z) = 22 — 1 = (z — 1)(z + 1), and therefore 1 is only a
simple zero of F(z). So, let n > 3. By (5) we have

F(z)=z"—-1—az(z"*-1)
=@-)|z"'+2"*+---+z+ 1) —ax(z" 2+ ---+z+1))],

which means that 1 is at least a double zero if and only if it is a zero of the
polynomial in square brackets, that is, if and only if

n—a(n—2)=0,

and thus, ¢ = b = n/(n — 2). We have shown that there exists for each
n 2 3 a unique polynomial F(z) with the required properties. O

3.18 Exzercises
(i) Find the remainder of division of the polynomial
T+ 23 +2° + 2% + 281 223
by (a)z—1. (b) 22 —1.

(ii) For which natural numbers n is 0 a zero of (z + 1)" + {z — 1) — 27
For which n is it a multiple zero?

(iii) Determine for which natural numbers n the polynomial
1422+t +--- 2™

is divisible by
1+z+22+---+ 2"

(iv) Determine the polynomial F(x) of smallest possible degree that upon
division by (z — 1)? and (z — 2)3 leaves remainder 2z, resp. 3z.

(v) Let F(z) = 14+ 2+ 22 +-- -+ z'9%. Find the remainder when F(2?)
is divided by 1 +z+ % + 23 + 24

Certain polynomials (for instance, 222+ 1, z4+22 4+ 1, 22 — z +1) have
no zeros in the field of real numbers. The situation changes if we extend the
domain in which we look for zeros to include the field of complex numbers.

38.14 The Pundamental Theorem of Algebra

Theorem. Each nonzero polynomial F(z) of degree n has ezactly n
complex zeres T1,%q,...,Tn if we count their multiplicities, and we have

F(z)=0,z" +ap_12" ' +-- -tz + ap
= tp(z - 31)(T — 23) - - - (T — Zn). (26)

A proof can be found in 8], p. 184.
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3.15 Consequences

(i) If F(z), G(z) are polynomials of degree not exceeding n and such
that for n 4+ 1 distinct numbers cg,€1,---,6n We have F (C;') =5 G(Ci)
(i=0,1,...,n), then F(z) = G(z)-

PROOF. If we assume that the polynomials F(z) and G(z) are distinct,
then F(z) — G(z) is a nonzero polynomial of degree not exceeding n and
has n + 1 zeros cg,ci, . - - ,Cn; this is a contradiction. O

(ii) Each (complex) zero of F(z) is a zero of G(z) of the same or of higher
multiplicity if and only if F(x) divides G(z).
PROOF. This follows by writing F(z) and G(z) in the form (26). O

8.16 Ezamples
(i) Determine the natural number n for which the polynomial

Fz)y=z"+(z-1)"+(2z—-1)"—-(3"+2" +1)
is divisible by G(z) = 22 —z — 2.

SOLUTION. Since G(z) = 2 — z — 2 = (z + 1)(z — 2), by 3.15.(ii) the
polynomial F(z) is divisible by G(z) if and only if F(—1) = F(2) = 0. Now
F(-1)=(-1)"+(-2)"+(-3)"—(3"+2" +17)

_ 0 if n is even,
Tl 23"+ 2" +17) £0 ifnisodd,

and F(2) =2"+ 1" 43" — (3" 4+ 2" + 1™) = 0. Hence G(z) divides F(z) if
and only if n is even. O

(ii) Let a, b, c be distinct real numbers. Show that

(a+b)a+c)  (b+c)(b+a) , (c+a)(c+bd)

(a=Da—0) " b-ob-a) ' c-a)e—b)

SoLuTiON. By multiplying with the common denominator we obtain the
equation

(a+b)(a+c}b—c) + (b+c)(b+a)c—a)+ (c+ a)(c+ b)(a — b)
= (a - b)(a — c)(b—c), (27)
which can be verified by multiplying out all the parentheses on both sides.

Instead of this laborious approach, a different method of proof can be used
for identities of this kind: We substitute one of the given numbers (a, for
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example) by the variable z, and rather than verifying (27), we show with
the help of 3.15.(i) that the polynomials

F(z) = (@ + b)(z + )(b— ) + (b + )b+ z)(c—2)
+ (c+ z)(c+ b)(z — b),
G(@)=(z—-b)(z—-c)b—c)

are equal. Since we are dealing with polynomials of degree at most 2, it
suffices to verify the equation F(t) = G(t) for three distinct values of t,
which we choose such that the evaluation of F(t), G(t) will be as easy as
possible. Since G(b) = G(c) = 0, we determine the values F(b) and F(c):

F(b) =2b(b* — ) — 2b(b* — ) + (b+ )2 - 0=0,
and similarly F(c) = 0. The third appropriate value is = = 0:
F(0) = be(b — ¢) + be(b+ ¢) — be(b+ ¢) = be(b — ) = G(0).

Thus the proof is almost complete, but we must not forget that the numbers
b,c,0 are distinct only when be # 0. However, we have already verified
equation (27) for @ = 0, and it is similarly easy to verify it in the cases
b=0orc=0. O

(iii) Let the numbers a, b, ¢ € R be such that @ # b and ¢ = a3 +b3+3abe.
Show that c=a +b.

SOLUTION. Set F(z) = z° — 3abz — a® — b2. Clearly, F(a + b) = 0, and
thus a + b is a zero of F(z). Since F(c) = 0, it suffices to show that F(z)
has a unique real zero. Since upon division we obtain

F(z) = [z — (a + b))[z? + (a + b)z + a% — ab + b7,

it suffices to show that the trinomial 22+ (a+b)z+a2—ab+b? has a negative
discriminant in the case @ # b. But this is clear, since D = —3(a—b)2. O

3.17 Egercises
Show that (i)—(iv) hold for arbitrary distinct real numbers a, b, c:

(i) o- £iate) 4 p. (Eaftd o I —atb+e.

(i) “2'{%%%+52'%%+9'%%%=(0+b+c)2.
i) Eoe=d + GoRlea 4 (oafial o

@) el + S + oy =2
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(v) Show that for arbitrary # € N the polynomial
(z+1) -2 —2z—1
is divisible by 2z® + 322 + =.
*(vi) Determine all polynomials F'(z) for which
z- F(z — 1) = (z — 26) - F(z).

.18 Vieta’s Relations

By multiplying out the parentheses on the right-hand side of (26) we obtain
relations between the coefficients of a polynomial and its zeros. Thus, the
numbers z,, £z are zeros of the quadratic trinomial azz2 + 61z +ap exactly
when

a
——= =21 + 7y, 20— T) - Ta- (28)
ag Gz
Similarly, z;, 2,3 are zeros of the cubic polynomial azz®+azz%+ai1z+ap
if and only if
a a ay
2= ) +x2 + Z3, = =T1%3 + T1Z3 + T2x3, —— = T17273. (29)
az a3z as

Analogous formulas can be written down for higher-degree polynomials.
Finally, we note that in relations (28) (resp. (29)) we find the so-called
elementary symmetric polynomials with two (resp. three) variables. Here
they are evaluated at the roots of the quadratic (resp. cubic) polynomials
considered above. We will study these in detail in Section 4.

3.19 Ezample

Show that if the sum of any two of the zeros of the polynomial
Flz)=2'+4+ar®* + b2’ +cx +d (30)

is equal to the sum of the remaining two, then a3 — 4ab 4+ 8¢ = 0.

SOLUTION. We denote by z,z3, 3,4 the zeros of the polynomial (30)
and assume that x; 4+ 3 = z3 + x4. By 3.14 and by (28) we have

F(z) = (z — z1 0= — za)(z — 23)(T — 74) = (z° + pz + ¢)(z”* + pz + 1),
where p = —(z1 + 22) = —(23 + 74), ¢ = 7173 a r = T374. Since
(z* +pz +)(2® + pz + 1) =2* + 2p2° + (P + g+ 1) +plg + )z +qr,
we obtain the following four equations from (30) by comparing coefficients:
a=2, b=p'+g+r, c=plg+r), d=gqn
from which, upon substitution,
a® — 4ab+ 8c = 8p® — 8p(p® + g+ 1) +8p(g+7) =0. m]
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8.20 Ezercises

(i) Suppose that the polynomial z2 + pz + ¢ has the following property:
The sum of its zeros is equal to p+¢q, and the product is pg. Find the
coefficients p, q.

(ii) Show that if the product of two zeros of the polynomial (30) is equal
to the product of the remaining two, then ad = 2.

(iii) Let s be the sum of the kth powers of the two roots of the equation
az? 4+ bz + ¢ = 0. Show that for each integer k > 0 the equation
asx42 + bsgy1 + csx = 0 is satisfied.

8.21 Example

Show that if the polynomial F(z) = 2% +pz+q, where p,g € R, ¢ # 0, has
three real zeros, then p < 0.

SoLuTION. By (29) the zeros z;, z2,z3 of the polynomial F(z) satisfy

0= (z1+z2+ a:;.;,)2 = a:f + :r% + :r§ + 2(z122 + 2123 + T223)

=22 +z2+22+2.
Since g # 0, we have z,7273 # 0 and therefore z2 + 22 + 22 > 0; hence
p <0 O
8.22 Fzercises

(i) Suppose that the sum of two zeros of the polynomial
F(z)=2—2° - Tz + A

is equal to 1. Determine A and the zeros of F(z).
(ii) Suppose that the zeros 1, za, z3 of the polynomial z3 4 pz+ g satisfy

1 1
I3 = — 4+ —.
9] ]

‘Which condition do the coefficients p, g satisfy?
(iii) Find a relation satisfied by the coefficients of the polynomial z3 +
pr® + gz + 7 if one of its zeros is equal to the sum of the other two.
(iv) Let the polynomial F(z) = z3+pz?+gz+r have the zeros x,, 7, Z3.
Find a polynomial G(z) that has zeros z)z2, Zyz3, 223, and a
polynomial H(z) which has zeros 1 + z2, ) + z3, 2 + z3.
(v) Express the coefficient r of the polynomial 23 +paz? + gz +r in terms

of the remaining coefficients if it is known that one of the zeros of
this polynomials is the arithmetic mean of the remaining two.
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(vi) Show that for arbitrary nonzero numbers a,b € R the zeros Z1,%2, %3
of the polynomial az® — az? + bz + b satisfy the condition

( +z+x)-£+l+l-——1
o Sy zy z2 x3)

*(vii)Let p, g, 1, b, ¢ be five different nonzero real numbers. Determine the
sum z + y + z, provided that the numbers z,y, z satisfy the system

T

d vy 4 =1,
p p-b p—c

T

g g-b gq-—c
£+ L + u =1
r r—=b r—c

3.28 Reduction of the Degree by Way of a Known Zero

If we know a zero z; of a polynomial F(z), we can use this fact for finding
its remaining zeros z2, xs,...,Zn- By 3.10, F(zx) is divisible by the linear
polynomial (z — x;), and according to 3.14, F(zx)/(z — 1) has exactly the
ZEeI0S Z9,%3,- - - +Tn-

8.24 FEzample
Show that

V3-vV21+8—4/3-v/21—8=1. (31)
Vs-vai+s-ifs-vai-s

SoLuTiON. Let A denote the left-hand side of (31). By the binomial
theorem 1.2 we have

A®=16-3-A- {/(3\/2_1+8)(3\/2_1—8)=16—15A,

and therefore A is a zero of the polynomial F(z) = z® + 15z — 16. Since
F(1) = 0, the pumber 1 is a zero of F(z). By dividing, we obtain the
identity F(z)/(z — 1) = z° + = + 16. This last trinomial has no real zeros,
since its discriminant is —63. The only real zero of F'(z) is therefore the
number 1. Since A is a real zero of F(z), we have A = 1. O

3.25 FEzercises
Prove:

(i) V20-14v2+ /20+14v/2=4
(i) VV5+2+VV5-2=6
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8.26 Rational Zeros of Polynomials with Integer Coefficients

There exists an easy algorithm for finding rational zeros of a polynomial
with integer coefficients (compare this with the general case described
in 3.4). Suppose we are given the polynomial

F(z) =apz" + an1z" 1 +---+a1z+ap (32)

with integer coefficients a;, where a,, # 0. We wish to find its rational zeros.
If ap = 0, then one of the zeros is 0, and using the method described in
3.23, we may reduce the degree of F(z) and search for the zeros of F(z)/z.
After a finite number of steps we always obtain a polynomial with nonzero
constant term. We may therefore assume in addition that F(x) in (32)
satisfies ap 7# 0. If a rational number a is a zero of F(x), then we have
F(a) = 0, and if we express a = r/s, where r € Z, s € N and r,s are
relatively prime, then

F(3)=a-(5) +anas (g)m_1 +otar s +ap=0,
from which upon multiplying by s™ we obtain

Gt + 17" I8 4o 4@y -7-8" 1 4 gp8" = 0.

Since the integer r divides the first n terms on the left of this last equation,
it also divides the last term ggs™, which implies that r divides g, since r
and s are relatively prime. In complete analogy we find that s divides a,,.
Since a¢ and a, have only finitely many divisors, the rational zero o can
take on only finitely many values. By successively substituting these values
into F(x), we find all rational zeros of F(xz).

We remark that it is not necessary to substitute all possible values of o
into F(x). Indeed, for each integer k it is true that if /s is a zero of the
polynomial (32) and r and s are relatively prime, then the integer F(k) has
to be divisible by (r — ks). This result will be proved in Section 10.11 in
the third chapter. Using this criterion will save work with the substitutions:
To begin with, it suffices to calculate F(k) for suitably chosen k € Z (the
usual choice is k = %1}, then for each “suspected” value o = r/s to check
whether F(k) is divisible by (r — ks). An example for this approach is given
in 3.27_(ii).

8.27 Ezamples
(i) Find the rational zeros of the polynomial

F(z)=z'—422+z+2.

SOLUTION. By 3.26 we expect the rational zeros of F(x) to be of the form
r/s, where r € {—2,—1,1,2} and s = 1. Therefore, 2l rational zeros are in



36 1. Algebraic Identities and Equations

fact integers (this is true for any polynomial with integer coefficients that
has 1 as leading coeflicient). Substituting, we get F(—2) = 0, F(—1) = —2,
F(1) = 0, F(2) = 4, and therefore —2 and 1 are the only rational zeros of
F(z). We can now apply 3.23 and determine all zeros of F(z): We divide
F(z) by the polynomial (z + 2)(z — 1) and get F(z) = (z + 2)(z — 1){(z* —
z —1). The quadratic polynomial z2 —z —1 has zeros (1+/5)/2, and from
this we have that the zeros of F(z) are —2, 1, (1++v5)/2, (1—-v5)/2. O

(ii) Find the rational zeros of
G(z) = 3z + 5% + 2% + 5z — 2.

SoLuTION. If the rational number r/s, with r, s relatively prime integers
and s > 0, is a zero of G(z), then r € {1,—1,2,—-2}, s € {1,3}, and there-
fore r/s € {1,—1,1,-1,2,-2,2, -2} To avoid having to check whether
each of these eight values is a zero of G(z), we use the criterion from the
end of Section 3.26: We set k = 1 (resp. k = —1), so G(1) = 12 (resp.
G(—1) = —8); therefore, 1 and —1 are not zeros of G(z). Now we set up a
table with all six remaining triples of the values of r/s, r — s and r + s.

s [1[a]2]=]3]
r—s | 2| -4 | 1| 3] -1 | -5 G(1) = 12
T+s 4 2 3 -1 b 1 G(-1)=-8

Since —5 is not a divisor of 12, and 3, 5 are not divisors of —8, it remains
only to decide for r/s € {%,—-%,—2} whether G(r/s) = 0. We verify by
direct calculation that G(3) = G(-2) = 0, G(—3) = —100/27, which
means that G(z) has exactly two rational zeros: % and —2. O

(iii) Decide whether there exist rational numbers a,b such that the
polynomials 2 + az + b, z° — z — 1 have a common zero.

SOLUTION. We assume that some number « is a zero of both polynomials.

Then

]

a®=a+1 and o?

= —aa—b.
From the equation o? = —aa — b we first find an expression a® = ca + d
with coefficients ¢, d depending on a, b:
of = a-(a?)? = a- (aa +b)? = ala?(—aa — b) + 2aba + %)
= (—aa — b)(2ab — a®) + (b* — a?b)a
= (a? — 3a%b + b?)a + (a®b — 2ad?).
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4 Symmetric Polynomials

For the solution of systems of algebraic equations in Section 5 we will
require the concept of a polynomial in several variables. In this section we
will study such polynomials and will be especially interested in symmetric
polynomials and their connection with Vieta’s relations from Section 3.18.

4.1 Definitions

A polynomial in n variasbles z;,%3,.-.,%, is a sum of finitely many
expressions, called monomials, of the form
a-z .2k 2k (Ky k..., kn € Np), (36)

where @ is a number (depending on the n-tuple ki, ko, ..., ky), called a
coefficient. If some k; is zero, we just leave out z?. Similarly, we drop
the terms with zero coefficients. Since monomials with the same exponent
n-tuple can always be added together (by adding their coefficients), we
will for the remainder of this section assume that a given polynomial is
a sum of terms (36) with distinct n-tuples of exponents kj, ka,...,k,. A
polynomial all of whose coefficients are zero is called the zero polynomial
The sum k; + k2 + --- + ky, is called the degree of the monomial (36).
The degree of a nonzero polynomial will be defined as the largest degree
of the monomials occurring in the given polynomial. If in a polynomial all
monomials with nonzero coefficients have degree r, then we talk about a
homogeneous polynomial of degree r.

A polynomial F(z,,22,...,%,) is called symmetric if for an arbitrary
order ¥1,¥2 ,--.,¥Yn Of the variables z,, %2, ... ,Z, we have

F(ylry21 .- -1yn) = F(l']_,l‘z, R :3n)-

It is clear that in order to check whether F(x;,zs,...,%,) is symmet-
ric, it suffices to verify that F(x1,z2,...,%,) does not change when z, is
interchanged with z; for arbitrary i = 2,3,...,n.

For example, the polynomial z% 4 22,2, 4 3x2 is homogeneous of second
degree in the two variables z;,z2, but is not symmetric (by interchanging
z1 and z; we obtain 3z7 + 21,22 + z2, which is a different polynomial).
On the other hand, the fourth-degree polynomial 23 + 2222 + z3 in the
two variables z1, x> is not homogeneous, but it is symmetric. However, this
last polynomial can also be considered as a polynomial in three variables
Z1,%2,Z3 (where z3 occurs with exponent zero in all terms); then this
polynomial is not symmetric (for example, by interchanging z; and z3 we
obtain =3 + z3z2 4 z3).

Now, we could begin constructing a general theory of symmetric polyno-
mials in n variables. However, since in applications we most often come
across polynomials in two or three variables, we will basically restrict
ourselves to these cases.
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4.2 Elementary Symmetric Polynomials in Two Variables

It is easy to convince ourselves that the polynomials

o1(z1,%2) = 21 + 22, (37)
02(21,%2) = %1 - Zg

are symmetric in the two variables z,,z2. More generally, the following
is true: If we choose an arbitrary polynomial F(y;,y2) and substitute
1 = o{z1,72) and y2 = 02(%1,%2), then we obtain the polynomial
F(z1 + z2,z122), which is symmetric in the variables z1,z2. The guestion
arises whether this simple method of constructing symmetric polynomi-
als is sufficiently general, that is, whether one can obtain any symmetric
polynomial in this way.

4.3 Representation of Symmetric Polynomials in Two
Variables

Theorem. For an arbitrary symmetric polynomial F(xz,;,x32) in two vari-
ables there ezxists a unigque polynomial H(y,y2) in two wvariables such
that

F(x1,z2) = H(z1 + 22, 71 - 22)-

A proof of a more general statement can be found in [13]-

By Theorem 4.3 it is therefore possible to use the polynomials (37) to
construct arbitrary symmetric polynomials. Therefore, oy and o2 are called
elementary symmetric polynomials. We will now describe a method for
expressing a given symmetric polynomial F(z;,%2) in terms of these. The
terms of F(z,,Z2) of the form e;zjz5 will be changed to a0, and we
collect the remaining terms in pairs of the form a;;z}{a} + aj2)2s, where
i > j. The symmetry of F(z,,x2) implies the equation e¢;; = aj;, and
thus we can factor out a;;(z172)’ = a;;03. It therefore remains to find
expressions for the sums of powers s;_; = =3 7 + x5 -.

4.4 Sums of Powers

Using the binomial theorem 1.2, we obtain the following expressions for
— ok k.
8 =y + Z3:
81 =21 + X2 = 03,
82 = T7 + 23 = (z1 + x2)? — 22122 = 0F — 203,
83 = I? + Ig = (:Cl + :Cg)a —3z1z2(Z1 + 22) = 0':13 — 30102,
— pd 4 __ 4_Ar z2 2 _ 0 2.2
8¢ =2y + 23 = (%1 + 72) 172(x7 + x3) — 6z723
= dg — 40282 —60‘% == O'i" —40'2(0‘? — 203) — 66%
= of — 40202 + 203,
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85 = 2§ + 23 = (21 + 22)® — 5179( + 23) — 102323 (z1 + 72)
e O'f — B0283 — 10030’1
= a‘f — 50’2(0? — 30102) — 100’30‘1
=g} — 50303 + 50103.
We could continue in this way; however, in this text we will not require
formulas for s; (i > 5). Another way of deriving these formulas is based

on the recurrence relation s;;2 = 01841 — 028;, of whose validity we can
easily convince ourselves.

4.5 Ezamples

To illustrate the method described above we will express the given poly-
nomials F(z1,x2), G(x1,%2), and H(z,z3) by way of the elementary
symmetric polynomials oy and o7 introduced in (37).

(i) F(z1,x2) = z8za + ziz3 + 232§ + 125 + 2222 + 7173
SoLuTIiON. We divide the terms of the polynomials F(z;,22) into pairs

of the form iz} + xjz}, and factor out and substitute the sums of powers
from Section 4.4:

F(z1,22) = (2322 + 7123) + (z123 + 2125) + (a}z2 + 7123)
= z1z2(z] + 23) + (z122) (2] + 73) + Taz2(71 +22)
= 0384 + 0332 + o9
= ag(crf — 40’?0‘2 + 20‘3) + ag(af — 2032) + 0901
= o{oy — 30202 + 0)03. O

(ii) G(z1,32) = (71 — 72)%0%.
SoLuTiON. We have

G(z1,3) = (21 — 2)*°% = [(z — z4)?]'0®
= (I? + :L'% - 2311‘2)1000 = [(:I:] + 3:2)2 . 41'13‘2]1000
= (o} — 409)"'*. o

(iii) H(Il,:cg) = (:Cl + 4I2)(2$1 + 3.’1?2)(3:1‘.1 + 2172)(4.’1.'1 + .'L'z).
SOLUTION. By combining factors in an appropriate way, we obtain

H(zy,z2) = (71 + 4z2)(471 + z2)(2z1 + 322)(3x) + 215)
= [4(z? + z3) + 17z, 2] [6(z? + z2) + 13z, z9)
= [4(07 — 203) + 1703|[6(0} — 202) + 1305)
= (402 + 902)(602 + 03). O
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If we compare (37) and Vieta’s relations (28), we notice that the right-
hand sides are identical. More exactly, the right-hand sides in (28) are the
values of the elementary symmetric polynomials o, and o9 evaluated at
the zeros of the single-variable polynomis! asz? + a1z + ap. Theorem 4.3
has therefore the following important consequence: An arbitrary symmetric
polynomial in two variables evaluated at the zeros of a given quadratic poly-
nomial F(z) in one variable x can be expressed in terms of the coefficients
of F(z). (A similar statement is true for polynomials of higher degrees.)

4.6 Examples

(i) Compute the number ¢ = z§ + x5, where z,, 3 are the zeros of F(z) =
2
‘4z —19.

SOLUTION. One possibility would be to find the zeros of F(z) and simply
substitute. However, it will be easier to express ¢ in terms of the coefficients
of F(z). Since by (28), o01(z1,722) = 21 +x2 = —1 and o2(z)1,%2) = 7172 =
—19, we have

C= 85 = a'f - 50'?02 - 5610§
=(-1)°-5-(-1)*- (-19) +5- (-1) - (-19)?
= —1901. (m
(ii) Determine the coefficient ¢ in the polynomial 22 + z + ¢ if its zeros
1, x2 satisfy the equation
23 223
24z 2471

SOLUTION. We rewrite this equation into the equivalent form (z; #
-—2, To # —2)

20324 7,) + 223(2 4+ 22) + (24 21)(2 + 22) =0,
4(z3 + 23) + 2(z] +23) + 4+ 2(z1 + 73) + 7172 = 0.

Using the relations for sums of powers from the table in 4.4 we express the
left-hand side of this last equation in terms of oy = z; + x5 and o3 = z122,
and get

403 — 120107 + 20} — 80202+ 402+ 44201 + 02 =0.

Since by (28) we have 03 = z) + 22 = —1, 02 = T1T2 = ¢, we obtain by
substitution a quadratic equation for the unknown coefficient ¢, namely

4 +5¢=0,

whose roots ¢; =0, ¢z = —% are the solutions to our problem. 0
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4.7 Ezercises

Let =), z2 be the zeros of the polynomial z2 + pz + ¢. In (i), (ii) determine
the quadratic polynomial with the zeros

(i) z3,73-
(i) z2 + 3, 7y + 22
(iii) Find the real coefficient b of the polynomial z? + bx — 1 if its zeros
T, T2 satisfy the equation

=i =3

2 2
22_3 31_3

=0.

4.8 FEzample

Find the quadratic polynomial with zeros z;,zz2, given 75 + 23 = 31 and
y+z2=1.

SOLUTION. Let the polynomial in question be of the form z2 + pz + q.
Then

—p=x +T2 =01,
q=I1T3 =02-

By the identity for the power sum sg in 4.4 we have
31 = 2% + 23 = 85 = 0% — 50%02 + 50102 = —p° + 5p°q — 5pgP.

Since p = —01 = —(z1 + z2) = —1, we obtain for ¢q the quadratic equation
5¢? — 5¢ — 30 = 0 which has the roots g; = 3, g; = —2. The problem is
therefore solved by the two polynomials 2 — z + 3 and 22 — z — 2 (note
that one of them has complex zeros). D

4.9 Ezercises

In problems (i)-(iii) find a quadratic polynomial with zeros z,, z, satisfying

(i) 4(z1 + z2) =32122, z1+ 22 + 22 + 22 = 26.
Gi) 22 4+ 2z + 23 =49, z¥+ 2z 428 =931,
(iii) 22+ 22 =T+ 2122, =} + 23 =6zy22 — 1.

*(iv) Let a, b be two distinct roots of the equation z* + 23 = 1. Show that
their product ab is a root of the equation 8 + 24+ 23 — 22 _1 = .
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4.10 Elementary Symmetric Polynomials in Three Variables

To express symmetric polynomials in three variables we need the three
elementary symmetric polynomials
o1(Z1, %2, %3) = 1 + T2 + T3,
o2(Z1, T2, T3) = T1%T2 + T173 + T2T3, (38)
o3(x1, T2, T3) = T1T2T3.
If we substitute them into an arbitrary (not necessarily symmetric) poly-

nomial in three variables o, o2, and o3, we obtain a symmetric polynomial
in the variables z,, z2, and x3.

4.11 Representation of Symmetric Polynomials in Three
Variables
Theorem. For an arbitrary symmetric polynomial F(z)y,x2,%3) tn three

variables there ezists a unique polynomial H(y,y2,¥ys) in three variables
such that

F(z1,z3,x3) = H(x1 + 22 + Z3, 2122 + 133 + T273, T122T3)-

Once again, a proof of a more general result, which also includes
Theorem 4.3, can be found in [13].

4.12 Table

Finding the polynomial H(y,y2,¥3) of the previous theorem without
deeper knowledge of the theory can be difficult. Therefore, we give at least
a few such expressions in the following table; with its help we can continue
our work in this and the following section.
52 =$¥+$§+$§ =0']2 — 203,
53 = =3 + 73 + 23 = 0} — 30102 + 303,
sq =zt + 2l 4+ 28 = o — 40202+ 202 + 40103,
855 = x5 + 25 + 28 = 0} — 5aog + 50102 + Soros — 50203,
s6 = x5+ 2§ + =3
= a-f — 60{'02 + Qa'fag - 202 + 66:1’03 — 12040203 + 30’2,
z222 + 2222 + 2323 = 0F — 20103,
2328 + 2322 + 2322 = 02 + 302 — 3010203,
2229 + 2122 + 2323 + T1Z3 + 7233 + T2TE = 0102 — 303,
3ze + T1xs + 2d78 + 23 + x5z + :cz:rg = ofoy — 202 — 0103,
giz? + 22zd + ziz? + 22ad + 252d + 232
= crfag — 202 — 20?0'3 + 4010205 — 3a§.
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4.18 Examples

(i) Find all values of the parameter a € R such that the zeros z;, 2, Z3 of
z3 — 622 + az + a satisfy

(21 -3 +(z2—-3° +(zzs-3)°=0.

SOLUTION. We use the formulas in 4.12 for sx = =¥ + 75§ + =4 (k =2,3).
Since zy, 72, T3 are zeros of the given polynomial, we have oy = 6, 02 = a,
o3 = —a, and therefore

8y =0y =6, 82 = 0% ~ 202 = 36 — 2a,
33=0'?—30'10'2+30'3 = 216 — 21a.

Using the binomial theorem we then obtain

0=(z1 -3 +(z2- 33 +(z3—3)° =983—332-3+3s,-32-3.3°
=216 — 21a — 9(36 — 2a) + 27- 6 — 81 = —27 — 3q,

and therefore ¢ = —9. a

(ii) Prove that the number

- 1 2 4
c= {/;4— ‘a/—g-{— V;.

is & zero of F(z) =23 + V622 — 1.

By 4.12, for z; = a3, 2 = a2, T3 = a3 we have

ai + a3 + a3 = (a1 + a2 + a3)® — 3(ay + a2 + as)(a1az + azas + @203)
+ 3ajaz2a3,

b=t Fe- g,

which implies that the number cis a zeroof F(z) =2 + ¥6z2—-1. O

and therefore
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4.14 FEaxercises

(i) Construct a cubic polynomial whose zeros are squares of the zeros of
-2z +z—12.

*(ii) Suppose that the three distinct numbers a, b, ¢ € R satisfy
a(a® +p) = b(b* + p) = c(c* +p)

for an appropriate p € R. Show that in this casea + b+ ¢ =0.
(iii) Show that if a,b,c€ R and a + b+ ¢ =0, then

a? + b + c* = 2(ab + ac + bc)?.

(iv) Construct a cubic polynomial with zeros x; + x2, 1 + 23, T2 + Z3,
where z,, Z3, Z3 are the zeros of 22 + pz? + gz +T-

(v) Prove that if the numbers a,b, ¢ € R satisfy

then for each odd n € N,

1,1 ' 1 1
a b ¢/ a+b"+c (a+b+o)™

Elementary symmetric polynomials can also be successfully used to find
decompositions of symmetric polynomials (into symmetric factors).

4.15 Ezample
Decompose the polynomial

F(x1,%2,73) = 23 + T3 + 75 — 3712273
into a product of symmetric factors.
SOLUTION. By 4.12 we have
F(z1,%2,%3) = 63 — 301024+ 303 — 303 = a3 — 30102 = o1(02 — 303),
and thus

F(z1,%2,73) = (1 + T2 + 73)[(z1 + T2 + 23)% — 3(122 + 2173 + Z273))
= (z1+ 22 +x3) - (I? +.1:§ +z§ — T1Tp — T1T3a — T2Z3). O
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4.16 Ezercises
Write the polynomials (i)—(iv) as products of symmetric factors:

(®) (z1 + z2)(z1 + Z3)(T2 + 23) + 212223,
(i) 2(z3 +23 +23) + 2229 + 7173 + 2273 + 7172 + 7373 + T273 — 371 %273,

(iii) (z?+ 23 + 22+ 7122 + T 123+ 22%3)% — (71 + 22 +z3)%(2z% + 23 +23)-
*(iv) (z1 + %2 +23)° — (z1 + T2 — 23)3 — (21 — T2 +73)} — (—21 + T2+ 73)°.

5 Systems of Equations

The problem of solving systems of equations belongs to the basic ques-
tions of classical algebra; it receives considerable attention both in
secondary-school mathematics and in introductory university algebra
courses. Unfortunately, attention is mainly concentrated on systems of lin-
ear equations, while as a rule much less attention is paid to systems of
equations of kigher degree, and to methods of their solutions. We will there-
fore try to partially fill this gap in what follows. The main emphasis in this
section will be on Sections 5.7-5.14 (especially the method of symmetric
polynomials). In the initial parts we will introduce several nonstandard
approaches to solving systems of linear equations (5.1-5.6).

5.1 Systems of Linear Equations

As we already mentioned, we assume that the reader is acquainted with
algorithmic methods for solving systems of linear equations (Gaussian
elimination, Cramer’s rule). We will therefore restrict ourselves to those
problems for which it may be advantageous to solve them differently,
especially by introducing new auziliary variables.

We point out that we will solve systems of equations with real coefficients
and look for their real solutions.

5.2 Fzample
Solve the following system of n equations in n variables:

Ty +202+3x3+---+(n—1)xpny +n2,, =1,
o+ 2234+ 34 +---+(n—1)z, +nx;, =2,
T3+ 2x4+3z5+---+(n—1)z1 +nzs =3,

Tn+221 4+ 322+ ---+(n—1)Tq 240z, ) =n.
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SOLUTION. Tt turns out to be very useful to introduce the new variable
8 =1z +x2 +--- + Ty, since by adding all equations we now obtain

s+25+3s+---+(mn—1)s+ns=14+2+3+---+(n—1)+mn,

and thus s = 1.
Next we subtract the second equation from the first, the third from the
second, etc., and finally the first equation from the nth, thus obtaining the

system

(1 —n)z;+ zz+---+ Tn-1t+ zn =-1,
o1+ (l—n)zz+---+ Tn—1+ z, =-1,
T+ T2+---+ (1 —n)Tpat T, =—1,
1+ T2+---+ Tn-1t+ (1 —n)z, =n—1,

which can be rewritten as

s—nr; =-1,
§—nIy =-—1,
8$—nNIr, 1 =-1,
s—nz, =n-—1
From thiswe get £y =22 = --- =Zp—1 = 2, g, = 22,

We realize that the last two systems are only consequences of (as opposed
to being equivalent to) the original system; we convince ourselves by a test
that the n-tuple obtained above is indeed a solution of that system: For
k=1,2,...,n the kth equation of the original system has the form

T +2-Zp+---+—k+ Dz +(n—k+2)z1+---+n-3p_, =k
By substituting the left-hand sides we then obtain
242.24+---+(n—k)-24+(n—-k+1)-22
2 2
+n—-k+2)-—+---+n-—
n n

=2.1+2+4---+(n—k+1)+---+n)+(n—k+1)-(-2)
___,ﬂ!ﬂ;ll_(n_k+1)=n+1—n+k—l=k.

Therefore, the system has a unique solution. D
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5.8 FErzercises

Solve the following systems of equations:

() 224+ z2+ z34+---+ T =1,
1+ 222+ z3+--+ Tn =2,
T1+ ZTz+2r34+---+ zn =3,

T+ T2+ T34+ 2z, =n.

(ii To+x3+- -+ Ta_1+Zn =0,
I +xT3 4+ Tp-1+zZn =1,
T +x2 +-- 21+ 2n =2,
Ty +22+23+--+Tpn =n-—1

(iii) 214+ 2224323 +---+(n—1)xp_1 +nz, =n,
) +3z3 +---+(n—1zxp_y +nz, =n—2,
z1 + 229 +---+(n—Dzp_y +nz, =n-—3,
1+ 222 + 323 +"'+(ﬂ—1)$n_1 =0.

5.4 Systems of Linear Equations with Parameters

These systems actually represent a whole (normally infinite) set of systems,
one each for a fixed choice of values of the parameters. For solving them,
it is often necessary to discuss the form of the solutions (possibly also
their number) depending on the values of the parameters. In the following
examples we will explain several methods of solution of systems of linear
equations with parameters. Here, x; are variables and a; are parameters.

(i) =1 +z2+x3 =aq,

x +zx2 + T4 = ao,
(39)

A +23 +x4 = a3,

To +23 +724 =04

Introducing the auxiliary variable s = z; + 22 + 3 4+ T4, we can rewrite
the system (39) as

X =85—4ay,
Xog =8 —as3s,
I3 =8 —ay,

Tag=8—a;.
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Summing the equations of the last system, we obtain 3s = a; +a2+a3+ a4,
hence s = (a1+a2+a3+a4)/3, and the system (39) has the unique solution
x; = (@1 + a2 + a3 — 2a4)/3, z2 = (@1 + az — 2a3 + a4) /3,
z3 = (a1 — 2ap +a.3+a4)/3, T4 = (—2ay +ag+a.3+a4)/3,
which must be verified by substituting.

(i) 21— Z2o— 23 —--+—Tn—1— Tn = 2a,
-1+ 3T~ Tz — - — Tp—1 — z, = 22a,
—~Z1— ZTa+ Tx3 — e —Tp_1— zn = 2°a, (40)
—Z1— ZTo— xT3 —---—Zp—y+ (2" — 1)z, = 2"a.

We rewrite the system (40) in the equivalent form

2z —(mat+ a2+ 23+ -+ 7p) = 28,
2%z~ (my+ 22+ 23+ -+ + T5) = 220,
23 — (21 + 22+ T3+ -+ + z4) = 2%,

2"zp, —(Z1+ 22+ 23+ -+ 25) =2"0;

then, again setting s = z; + 22 + 3 + - - - + Zn,, we have

xl_%=av
32—5’5=a,
33—5";=0.,

and by adding the equations of the last system we get
s—s(+dtdt+d)=n-a
from which by formula (10), s = n - 2" - a. The system (40) has therefore a
unique solution: zx = &+ 5/2* = a(l +n-2"7%) for k=1,2,...,n, which
has to be verified by substituting.
(iii) 21‘1 — T2 =4a;,
—Z1+ 229 — x3 =0,

. $2+2$3 — Ty =y, (1)
4

~Zp2+ 2Zp1— Ty =0,
~— Zp—1+ 2zq = aa.
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We rewrite the equations of the system (41) from the second to the second-
to-lastonein theform z1 — T2 =22 — %3, T2 — T3 =T33 — T4y ---1 Tn-2 "
Tp_1 = In—1 — Zn. The “trick” of elimination relies on the introduction of
the new variable ¢ = z; — z2, and in view of the preceding equations we
have

=21 — T2 =T2—T3=T3— T4 =---—=Tp—-1— Zn-

The first and the last equations in the system (41) can also be expressed
in terms of the variable &:

z1=a1—t, zZTp,=a2+t

Thus we obtain the system

T = a; —t,
Zo= Ty —t = a;—2,
z3= xT2—t = ay— 3,
: : (42)

Tp_1 =Tn-2—t= a1 —(n— 1),
Tn = Tn-1—t= a1 —nt,
Tp = az +t.

From the last two equations of (42) we then determine t = (@1 —a2)/(n+1).
Substituting this into the first n equations of (42), we find that z; =
a; —k-(a1 —az)/(n+1) for each k =1, 2,...,n. To complete the solution
it remains only to substitute into (41).

5.5 Example

Solve the system with parameters ay,az,...,a, € R:

T +xT2 =0y,
Z2 + T3 = Ga,

Z3 + 74 = agz,

: (43)
Tpn—1 1+ Tn =0an,
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(i) FIRST sOLUTION. We begin with step-by-step elimination of the
variables in the individual equations in (43):

Iz2=a — 1,
ITz=ay—T2=a2— 1 + 1,
Tqg =03 —T3=a3 —a2+a1 — 2,

Ti = @] —Fi-1 = Gi1 — Gi—z2 + @iz —---+(-1)Mz,  (44)
Tn =Gn-1=Tn-1 =81 — Gn-2+ -+ (—1)"* 'z,
T =an — Tn =G — @p1 + - +(—1)"z1.
From the last two equations in (44) it is apparent that to proceed further
we have to distinguish between the cases n even and n odd.

(2) n = 2k. From the last equation in (44) it is clear that this system,
and therefore also (43), has a solution if and only ifa; +a3+---+ag_) =
a2 + a4 + - - - + azx- In this case, (43) has infinitely many solutions, which
can be expressed, by (44), in terms of the free variable z,.

(b) n = 2k + 1. In this case it follows from the last equation in (44) that

21z) = Gapy1 — G2k + - -+ + 0); hence z7 = (@3 —aa + - - - — azk + a2k41)/2.
If we write the original system as

Zz + T3 = az,
I3+ T4 = az,

Zn + 21 =ay,
I +xTz=ay,

then by repeating the above approach we obtain

@z—az3+---— a1+ a1
Ig = 2 ’
and in complete analogy,
Gi —0Giy1+---—ai-2+Gi1 (m|
i = 2 .

(ii) SEcCOND SOLUTION. We distinguish between the parities of n from
the beginning, end introduce the auxiliary variable s = z; + z2 + - - - + 2.
(a) n = 2k. By adding the odd equations in the system (43) we find that

8=x1+Z2+---+Zpk—1 +Zax=a1+G3+---+ @1,
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and adding the even ones,
8=Za+Z3+---t+Tutxi=0ar+aq+- -+az;

therefore, a necessary condition for the solvability of the system is the
equation a; +ag +---+ azx—) = @2 + a4 + - - - + ag;. If this condition is
satisfied, then (43) has infinitely many solutions, which can be expressed,
as in 5.5.(i)(a), in terms of the free variable z;; in the opposite case (43)

has no solutions.
(b) n = 2k + 1. If we add all the equations in (43), then upon dividing
by 2 we get

s=z1+Za+---+Tok41 = (a1 +az + -+ a1} /2.
To evaluate the variable z,, we add all odd equations in (43), and obtain
2ni+ 2o+ttt T =T+ 8=ay + a3+ + Gy,

hence z; = (@) — ag + a3 — - - - — asx + azx41)/2. This method can also be
used to find z;, 1 = 2, 3,...,2k + 1; we only have to change the order of the
equations in (43) and rewrite that system in the form
Zi + Tig1 = Gy,
Tip1 + Tig2 = G441,
: (45)
Zi1+zi=ai.
Then by adding all odd equations in (45) we get

TitZint +Tip2+-+ i+ Zi=zZi+8=ai+aip2 +--- +ai;

thus z; = (a; — @41 +--- —ai—2 + ai1)/2. =

5.6 Fxercises
Solve the systems (i}-(v), where p and a; are real parameters:
(1) z1+z2+23+24 =20,
Z1+ Ty — T3 — 24 = 2ay,
T —Zz2+ 23 — T4 = 2aa,
T) — Tg — Tz + T4 = 2a,.
B Q+pz+ T3+ z3 =1,

z1+ (1+p)za+ zz3 =1,
z) + zo+ (1+p)zs = 1.



5 Systems of Equations

(iii) = +z2 = a;4,,
1 + T3 = ayag,
) + T4 = ajay,
X2 + x3 = azag,
T2 + T4 = aoay,
T3+ I4=azay.
In (iv) and (v), assume that a; + az +a3 # 0:
(iv) (az +a3)(zz +x3) — @171 = a2 — a3,
(a1 + as)(z1 + z3) — aaTa2 = ag —ay,
(a1 + a2)(z1 + z2) — asT3s = a3 — as.
(v) a1z +axz2 + a3z =a; +a2+ag,
azT) + a3zxz + a1T3 = a1 + G2 + ag,
G3Z1 + 61T3 + aaT3s = a; + az + as.
(vi) Solve the following system with the parameter a € R:

E:r:+ 2+ Zg+---+ =2
21 2 3 In 9
.1:+E + za+---+ Zp=2
1F %2 3 n =7
1+ +g::+ + T =2
1 T2 gTs n = g
i+ T2+ x3+---+ 13: ==
. : . gn " on”

(vii) Solve the following system with parameters a,, a2, as, as:

2z — =y = ay,
-1 + 22 — T3 = @y,
—%g + 2z3 — T4 = ag,

—Z3 + 274 = G4.

(viii) Show that if

Ty +T2+xT3=0,
T2+ T3+ 24 =0,

Tgg + T100 + T1 =0,
Zioo+ Ty +72 =0,

then 21 = T2 = T3 ="++-=Tgg = T100 = 0.

53
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5.7 Systems of Equations of Higher Degree

As opposed to systems of linear equations, there is no universal method
for solving systems of higher-degree equations. However, there are several
methods that can be used in special cases. The simplest one is the eliming-
tion method, which with the help of one equation of the system eliminates
several variables in the remaining equations. The disadvantage, however, is
that if we use a nonlinear equation, then often the degree of the remaining
equations will increase.

5.8 Examples

We will illustrate the advantages and shortcomings of the elimination
method by solving three systems of nonlinear equations:
(i) =v+2x24 73 =28,
x1 + 3x9 + 223 = 12,
2 +zi+zi =19
SoLuTION. If we subtract the first equation from the second, we obtain

T2 = 4 — 3. Substituting this into the first and third equations, we obtain
a system of two equations in two variables:

31—.’!:3=0,
z2 + 212 — 823 =3.

If we now substitute the first equation into the second, we get 3z3—8z3~3 =
0, which has the two solutions £3 = 3 and T3 = —%. Hence the system also
has two solutions: ) = 3, 72 = 1, z3 = 3 and 21 = —3, 72 = 13/3,
T3 = —%. (u)
(i) zi(z +x2) =9,

z2(x1 + Z2) = 16.
SOLUTION. Adding the two equations, we obtain (z;+x2)? = 25, and thus

T1+ z2 = 5. The system therefore has two solutions, which we obtain by
substituting x; + Tg into the original equations: x; = %, T9 = 16/5 and

Ty = —3, T2 = —16/5. O
(i) =3 +23=1§,
23+ 23 =3.

SoLuTION. We will try to eliminate the variable 9. By the binomial
theorem,

3
2§ = (23 = (3 —=2)" = 32 — La? + 72¢ 8,
zy = (z3)® = (83— z3)® =9 - 623 + %,
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and therefore
278 — 72} — 623 + Lo - W =

this, however, is an equation of degree 6 that we cannot solve. The only
possibility, namely reducing its degree by using 3.23, does not work, because
we have no root of this equation at all. Trying out all possibilities according
to 3.26 (after multiplying by 27 so that we get a polynomial with integer
coefficients), we find that this polynomial has no rational roots.

One method that leads to the solution of this problem will be described
in 5.10, and example 5.8.(iii) will then be solved in 5.11.(ii). O

5.9 FEzxercises

Solve the following systems of equations:

() =z+23+6z;+252 =0, Gi) 2yz-13
1 + 22 =-8. T+ 22 =5.
(iif) 22 +205=9, (iv) 5z1+ 572+ 25122 = —19,
(z1+ l)2 + 2(z2 + 1)2 = 22. 32,25 + 3 + 2o = —35.
(v) 22—-2,-5=0, (vi) 2% —-z170 = 28,
P Gl 22 — 213 = ~12.
*(vil) zf—ziz2+ 35 =21, *(viii) 22% + 32,22 + 22 = 12,
T2 ~— 22122 + 15 = 0. 2zy + 22)% — 22 = 14.

(ix) z2—2120— 224321+ T22+3=0,
223 + 2122 — 72 = 0.
*(x) 3z%+z1z2— 21 +422—7=0,
z2 + 21372 — 271 — 222+ 1 =0.

*(xi) Ty +22 =2,
X123 + Taxa = —8,
123 + X222 = —4,
2173 + T223 = —128.

5.10 The Method of Symmetric Polynomials

The method of symmetric polynomials can be applied to the solution of sys-
tems of equations in which the unknowns occur as variables of symmetric
polynomials. By the results of Section 4 we know that an arbitrary symmet-
ric polynomial can be expressed as a polynomial in elementary symmetric
polynomials. Therefore, the whole system can be rewritten as a system in
which elementary symmetric polynomials of the original variables occur as
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new variables. The advantage of this method lies in the fact that as a rule,
the new system is of lower degree than the original system. If we find the
values of the elementary symmetric polynomials, then the values of the
origial variables can be obtained as solutions of equations constructed with
the help of Vieta’s relations 3.18, which have degrees equal to the number
of variables.

5.11 FEzamples
(i) Let us solve the system of equations

x$ + 73 = 464,
xy+x2 =4.

SOLUTION. It is true that by substituting the second equation into the
first one we could obtain an equation in one variable, but we would be
unable to solve it. Therefore, we use the method of symmetric polynomials,
in the notation of (37). By the power sum relationship

8s = 3} + 23 = 0} — botoa + 50103
from Section 4.4 we can rewrite our system as

o5 — 5oloa + 501032 = 464,

ay — 4,
which, after simplification, gives
o2 — 1603 + 28 =0,

and therefore o2 = 2 or o2 = 14. Thus we get two systems of equations in

the original variables zy, za:
1 + 22 =4, resp. 1+ %2 =4,

122 = 2, T123 = 14,

from which by 3.18 it follows that z,;, 22 are zeros of the polynomials z2 —
4z + 2, resp. 22 — 4z + 14. The first one of these has the real zeros 2 + /2,
while the second one has no real zeros. OQur system has therefore the two
soutions £; =2+ 2, 2 =2 — V2 and z; =2 — V2, 22 = 2+ /2 in real
numbers. (If we wanted to solve the system in the field of complex numbers,
we would obtain the additional two solutions z; = 2+iv10, 2z = 2—i/10,
resp. 21 = 2 — /10, z2 = 2+ iv/10.) O

(i1} Let us now solve 5.8.(iii) using the method of symmetric polynomials.
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SoLUTION. Since by Section 4.4 we have the identities 22 + 22 = 02 — 20,
and =3 + 23 = o} — 301,02, we can rewrite the original system as

7
U¥—20'2=§,
0'?—30’10‘2=3.

By substituting o2 from the first equation into the second one, we obtain
o3 —T01+6=0,

which is an equation of degree three and has zeros 1, 2, and —3 (by 3.26).
Ifop =1, we get o2 = —-—%;ifol = 2, then o2 = %, and for oy = -3,
we get 0z = 10/3. The original variables z,;,z2 are then the zeros of the
polynomial z2 — x — 2, resp. 22 — 2z + £, resp. 22 4+ 3z + 10/3. Thus
we obtain the four real solutions (z,z2) € {((3 + v/33)/6; (3 — V33)/6),
((3—+/33)/6; (3+/33)/6), (1+6/6;1—/6/6), (1—/6/6;1+/6/6)}. If
we wanted to solve the system over the complex numbers, we would obtain
the additional two solutions z; = (—9+ iv/39)/6, zz = (—9 —i/39)/6 and
zy = (—9 — i/39) /6, 2 = (—9 + i/39) /6. O

5.12 FEzercises

Solve the following systems of equations; in (ix), @ € R is a parameter.

(i) =3+ 23 =35, (i) =z+z2=7,
x4+ x93 =5. E.‘.+3:3=2§.

gae 2 z2 1 12
(i) 2Z+224+2+22=32

- 2 _ 2 .
12(3:1 + xz) = Ta1T2. (IV) Iy —xT1T2 + I3 19,

y— 122tz =1.

3 z3
(v) 2+2=12 . 413 31
Tz T *(vi) -5 ==
1.1 _1 zi+xy 7
1 Tz 3 2} + 1172 + 72 = 3.
*(iiv) =z} — 3 =19(z1 - %2), *(viii) 284122 =5,
z} + 13 = T(z1 + z2)- 2% 4+ 23 = 65.
(ix) z1+4+z2=a, (x) z14+z2=3,
z$ + 23 =a. x$ + 25 = 33.

"‘(xi) T1+22—23 =1,
zZ + 22 — 22 =37,

B el —ad=1.
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5.13 Ezamples
Solve the following systems of equations:

(G zitze+z3=2,
2.2 2 _
zy+z3+x3==6,
3, .8, .3_
x) +z5 + 23 =8.
SOLUTION. We express the polynomials on the left sides in terms of the

elementary symmetric polynomials (38), using Table 4.12, and we obtain
the system

o= 2,

02 — 202 =6,

a'? — 30102 + 303 = 8§,
from which it follows that o3 = 2, 02 = —1, 03 = —2. By 3.18, x;,Z2,x3
are zeros of the polynomial z3 — 2z% — z 4+ 2. By 3.26, the rational zeros
of this polynomial can be only 1,2, —1,—2. By substituting we find that
the zeros are —1, 1, 2. The system has therefore six solutions, one of which
is ;3 = —1, z2 = 1, 3 = 2, and the others are obtained by changing the
order of the zeros. D

(ii) xy+22+x3 =6,
Z1Z2 + Z123 + Z223 =11,
(I]_ i :!.'2)(.’52 == za)(:l:a - 3:1) =2.
SoLuTION. While the first and second equations have symmetric polyno-
mials on the left-hand sides, the polynomial L = (x; —z2)(z2 —z3)(23 —21)

is not symmetric, since upon interchanging x; and z2 the sign will change.
However, if we square it, it becomes symmetric, and we have

L? = [(z1 — z2)(z2 — z3)(23 — 71))°
= (2% — 2122 + 22) (23 — 21273 + 23) (22 — 2123 + 22)
= [s2 — (27172 + 2})|[52 — (22223 + 27)][s2 — (20223 + 73)],

where 87 = 27 + 22 + 22, consistent with the notation in 4.12. We further
set a = 27129 +a:'§', b=2r273 + 2%, c = 27123 + z2. Then

L? = (82 — a)(sz — b)(s2 — ©)
=353 —(a+b+c)s3 + (ab+ be + ca)sy — abe.

We express a + b+ ¢, ab+ be + ca, abe according to 4.12:

a+b+c=2x1$2+$§+2$2$3+$¥+2-751$3 +:¢:§ = 82 + 209.
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Since
ab = (22122 + 22)(22273 + 73) = 2323 + ATy7373 + 2TiT2 + T273),

we obtain by symmetry

ab + be + ca = (2273 + 2373 + 2323) + 4T1Z233(T1 + T2 + T3)
+ 2(z3z2 + 7123 + 2375 + 2175 + 2373 + 2273)
= 2030, — 303,

and finally

abe = (ab)c = [#322 + 4z 2223 + 223 T2 + 2223)) (22125 + 23)
= 9737222 4 2(23x3 + 2323 + 2323) + Az 2oms (2 4+ 23 + 2I)
= 270'? + 203 — 18010203 + 403 03.

Therefore, we have

L? = 53 — (82 + 202)s2 + (20202 — 302)s,
— (2702 + 203 — 18010203 + 403 03)
= —202(0? — 202)? + (20202 — 302)(0? — 202)
— 2702 — 202 + 18010203 — 40303

= 0202 — 403 — 40303 + 18010205 — 2702,

If we substitute o3 = 6, o2 = 11 from the first two equations into the
equation L? = 4, we obtain

o2 —1203 4+ 36 =0,

and thus o3 = 6. The solutions of the original system are therefore the
zeros of the polynomial

2} — 622 + 11z — 6 = (z — 1)(z — 2)(z — 3).

Since in the course of this solution we carried out some irreversible steps
(we took the square of an equation), not all six permutations of the numbers
1, 2, 3 may be solutions of our system. Indeed, by checking we find that
the system has exactly three solutions: 3 =1, 75 =2, z3 =3 and z;, = 2,
29=3,23=1andz; =3, 29=1,23 = 2. @]

5.14 FEzercises

Solve the following systems of equations, where in (vi) a is a real parameter.

(i) T1+22+z23 =9, (ii) x1+3:2+33=%’

1, 1,1 _ 1,1 .1 _13
21+=2+z‘3_1’ 21+23+=3_3=

T1Z2 + 2123 + T223 = 27. 12223 = 1.
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i) (z1+x2)(z2+3)+H (T2 +23) (T3 +21)+H(T3+21 ) (z1422) = 1,
T3(z2 + T3} + T3(T3 + T1) + T3(T1 + T2) = 6,
Ty + 722+ 23 = 2.

(iV) :513:2(1‘1 + Iz) + :5233(32 + Ia) + zyx3(Ty + :!:3) = 12,
T1ZTo + 173 + T3z3 = 0,
z172(52 + x3) + ::21:3(1'% + 33) + T123(22 + 72) = 12.

{(v) Zy+z2+4+33=0, (vi) z1+z2+z3=a0,
o} + 23 + 23 = 2] + 73 + 33, ] + 3 + 73 = a,
T1ToT3 = 2. :r? + :3 + ::g = a3.
(vii) 2 4+zi4ai =9,
1 1 1 _
stz tz; =T1+T2+ 33
T1T2 + T1%3 + Tax3 = —4.
*(viii) 3 + 823 — 23 =3,

271Tg — T1T3 — 2Z9T3 = T) + 272 — T3,
1
T1T9X3 — -3

*(x) %+ 23+ad - of = 210,
z3 + 13 + 15 — 73 = 18,
3423+ 22 -22 =6,
Ty + T2+ z3—74 =0.

*(x) 3z)T073 — 25 — 23 — 23 = -9,
T+ T2+ 33 =3,
I¥+I§—-I§ = 5.

6 Irrational Equations

In this section we introduce several methods that can be used to solve
irrational equations, namely equations that contain a variable underneath
a radical sign. We will solve these equations in R; therefore, we first recall
the definition of a root of a real number:

If n is an even natural number, we define the nth root of a nonnegative
number a as the (unique) nonnegative number b for which " = a (written

= {/a); for a < 0 the symbol {/a is not defined.

If n is an odd natural number, we define the nth root of a real number
a as the (unique) real number b for which b” = a (again written b = /a).
We point, out that the numbers @ and {/a have the same sign.
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6.1 The Implication Method

Irrational equations will be solved, as a rule, by using what we will call
the implication method. We consider as part of this not only the usual re-
versible manipulations of equations (interchanging the sides of an equation,
adding the same number or expression to both sides of an equation, mul-
tiplying both sides by the same nonzero number or expression), but also
several irreversible manipulations, especially those that are derived from
the following theorem.

Theorem. Let L(x), R(x) be expressions in the variable z defined on the
set D C R. Then for each z € D we have

(i) L(z) = R(z) = [L(z)]" = [R(z)]* for eachn €N,
(1) L(z) = R(z) = L(z) - G(z) = R(z) - G(z),

if the expression G(z) is defined for each z € D.

Remark. The implications (i) and (ii) can in general not be reversed.
Let now

Lo(x) = Ro(x) (46)

be some equation in the variable z € R, which we will solve by way of the
implication method; that is, we construct the chain of implications

Lo(z) = Ro(z) => L1(z) = Ri(z) = --- = Ln(z) = Rz}  (47)

such that we can easily determine the roots of the equation L,(x) = R,(x);
in fact, L,(x) and R, (x) are most often polynomials. i fori =0,1,...,n
we denote by K; the set of roots of the equation L;{z) = R;(z), then by
(47) we obviously have Ky C K; C --- C K,,, and therefore Ky C K,,. The
set KC,, certainly contains all the roots of the equation (46) (if they exist at
all) and possibly also several other numbers that we drop when we carry
out a check by substituting all numbers of the set K,, into (46).

If we solve an irrational equation (46) by the implication method, then
this check must be part of the solution. Therefore, this method is also called
the method of analyzing and checking (by analyzing we mean the chain of
implications (47)).

Using this method for solving irrational equations therefore frees us from
the necessity to keep track of whether for individual manipulations of an
equation its domain of definition increases, or whether upon taking even
powers the expressions on both sides of the equation have the same sign.
The members of the set K,, \ Ky (which are sometimes called “false roots”)
will be determined by checking.
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6.2 Ezamples

'We now solve several simple irrational equations.

(i) V14+3z=1—-=z.

If we square both sides, we obtain the quadratic equation 1 +3z = 1—21+
x2, that is, 22 — 5z = 0, which has the roots z; = 0, xz = 5. Substituting
these into the original equation, we obtain L(0) = 1 = R(0), L(5) =4 #
—4 = R(5). Therefore, the equation /1 + 3z = 1 — x has exactly the one
solution £ = 0.

(i) VIi+ 3z =z +1

Again by squaring we obtain the quadratic equation 1+ 3z = 22 + 27+ 1,
that is, z2 — z = 0, with roots z; = 0, zz = 1. Since L(0) = 1 = R(0),
L(1) = V4 = 2 = R(1) (having substituted into the original equation), the
given equation has the two roots 0 and 1.

(iii) v2+z?2 =z — 1.
By squaring we obtain 2+ 22 =22 — 2z + 1, thus 2z = -l and z = —%.
By substituting we see that the original equation has no root at all, since

L-D=y1=3#-3=R-D

6.3 FEzxercises
Solve the following equations:
(i) Vz2+7=2z+2.
(ii) V3l+z—=z2=5—=z.
(iii) 2z -6 =6z —z2 - 5.

.y Vo—x%
) 7 =t
6.4 Remark

Even though hy using the implication method one need not worry about the
equivalence of the manipulations, one can sometimes significantly accelerate
the solution of a problem by determining the domains of definition of the
equation or checking the signs of its sides. Thus, for example, in problems
(1)—(iii) below one can easily decide that the equation has no solution in R,
and in problem (iv) it is easy to “guess” the solution.

(i) The domain of definition of the equation 4 -z = /z — 6 is the
empty set, since the inequalities £ < 4 and = > 6 cannot he satisfied at the
same time.

(i1) The equation v/ + 2 = —2 has no real root, for while its left-hand
side is nonnegative, on the right we have the negative number —2.
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(iii) The left-hand side of the equation v/2z + 3+ +v/z+3 =0 is a sum
of a nonnegative and a positive number (indeed, for x > —-g- we have
v2r+3 > 0 and +/z+3 > 0, while for z < —3 the equation makes
no sense), and is thus a positive number. Therefore, the equation has no
solution.

(iv) Let us now solve the equation

VIlz4+3—-vV2—-2—V92+7+Vz—-2=0.

We easily convince ourselves that the domain of definition of this equation
is D = {2}. If we substitute = = 2, we see that L(2) = v/25—0— v/25+0 =
0 = R(2); the given equation therefore has exactly the one solution x = 2.

6.5 Ezercises

Show that the following equations have no roots in R:
() vVz—6+/3—x2=4x—-3z2+1.
(i) Viz+7+vV3—-4x+22+2=0.

(i) Vo +9+/z=2
(iv) 2- V& 4T+ 1+ /27 (z +1)3 = -5.

6.6 FEzamples

We solve now two equations in a standard way.

4
(i) Vi-z+ o=

SoLUTION. If we multiply the whole equation by the expression /2 — z+

3, we obtain
2—z+3-V2—z+4=2-v/2—-z+6,

which implies /2 — z = z, and thus 2+ — 2 = 0; this quadratic equation
has roots z; = 1, 2 = —2. By trial we find that the original equation has
the unique root x = 1. O

(i) Ve+5—yzZ=1 (48)

2.

SOLUTION. By squaring equation (48) we obtain
24+5—-2-y/z(z+5)+x=1,

and thus z + 2 = /z(z + 5). By squaring once more we get 22 + 4z + 4 =
22 4 5z, so z = 4. Since in (48) we have L(4) = 1 = R(4), the equation has
the root * = 4. 0
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6.7 Remark

It is often advantageous to begin solving an irrational equation by trans-
forming it appropriately. This can be done, for example, by separating one
of the roots from the remaining terms and putting it on one side of the
equation before taking powers. The necessary calculations are often sim-
pler this way. Let us convince ourselves of this by solving the following
three equations:

(i) Vz+5—z=1.

We have already solved this equation in 6.6.(ii). Here we transform it into
VZ+5 =1+ zx, thenz+5 =1+ 2/ + z, and thus /z = 2 and
z = 4. This approach for solving (48) requires less work than the one used
in 6.6.(ii).

(i) 1+V1-Vai—z2=z.
We put the equation in the form Vi—Vzt—z2 = z — 1, thus 1 —
Vx4 —z% = 2?2 — 2z + 1, and by separating the root from the remain-
ing terms we obtain the equivalent equation 2z — 22 = /2% — 2, which
upon squaring gives z2(2 — z)? = z2(z? — 1). Therefore, z%(5 — 41) = 0,
which means z; =0, zo = %. By checking we convince ourselves that while
L(0) = 2 # 0 = R(0), we have L(3) = ¥ = R(3), and the original equation
has a unique root.

(i) vZT+ 14 Vaz + 13 = 3z + 12.

Here we rewrite the equation as v/3z + 12 — vz +1 = /4z + 13, so that
upon squaring we obtain the easiest possible consequence

37 +12-2/(3z+ 12)(z+ 1)+ z+ 1 =4z +13.

Thus /(32 + 12)(z + 1) = 0, which implies z; = ~1, 3 = —4. While for
T3 = —4 the expression /73 + 1 is not defined, z = —1 is a solution of the
original equation.

6.8 Ezxercises

Solve the following equations:

() VZ-1+/2z+6=6.

(ii) V22 +1+ V22 -8=3.

(iii) vz 4+2—-vV2x—-3=+z 1.

(iv) 22+ V=2 +20=22,

(v) VBz4+1—V6z—-2—/2+6+V2x+3=0.
(vi) V2x —-4— 3z —-11=+/x -3
(vii) 6z +1+VIz+2—VBx—2x +3=0.
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6.9 Multiplication by a Conjugate Ezpression

For solving certain irrational equations of the form /f(z)++/g(z) = ¢(z),
it may be useful to multiply by an expression of the form /f(z) — v/¢(z),
which is called conjugate to the expression /f(z) + 4/g(z). The same is

true for equations of the form /f(z) — \/g(z) = w(z); in both cases use
of the formula

(VI@ + Vo@) (VF@ - Vo@) = £(z) - 9(=)

may simplify the equation, especially in cases where f(z) and g(x) are
“similar.” After this it is useful to consider the foliowing pair of equations
together:

VIGE) £ Va(@) = ¢l=),
f(@) - 9(2) = (=) - (VF@) ¥ Val@).-

We illustrate the use of this method by solving the equation

V222 + 3z + 54 V222 — 32+ 5 =3z. (49)

If we multiply (49) by the difference of the square roots, we obtain after
simplification,

2z =z - (V222 4+ 3z + 5 — V222 — 32 + 5),

and since z = 0 is not a solution of (49), we proceed to solve the system

V222 4+ 32+ 5+ V222 — 32 + 5 = 3z,
V2z2 +3r+5— V222 -3z +5=2

By adding the two equations we get 2- /222 + 3z + 5 = 3z + 2, and after
squaring and simplification, 2?2 — 16 = 0; thus 2y = —4, o = 4.

Since the left-hand side of (49) is nonnegative, the right-hand side must
also be nonnegative, and the nummber x; = —4 cannot be a root of (49). By
substituting into (49) we verify that = = 4 is the (unique) root of (49).

6.10 Ezxercises

Use the method of 6.9 to solve the following equations:
() V322452 4+8—-V3z2 +5z+1=1.

(i) Ve + 22 —1+vVr3+z22+2=3.
(iii) V222452 —2~vV2:2 + 52 —-9=1.
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6.11 Method of Substitution

A very efficient method for solving some irrational equations is the use of
substitution. We illustrate this with several examples.

3—x 24z
‘f— 3‘f =4
2+:c+ 3—=z

we set /(3 —z)/(2+z) = t > O; then the equation becomes ¢ + 2=
4, which gives & quadratic equation with roots ¢; = 1, ¢t = 3. If ¢; =
VB —-z1)/(2+ z1) =1, then zy = %, and if ty = /(3 — 22) /(2 + z2) = 3,
then z, = —3. By checking we verify that both numbers are indeed roots
of the original equation.

(ii) z2++v/z% + 2z + 8 = 12— 2z. We begin by writing this equation in the
form =2+ 22+ 8+ /22 4 2z + 8 = 20. If we then set Vz2 + 2z +8 =z > (),
we obtain the quadratic equation z2+z—20 = 0 with roots z; = 4, z; = —b.
In view of the condition z > 0, only the root z; makes sense, and the
equation vz2 + 2z + 8 = 4 gives the numbers z; = 2 and 2 = —4, which
are also roots of the given equation.

(i) In the equation

(iii) To solve the equation

Vz-va—2+yz+vz—3=3,

in addition to the substitution v/ — 2 = ¢ > 0 we use also the method of
Section 6.9. We have vt2 —t + 2+ 12 + t + 2 = 3, and by multiplying by
the conjugate of the left-hand side of this equation we obtain the following

system:

V2 —t+24+t2 42 4+2=3,

3. (\/t2—t+2—\/t2+t+2 = 2t

This implies 6 - VEZ—£+2 = 9 — 2¢, and thus 3262 — 9 = 0, {2 = 9/32.
Since = = t2 + 2, the root of the original equation is z = 73/32, of which
we can convince ourselves by checking that L{73/32)2 = 9.

(iv) If the equation

ZH+VI+VT+2+V22+22=3

is given, it is convenient to use the substitution ¥ = v/2+ +/z + 2. We then
have y? = z+2- /z(z + 2) +z+2 = 2(z + 1+ VZ? + 2z), and the original
equation becomes y%/2 — 1 + y = 3, which has the number 2 as its unique
nonnegative root. As solution of the equation /z + v/ + 2 = 2 we find
& = g, which can be easily checked to be the root of the original equation.
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6.12 Ezercises
Use an appropriate substitution to solve the following equations.

) 32 -2 F
@ = - = =1

(iii) 22 — 4+ 6 = V222 — 8z +12.

(iv) 222 +6—2- V222 — 32+ 2 = 3(z +4).

(v) V©®+8+ V3 +8=6.

(vi) 322 +152+2- V22 + 52 + 1 =2.

i) % Vz—1 Va®-1_

Vz2-1  Yz+1

(viii) Vz+3+4-Vz—14+Vz+8-6-Vz—1=5.
(ix) Vz+2vz—1—z—2/z-1=2.

(x) Vz2+z+4+ Vi +z+1=v222+22+9.
(xi) Vz2+z+ 7+ V2l +z+2=+3224+ 32 +19.
(xii) Vz+ vz +1l+Vz—Vz+11 =4
(xiil) vVZ—1+vz+3+2-{z—1)(z+3)=4—2z.

6.13 Ezamples

We solve now two equations that are more complicated; again it will be
convenient to use substitutions.

) 2+1=2-Y2z 1. (50)

SoLUTION. Ifweset y = /21 — 1, then §® = 2x—1. We obtain the system
of equations

:c3+1=2y,
y3+1=2:r.

By subtracting the second equation from the first, we get z° —y® = 2(y—z),

thus (z—y}z? +zy+y*+2) = 0, and so either z = yor 2?4+ zy+y* = —2.
I z = y, then 23 +1 = 2z, which hasroots z; = 1, z3 = —(1+v/5)/2, 23 =
—(1 —+/5)/2; all three numbers also satisfy equation (50), which is easy to
verify. The equation 2+ xy+3° = —2 has no real roots, since for each pair
z, y of real numbers we have z2+zy+y? = (z+y/2)%>+3y%/4 > 0. Equation
(50) therefore has the three roots 1, —(1 +v/5)/2, —(1 — v/5)/2. a

(ii) 4VI+z -1} (VI—-z+1) ==z (51)
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SoLUTION. First we note that z € [—1,1], and we set u = V1+Z, ¥ =
V1 — z. Therefore, 42 = 1 4+ z, v* = 1 — z, and thus u? +v?2 = 2 and
u? — v? = 2z, where 0 < u,v < /2. By substituting into (51) we obtain
after simplification 8 - [uv + (u — v) — 1] = u? — v2. In this equation we
substitute the expression uw: Since (u — v)? = u? — 2uv + v?, and using
u? + v2 = 2, we obtain 2uv = 2 — (u — v)®. Hence

8—4(u—v)2+8u—v)-8—(u—v)(u+v)=0,
(u—v)(8—5u+3v)=0.

The condition u — v = 0 implies = = 0, which is also a solution of (51). The
equation 5u — 3v = 8 has no solution, since from the conditions 0 < #,v <
V2 it follows that 5u — 3v < 5u < 5v/2 < 8. O

6.1{ Ezxercises

Solve the following equations:

() 2z _J2(:c:1) —1

z-+1
(i) Vy—2+2y—-5+ Y+ 2+3/2y—-5=T/2
s VI2 4+ 82z 7
) w1 *VET T EET
1 1 35
ks _ S
(w)m-{- — 17"

6.15 Equations of the Form {/a + ¢(z) + /b — p(z) =

The method of “paired” substitution, which we have used to solve example
6.13.(ii), can be used in a standard way to solve equations of the type
Va +p(z)+ b — p(z) = c, wheren € N, g, b, c € R, p(z) is an expression
in the variable = € R, or equations of a similar type.

If we set u = Ya +¢(z), v = {/b— p(z), then simultanecusly
ut+v=c,
u" +v" =a+b

Systems like this can be solved, for instance, by using the method of
symmetric polynomials from Section 4. Let us again consider two examples.

(i) The equation
V32—-z+V1+z=3,
with the substitutions u = +/32 — z, v = V/1 + =, leads to the system
u+4+v=3,
u® +0° = 33,
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which we have solved in Exercise 5.12.(x); hence, uy = 1, v; = 2,0or uz = 2,
v = 1.

From the equation ¥/32 —z = 1 we obtain the first root z; = 31 of the
original equation, and from +/1 + = 1 we get the second root z2 = 0, of
which we can easily convince ourselves.

(ii) To solve the equations
V84+z+vV8—z=1,
we use the substitutions u = {/8 + z, v = V/8 — = and solve the system

utv=1,
ud +3 =16.

If we set 01 = 0y (u,v) = u+ v, 02 = 02(w,v) = u - v, then

1= a1,
16 = o} — 30102,
and thus 63 = 1 and o3 = —5. Therefore, u, v are roots of the polynomial
F(t) = t"’—alt+az = t2—t—5, that is, {u, v} = {(1+v21)/2, (1-21)/2}.
Since £ = u® — 8, we obtain z; =3 - V21, 2, = —3- V21.

We remark that the solution of these problems could be accelerated:
Indeed, if o2(u,v) = u-v = =5, then —5 = B+ x - /8 — z. Therefore,
V64 — 22 = —5, which gives again Iy 2 = +3+/21.

By substituting we verify that both numbers are roots of the original
equation; to do this, we can use the result of Example 3.24.

6.16 FEzxercises
Use the method of 6.15 to solve the following equations:
i) V1—-z+¥15+z=2.
(i) ¥2x -2+ ¥6— 2z =+2.
(i) YT+2z+ JT—2z= V2
iv) T+vz=2-Y1-a
(v)2-Y(6—2z}(z—2)+V6—x+Vz—-2=2

6.17 Equations of the Type v/ f(z) + /g(x) = h(z)

By using the formula

(u + v)3 = u® + 03 + 3uv(u +v),
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we can modify the method introduced in Section 6.15 for n = 3 to .in-
clude the solution of more complicated equations. Indeed, if in the equation

Y T@) + {/9(z) = h(z) we set u = {/f(z), v = V/g(z), then according to

the formula above we have

Y@ + Y9@) = hiz) = f(z) + g(z) + 3h(z) - V(=) 9(z) = h"-"(ch))z.)

We illustrate this approach with the following examples.
(i) The equation

V8+z+V8—z=1
was already solved in 6.15.(ii). Now, using (52), we rewrite it in the form
8+x+8—z+3-1- }/(8+z)(8 — ) = 1, which implies V64 — % = —5;
hence again ; 2 = +3 - V21.

(ii) Let us now solve the equation
Yr—-1+Vz+1=z-V2
Rewriting it according to (52), we get —1+z+1+3z- /2(z% — 1) = 223,

and thus z- [33/2(zZ2 —1)—2-(z2—1)] =0,s0 71 =0 or 3- {2(z2 - 1) =

2(z2 — 1); this last equation has roots

=1, zTZ3=-1, Z45= :I:V (2 + 3\/5)/2.

The roots of the original equation are therefore some of the numbers
z;, 1 <11 < 5. While it is easy to check each of the first three numbers
(by simple substitutions we verify that each one is indeed a solution of
the original equation), we carry out this check for the remaining numbers
x4, Zs with the help of the following trick:

Weseta= ¥Yzg—1,b= Yza+1,c =14 V2 and show that a + b =
c. Indeed, an easy calculation shows that the numbers g, b, ¢ satisfy the
relation a® + 5% + 3abc = ¢3; the desired equation a + b = ¢ then follows
from the result of Example 3.16.(iii). This works similarly for zs.

6.18 FEzercises
Solve the following equations:

() V12—z+ Y144z =2
(i) Yz+7+ 28—z =5.
(i) ¥2z -1+ Jz—1=1.
(iv) Vz+1+Jz+2+Jz+3=0.
(V) V3 + Y= —3= Y12z —1).
*(vi) Yx+Vz—-16=Vz - 8.
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6.19 Irrational Equations with a Parameter

We now turn our attention to solving several types of irrational equa-
tions with perameters. We will use all the methods described above, and
pay special attention to those problems that often cause considerable
complications.

(3) V2 + a = a — z, where z is a variable and a is a real parameter. We
first square the equation: z2 + a = a2 — 2ax + 2, and thus 2ez = a{a — 1).
For a = 0 we get the equation 0 = 0, whose roots are all numbers = € R;
fora #£0 it is = (a — 1)/2. We now do the necessary checking.

(a) a = 0: By substituting into the original equation we get V2 = —z,
which is equivalent to |z| = —z, and holds if and only if £ < 0. Fora =0
we thus have an infinite set K of roots, with X =Ry .

(b) For a # 0 we have

a—1) [(a—1)? _|la+1]. a—1\) a+l
L(z)—\/ L +a=121L R(27) =220

so that L = R if and only if |a + 1| = a + 1, that is, a > —1. Therefore,
the given equation bas the unique root £ = (a— 1)/2 for each a € [-1,0) U
(0, 00), while it has no root for a € (—oo, —1).

(ii) The equation

a-vVz+1+b a+bd

a—b-vz+1 a-b
with real parameters a,b makes sense only when a # b. We substitute
¥ =z +1 and rewrite it as (ay + b)(a — b) = (a + b)(a — by); then after
some manipulations we obtain (a2 +52)-y = a?+b%. Thusy =1l andz =0
for each pair of parameters a,b, where a # b. The checking in this case is
easy.

6.20 Ezample
Solve the following equation with parameter a € R:
2 —-va-z=a. (53)

(i) FIRST SOLUTION. By separating the square root we obtain /a — z =
7% —a, where a— > 0 and at the same time 22 —a > 0, hence z < a < 72.
After these observations, by squaring we cbtain

-2’ +a® =a—gz, (54)

which is an equation of degree four in the variable z, where none of its zeros
are easy to “guess.” We will therefore use the following trick: Let us for a
while consider equation (54) as an equation with variable a and parameter
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z; for then we have a quadratic equation a® — (22 + 1)a + (% +2) =0
with discriminant D = (2z — 1)2. Therefore, we have either

2 -
=2a: +1+(2x 1)=1‘:2+3.
2
or
227 +1-(2z —1) — 2?21

2
Now we return to the original variable and parameter, and distinguish
between two cases:

(a) a = z2+z. Since a < 72, we have £ < 0. Then the quadratic equatlon
z2 4z —a=0has dlscnmmant D = 4a + 1 (which means a > ——) and
roots 712 = (—1+ vda +1)/2 The root z; = (—1 +v4a+1) /2 makes
sense only for a € [—1,0}, since for a > 0 we have 71 > 0. The root
za=(-1- \/4a_+1)/2 is negative for all @ > —1.

(b) a = z2—z+1. Since a < z2 again, we have (—z+1) < 0, thatis,z > 1,
from which we furthermore obtain the condition a > 1. We will now solve
the equation 2 —z+(1—a) = 0 only for parameter values a > 1, and we find
z34 = (1++4a—3) /2. Since z > 1, the number 74 = (1 —4a - 3) /2
is not a solution. On the other hand, z3 = (1 + \/m /2 works, under
the conditionsa > 1l and z > 1.

In summary, we have that for a < —% the equa.t:on (53) has no solutions;
for a = —1 it has the unigue root —3; for a € (—3,0] it has the two roots
1, Z2; for a € (0,1) it has the unique root x3; and finally, for a > 1 it has
the two roots z3, x3. O

Note: The roots of equation (53) are “unpleasant,” and checking them
by substituting would be difficult. Therefore, in the course of solving the
problem above we made sure that all manipulations carried out were
equivalences; we carefully followed the domains of definition of expres-
sions, squaring only nonnegative expressions. We will follow this cautious
approach also in the second solution of (53).

(ii) SECOND SOLUTION. We use the substitution y = v/a — z; then y > 0,
a > z, and we solve the system

z=aty,
yv:=a—z.

Subtracting the equations, we obtain =% — y? = y + z; hence (z + y)(z —
vy — 1) = 0. Now we distinguish again between two cases:
() z+ y = 0; then £ = —v/a — z, that is, 2 + £ — a = 0 under the
condition that z < 0. We then continue as in 6.20.(i), case (a).
b)z—y—1=0;thenz—1= ya—=z, and thus z > 1. For a >

3
4
the equation z2 — z + (1 — @) = 0 has the roots z34 = (1 + vda - 3) /2.
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Since z4 = (1 — v4a —3) /2 < 1, the number z; is not a root of (53) for
any value of the parameter a; the number z3 = (1 + v/4a —-3) /2 is a root
exactly when z3 > 1, that is, whena > 1.

A summary of these results can be found at the end of the first

solution. a

6.21 FEzercises

Solve the following equations, where z is a variable and a is a real
parameter:

(i) vVii+aZ=z+a.
(i) 1+v/z=vz—a
(iii) Ve —a=a-+/z.

(iv) V(iz+a)2+4a+a=1z.

*(v) Va++vat+z ==z

6.22 Ezamples

At the end of this section we will solve a few systems of irrational equations.
We limit ourselves to systems of two equations in two variables, and we
apply some of the tricks that were used earlier.

(i) vz+2,4=9,
z—4y=9.

SOLUTION. Since z > 0, y > 0, the second equation of the system can be
rewritten in the form (\/z + 2,/4)(v/z — 2,/¥) = 9, from which by the first
equation it follows that /= — 2,/y = 1. The system

VZ+2,/y =9,
\/5—2\/3_’:13

has the solution /z = 5, \/y = 2; hence £ = 25, y = 4. By substituting
we convince ourselves that the ordered pair (z,y) = (25, 4) satisfies both

equations of the system and is therefore its unique solution. o
(i) Vz®+ {43 =35,
vz + Yy =5.
SOLUTION. We use substitution; if we set u = ¥z, v = &), Le., z = ul,
y =25, we obtain
= 395,

utv=2>_,
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which we solve using the method of symmetric polynomials (see Section 4).
If o1 = 01(u,v) = u+ v, g2 = o2(u,v) = u- v, then we have: 09 = 9
and 35 = of — 30102, and thus 02 = 6. The numbers u,v are zeros of
F(t) =12 — 5t + 6, so either u =2 and v = 3, or u = 3 and v = 2. In the
first case we have z; = 16, y; = 243, and in the second one, T2 = 81 and
y2 = 32. By substituting we convince ourselves that both pairs (16, 243)

and (81, 32) are indeed solutions of the original system. D
- 2z —1 y+2
i =2, 55
(ii) y+2 \[21: -1 (55)
r4+y=12.

SoLuTiON. If we use the substitution 3 f 2:+2 =t > 0 for the first equation

of the system, then this equation appears in the form ¢ + ; = 2; this is
a quadratic equation with a unique (double) root ¢t = 1. The system (55)
then takes the form of the following system of two linear equations in two
variables:

r+y=12,

with the unique solution z = 5, y = 7. The pair (5, 7) is then also a solution
of the system (55). O

6.28 FErxercises

Solve the following systems of equations, where in (viil) the numbers @
and b are real parameters:

@ + /=4 G) f2+vEI=§,
zy = 27. T+y=10.
(i) Vz2+4dzy—3y2 ==z +1, (iv) THay+y=12,
—y=1 vz + YTy + Yy =0.
(v) 10-\/i"—y+3x—3yj28. (vi) ‘/§+¢z—y=%,
FRUS S T +y = 20.
*(vii)

* -ne z=Y zz—yz
viil =
( ) l_za +yz a’

::+\/ary"' \/:3_

z—y/22—32 ::+\/::2 v?

2 . y=zy/zi -y
z(z + y) + V22 + =y + 4 = 52. %—h

17
4!
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7 Some Applications of Complex Numbers

Now, at the end of the first chapter, we will concentrate on problems that
thematically belong to the preceding sections but that can be conveniently
solved by use of complex numbers, although in the statements of the prob-
lems only real numbers appear. We stress that the use of complex numbers
for solving these problems is not imperative; however, it replaces a number
of artificial tricks required in the corresponding “real” solutions, and thus
makes for clearer solutions.

We assume that the reader is familiar with the definition of complex
numbers, knows how to work with their algebraic (e +bi) and trigonometric
(r{(cosy + isin)) forms and knows de Moivre’s theorem

(cos + ising)t = costy + isinty,

which holds for arbitrary numbers ¢ € R and t € Z.

7.1 Sums of Binomial Coefficients

Already in Section 1.3.(i) we saw that by appropriate applicatlon of the
binomial theorem we can obtain the sums of certain binomial coefficients.
If in 1.2 we now set A =1 and B = {, we get

() (- ()- Qe (20 O

We evaluate the left-hand side by way of de Moivre’s theorem:

1+9)" = [\/ﬁ (cos% +isin-g-)]“ = (\/i)'rl (cosn—:- + isin 'Zl) .

Comparing the real and imaginary parts on both sides, we obtain

()-()+ Q) -oar=t. oo
(-0 et o

Here, as in the following equations, the dots denote the terms in an obvious
pattern, continuing as long as the binomial coefficients involved are defined
(we have defined (}) only for k = 0,1,...,n). By adding and subtract-
ing (56), resp. (57), to/from 1.4.(i), resp. 1.4.(ii}, we obtain the following
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formulas:
(3) + (2) + (:) +ooe =272 4 (V2)™ o8 1:-,
(e (- -rernut
R
BRI

7.2 Example

For an arbitrary natural number n, determine the sum

() () ()

SOLUTION. Weset e =cos T +1 sin 3- In the binomial theorem 1.2 we set
A=1,B=¢" whereke{(}l ., 9}, and we get

oo (e (e e (e o

If t is an arbitrary natural number not divisible by 6, then £t # 1, and
therefore by (5), and using the fact that € = 1, we have

1+e'+82'+63‘+e“+55‘—86t_1— L =0 (59)
T et—1 eg-—-1

If, on the other hand, t € Ny is divisible by 6, then
I+t e +edt et et =141414+14+14+1=6. (60)

Adding (58) for all k € {0,1,...,5}, we get

Z(l + e —6( ) +(1+e+--- +e5)(”) +

k=0 1
+(1++e 4 ---+¢€ )( )

By (59) and (60) the sum on the right-hand side is 6S. Hence

= —[(1+1)"+(1+e)"+ -+ (145
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To evaluate the numbers on the right-hand side, we first determine the
numbers £* by de Moivre’s theorem:

1 .\/§ 2 1 _\/-3-
e=g+i, € =—g+i e =-1,
1 3 1 V3
a__1 .v3 s5_1_ .v3
el=—g—iT f=o-ig

Hence
s=3fzr+ (3 +1E) + (3 +i9) +o+ 3 -4F) + (3 -+
Now we again use de Moivre’s theorem,

(3 ﬂ:iﬂ?)" = [cos(£Z) + isin(+F)]™ = cos BF +isin T,

(3+4)" = [V3 (£ 23)]" = [Vileos(xF) +isin(xF))]”

= (V3)"(cos & + i sin ),
and obtain the desired sum
S = -;‘-[2"‘1 +cos"?” +(V3)"- COS%].

We remark that the choice of the number £ that we have used above is
not as unnatural as it may appear at first sight. By comparing the formula
in the binomial theorem and the sum S we see that we need a complex
number whose sixth power is 1 and whose first to fifth powers are not
equal to 1 (that is, a primitive sixth root of unity). It follows from de
Moivre’s theorem that the number € = cos %'- + isin %” has this property
(apart from this number, so does €%, but no-others). For a similar reason
we have worked with the number i = cos 27'” &+ isin 27" in 7.1. D

7.8 [Ezercises
For arbitrary natural numbers n, find the following sums:

O E+G+@+--
@ O+E+E+--.
(i) Q) +GE)+E)+----
(iv) (5) —3(2) +3%(5) —33(6) +---.
) (1) —3() +3%(5) —33(G) +---
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7.4 Trigonometric Functions

With the help of calculations based on the trigonometric form of complex
numbers, we can obtain several interesting identities in which trigonomet-
ric functions occur. We illustrate this in the solutions of the following
four examples. In the first two we apply a technique similar to the one
in Sections 7.1 and 7.2, while in the remaining ones we will use the decom-
position of polynomials into linear factors and Vieta's relations between
their coefficients and zeros.

(i) Express cosno and sinna for each n € N in terms of cosa and sina.
SOLUTION. By de Moivre’s theorem and the binomial theorem we have

(cosna + isinna) = (cosa +isina)™
= cos’ax +1 ('1') cos" lasina — ('2') cos™ 2a sina

—i(3) cos™ 3a sindar + (%) cos™ sinlo + i(3) cos" S sinffo—---,

from which we obtain the following two identities by comparing real and
imaginary parts:
cosna = cos™ a — (3) cos" 2 asin® o+ () cos" 2 asina —---,
sinna = ("I') cos" lasina — (g) cos® 3 asin®o

+(7) cos" S osin®a—--- . O
(ii) Find the values of the sums

51 = siny + sin(yp + o) + sin(y + 2a) + - - - +sin(yp + na),

S2 = cos + cos(y + a) + cos(p + 2a) + - - - + cos(yp + na),
for arbitrary n € N and ¢, € R.
SOLUTION. The problem is trivial for o = 2kw (k € Z), in which case we
have S} = (n+ 1)sing, S2 = (n + 1) cosy. For all other values of o we

consider the sum S = S; +i5;:

8 = [cosyp -+ isiny] + [cos(i + a) + isin{y + )]
+ [cos(y + 2a) + i sin(p + 2a)] + - - - (61)
+ [cos(yp + na) + isin(yp + na)).

To simplify notation, we set @ = cosy +ising, b = cos(g) +isin(§). By
de Moivre's theorem we have

S=a+ab®+ab® +--- +ab® =a(l +b%+-.. 4 b72").
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From the assumption a # 2kn (k € Z) it follows that b # 1, so that by
formula (5) we can evaluate 1452 4-- - - 4-5°" and thus obtain the expression

% gont2_ gy — a pntlgpndl _ p—n—1
S 71 (b 1) b —5-0) b T(b b )
bﬂ+l _ b—n——l
=T p_p1 ab™. (62)

By de Moivre’s theorem it follows that
b—b"! =(cosg +isin %) —(cos § —isin §) = 2isin g,
prtl _ b—n—l = (COS !n-];l ja 4 isin !n—l—zl!u) _ (COS !rH; Ja isin !rh;l )a)
= 2isin -‘—)—“"; =,
a-b" = (cosy + isingp) - (cos B +isin 2)
= cos(w + %) + isin(p + ).
Substituting these into (62), we obtain

sin (n+l)a
S=——2—-[cos(p + T7) +isin(p+ 52)],
81N ]

from which, upon comparing real and imaginary parts, we get with (61),

o 1 E
sin -(9-"'7)3 -sin(yw + &)

S1 =sing +sin(p+a) + -- - +sin(p+na) = .
2

sin 8212 . co5(p 4 B2)

S2 = cos + cos(p+a) + - - - + cos(ptna) =

sin g
for each a # 2krn (k € Z). o
(iii) Show that for each n € N greater than 1 we have
.. 2r 3w _ (n—lw =n
6in — sin — sin - ---8in ——="— = 2. (63)

SoLUTION. The polynomial z* — 1 has the n complex zeros 1,¢,€2,...,
™1, where ¢ is the complex unit cos(27 /n)+i sin{27 /n). Its decomposition
into linear factors is therefore

" —1=(z—- 1)z —e)(z—€Y)---(z— " }).
If we divide the polynomials on both sides by z — 1, we obtain
" 4z 24zl =(z—€)(z—€®)---(z—€™Y),
which by substituting z =1 gives the equation

n=(1-¢e)(1—€?)---(1 —e"L).
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This implies n = |1 — |- [1 —€?|-- - |1 — €™}, since the absolute value of a
product of complex numbers is equal to the product of the absolute values.
If we substitute for each k =1,2,...,7n — 1 the result of the calculation

k
|1—£k|—\/(1—cos& +s'11122::::r ‘/2 2os£-=2s :

(where we have used the well-known identity cos2a = 1 — 2sin’ a), we

obtain the desired equation after dividing by 2" 1. This result has an in-
teresting geometrical interpretation. It arises when in the complex plane
one considers a regular n-gon whose vertices are the images of the complex
numbers 1,¢,€2,...,e™" 1, and if one realizes that the absolute values of
the complex numbers 1—&F are equal to the lengths of the segments A; A;.
The reader is invited to continue this argument. 0

(iv) For each n € N verify the equality

7r 27 3 nrw n(2n - 1)
+2 12 12 i 2
O 1 T i T it a1 T T 3
(64)
SoLuTiON. We will find an equation of degree n with the n distinct zeros
kx
= cot? =1,2,...,n).
Iy =cCO o +1 (k y & ln)

To this end we use the expression for sin{(2n + 1)a in terms of sina and
cosa, which we have derived in the solution of example (i):

= 2n+1
sin(2n + 1)a = z (—1)-7( ) cos?™ ¥ gsin?tl g,
= 27 +1

If on the right-hand side we factor out sin®"*! a, we obtain

n
sin(2n + l)a = sin2"+1 o - Z(_l)f 27_‘ +1 cotzn—zj a
=0 27 +1

(supposing sina # 0). We will use this last formula for each a = ﬁi’

where k = 1,2,...,n. Since for each such a we have sin(2n + 1)a = 0 and
sina # 0, we conclude that all the numbers x; defined above are roots of
the algebraic equation

(2n 1+ 1):lcﬂ 2 (2n : 1)3:,,_1 + (2n 5+ 1)3:,.,_2 =1y (2n:: i) ~o.

The sum of the roots of this equation is, according to Vieta’s relations,

n B (2n+1) . n(2n_ 1)
D L R
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This proves equality (64). O

For the sake of interest we will now show how this result can easily be
used to derive the sum of the important infinite series

1 1 1 1 2
I+ z+mt+gttz+ =+
To achieve this, we begin with the fact that for each a, 0 < a < 3, we have
0<sina<a<tana.

{Justify this inequality geometrically by comparing the areas of three
shapes: an isosceles triangle with length 1 of the equal sides and angle
a between them, a circular sector with radius 1 and angle a, and a right-
angled triangle with sides 1 and tan « making the right angle). From these
inequalities we get

1
oot"‘a< — < 1+ cot?a.

If we add over all a = 2n+1 (k=1,2,...,n), we obtain with (64),

n2n—-1 f2n+1 )2 n(2n — 1)
=D . E( 1) <ns BT
From this, after multiplying by (5%)?, we reach the conclusion that for

the partial sums
1 1

1
Sn)=14 5 +32+---+;i§,

for each n € N we have the bounds

2
(l_ 2n1+1)(1-_ 2n+1)% <S(n) < (l_ 2n+1)(1+ 2n+1)%’
which confirms that S(n) — n2/6 for n — oo.

(v) Prove the identity

s s -

where (as in Section 6) the third root is considered to be a real function,
that is, a bijection on the set R.

SoLuTION. The equation 2% + z® + - + T+1 = 0 has the complex
units €,€2,. ..,£% as roots, where € = cos Z* + isin 2. These six complex
numbers, upon substituting y =z + £ 1 (a standard method of solution for
these so-called reciprocal equations), turn into the three real numbers

2m 4r T
y1=20037. y2=20057- 9'3=2COS7,
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which are solutions of the equation y® + 2 —~ 2y — 1 = 0. This last equ;tion
can be derived by first dividing the original equation of degree 6 by z* and
then using the expressions

1 2 1 2 g 1
= —=y2—2, — =433y
T+ y, =+ 7 =Y "+ — y
Hence we bave to verify the equality

S+ Yz + s = /5 - 3V7,

where y; are real roots of an equation whose coefficients we know. Let us
therefore formulate the following more general problem: Given the cubic
equation y® —ay?+ by —c = 0 with real roots 1, ¥z, y3 (in our case a = —1,

= —2, ¢ = 1), construct an equation 23 — Az2 4 Bz — C = 0 with real
roots ¥y, ¥z Jys- From Vieta's relations

n+y2+y3 =a, Y+ Y2+ s = A,
Vi + y2y3 + yay1 = b, Swnyz + Y23 + vz = B,
NY2ys = G, Ynyzys = C,

it is immediately clear that C = ¥c. Next we use the following identity
from Table 4.12:

(m+p+4q)* =m® +p° + ¢ + 3(m + p+ ¢)(mp + pg + gm) — 3mpq.

If we substitute the triple /g1, ¥z, /3, we obtain A* =a+3AB —3C,
and by substituting §nysz, YUy Jysur, we get B2 = b+ 3BCA —3C2
In the case of the coefficients o = —1, b = —2, ¢ = 1 we therefore conclude
that C = 1 and that A and B are the solutions of the pair of equations
A® = 3AB — 4 and B® = 3AB — 5. Multiplying these two equations we
obtain, for the new variable w = AB, the equation w® = (3w — 4)(3w —5),
or (w—3)*=—7 Hence w =3 — V/7, and so A* =3w—4=5— 37 and
B® = 3w—5=4—3V7. Since A = ¥ + ¥4z + /U3, the proof is now
complete. ]

7.5 FEzrercises
(i) Express tan6¢ in terms of tano for any o € R.
(ii) For each n € N prove the identity
2nw 1

Ccos

Y3 w 7i1
+ cos = ]
2n+1 Iyl T8 e =3

(iii) Show that for arbitrary n € N, o € R we have

(3) cosna + (7) cos(n — 2)a+ (3) cos(n —4)e + - --
+ (7) cos(n — 2n)a = 2™ - cos™ on.
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*(iv) For arbitrary n € N, a, 8 € R find the sums
= (5) cos B + (7) cos(B+a) + (3) cos(B+2a) + - - - + (}}) cos(B+na),
= () sin 8 + (3) sin(B+a) + (3) sin(B+2a) + - - - + (]) sin(B+na).
*(v) Let r,a,p € R, sina # 0 and n € N. Prove the identitites
sing + r - sin{p+a) + r2 - sin(p+2a) + - ™. sin(+na)
__sing —r-sin(fp —a) —r"*! sm(tp+(n+1)a) + 2 sm(ga+na)
1—2rcosa +r2
cos + r - cos(w+a) +r? - cos(p+2a) + - - - + r* cos(p+na)
__cosp —r-cos{ip — a) — r**1 cos( cp+(n+1)a) 4+ rnt2 cos(cp-}-na)
N 1—2rcosa +r?
*(vi) For each n € N verify the identity

tan? T 4 tan? 3" 4 tan? 0% 4o 4 tan? EP DT _ non 1)

4 an an an
(vii) Let us return to the polynomial identity

" 14z 24yl =(z—e)(z—¢€%) --(z— ™) (65)

(€ = cos(2m /n)+isin(27 /n)) from Example 7.4.(iii), where we have
substituted £ = 1. In the case of an odd n = 2m + 1 it is worth
also substituting £ = —1. Do this, and thus derive the identity (for

m € N)
o T 2n - 3 - mm _L (66)
m+l o 2mtl 2m+1 2m+1  2m°

Let us note that the corresponding formula for even n = 2m,

s 2n 3n (m. —1r  /m
B om P om P om 2m  2m-1

(m € N, m > 2), follows directly from (63} with the help of the
identities

k.  _ (m—-Kkx _ (m4k)n
c0§ — =Ssin—— =sin———
2m 2m 2m

used for k=1,2,...,m—1.

*(viii) Implement another method for deriving formulas (63) and (66),
namely one based on the multiple-angle formulas for sine obtained
in 7.4.(i): First determine
(a) the polynomial A,,(z) of degree m with zeros
Tk = sin® 3225 (1 <k < m),

(b) the polynorma.l B,n(y) of degree m with zeros

ye =sin” 222 (1 <k < m).

With the help of Vieta’s relations then obtain again formulas {63)
and (66).
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*(ix) Using an approach similar to 7.4.(v), prove the identity

\"/(:E+{/cos‘:l—w+a 8: J - (3V9—6).

(x) Prove the following equalities: cos £ = i , cos 22 = -‘—11'45.

7.6 Polynomials

Complex numbers can often also be used in problems involving polynomials
with real coefficients, for instance in testing for divisibility by way of the
criterion introduced in 3.15.(ii). We will illustrate this with the following

examples.

(i) Suppose that the integer n > 1 is divisible neither by 2 nor by 3. Show
that the polynomial

- Qe o2 2)

is divisible by G(z) = 23 + 222 + 2z + 1.

SOLUTION. Let us first find the roots of the polynomial G(z). We easily
convince oursetves that G(—1) = 0, and thus G(z) is divisible by z + 1. By
dividing we obtain

G(z) = (z+1)}(z®+xz+1),
where the zeros of 22 + = + 1 are (—1 +i1/3)/2. By 3.15.(ii) we are done if
we can show that F(z) has —1, (—1+i+/3)/2, and (—1 — iv/3)/2 as zeros.
By the binomial theorem, we have for each z € R, z # 0,

F(z)=2-[@+1)" 2" -1

from which by substituting we get F(—1) = —[0" — (—1)™ — 1] = 0, since
7 is odd. The values of the polynomial F(z) at the numbers (—1 + i+/3)/2
and (—1 —iv/3)/2 can be computed together:

—1+iV3 " 1 3\
P(5) -l (ee) - (5o8)
By de Moivre’s theorem we have
1, .v3Y (1, .v3)
(o2 (429

._(cos(:lzs)+zsm( 3)) ( (2;)+isin(:l:zg—))n

cos—:l:tsmﬂ—cos— tsin?-tl—ﬂ—
=8 3 3 T 3
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In view of the fact that n is divisible neither by 2 nor by 3, there exists a
k € N such that n = 6k + 1, and thus

sm%’f- =sin (2k1r:t %) =6in (:I:%)

. 2T . 27\ . 2nw

=sin (:h?) = sin (4k1r:t-§-) —sm—3 ’
nm T T 1
3= oS (2k1r + §) = CO8 (:I:E) = 3

2nr 2T 2T 1
cos 3 = cos (4k1r + —5—) = cos (:I:?) =—3

cos

By substituting these values we get

F —1+3v/3 =2cos% +isin 5 —cos% :hisin% —
2 —1+iV3

This completes the proof of the statement. (m}

(ii) Show that for arbitrary numbers n € N and a € R satisfying the
conditions n > 1 and sina # 0, the polynomial

P(z)="sina — zsinna + sin(n — 1)a
is divisible by the polynomial Q(z) = %2 — 2z cosa + 1.

SOLUTION. It is easy to convince ourselves that Q(z) has the zeros z3 3 =
cosa +isina. Thus,

P(z,,2) = (cosa isina)”sina — (cosa + isina) sinna + sin{n — 1)a.

If we use the expression (cosa + isina)” = cosna + isinna, we obtain
upon simplification

P(z1) = P(z3) = cosnasina — cosasinna 4-sin(n — 1)a.
the expression on the right vanishes thanks to the formula sin(n — 1)a =
cosasin na — cosnasina, which we can derive by applying de Moivre’s
theorem to both sides of the equality

(cosa +isina)® ! =(cosa 4+ isina)™ - (cosa +isina)™?

and then equating the imaginary parts. We have thus come to the con-
clusion that P(z;2) = 0. By 3.15.(i1) this means that Q(z) divides
P(z)- (m
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7.7 FEzercises

(i) Show that for arbitrary n € Np the polynomial (z + 1)?"+! + g2
is divisible by 2 + = + 1.
(ii) Show that the polynomial {zsina + cosa)" — zsinna — cosna is
divisible by 2 + 1 foranya € Randanyne N, n > 1.
(iii) Show that for any a, b, c,d € Ny the polynomial 4 +z4+1 4 zic+2 4
2443 g divisible by 2° 4+ 22+ + 1.
*(iv) Find all real numbers a € {—2,2) satisfying the following condition:
The polynomial %4 — ax?” + 1 is a multiple of the polynomial
24 —az” +1.

To conclude this section we deal with one more problem concerning a
polynomial with real coefficients, where again we apply complex numbers.

7.8 Ezample
Let x),x2,...,Z, be the zeros of the polynomial
"+ p2" 4 pp™ 2+ -t paaz P
with real coefficients p,, ps, ..., Pn- Show that
@i +1)-- @+ ) =(0-pr+pa—-- Y+ 1 —ps+ps—---)?
SOLUTION. By 3.14 we have
"+ e paiZ +Pn = (@ — )T —22) - (T — 22).

We substitute z = 4, z = —i into this and multiply the two expressions
thus obtained. Since (i — zx){(—i — zx) = 2% + 1, we have

(I +1) @+ D) =G +pi" 4+ pari+Pn)
X (=)™ +p(=)"" 4+ + pp1(—i) + pr).
Ifweseta=1—po+ps—---,b=p;1 —p3+ps—---, then
@ +1)--- (22 +1) = (Ta+ "B (—i)"a + (—i)" b)) = a® + b,

which was to be shown. (Furthermore, it follows that the identity holds also
in the case where the coefficients py, ..., p, are complex numbers.) 0

7.9 Exercises

(i) Suppose that the polynomial F(z) = 2™ +a,_12" ' +-- -+ a; 2+ 6o
has zeros z,Z2,-..,Zn. Show that

(FF+x1+1)- @5 +z2+1)--- (22 + 20 + 1)
=2 [(A- B +(4-C)+(B-0)?),
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with A=ay+a3+---,B=ay+a4+---,C=az+as+---,
where the sums are taken over indices not exceeding n, and where
we understand that a, = 1.

*(ii) Let x;,x9, 23, x4 be the roots of the polynomial
G(x)=z+pz® +qr¥ +rz+ 1.
Show that

(=} + )22 + D= + 1)(zd + 1) = (0 +72)% + ¢* — 4pg°r.






2

Algebraic Inequalities

Inequalities are essential tools in many areas of mathematics. Orderings
of numbers, which are obtained by way of inequalities, find applications
even outside of mathematics in various theoretical and practical fields.
Secondary-school curricula have therefore traditionally devoted a certain
amount of attention to linear and quadratic inequalities, and to inequalities
involving absolute values. Already less emphasis is given to the “calculus”
of operations with inequalities and to methods and approaches for deriv-
ing estimates for algebraic expressions, and for finding proofs. The present
chapter is devoted to exactly these questions.

The necessary basic results are summarized in Section 1. First we de-
scribe a way of introducing inequalities between real numbers, and then we
derive some basic rules of arithmetic with inequalities. Further theorems
and important results, connected with various methods, will be considered
throughout the appropriate sections. The proofs in two particular sections
(1.10 and 8.6) require a more exact concept of irrational numbers. Although
in the text itself we restrict ourselves to the case of rational numbers, the
reader can find in Section 9 the necessary supplementary remarks on the
general case.

In the solutions to some examples, the letters L and R denote the left,
resp. the right, sides of the inequalities under consideration.
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1 Definitions and Properties

Already in early childhood, when our first ideas of the numbers 1,2,3,...
are formed, we know about “bigger” and “smaller”; this obviously occurs
before we learn how to add or subtract these first numbers. Later we become
aware of the fact that the difference a—b makes sense only when “a is greater
than b.” We overcome this limitation by enlarging the collection of the
original (positive) numbers 1,2, 3, ... by new numbers, namely zero and the
negative numbers —1,—2, —3,... (as numbers “opposite” to the positive
numbers). Now we generalize this process: We construct the required theory
of inequalities on the basis of dividing the integers into positive and negative
numbers. In the following paragraphs we express the known properties of
positive and negative numbers by way of the “rules of sign.”

1.1 Positive and Negative Numbers

Definition. Every real number z # 0 is either positive or negative. The
set R of all real numbers is therefore divided into three parts: the set R* of
all positive numbers, the set R~ of all negative numbers, and the singleton
{0}. How is this subdivision preserved under arithmetic operations? We
give only those rules that will be required later:

(i) aceR*ADERT — (a+D) € RT,
(i) acR*Abe Rt — abeR*,
(iii) a e R~ < (—a) € R,

(iv) ae R*AbER™ — abeR,
(v) se Rt < 1Rt

A real number z ¢ R~ is called nonnegative; the set of all nonnegative
numbers is denoted by R¢, so that RY = R+ U{0}. We will often require a
generalization of (i) to the case of & sum of several numbers from R. We
therefore list this as an additional rule:

(vi) If a3, ay,...,a, are nonnegative numbers, then s = a; +a2+---+a,
is also nonnegative; furthermore, s =0 if and only ifa; = a2 =--- =
a, =0.
It is easy to derive (vi) from (i): The value of the sum s does not change if
we leave out all summands a; that are equal to zero.

1.2 Introducing Numerical Inequalities

Definition. We say that the number a is greater (resp. less) than the
number b (written a > b, resp. a < b) if and only if @ — b is positive (resp.
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negative):

a>b < (a—-b) R, )
a<b < (a—b)eR".

Since the numbers (a — b) and (b — a) are mutually “opposite,” it follows
from 1.1.(iii) that a > b is the same as b < a. From the decomposition
R = Rt U {0} UR™ we immediately ohtain the trichotomy law: For an
arbitrary pair of numhers a, b € R, one and only one of the relations a > b,
a = b, @ < b is true. In the case that @ > b (resp. a < b) does not hold,
we write @ < b (resp. @ > b). Inequalities with < and > (resp. < and >)
are called strict (resp. weak). Thus, the wedk inequality a > b means that
(a—b) eRY.

If we represent the real numbers in the usual way by points on the num-
ber line oriented from left to right, then the inequality a > b acquires
geometrical meaning: the image of the numher a lies to the right of the
image of the number . Thus, for example, we have —1 > —2, even though
one sometimes inaccurately says “—2 is a larger negative number than —1."
It is better to avoid this last expression.

Finally, we note that according to (1) with & = 0 a numbher is positive
(resp. negative) if and only if it is greater (resp. less) than zero. Thus the
notations z € R*, y € R}, and z € R~ for real z, , z also stand for > 0,
y>0,and 2 < 0.

Now we use definition (1) and the rules 1.1.(i)—(vi) to derive all the basic
properties of inequalities between numbers.

1.8 Transitivity

Theorem. Ifa > b and b > ¢, then a > ¢. More generally: If a; > ao,
G2 2 @3,...,Gn_1 2> Gn, then a1 2 an, where a1 = a, if and only if
=82 —=---=—0Qyn-
ProoF. Ifa>bandb > ¢, that is, (a—b) € Rt and (b— ¢) € R*, then
by 1.1.(i) we have (a — b) + (b — c) € R, that is, a > ¢. The more general
statement follows from 1.1.{vi) and the equality a; —a, = (a1 —a2)+(a2—
ag) + -+ + (Gn-1 — @n). m
We remark that we can write the pair of inequalities a > b, b > ¢ more
concisely as a > b > ¢; similarly, we often write the system of inequalities
e) > ay, @3 > G3,...,0n1 2 Gp 8S the chain @; > a3 > --- > a,. However,
the notation z < gy > z is not customary.

1.4 Adding a Number
Theorem. Ifa > b, thena+c¢ > b+c for each c.
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PrOOF. Ifa > b, then (a+c) — (b+c) = (e — b) € RY, that is, ﬂ+CE
b+c

We note that upon replacing the number ¢ by —c we obtain the rule of
“subtracting a number”: If ¢ > b, then @ — ¢ > b — ¢ for any c.

1.5 Adding Inegualities
Theorem. Ifa > b and ¢ > d, then a + ¢ > b+ d. More generally: If
ay ?. bl: az ?.bZ:---:ﬂ'n ?. bm then

ar+az+---+on b +bo+---+bn, (2)
where we have equality in (2) if and only if ay =by,a2 = ba,...,a, = b,.

Proor. Ha > band ¢ > d, then by 1.4 we have a + ¢ > b+ ¢ and
b+ ¢ > b+ d, which by 1.3 gives a + ¢ > b+ d. The more general assertion
follows from 1.1.(vi) and the equation

(a1 +az+---+a.)— (b +b2+---+bn)
= (a3 — by) + (a2 — b2) +--- + (@, — bn). |

1.6 Multiplying by a Number
Theorem. Ifa > b, thenac > be for any ¢ > 0, and ac < be for any c < 0.

ProOF. If a > b, then (@ — b) € R*. By 1.1.(ii) we have (a — b)c € Rt
whenever ¢ € R*, and by 1.1.(iv) we have (@ —b)c € R~ whenever c€ R™.
Since (a —b)c = ac—be, in the first case we get ac > be, while in the second
case it is ac < be. a

We note that upon replacing the number ¢ by 1/¢ we obtain, in view of
1.1.(v), the rule of “dividing by a number”: If a > b, then a/c > b/c for
c> 0, and afec < b/c for ¢ < 0.

1.7 Subtracting Inequalities

Theorem. Ifa>bandc>d, thena—d > b—c. More generally: Ifa > b
and ¢ > d, thena — d > b— ¢, where equality a — d = b — ¢ occurs if and
onlyifa=bandc=d.

ProoOF. By 1.6 the inequality ¢ > d holds if and only if —¢ < —d. Hence
1.7 follows from 1.5 for the peir of inequalities a > b and —d > —c. D



1 Definitions and Properties 93

1.8 Multiplying Inequalities

Theorem. Ifa > b > 0 andc>d > 0, then ac > bd. More genernally: If
a) zbl >Oaa22b2>0:---:an_>.bn>0; then

@103 -8 = bybs--- by, (3)
with eguality if and only if a; = b,,62 = be,...,a, = b,.

PrOOF. From a; > by > 0 and a3 > b > 0 it folows by 1.6 that
a1az > byas and byas > bybe. Hence 1.3 implies aja; > bybs. Since byjba > 0
by 1.1.(ii), we can repeat this argument for the case n > 3. Thus we obtain
ai103a3 > b1babs, etc., and finally (3), where the last step is the chain of
inequalities

(102 ---Gn_1Gy > 6102 - Gp_1bp 2> biba---by. (4)

If equality occurs in (3), then by (4) we have ai102---@6p—16n, =
a;63 - - - @1 b,. This implies @, = b, (since a;a2---a,—1 # 0) and by
(4), a1a2---an_y = biby---bn_1. Repeating this argument, we ohtain
Gn-1 = by—1, etc., and finally ay = b;. O

1.9 Dividing Inequalities

Theorem. Ifa >b>0andc>d > 0, then § > %. More generally: If
a>b>0andc>d >0, then § > 'E’, where equality occurs if and only if
a=>0 and ¢ = d. In particular, fora =b =1 we get that ifc > d > 0, then
151
d c

PrOOF. Since cd > 0, by 1.6 we have e/d > b/c if and only if ac > bd.
Hence 1.9 follows from 1.8. (m

1.10 Ezponentiating

Theorem. Ifa > b > 0, thena™ > b™ and /a > Vb for each integer
m > 2. More generally: If a > b > 0, then a” > b" for each r > 0, and

a’' <b for eackr <0.

PrOOF. Let a > b > 0. Using 1.8 with m identical inequalities a > b,
we obtain a™ > ™. Let us assume that T/a < 7/b; then by the above,
(wa)y™ < (¥b)™, that is, a < b, which is a contradiction. If r > 0 and
r € Q (the case r € R* \ Q will be discussed in Section 9), then r = m/n
(m,n € N), and by the above we obtain a™ > b™; hence Ya™ > Yb™, that
is, a” > b". If finally r < 0, then by the above we have a™" > b~ (since
—r > 0), which by 1.9 means that 1/a™" < 1/b7", that is, a” < ¥". ]
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1.11 Ezponentiating Inequalities
Theorem. Ifa>band 0 <c <1 <d, then & < ¢ and d° > d°-

PrROOF. Let 0 < ¢ <1 < dand r=a—b> 0. Then by 1.10 we have
& < 1" < d, that is, % < 1 and d*% > 1. If we multiply the last two
inequalities by ¢, resp. d°, then by 1.6 we obtain ¢® < ?and d® > d®. O

To conclude this section, the properties we have thus far obtained are
summarized in the following table.

a>bAb>ec=>a>c
a>b=>a+e>b+cAha—c>b—-c

a>bAnec>d =>a+c>b4+d

e b
a>b/\c>0=>ac>bc/\z >E

a b
a>bl\c<0=>ac<bcl\; <E

a>bhe>d —=>a—-d>b—c¢

a>b>0/\c>d>0=>ac>bd/\§>g
a>b>0 ==-l<1
a b

a>b>0Ar>0=a" >¥
a>b>0Ar<0 = a <V
a>bA0<c<]l = P <’

a>bAad>1 = d*>d°

2 Basic Methods

We will now show how the basic rules obtained in Section 1 can be used to
solve some easy problems involving inequalities.

2.1 Fguivalent Transformations

We begin by considering five problems that will be solved as follows: The
inequality that is to be proved will be transformed in a succession of steps
until we reach an inequality that is obviously true. In doing so it is im-
portant to make sure that each step is equivalent, that is, the validity or
failure of the inequality is not changed by the operation. According to Sec-
tion 1, such operations include, for example, adding the same expression
to both sides of the inequality, multiplying the inequality by a positive ex-
pression, or raising an inequality between positive terms to the rth power
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(r > 0). Also, we must not forget algebraic transformations of both sides
of an inequality. As a “template” for a proof we often choose the opposite
direction: We transform the final, “obvious,” inequality in a succession of
steps until we arrive at the original inequality that was to be proved.

(i) Let us show that ¥/8I < VO'. Since both numbers are positive, by
1.10 it suffices to show that (V/8!)72 < (¥/91)72, that is, (8!)° < (9)®. Since
9! = 9-81, we can transform this inequality to (81)° < 98.(8!)® Upon division
by (8!)° (using 1.6) we obtain 8! < 98 This last inequality holds by 1.8,
since it is the product of the eight inequalities 1 < 9,2 < 9,...,8 < 9.

(it) Let us decide which one of the three numbers
z={(a+b}(c+d), y=(e+o)b+d), z=(a+d)(b+c)

is largest, under the assumption that a < b < ¢ < d. We evaluate the
difference y — 2:

y—z = (ab+ cb + ad + ¢d) — (ac + be + ad + bd)
=d(c—b) —alc—b) =(d—a)(c—b) >0,
since both numbers {(d — a) and (c— b} are positive. Hence y > z. Similarly,
we convince ourselves that z > y. Therefore, z is the largest of the numbers.

(iii) We now show that for each ¢ > 1 we have the inequality

-\-}_;<\/a+l—\/a——1. (5)

Sincea+1 >a—1>0, hy 1.10 we have va + 1 > v/a — 1. Both sides of
(5) are therefore positive; hence by 1.10 we can compare their squares:

% < (Va+1-+vae-1)>
After multiplying out and simplifying we get
2a — % > 2m .
Both sides are again positive (22 > 2 > 1 > 1/a); by squaring we obtain
4a® — 4+ % > 4(a?2 - 1),

and after subtracting the expression 4(a? — 1) we get the correct inequality
1/a® > 0.

(iv) Let the numbers a, b, 7, s € Rt satisfy ¢ > b and 7 > 5. We will prove
the inequality

(a® +8°)(e" —¥") > (" +¥")(e" - ¥°).
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Multiplying out both sides and subtracting {(a**" —b°*"), we obtain a"b* —
ath” > a*b" — a"b®, that is, 2a7b* > 22°)", and after dividing by 2a°b" we
finally get a"~2 > b 4. But this holds by 1.10, sincea > band r — 58 > 0.

(v) We will show that for arbitrary a,b,r, s € R* we have
a4 57 > o™’ +a"t"
if a # b. The difference of the left and the right sides is
L—R=a"(a*—b°)—¥b(a® — b°) =(a" —b")(a" — }*).

What can we say about the signs of the two numbers A = @' — b" and
B = a® — v*? By 1.10 we know that if a > b (resp. a < b), then both A
and B are positive (resp. negative). Therefore, in the case a # b we always
have L— R >0, thatis, L > R.

We remark that similar “discussions” of the values of parameters are
often used in proofs of inequalities (see also 2.3.(iv) below).

2.2 FEzxercises

(i) Generalize the result of 2.1.(i).
(ii) Which of the numbers 2790 and 53% is larger?
(iii) Which number is larger:

101997 4 1 101998 4 1
10199 11 7 701998 11

Prove the inequalities (iv)—(viii):

(iv) \/l_:>a+;a_:i (0<a<vb<a+1)
™) %>2(\/_a+_1—\/6) (@a>0).

(vi) c+a > c+b
vVZta? T JE+ B2
(vii) Va4 Vb7 > Javb+ Yadb  (a,beRH).
(viii) ()2 < kY(2n—k)!  (n,keN,n>k).

(0<b<a, Vab<e).

2.8 Irreversible Transformations

We will now deal with problems in which the course of solution from an
original “obvious” inequality to the desired inequality cannot be reversed.
Thus, for example, the inequality L > R can be proved by finding decom-
positions L=Ly + Lz +---+ L, and R=R; + Ra +--- + R, such that
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Ly > Ry for each k =1,2,...,n. (This may be a tough nut to crack even
in the case n = 2). A similar approach is provided by the multiplication
law 1.8. Let us now consider the following eight problems.

(i) Prove the inequality
a+b a b
1+a+b< 1+a+ 1+b

SOLUTION. The fraction on the left has the largest denominator. We can
therefore write
a+b a b a b O

=l+a+b=1+a+b+1+a+b<1+a+1+b=R'

(a,be RY).

(ii) Let c be the hypotenuse of a right triangle, and a, b the other two sides.
Show that for every integer k > 2 we have a* + b* < c*.

SOLUTION. By the Pythagorean theorem we have ¢? = a? + b%. Multiply-
ing by c*~2, we obtain & = a?c*? + b¥%c* 2. Since a < cand k > 2, by
1.10 we have a*—2 < c*~2; hence a* = a?a*—? < a*c*—2. Similarly, we get
b* < b%*~2, and by adding these two inequalities,

a* +b* <a®cF 2 4 B2 =k (8]

(iii) Let a > b > 0 and n € N. Determine which of the numbers

_ 14a+a*+---+a” and B — 1+b4+b%4+--- 40"
" 14a+a3+---+an! T 14b4 b2 4.4 b1

is larger.
SOLUTION. We rewrite both numbers according to the identity
1+z+z2%4-.-4 2" . z"
l14z4+234---4+z71 " 14z4224.-. 4z

=14 !
=+ L

From a > b > 0 it follows by 1.10 that a~* < b~*(1 < k < n). By adding
we get

1 1 + 1 > 1 + 1 + + 1
a + a? + a® b b pn’
which leads to the conclusion that A > B. O

(iv) Show that z8 4+ 2>z + 2z forallz € R

SoLuTION. The given inequality is an equality for £ = 1; hence the poly-
nomial L— R is a multiple of (xz—1) (see Chapter 1, Section 3). By dividing
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we find that (z° 4 2) — (z* + 2z) = (z — 1)Q(z), where Q(z) = o+ -2
Therefore, it remains to show that Q(z) > 0 for z > 1 and Q(z) < O for
z < 1. Since Q(1) = 0, one could repeat the division of the polynomial
by (z — 1); however, in view of the form of Q(z), the following discussion
suggests itself:

2>1=12>1Az'>1=Q(z)>1+1-2=0,
“l<z<l=2<1Az <1 =Q(r) <1+1-2=0,
2<-1=2'>0A1+z2<0=Qz)=r'(1+z)—-2< -2
This completes the proof. ]

We remark that the search for linear factors of a polynomial is a basic
method for solving problems involving polynomial inequalities. We will use
this approach also for solving the following problem.

(v) Let a,b,c € RY be such that ¢ > a + b. Show that
a® + b3 + & + 3abe > 2(a + b)%e.

SoLuTiON. With the notation F{c) = L—R = ¢*+3abc—2(a+b)%c+a3+b®
we will show that F(z) > 0 for all z > a + b. Since

F(a+b) = (a+b)° +3ab(a +b) —2(a+ b} + a® + b3 =0,
the polynomial F(z) is divisible by (z — a — b); by dividing we obtain
F(z) = (z — a — b)[z? + (a + b)x — a® + ab — b?].

Hence it suffices to show that the term in square brackets is positive for
= > a + b. But this is easy: For such x and positive a,b we have

4+ (a+b)z—~a’+ab—b° > (a+ b’ +(a+b)%—a+ab— b
=az+5ab+bz>0 D

(vi) Show that for each n € N and each a € Rt, a # 1, we have the
inequality

n(@®t 1) >a+a%+-- - +a™. (6)

SOLUTION. Since both sides of (6) are sums of 2n numbers (on the left
we have n-times the number a?"*! and n-times the number 1), we first
check whether (6) is a sum of 2n valid inequalities. For @ > 1 we have
the chain a?"*! > ¢® > a2*1 > ... > a2 > a > 1 (for positive a < 1
the chain goes in the opposite direction); this, however, does not imply
(6)- Therefore, we try another possibility, namely the sum of n inequalities
a1 4 1 > Ry (1 < k < n), where Ry, Rs,...,R, are appropriate sums



2 Basic Methods 99

of two terms each from the right-hand side R of the inequality (6), with
R = Ry + Rz + --- + R,. Obviously, it is best to combine “symmetric”
terms: the smallest with the largest, etc., that is, to set Ry = a* +a2"t1-k
for k=1,2,...,n. This attempt is successful, since

6?1 11— Ry = a®*H 11— (a* 4+ a2 k)
= (a®*~*+1 _1)(a*-1) > 0. 0
(vii) Show that if 0 < a < 1, then (1 +a)'™°- (1 —a)*2 < 1.
SOLUTION. If we set b= (1 —a)/(1 + a), then
(1+a)'° - (1 — a)'+* = (1 + a)(1 — a)b® = (1 — a?)b° < b2,

since0 < 1—a%? < 1if0 <a < 1. Next, since 0 < b < 1, 1.11 implies
b* < 1. 0

(viii) Show that for arbitrary numbers @, b,c € Rt we have
(aa . bb . cc)2 > ab-l-c . peta. ca+b_

SOLUTION. First we note that for any a,b € Rt we have a“ - b* > a®. b°.
Indeed, this inequality can be written in the equivalent form a®—% > 25,
now it suffices to distinguish between the cases a > b,a=b,a < b and to
use rule 1.10. By multiplying the three valid inequalities

a®->al-b%, -2 a®-cc>at-F,

we then obtain the desired inequality. 0

2.4 FEzxercises

Prove the inequalities (i)—(iii):

: 1 1 1 3 .
(l) G+b+b+c+c+a>a+b+c (a,b,CER ).

s (1+a)+b) 1+a+b .
() —— T < (a,b € RY).

(iv) Show that if the numbers @, b, ¢ are the side lengths of some trian-
gle, then the same is true for the triples 1/a, vb, /c and (a +b)!,
b+, (c+a)t.

Prove the inequalities (v)—(ix):
(v) 22 —z8+2?—2+1>0 (z€R)
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(vi) 1+a+a®>+---+a" S ntl
at+a®+ad+---+am!' T -1
*vi) (m+3) (mt §)-o- (mt 852 > /@ meN).

*(viii) a®+b%+c®+3abc > ab(a+b)+be(b+c)+ac{a+c) (a,b,c € RY).

(ix) A+na)**'>1+(n+1)a® (aeRY, neN).
(Hint: Use the identity

(aeR*, neN, n2>2).

14+ (n+1)a l+ne 1422 1l+e
1+mna 1+(n—1)a 1+4+a 1’

1+(n+1)a=

and change the product of the n + 1 terms on the right to a power
of the smallest one of these terms.)

(x) Which one of the numbers 31'! and 174 is larger?
*(xi) Which one of the numbers 22 and 32" is larger?

(xii) Using a similar trick as in example 2.3.(iii), show that the equation

1 2

It —q " —a " Y —---—@y_1T—0, =0

with nonnegative coefficients a; cannot have two distinct positive
roots.

(xiii) Use the method of Example 2.3.(v) to show that if ¢, b, c € Rt and
c < a+b, then

a® + b% + & + 3abe > 2(a + b)c2.
*(xiv) Let a,b,¢c,d € RY. Show that of the three inequalities
at+b<c+d, (a+b)(c+d)<ab+cd, (a+b)ed <ab(e+d),

at least one is false.
*(xv) Let A,B,C,a,b,c € Rt and s > a + b+ c. Show that the numbers

A+ B+ta+bd B4+C+b+c A+C+Ha+c
A+B4s ® B+C+s '’ A+C+s

are the side lengths of some triangle. (Hint: Use the fact that if
0<z<y,then z/y < (z+ p)/(y + p) for any p > 0.)

*(xvi) For fixed positive numbers a,,a,,...,a, set
Ar)=aj+ai+---+a;, (reR).

Show that if r < 8 <t < u and r +u = s+ ¢, then A(r)A(u) >
A(s)A(t), with the exceptional case ay = a3 =--. = q,,.
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2.5 The Estimation Method

In mathematics it is often required to estimate the value of some “com-
plicated” expression . This can be done, for example, by replacing it
with a simpler expression (with an error as small as possible). The num-
bers or, more generally, the expressions L and U satisfying the inequality
L < Q < U are called the lower and upper bound of the expression Q;
the lower bound L; is caelled sharper than the bound Lif L < L; < Q.
Similarly, we define a sharper upper bound. The following seven examples
will illustrate some simple approaches to obtaining bounds (especially of
finite sums).

(i) Let us find bounds for the expression

R—_9% b b 4 d
" a+b+d a+b+c b+ec+d atc+d

{(a,b.c.d e RY).

It is clear that 0 < R < 4; by numerical experimentation we are unable to
find concrete values a, b, ¢, d such that R <1 or R > 2. In fact, such values
do not exist, for we derive the bounds R > 1 and R < 2:

R> a + i + i + £ =
a+bte+d  a+btetd a+bte+d atbtetd

a._*_l:b_'_c_*_d_2
a+d a+b c+d c+d

1,

R<

By approprate choices of numbers a, b, ¢, d one can show that there are no
sharper bounds (see [7], p. 165).

(ii) The easiest approach to obtaining bounds for the sum a; + a2+ --- +
a, is as follows: We find the smaliest and the largest among the values
G1,0G32,...,0y,; these, multiplied by n, are then bounds for the given sum.
Thus, for the sum

1,1 1
I+ 5+ 4+t g (n>1)

we obtain S(n) > n-(1/y/n) = /n and S(n) < n-1 = n. Sharper bounds
for S(n) will be obtained in 2.5.(iv) and 2.6.(iv) below.

S(n) =

(iii) The method of the previous example can sometimes be improved by
first subdividing the terms a; of the sum a; +a3 + -+ + a, into smaller
groups (for instance pairs); then we find bounds for the sums of these
groupings, and finally we add these bounds. We use this method to prove

the inequality

1 1 1

n+1+n+2+n+3+”

1 3
RETRYY
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For n > 1 we pair the summands as follows:

1+1+1+1+1+1)+_"_
n+l 2n-1 n+2 2n-—2 n+3 2n—3

To avoid having to distinguish between even and odd 7, we multiply the
original inequality by two and write it in the form

1 3 1
- ——. 7
(n+k 2n — k)< n (7)

For1 <k <n—1 we have

1 1 3n 3n 3

== < = —
¥k 2n—k 22+k(n—k) 2240 2n

Hence the sum on the left-hand side of (7) is less than

(_1)_ 3n—3 3n—2
2n 2n

_3_1
T2 n’

(iv) If we sum the inequalities

1
—=<vVk+1-Vvk—1 2<k<n
VE ‘ ’
(see 2.1.(iii)), we obtain a new upper bound for the sum S(n) in 2.5.(ii)

that is considerably sharper: S(n) < vn+ 1 + /n — V2. It follows from
2.6.(iv) below that the error of this estimate for n = 10 is less than 1.

(v) We show that for arbitrary n,k € N we have

CENN UL P E— .-
(n+1)!  (n+2) Mm+k) —nin! (n+k)]
Indeed, if 1 < § < k, then

n <n+j—1_ 1 _ 1
4+~ m+5)  (m+ij-1) m+i)

Adding these estimates and dividing by n, we obtain (8).

(vi) A number of estimates for finite sums can be derived from results of
Chapter 1, Section 2. Thus, for example, we obtain the bound
1 1 1 1 7 1
T == S
(n) TR +32+ -+ — 3 <3 - (n>2)

as follows: We keep the first two terms in 7(n) without change and estimate
the remaining summands using the inequality 1/k2 < 1/(k*>—k),3< k <m;
finally, we apply the result of Exercise 2.40.(i) in Chapter 1 for k = 2.
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(vii) Finally we mention an example of an estimate for a finite product.
For the expression

A=33%6 ""m =2
we will prove the bounds
1 1

Since § < 2 and more generally (2k — 1)/2k < 2k/(2k +1) for each k > 1,
we have

1 35 2n-1 _2 4 2n 1

=326 "2n <35 T+l @nrDQM)

This implies (2n+1){Q(n)]? < 1, which gives the right-hand side of (9). If we
use the inequalities § > 2 and more generally (2k—1)/2k > (2k—2)/(2k—1)
for each k > 2, we get

2n-2 1
4 6 2n 2n—-1 2nQ(n)’

hence 4n{Q(n)}? > 1, which is the left-hand part of (9).

N
35

2.6 FEzxercises
Prove the inequalities (i)—(iii) for integers n > 2:

() m—1)V2<V2+VB+---+ /< (n— 1V

(ii) (n")2 > n".

i n? 1 L n*-1 1 n—1 1

(lll) 2 E>EE and ZE<2E.
k=n+1 k=2 k=n k=1

(iv) Using the result of 2.2.(v), find a lower bound for the sum S(n)
in Example 2.5.(ii). Then determine the integer N for which the
estimate N < S(10%) < N 41 holds.

(v) With the help of the estimate in 2.5.(vi) prove, for each integer
n > 2, the inequality
1 1 1 1 3 1

25 3.7 29 Y aGn+n <8 2

(vi) Using the result of Exercise 2.40.(v) in Chapter 1, prove the following
estimate for each integer n > 2:

1 1 1 1 1

B e e L T —
wtm?t T3 <3 2(n? 4 n)
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(vii) Using the result of Exercise 2.40.(vi) in Chapter 1, prove the
following estimate for each integer n > 2:

1 1 1 1 (_l__ n—1
2-3+3-5+4-7+ +n(2n—1) 2 2(4nZ2-1)

(viii) Show that for each integer n > 1 we have the bounds

1-3 3-5 5-7 (2n —-1)(2n+1)
n(2'n.+l)$l+2+3+ + n

(ix) For each integer n > 1, prove the inequality

< 2n(n+1).

3 71 Ilm—-l< , 3
5 9 13 4n+1 4n +3

(x) Let p € N. Show that for the expression Q(n) from 2.5.(vii) we have

o@)\/g < Q) S QW ZEL foreachn2p.

2.7 Symmetry and Homogeneity
We will now mention two important properties of inequalities, which will
be used in the following sections.

The first two of the inequalities

b
a+b+c> abe, E+Z+§>l' a+2b+c>E

b b

are (as opposed to the third one) symmetric in the variables @, b, ¢, that
is, they do not change if the order of the triple a, b, ¢ is changed. (Note
that the third inequality is symmetric in the variables a, ¢.) Symmetries in
the variables 3,9, .. ., Z, are sometimes used as follows: We may assume
that the variables x;, x9, . . . , z, are appropriately ordered, for instance z; >
Zg > --- 2 Tqn. Such an assumption can considerably shorten the arguments
in the course of a proof. We illustrate this by the example of the inequality

(a + b_l_c)lOO < 3100 (alot) +b100 _I_clOO) , (10)

which, as we will see, holds for arbitrary a,b,c € RY. If a > b > ¢, then
a+b+c<a+a+a=3a, and thus

(a_l_b_'_c)loo < (30)100 < 3100 (aloo _I_blOO +clOO) .

This completes the proof. It may be interesting to note that, excepting the
case a = b = ¢, a variant of (10), still with a strict inequality, holds even
when the number 3'% on the right is replaced by 3% (see 7.8.(v) below).



2 Basic Methods 105

We explain the term homogeneous inequality by way of the example
1 1 1 .
P+ > (— + <+ —) a3b3cs.
a b ¢

We find out how both sides of this inequality change if we replace a, b, ¢
by ta, tb, tc for an arbitrary t € Rt:

L' = (ta)® + (tb)“ + (2c)® = ¢8L,
R = ( + = tb + ) (ta)3(th)3(tc)®* = t°R.

This leads to an equivalent transformation: Both sides change by a factor
of t8, thus L > R holds if and only if L’ > R’. In general, the inequality
Q(z1,%T2, - --,Zn) 2 0is called homogeneous (in the variables 1,22, . - ., Tn)
if it is equivalent to Q(tz,,tz,...,tz,) = 0 for each t € RY, especially if

Q(tzy,txa, . .., tTy) = ' Q(z1,%2,-- -, Zn)

for some r € R. (The inequality L > R can be written as Q = L —
R > 0.) Through the choice of the number ¢ € Rt we can appropriately
“normalize” the variables 3, z3,...,%Z, in a homogeneous inequality such
that, for example, we get z,, = 1 (and thus reduce the number of unknowns
by 1), or 3+ 22+ - -+z,, = 1, etc. As an illustration we prove the following
assertion: If 0 < r < s, then for arbitrary numbers a,b € Rt we have

(a® + 6°)V° < (o + b)Vr. (11)

This inequality is homogeneous in the variables a, b; through ap appropriate
choice of t € Rt (the reader should determine this value) we may assume
that " + & = 1. Then a” < 1, which by 1.11 gives a* = (a")*/" < a", since
8/r > 1. Similarly, we have b* < b", and thus a®* + b* < a" +b" = 1, that
is, (a® + b*)1/® < 1, which is (11) under the assumption that a” + 5" = 1.
This completes the proof.

A similar homogenization approach leads to the so-called Jensen

: alzty 1/a 1/r
(E a;) < L a;) (0<r <)
k=1 =1

for positive numbers a;,az,-..,a, (n = 2). From this we derive the fol-
lowing interesting property: If n > 2 and p,a;,a2,...,6, € RY, p # 1,
then

(0.1+(12+"'+an)p>a’1,+a’2’+'"+a£, ifp>1, (12)
respectively
(a1 +az+---+a, )P <af+ab+:---+ak, fO<p<l (13)

In closing we remark that symmetric and homogeneous inequelities will
be very prominent throughout this chapter.
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2.8 FEzercises

For arbitrary numbers a, b, ¢ € R* prove the symmetric inequalities

(i) a(a—b)(a—c)+ bb—c)(b—a)+ c(c—a)(c—b) >0,
(i) (a—bd)(a+b—c)+(e—c)(a+c—b)+(b—-c)%(b+c—a)>0.

Show that the inequality (ii} can be transformed into
a* + b + & +abe(a + b+ ¢) > 2(a?b® + a%c? + b¥c?)

by multiplication by a4 b+ ¢ and further equivalent transformations.
It is very difficult to prove this last interesting inequality “directly”
(that is, without recognizing the above connection); the authors know
of no other approach than the use of (ii).

(iii) Prove the homogeneous inequality

3

a+b (a — b)%(a + 3b)(b + 3a)
2 Vab > 8(a + b)(a? + 6ab + b?) (a,b € RY),

which provides a nonnegative lower bound for the difference between
the arithmetic and the geometric means of the positive numbers a
and b. (Hint: Setting b = 1 and a = t2, where t > 0, you get a
polynomial inequality that can be proved by way of factorization.)

The Use of Algebraic Formulas

We now add formulas for A — B™ and (A + B)®, which we derived in
Chapter 1, to our collection of tools for proving inequalities. For the entire
section we assume that n,k € N.

3.1 The Decomposition of A™ — B®

In the following three examples we illustrate the use of the formula

A"—B"=(A-B)(A" '+ A" 2B+ A" 3B% ... 4 AB"2 4 B*Y)

for

(14)

algebraic transformations of expressions that occur in the given

inequalities.
(i) Show that if a,b € R*, 2 # b, then a®+! + b+ > (1 4 1)ab”.

SOLUTION. By (14) we get

L—R=a(a" —b") —nb*(a—b)
= a(a _ b)(a, -1 +an—2b+ e +abn—2 +bn—-l) _ -nb"(a—b)
=(a—b)(a" 4+ a" b +--- + 2" 2 4 ab"! — np").
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Upon adding a*t"* > b™ (if a > b), resp. a*b"* < b" (if a < b), for
k=1,2,...,n we obtain in both cases L — R > 0, that is, L > R. o

(ii) Suppose the numbers a, b, c € Rt have the following property: For each
n > 1 there exists a triangle 7;, with sides a”, b”, and c”. Show that all
triangles T,, are equilateral.

SOLUTION. Let a > b > ¢ > 0. The triangle inequality for 7;, means that
" > a™ — b”, that is,

> (a—b)a" ' +a" 2b+--- +ab" 2 4 1),

The last term in parentheses is at least nc® !, sincea > cand b > ¢
implies a®~17kpF > ni-kck — n-1 0 < k < n — 1. We thus obtain
" > (a—bnc*~1, that is, ¢ > (a — b)n. Since this last inequality holds for
all n > 1 and furthermore we have a > b, it follows that ¢ = b. (In the case
a > b we would obtain a contradiction when n > °T"’.) O

(iii) Show that if @ > b > 0, then

n+la> artl_pntl 411

n a” — b n o (15)

SOLUTION. By the identity (14) we have

antl — pntl _ (a — b)(an +a 4 $abn) +b"’)
a"—b"  (a—b)(a"l+a" 2+ +abr 24 b))
_ a+a bt ab™ B
T anl 4y av2b4--- - ab—2 + pn-1

We note that if we multiply the denominator D of the last term by the
number a (resp. b), we get the first (resp. last) n terms of its numerator.

Thus,
aﬂ-]-l _ b'n+1 b a™
e et p Tttt

where
D=a""14a"2p4... pab™ 2 4.

Since the “outer” expressions in (15) are a+-a/n, resp. b+b/n, it suffices to
show that a/n > b™/D and b/n < a®/D, that is, aD > nb™ and bD < na™.
But this is easy: a > b implies

aD=a"+a" b4 +a%" 2 4 ab" 1> P+ -+ D" =nb",

and similarly we obtain bD < na™. O
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3.2 Ezxercises
Prove the assertions (i)—(iv):
1-a® 1-—qa"!
n+1
(i) a>0>0Ac>0An>22 = Ya"+c— Yb"+c<a—b.
1 2 3

al—a1” a?—qa—2 g e
*(iv) > V2A b> V2 = a% —adb+a?? —ab® + b* > o® + b2

(v) Suppose that a,b € R* satisfy a® + 8 = a — b. Show that

(i) 0<a<liAnz21l =

(iti) a>1 = > .-

a?+ b <1
*(vi) Show that for arbitrary a,b,c € RY,
a3 + b3 + Vet >a+b+c
a2+abt+b?  B+bctc? Etecata® ™ 3

3.8 Estimates for A" — B"
The proofs of a number of inequalities rely on the estimates
n(A— B)B" ! < A" — B" < n{(A— B)A™ !, (16)
(A> B >0, n > 2), which are easy to obtain from formula (14): Just as
in 3.1.(i) it is clear that
nB" ' < A"+ AV 2B+ ---+ ABV 2+ B <A™ L
We give three examples.

(i) Show that if 0 <a < 1, then n+ (1 + @)™ < na + 2" for n > 2.

SoLuTION. If1 < 1+a < 2, then by the left part of (16) with A = 2 and
B =1+ a we have

2"~ (1+a)" >n(1—a)(1+a)" ' >n(l—a) 1",

and after an easy simplification we get the statement. O

(ii) Show that the sums Sk(n) (studied in Chapter 1, Section 2) satisfy the
lower bound

1
s . lk 2k k . | ]
k(ﬂ) +2" + +n" > Er1 n

SOLUTION. By the right part of (16) with A= j, B=j—1,and n = k+1
we have for each j > 1 the inequality j*+! —(j—1)*+! < (k+1)7*. Summing
over j = 1,2,...,n we obtain
nktl — (1k+l _ 0k+1) + (2k+1 . 1k+l) ROt [nk+1 _ (n _ 1)k+1]
<(k+1)1*+2* +---+ "),
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from which upon division by k + 1 we obtain the desired bound. 0

(iii) Prove the so-called Bernoulli inequality
(1+z)" 214 nz (z>-1,n>2), (17)
with equality if and only if z = 0.

SoLuTioN. If z > 0, then (17) follows from the left inequality of (16)
with A=1+4+z and B=1.If -1 < z < 0, then (17) follows from the right
part of (16) with A =1 and B = 1 + z. In both cases the inequality (17)
is strict, and for z = 0 we get equality in (17). 0

3.4 Ezercises
Show that the inequalities (i)—(iii) hold for n > 2:

(i) 2(a + 1)™ 4+ n2" > (na 4+ 2)27 (a>1).
(i) n+(1+0a)” <na?4+2¢ (0<a<l).
(i) 1 -a)"+(2n—-1)a"2na™! (0<a<l)
(iv) The arithmetic means A,, Ag,..., Ay of the real numbers a; are
defined as follows:

a1 +az+---+an

A, = ”

(1<n<N).

Show that if 0 < a@; < a3 < --- <ap, then foreachn=2,3,...,N
we have the inequality (A,)" > @n(An—1)""1, unless @) = a3 =
.-+ = @y. (Hint: Use (16) with A=A, and B=A,_,.)

Using (17), show that for each k > 2 the numbers cx = (1 + £)* satisfy (v)
and (vi):

(v) x> 2.

. Ck+1 1
(vi) 1< e <1+k2+2k'
(Further properties of the numbers ¢; will be derived in 3.8.(iv).)
(vii) Using (17), show that for a,b € Rt and n > 2 we have

"+ (n—1)b>na- Von1, (18)

(Hint: Set £ = ab" — 1 in (17) for an appropriate r.} When is (18)
strict?

Remark. The inequality (18) follows easily from the so-called AM-
GM inequality, which will be proved later, in Section 8. Indeed, we
can apply the inequality (84) to the n-tuple a”,b,b, ..., b.
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(viii) Show that *(vi) follows from (18) with a = 1 and appropriate b, n.

*(ix) Let the largest one of the nonnegative numbers d,,dz,...,dr be
equal to D. Show that for each n > 2 we have

n
di‘+d£‘1----+d}: < (d1 +d’2‘£"‘+dk) +an-D",

where a,, = (n — )nT==.

8.5 Estimates Using Geometric Series
From the formula {(14) with A =1 and B = g it follows that

m=1_qm+l 1

< 19
¢ <1 g (19)

1+g+¢*+---+4q

for each positive ¢ < 1 and each m = 1,2,3,... (the number TEE is the

sum of the infinite geometric series 1 + ¢ + g2 + - - - ). The inequality (19)
can be used to obtain an upper bound for the sum a; +az + -+- + ax in
the case that we can find numbers b, > a; such that b,;1 < gb; for each j,
where 0 < g < 1. Using this approach, we will prove the bound

1 1 1 n+2 1

EtD T mr T T mr e Sntl @yt &

Indeed, from the inequelity (n+j)! > (n+2)!(rn+2)7~2 for j > 3 and from
(19) with ¢ =1/(n + 2) it follows that

1 1 1
D T mr T Ty R
<-——[1+ Dt e, S
forn | T T mrop mt 21
N 1 . 1 =n+2. 1
(n+1) 1-215 n+l1 (n+1)F

The reader should verify that (20) is sharper than the bound

LI SIS S
n+1)! " (n+2) (n+k) n-n’

which is the result of Example 2.5.(v).

3.6 FEzercises

Prove the inequalities (i)—(iii), where @), as,...,a, € R*:
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@ Lt o, 1 <n2+6‘n+9. 1
n+2)! ° (n+4) (n+2k) " n24+6n+8 (n+2)!

1 1-3 1-3-5 1-3-5----- (2n - 1)

W sTitgatsat -t 3! e

*(ii)) (01 +a2+---+a (V2 —1) < Y25 +2%a5 +--- +27ak.

3.7 Using the Expansion of (A + B)®

The binomiel expansion

(A+B"=A"+ (’:) AB 4 ('2') AB? 4y (n i I)AB““' +B"
(21)

can be used in the proofs of various inequalities that contain powers of
integer degree n > 2. If we leave out several summands on the right-hand
side of (21), we obtain a lower bound for the power (A + B)", for positive
A, B. Thus, for instance, we get

(A+B)"> A"+B" (A,BeR*',n>?2) (22)

(compare with (12)). We give three examples.

(i) Suppose that the numbers z,y, z € R satisfy zyz > 0and x+y+2 > 0.
Show that the inequality " + ™ + 2™ > 0 holds for all n > 2.

SOLUTION. Since zyz > 0, either all three numbers x, y, z are positive
(then the assertion is obvious), or one is positive and the remaining two are
negative. For example, let x = a, ¥y = —b and z = —¢, where a,b,c € R*.
From 2 +y+2 =a—b—c¢ > 0 it follows that a > b+ ¢, which by
(22) implies a” > (b + ¢)™ > " + ¢"; for odd n this can be written as
" 4y"+ 2" = a" — b — " > 0. For even n the inequality 2"+ 4y +2" > 0
is obvious. 0O

(ii) Show that (1 + na)"*! > [1 + (n + 1)a]” for all a € RY.

SOLUTION. We use (21) to expand both sides of the inequality, and then
we compare the coefficients of equal powers a* (0 < k < n) on both sides.
It suffices to show that

("' : l)n" > (:) (n+1)*

holds for such k. (On the left side of the original inequallty we have the
additional positive term n"t1g"+1) It is easy to verify by substituting
that this inequlity holds for £ = 0,1; for k > 1 it can be rewritten as
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(n+1)* —n* < k(n+1)*1, But this is true by the right side of (16), and
the proof is complete.

Another possible approach is based on the direct use of the right part of
(16) with A=1+4+(n+1)a, B=1+na:

[1+ (n+1)a" — (1 + na)" <nall 4 (n+ )g"?
=1+(n+1a" -1+ a)[1 + (n+ l)a]"_l,

which implies (14 na)” > (1 +a)[1+ (n + 1)a]* L. If we multiply this last
inequality by 1 + na, we get

(L+na)" > 14+ (m+1a+nd®|1 + (n+1)q" ! > [1 + (n + 1)a]”.

We note that the original inequality was derived earlier, in Exercise 2.4.(ix),
with a somewhat artificial trick. Also, it is worth mentioning two conse-
quences: With a = 1/(n? + n) we obtain the left part of 3.4.(vi), and with
a =1 we get

2>V3>Va>--->Yn+1>---. D

(iii) Show that for each n > 3 we have (2n +1)" > (2n)" + (2n — 1)".
SoLUTION. Using (21), we expand the powers (2n 4+ 1)” and (2n — 1)™:
(2n+1)" — (2n—21)"

- g (:) (2n)"* — go (:) (—1)*@n)~*

=2 [(’1‘) 2n)y* 1 4+ (g) (2n)"3 + (g) (2n)" 5 4 .. ]

> 2(';‘) (2n)"! = (2n)" O

3.8 Ezercises
Prove the assertions (i)-(iii):
(i) If the positive numbers a, b, c satisfy a* + b* = ¢ for some n > 2,
then a, b, c are the side lengths of some triangle.
(i) f0<a<1land n >3, then (1+a)"* +2a"! > 1+a" (2" + a).

(iii) If 2n > a > 0, then (a— 1) +a* < (a+ 1)™; if (1 + 1/5)11 < a, then
the opposite inequality holds. (This covers the result of 3.7.(iii).)
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(iv) Given the numbers ¢; = (1+ £)*, k > 2, derive the expression

Ck=—'2+%(1_%)+%(1—%)(1_%)-*““ (23)
A0 D55

Show that (23) again implies the inequality ¢4 > cx (see 3.4.(vi))
and prove the bound

ck<2+l+l'+---+l<3 foreach k> 2. (24)

2! "3 k!

The smallest constant e with the property ¢, < e for all k € N is
called the base of the natural logarithm. This irrational number with
the approximate value e = 2.71828 is one of the most important
mathematical constants.

4 The Method of Squares

The inequality 2 > 0 (z € R, = # 0) stands out among all other inequal-
ities because of its simplicity and, at the same time, its wide applicability
in many parts of mathematics. This inequality provides us with another
method of proof of the inequality L > R: We try to find expressions
Ql! Q?s RS | Q.N' such that

L-R=Q1+Q3+---+Q},

or
L—-R=50Q%+5Q3+ -+ SnQ%,

where S;, S2,...,S§ are nonnegative expressions. In 4.1 we describe
approaches for finding such expressions; they are mainly based on
transforming “incomplete” squares X2+ 2XY using the formula

X242XY =(X+Y)-Y?

which is called completing the square. Consequences of the basic inequality
(25) in 4.1 are of such importance that we devote the separate sections 4.3,

4.5, and 4.7 to them.

4.1 Ezamples

We now give ten examples of the use of the method of squares.
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(i) The inequality

X24+Y?2>2XY (X,.YER, X#£Y) (25)
follows easily from (X — Y)? > 0. Let us ask a more general question:
Which numbers p € R have the property that the inequality z2 + 3 > pzy
(which we denote by L > R) holds for all numbers z,y € R? The trinomial

L — R contains the binomial zZ —pzy, which we complete as a square. Thus
we get

L—-R=:cz+y2—pzy=(.'c——-—) += (4 P2y (26)

Choosing = = py/2, y # 0, we obtain the necessary condition 4 — p? > 0,
which, in view of (26), is also sufficient. Solving the inequality 4 — p? > 0,
we obtain the answer: 2 < p < 2.

(ii) Let us now prove the inequality

b 1 1
had —+ = R*H).
b2+a2_a+b (a,beR")

Upon multiplying by a2b® we obtain a3 + b® > ab(a + b); dividing by e + b
we get a? — ab+ b2 > ab, and after subtracting ab, finally (e — b)2 > 0.

(iii) Determine the integers n > 2 for which the inequality
o +a3+---+ai>(a+az+--+8a1)en

holds for arbitrary ay,@s,...,e, € R}. Completing squares, we obtain

L-R= (al——) + ﬂa——) +-- +(a,,_1—— (1—-”;1)0?,.

The inequality therefore holds when 1 — (n — 1)/4 > 0, that is, n < 5; for
n > 6 the inequality is generaliy not true: It suffices to consider the n-tuple
a;j=1(1<j<n-—1)and a, =2

(iv) We prove that for each 2,y € R we have the inequality

z? — 2zy + 6y% — 12z + 2y + 41 > 0.
The terms containing z will be completed as squares:
g —2zy —12z=(z —y — 6)> — (¥ + 6)>
We thus obtain

L=(z—-y—6+5%°—10y+5=(z—y~6)?+5@y—1)>>0.
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(v) We prove that whenever p > g > 0, the following inequalities hold for
allz e R:

pteg z*-2z+p’ _ p—q

P—q z2+2z+p® " p+q
The trinomial in the denominator satisfies

z* + 29z + p* = (z + ¢)* + (* — ¢°) > 0.

If we multiply each of the inequalities by the (positive) product of both
relevant denominators, we obtain after simplification the two inequalities
2q(x + p)? > 0 and 2¢(x — p)% > 0.

(vi) We prove the following assertion: If z3 4+ 3 = 2 for some z,y € R,
thenz+y <2 Wenotethat forc=y=1wehave 2z’ +3P =z +y=2
we will not find other such pairs z,y. In such a situation it is convenient
toset x =14y, y =1+ v, and to derive u + v < 0 from the assumption
(1 4+ %) 4+ (1 4+ v)® = 2. Indeed, the equation

2=(1+u)P+(14+v)°*=2+3u+v)+ 3> +1?) +4° +°

implles

(u+v)(? —ww+v2+3) = -3 +%) <0.
From this we easily obtain «+v < 0, since by the result of part (i} we have
w2 —uww+v2>0,and thus v® —uwv +v* 4+ 3> 0.

(vii) To prove the inequality a® + 3a2 — 132 + 10 > 0 (a € R*), we try
to write its left-hand side in the form L = a(a + p)® + b(a + ¢)* + ¢ with
appropriate constants b, c € Rl and p, ¢ € R. By comparing the coefficients
of equal powers @’ we obtain the conditions 2p + b = 3, p? + 2bg = —13,
and bg? 4+ ¢ = 10. It is not difficult to find some solution of this system of
three equations: We choose an arbitrary p and then successively compute
b, g, ¢. But we require solutions with the property b,c € RJ! The first
equation implies p = (3 — b)/2 < % Let us try such integers p: While the
values p = 1, p = 0 do not work (we get ¢ = —39 resp. ¢ = —4.08), we are
successful with p = —1: We get ¢ = —;— >0(b=5and g= ——5":). Thus we
obtain

7\? 1
— i —1)2 . .
L=ca(a—1) +5( 5) +5>0.

(viii) The inequality
X24Y?4+22>XY+YZ+ZX (XY,Z€R) (27)

has numerous applications in proofs of other inequalities. It can be obtained
by rewriting the inequality (X — Y)24+(Y —2Z2)2+(Z - X)? > 0. Thus, for
example, we verify

B+ > zyz(z +y+2) (28)
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for arbitrary z,y,z € R as follows: Using (27) with X =22, Y = %, and
Z = 22, we obtain 2% + 3% + 2% > 222 + 222 + 2222, using (27) again, this
time with X =2y, Y = yz, and Z = zx, we get
222 + 222 + y%2? >z’ +yPx + 2y = ay2(z + y + 2)-
Now (28) follows from these two consequences of (27).
The reader should verify that the inequality
ab
a+b+c££‘£+2+—— (a,b,c e RY)

a b c

also follows from (27), with

X=‘f9—c,}’=1/29—, and Z=‘/Q.
a b c

(ix) We show that if z +y + z > 0, then z°® + 3® + 2% > 3zyz. For this
purpose we use the elementary symmetric polynomials 03 = £ + y + z,
o2 = zy + T2 + Y2, and o3 = zyz (see Chapter 1, Section 4). Since

z + 3 + 23 — 3zyz = (0F — 30102 + 303) — 303 = 01(0F — 302)
and g3 > 0, it suffices to show that 0% — 302 > 0, that is, 0 — 202 > 02.
But this is just (27), since 22 + y° + 2% = 07 — 203.
(x) Let us find the smallest possible value of the expression

eb bc ea
=_+_+_1
c a b

if the positive numbers a, b, ¢ satisfy the condition a® + b* + 2 = 1. First
we determine the square of V:

a?? bV  2a? (ab bc ab ca b ca)
= +2(—= =+ —=-— 4= —
c b a b

2
L4 c::2+a?+b2 c

- a?h? V2 c2a?
o2 + a2 + b2
a2 B2 2a?
T B a? B b2
Since (27) implies

ab\? fbc\%? sca\2_ab bc ab ca bc ca
(5) +(3) +(F) 22 5+2 5+ 5.2
+2=1

we obtain the bound V2 > 3, that is, V > /3. Equality V = /3 occurs in
the case a = b = ¢ = /3/3; hence we have found /3 as the smallest value
of V.

+2(a® + b + ¢°)

+ 2.
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4.2 Ezercises
Prove (i)-(>ocviil) for arbitrary a,b,c € R* and z,y,z €R:
(i) 2zyz < 22 4 222
(i) (22 - *) > dzy(z — )
(iii) =%+ o* > 23y + 8.
b

(iv) %+‘—/_;2\/6+\/5.

z? 1
) 1+z4 55'
(Vi) 22(1+94) + (1 + 2% < 1+ 21 + 34).
(vii) 2%+ 432 + 322 414 > 2z + 12y + 62.
(viii) 22+ 22 + 22y +y+1>0.
(ix) 2+ z2(1 + ¢2) > 2z(1 + ).
(x) 2 +y* +22+1>2z(z? -~z 4z +1).
*(xi) Va2 + 5 >a+b—(2— v2)Vab.
(xii) 222 + 432 + 22 > 47y + 2z=.
(xiii) 2(z*+ %) — 122y +10 > 0.
(xiv) 2(¥a+ Vb+ ) <3+ a+ Vb + e
(xv) a(1 4+ b) + b(1 + c) + ¢(1 + a) > 6/abc.
(xvi) 2(a®+ %) + a +b > 2(ab + avb + by/a)-
(xvii) a* + 2a3b + 2ab> + b* > 6a2b%:
(xviil) 42?2 + (z +z+ )z +z— )z —z+y)(z —z—y) 2 0.
(xix) z4—z2 -3z +4>0.
(>xx) a® +a® —8a%2 +4a+4>0.
(i) z7:—+1,12+.222.'i:y—:r:zz+21‘u=:.
(xxii) a + b+ ¢ > 2(v/ac + Ve — Vab).
*(xxiii) £ 482+ >ab+bctac, ifabc=1 and o> 36.
(xiv) (1 +z+ )% 2 3(z+ v+ zy).
(xxv) ab+ bc+ ca > /3abc(a + b+ c).
B84+ 1,1
o) a2 gty
(xvil) zy+yz+az > —3, 22 +y? +22=1.
*(xxviii) 4z(z+¥)(z +2)(z+y+2)+y%2% > 0.
(xxix) Assuming that p,q.7,Z,y, z € R satisfy pz — 2gy + rz = 0 and
pr — ¢2 > 0, prove the inequality zz — y? <0.

(xxx) Show that the polynomial F(z) = z* + az® + bz? + ez + d has
no real zeros, where a,b,c,d € R, d > 0, and ¢ + a2d < 4bd.

1
+=.
c
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*(xxxi) Show that for arbitrary positive numbers a, b,c we have
aP*2 4 bPV2 4 P2 > oPbc + PPac+ Pab (P ERY)-
This is a generalization of (27), which we obtain by setting p = 0.
*(xxxii) For arbitrary a,b,c € R* decide which of the two numbers
1 1 1 a b ¢
A=3+(@+b+c)+ (E+—+E)+ (—+E+a),

b b
_ 3a+ )G +1)(c+1)

B abc+1

is larger.
*(xxxiii) Find the largest p € R such that the inequality
2+ + 2 + zyz(z + y + 2) 2 plzy + 22 + y2)°

holds for all z, ¢, z € R.

*(xxoxiv) For each p € {1,%,%}, determine the n > 2 for which the
inequality

:L‘?+Ig+"'+3: > p(z1%2 + T223 + - + Tn—1%n)

holds for all z;,%2,...,%Tn € R.

4.8 A Lower Bound for A+ B
Using (25) with X = v/A and Y = VB, we cobtain

A+B>2V/AB (A,BeR}), (29)
with equality only when A = B. We use this lower bound for the sum A+ B

to solve the following seven problems.

(i) Show that for any e,b,c € R* the inequality ab + § > 2\/ac holds.

SOLUTION. The result follows from (29) with A=aeband B=¢/b. O

(ii) Show that if a,b € R, then ab(12 — 2a — 5b) < 2a + 5b.

SoLuTION. We note that the term 2a 4+ 5b occurs on both sides of the
inequality; we therefore rewrite it as 12ab < (2a + 5b)(1 + ab). Using (29),
both terms on the right of this last inequality can be estimated from below
with the help of vab: (2a 4 5b) > 2v/10ab and 1 + ab > 2v/ab. Multiply-
ing these together, we obtaln (2a + 5b)(1 + ab) > 41/10ab > 12ab, since
V10 > 3. u]
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(iii) Show that if a,b,c,d € R}, thena+b+c+d > 4- Vabed.

SOLUTION. Since by ‘52‘9) we have ¢ + b > 2vab and ¢+ d > 2ved, it
suffices to show that vab + ved > 2 - Vabed . But this is just (29) with
A= v/ab and B = \/cd. D

(iv) Under the assumption that the numbers a;,az, b1, b2, c1,c2 € RF sat-
isfy alclzz b? and azcy > b3, prove the inequality (@1 + a2){e1 +c2) >
(by + b2)=.

SOLUTION. We rewrite the desired inequality as
(a1c1 — b%) + ((1203 — bg) + (G1C2 + asc) — 2b1b2) > 0.

Thus it remains to show that a;cz + aze1 — 2b,b2 > 0, and indeed, by (29)
with A = a)¢2 and B = asc; we have

a1c3 + azc1 =2 2v/a1caaac; = 24/azc; - Jaxcy > 2hy b,. D

(v) Show that ifa,b € Rt and ab< 1, then (1 + 1)(1+ }) > 4.
SOLUTION. By (29) we have 1+ 1 > 72-5 and 1+ ¢ > 72;, and thus

1 1 2 2 4
it —_ 1> e =—> i 5 a
(1+a)(1+b)_\/6 75 \/a_b_tl, since ab <1
{vi) Show that if a,b,c € Rt, then (a + b)(b + c)(a + ¢) > 8abc.

SOLUTION. By (29) we have a+b > 2v/ab, b+c > 2v/bc, and a+¢ > 2//ac;
multiplying these three inequalities together, we obtain

(a + b)(d + c)(a + ¢) > 8Va2b2c? = 8abe. D

(vii) Suppose that the real numbers z),Zz2,...,Zn satisfy the condition
Z1Zz---Zx > 1 for each index k = 1, 2,...,n. Prove the inequality

1 2 n
+---+
14z A +z)(+22) A+z00+2z2) -0 +zy)

SoLuTION. Obviously, zx > 0 for each k =1, 2,.. ., n. Hence by (29) with
A =1 and B = zx we have 1+ zx > 2,/Zi, and thus

k k k
< < —
(1L+=z1)(1 +3.'2)---(1 +xx) — 2k VEi1Za---Zy 2k
for each k = 1,2,...,n. Therefore, the left-hand side of (30) does not exceed

1 2 n n+2
2tEt T @m =20

(see Chapter 1, Example 2.37). 0

< 2. (30)

<2
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4.4 Exzercises
Show that the inequalities (i)—(viii) hold for all a,b,¢,d € R*:

® a%+3>2.

(ii) 6a + (c + 2)(2c+ 3)b > 6(c + 2)Vab.
(iii) a*+a®b—4a%b +ab+b* > 0.
(iv) (e +1){(b+1)(a +c)(b+ c) > 16abe.
™) Verhet+d) +V@+ob+d) +/aT DB+ > 6- Vabed.
o 1 1 8
™M Gt ZGrherd

(vii) (va+vB):2 2\/2(0 + b)Vab.

(viii) 2(e+ b)2 + (a + b) > 4(avb + b /a).
*(ix) Show that for arbitrary a,,a2,...,a, € Rt we have

n n—-1 n 1 n—-1 n 1 2
(2 Z Z a_‘.a';Z‘l §j§10i+a,— )

i=1 j=i+1

4.5 Upper Bound for A- B
Rewriting (29), we obtain

A+ B\?
2

AB< ( (A,B €R}), (31)

with equality occurring only if A = B. Using the bound (31), we now solve
the following five problems.

(i) Show that ifa,be R* anda+b=1, then (1 + 1)(1+ }) > 9.

SoLuTION. By (31) with a + b =1 we get ab < 1. Hence

1+l 1+l =1+ﬂ1_=1+321+%=9_ 0
a b ab ab B

(ii) Let by, bs, - . - , b, be an arbitrary ordering of the numbers a;, a3, . .. ,an,
with0 <ax <1 for k=1,2,...,n. Show that at least one of the numbers

ﬂl(l - bl), 02(1 e b.’Z); SO0 an(l a bn)

does not exceed }.
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SOLUTION. Suppose to the contrary that ax(1 — bx) > % for all indices
k=1,2,...,n Then

G)" < ar(1 = b)az(l — Ba) ---an(l — b)
= Gl(l - 01)02(1 - 02) “s- an(l _ aﬂ)’

which means that ax(1 — ax) > § for some k = 1,2,...,n. But thisis a
contradiction, since by (31) we have a(1—a) < % whenever0<a<1l. O

(iii) Show that if 0 < b < a, then a + 1/(ab— b?) > 3.

SOLUTION. By (31) with A = a — b and B = b we have the inequality
(a—b)b < a?/4, which implies a+1/{ab—b?) > a+4/a®. Therefore, it suffices
to show that a+4/a? > 3. But this is easy to rewrite as (e+1}{(a—2)? > 0.
Furthermore, we see that the original inequality becomes an equality only
ifa—b=banda—2=0, thatis,a=2and b=1. O

(iv) Show that if a > 0, then 4,/a(,/a — 2)(1 + 2\/a) < (a +1)2.

SoLuTioN. It suffices to examine the case /a > 2. From (31) with A =
va(v/a—2)=a —2,/a and B =1+ 2,/a we get

a— a a 2 2
ﬁ(ﬁ-z)(1+2@s( 2‘F2’1+2‘/—) ~atl)

which gives the desired inequality. It is left to the reader to show that
equality occurs only in the case a =9+ 4v/5. O

(v) Show that for arbitrary a, b, ¢, d € Rt we have

a b c d
>2.
b+c+c+d+d+a+a+b_
SoLUTION. On the left-hand side of this inequality we add the first and
the third terms, and the second and the fourth terms. Then, using (31), we
estimate the common denominators (b + ¢)(d + a) and (c+d)(e + b) from

above by 2(a+b+c+d)*%

2+Etad+be B +d+ab+ed
L= +
(b+c)(d+a) {(c+d)(a+b)
4a®+ 02+ A +d?+ad+bc+ab+cd)
>
= (a +b+c+d)?
(a+b+c+d)?+(a—c)+(b—dy?
(a+bd+c+d)p?

=2-

>2. =
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4.6 FEzercises
Prove the inequalities (i)—(v) for arbitrary a,b,c,d € R*:
(i) (1+a+b)%2>(1+2a)(1+2b).

b—a? 1
ii if 1.
(if) vb< a+2a+1 4(2a +1)’ ea<vb<a+t
(iii) 2\/a3+b3+15a(a+1)+b(b+1),ifab=1.
be ca a+b+c
< .
(w) b+c ct+a ™ 2
*(v) a.+b+c+d \/abc+abd+acd+bcd
— 4 -

*(vi) For each integer n > 2 find the largest number p, € R such that
for all n-tuples z1,72,...,Tn € Rg’ we have

n n n
2
(E :rk) (E zmcu) >Pn Y TaTey1, Where Zpy =21
k=1 k=1 k=1

*(vii) Let n > 4, and suppose that the sum of the nonnegative real
numbers a;,a3z, ... ,an is equal to 1. Prove the inequality

1
8162 4+ G203 + - + Gn—1Gn + @nG1 < 1

Remark. The results of 2.2.(iv) and 4.6.(ii) present bounds for the value
of Vb if we know an interval of length 1 in which this value lies. Thus the
fact that v/2 lies between 1 and 2 implies § < v2 < 12

4.7 Lower Bound for A+ A™!
If we set B = 1/A in (29), we get the inequality

A+%22 (A €RY), (32)

with equality only if A = 1. This inequality is useful for solving a number of
problems; from among them we will choose four examples. We remark that
as a rule it is necessary to divide the desired inequality by an appropriate
expression before (32) can be used.

(i) Show that for arbitrary a,b,c € Rt we have
ab(a + b) + be(b + c) + ac{a + ¢} > 6abe.
SoLuTiON. After dividing by abc we rewrite the inequality as

(5+)+ Gr+(ri)=e
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which is the sum of the three inequalities obtained when (32) is applied to
A=4¢,2, and %. m]

(ii) Show that for arbitrary a,b,¢,d € R* we have
(@® +a+1)(* +b+1)(* + c+1)(d? + d + 1) > Blabed.

SOLUTION. After dividing by abcd we rewrite the inequality as

(a+1+l b+1+1)(c+1+l d+1+1)>8.
a b c d

By (32), none of the four expressions in parentheses is less than 3; their
product is therefore at least 3% = 81. O

(iii) Prove the inequality v/a(a + 1) + a(a — 4) + 1 > 0 for each a € Rt.

SoLuTiON. After dividing by a we rewrite the inequality as

1 1
il >4
(\/E+ \/E)+(“+a) >4
By (32), none of the expressions in parentheses on the left is less
than 2. O

(iv) Show that for arbitrary a,b,c € Rt we have

a + b H c >§
b+c c+ae a+b™ 2

SOLUTION. If we set u = b+c¢, v = ¢+ a, and w = a + b, we obtain
a=(v+w—-u)/2 b= (v+w—v)/2, ¢ = (v+v—w)/2. Upon simplification
we obtain

et tan e GGG D) -9
and it suffices to note that by (32) each of the three terms in parentheses
is at least 2. O

4.8 Egzercises
Show that for a, b, ¢,d € Rt the following inequalities hold:

a?+3

(i) VaZ +2

> 2.
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2
(i) 2:¢T++11 > 1.
(ifi) (ab-+ cd) (i + %) >4
(iv) 4ab(3 —a) — da(1 +b%) < b.
(v) @ +b+Va+ Vab(avb - 4va) > 0.

5 The Discriminant and Cauchy’s Inequality

Let us consider the quadratic polynomial
F(z)=az?+bz+c (a,b,ceR, a#0). (33)

Completing the square (see the introduction to Section 4), we obtain the
identity

b\? D
F(z)=a (:t:+ %) — o where D = b? — dac. (34)
The number D is called the discriminant of the polynomial F(z). The
expression (34) implies not only the known formula for the roots =y o of
the equation F(x) = 0, but also the following result.

5.1 Values of a Quadratic Polynomial

Theorem. Let F(z) be the polynomial (88) with positive leading coeffi-
cient a and discriminant D as in (54). Put g0 = 5—;’. Then

(i) F(z) > F(xp) for any x € R, x # o,
(ii) F(z) >0 forallz € R if and only if D <0,
(iii) i D = 0, then F(z) > 0 for all z € R; in this case F(z) = 0 if and
only if T = =z,
(iv) if D > 0, the equation F(x) = 0 has two different roots, say Ty > T3;
tn this case F(x) > 0 when £ < x2 or £ > x3, and F(x) < 0 when
T <IT < Ty

(The reader should think about how (i)—(iv) change in the case a < 0.)
ProoF. If a > 0, then by (34) we have

F(z) > —% (z €R),

where equality occurs only for £ = zo. This implies the assertions (i)-
(iii); the roots x;,z in part (iv) are given by the well-known guadratic
formula, and the last assertion about the sign of F(z) follows easily from
the factorization F(x) = a(x — z1)(x — =2) (see 3.14 in Chapter 1). O
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3.2 Ezamples

In the following seven examples we will practice the use of the properties
of the discriminant stated and proved in 5.1.

(i) Show that the positive numbers a, b, c are side lengths of some triangle
if and only if they satisfy the inequality

(a® + 5% + c®)? > 2(a* + b1 + ). (35)
SOLUTION. The above inequality is equivalent to

a® —2(0* + cA)a® + (b* - ?)? <.

The equation z2—2(b%2+c*)z+ (b2 —c2)? = 0 has the two roots z; = (b+c)?
and z2 = (b — ¢)2. By 5.1.(iv), the inequality (35) holds if and only if
(b—c)? < a? < (b+¢)?, that is, if and only if |b— ¢| < a < b+ ¢, which is
the known criterion for side lengths of a triangle. O

(ii) Let z,,72,...,%, be given real numbers. Determine the z € R for
which the sum S = (z — ;) + (2 — 22)2 + - - - + (x — z,,)? is minimal.

SOLUTION. We rewrite § = nz?+bz+¢, where b= —2(z +z2+- - - +3p).
Then by part (i) of Theorem 5.1, S attains its smallest value for

b mi+z2+4---+1z5 O

T=—

2n n

iii) Let z,y, z € R. Show that the smallest of the numbers (z—)2, (y—2)2,
and (z — z)? is greater than or equal to (22 + 32 + 22)/2.

SOLUTION. In view of the symmetry we may assume without loss of gen-
erality that s < y < z,andwessta=y—xz 2 0,b=2—y > 0. Then
22 + 92 + 22 = (y — a)®2 + ¥ + (y + b)>. By 5.2.(ii) this sum is (for fixed
values of a, b) smallest when y = (a + 0 — b)/3 = (a — b)/3. Hence

2P+ (5 -a) +(5R) + (55 +D)" o +abis?
2 = 2 3
Clearly, (a2 + ab + b%)/3 > (2 + & + 2)/3 = 2, where c is the smallest

of the two numbers a, b. Therefore, (2 + ¢ + 22)/2 > ¢2, where ¢2 is the
smallest of the two numbers (y — z)? and (z — y)2. O

(iv) Suppose that the numbers a,b,¢ € R* satisfy a +b + ¢ = abe and
a2 = be. Show that a > /3.

SoLUTION. By Vieta’s relations (Chapter 1, Section 3) the numbers b and
¢ are roots of the quadratic equation

22— (a®—a)z+a? =0,
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since be = a2 and b+c = abc—a = a-a2—a = a® —a. It therefore has aznon-
negative discriminant: D = (a®*—a)?—44? > 0. Since D = 2(g2—3)(a?+1),
we obtain a? > 3, which implies the desired inequality a > v/3. D

(v) Suppose that z, is the smallest and z,, the largest among the 7 real
numbers 1, %z, . . . ,Zn. Show that if ; +x2 + --- + 2z, =0, then the sum
3 + 72 + - -~ + 2 + nz1 7, is not positive.

SOLUTION. The polynomial f(x) = 2 — (21 +Zn)x + T12x has 71 and =,
as its zeros. Hence Theorem 5.1 implies that if ; < z < zn, then 0 > f(z).
Adding the inequalities 0 > f(x;) for 7 =1,2,...,n, we obtain (in view of
the condition z; + 2 +--- + Zn = 0)

n n n n
0= Ef(-":j) = Z:"? — (z1+ zp) ziﬂj + nryz, = Zn:? + nz1x,. O
=1

i=1 =1 =1

(vi) The evaluation of the discriminant replaces several artificial tricks
that were necessary for solving problems by way of the method of squares
in Section 4. We illustrate this with the following example. Adding the
inequalities a 4 b + ¢ > vab + vac + Ve, b+ ¢ > 2vbe, 2(a + b) > 4Vab,
and 3(a+c) > 6+/ac (see (27) and (29)) we obtain for arbitrary a, b,c € R*,

6a + 4b + 5¢ > 5vab + 7+/ac + 3vbe. (36)

“Discovering” this proof of (36) is certainly not easy; the reader should
try to prove this inequality with the method of completing the square.
However, the inequality (36) is quadratic in the variables x = \/a, y = Vb,
and z = /c; with the help of the discriminant we will show that

6x2 + 4y + 52° > 5zy + Txz + 3yz (37)
for arbitrary z,y, z € R, that is,
6x2 — (Sy + Tz)x + 4y° + 522 — 3yz > 0.

(Note. The authors know that this will work. However, sometimes such a
generalization can be misleading: It could happen that the inequality (37)
holds only for x,y,z € R, since x = /a, etc. Then the discriminant of
the last polynomial could be positive.) It therefore suffices to show that
the discriminant D = (5y + 7z)? — 24(4y? + 5z2 — 3yz) is not positive for
any y, z € R. By an easy calculation we find that D = —71(y — z)2. This
completes the proof of (37), and therefore also of (36).

(vii) In contrast to the previous example we now deal with a situation
where the use of the discriminant is simply unsuitable. We show that the
equation

F(z) = (@ — o)z — ) + 2z — b)(z — d) = 0, (38)
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where a < b < ¢ < d, has two distinct real roots. The following approach
suggests itself: Since F(z) = 322 — (a+2b+c+2d)z+ac+2bd, the assertion
holds if and only if D = (a + 2b+ ¢ + 2d)?2 — 12(ac + 2bd) > 0. The reader
should attempt to derive this last inequality from the assumption a < b <
¢ < d; this is not at ali easy. Compare this with the following alternative
solution: Substituting x = b, we obtain F(b) = (b — a){(b — ¢) < 0, since
a < b < c. Therefore, the polynomial F(z), with the positive coefficient
3 of 22, attains a negative value at some point (namely when z = b). By
Theorem 5.1 this means that F(z) has two distinct real zeros. (Note that we
required only the inequalities @ < & < ¢ in this proof.) We finally remark
that the zeros z; > z2 of F(z) satisfy the inequalities a < zo < b and
c< z1 < d, since F(a) > 0, F(b) <0, F(c) <0, and F(d) > 0.

5.8 E=zercises

(i) Suppose that the numbers p, q,7, s € R are such that 22+ pxr+q >0
and 224+ rz+s > 0 hold for all z € R. Show that 2z2+prz+2¢s > 0
forallz € R.

(ii) Leta,b,c € R*. Show that a, b, c are the side lengths of some triangle
if and only if ali p, ¢ € R with p 4 g = 1 satisfy the inequality
paZ + gb® > pgc®.

(iii) Show that if a,b,c are the side lengths of some triangle, then the
inequality a2 + b2 + &2 < 2(ab + bc + ca) holds.

(iv) Show that if z < ¥y < z < u, then (z + y+ z + u)2 > 8(zz + yu).

*(v) Determine the values p € R for which

z2 4+ 2pr — 2

9
22242 -

-2<

holds for ali z € R.

5.4 Cauchy’s Inequality

Theorem. The two arbitrary n-tuples of real numbers uy,ua,..., u, and
v1,v9,...,V, Salisfy the inequality

(mvr + gt + - +uqvn)? < (W + 03 -+ uR) R+ 4o+ 0]).
(39)

Equality occurs in (39) only ifux, =0(1 <k <n), orifthereisate R
such that vy = tug (1 <k < n).

Proor 1. If ux =0 (1 < k < n), we have equality in (39). Let therefore
ug # 0 for some k=1,2,...,n. We set

F(z) = (11z — v1)? + (u2z — 12)® + - - - + (unz — va)> (40)
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It is easy to see that F(z) is a quadratic polynomial ax? — 2bz + ¢, where

n

azzﬂ:ui>0, b=zﬂ:ukvk, and C=ZU:,
k=1

with discriminant D = 4(b% — ac). By (40) we have F((z) > 0 for all z € R,
and thus Theorem 5.1 implies D < 0, that is, 52 < ac, but this is (39).
Equality in (39) occurs if and only if D = 0, that is, if and only if F(t) =0
for some t € R. By (40), this last condition means that uxt —vx = 0 for all

k=12,...,n O
PROOF 2. It suffices to consider the case where neither uy = ua = --- =
t,, = 0nor v; = v3 = --- = v, = 0. The inequality (39) is homogeneous (see
2.7) both in the variables u;,ua,- - ., U, and in the variables v;,v2,...,v5.

We may therefore normalize both n-tuples in such a way that
Wtuitoctui=vi+viteo-typ=1 (41)

As in the first proof we set b = u3v1 + uavs + --- + Unvn. Adding the
inequalities 2upvy, < u? + 97 (see (25)) for k =1,2,...,n we get, in view of
(41), 2b < 2, that s, b < 1. Similarly, the inequality 2(—ux)vx < (—ux)?+vf
implies b > —1. Altogether we have therefore —1 < b < 1, that is, b2 < 1,
and this is (39) in the case (41). Equality in (39) occurs if and only if either

b=1o0r b= —1, that is, if either up, = vx (1 < k < n), or uy = —v)
(1 < k < n). If we return to the general n-tuple, we obtain the condition
vx = tux (1 < k < n) for appropriate ¢ # 0. O

Remark 1. Cauchy’s inequality (39) implies the weaker inequality

w1V + Uav2 + - - - + Unvy < \/(u'f+u§+---+u?,)(vf+v§+---+v,2,).
(42)

(This inequality is trivial when the left-hand side is not positive; in the
case of nonnegative numbers ug, vx (1 < k < n), both forms (39) and (42)
of Cauchy’s inequality are equivalent.}) From Proof 2 above it follows that
equality in (42) occurs if and only if ux = 0 (1 < k < n) or v = tux
(1 <k <n) for somet > 0.

Remark 2. Cauchy’s inequality (39) can be written with the help of the
vector # (with components u;) and the vector ¥ (with components v;) in
the form (&, 7)? < (i, ) - (¥, ¥}, where (-, ) stands for the scalar product in
the n-dimensional Euclidean space. Equality then occurs if and only if the
vectors i and ¥ are linearly dependent. Thanks to this inequality one can
introduce into these spaces the concepts of distance and of size of an angle,
witl} ;imilar properties as in elementary plane geometry (see, e.g., [10], pp.
217f).
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3.5 FEzamples

We will now convince ourselves that Cauchy’s inequality (39) can be used
to prove a number of inequalities.

(i) Show that if 2z + 4y = 1 for some z,y € R, then 2% + 32 > L.
SOLUTION. By (39) with n = 2 we have (2t + 4y)? < (22 + 42)(22 + 7).
If 2z + 4y = 1, we get 1 < 20(z? + y?), that is, 2% + 3% > L. O
(ii) Show that for arbitrary z,y, z € R we have

(2+4$)_£+f+§ (43)

Furthermore, determine when equality occurs in (43).

SOLUTION In (39) with n = 3 we set u; = 1/v/2, up = 1/v/3, uz = 1/V6,
= z/V2, v2 = y/V/3, and v3 = z//6. We thus obtain

(_L._E_+L.L+_1_-j_)’<(1+ +1)(=r_’+v’+z’)

V2 V2 V3 V3 V6 V6 2°'3'6/\2" 3 6/}’
that is, (43). Since v) = zu;, v2 = yuz, v3 = 2uz, and ux # 0 (1 < k < 3),
equality in (43) occurs if and only if 2 = y = z (see Theorem 5.4). a

(iii) Show that for arbitrary a;,@as,...,a, € Rt we have

U S = +i>a+a+ -+ . (44)
Gz G3 Gn a ! 2

SoLuTiON. By (39) with u; = a;/\/Gx;1 8nd v = /G (1 < k < n,
Gn+1 = G1) we have

2
TV Ve a)

af  af n
< ('_+—+"'+'_) (02+a3-|----+01),
Qs as a

and upon division by a; +as+- - - +a, we obtain (44). It is left to the reader
to verify that equality in (44) occursifand only ifa; = a2 =---=gq,. O

(iv) Prove the so-called triangle inegquality

\]Z(unvk)’s JZuﬂJZvﬁ (45)
k=1 k=1 k=1
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for two arbitrary n-tuples of real numbers uy,...,u, and vy,..-,Un. (This
inequality can be rewritten in vector form as |#+ 7] < || + |5, where |-|
denotes the length of the vector; the meaning of the attrihute “triangle” is
now clear from the geometrical construction of the vector sum ¢ 4 v.)

SOLUTION. One can prove (45) as follows: Upon squaring, then subtract-
ing 2 +---+u2 +vf 4 -- - + 12, and finally dividing by two, we ohtain the
inequality (42). (From this we also obtain a criterion for equality in (45);
see Remark 1 in 5.4 above.)

However, we give another proof with & trick that can also be used to prove
the more general so-called Minkowski inequality (see Exercise 8.8.(xii)). If
we add the two inequalities

k=1

n LU hid
Y (ur +v)ue < .\ 3 (kw2 ui,
k=1 k=1

z“:(uk + ) < ,\ Z(‘uh + vi)? Zvﬁ,
k=1 k=1

k=1

of type (42), we obtain

zn:(‘"k +u)* < J D (e +vp)?- (\] Y w4 ¢ vg)
k=1 k=1 k=1
<

=1

We have thus derived the inequality L? < L - R, where L < R is (45).
Hence L(L — R) < 0. If L = 0, then (45) is trivial; if L # 0, then L > 0,
and therefore the inequality L{(L — R) < 0 implies L — R < 0, which
proves (45). O

(v) Show that for arhitrary a;,a2,-..,2, € Rt we have
1 1 1
(al+02+'--+an)(—+-—+---+—)2112, (46)
61 a G,

where equality occurs if and only if ay = a3 =--- = a,,.

SOLUTION. (46) follows from (39) with up = /ax and v, = 1/ /ax for
k=1,2,...,n; since ux and vy are positive, equality in (46) occurs if and
only if ux = tuy, that is, 1/\/ax =t /ax (1 £ k < n) for some t € R*. But
this means that a, = a2 = - - = e, (= 1/t), and the proof is complete.

We add that the inequality (46), which combines mathematical “beauty”
with usefulness, is a special case of the inequality in Exercise 2.4.(xvi) with
r=—1,8 =t =0, u = 1. It is also worth mentioning another generalization
of (46):

b

b b
(G1by + @zby + -+ + Gnbn) (a—l+a;+---+ﬁ) > (by 4 b2 + - + b,)?,
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with arbitrary by,bo,...,b, € RJ. This follows from Cauchy’s inequality
(39) with the choice uy = v/arby and vg = /b fax, k=1,2,...,n. O

(vi) Show that for arbitrary a,b,c € R* we have
1 + 1 + 1 - 9
l1+a 1+b 14c”~ 3+a+b+c

SOLUTION. We obtain this inequality from (46) withn =3, a; = 1 +q,
az = 1+b, and a3z = 1+4c upon dividing by a; +az+a3 =3+a+bdb+c. O

(vii) Show that for two arbitrary n-tuples of positive numbers by, bo, ..., bs
and ¢;,¢a,...,C, we have

n

3 1S (47)
k=1 bka

Z(bk +cx)?-
k=1

Furthermore, determine when equality occurs in (47).

SOLUTION. By 4.3 we have by +cx > 2/bick, that is, (by +ci)? > 4brcy,
with equality if and only if bx = cx. This implies

(b + ng)2 —2>4 brcr z —

(with equality if and only if by = ¢, 1 < k < n). This inequality, together
with (46) for ap = brcx (1 £ k < n), gives (47). Equality in (47) occurs
if and only if bx = ¢z (1 € k < n) and at the same time bicy = bacy =

- = bpc, (see the criterion for equality in (46)), that is, if and only if
b1=b2=---= ﬂ=cl=c2="'=cﬂ' O
(viii) We obtain an important special case of Cauchy’s inequality (39) by
settingv; = =---=v,=1:

(w1 +ua+---+w)? < nfud +ud +--- +0?), (48)

with equality if and only if ¥y = us = -+ = u,. (In the literature this
inequality (48) is often referred to as Cauchy’s inequality.)

The relation (48) between the sum of several numbers and the sum of
their squares is useful in & number of situations, some of which we will
mention now.

(ix) Show that if all the n zeros of the polynomial

F(z)=2"—az" ' +ez" 2 — 32”3 4 + (1) Tenmiz + (-1)"c,
(49)
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are real numbers, then the coefficients ¢; and ¢, satisfy the inequality
(n—1)c > 2ncs.

SoLuTION. If x1,%3,...,Zn € R is the n-tuple of zeros of (49), then by
Vieta’s relations (see Chapter 1, Section 3) we have

G=T1+T24+---+ 2y,
CQ=T24+ 1 T3+ -+ T1Zn +T2T3+ -+ Tn—_1Tp.

This implies 2 + z% + --- + 2 = ¢% — 2c7, and by (48) with uy = z; we
therefore have ¢? < n(c? — 2c3), which gives (n — 1)cf > 2nco. D

(x) Show that the inequality v/ + 1+ 1/2z — 3+ /50 — 3z < 12 holds for
all values = € R for which the left-hand side is defined.

SoLuTION. By (48) withn =3, u3 = vz + 1, ug = V2x — 3, and u3 =
/50 — 3z we have

(VT +1+4 V22 -3+ /50 —-3z)° <3(z+ 1+ 2z — 3 + 50 — 3z) = 144,

from which, upon taking the square root, we obtain the result. D

(xi) Suppose that the sum of the n positive numbers a;, as, .. ., a, is equal
to 1. Prove the inequality

(a1+‘—11:)2+ (a2+i)2+---+ (an+i)22M. (50)

a2 n n

SoLUTION. Using (48), we estimate the left-hand side L from below:

1 1 1 1\?
Lz—(a1+——+a2+—+---+a,.+—)
n a4 an

Qn
1 1 1 1\?2
=—O+—+—+m+—).

n ay dasg Cn

Hence it suffices to show that

1 1 1 2
— 4+ — -+ —>n
a as an
But this is (46), with a; + a2+ --- +a, = 1. (]

(xii) Let nn > 1 and suppose that the numbers =,y;,y2,...,4, € R satisfy

(n—Dz+y+v3+---+¥2) <(n+yo+---+yn)?
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Show that if 1 < i < j < n, then z < 2y;y;.

SOLUTION. In view of the symmetry we will prove only the inequality
T < 2yy2. By Cauchy’s inequality (48) for the (n — 1)-tuple of numbers

1+ ¥2,93, V4, .- -, ¥n We have

(h+ya+--+w) <(n-1)[(n +y2)2+y§+---+y,2,]
=2(n— Dy + (n—1)f +12 +--- +12).

From this and the hypothesis we obtain upon dividing by n — 1,
T4y + YA <+ i+,

and thus = < 2y, y,. O

(xiii) Show that if the numbers a, b, ¢ € R* satisfy abc = 1, then

1 + 1 + 1 >l
a*(b+c) ba+c) A(a+bd) 2

(ab+bc+ac).

SOLUTION. Since abc = 1, we have

2 2 2

- _ + ¥ 4
y+z zT+z T4y

z

and R = (z+y +2), where z = 1, y = } and 2 = 1. By Cauchy’s
inequality (39) with n = 3 and the triples

(ul!u2ru3) = (\/y + 2, ‘\/I + 2, \/5: + y)l

)= (e v )

we have (z +y+ 2)® < 2(z+ y+ 2) - L, which upon division by 2(z+y+2)
leads to the conclusion R < L. O

5.6 Ezxercises

(i) Show that if a,b,c,d € RJ, then \/(a + b)(c+d) > ac+ Vvbd.

(ii) Find the smallest value of the sum =} + 2% + --- + 22 under the
condition that z),Tz,..-,Tn € Rsatisfy a1z14+a2z3+- - -+anz, = b,
where aj, a2, - - -, @n, b are given real numbers with a; # 0 for some
k=1,2,...,n.

Show that (iii) and (iv) hold for a;, a3, ..., e, € R* and 23, z,,...,7, € R:

(1) (Trororzr)’ < (Thoy 06) (Thes arzl)-
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2 2 2 2
.\ T, T2 Ty (m1tza+-- +zy)
wv) —+—=+---+—2 -
( ) al+02+ e, artaz+---+a,

(v) Show that if p,q,7, s € R, then
1+ +g)( +7) 1+ %) > (1 +pgrs)”.
(vi) Using the result of (v), show that if a,b,c € R}, then
1+a63)A+ %1+ > (1 +abe)s.
(vii) Show that if px, gk, 7.3k € R, 1 < k < n, then

(Bimrn) = (B24) (£¢) (B) ()

(viii) Show that if a,b,c,d € Rt, then
1 1
I SRS S > 6/3
a+b+c a+b+d a+c+d b4+c+d  at+bitcec+d
(ix) Show that if 1,%2,---,%Zn € R, then
(zr+ze+---+z) <z + 28 +--- 4+ 28).
(x) In Example 5.5.(ix), prove the inequality (n — 1)c2_, > 2nc,—acp.
(xi) Suppose that the real numbers z;, z3,. . ., Zn satisfy the inequality

Ty + T2+ e+ 2o 2 yf(n - 1)z} +23 4+ 22).

Show that = > 0 for each k= 1,2,...,n.
(xii) Show that if 6, bi,cx € RY, 1 < k < n, then

(Ene) < (£4) (£9) (£2)

Proceed in a way similar to Proof 2 in 5.4 and use 4.1.(ix).
Show that if ay,az,...,a, € R}, then (xiiil) and (xiv) hold:
(xiii) (a3 +az2+- - +an)® <n%(a} +ad +--- +al).
(xiv) (a1 +a3 +---+a7)® < n(a} +a3 +--- +al)”.
*(xv) Show that for a;,a,,...,a, € RY we have

61 +az+--- +a,)? G a
(12 22 a"z)» < ¢ 2 e
2(af+a3+---+a2) " 62+a3 ea3ztag a1 +az

*(xvi) Leta,,az,...,0, € RY. Show that any numbers z;, 25, ...,z, € R
satisfy

(@17} + 6223 +- - + a22) < 017) + 0278 + -« + anzd
ifandonly ifa; +a2+---+a, <1.
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6 The Induction Principle

For the solution of inequality problems we can use induction methods in
two different situations. The first one deals with inequalities of the type
L(n) > R(n), that is, inequalities where both sides are functions of the
integer variable n. It is also assumed that these inequalities are composed
of finite sums or products and possibly powers with exponents depending on
n. This will be done in 6.1-6.5. The second situation concerns inequalities
of the type L(z1,22,-..,2,) > R(z1,Z2,-.-,Z,), where induction is used
on the number n of the variables x,,zg, ..., 2, (Sections 6.6-6.7). In the
entire section, 3, j, k, n are integers.

6.1 Ezamples

We begin with two examples to explain the two most common approaches
to proofs of inequalities L(n) > R(n) by mathematical induction. Instead
of the ususl concise solutions, we offer here some rather more informal
remarks.

(i) Let us prove that for each n > 6 we have 2" > (n+1)2. If we substitute
the smallest value n = 6, we get L(6) = 2% = 64 and R(6) = 7% = 49.
Hence the inequality L(6) > R(6) is true. Instead of also verifying the next
inequality L(7) > P(7) by direct computation, we note that L(7) = 27 =
2L(6), while R(7)/R(6) = 64/49 < 2. This shows that in the transition from
L(6) > P(6) to L(7) > P(7) the larger side L increases by the factor 2, while
the smaller side R increases only by the factor 64/49; hence L(7) > P(7)
holds. Next, the relations L(8)/L(7) = 2 and P(8)/P(7) = 81/64 < 2 show
that L(8) > P(8) holds, etc. All these particular verifications have to be
carried out simultaneousiy: we must show that for all n > 6 we have

L(n+1) o P(n+1)
L(n) P(n)

But this is quite easy:
Lin+1)  Pn+1) (n +2)?
= 2
Lin) ~  P(n) Z (n+1)?
—2n+1)2>n+2)P? = n?>2.

We stress that such a “quotient” criterion can be used only for inequalities
between positive expressions.

(ii) We explain the second, “difference,” criterion by way of the inequality

1,1 1.7 1
FtEt o ta2g-— (51)
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which we will prove for each n > 2. For the smallest n = 2, equallty occurs
in (51), since L(2) = R(2) = ;. We note further that the left-hand side of
(51) 1s a finite sum; if we increase n by 1, there will be an additional term
on the left: .

(n+1)?°
It is also easy to determine the increase on the right-hand side of (51):
7 1 7 1
R(n+1) - Rln) = (ﬁ—m B (ﬁ-n—ﬁ)
B 1 <1
T m+D(n+2)  (n+1)%

L(n+1)— L(n) =

Thus we see that the increase on the left is greater than that on the right:
Lin+1)—L(n) > R(n+1)—R(n) foralln>2

The equality L(2) = R(2) therefore implies L{3) > R(3), and from this
follows L(4) > R(4), etc. Hence we have L{n) > R(n) for all n > 3.

These examples illustrate the fact that in induction proofs of the in-
equality L(n) > R(n) we most often compare the absolute, resp. relative,
growths of both sides L, R as the value of n is increased by 1. We express
this in the following principle.

6.2 The Induction Principle

Theorem. Let L(ng) > R(ng) and suppose that for each n > ny one of
the two conditions (i) and (ii) holds:

(i) The numbers L(n), R(n), L(n + 1), and R(n + 1) are positive and
&
- L(n+1) > R(n+1)
L(n) — R(n)
(ii) L(n+1) — L{n) > R(n +1) — R(n).

Then the inequality L(n) > R(n) holds for all n > ng. If furthermore
L(m) > R(n;) for some ny > no, then L(n) > R(n) for alln > n,.

Remark 1. In order to prove a finite number of inequalities L(n) > R(n),
np < n < N, we require that (i) or (ii) hold only for n = ng,ng +1,...,
N — 1. In this case we talk about so-called finite induction.

Remark 2. The conditions (i), resp. (ii), often enter in a “hidden” manner
when from the assumption that for some n > ng the inequality L(n) > R(n)
holds. we derive the truth of the inequality L(n + 1) > R(n + 1). Thus,
in Example 6.1.(i) we could have proceeded as follows: Multiplying the
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inequality 2" > (n+1)2 by 2, we obtain 2"+ > 2(n 41)2. Hence it suffices
to verify that 2(n+1)2 > (n+2)2. In Example 6.1.(ii), by adding 1/(n+1)?
to both sides of (51), we obtain

.l_|_.!'__|_ +l_|_ . >1 1 + 1 .__7___;"'_
22 7 32 n?2 ' (n4+1)2712 a4l (n+1)2 12 (n+1)F

Hence it suffices to verify the inequality

6.8 Ezercises
Show that the inequalities (i)—(viii) hold for all n > ny:

() A-a) <

(nn=1,0<a<).

1+na
.y 4" (2n)! =
=92).
M) 7 <@z < (=2
1 1
- e 1 =1-
() —F+oet "t (no=1)

(iv) 2intn-D 50t (np=3).
™) 2 +y¥ = (@) + @) oy Ty
(z,y € R,ng=1).
o N 1 1
(vi) g <l+g+g+tm—g
*(vii) (1+a0)" > (1+e*)(1+a"+?)---(1+a®) (no=1,0<a< )
(vii) 241---(2n)! > [(n+ D" (np=2).
(ix) Show that if 1 < k < n, then we have

<n (np=2).

K
1 k K
1+£°-s(1+—) <1l4+=+ . (52)
n n n n
Remark. For k = n, (52) implies (compare with 3.8.(iv))
25(1+%) <3 foralln>1. (53)

(x) Show that for all n > 6 we have

@) > ()"



138 2. Algebraic Inequalities

(xi) Show that if k > 2 and n > 2, then at least one of the numbers {/n
and ¥k is less than 2.

(xii) Given the expression

prove the estimates

4p+1 3p+1
< < = 4
QN 47 SO <R3-3 (2p) (54)
for all p € N. Show that the inequalities (54) are stronger than those

in 2.6.(x).
(xiii) Show that for all n > 1 we have

\Jn+‘/(n—1)+\/---+ 2+V1</n+1.

6.4 Ezamples

We will show now that in the course of using the induction principle it is
often necessary to transform the desired inequality, or even change it to a
stronger inequallty.

(i) Out of n threes and n fours we form the numbers

A,=3% and B,=4% .
Which of the two numbers A,, and B,,_, is larger?

SOLUTION. We show that for each n > 2 we have A, > B,_;. With the
induction method it is easier to show the stronger inequality A,, > 2B,_;.
By direct verification we find that A > 2B,;. If the inequality A,, > 2B,,_;
holds for some n > 2, then

Bn—l
Anyr =3 > 3%Bn-1 = gFns (g) -48~1 > 2.4Bn-1 = 9B, .0

(ii) Find the smallest number A for which one can prove

(ra)0e)(o2)en

by using the following approach: The sharper estimate

(1+%) (1+3—12)---(1+$)SA—nLj_1 (56)
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with appropriate B > 0 can be verified by way of the principle 6.2 with the
“division” condition (i).

SOLUTION. Let us first point out that the inequality (55) cannot be
directly proven by induction, since its left-hand side grows with increas-
ing n, while the right-hand side remains constant. We therefore consider
the stronger inequality (56); condition (i) in 6.2 means that for each n > 2

we need B . i
- — < A-
(A n+1) (1+(n+1)2)_A n+2'

which, upon equivalent transformations, can be written as
A(n®+3n+2) < B(n? +3n+3).

‘This last inequality holds for each n > 2 if and only if A < B. This implies
with (56) for n = 2 that

1 B A 24
<A-Z2<ca-_2_422
l+gsA-gsA-3=3

Thus we obtain A > 15/8. It is also clear that (56) with A = B = 15/8
holds for all n > 2; hence we may set A = 15/8 in (55). Can we use this
approach to determine whether (55) is true also for some A < 15/87 We
note that when (55) holds for some integer n = p > 2, then it holds also
for all preceding n = 2, 3,...,p — 1. Therefore, it suffices to show that the
stronger inequality (56) is true for all n > p, where p is a certain (arbitrarily
large) number. This occurs if and only if A < B and

1 1 1 B
(1+5) (tez) (1 5) <453
We can therefore set
5P+l 1 ) ( 1 ( _1_)
A=B="— (1+2,2 g )1+ 5)-
‘We have thus shown that the estimate (55) holds with the constant

) () ()

where p > 2 is an arbitrary integer. If we denote the right-hand side of (57)
by A,, then it is easy to see that

Apr1 = [1 (p+1)‘l e

This means that the value of A, decreases as p grows. Actual computations
give, for instance, Az = 15/8 = 1.875, A3 =~ 1.83828, and A3 = 1.83806.
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We finally remark that the sequence of numbers Az, A3, A4, ... coDVerges
to a minimal value A that satisfies (55); this value is equal to the infinite

product
1 1 1
(1+§)(1+§ "'(14‘;)-".

By means of complex analysis one can show that the value of this product
is equal to the number (47)~! - (e™ — e~ ™) = 1.83804 (compare this with
the value of Az above). O

6.5 Ezercises
(i) Eight fives and five eights are used to form the numbers

5 8
55 and 8 .
Which one is larger?
(ii) Show that if 0 <a <1 and 0 < b < 1, then for each n > 1 we have
c+b—ab)"+(1—a™)(1-0")>1.
(iii} Show that for each n > 1 we have

() (29 (o sen) <3

To do this, replace the right-hand side by the expression
B
n+C
with appropriate constants A, B, C.
*(iv) Try to improve the upper bound in (54) in the form

Q(p)
N 2 .
Jants (=P
where A and B are appropriate constants (depending on p).
(v) Show that for each n > 1 we have

(3) () (- 2) =

*(vi) Let S(n) =1 422 ... 4 n". Show that the inequality
L > 1 + 1 + .o + ;
n™ = S(n)  S(n+1) S(n +k)

holds for arbitrary integers n > 2 and k > 0. (To do this, use the
fact that the numbers ¢ = (1 + %)", where k =1, 2, ..., form an
increasing sequence; see 3.4.(vi) and 3.8.(iv).)

Qn) <
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6.6 Induction on the Number of Variables

We will now use the induction method to solve problems concerning
inequalities of the form Q(z1,Z3,...,Tn) = 0. As a rule one can de-
rive an inequality Q(z1,Z2,...,Tn+1) = 0 from the preceding inequality
Q(1,v2:---,¥n) = 0, where 31,¥2,...,¥n is some n-tuple, appropriately
chosen and dependent on the given (n + 1)-tuple 73,22, --.,Zn41- In the
simplest case one can choose y3 = T1,¥2 = Z2,---,Yn = In; in mMore com-
plicated cases where the variables z3,z9,...,T,4+1 are dependent on each
other through conditions that have to be satisfied, the chosen variables
#1,¥2, - - - » Un have to satisfy the same conditions. We will now consider five
examples.

(1) Suppose that the real numbers a3, as, ... ,a, satisfy either the inequal-
itiesax > 0 (k = 1,2,...,n),0or -1 < ax < 0 (k = 1,2,...,n). Prove
that

(1+a1)(1+a2)---(1+ar)21+a1+az+---+a5,-

(In the case a; = a3 = -- - = a,, we obtain Bernoulli’s inequality (17).)

SoLuTiON. Using the method of finite induction we show that for each
index k =1,2,...,n we have

(1+01)(1+¢12)---(1+ﬂk)2l+al+ag+---+ﬂk. (58)

For k = 1, equality occurs in (58). If (58) holds for some & < n, then upon
multiplication of both sides by the nonnegative number 1 + ax41 we get

(1+a1)(1+az2)---(1+ar41) > (1 + a1 +a2+--- +ax)(1 +axp)
=1+ay+a2+---+agp1+by,

where by = a1ax41 + @azax41 + - -- + axagy1 > 0, since by assumption all
the numbers ajax+1 are nonnegative. Therefore, we have

(I+a1)1+az)---(1+ar1) > 1+a1+aa+--- +axq,

which completes the proof by induction. 0

(ii) Suppose that a;,a3,as,- .. is a sequence of real numbers satisfying

for each n > 2. Show that for each n > 1 we have

al+ﬂ3+"'+02n+1>02+a4+---+02n (60)
n+1l = n )

SoLUTION. We rewrite the inequality {60) in the equivalent form

n{a1+az+---t+ampu1) 2 (n+1)(az+ a4 +--- +azy,).
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We denote this inequality by L(n) > R(n) and prove it by induction. For
n = 1 we have L(1) = a; + a3 > 2a; = R(1), by (59) with n = 2. The
inequality L(n + 1) — L(n) > R(n + 1) — R(n), which is of the form

(n+1)acnss +a1 +az+---+azntr = (n+2)azn2 +az+aq4 +--- + a2,
can be rewritten as
S(n) =a1—ag+az—---—azm +82n41 — (n+2)azni2+ (n+1)02n43 20

and will also be proved by induction. For n = 0 we have S(0) = a; — 222+
a3 > 0, by (59) with n = 2. Since, again by (59), @an4+s = 262n4+4 — G2n+3,
we estimate the difference S(n + 1) — S(n) as follows:

S(n+1) — S(n)
= (n + 2)azny5 — (n+ 3)aznt+ea — nagnts + (2 + 1)azny2
> (n + 2)(2a2n4+4 — G2n43) — (7 + 3)azn+4 — NA2n43 + (n+ 1)a2n42
= (n + 1)(02,;4.4 —2agn43 + aan+2).

By (59) the last term is nonnegative. Hence S(n) > 0 for all n > 0. O
(iii) Show that if the numbers a;,a3,...,a, € Rt,n > 3, satisfy the
inequality

(0} +af +---+a2)’ > (n—1)(a{ + a5 +--- +a}), (61)

then any three numbers a;,a;,ax (1 <t < j < k < n) are side lengths of
some triangle.

SOLUTION. Since (61) for n = 3 is actually identical with (35), the asser-
tion for n = 3 follows from 5.2.(i). Now let n > 3. In view of the symmetry
it suffices to show that (61) is a consequence of the inequality

(af+a§+---+aﬁ+aﬁ+1)2 >n(af+a§+---+a:+a:+l) (62)

for arbitrary ay,a2,...,an31 € RT. If we set Sp = a{‘ +a§ +---+ak for
k = 2 and k = 4, then (62) can be rewritten as (Se+a2,,)? > n(S;+ad ),
which is equivalent to

2
(n—1) (a?.+1— ns_zl) < njl(sz)z—ﬂs-l-

(Here we have used the method of completing the squares.) If (62) holds,
then the right-hand side of the last inequality is positive, and thus we have
(S2)2 > (n — 1)S4. But this, by the definition of S2 and S, is just the
inequality (61). O
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(iv) Suppose that the two n-tuples of real numbers uj,us,...,%, and
v1, V2, . . -, Uy satisfy

U 2y, tu 2 tvy..., 4ttt 2 tvgto-+ v
Show that if 3 > 2o > --- > z,, > 0, then also
U1y +usTe +--- 4+ UpTp 2 NT1 +v2Z2 + - -+ UnTn-
SOLUTION. We show by finite induction that for k = 1,2, ...,n we have
U1y + ugZg + -- - +UpTi 2 1T VT + - -0+ UpTi- (63)

For k =1, (63) is of the form u;z; > vz, which follows from u; > v and
z1 2> 0. We will now consider the question: Is it possible to derive (63) for
a given k, 1 < k < n, from the inequality

1y +ugye +--- + UpaYx—1 2 iy + vt + -+ Up—1Yk-1. (64)

where y1 > yp 2 --- 2 yx—1 =2 0 is an appropriate (k — 1)-tuple? To begin
with, it is clear that we cannot choose y; = z; (1 < j < k — 1); this, in
order to derive (63) from (64), would require uxT; > Vx Ty, which does not
follow from the assumptions. However, we have

(ur +ug+---+ug)zp > (v +va + - - + )Tk

Now it suffices to note that we obtain (63) by adding this last inequality
to (64) with y; = z; —zx (1 < j < k—1). Since for these numbers we have
Y1 > yp > --- 2> yx—1 > 0 (this follows from z; > zg > --- > z}), the use
of (64) is justified, and the proof by induction is complete. D

(v) Show that if z;,z2,...,7, € R* and z172---7, = 1, then we have
T+ z2+---+z, 2 n, withequalityifandonly ifzy =z =---=z, = 1.

SoLUTION. For n = 1 the assertion is true. We assume that we have
(n + 1) positive numbers z;,%3,--.,ZTn41 that satisfy 2329 Tny1 = 1,
and we assume further that the assertion holds for n. If we choose ¢ =
T1, Y2 = T2 ---1¥n—1 = Tp—1 a0d Y, = TnTny1, then y1y2---yn = 1, which
means, by our assumption, that

ntypt-ctim=14+22+--+Zpn-1+TnTnsy1 2 N

We have to show that z; + 72 + --- 4+ T,41 2 n + 1. To this end,
it clearly suffices to verify that z, + Z,41 2 ZnZTn41 + 1, that is,
(zn — 1)(Zp4+1 — 1) < 0. This, in general, does not follow from the as-
sumption T1Z2---Zn41 = 1 alone; however, in view of symmetry we can
order the numbers Zy,Za,...,Zn41 in advance such that z, < z; < Tpyy
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fori=1,2,...,n—1. Then we have (z,)"*! < 1122 - - Tp41 < (ap1)™,
that is, x, < 1 < z,41, which implies (zn, — 1)(Zn41 — 1) < 0. This
proves the inequality «; + 2 + - - + Zn41 = n + 1; equality means that
Ty =2 = " =Tn_1 = TnTns1 = 1 and (Zn — 1)(Zn41 — 1) = 0, which
impliesz)1 =22 =---=z,41 =1 0

Remark. The result of (v) follows immediately from the so-called AM-
GM inequality, which will be studied in detail in Section 8. Since that
inequality is homogeneous, we make use of the opposite direction: The
proof of the AM—-GM inequality in 8.1 will be based on the above result

of (v).

6.7 Erzercises
(i) Show that for each n > 2 we have

1 1 1 1
(-3)(-)(-2)>
(ii) Suppose that the sequence of real numbers z,, z2, 73, .. . satisfies

1
Tnyl = ;(x1+32+'"+$n)

for each nn > 1. Show that for all n > 1 we have
n+1
2

(iii) Suppose that the sequence of real numbers z;, z3,za, ... is nonde-
creasing, that is, x,,41 > x,, for each n > 1. Show that foralin > 1
we have the inequality
n(z1+ 222 +dz3+---+ 27 1)) > (" - 1T 4 224+ 7).

(iv) Suppose that the sequence of real numbers a;,a3,a3,... satisfies
the inequality an41 - @n—1 > a2 for each n > 2. Show that if we set
bn = /@102 -- - a,, then for each n > 2 the inequality b,41 - bp—1 >
b2 holds as well.

*(v) Suppose that the two n-tuples of positive numbers a; > a3 > --- >
an and by > b > --- > b, satisfy a1 > by, 61 +a2 2 by + by, .-,
a1 +az2+---+a, 2 b +b2+---+b,. Show that for each k € N we
bave af + a5 +--- +ak >bE 4 b5 4. 4 .

(vi) Use a method similar to 6.6.(v) to show that if the positive numbers
Z1,%9,-..,%y, sotisfy &y + 22+ --- + 2, = n, then 2125 -+ 2,, < 1.

(vii) Show that if n > 4, then all 7y, %2,...,7n € RY satisfy

(Ta+ 22+ +2,)2 2 Aoz + T2T3 + - + To1)).
*(viii) Show that if a3, as, .. .,a, € N are distinct, then
(el +---+al)+(ad +---+35) > 2a} +--- +a3)2.

1+ 222+ ---+ Ty = (z1+z24+- -+ 20)-
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7 Chebyshev’s Inequality

7.1 Estimating a Sum Using Permutations

We will be concerned with the following problem: Given two n-tuples of real
numbers Ty,T2,.-.,Tn a0d yY1,¥2, ..., Yn, find the smallest and the largest
value of the sum

S =z121 + Taza + - + Tpzn, (65)

where z;, 23, - - -, 2, is an arbitrary ordering of the numbers 1,2, - - ¥Yn-
A special case of this problem is the following situation: On a table there
are four piles of coins, a pile each of one-crown, two-crown, five-crown, and
ten-crown coins. From two piles you may take eight coins each, from the
next one five, and from the last one three coins. How will you decide?

Obviously, it will be convenient to first order both the given n-tuples z;
and y;. Let us therefore assume that z; < T2 < - < zZpand Yy < y2 <
«-+ € Yn. First we show that for each k =1,2,.._,n the inequality

X121 + T2+ -+ Tz < Taph + Toy2 + - -+ Thx (66)

holds, where z;,23,...,zx is an arbitrary ordering of the mumbers
Y1, Y2, - - - » Yx; 8l50, equality occurs in (66) if and only if the condition

(zj—z)(z;—z)20 (1<i<j<k) (67)

is satisfied. The reader should carefully consider what the condition (67)
means; it may be surprising that equality in (66) can also occur for a k-
tuple z, z3,- - -, 2 different from the one for which z; € 22 < .-+ < z,
that is, z; =y (1 <1 < k). Note, however, that in the case where z; = x;
for some i # j, switching the numbers z; and 2; does not change the value
of the left-hand side of (66).

We prove the inequality (66) by finite induction. The case k = 1 is
trivial. Let us now assume that the assertion holds for some k < n; we
will show that for an arbitrary ordering z, 22,...,2x+1 of the numbers
Y1, Y2, - - - » Yk+1 we have the inequality

T12) + Tpza + - + Thp12el S Ty + Toy2 + - + Tapathk4r. (68)

If zx49 = ¥k41, then z1,22,...,2 is an ordering of the numbers
¥1,¥2, - - - , ¥x; hence the inequality (66) follows, and upon adding z;. 12541
= Tr41Yk+1 We obtain (68). If zx 11 = Y41 does not hold, then zx 4y <
and yx4+1 = z; for some i < k. We denote by z],2;,...,2;,, the ordering
that is obtained from z;, 23, .. ., 2x+1 by switching the terms 2; and z ;.
Obviously,

(@177 + - + Thp1241) — (T1; + -+ + T zip)
= (Zizre1 + Teprthsr) — (T + Trprzi)
= (T2 — T} (Y41 — 2x41) 2 0,
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since Tpy41 2> ; and yry1 > 2x41; to prove (68), it therefore suffices to
verify that

T2y + ToZy + -+ Tp12hp1 S Tapn + Doy + -+ Trpavher- (69)

However, since 21,23,...,2},,; is the ordering of the numbers y1,%2,---,
yk+1 for which 2 ., = yx41, the inequality (69) has already been proven.
Through an easy examination of our approach we can verify the truth of
criterion (67) for equality in (66); in the process it is determined that the
left-hand side of (69) is larger than the left-hand side of (68) as long as
Z; < Tp41 (since zxy1 < yry1)- This proves (66) for all k =1,2,...,n.

‘To obtain a lower bound

T121 + Tazg + <o + TpZn 2 T1Yn + ToYn—1+ -+ Zntn (70)

we now use a simple trick; 2, 22, ..., 2, is some ordering of the numbers
n <y < --- <y, if and only if —2;,—29,...,—2, is an ordering of the
numbers —g, < —yp—1 < --- < ~y1. Therefore, by the previous discussion
we have

z1(—21) +Z2(—22) +- - - +Zn(—24) < Z2(—Yn) +Z2(~Yn—1) +-- -+ 2Zn(-1),
which is just (70); furthermore, equality occurs in (70) if and only if
(7 —zi)(—2z; +2:) 20 (1<i<j<n) (71)

‘We note that the conditions (67) and (71) are formulated in such a way
that for their verification in specific situations the n-tuple z1,z2,...,Zn
need not be previously ordered.

To summarize everything concisely (Theorem 7.3), we need the following
definition.

7.2 Orderings

Definition. We say that the two n-tuples u;, u,,...,u, and vy, va,..., ¥n
of real numbers have the same ordering, resp. the opposite ordering if

(v —u)(v;—v:) 20 (1<i<n, 1<j<n),
respectively
(u,-—u.-)(v,——v.—)SO (155511.15_3-511).

(Caution. The fact that the n-tuples u;, ug, . .., %, and vy, va, . . ., v, have
the same ordering does not necessarily mean that the n-tuples u), ug, ..., u,
and vp,Vn-1,...,v1 have opposite orderings—consider, for instance, the
quadruples 1, 1, 2, 3 and 2, 1, 3, 4. However, such a conclusion is true if,
for instance, the numbers u;, ug, . .., u, are distinct.)
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7.8 Extremal Values of a Sum

Theorem. Let z1,%2,...,%n ond ¥1,¥2,---,¥n be two n-tuples of real
numbers. The sum S = z321 + Taz2 + - -+ + Tnzn, where z1,29,...,2, 15 GN
arbitrery ordering of the numbers y1,va, - - . , Yn, i mazimal, resp. minimal,
if X1,Z2,...,2n and 21, 23, . .-, 2, have the same, resp. opposite, orderings.
In particular, if the n-tuples zj,z2,...,2, and y1,y2,. . ., yn have the same
ordering, and at the same time z),%2,...,T, and Yp,Yn_1,-.-,41 have
opposite orderings, then each of the n! sums S satisfies the inegualities

TYn +T2Yn-1+ -+ T S S <21y + Zaga + -+ + ZTnyn- (72)
The proof was already carried out in Section 7.1.

7.4 Ezamples

The above theorem will be applied in the following two examples.

(i) Show that for arbitrary numbers a,,as,.. -, a5, p € RT the inequality
afaz +afas +---+af_ja, +ala; <aft' + el .-+ 08P (73)

holds, with equality if and only ifay —as =--- = a,,.

SOLUTION. For p > O the n-tuples ay,as,-..,a, and af,dd,...,aP
have the same ordering, by 1.10. Then by Theorem 7.3 the ordering
az,as,. - -, 0,,a) satisfies

a¥-as+af-as+---+aP-a,<al-a1+ad-a2+---+a?-a,,

and this is (73). Here we obtain equality only in the case where the n-

tuples a;,as,-- -, a, and as,as,...,0,,81 have the same ordering. Let us
assume that this is the case and that we do not at the same time have
a) = @z = --- = ay; if we set M = max(a;,a»,...,a,), then there exist

indices i and j such that a; y < a; = M and @;;1 < a; = M, where
ag = a, and a1 = a;. The inequality (a;—1 — a;)(a; — a;41) < 0 means
that the original n-tuples a,;,a»,...,a, and az,a3,...,0,,a; do not have
the same ordering, and this is a contradiction. 0O

(ii) Show that for arbitrary a, b, c € Rt we have
240 B+ A +a?
a” + n + + +a .
2¢c 2a 2b

SoLuTioN. By 1.9 and 1.10, the triples (a?,b%,¢%) and (1,1,1) have
opposite orderings, and thus Theorem 7.3 gives the inequalities

1 1
Liplialca lip +c"-l
a b c b a
1 1 1 1
iy lialclipl il
a b c c a b

a+b+c<
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If we add these two inequalities and then divide by two, we obtain the
desired inequality. =

7.5 Ezercises
(i) Show that if a3, a3, .- .,a,,p € R, then the inequality
P P ag

af , a} Gn—1 p—1 ~1 p—1
L4244 +2>af ' a4+l (74)
az as Gn a

holds, with equality if and only if a) = a3 =--- =a,.

(ii) Give a new proof of the result of 6.6.(v): If z1,z2,...,%n € R* and
if 23z -- -z, =1, then z; 4+ 22 + - - - + Z, > 7, with the exception of
the case ;3 = 22 = --- = z, = 1. (Hint: Use (74) with p=1 and an
appropriate n-tuple a,,as,-..,8x,.)

(iii) Show that for arbitrary e, b, ¢ € Rt we have

az+b2+b2+c3+c2+az< :

a® c
2¢ 2a 26 ~ be

'a_'b-

b3
+—+
ac

7.6 Chebyshev’s Inequality

Theorem. Suppose that we are given two ordered n-tuples of real numbers
TyLT2 < ST andy Sy < S yn. Set

Smin = ZT1¥Yn + Z2Yn—1 + - - + ZTaY1, (75)
Smax = Z1%1 + Ty + - - + Tn¥n
(this notation is consistent with Theorem 7.8). Then the inequalities
fSmin < (T1+Z2+ -+ ZTn)(pn + 92+ -+ yn) < nSmax  (76)

hold, with equality in the right and left paris of (76) occurring only simul-
taneously, and ifand only tfzy =20 =--- =z, orpp =2 =---= y,.

Proor. By Theorem 7.3 and definition (75) we have

Smax = i +Tay2 + - -+ Zn¥n,
Smax = Taye + Tayz + - -+ + a1,
Smax = T1y3 + Toya + -+ + zny2, (77)

Smax = T1Yn + Taph + - - + Tnyn-1-
Adding ali the relations in (77), we obtain

NSmax Z (Zy + 22+ -+ Zn)(tn + 32+ ---+3p),
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and this is the right-hand part of (76). The left part of (76) can be proved in
a similar way. If equality holds, for example in the left part of (76), then we
bave equality everywhere in (77). Let us assume that z; =z = --- =z,
does not hold, that is, that z; < z,. Then according to 7.1 the equalities
in (77) mean that y» < 1,93 < ¥2,---»¥n < Yn—1, Which implies 33 > 32 >
+-+ 2 yn- However, by the theorem’s hypothesis wehave y; < y2 < --- < yn,
thus ¢ = y2 = +- - = yn, and the proof is complete. D

7.7 Ezample

We now consider a typical instance of the use of Chebyshev’s inequality:
We will prove that arbitrary positive numbers a, b, ¢ satisfy the inequalities

(a® + 5% + 2)(a® + b® + ) < 3(a® + 8° + &°) (78)

and
(a® + b + &) (é + % + -:;) > 3(a® + 5% + &%), (79)

with equality in both (78) and (79) if and only if a = b = c. In view of the
symmetry we may assume that 0 < a < b < ¢. Then clearly a™ < b <
forn =2,3,4, and ¢! < b7! <al. Hence (78) is the nght part of (76)
with n = 3, a:l—az T2 = b2, 23 = €2, Y1 = a3, yg—b a.ndy3—c3
similarly, (79) is the left part of (76) with n = 3, z; = a4, 22 = b4, 23 = ¢,
1 =c 1, y2 =b"1, and y3 = a~ 1. In both cases the triplm Ty, Z2,Z3 and
¥1, Y2, y3 have the same ordering. This completes the proof.

Further consequences of Chebyshev’s inequality will be derived in the
following exercises. Especially the result of (v) deserves some attention; it
is an interesting generalization of Cauchy’s inequglity (48).

7.8 Exercises
(i) Another proof of Chebyshev’s inequality: Show that the expression

n(zays +zay2 +- -+ Tayn) — (Z1 + T2+ -+ Tn) (1 Hy2 +- - +yn)

can be written as the sumn

b= E :3131

1.3—1

where s;; = (z: — z;)(yi — v3)-
(ii) Show that the inequality (46} is a consequence of Chebyshev’s
inequality.
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(iii) How can inequalities (78) and (79) be generalized?
(iv) Show that for each integer n > 2 we have the inequality

1 2 3 n n+1rs1 1 1 1)
— ama — . —_ +l..+? -
n n—1+ﬂ—2+ +1> 2 \n n—1+n—2 1

(v) Show that for a;,az,...,a, € R} and each integer k > 2 the strict
inequality

(61+az+---+an)* <n*F Nk 4ok +---+af)  (80)

holds, with the exception of the case a; = a3 =--- = @n.
(vi) Show that for arbitrary a;,as,..-,a, € Rt we have

1 1
(@1+---+a.)(a} +---+a63) < (af +--- +a}) (EI+"'+Z)'

(vii) Show that the result of 6.7.(iii) is a certain Chebyshev inequality.
(viii) Suppose that the numbers z,y € R satisfy zy + 1 > z 4 y. Show
that for each integer n > 1 we have the inequality
(n—1)’zy+(n—-1)(z+y) +1
n

(n—1zy+12>

(ix) Show that if 0 < Gj1 S Gj2 < -+ < Gjn (1 < j<k), then

fm=]
(x) Show that the inequality
(@1+22+4---+2n) (1 Hvz+- - +yn) S 0@ +Tay2 + -+ Zoya)

holds also in more gerieral situations than in 7.6: The inequality y; <
y; holds for any indices 1,7 € {1,2,...,n} for which z, < 4 < z;,
where A = (21 + 22+ --- +z,,)/n.

8 Inequalities Between Means

We encounter the term mean value in meany different situations; in
most cases it refers to the arithmetic mean of the values z,,zo,...,z,,
determined by the relation

Ty + T2+ -+ 2y,

. (81)

An(zls L2y--, zn) e
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However, there are also other kinds of means; the best known among them is

the geometric mean of nonnegative numbers =1, 3, . - ., Tn, which is defined
by
Gn(mh T2y-44, I‘n) = VIT1Z2---Zy. (82)

Between the various kinds of means there are inequalities that can be
successfully used to solve a variety of problems. Especially the inequal-
ity between the arithmetic and geometric mean, more concisely known as
the AM-GM inequality, is among the most important results of the entire
theory of inequalities, with numerous applications (see 8.1-8.5). A gener-
alization of the AM-GM inequality to the case of weighted means will be
discussed and applied in Sections 8.6-8.9; the remaining sections are then
devoted to the theory of power means with arbitrary real degrees.

8.1 The AM-GM Inequality

Theorem. For arbitrary numbers a1,82,...,an € R} the inequality
G1+ar+---+an

- > 3feyaz--a, (83)
holds, with equality if and only ifa; = as =--- = a,.

ProOOF. If ax = O for some k = 1,2,...,n, then the statement is clear,
since the right-hand side of (83) vanishes. Let thereforeax > 0,1 <k <n.
Since the inequality (83) is homogeneous (see 2.7), the n-tuple a1,a32, .. - ,a,
can be normalized such that a;a, - - - 6, = 1. But then the assertion (83) is
identical with the result that was derived in Section 6.6.(v). This completes
the proof of the AM—GM inequality. O

Remark. Other proofs of (83) follow from the results of 3.4.(iv) and
6.7.(vi). The significance of the inequality (83) has stimulated the interest
of mathematicians in finding proofs by different approaches and different
methods (see, e.g., (1], [3])-

8.2 Applications of the AM-GM Ineguality

The proofs of numerous inequalities follow from comparing the sum and
the product of appropriate n-tuples of numbers, such as in the AM-GM
inequality (83). In some situations (examples (i)-(vii)) we require a lower
bound for the sum

A+ Az+---+ A, >2n- A1 Az--- A, (84)

while in others {examples (viii)—(xi))} we need an upper bound for the
product

(85)

n
A]_AZ"'AnS (A1+A2:: +Aﬂ) )
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We emphasize that the inequalities (84) and (85) hold for an arbitrary n-
tuple of nonnegative numbers Ay, As, . . . , A,,, with equality if and only if the
numbers A;, A, ..., A, are all equal. We have already seen the significance
of (84) and (85) for n = 2 in Sections 4.3 and 4.5.

(i) Show that if a > 0, then @’ —3a% + a% +1 > 0, and that this inequallty
is sharp when a # 1.

SOLUTION. By (84), the triple of numbers all,a4,1 satisfies
a' +a?+1>3-Vall-a4-1=3a°,
and equality occurs if and only if a'! = @? = 1, that is, @ = 1. This implies

the assertion. D

(ii) Show that for each a > 0 and for each integer n > 1 we have

am 1
<7 N
l1+a+a2+---+a2® — 2n+1

SOLUTION. By (84) the numbers 1,a,d?, -..,a%" satisfy

1+a+a®+---+a® > (2n+1)- "V1-a2-..a2n
=(2n+1). "Var@+) = (2n + 1)a™,

which is equivalent to the desired inequality. D

(iii) Determine the largest value p € R for which the inequality a2b°c* +
ab+ be+ ca > pabe holds for arbitrary numbers @, &, c € R*.

SoLuTION. If we set @ = b = ¢ = 1, we obtain the condition p < 4. On
the other hand, by (84) the four numbers a2b?c?, ab, be, ca satisfy

a?b%c? + ab+ be+ ca > 4 - Va2b2c2abbeca = 4abc.

Hence the desired largest value of p is equal to 4. D
(iv) Show that if 0 < b < @, then we have the inequality

1
+_(:I.—_b)b23'

SOLUTION. By (84), applied to the number triple b,a—b, and [(a — —~b)b 1,
we have

1
a+(a_b)b=b+(a—b)+( b)b— \/b(a b) - ( —b)b 3. D
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(v) Show that each a > 0 satisfies the inequality

at+9 14

10a 5

SOLUTION. We apply (84) with an appropriate quadruple of numbers:

a'*+9 a4 3 3 3 i/as 3 3 3 2
—_ — > - — - - 3 v .
06 107106102 T10e>2 V10 108 102 108 5 V¥
Now it suffices to note that /27 > 2, since 27 > 16 = 2. 0O

(vi) Show that if a,b € Rt, then 3a® 4 70° > 9ab?.

SoLUTION. The term ab® on the right is the geometric mean of the three
numbers a®, b3, b3. We therefore try to use the estimate

3a® +p1b® +p2b® >3- /3p1p2a®B =3 {Bpipy-ab®  (86)

for appropriate positive numbers p;, p2. We require that p; + p2 < 7 and
3- {3pipz = 9, that is, p1p2 > 9. We easily see that both conditions are
satisfied by p; = p2 = 3. This solves the problem. It is left to the reader to
explain why the estimate (86) is “most valuable” in thecase py =p;. D

(vii) Show that for any a,b,c € R} we have the inequality
2(a +b+c)(a® + b + ) > a® +b° + & + 15abe.

SoLuTION. Upon expanding the left-hand side and subtracting the sum
a® + b + ¢ from both sides of the inequality we obtain

a® + b + & + 2(a®b + a’c + b%a + bPc + Fa + *b) > 15abe.

The left-hand side L of this last inequality is a sum of 3+2- 6 = 15 terms;
by (84) we have

L >15- ¥/a*0*3(a%h)2(a?0)2(b%a)2(b%C)2(?a)2(c?b)? = 15abc. DO

(viii) Prove the inequality 1-3-5---(2n—1) <™ foralin > 1.
SoLuTiON. Applying (85) to the numbers 1,3,5,...,2n — 1, we obtain

1+3+5+-’;-+(2n—1)]",__ (%’)"=n..’

1-3-5---(2n—-1) < [

since 1 +3 +5+4--- + (2n — 1) = n? (see Chapter 1, Section 2). 0
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(ix) Show that if 0 < b < 2a, then 16b(2a — b)® < 27a*.

SOLUTION. We use (85) with the four numbers 3b, 2a—b, 2a—b, 2a—b (the
coefficient 3 of b is chosen such that the sum of all 4 numbers is independent

of b): ) .
which, upon multiplying by 16/3, gives the desired inequality. O

(x) Find the largest value of the expression V = (a — z)(b — y)(cz + dy),
where a,b,c,d € Rt are given numbers, and the real variables z and y

satisfy £ < a,y < band cz + dy > 0.

SoLuTION. The expression V is the product of the three terms in paren-
theses, whose sum, however, is not generally constant. But we have
e — ) + d(b— y) + (cz + dy) = ac + bd; hence we apply (85) with the
three numbers c{a — z), d(b — y), (cz + dy):

bd 3
cdV = cla — z)d(b — y)(ez + dy) < (“ + ) :
This gives the bound
(ac + bd)®
<M T
VS ~F%a (87)

with equality if and only if c(a—x) = d{b—y) = cz+dy; an easy computation
gives

__2ac—bd d y= 2bd — ac

=% A
The reader should verify that these values are admissible. The number on
the right-hand side of (87) is therefore the largest value of V. D

(xi) Show that for each k € N we have the inequality
(k + 1) 5
— :

11_22_33_.‘kk2 (88)

SOLUTION. We consider the system of the nx = 3(k? + k) numbers
11111 11 1

i§1§1§1§: 5’-.',E'E'“-'E.
Since their sum is equal to k, by (85) we have

1 1 1 E\™ 2 \™
1 — . —--. —<{—= ==Y .
22 33 )k ny k+1

By writing down the opposite inequality for the reciprocals, we obtain the
inequality (88). D
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8.3 Euzercises
Using (84), prove the inequalities (i)—(vii), where a,b,c € R*:

(i) a* +0® —8a® +4a+4>0.

(i1) a%(b +c) + *(c +a) + c2(a + b) > 6abe.
(iii) a* + 2a3b + 2ab® + b* > 6a2D2.
(iv) 2/a+3- V8> 5- Vab.

3 6
) & ;”’ > 3ab® — 4.

(vi) a+£—2- >3
(vii) a"—lzu(aﬂtl-—-aai—l),ifa>l and n € N.

Using (85), prove the inequalities (viii)—(xv), where a,b,c,d € Rt and
k,m€N:

10
viii) ab?cPd?® < (“+2b’;03"+4d) i

(ix) (k2 + 3k)(k2 + 5k + 6)*+2 < (k2 4 5k + 4)*+3.
(x) 27a%b < 4(a + b)3.
(xi) 432ab%c < (a+b+c)S.
(xii) (1 —a)*(1 +a)(1+2a)*< 1.
(xiii) (b— a)*(b+ ka) < b**1,ifa < b.

E(xi1)
2k +1 C
= 1 _ 02 o3 . k(
(xiv) 1'-22.3 k_( - )
m_ ok 7 .
(xv) K™ -m "(k+m)

(xvi) Show that for arbitrary a1,a2,---,ax € R§ we have

+-o+ag)

k 1
(1+a1)(1+az)---(1+ax) < Z(al+02 41

=0

8.4 Further Applications of the AM-GM Inequality

In order to solve the following problems, which are somewhat more difficult
than those in 8.2, we will usually have to apply the AM-GM inequality
several times over. For clarity we will use the symbols 4, and G,, for the
two means introduced in (81) and (82). It is important that the reader
be well acquainted with these symbols, for instance through verifying the
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following relations (which hold for arbitrary ax,bx,c € RY):

a1+az+ -+ ap =n-Ay(a,az,-..,8,)
ayaz - --ap, = Gn(a7,a3,---,ay),
An(cay, .- . ,can) = ¢- An(ay, - .. az),
Gn(cay, ---,c85) = c- Gn(an,...,an),
Gn(ay,-. -ya-n.)g'n(bli ..o b)) =Gnlarhy,... :a'nbn)s

1 1 1
—_— < .
g“(a'l'---’a‘n) gﬂ(als--.pa‘n) (ak>0’ e n)

These will be used repeatedly in the solutions to the prohlems below.
We also remark that the lower index n with the symbols A and G
helps avoid misunderstandings in some ambiguous expressions of the type
A,(a,b,b,...,b). In this example we are dealing with the arithmetic mean
of n numbers: the number a and » — 1 numbers equal to b.

(i) Show that for arbitrary a,b,c € R§ we have the inequality

(a+ b+ c)a? + b +c) > 9abe.
SoLUTION. We prove the statement as follows:

L =9As(a, b,c) As(a?, 1%, c®) > 9Ga(a, b, )Ga(a®, V%, &)
= 9Ga(a®,b%,c%) = 9abc = R.

A different proof follows from the AM—-GM inequality applled to the 9
numbers that are obtained by multiplying out the left-hand side of the
given inequality. o

(ii) The harmonic mean of the numbers a;,as,...,a, € Rt is defined as
follows:

n
1 1 1-
asta;t-tg;

Hp(ay,az,--.,0,) = (89)

Show that the harmonic and geometric means satisfy the inequality
Hnla1,a2,-..,0,) < Gna1,az,...,a5), (90)

with equality if and only ifa; = a3 = --- = a,,.

SOLUTION. By definition (89) and by the AM—GM inequality we have

1 1
Hn(al,...,an)=An(lm + Sgn(_,__ 5 = Onlay,---,an),

with equality if and only if 1/a; = 1/az = --- = 1/ay,, that is, a; = a3 =
.-.=a’,‘.
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As a consequence of (83) and (90) we obtain an inequality between
the grithmetic and the harmonic means; this also follows from the
inequality (46). D

(iif) Show that for arbitrary a,b,c € R} we have

Vab+ Vbc+ Yea—1 < g(a+b+c).

SOLUTION. The desired inequality is the sum of the three inequalities

%—%5——-"“’, \’/b_c—%sb;c, and %E—-%sc“;“.

In view of symmetry it suffices to prove the first one of these,

a+b+1

ng"j(ﬂ,b, 1) S-AS(asbi 1) = 3 ]

and subtract %. o

(iv) Show that for arbitrary a;,az,...,a, € Rt we have

s , 8 ., ., S n?
S—ﬂl S—ﬂz .

wheren>2and S=a14az+---+an.

SOLUTION. To obtain a lower bound for the left-hand side, we apply the
AM-GM inequality twice:

S S S S
L=n-An('S—_"?l,..-.S_—%) > nG, (S—al'""S-—an)

1 1 ns
=nS'gn (S—ﬂ],’"-’.s__a:) - g,,(S—al,---:S_“n)

= nS _ n2sS
. A,.,(S—al,...,S—a,,) B (S_al)+"'+(s_an)
n®S n%S n? -

=nS—(01+---+a,.) S-S n-1

(v) Suppose that the numbers z),z3, . ..,z, are ali greater than -1, and
that their sum is equal to zero. Prove the inequality
A b 7] Tn

:1:1+l+a:2+1+'"+a:n+1

<0.
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SOLUTION. After rewriting the right-hand side we apply the AM-GM
inequality twice:

_@m+y-1_ (E@m+n-1_
Z]-I-l zn+1

L

1 1 1 1 )
— - -A i < . = —_— a3 -"3
"l (:cl+1' ’:r,,+l)_n ﬂg"(:l=1+1 zn +1
n n

= — <‘n—
Cn(z1+1,...,2n+1) — Az +1,...,z,+1)
n2 . n2
Tt T m A+ A (@ t) | (@t +Ta)+n
2
n ]
=n-— =0.
n 0+n

(vi) Show that for each integer n > 2 we have the inequality

1 1 1
1+-2-+§+---+;>n(\/"n+1—1)-

SOLUTION. If we denote the left-hand side by L,,, then

1 1 1
Ln+n=(1+1)+(§+1)+(§+1)+---+(;+1)
2 3 4 n+1 23 n+1)

=i+§+§+“'+T="~‘"(i=§'---'T

23 1 - 1)! "
> (§5- 10t = {7 = 0,

which, after subtracting the number n, gives the desired inequality. O

(vii) Show that if a3, a2, ...,a,,b1,b2,...,b, € R, then

Gn(al:azs su. 1011) + gn(bl'b:.’s e ‘lbﬂ) S gn(al + 61’0'2 + b2| veey0n + bn)
(91)

Furthermore, determine when equality occurs in (91).

SOLUTION. Dividing by the right-hand side, we rewrite (91) as follows:

aq a bl bn
1===3 n I ] < ]
g"(al-{-bl a"+bn)+g (01+bl an+bn)_1

which is the sum of the two AM-GM inequalities

ax Gn 1 a3 an
ey < ——+---
g"(al+b1' an+bn)_n(al+bl+ +an+bn)
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and

< = ]
Gn (a1+b1’ a,,+b,.) n(a;+b1+ +a,,+b,,

Hence (91) holds, with equality if and only if

a’l — 02 el a'n a.nd bl e = bl’l
ay + by az + by a, + by, a; +b a,,+bn'
which means that ay /by = a2/bs = -+ = a,/b,, that is, ax = th, (1 <

k < n) for an appropriate t > 0. It is easy to verify (for instance by direct
substitution into (91)) that this last condition for equality in (91) is also
sufficient. O

Remark. It is easy to verify that if we replace the symbol G,, everywhere
in (91) by A,,, then we obtain a trivial equality. This fact has an interesting
“dual”: The inequality

Aﬂ(aloaﬂ-, == 1aﬂ) " -An(bllb21 OO0 1bu) < -An(ﬂlblv a2b21 == 1aﬂbu)

holds by Chebyshev’s inequality (76) in 7.6 if the n-tuples a;,a2,...,a,
and by,be,...,b, have the same ordering; if the n-tuples have opposite
orderings, then the opposite inequality holds. If we replace the symbol A,
in this inequality by G,,, we get again a trivial equality.

(viii) Suppose that the sum of the positive numbers a,,aa,...,a, is equal
to 1. Prove the inequality

(+2)(+2) o2

SoLuTiON. For each k=1,2,...,n we have by the AM—-GM inequality

1 1 1 1
1+a—k —(n+1)An+1 (1) naklmks"'!mk)
1 1 1
> 1 . .
= (n+1)Gn+l( ,Mk- Mk‘ ,mk)

Multiplying these inequalities, we obtain

(”ali)'"(”f;) 21y "i/(n:l)n"'(n:n)"'

The proof is complete if we verify the inequality (na,)"(naz)" - - - (na,)" <
1, which is equivalent to G.(a1,62,--.,a,) < L. But this is the AM-GM
inequality for the n-tuple a;,4az,...,a,, sincea; +az2+---+a,= 1. O
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(ix) Suppose that the nonnegative numbers a3, 62,...,8n (n 2 2) have the
following property: If their sum is denoted by S, i.e., S =a1-+a2+---1+8Gn,
then the numbers by = § — (n — 1)ax, 1 < k < n, are nonnegative as well.
Prove the inequality a1a2---a, 2> bibz--- b,

SoLuTION. First we note that

bo+bs+ - +by
=[S~ (n—Daz] +[S~ (n — Vas] + -+ [§ — (n — a)
=n-1)S—(rn—1)(az+a3+---+ax)
=n—1}(S—az—a3—---—ay) =(n—1)ax-

Hence the AM—GM inequality for the (n — 1) numbers b2, ba, ..., b, can be

written as
a1 > "Vbeba---by,.

Similarly, we have ax > Gn—-1(b1,-- -, bk—1,0k41,---,bn) for k=2,3,...,n.
Multiplying these n inequalities together, we obtain

8182+ 2 "YU - bR = bybg - by - =

(x) Show that for each n € N we have the inequality
VZ-V4-VB--- V2n<n+l.

SOLUTION. We rewrite the left-hand side as one root:

2V22n—l . 42n—2 . 83n—-3 e (2“_1)21 . (2,;)20.

Underneath the radical sign we have the product of 2" — 1 numbers: 2!
times the number 2, 2*—2 times 4, ... , 2 times the number 2"}, and once
the number 2". If we take the additional factor 1, the product will not
change. The root in question is then the geometric mean of this 2"-tuple;
by the AM—GM inequality it is then at most equal to

1 on— - _ 1
on (2" 12427 2. 44...42.27 ‘+2"+1)=2_“(n2n+1)

1
=n+2—n<n+1.

However, it is possible to prove a sharper bound without the use of the
AM-GM inequality:

V3. Va-UB..- o = obtitivotd = 02-F 4

where the sum in the exponent was determined in Chapter 1, Example
2.37. O
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8.5 Ezxercises
(i) Show that for arbitrary a;,as, - -.,a, € Rt we have the inequality
(a1 +az+---+a)at ' +a 1 +--- 4+ a7 ) >n2a;02---an.

(ii) Use (84) to give another proof of the consequence (46) of Cauchy’s
inequality.
(iii) Show that if a;,ag,...,a, € R} end by, bs,...,b, € R*, then

1 d .1 1G2---Qp
e a2y > pfA2 0
nJg ";bi =V Bubz--bs
(iv) Show that if a,b,c € R}, then
\/a2+b2+c'3(ab+bc+ca+ \/aﬂb?+b2c2+c2a2)

>3(1+ v3) abe.
(v) Show that for arbitrary a,,as,...,a, € Rt,n > 3, we have
Gy—a3 G2—CG4 | Gn1—01 K Gn—ap >0
as + az az+ay a, +ap ay+a2 —
(vi) Show that for each integer n > 2 we have the inequality
1 1 1 1
1+§+§+"'+; < 1+n(1—m).
(vii) Show that for arbitrary numbers a, by, bs,...,b, € Rt we have
+ +---+ 2 .
by +bs  bo4b3 b, + b 2(by +b2+---+by,)

(viii) Suppose that the product of the positive numbers a;,a,...,a; is
equal to 1. Show that for each n € N we have

(n+e1)(n+a2)---(n+ax) > (n+ 1)~

(ix) Suppose that the sum of the positive numbers a;,az, . . ., ay, is equal
to 1. Show that for each real number b > 1 we have the inequality
aj az Gn n
.- >
b—al+b—a2+ +b—a,.‘bn—1

(x) Suppose that the sum of the positive numbers a,, ay, . . ., a, is equal
to 1. Prove the inequality

G- @) () e

Prove the inequalities (xi)-(xii) for arbitrary a,,a,,...,a, € R:
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a? al df a2 1
1 Go---Q <__1+_+_.§.+...+L+._.
(i) azaz - 2 4 8 2n 20

"'(xii) V(]. +a1)(l1+az)---(14a,)>1+4 Ya10z2---Gn -

8.6 Weighted Means

Sometimes, in determining the mean value of numbers z,,Z3,--.,Zn, We
associate with different numbers z; different levels of “importance,” indi-
cated by weight coefficients p; € R*. The weighted arithmetic mean is then
defined by the expression

P1Z1 + PaT2 4+ - - + PnZn
PP+ +pn

-A?(xl.ﬂfz, iy Zn) =

It is convenient to normalize the weight coefficients p; in such a way that
their sum is equal to 1. We achieve this by introducing new coefficients

Pj .
U; = 1<3<mn),
7 pm4p+-+pe (1<j<n)

since clearly v; +v2 + - - - + v, = 1; the relation for the mean then simplifies
to

A¥(zy, 22,...,2,) =171 + T2 + +++ + VpTn. (92)

‘We also define the weighted geometric mean

g,';v(:i:l,:cg,...,z,,) =$:1I'2’2 "':5:"'; (93)
then the question arises whether the AM-GM inequality also holds in this
more general situation. (If in (92) and (93) we set v; = =--- = v, = 1,

we get formulas (81) and (82) for the original nonweighted means A, and
G,.-) The following theorem gives an affirmative answer.

8.7 The AM-GM Inequality for Weighted Means

Theorem. Let the sum of the positive numbers vy, va,...,v, be equal to 1.
Then for arbitrary numbers ay, as,...,6n € RY we have the inequalily

v1a; + a2 + -+ 4+ va6, 2> @y'a3? - al”, (94)
with equality if and only ifay = az =--- = a,.

PROOF. We restrict ourselves to the case where the numbers vy, v, . . . , Uy,
are rational (the general case will he dealt with in Section 9). Then there
exists a number k € N such that all numbers m; = kv; (1 € 3 < n) are
positive integers. Furthermore,

my4+ma4-cdm, =k(vi+va+---+v,)=k-1=k.
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We now use the AM—GM inequality for the following set of & numbers: m,

times the number a;, m; times az, . - ., M, times a,. We thus obtain
m —
I 3T Y3 Peln > {falrape el (95)

which proves (94), since m;/k = v; (1 < j < n). By the result 8.1 we have
equality if and only if the above set of kK numbers consists only of identical

elements, that is, when ¢; = a2 = --- = a,. This implies the assertion
about equality in (94), and the proof (for the case v; € Q, 1 < j < n) is
complete. ]

8.8 FEzxamples
We now give six examples for the use of inequality (94).

(3) We call the positive numbers p, ¢ associated if they satisfy % + % =1.
(Note that both numbers are greater than 1.) Prove the so-called Young
inequality: If p, ¢ are associated numbers, then the inequality
P
Ny (96)

y<—+<
P q

holds for arbitrary z,y € Rt.

SoLuTiON. If p, g are associated numbers, then we can use (94) withn = 2
and v; = 1/p, v2 = 1/¢. Then with a; = z? and a2 = y¥ we immediately
obtain (96).

We remark that the Young inequality is in fact equivalent to (94) for
n = 2: If v;,v; are weight coefficients in (94) for n = 2, then the numbers
P =1/vy,q = 1/vz are associated. O

(ii) Show that if a,b,c € Rt and ¢ # 1, then
ac® + i >a+b.
cﬂ
SoLuTIioN. If in (94) with n = 2 we set

a b b -
vp=—>, o1 =C¢C and a;=c¢°
2 a-]—b’ ? 2 ]

L a+bd’

we obtain (in view of the fact that a1 # a2) the strict inequality

a —a  (byallatb) [ —arb/a+b) _
. -e® > (c (c =
a+1b S Yot (<) (™) L

which upon multiplying by a + b gives the desired inequality. O
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(iii) Show that if 0 < z < 1, then

<z <z’—z+1 (97)
2—-zx

SoLuTioN. If0 < = < 1, we can use (94) withn =2 and set vy = a; ==,
v = 1 — 1, and a2 = 1. Since a1 < a2, we obtain the strict inequality
-2+ (1—2z)-1> z*-1"=, which is the right-hand part of (97). If we
interchange the numbers a, and a2, weget z-1+ (1 —x) -z > 1% - g'°%,
that is, 2z — z2 > z'~Z, and this gives the left part of (97). 0

(iv) Show that if a, b, c are side lengths of a triangle, then

a b c
(1+b—c) _(1+c—a.) _(1+a b) <1
a b c

SOLUTION. We use the inequality (94) with n = 3 for the coefficients

a b c
= — = —_— d v3=——F-—. 98
M=ttt e T atb+e 2 BT oibye (%8)
Then for the (positive!) numbers
al=l+b_c, az=l+c—a, and aa=1+a—b
a b
we obtain the inequality
b— b+c— —
a‘l"a;’ag’5v1a1+vgag+v3aa=a+ ct+b+c—at+c+a b=l,

at+b+c
which upon raising to the power a + b+ ¢ gives the desired inequality. O

(v) Show that for arbitrary numbers a, b, ¢ € Rt we have the inequality

a+ b+c)“+b+c

abb £

e s (258
SOLUTION. We use again (94) with n = 3 and the coefficients (98).
However, this time we set a; = 1/a, az = 1/b, and a3 = 1/c; we thus

obtain 1\ s vs
1 1 nn U  v3 3
- = = < — —_ —_ = —
(a) (b) (c) T a + p T c a+bdb+c

vy _ V2 vz _ 1

a b c a+b+c

If we write the opposite inequality for the reciprocals and then raise both
sides to the power a + b + ¢, we obtain the desired inequality. O

since
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(vi) Prove the general Bernoulli inequality: If z € R, p€ R, > —1, and
p # 1, then

(1+z>21+4pz (p>1), (99)

respectively
Ql+z)P<1+4pz (0<p<l), (100)
with equality in (99) or (100} if and only if 2 = 0 (compare with 3.3.(iii)).

SOLUTION. If0< p< 1, wesubstitutein (94) n=2, v, =p,va3=1—p,
a1 =1+z > 0, and a3 = 1; we thus obtain

pl+2)+(1—-p)-12(1+z)P-11"7,

that is, inequality (100), with equality if and only if a; = a2, which means
z=0.

Now let p > 1. If 1 + pz < 0, we obviously have a strict inequality in
(99). If 1 + px > 0, then by the already proven inequality (100) we have

1
(1+pa:)%$1+5-pa:=1+a:.

(Equality occurs only for z = 0.) From this we obtain (99) after ra.lsmg
both sides to the power p.

8.9 FEzercises

(i) Show that the weighted means (92) and (93) of the positive num-
bers zi, ..., Z, have the fundamental mean property. Their value is
at most (at least) equal to the largest (smallest) of the numbers

Tyy---3Tn-
(ii) Show that if a,b,p € R* and p < 1, then (a + b)Pa’ P < a + pb.

Show that (iii)—(v) hold for arbitrary a,b,c,d € R*:

(iii) ad>°+bd"® +ed*t2a+b+c
(iv) acbd(c + d)c-i—d < Ccdd(ﬂ + b)‘:"'d

a+b+c a b B)e
v) (L’H'c) > s (b+)%c+a)’(a+ )

3 2a+btc

(vi) Show that if the sum of the positive numbers e, b equals 1, then the

inequalities a®°® < 2ab and 1 < a%b® < 0? + b? hold. When does
equality occur in these inequalities?

(vii) Prove the inequality ab'~¢ + (1 — a)°(1 — b)1~° < 1 for arbitrary
positive numbers a, b, ¢ less than 1.
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Prove (viii) and (ix) with the help of Bernoulli’s inequality in 8.8.(vi):

(viii) (1+z)** > (1 +z+ z-)“ (z>—1,a>0).
(ix) (1+%)aI < (1+%)b (0 <a<b)

(The inequality (ix) was derived for integerse > 2and b=a+11in 3.4.(vi)
and 3.8.(iv).)
(x) Prove Hélder’s inequality: If p, g are associated numbers (see 8.8.(i)),

then for arbitrary numbers Z1,%2,---,Tn, Y1, ¥2:---2%n € RT we
have

n . Yp s n 1/q
3 e < (zx:) (z yg) . am
k=1 k=1

k=1

Use (96) and proceed in a similar fashion as in the second proof of
5.4. (Note that for p = ¢ = 2, (101) becomes Cauchy’s inequality

(42).)
(xi) Use (101) to show that if a,b,c,d € R, a®+5° < 1,and °+d° <11,
then a?c® + b?d® < 1.
*(xii) Use (101) to prove Minkowski’s ineguality: If p > 1, then for
arbitrary numbers Z1,%2,-- - » Tn, ¥1,¥2: - - - » ¥n € RT we have

1/p

- 1/p n 1/p n
Y (zx+ yk)p) < (Z I:) + (Z y:'?) ]
=1 k=1 k=1

Proceed as in 5.5.(iv) for the proof of the triangle inequality (46).

(xiii) Let c,p1,p2,..-,Pn € RT and suppose that the positive variables
T1,%2,-- -, Ty satisfy the condition z) +z3+-- - +z,, = c. Show that
the expression

4 SR
attains its largest value if and only if
n_T2  _%Tm
P Pn

8.10 Power Means

Up to the end of Section 8 we will assume that a,,es,...,a, are arbitrary
positive numbers. We will derive several useful inequalities between the
sumns af + af + - - -+ a7, for various r € R. For this purpose it is convenient
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to introduce the so-called power means. By a mean of degree r of the
numbers a;, az, ..., a, we understand the value

a{+a;+---+a;)*
n ]

M (61,2, .-, an) = ( (102)

which is meaningful for each r € R\ {0}. We note that for r = 1 (resp.
r = —1) this is the arithmetic (resp. harmonic) mean (compare with (81)
and (89)). The following theorem deals with the comparison of the power
means and the geometric mean.

8.11 Power Means of Positive and Negative Degrees
Theorem. Ifr <0 < s, then
M;(alv az,--- 'sa‘n) S gﬂ(all az,... 1an) S M:(“l:“z; 000 sa'n): (103)
with equality anywhere in (108) if and only ifa; = a2 = --- = ay.
PROOF. We obtain the right part of (103} if we raise the AM-GM
inequality
On(ai.a3,...,0;) < Anfa,63,....0;)

to the positive power 1/s; the left part is obtained by raising the AM-GM
inequality G, (a],a3,---,al) < An(a],as,.-.,ay) to the negative power
1/r. This also implies the statement ahout equality in (103). O

Remark. Using mathematical analysis one can show that
Gn(a1,82,-.-,65) = lim M7 (a1, 02,...,6x).
Therefore, the geometric mean is often called mean of degree zero.

‘We now state the main result on power means.

8.12 Inequalities Between Power Means
Theorem. Letr,s €R, r<s, and rs # 0. Then

M3 (61,82, ---,85) < M (61,03,...,485), (104)

with equality if and only tfay =az = ---=a,.

The inequality (104) for integers r = 1 and s > 1 is equivalent to the
earlier inequality (80) in Exercise 7.8.(v).

ProoF. By Theorem 8.11 it suffices to examine only two cases: 0 < r < s
and r < s < 0. First let 0 < r < s. If we set p = s/r > 1, then a} = B,
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where by = af (1 < k < n). Therefore, upon raising to the power r, the
inequality (104) has the form

h+m+m+m5(@+$+m+¢yh_ (105)
n n

It suffices to show that (105) with p > 1 holds for arbitrary positive numbers
bi, with equality if and only if by = by = --- = by Since we are dealing
with a homogeneous inequality in the variables by, bo, . - - ybn (see 2.7), we
may assume that
by +by+---+ by =n. (106)
This means that for the numbers z; = b — 1 we have
L1+ Za+--FTn=MBr+b2+---+b)—n=0. (107)
Since zx > —1 and p > 1, Bernoulli’s inequality (99) implies
B=(0+z)P21+pzx, 1<k<n (108)
Adding the inequalities (108), we obtain in view of (107),
b€+b§+°"+b£ >n+p(xy +22+---+z2)=n,
which implies (105) under the assumption (106); equality occurs in (105) if
and only if there is equality in (108) for each k, and by 8.8.(vi) this means

that zx =0 (1 < k <mn), thatis, by =bg=---=b,=1.
In the second case, when r < 8 < 0, (104) follows from the inequality

Me(AL D) ear (Ll L
n al'az' ’an — i al’az’-..'an ;|

which has already been proven, since for each t # 0 we clearly have

1 1 1 1
M“’(—,—,...,— e .
™ \a1 a2 an) Mt(ay,a;s,.--,a,)
This completes the proof of the theorem. D

8.13 FEzxzamples
We show how inequalities between power means can be applied.

(i) Find the smallest value of the sum a® +b2 + ¢ for positive real numbers
a, b, ¢ satisfying the condition a® + b + % = 27.
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SOLUTION. By Theorem 8.12, the power means of degrees 2 and 3 for the
numbers a, b, ¢ satisfy the inequality

Vaz+bz+c"" < Va.3+b3 +c3
3 - 3 )

Upon substituting a2 + b + ¢ = 27 and some simplification we obtain

the bound a® + b® + ¢® > 81. Using Theorem 8.12 again, we see tbat the

equation a® + b3+ ¢® = 81 occurs if and only if @ = b = ¢(= 3). The desired

smallest value of the sum a® + b® + ¢® is therefore equal to 81.

If we wanted to find its largest value (under the same condition), Jensen’s
inequality from Section 2.7 (with exponents r = 2 and s = 3) would give
the bound a® + 4% + & < (v/27)% = 81 - /3. It is also clear that the value of
the sum a® 4 b® + @ can get arbitrarily close to 81 - /3 (since, for instance,
the number a can be arbitrarily close to v/27). A largest value of the given
sum therefore does not exist (in the set of triples of positive numbers a,b,c
satisfying the condition a® + b 4 ¢ = 27). O

(ii) Show that for arbitrary numbers a, b,c € Rt we have the inequality
8(a® + b® + )2 > 9(a® + be)(b? + ca)(c? + ab).

SOLUTION. With the help of (85) we first estimate from above the product
of the three terms on the right,

[(a2+bc)+(b2+ca)+(c2+ab)

R<
<9 3

which together with the inequality ab + bc + ca < a2 + b + 2 (see (27))
leads to the conclusion that

3
] = %(a2+b2+c2+ab+bc+ca)3,

R< %(2& + 28 + 2%)8 = g(aﬁ + 82 428,
Therefore, the proof is complete if we can verify the inequality
g(a2 + b2 + %) < 8(a® + b + A)? (= L);

this, however, is clearly equivalent to the inequality between the means
of degrees 2 and 3 of the numbers a,b,¢, which is a special case of
Theorem 8.12. 0

9 Appendix on Irrational Numbers
Let us first recall that the general power a” with real exponent r is for each
a > 0 defined as the limit

a" = lim a™®, (109)

k—s00
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where {r(k)} is an arbitrary sequence of rational numbers converging to r.
Of course, it needs to be shown that the limit on the right of (109) exists
and is independent of the choice of the sequence {r(k)} (see [5], p- 61).

ADDITION TO 1.10. We need to show that a” > b" under the assumption
that @ > b > 0 and r € R* \ Q. Some sequence {r(k)} of numbers in Q*
converges to this number 7. By the proof in 1.10 we have a"™*) > b ®) for
all k, and by taking the limit as £ — oo we obtain by (109) the no longer
strict inequality a” > . However, in the case a” = b" we get

a= (ar)llr — (br)]./r = b,
which contradicts the assumption a > b. Hence a™ > b". D

ADDITION TO 8.6. We have to prove the assertion concerning inequality
(94) in the case that some of the numbers v, ¥, .. . , v, are irrational. Given
¥y, Va,. . . , Un, we find sequences {v;(k)} of positive numbers in Q such that
vj(k) — v; as k — oo (1 £ j £ n), and then we define numbers

’ _ ”'(k) .
) = o T+ @ €Y (1Si<n kEN)

By the proof of 8.6 we have for each k,

vi(k)ar + vh(K)az +--- + vy (K)an > e MW ... glh®),

which, upon taking the limit as k — oo, implies (94), since v}(k) — v;

1<7< n) It remains to show that (94) is a strict mequa.hty unless

ay = a3 = --- = a,. In that case we choose u;,uy,...,u, € Q% such that

u; <wj (1 5 j < n), and we define the positive numbers

n

‘u—-zuj, -=—, Ww; = v5 — Uy, w=Zw,—, w;=% (110)
7=1 i=1

Since u € Q*, by the proof of 8.6 we have the sharp inequality

uhay +uhaz + - + than > al1al? ... gln; (111)
by the above we also have
wias + whag + - + Wian > alial? .- q¥n. (112)

If we raise (111), resp. (112), to the power u, resp. w, and multiply the
resulting mequa.htles together, we obtain (in view of the fact that u; = u.u
w; = wwj, and v; = u; +w;)

w

n n

I i uitwn || o UnWn _ V1 V32 v,
E uja; E wia; | >aj ay'" =aj'ayz? ---aln.
=1 j=1
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The inequality (94) is therefore strict if
1 /3 w
n n n
Zv,—a,- > Z wia; Z wia; | . (113)
Jj=1 J=1 Jj=1
We note that the identity
n n
u+w=2(u,—+w,—) = Zv,— =1
i=1 i=1
holds; hence for arbitrary r,y € R* we have uz+wy > z%-3*. If we choose
n n
Ti= Zu;-a,- and y= Zw;-aj,
=1 =1
we obtain (113), since by (110) we have

n n g
ur +wy = Z(uu;- +wwjla; = Z(u,— + wj)a; = Zv_,—a,—. DO
J=1 j=1 j=1






3
Number Theory

In this chapter we deal with problems involving integers. We will be mainly
concerned with questions of divisibility of integers, and also with solving
equations in integers or natural numbers.

Although the natural numbers and more generally the integers represent,
in a certain sense, the simplest of mathematical structures, the investigation
of their properties has presented generations of mathematicians with a large
number of very difficult problems. Often these are problems that are easy
to formulate, but are stili not solved. Let us mention a few of the most
famous among them: The twin prime conjecture (are there infinitely many
primes p such that p + 2 is also a prime?), the Goldbach conjecture {can
every even number greater than 2 be written as a sum of two primes?),
or the crown among all the problems of number theory, namely Fermat’s
last theorem (are there natural numbers =, z, y, z such that n > 2 and
"+ y" = 2"7?)

We note that in the six years between the first and the second Czech
editions of this book, there have been very significant developments on this
last problem. In June of 1993, Andrew Wiles, a professor at Princeton Uni-
versity, announced during a lecture at a conference in Cambridge that he
had proved the so-called Shimura-Taniyama conjecture; this conjecture was
already known to imply Fermat’s last theorem (that is, the nonexistence
of natural numbers n, z, ¥, z, as mentioned above). After initial problems
with Wiles’s proof, Fermat’s last theorem is now settled beyond any doubt.
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1 Basic Concepts

‘The concept of divisibility of numbers is encountered already in elementary
school; we are therefore dealing with a rather familiar notion. However,
since it is very important for this chapter, we will briefly recall the definition
and some basic properties.

1.1 Divisibility
Definition. We say that the integer a divides the integer b (or b is divisible

by a, or b is a multiple of a) if there exists an integer ¢ such that a-c =Ab.
In this case we write a | b.

The following easy statements follow directly from the definition; we leave
the proofs to the reader as exercises, with hints given in the appendix.

The number 0 is divisible by every integer; the only integer divisible by
0 is 0; for any number a we have a | a; for arbitrary numbers @, b,c the
following four implications hold:

a|bAblc=>a]c, (1)
ajbAhalc=>a|b+cAra|b—c, (2)

c# 0= (a|b<+= ac| be), (3)
a|bAb>0=>a<b (4)

We also recall that numbers that are (resp., are not) divisible by 2, are
called even (resp., odd).
We are now ready to solve a few problems.

(i) Determine for which natural number n the number n? + 1 is divisible
by n + 1.

SOLUTION. We have n? —1 = (n4-1)(n —1), and thus n+ 1 divides n2—1.
Let us assume that n+ 1 also divides n2 + 1. Then it also has to divide the
difference (n? + 1) — (n2 — 1) = 2. Since n € N, we have n+ 1 > 2, and so
from n+1| 2 it follows that n 41 = 2; hence n = 1. Thus the only natural
number with the given property is 1. D

(ii) Find all integers a # 3 for which a — 3 | a3 — 3.
SOLUTION. By equation (5) in Chapter 1 we have
a®—27=(a—3)(a®+3a+9),

and therefore a — 3 divides a® — 27. Let us assume that a— 3 | a® — 3. Then
a — 3 also divides the difference (¢ — 3) — (a® — 27) = 24, and conversely,
if @ — 3 | 24, then a — 3 also divides the sum (a® — 27) + 24 = a3 — 3.
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The number 24 is divisible only by +1, £2, £3, 14, +6, 18, +12, +24;
therefore, @ — 3 must be equal to one of these numbers. This means that
a€{-21,-9,-5,-3,-1,0,1,2,4,5,6,7,9,11,15, 27} O

(iii) Show that for each n € N,
169 | 3%*+3 — 26n — 27.

SOLUTION. We set A(n) = 33*+3 — 26n — 27 and rewrite 33**3 using the
binomial theorem:

n+1 n+ 1 )
33ﬂ+3 —_ 27ﬂ+1 = (26 + 1)ﬂ+1 = Z ; 26°
=0

1

L
=1+26(n+1)+2( . )26'.

=2

Since for i > 2 we have 26 = 169 - 4 - 262, all the summands in the
summation above are divisible by 169, and we have therefore

n+1
E (" + 1)26" = 169¢
=2 L

for some natural number £. Finally, A(n) = 14+26(n+1)+169t—26n—27 =
169t and 169 | A(n). O

(iv) Show that there are infinitely many natural numbers n such that 2" +1
is divisible by n.

SOLUTION. We will show that all numbers of the form n = 3%, where

k € N (i.e., infinitely many numbers), have the desired property. We prove
this by induction. If k = 1, then n = 3 and clearly 3 | 22 + 1. Let us now

assume that for some k € N we have 3* | 23" + 1. Then there exists an
integer m such that m - 3 = 23" + 1. The binomial theorem gives

23" = (2P =(m-3*-1)

=m3.33k _m2_32k+1 +m_3k+l —1=t'3k+1—1,
where t = m3 - 3%%—1 _ ;2. 3k + m is an integer. Thus,
gk+1 | 93+ +1,

which was to be shown. O
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1.2 FEzxercises

(i) Determine the integers n for which 7n + 1 is divisible by 3n +4.
(ii) For which natural numbers n do we have 3n + 2 | 5n% +2n + 4?

Show that (iii)—(vi) hold for arbitrary n € N:

(i) 9| 4" + 150 —1. (iv) 64| 3%+3 4 40n — 27.
vy n?2|(n+1)" -1 (vi) (2" —1)? 2"~V 1.
(vii) Show that for arbitrary a,b € Z we have 17 | 2a + 3b if and only if
17 | 9a + 5b.

(viii) Show that if n | 2" — 2 for some integer n > 2, then also m | 2™ —2
for m=2"—1.

1.8 The Diwvision Theorem

Theorem. Given arbitrary numbers a € Z and m € N, there exist unique
numbersge Z and r € {0,1,...,m — 1} such thata =qgm +r.

Proor. First we prove the existence of the numbers g and r. We assume
that the positive integer m is fixed, and we prove the result for arbitrary
a € Z. To this end, we first assume that a € Np, and prove the existence of
¢ and r by induction:

If0 <a < m, we choose ¢ = 0, r = a, and the equality ¢ = ¢gm +r
clearly holds.

Now we assume that a > m and that we have already shown the existence
of the numbers ¢,r for all &’ € {0,1,2,...,a — 1}. Then in particular, for
a’ = a —m there exist ¢, 7’ such that a’ = ¢'m++' with ' € {0,1,...,m—
1}. If we choose ¢ = ¢ +1and r = 7', then we have a = o’ + m =
(¢’ + 1)m + ' = gm + r, which was to be shown.

We have thus shown the existence of the numbers g, r for arbitrary a > 0.
If, on the other hand, ¢ < 0, then we may use the fact that for the positive
integer —a there exist numbers ¢’ € Z, v € {0,1,...,m — 1} such that
—a=¢m+7r;hencea=—g¢m—7v.Ifr =0, wesetr =0, g = —¢; if
T >0, weset r =m—7’,¢g=—¢ — 1. In both cases we have a = g- m +r,
which proves the existence of numhers ¢,r with the desired properties, for
allaeZ, meN

We will now prove uniqueness. We assume that the numbers q;,¢2 € Z
and ry,72 € {0,1,...,m — 1} satisfy a = q1m + 71 = gam + r2. Rewriting,
we obtain ry —72 = (g2 —q1)m, and thus m | ry —r,. Since 0 < r; < m and
0 <r; <m, we have —mm < 1) — 72 < m, and by (4) we get r; — 72 = 0.
But then also (g2 — ¢;)m = 0, and therefore q, = g2, 71 = 2. Hence the
numbers g, 7 are uniquely determined, and this completes the proof. @]

The numbers g and r in Theorem 1.3 are called the (incomplete) quotient
and remainder, respectively, in the division of a by m with remainder. It
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becomes clear that this terminology is appropriate if we write the equation
@ = mqg + r in the form

_a_=q+1, where OSL<1.
m m m

It is also useful to convince oneself that m divides a if and only if the
remainder 7 is zero; this follows from Theorem 1.3 as well.

We will now give some examples to illustrate the usefulness of
Theorem 1.3 for solving number theoretic problems.

1.4 Ezamples

(i) Show that if the remainders of a,b € Z upon dividing by m € N are 1,
then the remainder of ab upon dividing by m is also 1.

SoLUTION. By Theorem 1.3 there exist s,t € Z such that a = sm + 1,
b= tm + 1. Multiplying, we obtain the expression

ab=(sm+1)tm+1)=(stm+s+tym+1=gm+r,

where ¢ = stm+ s+t and r = 1 are, by Theorem 1.3, uniquely determined;
the remainder in the division of ab by m is therefore equal to 1. O

(ii) Show that among m consecutive integers there is exactly one that is
divisible by m.

SoLuTION. We denote the given numbers bya+1,a+2,...,a +m. Ac-
cording to Theorem 1.3 there exist uniquely determined numbers g € Z,
r € {0,1,...,m — 1} such that @ = gm + r, which implies

a+(m—-r)y=gn+r+m—r=_(g+1m,

and thus m divides a + (m — ), which is one of our m numbers. If, ocn
the other hand, a + k, k € {1,2,...,m}, is divisible by m, then we have
a + k = c¢- m for an appropriate ¢ € Z, and thus a = (¢ — 1)m 4 (m — k).
The uniqueness of the number r now implles that k = m —r, and therefore
only a + (m — r) is divisible by m. O

1.5 Eazercises
Show that
(i) the sum of the squares of two consecutive natural numbers, divided
by 4, leaves the remainder 1;
(ii) the remainder of the square of an odd number, divided by 8, is 1;

(3ii) for an odd k and a positive integer 7, the number k2" —1 is divisible
by gn+2_
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1.6 The Greatest Common Divisor and the Least Common
Multiple

Definition. Let the integers a;,a; be given. Any integer m such that
m | a; and m | a3 (resp. a; | m and a3 | m) is called a common divisor (resp.
common multiple) of a; and az. A common divisor (resp. multiple) m > 0
of a; and a; that is divisible by any common divisor (resp. divides any
common multiple) of a;,as, is called greatest common divisor (resp. least
common multiple) of a; and a; and is denoted by (a1, az) (resp. [a),az2]).

It follows directly from the definitions that for any a,b € Z we have
(a,b) = (b,a), [a,b] = [b,q], (a,1) = 1, [a,1] = |g]|, (¢,0) = |a]|, [2,0] = 0.
However, it is not yet clear whether the numbers (a,b) and [a, b] exist at
all for every pair a,b € Z. But if they do exist, they are unique, since for
any two numbers m;,ms € Np we know hy (4) that if both m; | ms and
my | m,, then necessarily m; = mo. We prove the existence of (a, b) (along
with an algorithm for finding it) in Section 1.7, while an existence proof of
[a,b] and a method of determining its value will be described in 1.9.

1.7 The Euclidean Algorithm

Theorem. Let a),a2 be natural numbers. For each n > 3 such that
an_1 # 0, we denote by a, the remainder when a,_» is divided by a,_;.
Then we will eventually get ax =0, and in this case ax—1 = (a1, a3).

PROOF. By 1.3 we have a2 > a3 > a4 > ---. Since we are dealing with
nonnegative integers, each number is at least one less than the previous
one, and therefore we necessarily arrive at the final step ax = 0, in which
case ax_1 # 0. From the definitions of the numbers q,, it follows that there
exist integers q;,42, - -,Qx—2 such that

a1 = ¢: - az -+ ag,
az; =gz - a3+ ay,

(5)
O3 = Qx—3 - Qk—2 + Qk—1,
Qg2 = Qk—2 - Qk—1.-

From the last equation it follows that ax_; | ax—2, from the second-to-
last that ax_; | ax_3, etc., until in the end from the second equation we
obtain ax_) | a3, and finally the first one gives ax_; | a;. Hence a;_; is a
common divisor of a;,az. On the other hand, an arbitrary common divisor
of a), a2 also divides a3 = ¢) — q1a9, and therefore ay = az — gqa3, . . ., and
finally also ax_1 = agx_3 — gx—3ax—2. We have therefore shown that aj_, is
the greatest common divisor of a; and a,. O
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1.8 Bézout’s Equality

Theorem. Any two integers a1,az have a greatest common divisor
(61,62), which is unique by 1.6, and there erist inegers ky, ko such that
(61,82) = kiay + koas.

PRrROOF. It clearly suffices to prove this theorem for a;,as; € N. We note
that if it is possible to express some numbers r,s € Z in the form r =
7181 + T2a3, 8 = 8181 + 8242, Where ry,74,81, 82 € Z, then we can also
express in this way

T+s8=(r1+3)a1+ (r2+ s2)az

and
c-r=(c-r1)a +(c-r2)as,

for arbitrary ¢ € Z. Since a; = 1-a; +0-a3 and ag = 0-a3+1-as, it follows
from (5) that we can also express in this way a3 = a; —q1 a2, 64 = a3 —goa3,
..., and finally ax_j = ax_.3 — gx_38x_2, which of course is (a,,az). 0

1.9 Emistence of the Least Common Multiple

Theorem. For arbitrary integers aj,as there exists the least common
multiple [a1,as), and we have (a1,a3) - [a1,a2] = |a; - agl.

ProOOF. The theorem is certainly true when one of the numbers a;, a3 is
zero. We may furthermore assume that both nonzero numbers a;,as are
positive, since a change in sign does not change the formula. We will be
done if we can show that ¢ = Z;‘}:-—j:—:j is the least common multiple of a;, a2.
Since (a3, az) is a common divisor of a; and ag, the numbers (a—:‘t’—) and
Ta_:.fzz_) are integers, and therefore

aiaa a3 Qa3

9= ln02) (ana2) 2 (en,02) "

is a common multiple of a; and as. By 1.8 there exist k), k2 € Z such that
(a1,a2) = ka1 + koaz. We now assume that n € Z is an arbitrary common
multiple of a,,a2 and we show that it is divisible by ¢. Indeed, we have
nfa;,njfa; € Z, and therefore the expression

n n n(kiay + kza n(ay,a n
LR (k101 + kza2) _ m(ar.@3) _n
a2 ai a1Gy a1Ga2 q

is also an integer. But this means that ¢ | n, which remained to be
shown. 0
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1.10 Divisors and Multiples of More Than Two Numbers

We will define the greatest common divisor and the least common multiple
of n numbers a,,az,-..,8, € Z in the same way as in 1.6. Any m € Z such
that m a1, m| a2, ..., m|a, (resp. a; | m, az | m, ..., a, | m) is called
a common divisor (resp. common multiple) of the numbers a1,a2,--., 05
A common divisor (resp. multiple) m > 0 of a;,a,,...,6, that is divisi-
ble by any common divisor (resp. divides any common multiple) is called
the greatest common divisor (resp. least common multiple) of the numbers
a1,82,...,a, and is denoted by (a1,4a2, - - -, a,) (resp. [a;,a2,...,a,)).
We can easily convince ourselves that we have

(a1, .18n-1,84) = ((@1,--.,an-1),Gn), (6)
[alv--aaﬂ—l:anl=[[a'l:---sa'n—l]3an]- (7)

Indeed, the greatest common divisor (ae;,...,a,) divides all numbers
a1,...,8n; hence it is a common divisor of a;,...,a,—3, and there-
fore it divides the greatest common divisor (ay,...,an—1), that is,
(a1,---,an) | ((@1,---,8r-1),an). Conversely, the greatest common divi-
sor of the numbers (a;,...,a,—1) and a, divides a,, but also all numbers
01, - --,ax-1; hence it divides their greatest common divisor, which means
that ((a1,...,an-1),a2.) | (01,...,axn). Together, this implies equation (6),
and (7) can be obtained in complete analogy.

With the help of (6) and (7) we can easily obtain the existence of the
greatest common divisor and the least common multiple of any n integers.
Indeed, we use induction on n: For n = 2 the existence is guaranteed by 1.7
and 1.9, and if for some n > 2 we know that the greatest common divisor
and the least common multiple exist for any n — 1 numbers, then by (6)
and (7) they exist also for any n integers.

1.11 Relative Primality

Definition. The numbers a,;,as,-..,a, € Z are called relatively prime (or
coprime) if they satisfy (a1, a9, . ..,a,) = 1. The numbers a,,as,...,68, € Z
are called pairwise relatively prime if for any i,j with 1 < i < j < n, we
have (a;,a;) =1.

In the case n = 2, these two concepts coincide, and for n > 2 pairwise
relative primality implies relative primality, but not conversely: For exam-
ple, 6, 10, and 15 are relatively prime, but they are not pairwise relatively
?rime,)since no two of them are relatively prime: (6,10) = 2, (6,15) = 3,

10,15) = 5.

1.12 Ezamples

(i) Find the greatest common divisor of 26% — 1 and 29! — 1.
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SOLUTION. Using the Euclidean algorithm:

291 _1=228(283_1)4228 1,
283_1= (235+27)(228_1)+27_1’
28 _1=2% 424 1 27 1 1)(27-1).

The desired greatest common divisor is therefore 27 — 1 = 127. O

(ii) Suppose that the natural numbers m, n satisfy m < n. Show that any
set of n consecutive integers contains two distinct elements whose product
is divisible by m - n.

SOLUTION. Let M be the given set, M = {a + 1,a +2,...,a + n}, with
some a € Z. By 1.4.(ii) there exists exactly one i € {1,2,...,n} such that
n | a + 1, and exactly one j € {1,2,...,m} such that m | @ + j. In the
case i # j the solution is easy, since we have m - n | (a + i){a + j), where
a+1,a+ 3 are distinct elements of M. Therefore, we now assurhe i = 5. We
set (m,n) =d, [m,n] = ¢; since by 1.9 we have mn = dg, the problem will
be solved if we can find two distinct elements of M such that one is divisible
by q and the other by d. The first one is easily found: Since the number a 4+
is a common multiple of m and n, we have g | a + i. Next we show that M
also contains the nummber a+i+4-d, which is divisible by d. Indeed, sinced | m
and d | n, there exist r,s € N such that m = dr, n = ds. The inequality
m < n implies r < s; thus v+ 1 < sand m+d =d(r +1) < ds = n. Since
t<m,wealsohavei4+d <m+d<n;hencea+i+de M. It is now
easy to verify that d | a + i + d: From d | m and m | @ + i it follows that
dia+i,andthusd|a+i+d. o

(iii) Show that there are infinitely many numbers of the form ¢,, = 1('%)-,
n € N, that are pairwise relatively prime.

SoLUTION. We will show that whenever we have k numbers ¢;,,¢,,,. .. ,¢;,
that are pairwise relatively prime, we can always find another index x4,
such that ¢;,,, is relatively prime to all of them. Let ¢ denote the product
of t"“t,',, oS00 ,t.'* and set ik+1 = 2¢+ 1. Then

oy, %(2c+ 1)(2c+2) = (c+ 1)(2c+1) = 26 + 3c+ 1

has the desired property. Indeed, for (¢;,¢;,,,) = d > 1 to hold for some
index j € {1,2,...,k}, we would need to have d | ¢;,, which would imply
d|c=1t;, ---t,, and thus d would be a common divisor of c and 2¢% 43¢+1;
this, however, is impossible, since (c,2¢* + 3c+1) = 1. O

1.18 Fzercises

In (i)—(iv), find the greatest common divisor of the given numbers for an
arbitrary n € N:
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(i) 2n+1,9n+4). (i) (2n—-1,9n+4).
(iii) (36n + 3,90n + 6). (iv) (2n+3,n+7).
(v) Show that there are infinitely many numbers r,, = n{n+1)(n +2)/6,
n € N, that are pairwise relatively prime.
(vi) Show that any integer n > 6 is the sum of two relatively prime
integers greater than 1.
(vii) Show that for m,n € Ny, m > n, the numbers 22™ + 1 and 2% +1
are relatively prime.
(viii) Given any a,b € Z, show that if d = ka + b > 0, where k,l € Z,
satisfies d | @ and d | b, then d = (a,b).
*(ix) For any m,n € N, determine the greatest common divisor of 2™ —1
and 27 — 1.

1.14 Further Properties of the Greatest Common Divisor

Theorem. For arbitrary natural numbers a, b, c we have

(@) (ac,b) = (@,8) - ¢,
(ii) f(e,b)=1andea|be, thena|c,
(iii) d = (a,b) if and only if there exist q1,g2 € N such that ¢ = dq,
b=dgz, end (q1,92) = 1.

PROOF. (i) Since (e,b) is a common divisor of e and b, then (a,b) -cis
a common divisor of ac and be; hence (a,b) - ¢ | (ac, be). By 1.8 there exist
k,l € Z such that (a,b) = ka + lb. Since (ac, bc) is a common divisor of
ac and be, it also divides kac + lbc = (a,b) - c. We have thus shown that
(a,b) - ¢ and (ac, bc) are two natural numbers that divide one another, and
so by (4) they are equal.

(ii) We assume that (e,b) = 1 and a | bc. By 1.8 there exist k,l € Z such
that ka+1b = 1, which implies that ¢ = ¢(ka + b) = kca + Ibc. Since a | be,
it foliows that also e | c.

(iii) Let d = (e, b); then there exist ¢;, g2 € N witha = dg;, b = dg,. Then
by (i) we have d = (a,b) = (dg1,dg2) = d - (g1, g2), and thus (g1,g2) = 1.
COIIVG['SGIY, ifa= dQI: b= dg2s and (QIa Q2) =1, then (a'l b) = (dqls dg2) =
d(q1, ¢2) = d - 1 = d (again using (i)). O

1.15 Ezercises
Prove (i)}—(v) for arbitrary natural numbers a, b, c, d:
(i) (a., b) ) (ci d) = (a'ci ad, bC, bd)'
(ii) if (a,b) = (a,c) =1, then (a,bc) = 1.
(iii) if (a,b) = 1, then (ac,b) = (¢, b).



2 Prime Numbers 183

(iv) abc = [a,b,(] - (ab, ac,be).
(v) abc=(a,b,c) - [ab,ac,bd].

Solve the systems of equations (vi)—(ix) in positive integers:

(vi) =+ y =150, (vii) (z,y) = 45,
(z,y) = 30. Tz = 11y.
(viil) xy = 8400, (ix) =y = 20,
(z,y) = 20. [z, 4] = 10.

2 Prime Numbers

Prime numbers are among the most important objects in elementary num-
ber theory. Their importance comes mainly from the theorem on unique
factorization of a natural number into 2 product of primes, a strong and
efficient tool for solving many problems in number theory.

2.1 Primes and Composite Numbers

Definition. Any integer n > 2 has at least two positive divisors: 1 and n.
If it has no other positive divisors, it is called a prime number (or simply
a prime). Otherwise, it is called a composite number.

In the remainder of this book we will, as a rule; denote a prime by the
letter p. The smallest primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31.

2.2 An Eguivalent Condition

Theorem. The integer p > 2 is a prime if and only if the following holds:
For any two integers a and b, the condition p | ab impliesp|a or p | b.

PROOF. (i) We assume that p is a prime and p | ab, where @,b € Z. Since
(p, e) is a positive divisor of p, we have (p,a) = p or (p,a) = 1. In the first
case p | @, while in the second case p | b, by 1.14.(ii).

(ii) If p is not a prime, it must have a positive divisor different from 1
and p. We denote it by a; then obviously b = p/a € N and p = ab, which
implies 1 < a < p, 1 < b < p. We have thus found integers a,b such that
P | ab but p divides neither e nor b. m]

2.3 Ezamples

(i) Find all primes that are at the same time the sum and the difference
of appropriate pairs of primes.
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SOLUTION. We assume that the prime p is, at the same time, the sum
and the difference of two primes. Then, of course, p > 2, and thus p is
odd. Since p is hoth the sum and the difference of two primes, one of them
must always be even, namely 2. Thus we require primes p, 1, p2 such that
P = + 2 = ps — 2, therefore p;, p, p2 are three consecutive odd numbers,
which means that exactly one of them is divisible by 3 (this follows, for
example, from 1.4.(ii); of the three consecutive integers pz — 3, p, ;1 +3
exactly one is divisible by 3). Of course, 3 itself is the only prime divisible
by 3, which in view of p; > 1 implies that p; =3, p = 5, po = 7. The only
prime number that satisfies the condition is therefore p = 5. O

(ii) Find the numbers k& € Ny for which among the ten consecutive integers
k+1,k+2,...,k+ 10 there are the most prime numbers.

SoLuTION. For k = 1 the set contains five primes: 2, 3,5, 7,11. For k=0
and k = 2 there are only four primes. If k > 3, the set in question does not
contain the number 3. By 1.4.(ii}, among ten consecutive integers there are
five even and five odd numbers, and among the latter at least one is also
divisible by 3. Among the integers k+1, k+2, . .., k+10 we have therefore
found at least six composite numbers; thus there are at most four primes
in this set. The only solution to the problem is therefore k = 1. u]

(iif) Show that given an arbitrary natural number =n, there exist n
consecutive natural numbers none of which is a prime.

SOLUTION. We consider the numbers

B+ 4+2,(n+1043,...,(n+ 1)+ (n+1).
Among these n consecutive integers there is no prime number because any
k€ {2,3,...,n+ 1} satisfies k | (n + 1)!, and thus k| (n + 1)! + &, whlch

means that (n + 1)! + k cannot be a prime.

(iv) Show that for any prime p and any k € N, k < p, the binomial
coefficient (¥) is divisible by p.

SOLUTION. By definition of the binomial coefficient,

(p) . _p(p-1)--(p~- j’=+1)
k]  K(p—k)! 1-2---k

€N,

and thus k! | p-a, where we have seta = (p—1) --- (p— k+1). Since k < p,
none of the numbers 1,2, . . ., k is divisible by the prime p, and so 2.2 shows
that k! is not divisible by p, which means that (k!,p) = 1. By 1.14.(ii)
we have k! | a; hence b = a/k! is an integer. Since () = pa/k! = pb, the
number (%) is divisible by p. 0
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2.4 FEzxercises

(i) Show that there is no natural number n such that 6n + 5 can be
expressed as a sum of two primes.
(i1) Find all natural numbers n for which n, n + 10, and n + 14 are all
Pprimes.
(iii) Find all primes p such that 2p? + 1 is also a prime.
(iv) Find all primes p such that 4p% + 1 and 6p® + 1 are also primes.
(v) Find all n € N such that 2" — 1 and 2" + 1 are both primes.
(vi) Show that if p and 8p? + 1 are both primes, then 8p° +2p+1isa
prime.
(vii) Find all n € Nsuch that n+1,n+3,n+7, n+9, n+ 13, and
n + 15 are primes.
*(viii) Show that the number 5%° + 2% is composite.
*(ix) Show that there exist infinitely many natural numbers n such that
every number of the form m? 4 n, where m € N, is composite.
(x) Show that for any prime p > 2 the numerator m of the fraction

PSS UM
n 2 3 p—1'
where m,n € N, is divisible by p.

*(xi) For any n € N, find n pairwise relatively prime natural numbers
a1, - - -, @y such that for every 1 < k& < n the sum of any & of them
is composite.

*(xii) Show that if a, b, ¢, d € N satisfy ab = cd, then the sum a™ + 5" +
¢ + d” is composite for any n € N.

2.5 Unique Factorization

Theorem. Any natural number n > 2 can be expressed as a product of
primes. This expression is unigue up to the order of the factors. (If n itself
i3 a prime, then by “product” we mean just this prime).

PROOF. First we prove by induction that every n 2> 2 can be decomposed
into a product of primes.

If n = 2, then the product is just the prime 2.

We now assume that n > 2 and that we have already shown that any n’,
2 < n’ < n, can be written as a product of primes. If n is a prime, then
the product consists of just this one prime. If n is not prime, then it has a
divisor d, 1 < d < n. If we set ¢ = n/d, then also 1 < ¢ < n. The induction
hypothesis implies that ¢ and d can be expressed as products of primes,
and therefore their product ¢- d = n can also be expressed in this way.
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To prove uniqueness, we assume that we have equality between the prod-
UCts Py -Pa---Pm = 1-G2" - gs, Where P, ..., Pm, Q1. - - - , s &T€ primes such
that py < p2 < <P M < @2 < --- < g, and 1 < m < 5. We use
induction on m to show that m = s, ;y = q1,...,Pm = Gm-

Inthecase m = 1, py = q1---g, i8 a prime. If s > 1, then p; would
have a divisor g; such that 1 < gy < p (since gog3---gs > 1), which is
impossible. Hence s =1 and p1 = qu.

We now assume that m > 2 and that the assertion holds for m— 1. Since
PL P2 -Dm = @1 - G2 -Qs, the prime py, divides the product ¢;---¢,,
which by 2.2 is possible only when p,, divides a ¢; for an appropriate
i€ {l1,2,...,s}. But g is a prime, so it follows that p,, = ¢; (since pm > 1).
In complete analogy it can be shown that g, = p; for an appropriate
j€{1,2,...,m}. Hence

Qs = Pj < Pm =i < Qo

and therefore p,, = ¢,- Upon dividing we obtain p; - p2---Pm-1 =
1 - @2+ - gs—1, and thus from the induction hypothesis, m -1 = s -1,

1= G1,.--sPm—1 = Gm—1. In summary, m = s and p1 = Q1,---,Pm-1 =
Gm—1s Pm = Qm- This proves uniqueness, and the proof of the theorem is
complete. O

2.6 C(Consequences

(i) If p1,-..,px are distinct primes and ny, ..., nx € No, then every pos-
itive divisor of the number a = p}* - -- pp* is of the form p™ - - - p’*,
with my,...,mpx € Noend my < ny, mg < ng, ..., Mg < ng. The
number a has therefore exactly (n1 + 1)(n2 + 1) - - - (nx + 1) positive

divisors.

(ii) Let py,...,px be distinct primes and ny, ... , ng, My, ..., Mg € Np.
If we set r; = min{n;,m;}, t; = max{n;,m;} forall : = 1,2,...,k,
then

[RRELY ‘o L A Bl LD A
;"1 ...p:"'p;“l ...p:""] =pil ...p::_

(iii) If a,b,c,m are natural numbers such that (a,b) = 1 and ab = ™,
then there exist relatively prime natural numbers z, y such that a =
™, b=y™.

The proofs of these consequences are left to the reader; hints can be
found in the appendix.

2.7 FEzamples

(i) Show that for each integer n > 2 there is at least one prime between n
and n!
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SOLUTION. Let p denote any prime dividing n! — 1 (it exists by 2.5, since
nl—1 > 1). If p < n, then p would have to divide n! and could therefore not
be a divisor of n! — 1. Hence n < p. Since p| (n! — 1), we have p < n! -1,
and thus p < n!. The prime p therefore satisfies the given condition. D

(ii) Show that there exist infinitely many primes of the form 3k 42, where
ke Ng.

SOLUTION. We assume the contrary, namely that there exist only finitely
many primes of this form, and we denote them by p; =2, p2 =5, p3 =11,
--- yPn- Weset N = 3p2-p3---pn+2. If we write IV as a product of primes
according to Theorem 2.5, then this decomposition must contain at least
one prime p of the form 3k + 2, since otherwise NV would be a product
of primes of the form 3k + 1 (note that IV is not divisible by 3), and so
by 1.4.(i), N would also be of the form 3k + 1, which is not true. Now it
follows from the particular form of IV that the prime p cannot be among
the primes p;,p2,-- -, Pn, and this is a contradiction. O

We note that the examples in 2.7 allow for considerable generalizations.
In the book [11] W. Sierpisiski proves the theorem: “For any natural number
n > § there are at least two primes between n and 2n,” which generalizes
Chebyshev’s theorem: “For any integer n > 3 there is at least one prime
between n and 2n — 2.” The proof uses only elementary methods, but is
relatively long (pp. 131-137).

Example 2.7.(ii) is generalized by Dirichlet’s theorem on primes in arith-
metic progressions: “If a and m are relatively prime natural numbers, there
exist infinitely many natural numbers k such that mk + a is prime.” This
is a deep theorem, and its proof requires methods that go well beyond
elementary number theory.

2.8 Ezxercises

(i) Find (c + b, ab), where a,b are relatively prime integers.
(ii) Given integers a and b, find (a + b, [a, B]).
(iii) Show that if @ > 4 is a composite integer, then e | (e — 1)L
*(iv) Show that if p > 5 is a prime, then there is no m € N such that

(p— 1) +1=p".

(v) Show that there exist infinitely many primes of the form 4k 4 3,
where k € Np.

(vi) Show that a prime of the form 22" 4 1, where n € N, cannot be
expressed as a difference of fifth powers of two natural numbers.

*(vii) Suppose that a and n are natural numbers with the property that
there exists an s € N such that (a — 1)* is divisible by n. Show that
1+ a+ ---+a™! is also divisible by n.
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(viii) Show that if a,b € Z are such that (a,b) = 1 and 2 | ab, then
(a+b,02+b*)=1.

2.9 Ezxponents in a Factorization

To any prime p and any natural number 7 there is, according to The-
orem 2.5, a uniquely determined number of appearances of p in the
decomposition of n into prime factors (if p does not divide n, we take
this number to be zero). We denote this number by the symbol v,(n). For
a negative integer n we set vp(n) = vp(—n).

According to 2.6.(i) we can characterize this notation by saying that
vp(n) is the exponent of the largest power of the prime p that divides n,
or by n = p¥#(™ . m, where m is an integer not divisible by p. From this it
easily follows that any nonzero integers a, b satisfy

vp(ab) = wvp(a) + vp(d), (8)
vp(a) < vp(b) Aa+b#0=>yy(a +b) = vp(a), (9)
vp(a) < vp(b) = vp{a + b) = vp(a), (10)

vp(a) < vp(b) = vp((a, b)) = vp(a) A vp([a, b]) = vp(b). (11)

2.10 Ezxzample
Show that any natural numbers a, b, ¢ satisfy

(la, 8], [a,d, [b,c]) = [(a,]), (a,), (b, c)]-

SOLUTION. By 2.5, we are done if we can show that vy(L) = vp(R) for
any prime p, where L, resp. R, denotes the term on the left, resp. on the
right. Now let p be any prime. In view of the symmetry on both sides,
we may without loss of generality assume that vp(a) < vp(d) < vp(c)- By
(11) we have vp([o,8]) = v,(b), vp([a.d]) = v([B,cl) = vp(c); vp((a,b)) =
vp((a,€)) = vp(a), vp((b,c)) = vp(b), and this implies v(L) = vp(b) =
vy(R), which was to be shown. o

211 Ezercises

(i) Give new proofs of 1.15.(i)-(v), using the method of 2.10.
(ii) Show that any natural numbers a, b, ¢, such that (a,b) = 1, satisfy
(ab,c) = (a,c) - (b, c).
(iii) Show that if for m,n € N the number T/n is rational, then it is in
fact a positive integer.

(iv) Show that if n,r,s € N, (r,8) = 1 and v/n” € N, then n = m® for
an appropriate m € N.



3 Congruences 189

(v) Show that if for some positive rational numbers ¢ and b the number
va + /b is rational, then /@ and v/ are also rational.
*(vi) Let a,b,c,d be integers such that ac, bd, bc + ad are all divisible by
the same natural number m. Show that then the numbers bc and ad
are also divisible by m.

3 Congruences

The concept of congruence was introduced by Gauss. Although it is a very
simple notion, its importance and usefulness in number theory are enor-
mous. This is particularly obvious in that even complicated arguments can
be presented in a concise and clear manner.

3.1 Definition of Congruence

Definition. If the two integers a, b have the same remainder r upon divi-
sion by the natural number m, where 0 < r < m, then @ and b are called
congruent modulo m, and we write

a=b (modm).

Otherwise, we say that a and b are not congruent, or incongruent,
modulo m,

a#b (modm).

3.2 Eguivalent conditions

Theorem. For any numbers a,b € Z and m € N the following conditions
are eguivalent:

(i) a =b (mod m),
(ii) a = b+ mt for an appropriate t € Z,
(iii) m|a—0b.

Proor. LIfa=qgm+rand b=qgam+r,then a—b=(q —q2)m, and
therefore (i) implies (iii).

II. If m | @ — b, then there exists a t € Z such that m-t = a — b, that is,
a = b + mt, and so (iii) implies (ii).

IIL. If a = b+ mt, then it follows from b = mg+r thata =m(g+t) +r,
so a and b have the same remainder r upon division by m, that is, a = b

(mod m); hence (ii) implies (i) O
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3.8 Basic Properties of Congruences

It follows directly from Definition 3.1 that congruence modulo m is reflexive
(i.e., a = a (mod m) for any a € Z), symmetric (i.e., foreacha,b € Z,a =b
(mod m) implies b = a (mod m)) and transitive (i.e., for each a,b,c € Z,
a = b (mod m) and b = ¢ (mod m) imply a = ¢ (mod m)). We now prove
some further properties:

(i) Congruences with the same modulus can be added. Any summand can
be moved, with the opposite sign, from one side of the congruence to the
other. To any side of the congruence we can add an arbitrary multiple of
the modulus.

ProoF. If a; = b (mod m) and a2 = by (mod m), then by 3.2 there
exist t;,¢2 € Z such that a; = by + mt;, as = ba 4 mts. Then a3 + a2 =
b1 + b2 + m(ty +t2), and again by 3.2 we have a; + @3 = b; + b2 (mod m).
If we add a + b = ¢ (mod m) and the obviously valid congruence —b = —b
{(mod m), we obtain @ = c¢— b (mod m). If we add another obviously valid
congruence, mk = 0 (mod m), to a = b (mod m), then we get a + mk =b
(mod m). O

(ii) Congruences with the same modulus can be multiplied together. Both
sides of 2 congruence can be raised to the same positive integer power. Both
sides of a congruence can be multiplied by the same integer.

PROOF. If a; = b1 (mod m) and az = b2 (mod m), then by 3.2 there
exist t),t2 € Z such that a; = i + mt; and as = bs + mts. Then

a182 = (b1 + mt) ) (b2 + mtz) = biba + m(t1bz + bitz + miita),

and from 3.2 we obtain a;a; = b1bs (mod m).

If a = b (mod m), we prove by induction on n that e = ™ (mod m).
For n =1 there is nothing to show. If a”™ = "™ (mod m) for some fixed n,
we multiply this congruence with a = b (mod m) and obtain e -a =b"-b
(mod m), hence a™*! = b"+! (mod m), and this is the assertion for n + 1.
The proof by induction is now complete.

If we multiply the congruences ¢ = b (mod m) and ¢ = ¢ (mod m), we
obtain ac = bc (mod m). o

(iii) Both sides of a congruence can be divided by a common divisor, as
long as this divisor is relatively prime to the modulus.

PROOF. We assume that a = b (modm), a = a;-d, b = b, - d, and
(m,d) = 1. By 3.2 the difference a —b = (a; —b;) - d is divisible by m. Since
(m,d) = 1, by 1.14.(ii) the number a; — b, is also divisible by m, and with
3.2 it follows that a) = b, (mod m). (]

(iv) Both sides of & congruence and its modulus can be simultaneously
multiplied by the same natural number.
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PrROOF. Ife =) (mod m), then by 3.2 there exists an integer t such that
a = b + mt; hence for ¢ € N we have ac = bc+ mc- t, and using 3.2 again
we get ac = be (mod mc). o

(v) Both sides of a congruence and its modulus can he divided by a positive
common divisor.

PrROOF. We assume that a =b (mod m),a=a;-d,b=5,-d, m =m; -d,
where d € N. By 3.2 there exists a ¢ € Z such that a = b+ mt, that is,
a; -d = by - d+m, dt, which implies a; = b; + myt; this means, by 3.2, that
a = b]_ (mod ml). O

(vi) If the congruence a = b holds with various moduli my,...,my, then
it also holds modulo [m,,...,mx], the least common multiple of these
numbers.

ProoF. If a = b (mod m;),a = b (mod m3),...,a = b (mod my),
then by 3.2 the difference ¢ — b is a common multiple of the mod-
uli my,ma,...,my, and is thus divisible by the least common multiple
[ma, ma, ..., my], which implies @ = b (mod [m4,...,mx]). 0O

(vii) If a congruence holds modulo m, then it also holds modulo d, where
d is any divisor of m.

ProofF. Ifa=b (mod m), then a—b is divisible by m, and therefore also
by the divisor d of m, which means that a = b (mod d). (m

(viii) If one side of a congruence and its modulus are divisible by some
integer, then the other side will also be divisible by this integer.

PROOF. We assume that a = b (mod m), with b = byd, m = md. Then
by 3.2 there exists 2 ¢ € Z such that @ = b+mt = bjd+m,dt = (b; +m,t)d,
and thus d | a. 0

We remark that we have already used several properties of congruences
without having taken note of this fact. For instance, 1.4.(i) can be rewritten
as “if a = 1 (mod m) and b = 1 (mod m), then also ab = 1 (mod m),”
which is a special case of the property in (ii). This is, of course, not a
coincidence. Any statement using congruences can easily be rewritten in
terms of divisibilities. The usefulness of congruences lies therefore not in the
fact that one could solve problems that could not be solved otherwise, but in
the fact that they provide a very convenient notation. By making consistent
use of this notation we can significantly simplify not only the exposition,
but also certain arguments. This is a typical situation: Appropriate notation
plays a very important role in mathematics.
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3.4 Examples
(i) Find the remainder when 5% is divided by 26.
SOLUTION. Since 52 = 25 = —1 (mod 26), we have by 3.3.(ii),

520 =(-1)"°=1 (mod 26),
so the desired remainder is 1. D
(ii) Show that for any n € N, 37"*2 + 16™+! 4 23" is divisible by 7-
SOLUTION. Since 37 = 16 =23 = 2 (mod 7), by 3.3.(ii) and (i) we have

372 4 167+ 23" = 272 4 ontl 4 9n — 9n(442+1)
=2"-7=0 (mod7),

which was to be shown. 0O
(iii) Show that n = (835° + 6)!® — 1 is divisible by 112.

SOLUTION. We factor 112 = 7 - 16. Since (7,16) = 1, it suffices to show
that 7 | n and 16 | n. We have 835 = 2 (mod 7), and thus by 3.3,

n=(2+6)®-1=38%_-1=31%_1
=2 - 1=(-1)*-1=0 (mod 7);

hence 7 | nn. Similarly, 835 = 3 (mod 16), and thus
n=(3"+6)%-1=(3-81+6)®*-1=(3-1+6)"° -1
=9¥_1=819-1=1°-1=0 (mod 16);
hence 16 | n. Together, 112 | n, which was to be shown. D

{iv) Show that no number of the form 8k & 3, k € N, can be expressed in
the form 2 — 232 for any integers z, y.

SOLUTION. Assume that 2 —2y? = 8k 3 for some z,y € Z. Then x must
be an odd number, and therefore 2 =1 (mod 8) by 1.5.(ii). If y is also odd,
then z2 — 2y2 =1 —2 = —1 (mod 8). If y is even, then 2y% = 0 (mod 8),
and thus 22 — 2% = 1 (mod 8). In neither case do we have 22 — 2% = 43
(mod 8), and this is a contradiction. m]

(v) Show that for any prime p and any a,b € Z we have
a® +b° = (a+b)* (mod p).

SOLUTION. By the binomial theorem we have

(a+by =aP + G’)a"“b + (1'2’)@“’—2!;2 +---+ (pf l)abP—‘ +b®.
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For any k € {1,...,p — 1} we have (}) = 0 (mod p) by 2.3.(iv), and this
implies the assertion. O

(vi) Show that for any natural number m and any a,b € Zsuch thata=b
(mod m™), where n € N, we have a™ = ™ (mod m™+!).

SOLUTION. By identity (5) in Chapter 1 we have
a™ —p" = (a _ b)(am—l + am—2b+ Y abm-—2 + bm_l). (12)

From n € N it follows that m | m™, and so by 3.3.(vii) we have
a = b {mod m). Hence all the summands in the right-hand expression
in parentheses in (12) are congruent to a™ ! modulo m, and thus

a1 +a™2+---+ad™ 240" ' =m-a™ =0 (modm).

Therefore, a™~! + a™ 2 + -.-. 4+ ab™ 2 4 p™1 is divisible by m. From
e = b (mod m™) it follows that m™ divides @ — b, and thus m™*! di-
vides the product, which by (12) leads to the conclusion that a™ = b™
(mod m™+!). O

3.5 FEzercises
Show that

(i) the number 2% 4 730 j5 divisible by 13;
(ii) for any n € N, 722n+2 _ 472n 4 28271 jg divisible by 25;
(iii) for any k,m,n € N, 55+ 4 45m+2 4 357 jg divisible by 11;

(iv) for any integers a,b, the congruence a® + b? = 0 (mod 3) implies
a=b=0 (mod 3);

(v) for any integers a,b, the congruence a2 + b? = 0 (mod 7) implies
a=b=0 (mod 7);

(vi) there exist integers a,b such that a? + b? = 0 (mod §), while a =
b= 0 (mod 5) does not hold;

(vii) for any integers a,b,c, the congruence @® + 4% + ¢ = 0 (mod 9)
implies abc = 0 (mod 3);

(viii) for any integers a;,@as,...,az, the congruence a +a3+---+a3 =0
(mod 9) implies a1az ---az = 0 (mod 3);

*(ix) no integer a satisfies a® + 3a + 5 =0 (mod 121).
(x) Find all natural numbers n such that n - 2" + 1 is divisible by 3.

(xi) Determine whether there exists a natural number n such that the
difference 4™ — 2”1 is the third power of an integer.
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(xii) Show that one can place the numbers 1, 2, ... , 12 on the circum-
ference of a circle in such a way that for any three neigh!)c-il? a,
b, and ¢, with b between a and c, the number b — ac is divisible

by 13.

*(xiii) Show that 19- 8" + 17 is composite for any natural number n.

*(xiv) Show that (n —1)? is a divisor of n" — n? + n — 1 for any natural
number n.

*(xv) Let a,a9,01,..-,an be integers (n € Np). Determine whether it is
true that the integer

(a2 +1)°- ag + (a® + 1)%a1 + (a? + 1)%az + --- + (0 + 1)**as
is divisible by a% + a + 1 (resp. a2 — a + 1) if and only if
ap—a+az—---+ (—1)"_111;,_1 + (—1)"(1;,

is divisible by a2 + a + 1 (resp. a2 —a + 1).

8.6 Fuler’s p-Function

Definition. For any natural number m = pJ*---pp*, where py,--.,pk
(k > 1) are distinct primes and ny,...,n; € N, we define (m) as follows:
@lm)=pp* X (pr — 1)-- - pp* " Hpw — 1)- (13)

If, in addition, we define (1) = 1, we have a function ¢ : N — N. We
can easily convince ourselves that (13) can also be written as

o= (-2 1-2)

and that for any relatively prime natural numbers m;,mgs we have
w(mimsa) = (mi)p(msz). The reader should verify that the condition of
relative primality of m;, ms is indeed necessary. The clearest and most sug-
gestive representation of Euler's -function is given later by the assertion
in 3.10.

3.7 Ezamples
(i) Show that for any n € N we have @(4n + 2) = ¢(2n + 1).

SoLuTION. Since 2n + 1 is odd, the numbers 2 and 2n + 1 are relatively
prime, and thus we have ¢(2- (2n + 1)) = ¢(2) - p(2n + 1). We are done
if we realize that (2) = 1. (More generally, for each prime p we have

p(p) =p—1.) 0
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(ii) Find all m € N for which (m) is odd.

SoLuTION. We have (1) = ¢(2) = 1. If m > 3, then m is divisible by
an odd prime p, or m = 2™, n > 2 (this follows from the decomposition
of m into a product of primes). In the first case, ¢(m) is divisible by the
even number p— 1, and in the second case we have p(m) = 2"~1, so (m)
is always even. Therefore, the number (m) is odd only when m =1 or
m=2. O

(iii) Solve the equation (5*) = 100, where z is a natural number.

SoLuTION. By (13) we have (5%) = 4 - 5~ }; we therefore have to solve
the equation 4 - 5! = 100, i.e.,, 5! = 5%, which means z — 1 = 2, or
x =3. O
(iv) Show that for any m,n € N and d = (m, n) we have
d
w(mn) = w(m) - p(n) - ——.
) w(d)

SOLUTION. We first assume that m = p® and n = p®, where p is a prime
and ¢,b € Ng. If a = 0, then m = 1, d = 1, ¢(d) = 1, and the assertion
clearly holds. Similarly for b = 0. If a, b € N, then

w(mn) = p(p**?) = (p — 1),

and if we set ¢ = min{a, b} (i-e., ¢ is the smallest of the numbers a, b}, then
d = p° and
d
mp(n) - — =(p—1)p* - (p—1)p> -
w(m)ep(n) 2D (r—1) (r

— (p_ I)PO_H’—I,
and thus the assertion holds. Let now m,n € N be arbitrary. We write m =
ek, n= pg‘ .- -p:", where a1,...,0x,b1,-..,b € No and py,..., Pk
are distinct primes. If we set ¢; = min{a;, b;} for i =1,...,k, then

Plmoln) - — = (o - g Yolp gl - P
eld) TR R oy oA

—_r
P (p—-1)

o5 - - (58 Vo () « - - o) . —PL_ .. P
—‘P(Pl) v (p )e(pr') ‘P(Pk) tp(pf’) W(Pi')

b Pf‘ b Pf,"
ax 1 [
- (vt ) - (verweeroey)
and so by the first part of the proof we have

w(m)p(n) - w—% = (p3p1) - (Pp i)
= (PP - - pP* pi*) = w(mn),

which was to be shown. O
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3.8 FEzxercises

(i) Evaluate (1000}, ©(635), «(180), ©(360), (1001).

(ii) Show that for any n € N we have either ¢(5n) = 5p(n), or p(5n) =
4p(n). When does each case occur?

Solve the equations (iii)—(xiv), where =,y € Np,m € N and p, g are primes:

(iii) o(p®) =p""". (iv) o(3%5Y) = 600.
(v) o(p®) = 6p"2 (vi) ¢(pg) = 120.
(vii) p(pm) = (m). (viii) o(pm) = pp(m)-
(ix) o(pm) = plgm). (x) ¢(m)=14.
(xi) ¢(m)=16. (xii) y(m)=m/2.
(xiii) ¢(m)=m/3. (xiv) o(m) =m/4.

(xv) Show that p(m - n) = (m,n) - p([m, n]) for any m,n € N.

(xvi) Evaluate the sum (1) + () + w(p®?) +--- + ¢(p™), where pisa
prime and n € N.

*(xvii) Show that
wldi) +p(dz) +--- +v(ds) = m,

where dy,ds,...,d; are all the positive divisors of the natural
number m.

3.9 Another Property of Euler’s ¢o-Function

Theorem. Lett and m be natural numbers. Among the integers1, 2, ...,
tm — 1, tm there are exactiy t - p(m) that are relatively prime to m.

PROOF. We write m = pf! ---p.*, where pi,...,px are distinct primes
and n,,..., ng € N. We prove the theorem by induction on k.

If k = 0, then m = 1, ¢(m) = 1, and the theorem is clearly true, since
any integer is relatively prime to 1.

We now assume that k > 1 and that the theorem is true for m’ =
- peey'. Then tm = tpi* - m’, and by the induction hypothesis,
among the integers 1,2,...,tm — 1,tm there are exactly tp.* - p(m’) num-
bers relatively prime to m’. Since p; is prime, the numhers that have
a factor in common with pi* are exactly those divisible by px, namely
Drs 20k, - - -, (B0 ~'m’ — l)pk,tp:""m’pk. Since (px,m’) = 1, by 1.15.(iii)
we have (apx, m’) = (a,m’) for any a¢ € Z, and thus among these integers
there are exactly as many relatively prime to m’ as there are among the
integers 1,2,...,tp." 'm’ — 1,tp,* 'm’; by the induction hypothesis their
number is exactly tp,*~* - ¢(m'). We have thus shown that among the in-

tegers 1,2,...,¢m there are exactly tpp* - o(m’) that are relatively prime
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to m', and tp®*-1¢(m’) of those have a factor in common with p}*; the
remaining

tpe p(m’) — tpp*~ (') = t(m') - (52~ — p2**) = - (m)

numbers are thus relatively prime to p{*. It remains to convince our-
selves that a number is relatively prime to m if and only if it is relatively
prime to m’ and at the same time to pi*; this follows, for example, from
2.11.(ii). O

3.10 An Alternative Definition

Consequence. Ezactly o(m) of the numbers 1,2,...,m are relatively
prime to m.

PrOOF. The statement follows from 3.9 witht = 1. O

We remark that usually the property in 3.10 is used as definition of
the number ¢(m), and then there is no need to prove it. This approach,
however, requires the proof of formula (13), which is just as difficult as the
proof of our Theorem 3.9.

3.11 Fermat’s Theorem

Theorem. For any prime p and any integer a we have
af =a (mod p).
If furthermore (a,p) = 1, then a?~! =1 (mod p).

PROOF. We first assume that a > 0, and we prove the assertion by
induction on a.

If a = 0, then a® = 0 = g, so certainly a”? = a (mod p).

We now assume that a > 1 and that (e — 1)» =a — 1 (mod p), i.e., the
statement of the theorem holds for @ — 1. Then by 3.4.(v) we have

®=((e-1)+1’=(a-1+1P=a-1+1=a (modp),

and so the statement is also true for a. It remains to show that a? = a
(mod p) for a < 0. By 1.3 thereexist g€ Z, r € {0,1,...,p — 1} such that
@ = gp + r. Then by 3.3.(ii) and the fact that the theorem was proved for
any r 2 0,

o’ =(gp+r)’=rP=r=a (modp).

If furthermore (a,p) = 1, then from a - a?~! = a (mod p) we see with
3.3.(iii) that ! =1 (mod p). O
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8.12 Fermat’s Theorem for Prime Powers

Consequence. For any prime p, any n € N, and an arbitrary integer a
relatively prime to p we have

a?" -0 =1 (mod p).

PROOF. We use induction on n. If n = 1, then this is the second part of
Theorem 3.11. We assume now that n > 1 and that the statement holds
forn—1, ie,

o P =1 (modp" ).

By 3.4.(vi) we have
(@ 0D = "D =1 (mod p"),

which was to be shown. O

818 FEuler’s Theorem

Theorem. For any natural number m and any integer a relatively prime
to m we have
a¥*™ =1 (modm).

PROOF. We write m = p}'---pp*, where py,.-.,pr are distinct primes
and ny,..., ng € N. Then for any i € {1,...,k} we have by 3.12,

Pt @0 =1 (mod pi).
Raising this to the positive integer power o(m/p]*), with 3.3.(ii) we obtain
a?™ =1 (mod p™),

since from the definition of Euler’s function it follows that
m e
“O(F) ot (pi — 1) = p(m).
In view of the fact that [p[",...,p.*] = m, with 3.3.(vi} we now obtain
a*™ =1 (mod m). O

3.14 Fzamples

(i) Show that for any integers a, b satisfying (e, 65) = (b, 65), the number
a'? — p'? is divisible by 65.
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SOLUTION. Since 65 = 5 - 13, it suffices to show that (a,13) = (b,13)
implies 13 | a!? — b2 and (a,5) = (b,5) implies 5 | a'? — b'2. Now, if
(a,13) = (b,13) = 1, then by Fermat’s theorem we have a2 = 1 = b2
(mod 13}, and if (a,13) = (b,13) = 13, then 13 | ¢, 13 | b. In both cases,
13 | a!? — b'2. Similarly, if (a,5) = (b,5) = 1 then by Fermat’s theorem we
have a? =1 = b* (mod 5), and exponentiating, we get a'2 = b'2 (mod 5);
thus 5 | a'2 — b'2. We obtain the same relation in the case where (a,5) =
(b,5) =5, with 5 | a, 5| b. D

(ii) Show that for any two distinct primes p and ¢ we have

" 14+¢* =1 (mod pg).

SOLUTION. Since (p,q) = 1, by Fermat’s theorem we have p9—! = 1
(mod ¢) and ¢! = 1 (mod p). Next, since p > 2 and ¢ > 2, we
also have p?~! = 0 (mod p) and gP~! = 0 (mod q), so the congruence
p71 4+ g7~ ! = 1 holds modulo p as well as modulo ¢g. By 3.8.(vi) it holds
also modulo [p, g] = pg, which was to be shown. D

(iii) Find all primes p for which 5°° + 1 =0 (mod 7?).

SOLUTION. We easily see that p = 5 does not satisfy the condition. For
p # 5 we have (p,5) = 1 and thus, by Fermat’s theorem, 57! =1 (mod p).
Raising this to the power p+1, we obtain -1 =1 (mod p), which means
that 5°° = 5 (mod p). Now, from the condition 57" + 1 = 0 (mod p?) it
follows that 57" = —1 {mod p), and together 5 = —1 (mod p); thus p| 6.
Therefore, p=2 or p= 3. For p = 2, however, 52 4+1=14+1=2%#0
(mod 4). Forp=3weget 5°+1=5%-541=5541=126=0 (mod 9),
where we have used 56 =1 (mod 9) as a consequence of Euler’s theorem.
The unique prime satisfying the given condition is therefore p = 3. [

(iv) Given an odd number m > 1, find the remainder when 2¢(™)-! js
divided by m.

SoLUTION. From Euler's theorem it follows that 29 = 1= 1+4+m =
2r (mod m), where r = (1 + m)/2 is a natural number, 0 < r < m.
From 3.3.(iii) it follows that 2¢(™~! = y (mod m), and thus the desired
remainder is r = (1 +m)/2. D

(v) Let m be a natural number, and a an integer relatively prime to m.
Show that the smallest natural number n that satisfies the congruence
a® = 1 (mod m) divides ¢(m). Furthermore, show that any nonnegative
integers r, s satisfy " = a°® (mod m) if and only if r = s (mod n). In
particular, a” = 1 (mod m) if and only if n | r.

SoLuTiON. We will begin by proving the second assertion. Without loss
of generality we may assume that r > s.
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If r = s (mod n), there exists an integer ¢ such that r = s-+nt, and from
r > s it follows that t € Ng. Then we have

a =attmt —g*. (a-n)t =a® (mod m)'

since @" = 1 (mod m).

If a" = a® (mod m), in view of the fact that (a,m) =1, wegeta™ * =1
(mod m) from 3.3.(iii). By Theorem 1.3 on division with remainder, there
exist g€ Z and rg € {0,1,...,n — 1} such that r — s = ng + ro. Then

1=a""%=a™*" = (g")%"™ =a"° (mod m),

since a" = 1 (mod m). Now of course, ro < n and n was the smallest
natural number such that a” = 1 (mod m), so o cannot be a natural
number, and we have rop = 0. But this means that r — s = nq,orr = s
(mod n).

Now we return to the first assertion. Since by Euler’s theorem we have
a®(™ =1 = a® (mod m), by what we just proved we must have p(m) =0
(mod n), i.e., n | p(m). D

(vi) Prove the following generalization of 3.5.(iv),(v): If pis a prime, p=3
(mod 4), then for any integers a,b the congruence a? + b = 0 (mod p)
implies a = b = 0 (mod p).

SOLUTION. We assume that for a,b € Z we have a2 + b% = 0 (mod p). If
p | a, then a = 0 (mod p); hence b2 = 0 (mod p), which means that p | b*.
In view of the fact that p is a prime, we obtain therefore p | b, and thus
a = b =0 (mod p), which was to be shown.

It remains to verify the case where a is not divisible by p. Then p does
not divide b either (if p | b, we would have p | a2). If we multiply both
sides of the congruence a? = —b? (mod p) by b*~3, we get with Fermat’s
theorem

®P 3 =—p1=—1 (mod p).

Since p =3 (mod 4}, p — 3 is an even number, and thus E;—a € Ng. We set

¢ = ablP3)/2,

Then ¢ is not divisible by p and we have ¢? = a?b*% = —1 (mod p).
Raising this last congruence to the power L;—l € N, we obtain

1= (-1)P- /2 (mod p).

Since p = 3 (mod 4), there exists an integer t such that p = 3 + 4¢. Then
P21 = 1+ 2t, which is an odd number, and thus (—1)P~1/2 — _1_ By
Fermat’s theorem, on the other hand, ¢*~! = 1 (mod p), which means that
1= —1 (mod p) and thus p| 2, a contradiction. a
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(vii) Show that for any n € N, the number 22*™*" + 3 is composite.

SOLUTION. Since 22+ 3 = 7 and 22’ +3 = 259 = 7-37, we may conjecture
that any number 22°"*' 43, with n € Ny, is divisible by 7. Therefore, since
2#1,22#£1,2% =1 (mod 7), we will be interested in the remainder of
22n+1 ypon division by 3:

227+l — 2 4" =2 (mod 3),
and thus by (v) we have

2™ 1 3=92243=-7=0 (mod 7).

an41

Since 22 +3> 2 13> 7forn € N, all the given numbers are
composite. 0

3.15 FEzercises
(i) Find the remainder when the 100th power of an integer is divided
by 125.
(ii) Show that for any prime p and any n € Np, ¢ € Z we have
a"?P—+1 = 4 (mod p).
(iii) Show that for any integer a we have a'® = a (mod 2730).
(iv) Show that 2341 =2 (mod 341). Does 33! = 3 (mod 341) also hold?

Show that for any natural number n the numbers in (v)—(x) are composite:

(v) 22" 4 17. (vi) 22”"° +13.
(vii) 22" 419, (viii) 22°** 4 21.
(ix) 1@ +2277" 1) (x) (223" + 4 1)2 4 22

(xi) Show that among the integers 10 + 3 (n € N) there are infinitely
many composite numbers.

*(xii) Show that for all odd natural numbers n we have n [ 2! — 1.

*(xiii) Show that for any prime p, infinitely many numbers of the form
2" — n (n € N) are divisible by p.

4 Congruences in One Variable

In mathematics we distinguish between the terms equality and equation.
By equallty we understand a true relationship between numbers, or between
expressions (for instance, 6-5 = 3-10, (n+1)2 = n24+2n+1). On the other
hand, an equation has on one side, sometimes on both sides, expressions
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that depend on some variables, which in this connection are also called
unknowns; it is now the objective to find out for which values of these
unknowns the equation becomes an equality.

In Chapter 1 we mainly dealt with algebraic equations, that is, the case
where on both sides of the equation there are polynomials (mostly with
real coefficients), and we were concerned with finding out for which real
(or sometimes complex) values of the variables both sides of the equation
attained the same values. In Section 5 of the present chapter we will solve
such problems for polynomials with integer coefficients and integer values
of the variables.

Similarly, given two polynomials in the variable z with integer coeffi-
cients, we can ask the question: For which integer values of z will the two
polynomials have values that are congruent to each other modulo & given
positive integer? We are not going to introduce new notation for this, but
use the term congruence also in this situation. There is no danger of confu-
sion; it will be clear from the context when the term “congruence” is used
in this sense: e.g., “congruence in the variable z....” “solve the congruence
...," etc. We begin by dealing with linear congruences, that is, the case
where the polynomials on both sides are linear.

4.1 Linear Congruences

Let the natural number m and the integers a, b, ¢,d be given. Then for any
z € Z the congruence

ax+b=cz+d (modm),
is satisfied if and only if
(a—c)z=d—-b (mod m).
Hence any linear congruence can be rewritten as a congruence of the form
az=b (modm), (14)

the solutions of which we will now study.

4.2 Solutions of Linear Congruences

Theorem. Let m be a natural number, a,b integers, and set d = (a, m).
Then the congruence (14) is solvable only if the number b is divisible by d;
in this case z i3 a solution of (14) if and only if

z=b;-a¥"™"!  (mod m,), (15)

where a) = a/d, b = b/d, my = m/d, and p is Euler’s function defined
in 3.6.



4 Congruences in One Variable 203

PROOF. If some 2 is a solution of (14), then d | az, so from 3.3.(viii) it
follows that d | b.

Now we assume that d | b and we set a; = a/d, b = b/d, m; = m/d.
Then by 3.3.(iv) and 3.3.(v), the congruence {14), i.e.,

ai1dr = byd (mod m,;d),
is satisfied for an z € Z if and only if
;T = bl (mod ml). (16)

By 1.14.(iii) we have (ay,m;) = 1, and by 3.3.(ii) and 3.3.(iii) the
congruence (16) holds if and only if we also have

0z - a‘l"(""')—1 = bla'f(m’)—l (mod m,).

From Euler’s theorem it follows that 6¥™ = 1 (mod m; ), and so the last
congruence is indeed the same as (15). Thus for any z € Z, (14) holds if
and only if (15) is satisfied, which was to be shown. O

Although Theorem 4.2 enables us to solve any linear congruence, its
importance is mainly of a theoretical nature, since the determination of
the remainder of the number b, - a'f(mﬂ-l upon division by m; is often
quite laborious. Therefore, it is often more convenient to transform the
congruence (16) by multiplying or dividing by a number relatively prime
to the modulus m;, or to replace the numbers a;, &; by numbers congruent
modulo m;, as will be shown in the following examples.

4.3 Ezxamples
(i) Solve the congruence 29z =1 (mod 17).

SOLUTION. Since (17,29) = 1 and (17) = 16, the solutions of the given
congruence are, by Theorem 4.2, all z € Z satisfying z = 29'® (mod 17),
i.e., the numbers z = 29'% 4 17t, where £ € Z. However, determining
which z € {0,1,...,16} is a solution, that is, finding the remainder of
29'5 upon division by 17, would be rather laborious, and therefore it is
more appropriate to transform the given congruence as in the following
steps:
29z =1 (mod 17)

is equivalent to
12z =18 (mod 17),

and since (6,17) = 1, we obtain the equivalent condition

2z=3 (mod 17),
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which holds exactly when
2x =20 (mod 17),

that is, if and only if z = 10 (mod 17), or when = = 10 + 17, where
teZ D

(ii) Solve the congruence 21z + 5 =0 (mod 29).

SOLUTION. For any = € Z we have 21z + 5 = 0 (mod 29) if and only if
50z = —5 (mod 29). Since (5,29) = 1, this last congruence holds if and
only if 10z = —1 (mod 29), i.e., exactly when 30z = —3 (mod 29), since
(3,29) = 1. The last congruence is equivalent to z = 26 (mod 29), i-e,,
T =26+ 29t, where t € Z. D

(iii) Solve the congruence (a + b)xz = @® +b* (mod ab), where a,b € N are
parameters with (a,b) = 1.

SOLUTION. If we add 2ab to the right-hand side, we obtain
(e+bz=(a+b)* (mod ab).

By 2.8.(1) we have (a + b,ab) = 1, and hence this last congruence is equiv-
alent to z = a + b (mod ab). The solution is therefore given by all z of the
form z =a + b+ tab, where t € Z. (m]

(iv) Solve the congruence 2z = 1 {mod m), where m € N.

SOLUTION. If m is even, then (2, m) = 2, and by 4.2 the congruence is not
solvable. If m is odd, then m + 1 is even; hence there is a k € N such that
m + 1 = 2k. If we add m to the right-hand side of the given congruence,
we get 2z = m+ 1 (mod m), i.e., 2z = 2k (mod m), and since (m,2) =1,
this is equivalent to z = k (mod m). The original congruence is therefore
satisfied by exactly those z that are of the form z = k+tm = (m+1)/2+tm,
where t € Z. C

(v) Prove Wilson’s theorem: For each prime p we have
(p—1)1=—-1 (mod p).

SOLUTION. The congruence clearly holds for p =2 and p = 3, and hence
we may assume that p > 5. For any @ € {2,3,...,p— 2} the congruence

az=1 (mod p)

has solutions of the form z = a2 + pt, t € Z, by Theorem 4.2. There is
clearly a unique t; € Z with 0 < a?2 + pt; < p (then —t, is the quotient
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in the division of a?~2 by p with remainder); we set a; = aP~2 + pt;. Then
0 < a3 <p, and
a-a;=1 (mod p).

It is easy to convince ourselves that a; ¢ {0,1,p — 1}, and thus a; €
{2,3,...,p — 2}. On the other hand, a is a solution of the congruence

aiz=1 (mod p).

We also note that a = a, cannot occur. Indeed, we would then have a2 =
(mod p), hence (a — 1)(a + 1) = 0 (mod p), and therefore p | a — 1 or
P | a+1, which fora € {2,3,...,p—2} cannot occur. The set {2,3, . ..,p—2}
therefore consists of pairs of numbers whose products are congruent to
1 modulo p. Hence (p — 2)!, which is the product of all the numbers in
{2,3,...,p— 2}, is also congruent to 1 modulo p:

(p—2)=1 (mod p).
Multiplying this congruence by p — 1, we obtain
(p—1=p—-1=-1 (modp),
which was to be shown. O

{vi) Prove the following generalization of Exercise 3.5.(vi): For any prime
p with p # 3 (mod 4), there exist integers a,b such that although the
congruence a2 + b = 0 (mod p) is satisfied, still a = b = 0 (mod p) does
not hold. Compare this with Example 3.14.(vi).

SOLUTION. If p = 2, we may choose ¢ = b = 1. Hence we may assume
that p = 4k + 1 for an appropriate k € N. If we set a = (2k)!, b= 1, then

a?=((2EM)2=1-2---(2k —1)-2k- (—1) - (—2)-- - (—2k + 1) - (—2k).
Now, for any i € {1,2,...,2k} we have —i = p — i (mod p), and thus
a’2=1-2---(2k—1)-2k-4k-(dk—1)---(2k+2)- (2k+1) (mod p).
On the right we have (4k)! = (p — 1)!, which by Wilson's theorem gives
@>=(p—1)'=-1 (mod p),

and thus
a*+¥=-1+1=0 (mod p).

Since b = 1, certainly b = 0 (mod p) does not bold. Comparing this result
with 3.14.(vi), we see that the primes with the property that forany a,b € Z
the congruence a? + b =0 (mod p) implies a = b= 0 (mod p) are exactly
the primes p of the form 4k + 3 (k € Np). ]
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(vii) Let a,b,c,d be integers satisfying (a,b,c,d) = 1. Show that every
prime dividing ad — bc also divides a and c if and only if for any integer n
the numbers an + b and ¢n + d are relatively prime to each other.

SOLUTION. We assume that every prime dividing ad — be divides also a,c,
but that for an appropriate n € Z there exists a prime p such that p | an+b
and p | cn + d. But then p also divides

ad — be = a(en + d) — c{an + b),

and thus p | a, p| c. Therefore, p divides b= (an+b) —an and d = (cn+
d) — cn as well; but this means that p| (a,b,¢,d), which is a contradiction.

On the other hand, we assume that (an+b,cn+d) = 1 for alln € Nand
that there exists a prime p such that ad — bc = 0 (mod p), a # 0 (mod p)
(the case ¢ # 0 (mod p) can be considered analogously). By Theorem 4.2
the linear congruence az = —b (mod p) has a solution, which we denote
by n. Then an + b =0 (mod p); therefore,

alen+d) =clan+b) + (ad — bc) =0 (mod p),

and since (p,e) = 1, we get cn +d = 0 (mod p). Thus, p | (an +b,cn +d),
which is a contradiction. o

4.4 Ezercises

Solve the congruences (i)—(vi):

(i) 7z =15 (mod 9). (ii) 7z =9 (mod 10).
(iii) 14z =23 (mod 31). (iv) 72z = 2 (mod 10).
(v) 8z =20 (mod 12). (vi) 6z =27 (mod 12).

*(vii) Let a, b be relatively prime positive integers. Show that for any nat-

ural number n there exist ky,k2,.-.,kn € N such that k) < kp <

- < kp and that the numbers aky + b,aks + b,...,ak,; + b are
pairwise relatively prime.

4.5 Systems of Linear Congruences in One Variable

If we have a system of linear congruences in the same variable, we can use
Theorem 4.2 to decide whether each one of the congruences is solvable. If
at least one of them does not have a solution, then the entire system has
no solution. On the other hand, if all congruences have solutions, we can
write them in the form z = ¢; (mod m;). We thus obtain the system of
congruences

z=c (modm,),

(17)
z=cx (mod my).
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We first examine the case k = 2, whic:h——as we will see later—is crucial in
the solution of the system (17) for k > 2.

4.6 Ezistence of Solutions

Theorem. Let ¢;,c2 be integers, m,, ma natural numbers, and set d =
(my, m2). Then the system of two congruences

= d ,
e g; Eﬁﬁd 23 (18)

has no solutions when c; # ¢z (mod d). However, if ¢y = ¢2 (mod d), then
there is an integer ¢ such that x € Z satisfies the system (18) if and only
if it satisfies

z=c¢ {(mod [m;,mg)).

PROOF. If the system (18) has a solution = € Z, then by 3.3.(vii) we have
z = ¢; (mod d) and £ = ¢z (mod d), and thus ¢; = ¢ (mod d) as well.
This means that in the case c¢; # c2 (mod d), (18) cannot have a solution.

Let us now assume that ¢; = ¢o (mod d). The first congruence in (18) is
satisfied by all integers z of the form z = ¢; +tm,, for arbitrary t € Z. This
z will also satisfy the second congruence in (18) if and only if ¢; +tm; =2
(mod my), that is,

tm) =ce —c¢; (mod mg).

By 4.2, this congruence has a solution (in terms of t), since d = (m;, m2)
divides ¢2 — ¢;, and t € Z satisfies the congruence if and only if

e — ¢ fmy\¥(ma/d)-1 ma
t==22-(F) (modP).
i.e, if and only if
_ca—c mp\¥ima/d-1 mo
t==27-(F) g

with arbitrary r € Z. By substituting, we obtain

w(ma/d) myms
) r—0 =c+r-[my,mg),

m
$=cl+tm1=cl+(02—cl)'(71 d

where ¢ = ¢; + (¢2 — 1) - (my/d)¥(™2/4} | since by Theorem 1.9 we have
mimy = d - [my,my]. We have thus found the desired ¢ € Z with the
property that an x € Z satisfies the system (18) if and only if

z=c (mod [my,ma)),

and this completes the proof. a
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We note that this proof is constructive, i.e., it gives a formula for finding
the number ¢. Theorem 4.6 thus provides us with a method for reducing the
system (18) to a single congruence. It is now important to realize that this
new congruence is of the same form as the two original congruences. We can
therefore also apply this method to the system (17): To begin, we combine
the first and the second congruences to form the new single congruence as
described above; then we combine this new congruence with the third one,
etc. With each step the number of congruences in the system decreases by
1, after k — 1 steps we are therefore left with a unique congruence that
describes all solutions of the system (17).

We further remark that the number ¢ in Theorem 4.6 does not have to
be determined by way of the formula given above. We may take any t € Z
satisfying the congruence

t-% Q;q (mod?)

and set ¢ = ¢; + tm;.

4.7 FExamples
In (i)—(iii), solve the given systems of congruences:
(i) z=-3 (mod 49),

z =2 (mod 11).

SoLuTION. The first congruence is satisfied exactly by the numbers z of
the form £ = —3 + 49¢, where t € Z. Substituting this into the second
congruence, we obtain

~3+49t =2 (mod 11),

which means
5t=5 (mod 11),

and since (5,11) = 1, dividing by 5 gives
t=1 (mod 11),
ort=1+11s with s € Z Hence z = —3 +49(1 + 11s) = 46 + 539s, where

s € Z, which can also be written as = = 46 (mod 539). D
(ii) z =1 (mod 10),
z =5 (mod 18),

x = —4 (mod 25).

SoLUTION. From the first congruence we get £ = 1 + 10t for ¢ € Z.
Substituting this into the second congruence gives

1410t =5 (mod 18),
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hence 10t = 4 (mod 18). Since (10, 18) = 2 divides 4, by Theorem 4.2 this
congruence has the solution t = 2- 5% (mod 9); now 2-5° = 10- 252 =
1-(—2)% = 4 (mod 9), and thus t = 4 4+ 9s, with s € Z. By substituting,
we get £ = 1+ 10(4 + 9s) = 41 + 90s, and with the third congruence,

41 + 90s = —4 (mod 25),
hence 90s = —45 (mod 25). Dividing by 5 (including the modulus, since
5| 25), we get
18 =—-9 (mod S5),
which means —2s = 1 (mod 5), so 2s = 4 (mod 5), s = 2 (mod 5), and

therefore s = 2 + 5, where » € Z. Substituting, = 41 + 90(2 + 5r) =
221 + 4507, so finally z = 221 (mnod 450). ]

(iii) z =18 (mod 25),
z =21 (mod 45),
z =25 (mod 73).

SoLuTION. From the first congruence we get x = 18 + 25¢, with t € Z,
and substituting this into the second one,

18425t =21 (mod 45),

hence
25t =3 (mod 45).

But by Theorem 4.2 this congruence has no solution, since (25,45) = 5
does not divide 3. Hence the whole system has no solution. We could
also have obtained this result directly from Theorem 4.6, since 18 # 21
(mod (25, 45)). O

(iv) Solve the congruence 23941z = 915 (mod 3564).

SOLUTION. We factor 3564 = 22 . 3% - 11. Since neither 2, nor 3, nor 11
divides 23941, we have (23941,3564) = 1, and thus by Theorem 4.2 the
congruence has a solution. Since (3564) = 2 - (33 - 2) - 10 = 1080, by 4.2
the solution is of the form

z=915-23941'9"% (mod 3564).

However, determining the remainder (modulo 3564) of the number on the
right would require considerable effort. We will therefore solve the con-
gruence quite differently. By 3.3.(vi)}, £ € Z is a solution of the given
congruence if and only if it is a solution of the system

23941z =915 (mod 22),
23941z = 915 (mod 3%), (19)
23941z =915 (mod 11).
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We now solve each congruence of the system (19) separately. The first one
holds if and only if
=3 (mod 4},

and the second one exactly when

46z =24 (mod 81),

which, upon multiplying by 2, gives 92z = 48 (mod 81), i.e.,, 11z = —33
(mod 81), and after dividing by 11,

z=—-3 (mod 81).

The third congruence holds if and only if
5r=2 (mod 11),

which, upon multiplying by —2, gives —10z = —4 (mod 11), and thus
z=—4 (mod 11).

An z € Z is therefore a solution of the system (19) if and only if it is a
solution of the system

z=3 (mod 4),
z=-—3 (mod 81), (20)
z= -4 {(mod 11).

The second congruence gives £ = —3 + 81t, where t € Z, and substituting
this into the third one,

—3+8lt=—-4 (mod 11);

thus 81t = —1 (mod 11), or 4t = 32 (mod 11); then ¢ = 8 (mod 11), and
therefore £ = —3 + 11s, with s € Z. Substituting £ = —3+ 81(—3 + 11s) =
—3 —3-81 + 11 - 81s into the first congruence of (20), we obtain

—3—3-81+11-81s=3 (mod 4),
hence
1+1-14+(-1)-18=3 (mod 4),
ie, -s=1 (mod 4) and thus s = —1 + 4r, where r € Z. Finally,
T=-3-3-81+11-81(—1+4r)
=—3—14-81+4-11-81r = —1137 + 3564r,

or £ = —1137 (mod 3564), which is also the solution of the original
congruence. o
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4.8 [Exercises

Solve the systems of congruences (i)—(viii), where a € Z is a parameter:

(i) =2 (mod 5), (ii) = =7 (mod 33),
z =8 (mod 11). z =3 (mod 63).
(iii) 4z =3 (mod 7), (iv) 17z =5 (mod 6),
5z = 4 (mod 6). 11z = 35 (mod 36).
(v) 17z =7 (mod 2), (vi) 3z =5 (mod 7),
2z =1 (mod 3), 2z =3 (mod 5),
2z =7 (mod 5). 3z =3 (mod 9).
(vii) z =a (mod 6), (viii) 2z =a (mod 4),
z =1 (mod 8). 3z =4 (mod 10).

(ix) Show that if the number ¢ satisfies all congruences of the system
(17), then all solutions of this system are given by the congruence
z = ¢ (mod m), where m = [m,,...,mg].

(x) Prove the so-called Chinese remainder theorem: If the numbers
m, Mg, ..., Mk are pairwise relatively prime, then the system (17)
is solvable.

(xi) Let k,n € N. Show that there exist k consecutive integers, each of
which is of the form ab™, where a,b € Z and b > 1.
*(xii) Show that the system (17) is solvable if and only if for all 2,5 € N,
i < j €k, we have ¢; = ¢; (mod (m;, m;)).

4.9 Congruences of Higher Degree

We return now to the more general case, where on both sides of the congru-
ence we have a polynomial of the same variable z with integer coefficients.
By subtracting we can easily change this to

F(z)=0 (modm), (21)

where F(z) is a polynomial with integer coefficients, and m € N. Based
on the following theorem, we will describe 8 method for solving such
congruences; it may be laborious, but it is universally applicable.

4.10 A Substitution Result

Theorem. For any polynomial F(x) with integer coefficients, and for a
natural number m and integers a,b such that a = b (mod m), we have
F(a) = F(b) (mod m).

PrOOF. Let F(z) = caz"+€n—12" 1+ - -+e12+¢p, where ¢, 1, . .. , €5 €
Z. Since a = b (mod m), by 3.3.(ii)) we have for all i =1,2,...,n,

ca' = cb*  (mod m),
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and thus, adding these congruences for i = 1,2,...,n and the congruence
cp = ¢p (mod m), we get

cnt" +an_ 18" 1+ - e184Cp = G FCn1 b7 - - -Ferb+ep  (mod m),
ie.,, F(a) = F(b) (mod m). D

4.11 Euzistence of Solutions

Consequence. If no integer a, 0 < a < m, satisfies F(a) = 0 (mod m),
then the congruence (21) has no solution. If ay,a2,...,a, are all integers
such that 0 < a; < m and F(a;) = 0 (mod m), then the solutions of the
congruence (21) are exactly all integers x that satisfy one of the congruences

z=a; (modm), z=a2 (modm), ..., z=a, (modm).

Proor. If b is any integer, then from the division theorem 1.3 it follows
that there exists a unique a € Z such that 0 < a < m and b= a (mod m).
By Theorem 4.10, b is a solution of (21) if and only if @ is a solution. O

To solve the congruence (21) it therefore suffices to find out for which
integers a, 0 < a < m, we have F(a) =0 (mod m). A disadvantage of this
method is the amount of work involved, which increases with the size of
m. If m is composite, m = pi* -- - p;.*, where p, . . ., px are distinct primes,
and if furthermore k > 1, we can proceed as in 4.7.(iv) and replace the
congruence (21) by the system

F(z)=0 (mod p7'),
: (22)
F(z)=0 (mod p;*)

(which has the same set of solutions), and then solve each congruence of
this system separately. Doing this, we obtain in general several systems of
congruences of the type (17), which we know how to solve. The advantage
of this method lies in the fact that the moduli of the congruences in (22)
are smaller than the modulus of the original congruence (21).

4.12 FEzamples
(i) Solve the congruence 2° + 1 =0 (mod 11).
SOLUTION. We set F(z) = 2®+1. Then we have F(0) = 1, F(1) = 2, and

F(2)=33=0 (mod 11),
F(3)=341=9-9-3+1=(-2)?-3+1=1241=2 (mod 11),
F(4)=4°4+1=241=141=2 (mod 11),
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where we have used Fermat’s theorem to obtain 2 = 1 (mod 11).
Similarly,

F(5)=5°+1=16°+1=4"Y4+1=1+1=2 (mod11),
F6)=6*+1=(-5+1=-16+1=—-4"+1=0 (mod 11),
FN=7+1=(-4°+1=-2Y41=-1+1=0 (mod11),
F(8)=8"+1=2%-241=32+1=0 (mod11),
FO=9+1=3%4+1=1+1=2 (mod 11),
F10)=10°+1=(-1)*+1=0 (mod 11),

and thus the congruence =% + 1 = 0 (mod 11) is solved exactly by those
z that satisfy one of the congruences £ = 2 (mod 11), z = 6 (mod 11),
z=7 (mod 11), z =8 (mod 11), z = 10 (mod 11). (m

(ii) Solve the congruence z8 —2 =0 (mod 7).

SOLUTION. Although we could proceed exactly as in example (i), we will
use a different approach here. We use the fact that, by Fermat’s theorem
3.11, for all integer = we have

=z (mod7),
and so the given congruence can be rewritten as
8 —2=z.2°-2=z-z—2=22—9=(z—3)(z+3) (mod 7).

Our congruence is therefore satisfied if and only if 7 | (z — 3)(z 4 3), which
is the case if and only if 7 | £ — 3 or 7 | £ + 3. As solutions we therefore
have exactly those  which satisfy one of the congruences z = 3 (mod 7),
z=-3 (mod 7). (m

(iii) Solve the congruence z° — 3z + 5= 0 (mod 105).

SoLuTIiON. To proceed as in 4.11 for m = 105, we would have to evaluate
F(z) = 2% — 3z + 5 for the 105 values £ = 0, 1, . .., 104. For this reason it is
better to factor 105 = 3-5-7 and to successively solve the congruence F(z) =
0 for the moduli 3, 5, 7. We have F(0) = 5, F(1) = 3, F(2) =7, F(3) = 23,
F(-1) =7, F(—2) = 3, F(—3) = —13 (note that for easier calculation we
have evaluated, for example, F'(—1) instead of F(6), using the fact that
by 4.10 we have F(6) = F(—1) (mod 7), etc.). The congruence F(z) = 0
(mod 3) has therefore the solution £ = 1 (mod 3); the congruence F(z) =0
(mod 5) has the solution £ = 0 (mod 5); and F(z) = 0 (mod 7) is solved
by z € Z satisfying z = 2 (mod 7) or z = —1 (mod 7). It therefore remains
to solve the following two systems of congruences:



214 3. Number Theory

z=1 (mod 3), z=1 (mod 3),
=0 (mod}5), and z=0 (mod 5),
z=2 (mod7), z=-1 (mod 7).

Since the first two congruences are the same in both systems, we will deal
with them first. From the second congruence we obtain z = 5t for t € Z,
and substituting this into the first one, we get

5t=1 (mod 3),

hence —t =1 (mod 3), i.e., t = —1 + 3s for s € Z, and thus £ = —5+ 15s.
First we substitute this into the third congruence of the first system:

—5+15s=2 (mod 7),

so 8§ =0 (mod 7), ie, s=Tr for r € Z and thus z = -5 + 105r. If we
substitute £ = —5 + 15s into the third congruence of the second system,

we get
—5+15s=—1 (mod 7),

hence s = 4 (mod 7), i.e., s=4+ 7r for r € Z, and thus z = -5+ 15(4 +
Tr) = 55 + 105r. Together, the solution of the given congruence F(z) =0
(mod 105) consists of all integers z satisfying £ = —5 (mod 105) or £ = 55
(mod 105). O

(iv) Solve the congruence z2 — 3z — 10 =0 (med 121).

SoLuTION. Since 121 = 112, if the integer z is a solution of the given
congruence, then by 3.3.(vil) it also has to be a solution of the same con-
gruence modulo 11 (but not conversely!). Therefore, we will first solve the
congruence zZ — 3z — 10 = 0 (mod 11). For each z € Z we have

z?—3z—-10=z2*+8z-10=(z+ 4)>2—16 - 10
=(z+4)2—4=(z+4—-2)(z+4+2) (mod1l),

so £ € Z is a solution of this congruence if and only if 11 | + 2 or
11 | £ + 6 (here we have used the fact that 11 is prime). Now we substitute
T = —2+ 117, resp., £ = —6 + 11r, where r € Z, into the polynomial
F(z) = 22 — 3z — 10, to obtain

F(-2+11r) =4 — 44r +121#°* + 6 — 33r — 10 = —77r (mod 121),

F(—6+117r) = 36 — 132r + 12172 4 18 — 33r — 10

= —44r + 44 (mod 121),

which means that in the first cese z is a solution if and only if

—7tr=0 (mod 121),
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i€, —7r = 0 (mod 11), so r = 11s, where s € Z, and therefore z =
—2 4 121s. In the second case x is a solution if and only if

~44r +4 =0 (mod 121),

ie, —4r = —4 (mod 11), so r = 1 + 11s, where s € Z, and thus = =
—6 + 11(1 + 11s) = 5 + 121s. The solutions of the original congruence
are therefore given by all integers 2 that satisfy the congruences z = —2
(mod 121) or x = 5 (mod 121). O

(v) Solve the congruence 2% — 3z — 10 =0 (mod 49).

SOLUTION. We proceed as in (iv) and first solve the given congruence
modulo 7. From

223z -10=2"+4r—10=(x+2)°—4-10=(z+2)? (mod 7)

we see that =2 — 3z — 10 = 0 (mod 7) if and only if £ = —2 + 7r, where
r € Z. Substituting this into F(z) = 22 — 3z — 10, we cobtain

F(—2+7r)=4—28r+49r* + 6 —21r —10=49° ~49r =0 (mod 49),

and so the solution of the original congruence is given by all integers =
satisfying * = —2 (mod 7). O

4.13 FEgzercises
Solve the congruences (i)-(xii):

(i) 22+ 5241 =0 (mod 7).
(i1) 2722 — 13z + 11 =0 (mod 5).
(iii) 2 + 2 +4 =0 (mod 5).
(iv) 5z% +z +4 =0 (mod 10).
(v) 22 — 42+ 3 =0 (mod 6).
(vi) z® + 25 — 222 — 2 =0 (mod 5).
(vii) 212+ 211 — 22 —1 =0 (mod 11).
(viii) 27 — 328 + 2% — 23 + 422 — 4z + 2 = 0 (mod 5).
(ix) 2% + 2 =0 (mod 35).
(x) 5z% + 32? + £+ 3 =0 (mod 45).
(xi) 2 + 10z +3 =0 (mod 121).
(xii) z% —1 =0 (mod 35).

*(xiii) Find all integers m > 1 satisfying the following condition: There
is a polynomial F(x) with integer coeflicients such that for any
integer a either F(a) = 0 (mod m) or F(a) = 1 (mod m) and
each of these two cases is satisfied for at least one integer a.
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The theory of congruences of higher degree is a well-developed topic in
number theory; here we have presented only part of it. Those interested
in further studying this topic should consult, for instance, the book by
I. M. Vinogradov [12], which treats the theory of higher-degree congruences,
especially quadratic congruences, in a very accessible way.

In conclusion, we state without proof a criterion for the solvability of the
congruence

=t {mod p), (23)

where p is an odd prime and ¢ an integer not divisible by p. We note that any
quadratic congruence modulo p can easily be reduced to this congruence.
Indeed, if we multiply the congruence

az’+bz+c¢=0 (mod p),

where ¢ # 0 (mod p), by the number t obtained as a solution of the
congruence at = 1 (mod p), then we get

24tz +ct =0 (mod p).

This last congruence can be further transformed by completing the square:
We set d = bt/2 if bt is even, and d = (bt + p)/2 if bt is odd. Then d is
always an integer, and 2d = & (mod p). Substituting, we obtain

2 +2dzx+ct =0 (mod p);

thus
(z+d?=d*’—ct (mod p),

and this is a congruence of the form (23), if we set y = z +d.

4.14 FEuler’s Criterion

Theorem. For any prime p > 2 and integer t, not divisible by p, the
congruence (23) has a solution if and only if

tP-1/2=1 (mod p).
A proof of this result can be found, e.g., in [12].

4-15 FEzxercises
Let p be an odd prime.
(i) Prove the following part of Theorem 4.14: If the congruence z2 =
(mod p) has a solution, then ¢(P~1/2 =1 (mod p).

(ii) Let p = 4k + 3, where k € Ny, and suppose that ¢2+1 = ] (mod p).
Show that z = +t*+! (mod p) is a solution of the congruence z2 =t
(mod p).
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5 Diophantine Equations

As early as in the third century of our era the Greek mathematician
Diophantus considered equations for whose solutions only integers were
admissible. This is not so surprising: There are many practical problems
that are solvable by equations where nonintegral solutions have no reason-
able interpretation. (Consider, for instance, the problem of how to measure
8 litres of water using two containers of 5 and 7 litres each; this gives the
equation 5z+7y = 8.) In honour of Diophantus, equations for which we con-
sider only integer solutions are called Diophantine equations. Unfortunately,
there is no universal method for solving such equations. Nevertheless, we
will introduce several very useful methods that turn out to be successful in
many specific examples.

5.1 Linear Diophantine Equations

We consider equations of the form
171 +azTa + - +ayZn =b, (29)

where z,,...,z, are variables and ay,-..,a,,b are fixed integers. We as-
sume that @; # O for all ¢ = 1,...,n (if a; = 0, then the variable z;
“disappears” from the equation). Congruences can be used for the solution
of such equations.

First we try to decide when the equation (24) can, or cannot, have so-
lutions. If b is not divisible by d = (a3,.--,a,), then (24) cannot have
any solution, since for any integers zy,...,Z, the left-hand side of (24) is
divisible by d. If, on the other hand, d | b, then we can divide the whole
equation (24) by d. We then obtain the equivalent equation

a1z + ahza + - - +alz, = b,

where @}, = q;/dfori =1,...,n and ¥ = b/n. By 1.14.(i), and using (6),
we have

d-(a},-..,a;) = (da},...,da)) = (a1,--.,a,) = d,

and thus (a},..-,a]) = 1. In the following theorem we will show that
such an equation always has solutions; we can therefore summarize this
discussion as follows: The equation (24) has integer solutions if and only if
the number b is divisible by the greatest common divisor of ay, ag,...,a,-

5.2 Fristence of Solutions
Theorem. Let n > 2. The egualion

0171 + G2Z2 + - - + GpZy = b, (25)
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where a;,as, - - - ,an, b are integers such that (a1,...,a,) = 1, ﬂlwfl?ﬁ h‘_‘-’
integer solutions. All integer solutions of this equation can be written in
terms of n — 1 integer paramelers.

PROOF. We use induction on the number n of the unknowns z; in (25).
It is convenient to formally begin with the case n = 1, where the condition
(a1) = 1 means that a; = 1. Then (25) is of the form z; = b, or —z1 = b,
and thus the unique solutions clearly do not depend on any parameter,
which corresponds to the fact that n — 1 =0.

We now assume that n > 2 and that the theorem holds for equations
in n — 1 variables; our aim is to prove (25) for n variables. We set d =
(@1,...,an-1)- Then any solution z,...,Zn of (25) trivially satisfies the
congruence

1Ty + a2Te +---+anzZn =b (mod d).

Since d is 2 common divisor of a4, . .., a,_1, this congruence is of the form
AnZn, =b (mod d),

and since by (6) we have (d,a5) = (a1,-.-,8n-1,85) = 1, Theorem 4.2
shows that it has solutions

Zn=c (mod d),

where ¢ is an appropriate integer, that is, z, = ¢ +d - t, with arbitrary
t € Z. Substituting this into (25) and rearranging, we get

)T+ -+ 0n_1Zn—1 = b—anc—aydi.
Since anc = b (mod d), the number (b — a,c)/d is an integer. We can
therefore divide this last equation by d, and cbtain
iz +---+ah_1Zn—1 =V,

where a; = a;/dfori=1,...,n— 1 and & = (b — anc)/d — a,t. Since

r 1 1
(a1,--.,a,_y) =(da},...,da},_;) - a= (ary.+-4@n-1)" = 1,

by the induction hypothesis this last equation has, for each ¢ € Z, solutions
that can be written in terms of n — 2 integer parameters. If we add to these
solutions the condition z,, = c + dt, we obtain solutions of (25) written in
terms of the n — 2 original parameters and the new parameter ¢. The proof
by induction is now complete. O

5.8 Ezxamples

We use the method of proof of Theorem 5.2 to solve the following Dio-
phantine equations. For clarity we will denote the variables by =, v, z,. ..
instead of z),z2,z3,--..
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(i) 5z + 7y = 8.
SOLUTION. Any solution of this equation has to satisfy the congruence
5c+7y=8 (mod5),

hence 2y = —2 (mod 5), which means that y = —1 (mod 5}, ie., y =
—1 + 5t for t € Z. Substituting this into the given equation, we get

S5z + 7(—1 + 5t) =8,
which simplifies to x = 3 — 7. The solutions to our equation are therefore
z=3-Tt, y=-14+85t,
where t is an arbitrary integer. O
(ii) 91z — 28y = 35.

SoLuTion. Since (91,28) = 7 and 7 | 35, the equation does have solutions.
Dividing by 7, we get
13z -4y =5.

Any solution of this equation will satisfy the congruence
13z—4y=5 (mod 13),

i.e., —4y = —8 (mod 13), which means that y = 2 (mod 13) and y = 2413t
for t € Z. By substituting, we obtain

13z — 4(2 + 13t) =5,

which simplifies to £ = 14+4¢. Hence the solutions are x = 14-4¢, y = 2+13t,
where ¢ is an arbitrary integer. O

Of course, we would have obtained the same result by considering the
congruence modulo 4 instead of 13. Since solving congruences with smaller
moduli is easier, it is well worth remembering this fact so as to avoid
congruences with large moduli.

(iii) 18z + 20y + 15z = 1.

SoLuTION. Since (18,20, 15) = 1, the equation has integer solutions. Any
solution will satisfy the congruence (as modulus we choose (18,20))

18+ 20y +152=1 (mod 2);
thus z =1 (mod 2), and so z =1 + 2s, where s € Z. Substituting,
18z + 20y + 15(1 4 2s) = 1,
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and after dividing by 2 and rearranging, we get
9z + 10y = —7 — 15s,
which we can solve for any s € Z. If this equation is satisfied, we will have
9z + 10y = —7 — 153 (mod 9),

hence y = 2 + 3s (mod 9), and therefore y = 2 + 3s + 9t, where t € Z.
Substituting, we get

9z +10(2 + 33 + 9t) = —7 — 15s,

and after simplifying, z = —3—5s—10t. The solutions of the given equation
are therefore the triples

x=—3—58—10L,

y=2+33+9t,
z=1+42s,
where s, are arbitrary integers. O

(iv) 152 — 12y + 482 — 51lu = 1.
SoLUTION. Since (15,12,48,51) = 3 does not divide 1, the equation has

no integer solution. (]

5.4 Ezercises

Solve the following equations in integers.

(i) 2z —3y=1. (i) 17z + 15y = 2.
(iii) 16z + 48y = 40. (iv) 10z + 4y = 16.
(v) 17z + 13y =1. (vi) 60z — 7Ty = 1.
(vii) 12z 4+ 10y + 15z = 1. (viii) 63z + 70y + 75z = 91.
(ix) 105z 4+ 119y + 161z = 83. (x) 10z + 11y + 12z + 13u = 14

(xi) 36z + 45y + 105z + 84u = 39. (xii) 2z + 4y + 8z + 161 = 32.

3.6 Diophantine Equations Linear in Some Variable

We will now consider equations that can be written in the form

mz, = F(z;,...,Zn-1), (26)
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where m is a natural number and F(zy,...,Zn—1) is & polynomial with
integer coefficients. It is clear that for x3, 2, - - . , Tn, to be an integer solution
of (26), we require

F(Z1,...,2pn-1)=0 (mod m). (27)

On the other hand, if z,,...,Z,_, is a solution of (27), then with z,, =
F(z,,. .., Tn—1)/m we obtain an integer solution z,...,Z,—1,Zy of (26).
Hence, to solve the equation (26}, it suffices to solve the congruence (27).
In the case n = 2, i.e., the case where F(z,) is a polynomial in one variable,
this reduces to the problem we have dealt with in 4.9. The case n > 2 can
be solved analogously, with the help of the following theorem.

5.6 A Substitution Result

Theorem. For any polynomial F(x,,...,T,) with integer coefficients, and
Jor any natural number m and integers @, -- -,Gq, b1,...,b, such thata; =
by (mod m), ..., a;, = b, (mod m), we have F(a,,.-.,a,) = F(b,---,b,)
{mod m).

PROOF. Similar to the proof of Theorem 4.10. O

To find all solutions of the congruence (27), it therefore suffices to sub-
stitute the variables z,, ...,Zn—1 in F(z, .., Tn—1) independently of each
other by the numbers 0,1,2,...,m — 1 (ie., m" ! choices altogether).
Exactly in the case where the numbers a;, -..,a,-1 satisfy the condition
F(ay,---,an—1) =0 (mod m), we obtain solutions of the congruence (27)
in the form

Ty =a1+miy, ..., Tp—1 =0Cn—-1+mip_),

where the t;,...,t,_) can take on any integer values. Finally, this gives us
solutions to the original equation (26):

1 = ay +mly,

Tn—1 = Gn-1 +Min_y,
1
In = ;F(al +mty,...,an—1 + Mia_1).

5.7 Ezamples
Solve the following Diophantine equations:

(i) 722+ 5y +13=0.
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SoLUTION. We rewrite the equation as 5y = —7z? — 13, and solve the

congruence
—~722-13=0 (mod 5),

i.e., 3z%2 = 3 (mod 5), which means that z? = 1 (mod 5). If we replace z
by 0, 1, 2, 3, 4, we find that the congruence is satisfied by the numbers 1
and 4. By 4.11, the solutions of this congruence are therefore exactly the

numbers
=145t or =4+ 951,

where t € Z. By substituting we get in the first case
5y = —7(1 + 5¢t)2 — 13 = —7 — 70t — 175t — 13

and thus
y = —4 — 14t — 35¢2,

and in the second case,

5y = —7(4 + 5t)% — 13 = —112 — 280t — 175¢% — 13,

which means that
y = —25 — 56t — 35¢2.

The solutions of the given equation are therefore exactly all the pairs z,y
of the form

r=1+5ty=—4-14t— 352 or z =4+ 5ty= —25— 56t — 352,
where t is an arbitrary integer. (m]
(ii) z(z +3) =4y — 1.

SOLUTION. We write the equation in the form 4y = 2?4 3z 41, and solve
the congruence
24 3241=0 (mod 4).

By substituting we find that none of the numbers 0, 1, 2, 3 satisfies this con-
gruence, and thus by 4.11 it has no solution. Therefore, the given equation
has no solution either. 0O

(§ii) 2+ 422 + 62+ Ty + 82 = 1.

SOLUTION. We rewrite the equation as
Ty=—x°—6z—42> —82+1,

and completing squares, we get

Ty=—(z+3)> - (22+2)%+14.
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We will therefore solve the congruence
(z+3)*+(22+2?=0 (mod 7). (28)

Now, we could substitute the ordered pair (z,2) consecutively by the or-
dered pairs (0,0), (0,1), ---, (0,6), (1,0), (1,1), .., (6,5), (6,6), and
evaluate the left-hand side of (28) for all 49 pairs. However, it will be
more convenient to exploit the particular form of the congruence (28) and
refer to 3.14.(vi), which shows with p = 7, a = 2 + 3, b = 2z + 2 that (28)
implies

z+3=22+2=0 (mod 7),
and therefore all the solutions of (28) are of the form

z=-3+Tt, z=-1+417s,
where t, s are integers. Substituting this into the equation, we obtain

Ty = —(x + 3)* — (2z + 2)®> + 14 = —49t% — 1965* + 14,

and thus
y=—Tt? — 28s% + 2.

The solutions of the given equation are therefore exactly all the triples
x,¥, z of the form

z=—3+Tt, y=—-Tt2—28s°+2, z=-1+7s,
where s,t are arbitrary integers. |
(iv) (z— y)2 =z+y.

SoLuTION. Although this equation is not of the form (26), we can bring
it into this form by introducing the variable z = z —y. Then z+y = z+ 2y,
and we get the new equation

22 =242y,
in the variables z and y, or
2y = 2(z —1).
We will therefore solve the congruence
z{(z—1)=0 (mod 2).

By substituting we see that both numbers 0, 1 satisfy this congruence, and
so by 4.11 it is satisfied by all integers z (if we wanted to strictly “follow the
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instructions,” we would now have to distinguish between the cases z = 2t,
teZ and z =2t + 1, ¢t € Z, but this is not necessary here). Therefore,

_ z(z—1)
2

is an integer for any z € Z. The original variable z is then of the form

z(z—-1) 2(z+1)
2 2

z=z4+y=2z+
The solutions of the given equation are therefore all pairs x,y of the form
1 1
= Ez(z+ 1), y= -2-z(z -1),

where z is an arbitrary integer. D

5.8 FEzercises

Solve the Diophantine equations (i)—(xii):

(i) 22— 11y—4=0. (ii) 22 —-11y—6=0.
(iii) = +222 +5=21y. *(iv) (22 +2)z = 125y — 2.
(v) 23 — 1122 —11y—2=0. (vi) 2 -1322-13y—2=0.
(vii) z2 — 39 = 30y. (viii) (z+ )% +82=1.

(ix) 22 + zy+ > =3(z +y + 2).
*(x) 22 + 4% + 922 =8u—1.
*(xi) 22+ 4zy + 4y® — 3z — 4y — 600 =0.
*(xii) 4 + 222y + ¥ +22 +y+ 7z +1=0.
The method used for solving the examples in 5.7 can also be described

as follows: “Express one of the variables in terms of the others and find out
when it is integral” Indeed, if we solve the equation (26) for z,, we get

_ F(xls'--sxn—l)
In = m s

which is an integer if and only if m | F(z;,...,%n-1), i-e, if and only if
the congruence (27) is satisfied. We will see in the following examples that
this approach is also useful for equations that are not of the form (26). In
Example 5.9.(iv) we will see that instead of discussing the integrality of
some variable it may be more appropriate to study the integrality of some
other suitable expression and find out under which circumstances it will be
integral.
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5.9 Ezamples
Solve the following Diophantine equations.
(i) 3* =4y +5.

SOLUTION. We solve this equation for y-
1 x
= 2(3 - 5).
If z < 0, then 0 < 3% < 1, and thus (3" — 5) ¢ Z. For z > 0 we have
3*-5=(-1)"—1 (mod4).
The number (—1)* — 1 is congruent to 0 modulo 4 if and only if  is even,

i.e., z = 2k, where k € Ny. The solutions of the given equation are therefore
all pairs

z = 2k, y= 9k4_ 5,
where k € Ny is arbitrary. O
(ii) z(y +1)% = 243y.
SOLUTION. We solve for z:
z= % .

In order for z to be an integer, (y +1)* must divide 243y. Since y and y+1
are relatively prime for any y € Z, then (y+1)? has to divide 243 = 3°. But
this number has only three divisors that are squares of integers, namely 1, 9,
and 81, and this leads to the following possibilities: y+1 = £1, y+1 = +3,
or y + 1 = 49. Hence we obtain the following six solutions of the given
equation:

y=0, r=0,
y=-2 z = —2.243 = —486,
y=2, z=2-27T=54,
y=—4, z=—4-27=-108,
y=_=8, r=8-3=24,
y=-10, z=-10-3 = —30.
The equation has no other solutions. 0

(i) VZ + /7 = VI1988.
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SoLuTiON. If we subtract /g from both sides and then square, we obtain

z=1988—4/7-7T1 -y +y.

If z,y are integers, then 4,/7- 71y is also an integer, and thus /7 - 71y is a
rational number. By 2.11.(iii), /7 - 71y = k is a nonnegative integer. Hence
7-7ly = k2, which means that k% and thus also k are divisible by the primes
7 and 71. Therefore, k = 7 - 71t for an appropriate ¢ € No, and thus

k2

- — 49742,
V=7 497t

In complete analogy we can find that there exists an s € Np such that
z = 4975%.

Substituting this into the original equation, we get
V497s + V497t = V1988,

which, after dividing, gives s +t = 2. Hence there are three possibilities:
s=0,t=2,0ors=¢t=1,or s=2,t=0, and so the given Diophantine
equation has the three solutions

z=0, y=1988 z =1y =497, r=1988, y=0. O
(iv) 2 +92 = (z—p)*

SoLUTION. The equation is certainly satisfied by x = y = 0, so this is one
solution. For what follows we assume that at least one of the numbers z,y
is nonzero. We rewrite the equation as

2? —2zy +y° = (z — v)® — 22y,
(z—v)(z—y—1) =2ay.

We denote the greatest common divisor of z,y by k, and set zy, = z/k, 1 =
y/k. By 1.14 (ii1) the integers z;, are relatively prime. By substituting
into the last equation, we obtain

kz(xl - yl)z(kﬂ:l — ky1 — 1) = 2k2:r:1y1.

If z; —y = 0, then z = y and the original equation gives z2 + y? = 0; this
implies z = y = 0, which contradicts our assumption. Hence z; — y; # 0,
moreover, since the original equation implies z > y, we have z; > . If we
divide the last equation by k%(z; — y1)?, we obtain

27111

kzy —kyy ~1= ————.
! u (z1—m)?
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Hence (z; —;)? is a divisor of 2z, but this can occur only if (z; —31)? =
1. Indeed, if we assume that (z; —1)2 > 1, then by 2.5 there exists a prime
p that divides (z; —1 ). But then, by 2.2, p| 1 — 4, and thus from p | z; it
would follow that p | 31, and vice versa. Since {(z1,3:1) = 1, p divides neither
z1 nor ;. However, in this case the condition p? | (z1 —1)? | 2131 implies
p° | 2, which is a contradiction. Hence (z; — 3;)? = 1, and from z; > 3 it
follows that =3 — 3 =1, i.e,, 1 = 1 + 1. Substituting this into the last
equation, we obtain
k—1=2(1+wm)un,

and thus

z=kzy = (2(1 + )1 + D1+ ),
y=kyn =021+ un)n+LHm.

If we set g1 = ¢, then all the solutions of the original equation are given by
the pair £ =0, y = 0, and all pairs

z=0220 426+ 1)t +1), y=(22+2t+1)-¢,

where ¢ is an arbitrary integer. O

5.10 FE=xercises

Solve the following Diophantine equations:

(i) 5 +3V =8z —2.
(ii) 2% = 3+13y.
(iil) =2 — zy+ 2z — 3y = 11.
(iv) 223 — 2%y + 22 + 14z — Ty + 40 = 0.
(v) z—2)*=(y+3)°.
(vi) VE=1+ &
(vii) 2zy + 3y% = 24.
(viii) 222+ 22y + ol +zy =Yz — 1.

5.11 Solving Diophantine Equations Using Inequalities

This method is based on the fact that for any real numbers a, b there exist
only finitely many integers x such that a < = < b. Therefore, in order to
solve a given equation, we try to find numbers @, b such that the inequalities
a < = < b, for some variables =, follow from this equation. The finitely
many integers lying between a and b are then substituted for z in the given
equation, which in this way becomes simpler. Let us consider the following

examples.
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5.12 FEzamples
Solve the Diophantine equations (i)(iii):
(i) 622 + 5y = 74.

SOLUTION. Since all y € Z satisfy 5y > 0, any solution z, y of the given

equation must satisfy
74 = 622 + 5¢° > 622,

which means z2 < 37/3, and thus —3 < z < 3, so 22 is among the numbers
0, 1, 4, 9. Substituting these in succession, we obtain 5y = 74, 5y> = 68,
5y2 = 50, 5y = 20. The first three contradict y € Z, while from the last
one we get y° =4, i.e., y = 12

Our equation therefore has the following four solutions: z = 3, ¥y = 2;
z=3,y=—-2;z=-3,y=2,z=-3,y=—2. D

(3i) =2 + oy + y% = %Y.

SoLUTION. Since this equetion is symmetric in the variables z, y, we may
assume that z2 < y?, which implies zy < ¥2, and thus

PP =2 +zy+ <P+ +8 =3

We have therefore y = 0 or z2 < 3. Substituting these into the equation,
we obtain £ = 0 in the first case, and in the second case for * = 0 again
y =0, whilefort =1wegety=—1landforz=—-1itisy =1. Our
equation has therefore the following three solutions:

=0, y=0; z=1, y=-1; z=-1, y=1L 0
(iii) 2% =1 4 3v.

SoLuTiON. Ify < 0, then 1 < 1+ 3¥ < 2, which means that 0 < x < 1,
but this is a contradiction. Hence y > 0 and therefore 2* =1+ 3% > 2,
which means that £ > 1. We will now show that also z < 2. Indeed, if we
had z > 3, then

1+43¥=2°"=0 (mod 8),

which would imply
¥=-1 (mod8);

but this is impossible, since for even numbers ¥ we have 3¥ = 1 (mod 8),
and for y odd, 3¥ = 3 (mod 8). It therefore remains to consider the case
1<z<2.Forz=1 we get

¥=21-1=1,
and thus y = 0. The case £ = 2 gives
¥=22_1=3;
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hence y = 1. The given equation has therefore the two solutions z = 1,
y=0andz=2,y=1. O

(iv) Solve the equation = + y + z = zyz in natural numbers.

SOLUTION. Since the variables in this equation are symmetric, we may
assume that £ < y < z. But then

Tyz=x+y+z2<z2+z+2=3z

which means that zy < 3. Hence zy = 1, or zy = 2, or zy = 3.

If zy = 1, then z = 1, y = 1, and by substituting into the given equation
we get 2 4+ z = z, which is impossible.

If zy = 2, then x = 1, y = 2 (recall that we have & < y), which means
that 3 4 z = 22, and thus z = 3.

If zy = 3, then £ = 1, ¥y = 3; hence 4 4+ z = 3z, and thus z = 2. But this
is a contradiction to the assumption y < z.

Our equation has therefore the unique solution z = 1, y = 2, 2 = 3
under the assumption z < y < z. The complete set of solutions in natural
numbers is therefore given by all permutations of the numbers 1, 2, 3:

(x? y'! z) e {(1’ 2'! 3)' (1) 3‘ 2), (2! 1’ 3)’ (2‘1 3" 1)' (3’ 1’ 2)' (3! 2! 1)}' D

5.18 Fzercises

Solve the equations (i)—(iv}) in natural numbers, and the equations (v) and
(vi) in integers:

(i) 6(z —y) = zy. G) 2+2+1=1
(iii) z* +y¥ =2r + . (iv) 22 +32 + 23 =99.
(V) V=14+2= (vi) 22 —zy+y’=z+y.

It is often advantageous to use contradictions to show that the set of
values of the variable z is finite and bounded by the inequalitiesa < z < b;
this is done by deriving a false statement from the assumption x < a (resp.
z > b). In the following examples, such a false statement will be the pair
of inequalities

c<d"<(c+1)",

where ¢, d are integers and n is a natural number.

5.14 Fzamples

(i) Solve the Diophantine equation z(z 4 1)(z + 7)(z + 8) = 32
SOLUTION. Rewriting, we get
y* = (2% + 8z)(z% + 8z + 7).
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If we set 22 4 8z = z, then our equation becomes
¥ =22 47z
We will show that z < 9. We assume to the contrary that z > 9. Then
(2432 =224624+9<224+Tz=92<22+82+416= (z+4)2,

which is a contradiction, since z + 3, y, z + 4 are integers, and these
inequalities would imply

lz+3| < |yl < |2+ 4)-
Hence z <9, i.e., 2 + 8z < 9, which means that
(x + 4)% = 2% + 8z + 16 < 25,

and thus -5 < z4+4 <5, or -9 < z < 1. Substituting these values into
the original equation, we obtain all solutions: (z,y) € {(—9,12), (—9,—-12),
(_81 0)1 (_7' 0)1 (_'41 12)' ('_4: _12): (_'11 0): (O: 0): (1, 12): (1! _12)}' O

(ii) Solve the Diophantine equation (z + 2)* — 2% = ¢°.
SOLUTION. Rewriting, we obtain
y® = 823 4+ 2422 4 327 + 16 = 8(z> 4+ 322 4 42 + 2),
which means that y is even, and we can set y = 2z, z € Z. Then
2=23+3r* +4zr 2.

If z > 0, we have

(z+1P =243 +3x+1<2®+ 322 + 4z + 2
=22 <234+ 622 +122+ 8 = (z + 2)3,

hence £+ 1 < z < £+ 2, which is impossible. The given equation therefore
has no solutions z,y € Z such that £ > 0. Let us now assume that it has a
solution z;,¥ € Z such that z; < —2. Then

(3.‘1 + 2)4 — .'L‘i‘ = y:li,
and if we set T = —x; — 2, y; = —y;, we obtain
x3 — (T2 + 2)* = —3,

and so x2, ¥ is also a solution of the given equation. But 2o = —z; —2 > 0,
and from the above it follows that this case cannot occur. In summary, then,
—2<z <0, e, z = —1. The original equation then gives v = 0; the pair
z = —1, y = 0 is therefore the unique solution. O
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5.15 Ezercises

Solve the Diophantine equations (i)—(iv):

(i) =2 =1+ y+y? + 4 +3* in natural numbers.
*(ii) =2+ = y* +9® + %+ y in integers.
*(iii) z° +3z® + 1 =4 in integers.
(iv) =8+ 228 +22% + 222 + 1 = 2 in integers.
*(v) For any natural number n and all natural numbers d dividing 2n?
show that n? 4 d is not the square of a natural number.

Some other, more complicated, approaches based on inequalities intro-
duced in Chapter 2 are sometimes also useful for solving Diophantine
equations. We will now consider several such examples.

5.16 FEzamples

(i) Find solutions in natural numbers of the equation

1 1 1 1

72
SOLUTION. Since the equation is symmetric in the variables z,y, 2, u, we
may assume that £ <y < z < u. It is clear that £ > 1. If u > 3, we would

have

UL NPIR SR IDY S IR Y S T

2 y? 22 y2—4 4 4 9 7
hence u < 2, and consequently 2 < z < y < z <€ u < 2. By substituting
into the given equation we verify that £ = y = z = u = 2 is indeed the

unique solution. O

(ii) Given any s > 2, show that the equation

bt =1
=i 3 z3

has no solutions in natural numbers T; < 3 < --- < T,.

SOLUTION. Since s > 2, we have x1 > 1; hence from 1 < 22 < --- < z,
and x;,T2,...,%, € Nit follows that =y > k+1forallk=1,2,...,s. Since

forany k=1,2,...,s,

1 1

ST SHE+D)

i ~1_ 1
z? k k+1
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we obtain

I L P L.
2 z2 z2 =227 32 (s +1)2

I
< 1_1)+ - +(i-= )
2 273)%F s s+1
1,

=1-—

<
s+1

hence the given equation has no solution in integers with the required
properties. O
(iii) Find solutions in natural numbers for the equation
z
z, ¥
v oz
SOLUTION. The quotient of natural numbers is & positive number, so we
may apply the arithmetic-geometric mean inequality (see Section 8.1 in

Chapter 2) to the numbers z/y, y/z and z/z. The geometric mean of these
three numbers is 1; hence their arithmetic mean satisfies

l(§+2+5)21,
3\y =z =«

with equality if and only if

+2-3
e

S_¥_E_q
v z =z

If we compare the above inequality with the given equation, we see that
there are infinitely many solutions of the form z = y = z, where z is an
arbitrary natural number, but no other solutions. O

(iv) Show that, given any integer n > 2, the equation
4 {z+1)" = (z+2)"
has no solutions in natural numbers.
SOLUTION. Let us assume to the contrary that for some natural numbers

z,n, with n > 2, the given equation is satisfied, and set y = z + 1 > 2.
Then

-1)"+y" =(y+1)", (29)
and we get

0=@+1)"—¢y" - @-1)"=1-(-1)" (mody).
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If n is odd, then 0 =2 (mod y), and thus y = 2 and
0=3“_2n_1|

which holds only for n = 1. Hence n is even, and by the binomial theorem
we have

wrr= G+ (1 (modsd)
w-1r=(3)r - (})u+1 Gmodsd),

which implies
0=(@+1)"~y"—(y—1)"=2ny (mody?)
hence 0 = 2n (mod y?) by 3.3.(v), and therefore 2n > y2. If we divide (29)

by ™, we get
1\" 1\"
(1+—) =1+(1——) <2
Yy Yy
On the other hand, Bernoulli’s inequality (see 3.3.(iii), Chapter 2) gives

(1+1) s1+o=1+2>1+4L _14¥52
y y 2y 2y 2

Putting everything together, it follows that the given equation has no
solution in natural numbers for any integer n > 2. D

5.17 FEzercises
Solve the following equations in natural numbers.
(i) 22 +® + 2% = 3zy=.
(ii) 2(£+2+f+3) =7
Yy 2z u I
(i) (z + 2y + 32)* = 14(=? + 3% + 2%).

: 1 1 1 1 1
(iv) F+F+;§+§+;’§=l-

5.18 Solving Diophantine Equations by Decomposition
This method is based on writing a given equation in the form
Ay-Ax---A, =B, (30)

where 4,,..., A, are expressions containing variables such that they take
on integer values when the variables are replaced by integers, and B is a
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number (possibly an expression) whose prime decomposition we know. In
this case there exist only finitely many decompositions of the number B
into n integer factors a;,...,as. If for each such decomposition we then
consider the system of equations

Al=a'l| A2=02, nny An=ani

we obtain all solutions of the equation (30). The following examples will
illustrate this.

5.19 Ezamples

(i) Solve the Diophantine equation y* — 23 = 91.

SOLUTION. Factoring the left-hand side of the equation, we get
(v — =} v + zy + z°) = 91.

Since a2 3
y2+:cy+:::2=(y+§) +Z-13220.

we will also have y — £ > 0. The number 91 can be written as a product of
two netural numbers in four different ways: 91 = 1-91 = 7-13 = 13-.7 = 91-1.
Therefore, we will separately solve the following four systems of equations:

(a) y—x =1, y? +zy+z? = 91. Substituting y = z + 1 into the second
equation, we obtain z2 + x — 30 = 0, which gives £ = 5 or £ = —6. The
corresponding values of the second variable are then y =6, y = —5.

b)y—z=7, ¥* +zy+z2=13. Then 22+ 7x+12 =0, so z = —3 and
y=4,orx=—-4andy=3.

(¢) y—x =13, ¥?2 + zy + 2% = 7. Here we have z2 + 13z 4+ 54 = 0. But
this equation has no real roots, and thus no integer roots.

(d) y— =91, y* + 2y + 2% = 1. In this case z2 + 91z 4 2760 = 0, and
this equetion has no real roots either.

The given equation has therefore the following four solutions: (z,y) €
{(5! 6)! (_63 —5)| (_31 4)! ("4v 3)} a

(ii) Solve the Diophantine equation z% + 227y — z14 — 42 = 7.
SOLUTION. We rewrite the left-hand side,
7t + 227y — 214 - =g—(z" - y)2 = (=%~ 2" + yNz? + =7 —9),

and note that the number 7 can be written in four different ways as &
product of two integers: 7T=1-7=7-1= (-1)- (-7) = (-7)- (—1). We
will therefore solve the following four systems of equations:

@z -z"+y=1, 2+’ —y=1T. Adding these two equations, we
obtain 22 = 4, thus z = 2 and y = 125, or z = —2 and y = —131.
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)z —~2"+y=7 z?+27"—y=1 Againz® =4, and thusz=2,
v=13lorz=-2, y=—-125.

() z2—2"+y=—1, z?+43z"—y= —T7. By adding we now get z2 = —4,
which is a contradiction.

(d)z2—z"+y=—-7 2®2+27—y=—1. Agein 22 = —4, which is
impossible.

The equation therefore has the four solutions

(z,v) € {(—2,—131),(—2,-125),(2,125), (2,131)}. O

(iii) Solve the Diophantine equation

'B_.I i

+

B
LN

where p is an arbitrary prime.

SOLUTION. Multiplying by xyp and rearranging, we get
zy —pr—py =0.

Bringing this into the form (30) now requires a trick. Add p? to both sides
of the equation, so that the left-hand side can be written as a product:

(z-p)y—-p) =7

Since pis a prime, p? can be written as a product of two integers in no more
than the following six ways: p2 = 1-p?  =p-p=p*>-1=(-1)- (%) =
(—p) - (—p) = (—p?) - (—1). This leads to the following six systems of
equations:

(8)z—p=1,y—p=p* hencez=p+1,y=p*+p;

(b) z—p=p, y~p=p, hence z = 2p, y = 2p;

(z—p=p’,y—p=1 hencez=p* +p,y=p+1;

(d)z—p=-1,y—p=—p% hencez=p—1,y=p—p%

(e) z—p= —p, y —p= —p, hence z =y = 0, which is impossible;

f)z—p=—p,y—p=—1,hencez=p—p?, y=p—1

The given equation has therefore five solutions, as described in the cases

(a)~(d) and (f)- D
(iv) Solve the Diophantine equation

1+z+22 423 =2V,
SoLUuTION. Again, we rewrite the left-hand side as a product:

l+z4+22+28=1+z4+2*(1 +2) =1 +2)(1 +1z).
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Since the left-hand side of the given equation is integer-valued for z € Z,
the right-hand side must be an integer as well, hence y > 0. Now, the right-
hand side is a power of 2, and so each factor of the left-hand side must be
a power of 2 as well; hence there exists an integer m,0 < m < ¥, such that

1+z=2m, 1+z2=2y—m'

or
z=2"—-1, ZZ=2v""_1

Squaring the first equation and comparing with the second one, we obtain
22m . 2m+1 +1= u—m _ 1’
or
QU — 92m _ gm+l 4 9 (31)

If m = 0, then 2¥ = 1, which means that y =0 and z = 2™ — 1 = 0.
If m > 1, then the odd number 22™~! — 2™ 3 1 is, by (31), a power of
2, which is possihle only when 22™~1 — 2™ 4 1 = 1, which means that
29m —1 =m, i.e., m = 1, and thus z = 1, y = 2. By substituting into the
original equation, we convince ourselves that z =y=0and z =1,y =2
are indeed solutions. |

(v) Solve the equation

in natural numbers.
SOLUTION. We set t = (z,¥, 2), z1 = z/t, y1 = y/t, and z; = z/t. Then
2z} + %yf = %24,
which upon division by t2 # 0 gives
i+ =4, (32)

where (z),1,21) = 1 (see, eg., 5.1). The numbers z,,y1,21 are actually
pairwise relatively prime: Indeed, if a prime p divides two of the numbers
T1,%, 21, then by (32), it would also divide the third one, but because of
(21,1, 21) = 1 this is impossible. Thus at most one of the numbers z;, ¥, is
even. Let us assume that both are odd. Then it follows from the congruence

Z2=224+y*=1+4+1 (mod8)

that zf is an even number not divisible by 4, which is impossible. Therefore,
exactly one of z,, 3 is even. Since the equation (32) is symmetric in z,
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and ¢, we may as well assume that the even one is z; = 2r, r € N. Then
it follows from (32) that
4r® = Zf - y?!
and thus
2_Aaty a-n
2 2

Ifwesetu=(z14+5)/2,v=(n1—y)/2, then zy =u+v,n =u—v.
Since ¥, 21 are relatively prime, then so are u,v. Now it follows from the
equation

r2=u-‘u

and from 2.6.(iii) that there exist relatively prime integers a,b such that
u = a2, v = b?, and furthermore from u > v it follows that @ > b. Altogether
we therefore have

x = tz; = 2tr = 2tabd,

y =ty = t(u — v) = t(a® — b?),

z =tz; = t{u+ v) = t{a® + b?),
which indeed satisfies the given equation for any ¢ € N and for arbitrary
relatively prime a,b € N such that a > b. The remaining solutions could

be obtained by changing the order of = and ¥ (in the course of solving this
problem we assumed that only z; is even):

z=1t(a®—-b%), y=2tab, z=t(a®+b?),
where again t,a,b € N are any numbers such that a > b, (a,b) = 1. (m

We remark that the Diophantine equation z2 + 2 = 22 that we just
solved is called the Pythagorean eguation and describes all right-angled
triangles with integer sides.

5.20 FEzxercises
Solve the Diophantine equations (i)—(iv), where p is a fixed prime number:
@) sy=z+y. (ii) z(z+1) = dy(y + 1).
(iii) 22 —y? = 105. (iv) 22% — T — 36 = p?.

Solve the equations (v)—(viii) in natural numbers:
(V) 22 + 5zy — 12!{2 = 28, (Vi) 2x3+z—2 _ 2,-.:3_4 = 992
*(vii) 27! +1 =9 *(viii) 25+ — 1 = y*+1,

(ix) Show that no number of the form 2®, n € Np, can be written as a
sum of two or more consecutive natural numbers.
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*(x) Show that any natural number that is not of the form 2", n € Ny,
can be written as a sum of at least two consecutive natural nuinbers.

Solve the systems of equations (xi), (xii) over tbe integers:

(xi) z+y+2z=14, *(xii) z+y+2=3,
T+ yz =18. 2:3+y3+23=3.
*(xiii) Show that for natural numbers z,y,z such that (z,y) = 1 and
7% 4 2 = 2%, the product zy is always divisible by 7. Show that
this is generally not true without the condition (z,y) = 1.

6 Solvability of Diophantine Equations

In the previous section we saw that solving Diophantine equations is, in
most cases, no easy matter. Although we have learned several methods,
there are many specific examples of Diophantine equations where none of
these methods of solution can be successfully used. Nevertheless, it may be
possible in these cases to obtain some information about the solutions. For
example, we may be able to find an infinite set of solutions, which would
show that the set of all solutions is infinite, even though we may not be
able to determine them all. Or on the other hand, we may be able to show
that the set of solutions is empty (which would actually solve the given
equation), or that it is finite.

6.1 The Nonexistence of Solutions

To prove that a Diophantine equation has no solutions at all, it is often pos-
sible to successfully use congruences. Indeed, if the Diophantine equation
L = R has solutions (where L, R are expressions that contain the variables,
and take on integer values for integer values of the variables), then also the
congruence L = R (mod m) must have solutions for any m € N, since,
for instance, the solutions of the original equation are also solutions of all
these congruences. This means that if we find a natural number m such
that the congruence L = R (mod m) has no solution, then the original
equation L = R cannot have a solution either. However, it is important
to note that the converse is generally not true: If the congruence L = R
(mod m) has solutions for each natural number m, this does not yet imply
that the Diophantine equation L = R has solutions (we will show this in
6.2.(v)).

6.2 Ezxzamples

(i) Solve the Diophantine equation
T3 + 73 + - - - + 1, = 15999.
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SOLUTION. We show that the congruence
2} +z3+---+2f, =15999 (mod 16)

has no solution, which would mean that the given equation is also not
solvable. Indeed, if an integer n is even, then n = 2k for k € Z, and thus
n? =16k = 0 (mod 16). If n is odd, then

n'—-1=n-1){n+1)(n2+1)=0 (mod 16),

since the numbers n— 1, n+ 1 and n? 41 are even and one of the integers
n—1, n+1 must even be divisible by 4. This means that n? is congruent to
0 modulo 16 for even n, and congruent to 1 modulo 16 for odd n. Therefore,
if exactly r of the numbers z;,z,, ..., 214 are odd, then

2} +ai+---+23,=r (mod 16).

Now 15999 = 16000 — 1 = 15 (mod 16}, and since 0 < r < 14, the
congruence
i+ x5 +---+2i, =15 (mod 16)

cannot have a solution, and thus neither can the given equation be
solvable. (=]

(ii) Find integer solutions of the system of equations

z? 4+ 2% = 22,

272 4+ y? = u?.
SOLUTION. It is easy to see that from = y = O it follows that z=u =0,
and this is a solution of the given system. We will now show that there are
no other solutions. We assume that z,y, z,u is a solution and that = # 0
or y # 0, and we denote by d = (z,y) > 0 the greatest common divisor of
z and y. From the first equation it follows that d | 2, and from the second
one that d | u. If we set 21 = z/d, y1 = y/d, z1 = z/d, and w; = u/d,
then it follows from 1.14.(iii) that (z;,1) = 1, and upon dividing the two
original equations by d® we obtain

3 +24 = 7,
227 +3f = of.

By adding, we get 377 + 3y7 = z? + u}, and thus 3 | 22 + u2. By 3.14.(vi)
we have 3 | z1, 3 | w1 and thus 9 | 2§ + u?. But then 9 | 3(z? + v?),
and thus 3 | z2 + y?. Again by 3.4.(vi) we bave 3 | 2, 3 | y1, which is a
contradiction to (z1,y1) = 1. The system has therefore the unique solution
T=y= Z=Uu= O- O
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(iii) Find all positive integer solutions of the equation
W42 434l =92

SOLUTION. By direct computation we convince ourselves that for z < 5
the equation is satisfied only by z = y = 1 and z = y = 3. We will now
show that the equation has no solution for z > 5. Since n! is divisible by 5
for any n > 5, we have

V42434 42=114214314+41=33=3 (mod 5).

Now, the square of a natural number is always congruent to 0, 1, or 4
modulo 5. Hence the congruence 1! 4+ 2! 4 --- + z! = 2 (mod 5) has no
solution for z > 5, which means that the given equation also has no solution
forz > 5. O

(iv) Find all positive integer solutions of the equation
2-y2=1

SoLuTiON. We will show that the given equation has no solutions. Let us
assume to the contrary that for appropriate ,y € Z we have 22 — 3 =T.
If y were even, we would have 22 = 7 (mod 8), which is impossible. Hence
yisodd, y=2k+ 1 for k € Z. Then

Z+H1= 4+ =(y+2)(¥® —20+4)
= (y+ 2)((y — 1)® + 3) = (2k + 3)(4k? + 3).

The number 4k + 3 has to be divisible by some prime p = 3 (mod 4).
Otherwise, since 4k? 4+ 3 is odd, its prime decomposition would contain
only primes congruent to 1 modulo 4; the product of these primes, namely
4k? 4+ 3, would then also be congruent to 1 modulo 4, which is clearly not
the case. Therefore, 4k% 4 3 is divisible by a prime p = 3 (mod 4), and thus

72 41=0 (mod p).
By 3.14.(vi) this implies z = 1 = 0 (mod p), which is a contradiction. O
(v) Show that the congruence
6224+ 52+1=0 (modm)
has solutions for every natural number m, while the Diophantine equation
6z° + 5241 =0

has no solution.
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SOLUTION. Since 6z2+5z+1 = (3z+1)(2z+1), the equation 6z2+5z+1 =
0 has no integer solution. Now let m be any natural number, m = 2" - k,
where n € Ny and k is an odd number. Since (3,2") = (2,k) = 1, both
congruences of the system

3z=-1 (mod 2"),
2z=-1 (modk)

have solutions by Theorem 4.2, and since (2", k) = 1, by Theorem 4.6 the
whole system has solutions. Hence for any z satisfying this system, 3z + 1
is divisible by 2" and 2z + 1 is divisible by k, and therefore the product
(3z +1)(2z + 1) is divisible by 2" - k = m. Thus z solves the congruence

622 +5c+1=0 (mod m). O

6.8 Ezercises
Solve the Diophantine equations (i)—(v):

(i) 322 —4y* =13. (ii) 222 — 52 =1
(iii) 3z% +8 = 3. *(iv) 322 + 32+ 7 =145

(V) (z+1P° +(z+ 2P+ (z+3)° + (z + 4)* = (z + 5)%.
Solve the equations (vi)—(viii) in natural numbers:

(vi) 27 4+ 7V = 107, *(vil) 2% 4 5V = 192,
*viil) 114+ 20 4314 --- 4 21 =32

(ix) Show that for any given odd numbers r,s, the Diophantine
equation z'° + rz7 + s = 0 has no solutions.

(x) Given a prime p = 3 (mod 4), show that z2 + y® = pz? has no
solution in natural numbers.

Find all integer solutions of the systems of equations (xi), (xii), and of the
equations (xiii), (xiv):
(xi) z2 +5y° = 22, (xii) z2 + 6y? = 22,
522 + ¢ = u2. 622 + 32 = o2,
*(xdii) 22 — 3 + 1 = (42 + 2)3. *(xiv) 22 +5=13.
*(xv) Show that the equation 4ry — x — y = 22 has no solution in natural
numbers.

6.4 Reductio ad Absurdum

The method of reductio ad absurdum is a method for proving the nonexis-
tence of solutions of a Diophantine equation. To carry out this method of
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proof, we characterize a supposed solution of the given Diophantine equa-~
tion by some natural number (for instance, the greatest common divisor of
the values of some variables, or the square of the value of some variable, or
something like that) and show that if there exists a solution characterized
by the natural number d, then there must exist another solution charac-
terized by the natural number d’ < d. But then no solution can exist, of
which we can easily convince ourselves by contradiction: If there were a so-
lution, we could choose one that was characterized by the smallest natural
number d; then, of course, there would exist another solution characterized
by a natural number d’ < d, which, however, would be a contradiction to
the choice of d. (We note that we could solve, for instance, Example 6.2.(ii)
in this way if d denoted the greatest common divisor of the values of the
variables z, ¥, z, %, or the exponent of 3 in the prime decomposition of this
greatest common divisor.)

6.5 Fzamples

(i) Solve the Diophantine equation z2 + 2°® + 423 — 6zyz = 0.

SOLUTION. The equation is certainly satisfied by z = y = z = 0. We will
show that there is no other solution. We set d = z2 + y* + 22 and assume
that for some solution z, y, z of the given equation we have d > 0. It follows
from the original equation that z3 is an even number, and thus z = 2z,
for an appropriate z; € Z. Substituting this into the equation, we get

823 + 218 + 42% — 122,942z =0,
and upon dividing by 2,
423 +* + 22 — 6z1y2 = 0,

so y° is also an even number, and we write y = 2y,, with an appropriate
¥ € Z. Substituting and dividing by 2, we get

23:? + J;ly:li + 25— 6111z =0,

which implies that 23 is also even, and thus 2 = 22, for some 2z; € Z.
Substituting and dividing by 2 once more, we obtain

z3+ 23 + 428 — 6z, =0,

80 Z1,%1,21 15 a solution of the original Diophantine equation, and

furthermore : 9 2
2yl 2T Y 2 _d
1thta=r+rty=7<4
According to the method described in 6.4, the given equation does not have
any solution with the property d > 0, and thus z = y = z = 0 is its unique
solution. O
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(ii) Solve the equation z? + y? = 47 in natural numbers.

SOLUTION. We use the method of 6.4 with d = z. Let us first assume that
z,¥, 2z is a solution of the given equation. Then certainly z # 1, since for
z =y = 1 we have z2+y? = 2 < 4, and if at least one of the numbers z, y is
greater than 1, then 2242 > 4. Thus 2 > 1, and we have 22432 = 4* =0
(mod 8). Since the square of an odd number is congruent to 1 modulo §,
and the square of an even number is congruent to 0 or 4 modulo 8, it follows
from this congruence that both = and y are even, ie., x = 2z;, y = 2y, for
appropriate x;, € N. But then

2
g+l=+ ="
and thus, if we set 2; = 2 — 1 € N, the numbers x;, ¥, 2; satisfy the given
equation, with z; < z. Therefore, the equation has no solution. O

(iii) Solve the Diophantine equation z* + y* + 2% = 9ul.

SOLUTION. If u = 0, then necessarily x = y = z = 0, which is a solution
of the given equation. We will show that there are no other solutions. Let
us assume that the integers z, ¥, z, u satisfy the given equation and that
u # 0; we set d = u?. If the number u were not divisible by 5, then Fermat’s
theorem gives u? =1 (mod 5), and we would have

2+ +2 =4 (mod 5).

This, however, is impossible since by Fermat’s theorem the numbeis
z4,y%, 2% are congruent to 0 or 1 modulo 5. Thus, u is divisible by 5, i.e.,
4 = 5u; for an appropriate u; € Z, and we get

2241742 =0 (mod5),
which implies that z,y, z are divisible by 5, i.e., £ = 5z, ¥y = 511, 2 = 523
for appropriate 1,1, 21 € Z. Substituting this into the original equation
and dividing by 5%, we obtain

zf+yf + 2z =9,

and thus z1, 1, 21, u1 satisfy the given equation, and

(iv) Solve the equation z? — 3 = 2zyz in natural numbers.

SOLUTION. We assume that some natural numbers z, y, z satisfy the given
equation, and we set d = zy. If we let d = 1, then x = y = 1 and the
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equation would give z = 0, which is impossible. Hence d > 1. Let p be
some prime dividing d. Since

(z+y)(z—y)=2"—y* =2zyz=0 (mod p),

we have 2 = y (mod p) or z = —y (mod p). In view of the fact that the
prime p divides the product zy, either z or y is congruent to 0 modulo p,
and together z = y = 0 (mod p). Hence z; = z/p and yy = y/p are natural

numbers, and
(Pﬂ?l)z . (P!h)z = 2(pz1)(rn1)2,

from which, upon dividing by p?, we see that z;,11,z satisfy the given
equation, and that

z y d
T 1=—°—=—<d.
NP r T P
By the principle of 6.4 the given equation has no solution. 0O

{v) Solve the Diophantine equation z2 + y? + 22 = 2zy=2.

SoLuTION. The equation is certainly satisfied by £ = y = z = 0. We will
show that it has no further solutions. In fact, we will prove the following
stronger assertion: Given any u € N, the equation

z2 4 32 + 22 = 2zyz, (33)

where z,y, z € Z, has no solution other than £ = y = z = 0. Let us assume
that z,y, z € Z and u € N satisfy (33), and that d = 224+ y% 4 22 > 0. Since
u > 1, 2%zyz is an even number, and thus z2 + y2 + 22 is even. But this
means that either exactly one of the numbers z,y, z or all three of them
are even. However, in the first case we have

P+ +22=14+140=2 (mod 4),
while
2%zyz =0 (mod 4),

since u > 1 and one of the numbers z,y, z is even. Hence we consider the
second case, where the numbers z; = z/2, y; = y/2, z1 = z/2 are integers.
We set u; =« + 1 and substitute everything into (33):

4z + 492 + 422 = 2071 .22, - 2y, - 22,
and upon dividing by 4,
71+ 3 +2f =2 T,

so that z1,y1, 21, u) satisfy (33). In addition, 0 < z% + y2 + 22 = d/4 < d,
since d > 0. By 6.4, the equation (33) can therefore only have a solution
with the property d = 0, which, as we have already seen, leads to the
solutions z = y = z = 0, with arbitrary v € N. In particular, the given
equation has the unique solution z =y =2 = 0. O
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6.6 Fzxercises

Solve the Diophantine equations (i)-(viii):

() 2* -2 42 =0 (1) 7%+ 4yt = 2(z* + 4u?).
(i) 22 + 3% + 22 = T2 (iv) z°+ 3y3 + 923 = 9zyz.
*(v) 22+ 17 + 22 =2yl *(vi) 22 +9% = 11%.

*(vii) 2% + % + 22 + u? = 2zyzu. (viii) 222+ 42 =722

We have now studied some of the most common approaches used for
proving that a given Diophantine equation has no solution. We do not
claim completeness of this list of methods. Indeed, even though there is
no universal method for solving Diophantine equations, one can find in
the mathematical literature a large number of methods; most of them,
however, are useful only in very special cases. We conclude this overview
of nonexistence proofs of solutions of Diophantine equations by presenting
one of these special instances.

6.7 Ezample

Given an arbitrary prime p, solve the Diophantine equation
+ 4 =p.

SoLuTION. For any integer £ < 0, 4% is not an integer, and neither is
z* +4=. Thus for any prime p, the given equation has no negative solution.
For £ = 0 we have 0* + 4% = 1, which is not a prime, and for z = 1 we
have 1% + 4! = 5, a prime. We will now show that for any integer z > 2,
the number z* + 4 is composite. If z = 2k is even, where k € N, then

2t + 47 = 2% + 4% = 16(k* + 420D,
which is a composite number. If £ = 2k + 1 (k € N) is odd, then
g + 4% =z +4-4% = 2% + 42%(2")® + 4(2)] — 242%(2")?
=[z? + 2(2")2]2 — (2 - 2%)?
= [z%+ 2z - 2%+ 2(2%)?|[z% - 2z - 2F+ 2(2%)F
= [(z + 2%)% + 2%¥][(z — 2%)% + 2],

which is again composite, since (z + 2%)2 4 22 > 22k > 92 5 1. To sum-
marize, for p = 5 the given equation has the unique solution z = 1, while
there are no solutions for any prime p # 5. 0O

6.8 The Cardinality of the Set of Solutions

In many cases when we are unable to find all solutions of a Diophantine
equation, we may &t least succeed in determining whether there are finitely
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or infinitely many solutions. Finiteness can, for instance, be established by
showing that the values of the variables that yield solutions are in absolute
value less than a certain number. If we can find this number and it is “rea-
sonably small,” we can then find all solutions with the method described
in 5.11.

On the other hand, the infinitude of solutions of a given Diophantine
equation can, for instance, be established as follows. For each variable we
find an expression involving a parameter, in such a way that upon sub-
stituting, tbe equation becomes an equality, and that for infinitely many
values of the parameter the variables have different values. Or we can find
one solution of the equation and give a description of how to obtain a new
solution from any known one. If we can guarantee that upon repeated appli-
cation of this rule we always obtain different solutions (for instance, if the
solutions thus obtained get larger and larger), then we have again proved
that the set of solutions is infinite. It is clear that with both approaches
there may exist more solutions than the ones detected.

6.9 Ezxzamples

(i) Show that the Diophantine equation 4zy—z—y = 22 has infinitely many
solutions (it can be shown that this equation has no solution in positive
integers; see 6.3.(xv)).

SOLUTION. If we choose £ = -1, the equation becomes significantly
simpler:
—5y =22 —1,

and this is an equation that we know how to solve by the method described
in 5.5. Hence we first solve the congruence

22-1=0 (mod 5),

which is satisfied by exactly those integers z that are congruent to 1 or —1
modulo 5. Thus z = +1 + 5¢, with an arbitrary ¢ € Z, and we get

—Sy=22—1=1410t + 25t2—1,

and therefore
¥ = F2t — 5t2.

By substituting we convince ourselves that the values z = —1, y = 2¢ —5¢2,
and z = —1 + 5t indeed satisfy the given equation. It is clear that different
values of ¢ give different values of z; hence the above solutions are indeed
infinite in number. Q

(ii) Show that the Diophantine equation
(z= 12+ (z+1) =97 +1
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has infinitely many solutions.
SOLUTION. The equation can easily be rewritten as
-2 =1.

We try to find some solution; it is easy see that the choice y = 3, z = 2
satisfies the given equation. Now we assume that we have an arbitrary
solution z,y € Z, and we try to find another one. We have

(v+v2z)(y - v2z) =1

Substituting the values y = 3 and z = 2, we obtain the equality (3 + 2v/2)
-(3 — 2v/2) =1, and by multiplying we get

[(y+ vV2z) (3 +2v2)] - [(y — V2z)(3—2v2)] =1.
Manipulating both expressions in square brackets, we get
(v+v2z)(3+2v2) =3y+3v2r +2V2y + 4z
= (47 + 3y) + (3z + 2y)V2,
(v—v2:)(3-2v2) =3y-3vV2z - 2v2y + 4z
= (42 + 3y) — (3z + 2y)V2.
If we set u = 4z + 3y, v =3z + 2y, then
(u+ \/fv) (u— \/fv) =1,

which means that
W — 22 =1,

and thus u,v € Z is a new solution of the given equation. If we set z; = 2,
th = 3 and
Tn+1 = 3Tn + 2Yn, Un+1 = 4Zn + 3Yn

for any n € N, then for all n € N we have a solution z,,,y, of the given
equation. Furthermore, since 0 < 2; < 22 < ---,0< h < < ' --,
different indices n give different solutions z,,yn- The given equation has
therefore infinitely many solutions. O

(iii) Show that for any integer k the equation
E+2%4 y2 = z2
has infinitely many solutions in natural numbers.
SoLuTiON. Factoring z2 — y2, we rewrite the given equation as

k+:c2=(z—y)(z+y).
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It is not necessary to find all solutions, and hence we may assume that

z2—y= 1,

z+y=k+ 72
Any solution of this system will also be a solution of the given equation
(the converse, however, is not true; the reader is encouraged to find, for
some fixed k, an example of natural numbers z, y, z that satisfy the given

equation but do not satisfy the abave system of equations). If we solve the
system for z and y, we get

z=%(z’+k+1).
y=%(22+k—1).

If we choose z = |k| + 1 + 2t, where t € N, then z is a natural number.
Then
2 +k=k+1+42t+k=1 (mod 2),

and thus z = 3((Jk] +14+2t)2+k+1) > 0,y = 3((Jk|+1+2t)° +k—1) >0
are also natural numbers. Since for different ¢ we obtain different z and
thus different solutions, the equation has infinitely many solutions. (|

(iv) Show that for any natural number k the Diophantine equation
S22 — 8ry+ 5y — 4k =0
has only finitely many solutions.

SOLUTION. We rewrite the given equation as (2z — y)* + (2y — z)? = 4k3,
which implies (2z — y)? < (2k)? and (2y — z)? < (2k)?, and thus -2k <
2r—y < 2k and —2k < 2y—z < 2k. If we add the first and twice the second
equation, we get —2k < y < 2k, and in complete analogy —2k < = < 2k.
Since z and y can take on only finitely many values for a fixed k, the given
equation has only finitely many solutions. a

6.10 Ezxercises

Show that the Diophantine equations (i)—(iv) have infinitely many
solutions:

() 22 +5222+3y%2+2y° =9. *(ii) 22+ (z +1)2 = 2.
*(iil) (z+1)°3-2% =42, *(iv) z2 + y% + 2° = 3zy2.
(v) Show that for any integer n the Diophantine equation

z* + 1.!2 —22=n

has infinitely many solutions.
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(vi) Show that for any integer n the Diophantine equation
P4+ +224n2=n®—n(z+y+2)

has only finitely many solutions.

6.11 FEzamples

We devote the remainder of this section to equations with an undetermined
number of variables; as a rule, we will solve them by induction.

(i) Show that for any natural number s and any rational number w the

equation

1 1 1
— =t —=uw

has a finite number of solutions in natural numbers.

SoLUTION. We use mathematical induction. For s = 1 the equation has at
most one solution, and thus the assertion is true for s = 1. We now assume
that the assertion holds for s € N, and we will prove it for s+ 1. We assume
that the natural numbers xy, ..., %y, Zo41, Withzy < 29 < --- € 24 € 2441,
satisfy the equation

1 1 1 1

—_adt— 4 — 4
5 | T2 Zs Ta41

=u, (34)

where u is a given rational number, which is obviously positive. But then

1 1 1 1 1 1 1
- S—+—+---+—-=s+ »
o T2 Tar1 5 | g | k5 | 1

and thus =3 < (s+ 1)/u. The number z; can therefore take on only finitely
many values. If we choose one of these values, then the o, ..., x,4) satisfy

1 1 1

=Y - —

ki
I Lol I

where for a fixed z; we have a fixed rational number on the right-hand side,
and therefore by the induction hypothesis this equation has only finitely
many solutions zs,...,Zs41. Since z; can take on only finitely many val-
ues, the equation (34) can have only finitely many solutions such that
Ty € 23 < --- < T441- Finally, since an arbitrary solution can be obtained
by rearranging a solution with this property, equation (34) can have only
finitely many solutions. O
(ii) Show that for any natural number s > 1 the equation
1 1 1 1

— =t e —
= e Bl g
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has infinitely many solutions in natural numbers such that zp < 1 <
.o < I.-

SOLUTION. We convince ourselves that if g, 7y, . . - , T, is a solution of the
given equation with the required condition, then tzq,tz1,..-,tZs is also a
solution for any natural numher ¢, and we have tzg < tz; < -+ < iz,
Therefore, it is sufficient if we can show that for any natural number 8 > 1
the given equation has at least one solution zg, x1, - -.,Z, such that g <
x; < --- < 1, To do this, we use induction on s.

If s = 2, then 7o = 12, z; = 15, 2 = 20 is a solution, since it is easy to

verify that
iy 1 1 1

= +
122 152
We now assume that the assertion holds for some 8 > 2, i.e., there exist
natural numbers xg < 73 < --- < z, such that

1 1.1, 1
A -

We set yo = 1229, g1 = 1520, and y; = 20x5_; fori =2,3,...,8+ 1. Itis
easy to see that yp < ¢1 < --- < Yp41- Furthermore, we have

1 L L Ll )Lt L, .2
yve x2 1227 2 \152 N 202) 152 2 + 202 T2 x2

1 .1 1 1
4 gttt g
yl 2 Y: Yo
This completes the proof by induction. D

6.12 Ezercises
(i) Show that for any natural number s the equation

i =al 4ol

has infinitely many solutions in natural numbers.

(ii) Show that for any rational number w and any natural number s the

equation
r Tg

Ty
+
1422 " 1422 +ooety + z2
has only finitely many solut.mns in natural numbers.
*(iii) Show that for any integer s > 2 the equation

1 1 1
3+ "+F

=w

-"70

has infinitely many solutions in natural numbers.
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7 Integer Part and Fractional Part

The integer part and the fractional part of a real number are encountered in
many different situations in number theory. Therefore, we devote an entire
section to these concepts; we will summarize some of their properties and
uses, and solve several equations in which they occur.

7.1 Integer and Fractional Parts

Definition. The greatest integer not exceeding the real number z is called
the integer part of z, and is denoted by [z]. This means that [z] is the
(unique) integer satisfying the inequalities

[zl <z < [z] +1. (35)
The difference z—[z] is called the fractional part of z and is denoted by {z).

We note that both symbols could also be defined in a different way, for
instance by the conditions

[zl +(z}) ==z, [zl€eZ, 0<(z)}<1;

these, as the reader can easily verify, are equivalent to Definition 7.1. It
also follows from these conditions that for arbitrary real numbers z, y such
that z < y, we have [z] < [y], but not {z} < (y). If, however, [z] = [y], then
(2) < () f and only f z < y.

7.2 Ezamples
Show that (i)—(v) hold for any z,y € R, m € Z, and n € N:
(i) [z +m] = [z] + m; (z + m) = (z).
SoLuTiON. From (35) it follows that
[Zl+m<z+m<([z] +m)+1.
Since [z] + m € Z, this means, by (35), that
[z +m] = [z] +m,
which is the first of the desired equalities. Since
z+m)y=z+m-—[ztml=z+m—|z]—-m=z—[z] = (z),
the second one follows as a consequence. O

(i) =X < [T]+1.
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SOLUTION. From the inequality

2« [3] +1

n n
(see (35), with = = m/n) we obtain upon multiplying by n,

m<n-[Z]+n.
n
This last inequality is between integers; hence
m+1<n- [—'3] +n,

which, upon dividing by n, gives the desired inequality. a

(iil) [=] + ] < [z +y] < =] + ]} + 1.

SOLUTION. Since [z] +y £ = +y, by 7.1 we have [[z] +y] < [z + y], and
thus it follows from (i) that

l+=[=zl+yl <[z +y] <z+y

Since by (35) we have = < [z]+1 and y < [y]+1, then z+y < [z]+ [y] +2,
and therefore
[=+[y <[z +y] <l=]+[s]+2.

Now the desired inequality follows from the fact than on both sides of the
last, strict, inequality we have integers. |

(iv) If n € N and z > n, then [ﬁ] is the number of positive integers
divisible by n and not exceeding .

SOLUTION. By (35) we have

SEERSE

and multiplying by n we obtain

sz <(3]+1)n

and thus the [Z]th multiple of n does not yet exceed the number z, while

the following ([Z] + 1)th multiple is already larger than z. The multiples
of n that do not exceed x are therefore exactly the numbers

nin([2] 1) 2]

namely [Z] of them, which was to be shown. O
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) [z]+[z+1]+[z+E]+---+[z+n—_1]=[m:],

{z)+<z+ ) (:c+ )+ +<z+—>_( )+"_1

SOLUTION. We begin with the first identity. If we set [z] = k, (z) =T,
then we have x = k +r, and for any i = 0,1,...,n — 1 by (i),

[z+’1;] - [k+r+'—i] —k+ [r+i].

In view of the fact that 0 <r < 1 and 0 < < 1, the second summand
takes on only the values 0 or 1. It is equal to 0 in the case where r+ * < 1;
on the other hand, if 1 <r + % < 2, then [r +§] = 1. Hence

[=] + [:r+%] +...+[z+ﬂT—1

=nk+([r]+ [r+1] +---+ [T+E-;:—-l- )

It is clear that for i = 0,1,...,n — 1 we have r + L > 1 if and only if
—i < nr — n, which occurs when —i€{—(n-1), (n 2),...,[nr —n]}

This set has exactly [nr —nj+(n—1)+1=[nr—n]+n elements, and
thus the sum within parentheses satisfies

[r] + [r+%] +--- 4 [r+nT_1] =[nr—n]+n=[nr—n+n]=[nr],
where we have used (i). Altogether, it follows that
-1
[=] + [:s+;1;] +---+ [z+ nT] = nk + [nr] = [nk +nr]

= [n(k +1)] = [na]

{where (i) has been used again), and this proves the first identity. The
second one follows as a consequence, since

(z)+<x+;ll-)+---+<:c+%1

=x—[:c]+(:!:+l)— [z+%]+---+(z+2-':1-!-) [ +Tl

1 n—1
=nzx+—+---+———[ng]
n n

by the first identity. Since 1+2+:--+ (n — 1) = n(n —1)/2, we have
1 n—1 n—1 n—1
(£)+<I+;>+"'+<3'+'—n— _m_[m]+-2_—(m)+_2 R

which completes the proof of the second identity. (m]
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7.8 FEzercises

(i) How many integers m with 10® < m < 107 are divisible by 7867

(ii) How many natural numbers less than 1000 are divisible neither by
5 nor by 77

(iii) How many natural numbers less than 100 are relatively prime
to 367

(iv) For how many natural numbers m < 1000 is vs(m) = 1 (see 2.9)?

Prove (v)—(xxi) for any z,y € R and m,n € N:

z T w (B n
) [[Tﬂ =[] o [5]-[-5]=n
(vii) the smallest integer not less than z is —[—xz].
*(vil) [z +y)+ =] + ] < [22) + [29])-
*(ix) [z]- W <[zy) <[zl - [v) + 2] +[v], if > 0and y > 0.
(x) If = > y, then [z] — [y] is the number of integers r such that
y<r<=zw

(xi) [z] + [-=] is O for z € Z and -1 for = € R\Z.
(xii) (z) +{(—=z)isOfor z € Z and 1 for z € R\Z.
(xiii) 0 <[22} —2[z] < 1.
(xiv) -1 < (2z) —2{(z) <0.
o) [92] = [V/R]). if = >0.
*(xvi) [vr+vn+1] = [Van+2).

o) [F]+[E2] e [£2222) i

(i) {Z) + (:1:+1>+ +<:c+n 1> (z)+——-—

(n— l)ml
n(m - 1)"]_

*(xix) [mx]+[m:c+—1;-]+...+[m+
=[n:1:]+[nx+;%]+...+[m+ —
*(xx) (m)+<mx+%>+.,,+<m+(ﬂ—nl)m>+m;n

=(nz)+(nx+£->+.._+<m+_(j_ll)n>.

m

*(xxi) [r%n} = [r|rn] + 1], where T = (1 + V/5)/2.

The following theorem illustrates one of the uses of the concept of integer
part in number theory.
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7.4 Prime Powers in a Factorial

Theorem. For any prime p and natural number n the exponent in the
power of p in the prime decomposition of nl (see Section £.9) is determined

by
o[ fploofg. o

where k is any natural number such that n < p*+i.

PROOF. By 7.2.(iv), among the integers 1,2, ..., n there are exactly [n /7]
numbers divisible by p, among those exactly [n/p?| are divisible by p?, of
which again [n/p?| are divisible by p3, etc. The largest power of p dividing
n! is therefore given by the formula (36), since from n < p**+! it follows
that none of the numbers 1,2,...,n is divisible by p*+1. D

7.5 Ezercises

(i) Find out in how many zeros the number (%) ends.
*(ii) Find all n € N for which n! is divisible by 2"~1.
*(iii) Show that for any natural numbers m,n the product (*)(*") is
divisible by (™*").
(iv) Show that for infinitely many n € N the number z,, = [2'\/5] is
even.

(v) Let m > 1 be an integer. The sequence (z,)2, is determined by
o = m and z, = [3z,-1] for n € N. Show that this sequence
contains infinitely many odd and infinitely many even numbers.

*(vi) Define f(n) = n+ [{/n] for natural numbers n. Show that for any

m € N the sequence m, f(m)}, f(f(m)}), f(f(f(m))), ... contains at
least one square of a natural number.

*(vii) Suppose that several numbers are given, each of which is less than
2000, and suppose that the least common multiple of any two of
them is larger than 2000. Show that the sum of the reciprocals of
these numbers is less than 2.

7.6 Ezamples

We devote the remainder of this section to several equations that contain
the integer part or the fractional part of a real number.

(i) Solve the equation 4[z] = 3z in real numbers.

SOLUTION. Since [z] € Z for any real number x, we have

3
ZI=[.T]=mEZ,



256 3. Number Theory

and thus z = 4m/3. But then

=[] = [4%"] = [m+-g'-] =m+[%].

which implies that [m/3] = 0. This condition, however, is satisfied by only
three integers, 0, 1, 2, and so £ can take on only the values 0,3 3» 3 Fi-
nally, we verify that. these three values are indeed solutions of the given
equation. O

(ii) Solve the equation [z%] + [z?] + [z] = ()} — 1 in real numbers.
SOLUTION. We rewrite the equation as
(@) = [=°] + [2"] + [a] +1,

and see that (z) € Z. Since 0 < () < 1, we have (g} =0, ie.,z=[z] € Z.
Then [£%] = 23, [z?] = 22, and it remains to solve the Diophantine equation

L+l +z+1=0.
Factoring,
(z+1)(z%2+1)=0,

and since for any integer z we have z2 + 1 # 0, we get z +1 = 0, and
thus z = —1. Finally, by substituting we verify that z = —1 is indeed a
solution. O

(iii) Find all positive integer solutions of the equation

]+l +- [ + il -

SOLUTION. We first add the expression on the left. For i =1,2,...,9 we
have [i/10] = 0. If we set k = [n/10], then by the solution of 7.2.(iv) the
number 10k is the greatest multiple of 10 not exceeding n, and therefore

o] + [5e] =+ [5] + [)
=l -+ [ ++ (P52 ++ [%55)
+([5 ]+ + )

=10-1+10-2+---410(k — 1) + k{n — 10k + 1)
= 5k(k — 1) + k(n — 10k + 1) = k(n — 5k — 4).

In view of the fact that k € N, we will solve the equation
k(n — 5k — 4) = 217
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in natural numbers. Since 217 = 31 - 7, there are four possibilities: k = 1,
k=17, k=31, k=217, and always n — 5k — 4 = 217/k, i.e., respectively
n = 226, n = 70, n = 166, n = 1090. The condition k = [n/10], however,
is satisfied only by the pair k = 7, n = 70. The problem has therefore the
unique solution n = 70. O

7.7 FEzercises

(i) Show that for any natural numbers m, n we have

B2 - B 26 2D)

Solve the equations (ii)—(v) in real numbers:

(ii) [z% ==. (iii) [z?] = 2.
Gv) [3z°—z] =z +1. (v) 2(z) = 3[z] — [z?)-
*(vi) Find all solutions in real numbers of the system of equations
[\/y — 1]2 =z-1,

y—1=2[m].

*(vii) Find all real solutions of the equation

2z —1 + 4r 41 _5::—4
3 6 | 3 °

*(viii) Find all positive integer solutions of the equation
] ¢ 6]+ [9T] ~on.
*(ix) Show that the equation
[=] + [2] + [4x] + [82] + [162] + [32z] = 12345

has no solutions in real numbers.
*(x) Given any n € N, find the number of solutions of the equation

2? — 2% = (=)’
satisfying 1 <z <n.

*(xi) Determine the natural numbers that cannot be written as
[rn+vn+ 3] foranyn €N.
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8 Base Representations

Number-theoretic problems in which base representations occur can be
rather diverse, which means that their methods of solution are also very
diverse. Nevertheless, we will attempt to describe some of the more unusual
methods. A good number of problems can be solved with the help of Dio-
phantine equations. This is mainly the case for problems of the type “find
a number whose digits satisfy ....” In this case we can get a handle on the
conditions of the problem by way of an equation in which the variables are
the digits of the number we want to find. Thus we can use, for instance,
the method of 5.11, i.e., use the fact that for such an unknown z we have
0 <z <9, and then check all ten possibilities in turn. Such an approach,
however, is rather tedious, and it is therefore often better to use a different,
faster, method of solving the Diophantine equation in question.

We note that in this section we will deal only with digit representations
in base 10. As usual, we suppose that no representation starts with the
digit 0.

8.1 FEramples

(i) Find all three-digit numbers that when divided by 11 are equal to the
sum of the squares of their digits.

SOLUTION. We have to find a three-digit number z = 100a+ 10b+4-¢ whose
digits a # 0, b, ¢ satisfy

100a + 10b + ¢ = 11(a? + b + 2).
By rewriting we get
a—b+c=11(a®+b* + % — 9e —b), (37)

which implies that ¢ — b + ¢ is divisible by 11. Since 1 <2< 9,0 < b<9,
0 <c<9, we have
—8<a-b+c<18,

and thus there are two possibilities: @ — b+ ¢ is either 0 or 11. Let us begin
with the first case. We have b = ¢ + ¢, and by substituting,

&’ +@+e)+c—-9a—~(a+¢)=0,
from which we get
202 + (2¢ — 10)a + 2¢% — ¢ = 0,

and this is a quadratic equation in . For it to have a solution, it must have
a nonnegative discriminant, thus

(2¢—10)2 - 8(2¢%2 —¢) > 0,
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and upon simplifying and dividing by 4 we get

—3c —8c+25>0.

This means that ¢ < 1, since for ¢ > 2 we have
3¢ +8c>3-4+8-2=28>25.

If ¢ = 0, then 2a2 — 10a = 0, which implies @ = b = 5, since a = 0 does not
satisfy the given conditions. If ¢ = 1, then 242 — 8a + 1 = 0; this equation,
however, has no integer solution.

Let us now turn to the case b = a+ ¢ — 11. By substituting this into (37)
we obtain

A+(a+e-11)2+AE-9%—-(a+c—11)=1,
which again gives a quadratic equation in a, namely
202 + (2¢— 32)a + 2¢* — 23¢ + 131 = 0. (38)
Its discriminant
4(c — 16)% — 8(2c® — 23c+ 131) = 4(—3c% + 14c — 6)
is negative for ¢ > 5, since
—3c? + 14c— 6 =c(—3c+14) — 6 < —6,

and thusc < 4. Sincec=b—a+11 > 11 — a > 2, we must have ¢ = 2,
¢ = 3, or ¢ = 4. For even ¢ we have an odd number on the left-hand side
of (38); hence ¢ = 3. Substituting this into (38) and solving, we get a = 8,
which implies b = 0, or @ = 5 and thus b = —3, which is a contradiction.
The given conditions are therefore satisfied only by the numbers 550 and
803; it is easy to verify that these are indeed solutions. O

(ii} Find all four-digit numbers that are squares of natural numbers and
whose first and second digits, as well as their third and fourth digits, are
equal.

SoLuTiON. The desired number is of the form
z = 1000a + 100a + 10b + b = 11(100c + b),

where 0 < a € 9,0 < b < 9. Since z is the square of a natural number,
100a + b has to be divisible by 11, which means that a + b as well has to
be divisible by 11. Since 0 < @ + b < 18, we have a 4+ b = 11, and thus

z =11(99 + 11} = 11%(9a + 1).
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Again, since 7 is a square, we must have 9a + 1 = n? for an appropriate
n € N, which means that a = (n + 1)(n — 1)/9. But the difference of the
factors n + 1, n — 1 is 2, so both cannot at the same time be divisible by
3,and thus 9 [ n+1or 9| n— 1. Along with 0 < ¢ < 9 it follows that
1 <n? < 82, and thus n = 8, so finally x = 882 = 7744. o

(iii) Find all natural numbers s with leading digit 6 that upon removal of
this digit become 25-times smaller.

SoLuTIiION. We assume that the desired number z has k + 1 digits. Then
z=6-10+y,
where ¥ € Ng, ¥ < 10%. The given condition implies that = = 25y, so
25y = 6 - 10% +y,

which means y = 110%, and thus k > 2, y = 25-10*2, = 625-10*2. The
problem has therefore infinitely many solutions; the condition is satisfied
exactly by the numbers £ = 625 - 10*—2, where k € N, k > 2. O

(iv) Find all three-digit numbers that are equal to the sum of the factorials
of their digits.

SoLUTION. We assume that the number 100a + 10b+ ¢, where 0 < a < 9,
0<b<9,0< <9, satisfies the condition of the problem, namely

100a4+10b4+c=al + b + .

Since 7! = 5040 > 1000, the digits a, b, ¢ are less than 7. Furthermore, none
of the digits can be 6, since 6! = 720 > 100a + 10b + c. At least one digit
is equal to 5, since otherwise we would have

al + B+ 1 <3-4 =72 < 100a + 10b + c.

Since 3- 5! = 360, we have a < 3. But a # 3, since 3! + 5! + 5! = 246 < 300,
and neither is a = 2 possible, since in that case 100a + 10b + ¢ would be
at least 200, while 2! + b! 4 ¢! > 200 only for b = c = 5, hut 255 does not
satisfy the given condition. Thus a = 1, and the desired number is of the
form 150 + ¢ (if b = 5) or 105 + 10b (if ¢ = 5). In the first case we get

150+ c=11451 4+ ¢!,
and thus
29 = c((c— 1)1 - 1),
which, however, is not satisfied for any ¢ < 5. In the second case,
105 + 10b =11 4 ! 4 51,

and hence
(10 — (b— 1)) = 16,

which gives b = 4. It is now easy to verify that the number 145 does indeed
satisfy the given condition. O
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8.2 FEzercises

(i) Find all two-digit numbers that equal the sum of the first digit and
the square of the second digit.

(ii) Find all four-digit numbers that are the square of a natural number
and are such that the first digit is equal to the third digit, and the
second digit exceeds the last digit by one.

(iii) The square of a natural number is equal to a four-digit number whose
first digit is three and whose last digit is five. Find this number.

(iv) Find a three-digit number n? such that the product of its digits is
equal ton — 1.

(v) Find a three-digit number that, multiplied by 2, is equal to 3 times
the product of the factorials of its digits.

(vi) Find three-digit numbers z, y satisfying y = 8x and such that both
the difference ¥ — z and the six-digit number obtained by writing ¥
after x are squares of natural numbers.

(vii) Suppose that the decimal representation of n?, where n € N, ends in
a 5. Show that the third-to-last digit (the hundreds digit) is even.

(viii) Find all natural numbers n such that the sum of the digits of n? is
equal to n.

(ix) Find the smallest natural number 8 with the following property: Its
decimal expansion ends in a six, and if this digit is moved to the
front, we obtain 4 times the original number.

(x) Find all natural numbers n divisible by the number obtained when
the last digit is removed from n.

In problems (xi)—(xiii), let s(n) denote the sum of digits of the natural
number n.

(xi) Is there an n € N such that s(n) = 1996 and s(n?) = 199627

(xii) Show that for all n € N we have s(n) < 8s(8n). Does the sharp
inequality hold in general?

(xiii) Show that for any m € N there exists an n € N such that either
n+s(n)=morn+s(n)=m+1.

There are many problems that concern the final digits in a decimal ex-
pansion. On the one hand, there are problems of determining the last few
digits of “huge” numbers, and on the other hand those of determining
whether a given pair of integers ends in the same group of digits. Such
problems can be solved with the help of congruences, as we will see in the

following examples.
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8.3 Ezamples
(i) Find the final digit of the numbers 9% and 23°.

SOLUTION. We have to find the remainders when the given numbers are
divided by 10; hence we use congruences modulo 10. We have

¢ =(-1)* =-1=9 (mod 10),

where we have used the fact that 92 is an odd number. To determine the
final digit of the second number, we use separately congruences modulo 2
and modulo 5. Certainly,

23* =0 (mod 2).

To find the number congruent to the given integer modulo 5, we use
3.14.(v). Clearly, the smallest natural number with the property 2" =1
(mod 5) is 4. Therefore, we determine the remainder of 3% divided by 4:

3'=(-1)"=1 (mod 4),

and thus .
25 =2'=2 (mod 5).

Since 2%° is congruent to 2 modulo 2 and 5, we have
23 =2 (mod 10).

We therefore conclude that the first of the given nurbers ends in 9, and
the second one in 2. ]

(ii) Find the last four digits of the number 2999,
SOLUTION. We must find the integer z, 0 < = < 104, satisfying
=2 (mod 10%).
Since ¢(5%) =4 - 5% = 500, by Euler's Theorem 3.13 we have
250 =1 (mod 5%),
which means that
2z =21900 = (2500)2 =12 =1 _ 5% (mod 5%).
Since 1 — 5% = —624, upon division by 2 we obtain

z=-312 (mod 5%). (39)
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Certainly,
2=2=0 (mod 2%); (40)

we now solve the system of congruences (39) and (40). From (40) we obtain
z = 16k for an appropriate integer k. Substituting this into (39), we get

16k = —312 (mod 5%),
and dividing by 8,
2k =—-39=5"—39 (mod 5%).
Now, 52 — 39 = 586, and thus upon division by 2,
k=293 (mod 5%).

Hence & = 2934-625s for an appropriate integer s, and so T = 4688+-10000s.
Since 0 < = < 10%, we have z = 4688, and thus the number 2999 ends in
the four digits 4688. (W

(iii) Given any natural number n, find the final two digits of the integer
M+ (n+1) '+ (n+2)0+---+ (n+99)%

SoLUTION. If we divide all of the 100 consecutive integers n,n+1,...,
n + 99 by 100, we obtain one hundred different—and thus all possible—
remainders. Hence

i+ 4+ (0499 =0"+1"+--- +99° (mod 100).

To determine the right-hand sum, we could use formula (15) from Chap-
ter 1. However, if we did not remember this formula, we could also proceed
as follows. By the binomial theorem, we have for all a =0,1,...,9,

(10e)* + (10 + 1)* + --- + (10a + 9)*
=4-10a- (0*+13+22+---+9%)+0* +1%+ ... + 97 (mod 100).

If we add this congruence fora =0,1,...,9, we get

0 +1%+---499"=4-10(1+---+9)(13+ 23 +--- + 99)
+10(1* +2*+---+ 9% (mod 100).
Since 1+ 2+- - -+9 = 45, we have 40(1+- - - +9) = 0 (mod 100). It remains

to determine the second summand. By Fermat's theorem, for 1 < k < 9,
k # 5, we have k* =1 (mod 5), and thus

1¥+2*+.--+9"=8=3 (mod 5).
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An odd number of the integers 1,2,...,9 is odd, and therefore the sum of
the fourth powers of these integers is congruent to 3 modulo 2. Together,

we have
1°4+28+...49*=3 (mod 10),

and finally
4+ 4 4990 =10(1"+ 24 +--- +9%) =30 (mod 100).
The final two digits of the given sum are therefore 3 and O for any n. O

(iv) Determine the natural numbers m > n such that 1234™ and 1234"
end in the same three digits and such that the sum m + n is minimal.

SoLUTION. The numbers 1234™ and 1234" end in the same three digits
if and only if 1234™ — 1234" = 1234"(1234™ " — 1) is divisible by 1000,
i.e., if it is divisible by both 8 and 125. This occurs if and only if 8 | 1234
and 125 | 1234 " — 1, because (1234™ " — 1,2) = (1234",5) = 1. Since
1234 is divisible by 2 but not by 4, 1234" is divisible by 8 if and only if
n > 3. We now determine when 125 | 1234 ™ — 1, i.e., when

12347 " =1 (mod 125).

By 3.14.(v) we have to find the smallest k € N for which 1234% = 1
(mod 125). We know that this k satisfies k | ¢(125) = 100. Now, by Euler’s
Theorem 3.13,

1234°° = (—16)*°* = 4" =1 (mod 125).

By 3.14.(v) this means that k | 50. If k # 50, we would have k | 10 or k | 25.
But

1234'° = (—16)1° = 256° = 65 = 36 - 216 = 36 - (—34)
=—1224=26 (mod 125),
1234% = (—16)2° = —16%° = —2' = _1 (mod 125),
again by Euler’s theorem. Hence neither k | 10, nor k | 25. Therefore,
k = 50 and 1234"~™ =1 (mod 125) if and only if n — m = 0 (mod 50),

i.e., n =m (mod 50). The sum m+n is therefore minimal when n = 3 and
m = 5§3. (m]

8.4 FEzxercises

(i) Show that for any integer n > 2 the number 22" ends in a 6.
(ii) Find the last two digits of 7%".
(iit) Find the last four digits of 39%°,
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(iv) Find the last two digits of 1414™.

*(v) Show that if the difference of the natural numbers n, k is divisible
by 4, then the numbers

end in the same six digits.

*(vi) Find the smallest natural number n for which the numbers 19" and
313™ end in the same three digits. Find these three digits.

8.5 Ezamples

A popular kind of problem involves large numbers with special digit pat-
terns, such as those consisting only of ones. Before considering several such
problems, we note that the number written with k ones (also called a
repunit) can be expressed as

11...1—1(10*—1),

‘—'v—’_g
k

which can be seen either by summing 1051 4+ 102 4 ... 4+ 10 4+ 1, or by
noting that
10 -1=99...9,
i

k
and dividing this expression by 9.

(i) Suppose that the integer @ consists of 2m ones, that b consists of m+1
ones, and c is written as m sixes, where m is an arbitrary natural number.
Show that a + &+ c+ 8 is the square of some integer.

SOLUTION. We have

(0™ -1), c= g (10™ -1),

O

a=1(102"‘—1), b=
9
which implies
1
a+b+c+8=3 (107" —1+10™ —1+6-10™ -6 +72)
1, 2 1 2
= = (10*™ + 16 - 10™ = (0™ ]
5 (10°" + 16 10™ + 64) (3(10 +8))
Since 10™ + 8 = 1 + 8 = 0 (mod 3), the number n = 3(10™ + 8) is an

integer, and we have
a+b+c+8=n2

which was to be shown. (m]
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(ii) Show that the number written as 3" identical digits is divisible by 3,
where n is an arbitrary natural number.

SoLuTION. It suffices to show that the number written as 3" ones is d'ilvisi-
ble by 3", i.e., that for any n € N we have 3" | (103" -1), or 372 | 10" —1.
But this can be written as the congruence

10" =1 (mod 3"+2).

We prove this assertion by induction on n € Np. For n = 0 it is clear.
We assume that for some n > 0 we have 10" = 1 (mod 3™*2). Then by
3.4.(vi) we also have

3ﬂ+l

107 = (103")® =1 (mod 3™13),

which is the desired statement for n + 1. The proof by induction is now
complete. 0O

(iii) Show that each odd integer m that is not a multiple of 5 divides some
of the numbers 1,11,111,1111,... .

SOLUTION. An integer m that is relatively prime to 10 satisfies by Euler’s

theorem
10°°™ =1 (mod 9m),

which implies that there exists an integer k such that 9mk = 10¥(®™) — 1,
Then mk is the number consisting of ¢(9m) ones. Thus m divides this
number, which consists of ¢(9m) ones. O

(iv) Find the digits a, b, ¢, given that for each natural number n we have

. 2
aa...abb...b+1=(ec._¢+1)

n n n
where @1az- .. 6z denotes a; - 105~ f az- 1052 4 ... | a5, with a; # 0.

SoLUTION.  If we set ¢, = $(10" — 1), we can rewrite the condition in the
problem as

at,, - 10" + bt,, + 1 = (ct, + 1)%. (41)
By substituting 9¢,, + 1 for 10" and rewriting, we obtain
9at2 + (a +b)t, + 1 = A2 + 2ct, + 1,
from which upon subtracting 1 and dividing by t,, we get

t.(9a—c%) =2c—a—b.
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This equality has to hold for all n, in particular for

ti(9a—c?)=2c—a-b,
t2(9a — ) =2c—a—b,

and by subtracting we obtain (t —;)(9a — %) = 0. Since t2 —t; = 10 # 0,
this implies ¢ = 9a, 2c = a+b. If, on the other hand, the digits a, b, ¢ satisfy
the conditions ¢ = 9a, 2¢ = a + b, then the identity (41) is satisfied for
all n. It remains to determine the a, b, ¢ that satisfy these two conditions.
From ¢2 = 9a it follows that ¢ is divisihle by 3. Since ¢ # 0, we have
c€ {3,6,9}. If c =3, thena =1, b= 5; if c = 6, then a = 4, b = 8§,
and finally, if ¢ = 9 then a = 9, b = 9. Our problem has therefore three
solutions altogether. a

8.6 FEzercises

(i) Show that for each natural number n, the difference between the
number consisting of 2n ones and the number consisting of n twos is
the square of an integer. Determine this integer.

(ii) Suppose that the number m; consists of n threes, and m; of n sixes,
where n € N. What are the digits of the product m;m2?

(iii) Show that for any n, k € N the integer consisting of n ones is divisible
by the integer consisting of k ones if and only if & | n.

(iv) Given a natural number k, find the smallest number consisting only
of ones that is divisible by the number consisting of &k threes.

(v) For which digits a is there a natural number n > 3 such that
142+---4n

has no other digits than a in its decimal expansion?

(vi) For m > 1 we denote by M = 11...1 the number consisting of m
ones. Does there exist a natural number n divisible by M such that
its digit sum is less than the digit sum m of M?

To conclude this section, we describe a method that exemplifies the diver-
sity of methods that can be used for solving problems on digit expansions.
We will take advantage of the concept, introduced in the previous section,

of the integer part of a real number.

8.7 Ezample

Show that for any digits a1,82,-..,8,, With a1 # 0, there exists a nat-
ural number n such that the decimal representation of n? begins with

1,032, - - - ,0s-
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SOLUTION. We set m = a; - 10°~! 4-a5- 102 +--- + a,_; - 10 +a,- We
choose a k € N such that 2,/m < 105~ and set n = [10* - /m] + 1. Then
by (35) we have

10°F-y/m<n<10*- V/m+1,

which implies

10%*m < n? < 10%m+1+2-10vm
< 10%m+1+10%1! < 10%* . m 4+ 10%* -1,

and thus
10%m < n® < 10%m + (107 —-1).

Both integers 10%m, 10%*m + (10%* — 1) have the same number of dig-
its, and their decimal representations begin with a;,az,...,a,. Hence the
representation of n? begins with the digits a1, az,-..,a, as well. =}

8.8 Ezercise

Show that for any digits a3, a2, - . -, a5, where a; # 0, there exists a natural
number 7 such that the decimal expansion of n® begins with a;, @2, - -, @,.

9 Dirichlet’s Principle

Dirichlet’s principle (also known as the pigeonhole principle) is a simple
combinatorial concept that we can use in a number of practical situations.
For instance, if you have in your pocket 13 marbles of 3 different colors, then
we can conclude that at least 5 of them are of the same color. Similarly easy
arguments are also useful in more complicated mathematical situations.

9.1 Darichlet’s Principle

Theorem. Letn,k € N. If at least nk+1 objects are divided into n groups,
then at least one of these groups contains at least k 4+ 1 objects.

Proor. We prove this by contradiction. For i = 1,2,...,n we denote
by m; the number of objects in the ith group. Let us suppose that the
conclusion does not hold, i.e., each group contains no more than k objects.
Then m; < kfor all i = 1,2, ..., n, which implies that
nk+1<m4+mo+---+m, <k+k+---+k=nk

But this is a contradiction, since nk 4+ 1 > nk. O
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9.2 FEzamples

(i) Show that among 50 arbitrarily chosen distinct prime numbers one can
always find 13 primes such that the difference between any two of them is
divisible by 5.

SOLUTION. The difference between two integers is divisible by 5 if and
only if they have the same remainder upon division by 5. Hence we divide
the given set of primes into five groups according to their remainder upon
division by 5. Since only the prime 5 is divisible by 5, the group belonging
to remainder 0 contains at most one prime, while the other four groups
together contain at least 49 primes. By Dirichlet’s principle, at least one
group contains at least 13 primes. These 13 primes satisfy the required
condition. O

(ii) Show that any set of ten two-digit numbers has two nonempty disjoint
subsets such that the sums of their elements are the same.

SOLUTION. A ten-element set has altogether 21° — 1 = 1023 nonempty
subsets. The sum of at most ten two-digit numbers is less than 10 - 100 =
1000 < 1023. Hence there exist two different nonempty subsets of the given
set of ten numbers such that the sums of their elements are equal. By remov-
ing, if necessary, any common elements, we obtain two disjoint nonempty
subsets with the desired property. O

(iii) Show that there exists a number of the form
123456789123456789. . . 123456789

that is divisible by 987654321.

SoLuTION. We set n = 123456789, m = 987654321, and

(10 ~-1)n
=051

fori=1,2,...,m+ 1. Then clearly, the @; are exactly the numbers of the
given form. Any integer has one of the m remainders 0,1,...,m — 1 when
divided by m. By Dirichlet’s principle at least two of the m 4 1 numbers
81,832,. . .,0m+1 must have the same remainder, and thus there exist i, j,
1 <3 <i<m+1,such that m | a; — a;. Now,

- - (£
s — o = (10 — 1) - (10% —1))- ="
, . n .
= (109' - 1093) . 109 — 1 = lﬂgjai_j,

Since (m,10%) = 1, the number qa;_; is divisible by m, which was to be
shown. O
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(iv) Show that from among any fifteen natural numbers one can choose
eight such that their sum is divisible by 8.

SoLuTiON. From Dirichlet’s principle it follows that from any set of at
least three integers one can choose two numbers of the same parity (ie.,
either both even or both odd). Let us choose two such numbers from among
the given fifteen, and denote their sum by a,. From the remaining thirteen
numbers we choose again two of the same parity, and denote their sum
by a;. Repeating this procedure, we obtain seven even numbers ay, .- .,as.
Apgain from Dirichlet’s principle it follows that from any set of at least three
even numbers we can choose two that have the same remainder when di-
vided by 4. We choose two such numbers from among a,, . . ., ay and denote
their sum, which must be a multiple of 4, by b;. From the remaining five
elements we choose in the same way bs, and finally b3 from the remaining
triple. Once again it follows from Dirichlet’s principle that from the three
numbers by, bo, b3, which are divisible by 4, we can choose two that have
the same remainder when divided by 8. Their sum, which is the sum of
eight of the original 15 numbers, must therefore be divisible by 8. O

9.8 Fzercises

(i) Show that for any natural number n there exists a number k, di-
visible by n, whose decimal expansion begins with ones only, and
then has only zeros.

*(ii) Let a > 1 be a natural number. Find all natural numbers that
divide at least one of the integers @, = a" + a1 +---+a+1,
where n € N.

*(iii) Given a natural number n, show that from among 2"*! — 1 natural
numbers one can choose 2" numbers such that their sum is divisible
by 27"

*(iv) Given a natural number n, show that from among 2- 3" — 1 natural

numbers one can choose 3" numbers such that their sum is divisible
by 37

9.4 Ezamples

(i) Suppose that the product of nine distinct natural numbers is divisible
by exactly three primes. Show that from among these nine numbers we can
choose two distinct ones whose product is the square of an integer.

SOLUTION. Let us denote the given primes by p1,pa,ps and let 4 =
{a1,a2,...,a5} be the set of the nine given numbers. From the given con-
dition it follows that none of the numbers a,,...,aq is divisible by any
prime other than p,, p2, ps. Each element of A can therefore be written in



9 Dirichlet’s Principle 271

the form p7* - p3? - p3°, where ny, na2,nz € No. It is clear that the product
LD pse - pY P ph is the square of an integer if and only if the sums
n; +my, ny +ma, nzg +m3 are even, i.e., the exponents n; and m; have the
same parity for each i = 1,2, 3. We now consider all eight triples (€1, €2,€3)
of zeros and ones, and for each such triple we consider the set of numbers
p1 - p3? - p3° from A such that all numbers n; +¢;, for i = 1,2, 3, are even.
Since in this way we distribute nine numbers over eight sets, one of these
sets must contain at least two numbers p7* - p5? - p3® and py™* - p3** - p3 .
But then the exponents n;, m; have the same parity for i = 1,2, 3, and
thus the product of these numbers is the square of an integer. D

(ii) Suppose that four distinct natural numbers are divisible by exactly
three primes. Show that for some k, 1 < k < 4, one can choose k numbers
from among these four such that their product is the square of an integer.

SOLUTION. Let us again denote the given primes by pi1,p2,p3, and the
set of given numbers by A = {a;,a3,a3,a4}- The set A has 2¢ ~1 = 15
nonempty subsets. For each of these subsets we consider the product of its
elements; each of these 15 products is of the form pi*p5?p3°. Just as in
(i) we group these products into eight groups according to the parity of
their exponents n,, na, n3. By Dirichlet’s principle there exist two different
subsets of A whose products are in the same group. The product of these
two products is the square of an integer. Therefore, also the product of all
numbers of the set A that belong to exactly one of the two subsets (i.e.,
the product of the elements of the symmetric difference of the two subsets)
is the square of an integer. D

(iii) Suppose that the product of 48 distinct natural numbers is divisible
by exactly ten primes. Show that one can choose four of these 48 numbers
such that their product is the square of an integer.

SOLUTION. We denote the given primes by pi,- .. ,p10 and form all two-
element subsets of the given set A of 48 numbers. The number of these

subsets is i 48. 47
(%) -2 - m

We form the products of the elements of these subsets; they can be written
as p}'ph? - - - pa°. We consider all 10-tuples (g1, - - -, £10) of zeros and ones;
there are 210 = 1024 of them. We distribute the 1128 subsets over the
1024 groups determined by the 10-tuples (e1,...,&10) such that the subset
with product of elements p7! - -- p73° belongs to the 10-tuple (y,...,€x0)
for which all the numbers n; + €1, .-. , n1o + €10 are even. By Dirichlet’s
principle there exists at least one group containing at least two such subsets
A, = {a,b}, Az = {c,d}. The product abed is then the square of an integer.
If A,, A, are disjoint, then a, b, c, d are the desired four numbers. Otherwise,
A,, A, have exactly one common element, since A; # Az. Without loss of
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generality we assume that a = ¢, b # d. Then the product bd is the square
of an integer.

Now we repeat the previous argument with the 46-element set B =
A\ {b,d}. This time the number of two-element subsets is

46 46 - 45
= =1
( 2 ) ) 035,

which is again more than 1024. As a consequence there are two subsets
B, = {e, f}, B2 = {g,h} such that the product efgh is the square of an
integer. If B,, B, are disjoint, then e, f, g, h are the desired numbers. If B,
and B2 have an element in commmon, say e = g, f # h, then the product
fh is a square, and the numbers b, d, f, h have the desired property. (]

(iv) Suppose that the product of 55 distinct natural numbers has exactly
three prime divisors. Show that the product of some three of these 55
numbers is the third power of an integer.

SoLutioN. We denote the given primes by pi1,pe2,p3 and consider all
triples (£),£2,£3), where £;,62,63 € {0,1,2}; their number is 3% = 27.
We divide the given 55 numbers, which are of the form p}”p5*p3°, into 27
groups by associating to each triple (£;,&2,£3) those numbers p7*p5*p3®
that satisfy n; = €1 (mod 3), nz2 = &2 (mod 3), n3 = €3 (mod 3). By
Dirichlet’s principle, at least one of these groups contains at least three
numbers, say a = p{p2ph?, b = pPp3*p5?, ¢ = pip52pte. Then for all
i=1,2,3 we have m; = n; = k; (mod 3), and thus m; +n; + k; = 3k; =

(mod 3), i.e., m; +n; + k; = 3r; for appropriate r; € No. This implies that

abc = p +mi-tk p7212+m2+k2 p'l;s-l-ms-l-ks = (pPp2p3 )3_
The product abc is therefore the third power of an integer. o

(v) Given the natural numbers ay, a2, ...,ass, whose product is divisible
by exactly two primes, show that there exist i,7, 1 <i < 7 £ 25, such that
G; - @iy - - - G; is the fifth power of an integer.

SoLuTION. We denote the given primes by p;, po and consider all pairs
(€1,£2), where £1,62 € Np satisfy ) < 5, &2 < 5. There are 52 = 25
such pairs. We divide the numbers j = 1,2,...,25 into 25 groups such
that j belongs to the group corresponding to (£1,e2) if and only if for
ay-@3---a; = py'ph? we have n; =&, (mod 5), nz = ez (mod 5). If some
number j belongs to the group associated with (0, 0), it suffices to set i = 1;
then these numbers i, j satisfy the given conditions, since a; - a5 - - - a; =
Py’ p3°, where ny = n2 = 0 (mod 5), and thus for appropriate r,75 € Ny
we have n; = 5ry, ny = 5ra, which means that a; - a3 - - -a; = (p}* pi?)5.
Now we assurne that none of the numbers j belongs to the group cor-
responding to the pair (0,0). Then the 25 numbers j are distributed over
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the remaining 24 groups, and by Dirichlet’s principle, at least one of these
groups will contain at least two numbers j1, j2, 51 < jo- f we set £ = j; +1,
j = j2, then clearly 1 € ¢ € j < 25, and we have

7 _ .my _m
G1-G2---@;y =Py'Pr3, G1-G2°°-G; =D; ‘P>,

where n; = m; (mod §), ny = m2 (mod 5). From the construction of the
numbers ny, 112, My, Mo it follows that n; < m;, na < mo, and so there
exist ), 72 € Np such that n; +5ry = my, n2 +5r2 = mo. This implies that

my—71 Mg — T 215
Gi-Gipr---aj=py pye =P - P

which means that the numbers £, 7 have the desired property. D

9.5 KEzercises

(i) Suppose that the product of five distinct natural numbers is divisible
by exactly three primes. Show that from these five one can choose an
even number of integers whose product is the square of ar integer.

(ii) Suppose that the product of 45 distinct natural numbers is divisible
by exactly ten primes. Show that for some k, 1 < k < 4, one can
choose k of those 45 numbers such that their product is the square
of an integer.

*(iii) Prove the following strengthening of Example 9.4.(iv): Suppose that
the product of 29 distinct natural numbers has exactly three prime
divisors. Show that the product of some three of these 29 numbers
is the third power of an integer.

*(iv) Suppose that the product of 27 distinct natural numbers is divisible
by exactly three primes. Show that for some k, 1 < k < 3, one can
choose k of these 27 numbers such that their product is the third
power of an integer.

{v) Given the natural numbers s,n, with s > 1, show that for any
natural numbers a3, @z, . . . ,@s» Whose product is divisible by exactly
n primes there exist 4,7, 1 < i < j < 57, such that the product
a; - @41 - - - G; is the sth power of an integer.

To conclude this section, we consider another problem that can be solved
by way of an easy combinatorial concept. This time we will not resort to
Dirichlet’s principle, but instead use the following consideration: If A is a
subset of the set B and if A has fewer elements thar B, then there must
exist an element of B not belonging to A.
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9.6 FEzxzample

Show that for any integer n > 1 there exist natural numbers m, k such that
the number =™ + ™ + k is not divisible by m for any integers z, ¥.

SOLUTION. We choose m = n?. An integer z is congruent to one of the

numbers 0,1,2,...,7n — 1 modulo n. By 3.4.(vi), " is then congruent to
one of the numbers 0,1%,2%,.. ., (n —1)" modulo n2. The same is also true
for y™.

The sum z™ + y™ is therefore congruent modulo n? to one of the values
™ + s", where 0 < r < s < n, of which there are at most 3n(n + 1).
Therefore, the set of remainders of " + y™ modulo m has at most %n(n+ 1)
elements, and since from n > 1 it follows that $n(n+ 1) < n? = m, there
has to exist 0 € k < m such that z" 4 y™ is not congruent to —k modulo
m for any z,y € Z. The number z" + y® + k is therefore not divisible by
m for any z,y. (]

9.7 Ezercise

Prove the following supplement to Theorem 4.14: For any prime p > 2 there
exists an integer t, 0 < t < p, such that the congruence z2 = ¢ (mod p) has
no solution.

10 Polynomials

We return now to the topic of the third section of Chapter 1, namely
polynomials, but this time from a number-theoretic point of view. We will
be mainly interested in polynomials with integer coefficients, or polynomials
that take on integer values at integers. First we recall Theorem 4.10, which
will later enable us to prove several negative statements about polynomials
with integer coefficients.

10.1 A Substitution Result

Theorem. Let F(z) be a polynomial with integer coefficients, and let m
be a natural number. If a and b are integers such thata = b (mod m), then
F(a) = F(b) (mod m).

10.2 Ezamples

(i) Show that there is no polynomial F(z) with integer coefficients such
that F(10) =12, F(11) = 10, F(12) = 11.

SoLUTION. We show that that there does not even exist a polynomial
F(z) with integer coefficients such that F(10) = 12, F(12) = 11. Indeed,
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by 10.1 it follows from 10 = 12 (mod 2) that such a polynomial would
satisfy 12 = F(10) = F(12) = 11 (mod 2), which is a contradiction. D

(i) Show that a polynomial F(z) with integer coefficients and such that
F(1989) and F(1990) are odd numbers cannot have an integer zero.

SOLUTION. We assume to the contrary that there exists an integer n such
that F(n) = 0. If n is odd, then n = 1989 (mod 2), which means that
0 = F(n) = F(1989) (mod 2); but this is a contradiction. If n is even, then
n = 1990 (mod 2), and thus 0 = F(n) = F(1990) (mod 2), which is again
a contradiction. Hence there is no integer n for which F(n) = 0. D

(iii) Show that a polynomial F(x) with integer coefficients that takes on
the values 1 or —1 at three different integers has no integer zero.

SoLUTION. Let us suppose that for three distinct integers a, b, ¢ we have
|F(a)] = |F(b)| = |F(c)| =1,

and that at the same time there exists an integer n such that F(n) = 0.
Certainly, n # a. We set |[n — a]| = m € N. Since n = a (mod m), by
Theorem 10.1 we have F(n) = F(a) (mod m), i.e., 1 =0 (mod m), which
means that m = 1, and thus @ =n + 1 or a = n — 1. In exactly the same
way weshow thatb=n+lorb=n—1,andthatc=n+lorc=n-—1.
But this means that at least two of the numbers a, b, ¢ must be identical
(this is really Dirichlet’s principle), which is a contradiction. D

(iv) Show that there does not exist a polynomial F'(z) with integer
coefficients such that

F(10) + F(10%) + - - - + F(10°) = 10'°.

SoLUTION. Forany k= 1,2,...,9 we have 10* = 1 (mod 9), and thus by
10.1 also F(10*) = F(1) (mod 9). We have therefore

F(10) + F(10*) +--- + F(10°) =9- F(1) =0 (mod 9),

while 101° =1 (mod 9). O

10.8 FEzxercises

(i) Show that there does not exist a polynomial F(z) with integer
coefficients such that F(19) = 15 and F(62) = 70.

(ii) Show that if the polynomial Fi(z) with integer coefficients satisfies
F(r) = F(s) + 1 for some integers r,s, thenr =s+lorr=s—1.
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(iii) Suppose that for the polynomial F(z) with integer coefficients there
exist distinct integers a;,az, a3, a4,as such that |[F(a;)| = 73 for all
1=1,...,5. Show that F(z) has no integer zero.

(iv) Given an arbitrary integer 7, prove the following: If the polynomial
F(z) with integer coefficients takes on the values r or 7 + 1 for each
of the five distinct integers a;,as,...,as, then Fa;) = F(a3) =
F(a3) = F(a4) = F(as)-

*(v) Find all polynomials F(z) with integer coefficients such that for each
integer n there exists an integer k with F(k} = n.

10.4 Integer-Valued Polynomials

In contrast to the above we will now study polynomials F(z) with real
coefficients and with the property that F(z) € Z for all z € Z. Apart
from polynomials with integer coefficients, these include others, for instance
F(z) = 1z(z—1), since z(z —1) is even for all z € Z. Note that for integers
k > 2 the value F(k) is equal to the binomial coefficient (5). This example
was not arhitrarily chosen; indeed, in order to be able to easily write down
polynomials with the desired property, it will be convenient to extend the
concept of binomial coefficient. For any real number ¢ and any natural
number k we define the generalized binomial coefficient (}) by

(t) _t—1)---(t-k+1)

k K

We remark that if ¢ is a natural number and ¢ > k, then this new definition
coincides with the original one.

Theorem 1. For any integer t and any natural number k the generakized
binomial coefficient (}) is an integer.

PRrROOF. Given t € Z we find a rational number 7 such that - k! > k—t,
and we set n = ¢ + 7 - k!. By 10.1, the polynomial

Fz)y=z(z—-1)---(z—k+1)
satisfies F'(t) = F(n) (mod k!), since t =n (mod &!). But then

F(n) = (:) KL,

where the binomial coefficient (}) is a natural number (since n € N and
n >k, and so (}) is a coefficient in the binomial expansion of (4 + B)").

Together,
n

F(t) = F(n) = (k) kKl=0 (mod k!),
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and thus the integer F(t) is divisible by k!. Therefore, (i) = ES). is an
integer. D

Theorem 2. Given any polynomial F(z) = byz™+bp_ 12" 1+ - -+b1z+bo,
where by, by,...,b, are real numbers, there erist real numbers ap,ay,...,06,
such that

F(z) =ao+a1(:1c) +--«+a,._1(nfl) +an(ﬁ).

PROOF. We use induction on the degree of the polynomial F(z). If F(z)
is the zero polynomial or deg F(z) = 0, then the assertion is clear. We will
now assume that given any natural number n, the assertion holds for all
polynomials of degree less than n. Qur aim is to prove it for a polynomial
F(z) = byz"+- - -+ byz+bp of degree n. We set a,, = b, -n! and consider the
polynomial G(z) = F(z) — an(%). Since the polynomials F(z) and a, ()
have the same degree n and the same coefficient b, of ", G(z) is either
the zero polynomial or has smaller degree than F(z). It follows from the
induction hypothesis that there exist real numbers ayg, - . .,a,—1 such that
G(z) =ap+ a1 (31:) +---+ a,,*l(nfl). But then

F(z)=G(z)+a,,(z) =ao+a1(3l’) +---+a,._1(nfl) +““(z)'

which was to be shown. O

Theorem 3. For any polynomial F(z) = ap + ay (f) +---+ an(f'), where
ag, . . - , @y, are Teal numbers, the following holds: ag, ay,. - -, 6, are integers
if and only if F(t) is an integer for any integert.

Proor. If ap,ay,...,a, are integers, then by Theorem 1, F(t) must be
an integer for any & € Z.

Let us now assume that F(t) is an integer for any integer f; we will
prove by induction that ag,ay,...,a, are integers. Certainly, ap = F(0}
is an integer. Next we assume that for some natural number k < n, the
coefficients ag, a1, - - . , ax—1 are integers, and we aim to show that a; is an
integer as well. We have

F(k)=ap+ar( )+ )4
( ) =4ap a 1 * +ak—l k—— 1 ak’

since (',:) =1 and (;) = 0 for any integer m > k+ 1. Hence

ak =F(k)—ao—al(,:) —"'—Gk—l(kfl)a

and thus ax is an integer, which completes the proof. O
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We note that in the second part of the proof we used only the fact that
F(0), F(Q1),...,F(n) are integers. Then it followed that ap,a1,---»8n 8I€
integers, and therefore F(t) has to be an integer for any integer t. This fact
is worth being formulated as a separate result.

Consequence. If a polynomial F(z) with real coefficients and degree n is
such that F(0), F(1),. .., F(n) are integers, then F(t) is an integer for any
integer t.

ProOOF. This follows from the ahove remark and the fact that by Theo-
rem 2 we can express the polynomial F(z) in the form ap +a1(3) +---+

an(3)- o

10.5 Ezamples

(1) Find all real numbers a, b, ¢ with the property that for each integer ¢
the number at? + bt 4+ ¢ is an integer.

SOLUTION. Using Theorem 2 in 10.4, we express the trinomial az®+bz+c
as
2 b o T X
ar+br+c=2a 2 t+az+br+c=2a : + (a +b) 1) e

Hence by Theorem 3 in 10.4, at? + bt + c is an integer for all integers t if
and only if 2a, a + b, ¢ are integers. o

(ii) Decide whether the polynomial F(z) = z(z® — 2z° + ) takes on
integer values F(t) for all integers t.

SOLUTION. By the consequence in 10.4 it suffices to establish whether
F(0), F(1),...,F(9) are integers. It is easy to check that F(0}, F(1), ...,
F(4) are indeed integers. However, F(5) is not an integer, since 5% —2-5%+
5=5#£0 (mod 25). (]

(iii) Decide whether there exists a polynomial F(x) with real coefficients
and degree n € N such that F(0), F(1),...,F(n —1), and F(n + 1) are
integers, while F(n) is not an integer.

SoLUTION. By Theorem 2 in 10.4 we can express F(z) as

F(x)=ao+al(f)+---+an(:).

The numbers F(0), F(1), ..., F(n—1) must be integers, and thus ag, ay, . - .,
an-1 € Z, while F((n) cannot be an integer, which means that a,, ¢ Z (see
the proof of Theorem 3 in 10.4). Let us now evaluate F(n 4 1):

+1 1
F(n+1)=ao+al(ﬂ1 )+---+an—1(2f1)+an(":‘);
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thus F(n + 1) will be an integer if and only if a,("}) = (n + 1)a, is an
integer. It is easy to see that if we choose, for instance, ¢p = a; = --- =
@n-1 =0, a; =1/(n+1), then all conditions are satisfied. The conditions
of the problem are therefore satisfied by the polynomial

__ 1 f=\ {zx—1)---(x—n+1)
Fx) = n+1(n) - (n+1)! ‘ o

10.6 Frzercises

(i) Find all real numbers a, b, ¢, d with the property that at®+bt2+ct+d
is an integer for all t € Z.
(ii) Decide whether the polynomial F(z) = j5(z7 — 2°® — 2° + z) takes
on an integer value F(t) for any integer ¢.
*(iii) For each n € N decide whether there exists a polynomial F(z) with
real coefficients and degree n such that F(0), F(1), ..., F(n —1),
F(n +1), F(n + 2) are integers, while F(n) is not an integer.

*(iv) Determine the n € N for which there exists a polynomial F(z) with

real coefficients and degree n such that F(0), F(1), ..., F(n—1),
F(n+1), F(n + 2), F(n + 3) are integers, while F(n) is not an
integer.

(v) Let p be a prime and suppose that the polynomial F(x) of degree
k < p and with integer coefficients has the following property: For
each integer z the value F(z) is an integer multiple of p. Show that
then all coefficients of F(x) are integer multiples of p.

We will now deal with the decomposition of a polynomial with inte-
ger coefficient into a product of two polynomials with integer or rational
coeflicients.

10.7 Ezample

Show that there do not exist polynomials F(z),G(x) with integer
coefficients and degrees at least one that satisfy the identity

F(z)-G(z) = % +229 + 22% + 227 + 225 4 225 +- 274 + 223 + 222 + 22 + 2.

SOLUTION. We assume to the contrary that such polynomials F(z), G(x)
exist, and we write F(z) = a,x°+- - -+a12+ag, G(z) = bzt +- - -+byx+ by,
where ag,as, .- -,as, by, b1, .-, b are integers. Then apby = 2, s0 exactly
one of the numbers ap, b is even. We assume that it is ag (if it were by,
we could simply interchange the polynomials F(x), G(z)). Hence aq is even
and by is odd. Equating the coefficients of x, we obtain 2 = agb; + a;by;
thus a;bp = 2 — aphy, which is an even number. Since by is 0dd, a; must
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be even. Comparing coefficients of z2 and simplifying, we find that azbo =
2 — a by — apbz is even, and thus az is even. If we continue in this way, we
find after s steps that a, is also an even number. But this is a contradiction
to the fact that a,-b; = 1; hence the polynomials F(z), G(x) with the given
properties do not exist. O

With a similar argument one can obtain a proof of the following useful
criterion.

10.8 FEisenstein’s Irreducibility Criterion

Theorem. Let p be a prime and
F(z)=enz"+en 12" ' +---+ @17+ a0

a polynomial with integer coefficients such that ap, @y, . - . ,Gn—1 are divisible
by p, the coefficient a,, is not divisible by p, and ay is not divisible by p.
Then there do not exist polynomials G(z), H(z) with rational coefficients
and with degrees at least one such that F(z) = G(z) - H(z).

A proof can be found, for instance, in [4].

10.9 FExamples

(i) Show that the polynomial 4z° 4 7z%—14z3 44922 —28 cannot be written
as the product of two polynomials with rational coefficients and degrees at
least one.

SOLUTION. The assertion follows from 10.8 with p=17. 0
(ii) Find a polynomial with rational coefficients and smallest degree that
has the irrational number a = *%/2 as a zero.

SOLUTION. The number « is certainly a zero of the polynomial £1987 — 2.
Let F(z) denote the desired polynomial, which has the smallest degree
among all polynomials with rational coefficients and that have « as a zero.
We will show that F(zx) = c- (1987 — 2), where ¢ € Q\ {0}. To do this, we
divide the polynomial z'%7 — 2 by F(z) with remainder:

=197 _2 = H(z) - F(z) + R(z)
(see Theorem 3.9 in Chapter 1), where R(z) is either the zero polynomial
or deg R(x) < deg F'(z). If we think about the division algorithm, we easily
see that both H(z) and R(x) have rational coefficients. Also,

R(a) = (&'%" —2) — H(a) - F(a) =0
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(since F(a) = 0), and thus the polynomial R(z) with rational coefficients
has « as a zero. From the definition of F(z) it follows that the degree of
R(z) (if it is defined) cannot be less than that of F(x). Hence R(z) is the
zero polynomisl, and therefore

z19%7 — 2 — H(z) - F(=z).

By 10.8, however, the polynomial 1987 —2 cannot be written as a product of
two polynomials with rational coefficients and of degrees at least one. Since
F(x) has o as a zero, we have deg F((z) > 1, and thus deg H(z) = 0, i.e,,
H(z) = 1/c, where ¢ # 0. Hence we have indeed F(z) = c- (21957 -2). O

10.10 FEzercises

Show that the polynomials (i)—{iv) cannot be decomposed into a product
of two polynomials (with rational coefficients and degrees at least one).
(i) z° —5z% + 25z — 5. (ii) =% — 623 +12.
(iii) 3z7 —212* - 6322 —21.  (iv) 5z°+25x%—100z%+125z—25.

(v) Find a polynomial with rational coefficients and smallest degree that
has *¥/75 as a zero.

In the concluding example of this chapter we will present a result
that simplifies the search for rational roots of a polynomial with integer
coefficients. We have already illustrated its use in 3.27.(ii) of Chapter 1.

10.11 FEzample
Suppose that the polynomial

F(z) =6,2" + 8,12 ' 4+ + @17 + ap

with integer coefficients has a zero o = r/s, wherer € Z, s € N, and r, s
are relatively prime. Show that then for each integer k the number F(k) is
divisible by r — ks.

SoLuTiON. We set G(z) = s"F(z/s). Then G(z) is a polynomial with
integer coefficients:

G(x) = an™ + 615" +--- + 615" 1z + 0™,

We have G(r) = s F(a) = 0 and G(ks) = s”F(k). Let us set m = |r —ks|.
If r— ks = 0, then k = a, and so F(k)} = 0 is indeed divisible by r —ks = 0.
We now assume that r — ks # 0, i.e., m € N. Since ks = r (mod m), we

have by 10.1,
G(ks)=G(r) =0 (mod m),
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which implies m | G(ks), i.e., m | s"F(k). Now, m and s are relatively
prime integers (if there were a prime p dividing both m and s, it would
also have to divide r, which contradicts (r,s) = 1), and thus by 1.14.(ii)
we have m | F(k), or r — ks | F(k), which was to be shown. O
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Hints and Answers

1 Hints and Answers to Chapter 1

1.4 (i) Add identities (3) and (4).
(ii) Subtract (4) from (3).
(iii) After multiplying by 2, use (1).
(iv) The summand (33)(v/2)?3(vV3)%.
(v)ym=3,n=6.

1.7 Instead of B in (§) write —B and set n =2m in (i) and n =2m -1
in (ii).

23(i)n?% (i)Forn=2k:S=-kforn=2k+1:S=k+1.
(iii) 5n(n+1)/2.  (iv) 17. (v) 2+l —2.
" n41 - an+3
(vi) 2—;(2# (vii) 3(2" — 1) — n. (viii) 2n + Ca 321) ((:,_I)H)

28 (i) (n+2)-271.
(ii) 1. [Compare with the sum in 2.6 and use (4).]
(iii) n(n — 1) - 22,
(iv) n(n + 1)2"~2. [Note that k2 = k(k — 1) + k and use (iii).]
(v) F35- [Consider (n +1)S]

(vi) % [Consider (n + 1){(n +2)S]

(vii) 3n+:;21n-3 [Consider (n + 1)S; after manipulations as in 2.5 (ii)

use 1.2
(viii) 227~1/(2n)!. [Consider (2n)!S ]
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2.10 (i) Consider the coefficient of zP in the polynomial (1 4 z)*t™ =
(14z)*-(1 +z)™
(ii) Follows from (i} by choosingm =n, p=n—r.
(iii) (22554 [Use the method of 2.5.]
2.15 Determine the sums Sx(n) successively from the formulas B(3,n) =
Sa(n)+3 Sz(n)+2 Sl(n) B(4 n) S4(ﬂ)+6 Sa(n)+ll Sz(‘n)+6 Sl(n),
B(5,n) = S5(n) + 10- S4(n) + 35 - S3(n) 4+ 50 - S2(n) + 24 - 51(n).
2.22 (i) (n® + 2n)/3. (i) n. (iii) n2(n? + 2n + 2).
2.25 (i) n(2n —~1)(2n+1)/3. (i) k(k + 1)(k + 2)(3k + 1)/12.
(iii) n2(2n% — 1).
(iv) For n = 2k: S = —k?(4k+ 3); for n =2k +1: § = (k+1)%- (4k +1).
(v) n{4n? + 15n + 17)/36. [First evaluate each term in the sum S.]
2.30 (ii) [n(n — 1)g"*t! — 2(n? — 1)¢" 4 n(n + 1)g" ! — 2]/(q — 1)_31]
(iii) For t = 1: §(1) = n(n —1)/2; for t # 1: §(t) = (PR,
(iv) For v = 1: 8(1) = n(n + 1}(2n + 1) /6; for v # 1: S(v) = Rz(v,n)/v.
(v) For z = 1: §(1) = n?; forz #1: 8(z) = —E.{—D—,

zn—l{z—1)*"

(vi)For g =1: Ra(l,n) = 53(n) = [n(n+ 1)/2]?; for ¢ # 1:

R3 (% n)

( )4[ 3 n+3 (37!-3 +3ﬂ2 —3n+ l)qﬂ+2

+(3n° +6n° — 4)g"*! — (n+1)%" +¢* +4¢ +1].
(vii) Rp(q,n) = q—iT [ﬂk g™t 4 Ef=1(—l)i(§)Rk—i(Q- n)] .

2.33 (i) (n s 1) . 2ﬂ+l +2. (ii) (nz —n+4 2) . 2n+l —4.
(iii) W‘ (iV) 2“+(_91-)2nu-|;:|1(6n+1) -
2.38 Try to find the sums in 2.33 in the form

() d+(atbn)-2n. (ii)d+(a+bn+cn2)-2".ﬂ
(i) d+(a+bn)- (3)". (i) d+(a+bn)-(-3)"
. .. (3n45)

2.40 (i) § - S g (ii) _21:.}.1- (iii) 4(: _H';Et‘ 475
. +3 . 2
(iv) 555 ) 4{:;-’1‘ )" (vi) 3(2n1?)-'(-2n+3)'
an 2 . e
2.42 (i) —-‘—”;‘_ﬂz ] (ii) j—l"(’; ;'j_l;'a i (iii) 2En43) ::_‘;‘3 ]

2.44 (i) m—n':_(;'—)*('—;ﬁ [Consider 28 and use the method of 2.43.]
(ii) ﬂ(ﬂ+l)(ﬂ2+ﬂ+l)

s(nin) - |Use the equalities ——f_jzk D)2kl +%+ﬁ(§i‘—_ﬁ_
W for k= ]. 2 ,n]

8.3 (1) F(=) = Tt (2(%) — (¢)) %*. [Use the binomial theorern]
(i) G(z) =14z 422+ -+ 2% ). [Manipulate (1 — z}F(z).]
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(ili) F(z). [The polynomial H(z) = F(—z) = (1 + =2 + 23)10% has the
same coefficients at even powers of z as F(z). The coefficient of z%° of
the polynomial (1 + yz2 + 3)19% js a polynomial P(y) in the variable y
of the form €1y + c2y? + cay” + cqy'© with positive coefficients ¢;. Hence
P(1) — P(—1) = 2¢; + 2¢5 > 0]

(iv) Verify by inducticn that (z2 + z + 1)Fi(z) = z°

36(i)S=FQ1)=1.

(ii) After multiplication by a?(z — p){z — q) and simplification, find a
quadratic polynomial with discriminant D = (p — q)% + 4a* > 0 and with
nonzero values for = pand for z = ¢q.

(iii) Does not exist: For a = 0 it has at most one zero, or infinitely many
zeros; for a > 0, A > —c+ b%/(4a) it has no real zeros; fora <0, A > —cit
has one negative zero.

(ivyae=1292%—1,b=-%, p= —1, ¢ = }. [Comparing coefficients
of %0, you obtain 220 — g?* = 1. Substituting z = 1 leads to the equation
(246 + (3 +2+49)"° = 0, which implies b = —%. Then the original
equation of polynomials can be rewritten as (z — %)20 =(2+pz+ q)m,
which implies z2 + pr + ¢ = (z — %)2]

3.8 (i) F(z) =z2% + z.

(ii) No such polynomial exists: F(z? + 1) has even degree.

(iii) F(z) = 2 — 3z. [Since deg F(z) = 2, set F(z) = az® + bz + ¢

(iv) Set y = z—1 and G(y) = F(y—1), and compare with 3.7; apart from
the zero polynomial, the solutions are the polynomials F(z) = (z + 1),
where n € Np.

(v) F(z) = z". [From a comparison of the degrees of F(F(z)) and
(F(z))" it follows that deg F(z) = n; therefore, F(z) = a,z" +a, 12" ' +
--- + ag. Comparing the coefficients of the powers ™, you then obtain
artl = g, that is, @, = 1. Assume that ax # 0 for some k < n and take
the largest such k. The condition F(F(z)}) = (F(z))" can be rewritten as

k-1

-z 1.

ar(z" + arz® + -+ ag)* +ar—1(z” +arz* + -+ ag)* 1+ 4@ =0,

which is a contradiction, since the polynomial on the left has degree nk.]

8.13 (i) (a) 6; (b) 6x. [Use (25), and replace = by 1 and —1.]
(ii) O is a zero only for even n, and it has multiplicity 2. [Use 1.2
(iii) For even n. [Use (5) and determine when z + 1 divides z"+! 4 1]
(iv) F(z) = 4z* — 272° + 6622 — 65z + 24. [From the equality of the
polynomials

F(z) = (z — 1)°P(z) + 2z = (z — 2)’Q(z) + 3=

it follows that you must find a polynomial of smallest degree such that
(z—1)? divides (3z —4)Q(z) + z. From this you can see that deg Q(z) > 1.
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For deg Q(z) = 1, that is, Q(z) = az + b, you obtain the condition
(3z — 4)(az + b) + = = R(z)(z — 1)%,

which implies R(z) = 3a, and comparing coefficients, a = 4, b = —3.]

(v) The desired remainder is F(1) = 2000. By Bézout’s theorem there
exists a polynomial H such that F(z) = F(1) + (z — 1})H(z), which implies
F(z3) = F()+(z° - 1)H(z%) = FQ)+ (1 +z+ 2% +2* +zt) (= - 1)H(=®).

3.17 (i),(ii) Use the method of 3.16 (ii); verify the equality of the polynomi-
als by substituting 0, b, —b, ¢, —¢ for z (in (i}, four of them suffice). Special
care must be taken in the case where some of these quantities coincide.

(iii) Setz=a,z=b,z=c.

(iv)Setz=¢e,z=b,z=c

(v) Start with 223 + 322 +z = z(z + 1)(2z + 1), show that 0, —1, —} are
zeros of the given polynomial, and use 3.15 (ii).

(vi) Show that F(z) has the zeros 0, 1,...,25; therefore, F(z) = z(z —
1) - - - (x—25)-G(z) for an appropriate polynomial G(z). By substituting you
see that G(z) = G(z — 1), and therefore G(z) and the constant polynomial
G(0) have the same values at all integers; thus G(z) = G(0) by 3.15 (3).
The given equation is therefore satisfied exactly by the polynomials a - z -
(z — 1)--- (z — 25), where a is an arbitrary number.

3.20(i)) p=g=0; p=1 and g = —2. [Use (28).]
(ii) Proceed as in 3.19.
(iii) Add the equations 2¥(az? + bz; + c) = 0 for both roots z;.

3.22 (i) If 2, +x; = 1, then by (29) you have z3 = —%, which implies
A= —3and 7,3 = (1 +13)/2.

(ii) From (29) and from the hypothesis it follows that —g = 232,23 =
71+ T2 = —z3; hence ¢ = z3 is a root, and therefore g3 + pg + ¢ = 0. On
the other hand, if the numbers p, g are such that at least one of them is
nonzero and ¢* + pg+ ¢ = 0, then one zero of the given polynomial is the
sum of the reciprocals of the other two zeros.

(iii) From (29) and from the hypothesis it follows that —p/2 is a zero
of the polynomial, and therefore 8 = 4pg — p3. On the other hand, if the
numbers p, ¢, T satisfy 8r = 4pg— p3, then one zero of the given polynomial
is the sum of the other two.

(iv) G(z) = 2% —gz® + prz —r?; H(z) = 2 +2pz* + (p* + g)z + (pg— 7).

(v) r = (9pg — 2p3)/27. [Show that one zero is —p/3.)

(vi) Use (29) and substitute.

(vii) z+y+2z =p+g+r1—b—c Consider the monic cuhic polynomial

T z
Fi)=(1-7 - % — T -b)(E—0)
with three different zeros p, ¢, and r. Vieta's relation gives that —p— g—r
equals the coefficient of t? in F(t), which is —b — ¢ — z — ¥ — z, and the
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result follows. Let us add that the numbers z, y, z always exist and are
unique:

pr | _-Ba-br-b) _@-9e-9r-9

= Y bb—o) » 25 c(c—b)

3.25 Use the method of 3.24 to show that 4 is the unique real zero of
the polynomial 2® — 6z — 40 in (i), resp. /5 is the unique real zero of
3 — 3z —2-/5 in (ii).

3.28 (i) F(x) has a double zero at 1 and the two simple complex zeros
-2+, —2—1.

(ii) F(x) has the zeros —3, 1, (—1 + v29)/2, (—1 — v/29)/2.

(iii) F() has the double zero —1 and simple zeros 1,—3, —2 + V3,
-2— 3.

(iv) Let a denote the common irrational zero of F(x) and G(z).
Substituting a® = —aa — b into the equation F(a) = 0, you obtain
(a®> — b+ p)a + (ab + g) = 0, which implies p = b — a2, ¢ = —ab, and
this leads to F(z) = (x — a)G(z).

(v) The root in question is z = 1.

4.7 (i) 22+ (»® — 3pg)z + ¢°.
(i) 2 + (—p* + 2¢ +p)z + (—p°* + 3pg + ¢* + 9).

(iii} b € {0, Vv5 —1,—v/V5 —1}.

4.9 (i) z2 - 6z + 8 or z2 4 (13/3)x — 52/9.

(ii) z2 + 8z 4 15 or 22 — Bz + 15.

(iii) z2 — 5z + 6 or 22 + (3/2)x — 19/12.

(iv) For the numbers p = a 4+ b and ¢ = ab, find two “independent”
equations; from those you will realize by excluding the numher pthat gisa
root of the given equation of degree 6. Since a®(a +1) = b*(b+1) = 1, you
have 1 = a3(a + 1)b3(b+ 1) = ¢°(p+ g + 1). From the equation a* + a® =
b4+ b3, upon dividing by a —b, ohtain the second equation for the numbers
p and ¢:

0=a®+ab+ab®+b%+a®+ab+b?
= (a®+a®) + (b* + b°) + q(p+ 1)

1 1 P
= - —_— 1 = - N
a+b+q(p+ ) q+q(p+1)

4.14 (i) =° — 22° — 47z — 144

(ii) Use the fact that a, b, ¢ are three distinct zeros of a cubic polynomial
with vanishing quadratic term.

(iii) Use the formula for 84 = z§ + 3 + 23 from 4.12.

(iv) z® +2p2% + (PP + @)z + (pg - 7).
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(v) Transform the supposed equation into {(a + b)(a + c)(b+ ¢) = 0 and
then discuss (for example) the case a +b = 0, in which a” + " = 0 for any
odd n.

4.16 (i) (z1 + z2 + z3)(7122 + 2123 + Z273)-
(ii) (z1 + x2 + x3)(22% + 222 + 222 — 2132 — 21%3 — T2T3)-
(iii) (z1z2 + 123 + 2233)°.
(iv) 24r3z973.

5.3 (i) {(z1,%Z2,...:%pn)}, where zxy =k —nf2 for k=1,2,...,n.
(ii) {(z1,22,-.-,%n)}, where zx = (n — 2k + 2)/2.
(iiD) {(z1,%2,---,%n)}, where z; = (n+1){(2—n)/2and 2, =1 (k > 1).

5.6 (i) {((a1+az+a3z+a4)/2, (a1 +az2—az—a4)/2, (a1 —az+az—aq)/2, (a1 —
as — az + 0.4)/2)}

(ii) For p = —3: no solutions; for p = 0: infinitely many solutions of the
form (r,s,1—r —s), where r, s € R; for p € R\ {0, —3}: the unique solution
Tn=xz2=z3=1/(p+ 3).

(iii) Necessary and sufficient condition for solvability: ajaz + azas =
a1a3 + a2a4 = aja4 + azaz, which holds if and only if at least three of the
numbers a;, a3, az, a4 are equal. If {1,2,3,4} = {p,q,7,8} and ap = a, =
a,, there exists the unique solution z, = zg = z, = Eaf,, T = aplas— %ap).

(iv) {(2a3%2, 1203 92-01)} where a = a; + a2 + a3.

(v) If @, = aa = aa, then there are infinitely many solutions of the form
(r,8,3 — r — 8), where r,8 € R; otherwise, there is the unique solution
I =T =Tz = 1.

(vi) {(z1,%2,---,%Tn)}, where zx = a - %:}’,ﬁ—*’ll fork=1,2,...,n

(vii) {(z1,72,Z3,24)}, where ) = (4a; + 3a2 + 2a3 +@4)/5, T2 = (301 +
6a2 + 4az + 2a4) /5, 3 = (201 + 4a2 + 6a3 +3a4)/5, z4 = (a1 + 2a2 + 3a3 +
4a,4)/5.

(viii) Show that x; + x3 + - - - 4+ 100 = 0; comparing this result with the
surn of the 1st, 4th, ... , 97th equation, you obtain z;5y = 0, and from the
sum of the 2nd, 5th, ... , 98th equation you get x; = 0. With this, the last
equation immediately gives x2 = 0, the first one gives z3 =0, etc.

5.9 (i) (31)32) € {(—61 _2)1 (_41 _4)}'

(il) (21,25) € {(3,2), (2,3)}.

(iif) (z1,2z2) € {(1,2),(3,3)}. [By subtracting you obtain a linear
equation.]

(iV) (Il’z2) = {(_3! 4)! (41 _3)}'

(v) (z1,72) € {(4,3).(4,—3)}. [Solve the first equation for z; and
substitute into the second.]

(vi) (x1,22) € {(—7,—3),(7,3)}. {Add the two equations.)

(vii) By adding five times the first and seven times the second equation,
you obtain the homogeneous equation 5% — 19z,z; + 1222 = 0. Upon
dividing by z2 (z2 # 0) you get a quadratic equation in z; /x5, which leads
to the solutions (z),z2) € {(—4, —5), (—3v3, —v/3), (3V/3, v3),(4,5)}.
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( (‘)’i]ii) (.1:1,::2) € {(—11 _2)! (—\/i, —\/i)v (1) 2)! (ﬁ! ﬁ)} [Proceed as in
vii).

(ix) (z1,72) € {(1,-1),(3,-3),(V157 — 13, (V157 — 13)/2), (—V157 —
13,(—v157 — 13)/2)}. [The second equation is homogeneous; hence use it
to determine z /23]

(x) (z1,z2) € {(2,—-3)} U {{c,1) | ¢ € R}. [Subtract twice the first
equation from the second one.]

(xi) (z1,%2,Z3,%a) € {(1 + V2,1 — V2,2 - 32,2+ 3v2),(1 — V2,1 +
v2,2 + 3v2,2 — 3v/2)}. We describe a procedure that applies to a more
general system

T+ T2 = @y,
I1Z3 + T274 = a2,
311‘% + -'823'.'3 = G3,
:cla:g + 3:23:2 = G4,

with arbitrary parameters a;. Let 2+ pz+ g = 0 be the quadratic equation
with zeros z3 and x4, i.e., 2 + pz + ¢ is the polynomial (z — z3)(x — x4)-
Since

z1(x3 + px3 + q) + x2(23 + pzs + ¢) = a3 + paz +qay,
z123(x2 + pz3 + @) + Z224(23 + pTa + @) = a4 + pas + gaz,

the coefficients p and g satisfy the two equations
a3 +paz+ga =0, a4+paz+gaz=0,

which in our case imply that p = —4 and ¢ = —14 and hence z3 4 = 24+3/2.
The computation of the unknowns z; 2 is now trivial.

5.12 (i) (z1,22) € {(2,3), (3, 2)}'

(ii) (zls 3'2) € {(3! 4)’(4a 3)}'

(iii) (z1,72) € {((—16 + 8/10)/7,(—16 — 8+/10)/7), ((—16 — 8/10)/7,
(—16 + 8v10)/7),(3,4), (4,3)}-

(iV) (mls 3:2) € {(31 _‘2)1 (_21 3): (1 + \/6’ 1- \/6)1 (1 - \/6! 1+ \/6)}'

(V) ("rl: 2.‘2) € {(6! 6)! ((_3 + 3'\/5_’)/2! (_3 - 3\/5)/2)1 ((—3 - 3‘/5)/21
(—3+3v5)/2)}.

(vi) Eliminating o2 gives 01(70} — 430% 4+ 36) = 0. Since o1 # 0, the
expression in parentheses is zero; solve it as a quadratic equation in o3.
The real solutions are (z1,z2) € {(2, -1),(-1,2),(—2,1),(1,—2)}. In ad-
dition, there are the four complex solutions (z1, z2) € {((3 + iv6)/V7,
(B — WVB)/VT, (B — VB/VT, (3 + #WB)/VT), (-3 + iVB)/VT,
(-3 —iv6)/VT), ((—3—iV6)/VT, (—3+ivB)/VT)}.

(vii) First, deal with the cases 3 = 2, z1 = —x2. Then, in the
case 7 # 3, divide the first equation by z; — 2, and the second
one by z; + z2- The system has the following nine solutions: (z;,z2) €
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{(O’O)a (ﬁ'n ﬁ)s (_\/'?s _\/-7-): (\/-13, -\/-13), (_Vﬁ§a \/ig)! (21 3)’ (3' 2)’
(_25 _3)! (—3! _2)}

(viii) (z1,22) € {(1,4),(-1,4),(2,1),(—2,1)}. [Solve as a system of
symmetric equations in z? and z2.]

(ix) (x1,72) € }La,O).(O.a)}, and also (z1,77) € {((1 +iV7)a/2,(1 -
ivDa/2), (1 —ivDa/2,(1 +ivVT)a/2)}.

(x) (z1,72) € {(1,2),(2, 1)}, and also (z1,72) € {((3 +iv19)/2,(3 —
iv19)/2), ((3 — iv19)/2, (3 +iv19)/2)}.

(xi) Using 0y = 1 +22, 02 = T1T2, set up a new system in the unknowns
01,02, 3. Use the first equation to eliminate z3 from the remaining two,
and then eliminate o2 from the second equation of the new system. This
system has the unique solution oy = 19, o2 = 90, x3 = 12, and thus the
original system has the two solutions (z1, z2, z3) € {(9,10,12),(10,9,12)}.

5.14 (l) (zl) Iz, z3) = (3! 3s 3)'

(ii) (313 T2, 33) € {(%s l'l 3): (%1 3» 1)1 (3: %s 1)’ (31 1, %)a (1! %: 3): (1’31 %)}'

(iii) (z1,72,23) € {(0,-1,3),(0,3,-1),(3,0,-1),(3,-1,0),(-1,3,0),
(-1,0,3)}.

(iv) (z1, z2, z3) € {(2’ 2, _l)a (2,1, 2): (_11 2, 2)}'

(V) (xls T2, 3;3) € {(—1, "‘1’ 2)’ (_11 2! "_1)1 (21 _11 _1)}'

(vi) (z1,z2,x3) € {(0,0,a),(0,a,0),(a,0,0)}.

(vii) (z1,x2,23) € {(-1,2,-2), (-1,—2,2), (2,-1,-2), (2,-2,-1),
(-2,-1,2), (-2,2,-1), (1,2,-2), (3,-2,2), (2,1,-2), (2.—2.1),
(-2,1,2), (—-2,2,1)}.

(viii) Substitute yo = 2z2, y3 = —x3 and solve for xy,y2,y3- In real
numbers, the system has the unique solution z; = 1, z2 = %, z3 = —1;
in addition, it has the following six complex solutions: (z1,Z2,%3) €
{@,w/2, —w?), (1,w?/2, —w), (w,1/2, —w?), (w,w?/2,-1), (w?,1/2,—w),
(w?,w/2, —1)}, where w = (-1 +4V/3)/2.

(ix) Solve the last equation for z, and substitute into the remaining
equations. Solve the new system using the method of symmetric polyno-
mials, where the auxiliary polynomial has the solutions oy = 2, 02 = -3,
o3 = 0and oy = —2, 092 = —3, 03 = 12. The first one of these gives
six solutions of the original system: x4 = 2 and ), x2,x3 are all permu-
tations of the numbers —1,0, 3. The second one gives six more solutions:
T4 = —2 and z,,x2, z3 are all permutations of the zeros of the polynomial
13 + 222 — 3z — 12; these, however, are not rational.

(x) Although the polynomial on the left of the third equation is not
symmetric, the method of symmetric polynomials can be used. Rewrite
the third equation as 22 + z2 + 22 = 5 + 222 and express the polynomials
on the left sides by way of elementary symmetric polynomials. Solution:
(x1,%2,x3) € {(1,2,0),(2,1,0)}.

63() 1 (i) -1 () 2(a5+2vE). (i) 1.
6.5 (i) D=0.
(i) L>0,R=0.
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(iii) For z >0 you have vz + 9> 3, /2 >0,50 L>3>2=R.
(ivyL>0>R.

6.8 (i) 5. (D) 2v2, -2v2. (iii) 2. (iv) 4, —4. (v) 3,25
(vi) 4. (vii) 3.

6.10 (i) 1, —&. (i) 1. (i) 2, —3.

6.12 (i) 3. (ii) £. (iii) 2. (iv) —2, . (v) 2.
(vi) 0, —5. (vii) 8. (viii) [1,10]. (ix) [2, 00). (x) 0, —1.
(x) 1, —2. (xii) 5. (xiii) 1.

6.14 (i) —2. [Rewrite \/L:‘l =2-4/281] (ii) 15. (i) 1.
(iv) —(5 + V73)/14, %, %. [Square the given equation and use the
substitution v = 1/z, v =1/v1 — 2]

6.16 (i) —15, 1. (ii) 1, 3. (ii) 1, —3. (iv) 0. (v) 2, 6.

6.18 (i) 13, —15.  (ii)1,20. (@)1 (iv) -2 (v) 1,3
(vi) 8, 8 + 12V/21/7.

6.21 (i) For a < 0 there is no root; for a = 0, every z € [0, c0) is a solution;
for @ > 0 there is the unique root = = 0.

(ii) For @ < —1 there is the unique root = = ((a +1)/2)%; no solution for
a>—1.

(i) For a € [0, 1): the unique root = = a/(1—a?); otherwise, no solutions.

(iv) For @ < —1, ope root z = —1; for a = 0, every z € R} is a solution;
no solutions for a € (—1;0) U (0; o).

(v) Denote zy = (1—+4a +1)/2; zz = (1++/4a + 1) /2. Thenfora < —}
there are no solutions, for a = —% there is one root £ = %, for a € (—%,0]
there are two roots %3, Z2, and for @ > 0 there is the unique root xa. [Use
the method of Example 6.20.]

6.23 (i) (z,y) € {(27.1),(1,2D)}.

(1) (=, y) € {(2.8),(8,2)}.

(f)z=2y=1.

(iv) (z,v) € {(10+ 6+/3,10 — 6+/3), (10 — 6+/3, 10 + 6+/3)}.

(V) (3! y) € {(8! 2)! (_2! _8)}-

(vi) (z,y) € {(16,4),(5,15)}.

(vii) (z,y) € {(5,4),(-5,—4),(15,—12),(—15,12)}. [In the first equa-
tion, clear the denominator; in the second one use the substitution t =
VzZ2+zy +4]

(viil) z = ‘—3}%, y = % Condition for solvability: a? >
b2 > a? — 1. [Add and subtract the given equations, then multiply the new
equations together, thus obtaining z2 — y? = a2 — b%. Substituting this into
the original equations, you obtain two linear equations in z,y. Since the
final formulas are obtained from the original system by interchanging the
pairs (a,b) and (z, —y), it is not necessary to check the result.]
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7.3 Set w = (-1 + iV/3)/2.
(i) [2" + 2cos(nm/3)}/3. [Rewrite (1 + 1)® + (1 + w)™ + (1 + w?)" with
the binomial theorem and de Moivre’s theorem ]
(ii) [2"+2 cos((n—2)7/3)] /3. [Rewrite (1+1)" +u2(1+w)"* +w(l+w?)"]
(iii) [2"+2 cos((n—4)n/3)]/3. [Rewrite (1+1)" +w(l+w)"* +w?(1+w?)" ]
(iv) 2" cos &F. [Rewrite w™ with the binomial theorem and de Moivre’s
theorem, and equate real parts.|
(v) 2—‘;5 sin 2%, [Rewrite w" and equate imaginary parts.]

7.5 (i) (6tana — 20tan® o + 6 tan® a)/(1 — 15 tan® a + 15tan? o — tan® a).
[Use 7.4.(i) for n = 6.]

(ii) Express the real part of the sum of the complex roots of the equation
z?"+1 — 1, The result also follows from the formula for the sum S in
7.4.(i).

(iii) For € = cosa + isina rewrite (¢ + &~ 1)".

(iv) S1 = 2"cos™(a/2)cos(fB + (na/f2)); S: = 2" cos"(a/2)sin(B +
{(na/2)). [Rewrite S; + iSe with the help of the binomial theorem and
de Moivre’s theorem, and use the identities cosa = 2cos®(a/2) — 1;
sin @ = 2 cos(a/2) sin(a/2).]

(v) Proceed as in 7.4.(ii); in order to make the denominator real, multiply
numerator and denominator of ((r-€)"*! —1)/(r-e—1) by re~! — 1, where
€ =cosa + isina.

(vi) Begin with the formula

cos2na = z:(—l)j 27_‘ cos?"9) asin¥ o
=0 2

(see 7.4.(i)), factor out cos?” a on the right, set o = ax = 2";‘1 =, where
k=1,2,...,n,and thus determine that the desired numbers z; = tan? oy

are roots of the equation 377 _o(—1)7 (g';)z’ = 0. Then by Vieta’s formula

you have 37, zx = (,27,) =n(2n - 1).

(vii) First verify that |14-€*| = 2| cos ';—"l forallk =1,2,...,n. Substitute
this expression, for n =2m+1, into 1 = |1 +¢| - |1 +£2| - - - |1 + €2™|, which
is a consequence of (65) for £ = —1. Then you essily obtain (66), if you use

the relation |cos$%'£lh| = cos 5’"2"'—":;‘)1 fork=1,2,...,m.

(viii) The polynomials A,,(z) and B,,(y) are (up to a constant factor)
determined as follows:

Ante) =317 (57 5 )@ - eyt

oy i 22
Bn() =3 (Gt -y
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The constant coefficient of A,,(z) is obviously 2m + 1, and the coefficient
of £™ is equal to

>y Co )= = om- 3

j=0

()

by 1.4.(ii). Therefore, 2122 - - - T = (2m + 1)/22™, which implies

T 2T cin mz \/2m+1
2m+1 2m+1 2om+1  2m '

and this proves (63) for odd n. Similarly, from the coefficient (—1)™ -22m+1
of y™ and the coefficient 2m + 2 of 3° in the polynomial B,,(y) it follows

that
2m+4 2

iz - -¥Ym = 2ZmAl

hence
x 2T i mn m+1

B +2°%2mt2 P amyz - 2
so (63) holds also for even n. Finally, from the equation

(—1)™-2*"(1 —2,)(1 — 22) - - - (1 — zm) = Am(1) = (-1)™,

in view of the fact that 1 — z = cos® &%, you obtain (66).

(ix) Theequatlon = '1 =254 2% +1-—0ha.sthesixrootse=cos%'+

isin <& 2" 62 et €5, €7, Es Substituting ¥y = = + , you obtain the cubic
equatlon y® — 3y + 1 = 0 with roots

2w 4r 8w

() —2cos?, Y2 —2cos?, Ys = 2cos?
To determine the sum ¥ + Y2 + V4, use the same approach as in
7.4.(v). This time you get C = —1, the pair of equations A* = 3AB + 3
a.nd B? = —3AB — 6, and (w+ 3)® = 9, which implies A* = 39/9 — 6 and

=3-3v0.

(x) Sete—cos +‘:sm2‘;r Then €® = 1 and € # 1, s0 ¢, €2, €3, ¢4
are roots of = sl =gy +2+z+1 Substltutmg y=2z+ 1 you
find that 3 = ¢ + = 2cos is the positive root of y* +y — 1. Hence

2cos 2T = —"‘—£ Theotherrootlsyg—-£2+—-;—2cos———20055,so

- _i-yE
—2cos T = —5*-

7.7 (i) Proceed as in 7.6.(i), or use the fact that for an arbitrary root a of
the polynonnal 2 +z+1 you have o + a+1 = 0, and thus (a4 1)2"+! =
(a+1)(a? +2a+1)" = —o? - a”.

(ii) Substitute i and —t, and use de Moivre’s theorem.
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(iii) Substitute ¢, —1 and —i.

(iv) a € {O,il,i\/ﬁ,:tl—"gé,:tl_—zﬁ}. Each a € (—2,2) is of the form
a = 2cosf3, where 8 € (0,7). The polynomial g(z) = 2> — ax + 1 has
roots cos 8+ #sin 3, and hence the polynomial f(z) = 214 —az"+1 has 14
different zeros,

osﬂ-;Lkﬂ +isin*—ﬁ—“;&, ke {0,1,...,5,6}.
So the polynomial f(z) divides the polynomiel h(z) = z'% — az”” +1 if
and only if each root of f(x) is also a root of h(z), i-e., it is of the form

+B+2r .. +B+2n
cos—77—+zsm -7

with an integer [. Especially,

E +0+ 2w
7 7

for a suitable I € Z, which gives 8 = %5 or 3 = . Hence
2

For the values of cos %’, see Exercise 7.5.(x).

7.9 (i) From 3.14 derive (z2 + z; + 1) --- (22 + 2, + 1) = F(w) - F(v?),
where w = (—1 + i/3)/2; show that F(w) = Cw? + Bw + A, F(v?) =
Cw + Bw? + A. Multiply and simplify.

(ii) From 3.14 derive (z} +1) - - - (2} +1) = G(7)G(T3)G(+°)G(77), where
7 = (14i)v2/2; show that G(1)-G(7°) = —¢g® —i(pi+7)2, G(7%)-G(77) =
—q? + i(—pi + r)?, and multiply these two expressions together.

2 Hints and Answers to Chapter 2
2.2 (i) Vnl< ~/(n+1)! forall neN.

(ii) 27 > 5300, since 27 > 5°.
(iii) The first number is larger. For all z € R,

10 4+ 1 S 10+l 41
10=+1 41 7 107+2 41

> (10 +1)(107+2 4 1) > (10°+! +1)2

Expanding, you get 10°+2 — 2. 105+ 4 10 > 0, that is, 81 - 10 > 0.
(ivy L—- R=(Vb—a)-=ti5¥8 5

1+2a
(v) Better than squaring: Multiply the inequality by va+1 + /a.



2 Hints and Answers to Chapter 2 295

(vi) By squaring you obtain

(c+a)® _ (c+b)? 2ac
+a? " E+62 T 1+cz+a_2>1+
a b

= Pt B+
The last inequality can be rewritten as (a — b)c? > ab{a — b).

(vii) This follows from 2.1.(v) forr =} and s = }.

(viii) Upon dividing by (n!)2 you get 1 < 3";" . 2n=kol, 2":_“2_2 T %I—}
Each term on the right-hand side is greater than 1.

2.4 (i) Each term on the left-hand side is greater than 1/(a + b+ ¢).

(ii) Rewrite this as 2(z) + T2+ --- + %) < 3(z7 + Tg + Tg + T10). The
left-hand side is at most 121¢, and the right-hand side at least 12z.

() f=me+m > mem t s == L<R

(iv) Adding e + b > ¢ and 2v/ab > 0, you obtain (\/a + vb)2 > (/©)?,
and thus /@ + v > v/c. The inequality (a +b)~ + (b+¢)~1 > (c+a)?
follows from a + b < 2(a + ¢) and b + ¢ < 2(a + c). Changing the order of
a, b,c gives the remaining triangle inequalities.

(v) Distinguish between two cases: For £ > 1 you have L = (z® — 25) +
(Z2—-z)+1>);forz<litisL=x8+(z2—-25)+(1—z) >0.

(vi) Upon rewriting, (n—1)(a”™ +1) > 2(a+ a® +- - - +a™~!). Therefore,
it suffices to prove the inequalities ™ + 1 > a* + @™ * and add them for
k=12_..,n-1.

(vil) Prove the inequalities

2
cz 4+ b2

2

multiply them for § =1,2,...,k, and take the square root of the result.
(viil} Without loss of generality you may take ¢ > b > ¢. Show that then
a® + b° + 2abe > abla + b) + (a? + b?)c and 2 + abe > (a + b)c2. Adding
these two, you obtain the desired inequality.
(ix) The left-most term on the right-hand side is smallest. Hence

1+ (n+1)a]™"
1+ na .

(x) 31 < 17*4, since 311! < 3211 =255 < 256 = 1614 < 174

(xi) The first number is greater. Both can be rewritten as 293" and
3%7"" and in view of the fact that 2° > 3%, it remains to show that
398 ~ 2148 This last inequality is a product of 32 > 212 (which follows from
33 > 24) and 3% > 2136 (which follows from 3% > 23 and 89/2 > 136/3).

(xii) Rewrite the equation as 1 = F(z), where

1\ 2
(m+2'——) > (m+ 25 — 1)}{(m + 23),

1+(n+1)a>[
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It is easy to see that F(z) > F(y) if0<z<yanda,9é0forsomei-

(xiii) L— R=(c—a—b)le[c—a —b) — a+b a8 o,

(xiv) Multiplying the ﬂrst resp. the last two mequa.htles together, and
simplifying, you obtain a® + P <od— ab, resp. (a® + b?)cd < ab(ab — cd).
However, not both numbers cd — ab, ab — cd can be positive.

(xv) By the inequality given in the hint you have

A+B+a+b> A+a and B+C+b+c> C+c
A+B+s A+s-b B+C+s C+s—b
If you replace the denominators on the right-hand sides by the larger num-
ber A 4+ C + s and subsequently add both inequalities, you obtain one
of the desired inequalities; in view of symmetry, the remaining triangle
inequalities are also true.

(xvi) By expanding both sides A(r)A(u), A(s)A(t) you will find that
it suffices to show that a%aj + aja} > aja} + aja} whenever a; # ax.
Upon dividing by (a;ax)" you obtain the inequality from 2.1.(v), with the
numbers r, s replaced by 8 —r, ¢t — r.

2.6 (i) Add V2 < vk < /mn for k = 2,3,...,n and exclude the cases of
equality.

(ii) Multiply (k+ 1)(n—Kk)>nfor k=1,2,...,n—2.

(iii) Add the inequalities

z ", resp. z 1 _r_2
kn+3 (k+1)n k+Y = kn+3—1 kn k’
(iv) S(n) > 2v/n+1 — 2+/2 + 1. From this and from 2.5.(iv) it follows
that 1998 < 5(10°) < 1999.
(v) Use the estunate m < 2‘:—1; fork=2,3,...,n
(vi) Add < P—_k for k=2,3,...,n
(vii) Use the inequality

k k 1
2k —1)(2k+1)2k+3) ~ (k1 D@L 148~ 4k + DRE+1)

(viii) Add 4k —1 < CE-LEHD - 4p for £ =1,2,.

(ix) Use the method of 2.5. (vn) with the inequalities :: +: <i k>l
(x) Estimate each term on the right of

2p+1 2p+3 2n-—1

Qln) =Q(p)- 2p+2- 2p+4  2n

as in Example 2.5.(vii).

2.8 (i) In view of the symmetry you may assume that 0 < a < b < ¢. Then
¢(c—a) > b(b—a), so that L = a(b—a)(c—a)+(c—b)[c(c—a) ~bb—a)] > 0.
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(ii) Let 0 < @ < b < c; then b = a+u and ¢ = a+u+v, where u,v € Ry.
Substituting, you get L = u?(a —v) + (u+v)*(a +v) + v*(a + 2u+v). The
only term with negative coefficient, namely —u?v, clearly disappears upon
simplification, and so L > 0.

(iii) The inequality

241 (22 — 1)2(¢2 + 3)(1 + 3t2)

—t>
2 - 8(22 +1)(2% + 612 +1)

can be transformed into

(t—1)°
>
B(t2+1)(t* 4+ 612 +1) — .

32 () (R +n)}(L—R)=(1—-a)14+a+---+a*! —na") > 0, since
(1-a)>0and a* >a" fork=0,1,...,n — 1

(ii) You obtain the inequality £ — y < a — b, with £ = {a" + ¢ and
y = ¥b™ + ¢, from the equation ™ — y* = @™ — b" To see this, expand
both sides according to formula (14) and use the fact that the inequalities
z > a and y > b imply the estimate

4z 2yttt 2y > e e a2

(iil) Each inequality on the right-hand side of the implication is of the
form a,,_"ﬂ_,, > a.,“"_‘*;l_,,_, , where k € N. Under the assumption a > 1
you can use formula (14), with n = 2k and n = 2k + 2, to change this
inequality into the equivalent form k(a®**! +1) > a+a® +--- + a®*. But
this is inequality (6).

(iv) It suffices to show that 2(a? — ab + b?) > a2 + b?, since

a®+b® a?-ad+-b 223+ 2H° . .
. a+b a+b ” "a+b = 2a” —ab+b%).

. 3 _ . . _ a8,
(v) The equation a® +b* = a—b gives the expression a®+ab+b? = &7px;
from this obtain the stronger inequality a2 + ab + 4% < 1.

(vi)Since‘!—p+p—5;—r+;5+T_:;s_(a b)+(b—c)+(c—a) =0,
you have

1( a® + b b+ A+ad )
5 )

L= \@v 1P ' P+ @ @vcar a?

Therefore, it suffices to show that ;,’f—;:"%; > =X for all z, y € R*. Upon
dividing by (z + y) and multiplying by 3(z? + zy + y?), this inequality
changes to 2(z — y)? > 0.

3.4 (i) (a + 1)" — 2" > n(a — 1)2°~}, by the left part of (16).
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(i) 2* — (1 +a)” > n(l —a)(1+a)* ! = n(l —a?)(1 +a)* 2 >n(l—
a?)1n-2,

(iii) Rewrite as (1 —a)™ — a™ > na"1(1 — 2a). If 0 < a < 3, use (16)
withA=1—-aand B=g;ifl <a < 1, substitute in the oppOSIte order,
namely A—aand B=1—aq; 1fa = 2, you obtain equality.

(iv) Since A,1 A1 = (@ap — Ap—1)/m, you have A,, > An-1, 0:11%3
@ =6z = = . Then by (16), A" — A® | > n(An — Ap—1)AR"] =
(an — An—l) —

(v) Substitute n=kand z=1/k in (17).

k

(vi) Rewrite the left inequality as [1 — Tlﬁ-!i)“f] >1-— ﬁi; this follows
from (17) forn=k and x = —ﬁ-_ﬁf)-;. The right inequality can be written
in the form (17) for n =k + 2 and Z = gz 5;-

(vii) With £ = ab” — 1 in (17), obtain a® + (n — 1)b™™" > nab™-"),
Therefore, choose r = —1/n. The inequality (18) is strict if x # 0, that is,
a# Vb

(vm)Use (18) witha=1landn=k+1,b=1+},resp. n = k+2,
b=1- gy

(ix) The inequality d? < D" d; implies L < D" 1. (dy + --- +dx)/k.
Hence it suffices to show that aD"~! < a®™ + a, D"; but this is (18) with
b=a,D"/(n—1).

3.6 (i) Use (n + 2k)! > (n + 2)!(n + 3)%*~2 for k > 2, and (19) with
4= i

(i) The numbers a; = W satisfy =2ti °""“ < 3.

(iii) Let 2*a* be the largest of the numbers 20,1, 22ak,...,2"ek. For j =
1,2,...,n sum the inequalities a; < 2%%'a, and then use (19) mth g=

1/f

3.8 (i) Since @ < c and b < ¢, it suffices to show that a+ b > c. Let us
assume the opposite: a +b < ¢; then by (22), a" + 0" < (a + b)" < ¢,
which is a contradiction.

(ii) In the expansion of (1 + a)®, use the inequality a* > a"! for k =

(iif) e —@-1)" _ 2[(7) 2 + (3) 2 +- ). Estimate the term in square
brackets from below by its first term, and from above by the sum 2 4(2)3+
(2)° +---, and use (19) with ¢ = (2)2.

(w) The expression (23) follows from (21) for A= 1, B = 1/n, and
exponent n = k. Smcel—1<1 it for j=1,2,...,k— 1, you get the
inequality cx41 > ¢ by comparing the two nght-hand 51des (23). The left
inequality in (24) follows from (23) and from the estimates 1 - 1 < 1 for
j > 0; the rlght inequality of (24} is obtained by summing —[ < 55:1' for
i=3,4,...,k

4.2 (i) R— L = (z — yz)?
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(i) L — R = (z — y)*[(z + 9)* — 4zy] = (= — y)*.

(ili) L— R = (z — )%(x? + zy +3?), by 4.1.(i) you have 22 + zy+3% > 0.

(iv) Multiply by V/ab, to obtain (v/a + vB)(v/a — vB)? > 0.

(v) Rewrite as (2% —1)% > 0.

(vi) Divide by (1+z%)(1+4y%); then this is the sum of two inequalities (v).

(Vi) L—R=(z—-1)°+ (2y—3)°*+3(z—1)2+ 1.

(vii) L=(z+y)® +(y + 3)* + 3.

(x) L— R=(zy—1)2 + (z — 1)%.

X L-R=(z?-4®)2+(x—~2)2+(z - 1)~

(xi) Since R = (va — vb)? + v/2eb > 0, you can square the inequality.
Upon simplification you obtain L? — R? = 2(2 — v/2)vab(,/a — vb)2.

(xii)) L— R = (z — 2y)? + (z ~ 2)2.

(xiil) L = 2(z® — %)% + (2zy — 3)% + 1.

(xivy R—L=(Q1- ¥a)®>+( — Vb)>+ (1 — ).

(xv) L — R = (v/a — Vbc)? + (vb — V/ac)® + (ve — vab)2.

(xvi) L — R = (a - b)? + (a — Vb)? + (b— o).

(xvil) L — R = (a2 — b%)? + 2ab(a — b)2.

(xviii) L = (2% — 22 — y3)®

(xix) L = (z® +p)° +alz+ g’ +bforp=—1,g=—3,ea=1end b=

(xx) L = (a® + p)* + a(a + @) + b = (a® — 2)? + a(a — 2)°. The numbe
(a® — 2) and (a — 2) cannot be both zero at the same time.

(od) L— R= (3z -y + 2)2.

(exii) L~ R = (v + VB — o)

(edii) L— R = (3a— b— ¢)? + (a® — 36abc)/(12a).

(xxiv) Rewrite as 1 + 22 + y* > x + y + zy, which follows from (27) with
Z=1.

(3xv) Squaring and simplifying, you get a?b?>+b%c? +c%a® > a®bc+-abe+
abe?, which follows from (27); see the proof of (28) in 4.1 (viii).

(;ocvi) Applying (27) three times, you obtain a® 4+ 8% 4+ & > a%b? + b4t +
cta? > a?bic? + b2 cda? + Aat? > a?bBB + b*Aad + 2a3b. Divide by the
expression a3b3c3.

(3ccvii) Show that zy + yz + 22 > —(2? + 2 + 2%) /2 for 2,9,z €R.

(oxviii) L = [2(22 + zy + z2) + y2]2.

(xxix) Assume that you have at the same time pz + rz = 2qy, pr >
¢ and zz > y* Multiplying these inequalities together, obtain 4przrz >
4¢%2 = (29y)° = (pz + rz)®. The inequality 4przz > (pz +rz)? leads to a
contradiction: 0 > (pz — rz)?

(o) For x # 0,

c +a%d az\?2 oz 2
4 3, T a2 = {24 2= Samal®
F(z) > = +az°+ ad 2 +ez4d (a: + 2) +(2\/a.+\/3) >0.

(xxxi) First estimate the right-hand side from above:

P+ a? 4 2 a + b2
2 + b - 2 +c°- 5

[

L)

Rsap.
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Hence it suffices to prove the inequality
2aPt2 + P2 4 P2 > aP - (B2 + ) + 8P - (a2 + ) + & - (a2 + 7).

-»
Write this as the sum of three inequalities of the type aP+2 +b°+2 > aPb®+
bPa?, which are easy to prove; see Example 2.1.(v).

(xxxii) A > B, with equality only when a = b = ¢ = 1. Use the identity

@bclabe+1)(A—B) = ab{b+ 1)(ca—1)2+bc(c+1)(ab—1)2+ca(a+1)(bc—1)2.

(xxxiii) The desired largest p is £. For £ = y = z # 0 you obtain the
necessary condition 6 > 9p; for p = 2 the difference L — R is equal to
one-twelfth of the sum

5(z%—92)%+5(y° — 22)2 +5(22 —22) 2+ 2(z% —y2) 2 + 2(y° —x2)? +2(2® —zy)?.

(xocxdiv) Answer: For p =1 all n; for p= § only n € {2,3}; for p = §
only n € {2,3,4}. In the case p=1 the given mequa.hty is equivalent to

22 4 (21— 22)2 + (22— 23)° + - -+ (@n1 —Zn)° +22 >0,

in the case p = and n =3 to (31 — 222)% + 22 + (222 — 33)* > 0, and
finally in the case p="% and n =4 it is equivalent to (5z; — 332)2 +232 +
15(z2 — 23)% + 23 + (323 — 524)® > 0. (If n is less than mentioned in the
last sentence, fill up the set of numbers z,, z4, ... , z, With an appropriate
number of zeros.) If p = —g— and n > 4, consider the example z; = 24 = 2,
:cz=:c3=3,andxg=0fori>4,a.ndifp=gananS,consider
2y=25=9,220=24=15,23 =16, and z; =0 for i > 5.
4.4 (i) Follows from (29) with A = a?b and B = 1/b.

(ii) By (29), L > 21/6(c + 2){2c + 3)ab. Prove the inequality
v/ 6(c + 2)}(2¢ + 3) > 3(c+ 2) by equivalent transformations.
« (iii) Multiply the inequalities @ + b > 2v/ab and a® + b > 2va3b. One
could also use the method of squares: L = (a? — b)? + ab(a — 1)2.

(iv) Use (29) to estimate from below each of the four expressions in
parentheses on the left.

(v) Use (29) to estimate from below each of the six expressions in
parentheses under the square root;s

(vi) By (29), 5+ L 22- - Ay >2. 2. 2

(vii) Use (29) with A=a + b and B = 2V/ab.

(viii) Since, by (29), L > 4vab(a + b) + 2vab and R = 4va¥( /a + V),
it suffices to verify the inequality

4a+b)+2>4(va+vh), ie, (2Va—-12+(2vb-1)2>0.
(ix) The proof follows from adding the inequalities (see also (vi))

1 4 1 1 8
= 3 + 2 s
a;a; — (a: +a;) aigx  ajax  (a; +ax)(a; + ax)
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1 + 1 > 8 ]
Qi0x  QjCm (a: + ak)(aj +am)

4.6 (i) Substitute A = 1+ 2a and B = 1+ 2b in (31), or show that
L—-R=(a—-0b)>2

(i) VB — (a+ b5ey) = (=e)ta=vh) g, (31) with A= Vb —a and

B =1 — A. Alternative solution: Rewrite R = A+ B, where A = 2—"22 and
B= ﬁﬁ, and use (29). (The condition a < v/b < a + 1 is not necessary.)
(iii) By (31), with A=a+b and B = a% — ab+ b?,

2 __ 2y 2
0® + 5% = (a+b)(a® —ab+b?) < (““’“2 Ll ) .
From this you obtain the result by taking the square root and setting
ab=1.

(iv) Use (31) to estimate from below the products ab, be, and ca on the
left-hand side.

(v) Using (31) for the products ab, cd, and (a + b)(c + d}, you get

ps_ abletd)tedla+b)  (431)*(c+d)+(F%)a+b)

4 4
=(a+b)(c+d)-w
< [(a+b)+(c+d)]2_a+b+c+d _ s
= 2 16 S

(vi) Choosing z; = z2 = 1 and z;, = 0 for the remaining indices k, obtail
the necessary condition p, < 4. On the other hand, show that for p, = 4
the given inequality holds everywhere: In view of its homogeneity it suffices
to consider the case where the sum of all z is 1. (If zx = 0 for all k, then
the inequality is clearly satisfied.) Then the inequality (with p, = 4) can
be rewritten as Y _y_; ZTxZk+1(1 — 4ZxTr41) = 0. But this holds, since by
(31) for z # 7,

2 2
T + x4 (zr+z2+---+x,) 1
. <{Z2=) < -~
T3 ( 2 )— 4 3’

so that 1 —4z;z; > 0.

(vii) If n is even, then L < (@) +az+---+a,_1)(az+as+-- - +a,); apply
(31) to this product. For odd n, use the previous case for the even number
of elements a;,8@2, - - - ,Gxk—1, Ok + @k41,Ck42s - - - , G, Where the index k is
chosen such that the inequality

ar_1ax + axr 1 + Gk418k42 < ax—1(ax + ak41) + (ak +ars1)ars2
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holds (one can usually take ag = @n, Gny1 = G; 80d Gn42 = G2)- For this
it suffices, for example, that ax 41 < axy2-

4.8 (i) Follows from (32) with A= Va2 +2 # 1.
(ii) Follows from (32) with A =+v/4a2+1# 1.
@)L (+)+ (34222424
(iv) Upon dividing by 2ab rewrite as 2 (b+ 1) + (22 + 3) > 6.
(v) Divide by av/b and rewrite as (% + 3?) + (71—5 + \/a_b) > 4.

5.3 (i) From p®—4¢ < 0 and 72—4s < 0it follows that p® < 4¢g and 7 < 4s,
which implies p?r2 < 16¢s. This means that also the third polynomial has
a nonpositive discriminant.

(ii) If you set ¢ = 1 — p, you obtain the equivalent inequality

A +p(a? -0 - 2)+ b2 > 0.

This holds for all p € R if and only if D = (a? — b% — ¢?)% — 4% < 0. Use
the factorization D = —(a +b+c)(a+b—c)(b+c—a)(c+a—b).

(iii) Let @ > b > c. Set F(z) = 2% — 2z(b+ c) + (b — ¢)* and show that
F(a) < 0. Since b < a < b+c, by 5.1 it suffices to show that F(b) < 0 and
F(b+ c) < 0. But this is easy.

(iv) L— R = 2® +2(y—3z+u)z + (y + z+u)? — 8yu. This polynomial has
discriminant D = 4(y — 3z +u)? — 4(y + z +u)? + 32yu = 32(y — z)(u — 2).
Clearly, D < 0. This implies the assertion also under the following weaker
assumption: The number z lies between y and u, and z is arbitrary.

(v) Since 22 — 2z +2 > 0 for all z € R, the inequalities are equivalent to
the pair

322 +2(p—2)z+2>0 and z2-2(p+2)z+6>0.

This system is satisfied for all z € R if and only if the discriminants of
both polynomials are negative, that is, [p— 2| < v6 and |p+ 2| < v6. The
common solution of the last two inequalities is 2— v6 < p < —2 + V6.

5.6 (i) Follows from (39) with n = 2, u; = /&, uz = Vb, v; = /c, and
Ug = \/t-i

(ii) By (39), b2 = (a1z1 +agza +-- - +a,7,) < (@d +ad +-- - +a2) (=3 +
x3 + - - - + z2), which implies zZ + - - - + 22 > b?/(a? + - - - + a2). Equality
occurs for zx = (arb)/(ad +--- +a2), 1 <k <n.

(iii) Use (39) with ux = (/ax and vk = zx/ax for k=1,2,...,n.

(iv) Follows from (39) for ux = /ax and v = zx/\/ax, 1 < k < n.

(v) By (39) withn = 2: (1+p*)(1+¢*) 2 (14+9%¢*)%, 1 +7%)(1 +s%) >
(1+72%s%)%, (1 + @)1+ 725%) > (1 + pgrs)>.

(vi) Use (v) with p = a¥4, ¢ = b3/4, r = 3/4, and s = (abc)1/4.

(vii) Apply (39) three times: for the pairs (uk, vk) equal to (prgi, rsk),
(9%, i), and (77, 3)-
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(viii) Use (46) withn=4,ay =a+b+c,aa=a+b+d, a3 =a+c+d,
andas=b+c+d.

(ix) In (vii), substitute p, = zx and gr = rx. = 8 = 1, or use (48) twice,
with ux = i, resp. ux = z37.

(x) Use inequality (48) with u) = Z3%3---Tp, iz = T1T3" " Tny ---»
Up =T1X2--"Tp-1-

(xi) Suppose that, for instance, z,, < 0; then with the help of (48) reach
a contradiction to the given inequality:

ntait+---trp<1+a2+---+Tp1
< \/(n—l)(a:§+a:§+---+x§_l) < \/(n—l)(:i:¥+:c§+---+:c,2,).

(xii) Add the inequalities arbrcx < (af + b3 +¢})/3, 1 < k < n, under
the assumption a3 +a3+---+ad = b +b3+---+b3 = +S+---+S =1

(xii) Use (xii) with by = cx = 1,1 < k <.

(xiv) Use (xii) withby =ar 8 cy=1,1 <k <n.

(xxv) By (39) with ux = \/ar/(ar41 + Gr42) and v = \/Gr(Gr41 + Giy2),
where an 1 = @1, @n+2 = G2, and using the inequality a:a; < (a? + a?)/2,
you get

a a
(a1+a2+---+a,.)2s( S T ST )

az+az a3ztay a) +az
X (@182 + @103 + @203 + aza4 +- - - + ana; + a,a2)

a) Gn
< PR
(ag+a3 ay +a.2)

a3 +a2 a?+ad a2 +a? a?+al
x(AF 2+ 2By 202 S

a) az Gn
=2(a+a2+ - +a? + +-+ .
(@ 2 n) az+a3z aztay a) + a2

Upon dividing by 2(a? +a2 + - - - 4+ a2) you obtain the desired inequality.
(xvi) Choosing xx = 1 for all k, obtain for the sum S of ali numbers a,
the estimate S2 < S, or S < 1. Conversely, if § <1, then

n 9 n n n
(2 akzi) < Zak - zak:cﬁ < Zakzﬂ s
k=1 k=1

k=1 k=1
where the left inequality is (39) with ux = \/ax and vy = \/fax - 2.

6.3 (i) Hoth < Bl o 1 —a < 4424y, The last inequality can be
verified with an equivalent transformation.

(ii) Write the given inequality symbolicaliy as L(n) < P(n) < Q(n).
Then
Lin+1) < P(n+1) < Q(n+1) 4n+1) (2n+1)(2n+2)
L(n) P(n) Q(n) n+2 (n+1)2

<4.
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The inequalities on the nght can be venﬁed by equivalent transformatlons
(i) Lin+ 1) - L(n) =g’ s+ s+ 3npg — npT = (3n+2)(3n+3)(3n+4)
(iv) ng:)l) Rg;:)l) <= 2" > n+1. This last inequality cen be verified

by induction.

(v) For n = 1: 22+32 +1 > zy+z+y, which is inequality (27). Next, find
that L(n+1)— L(n) > R(n+1)~ R(n) += 22" 442" 1137 -7 2
(zy)¥" . The last inequality is again (27).

(vi) For the induction proof, use the estimates

LI N ST ST
2 2n T 2n g 2n+l ] ’
which can be verified using the approach in 2.5.(ii).
(vii) ng:)l) RI(I'E:)I) = (1402 1020 +2 1 g7+3) < (1+a)(1+a"H).
Since 1+a > 1, the last inequality is satisfied as long as 1+a?"+1 4a2"t2 4
a3 <14 a“"" which for @ > 0 is equivalent to @™ +a™! + " +2 < 1.
The left-hand side of the last inequality is largest forn =1 and a = 1—7.‘., in
which case it is, however, less than 0.992.

(viti) 2 > B e (20 4 2)! > (n + 1)(n + 2)™*. This is
equivalent to (n+3)(n+4)...(2n 4+ 2) > (n + 2)", which is the product of
the inequalitiessn +k>n+2,3<k<n+2

(ix) Use finite induction on k. For k = 1, (52) holds. If (52) holds for

some k < 7, then

()= (02 (2)2 (1) (+3)

k+1

n
and

(42) 7= (02) (42) < (13 +2) (+3)

k+1 + (k+1)* n(k+1)—k?

=1+ -—-—+— >1+4
7t

n n? n3
k+1 k+1)?
<1y kD, (412
k1) HL)

since n(k + 1) — k% > 0. (This last inequality is obtained by multiplying
n>kand k+1>k.)

Remark. This approach shows that the left-hand part of (52) holds for
all k > 0; this also follows from Bernoulli’s inequality (17) or directly from
the binomial theorem.

(x) For n = 6: 729 > 720 > 64. Further, it suffices to show that

+1
(=

O Rty
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which, upon dividing by (n + 1), can be rewritten as

1 1\? 1 1\"
= ¥ >1>=-f(1+-}) .
2(1+n) - _3(+n)

These last inequalities follow from (53).

(xi) If, for instance, k < n, then ¥k < {/n. Hence it suffices to show
that {/n < 2 for all n > 2. Rewrite this as n < 2" and use induction.

(xii) For n = p you have equality in (54). Further, it suffices to verify

that
Vin+1l _Q(n+1) 2n+41 _ 3n+1
< = <
An+ 5~ Q(n) 2n+2 - /3n+ 14

(use an equivalent transformation). In comparison with 2.6.(x), show that

p _4p+1 3p+1 _ 2p+1

;<4n+1<3n+1<2'n+1 (n>p).

(xiii) Since L(1) = 1 < 2 = R(1) and L(n+ 1) = y/n+1+ L(n), it
suffices to show that \/n+1 + (/4 + 1) < v/n+ 1+ 1. This becomes clear
upon squaring.

6.5 (i) The power with the eight fives is greater. Denote by A, resp.
B,,, the powers with n fives, resp. n eights, and show by induction that
A,>2B, 3, n>4.

(ii) Rewrite the inequality as (a+b—ab)™ > a™+b" —a"b". For n = 1 there
is equality; show that (a™+b" —a"b"){a+b—ab) > o™+t 4 p7 1 _gn+1pntl
for all n > 1, rewriting it as L— R = (b" —b"*1)(e—a™*!) +(a™ —a™ 1) (b—
") > 0.

(iii) Rewrite the induction condition

(A_HLC) [l+ (n+1)l(n+2)] SA"ﬁIE

in the equivalent form A[n® 4 (2C + 1)n+ C? + C] < B[n? +4n+ C + 3],
which holds if A = B and 2C+1 = 4, that is, C = % (then C?*+C < C+3).
Considering the inequality for n = 1, obtain then A= B = 3.
(iv) A more exact bound is of the form
Q(p)-(2p+1)
Vidp+3n+p+1

(v) Use induction to verify the more exact bound

(+3) 0+3)- () =(-2).

(vi) For a proof by induction (on k) of the stronger inequality

1 1 1 1 1
ey BT | S oy S ey O )

Q(n) < n>p).
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it suffices to show that for all n > 2 you have ;I-l;.- > s_(ln)' + (,,—_,_11)—-.4-1 - Show

that this inequality is equivalent to S(S':l < -Lﬂ,),:-‘-; this last one can be
proved by induction. If this inequality holds for some n (which is clearly
the case for n = 2), then

S(n + 1) - S(‘n) + (n + 1)"""1 (n + 1)ﬂ+1 (ﬂ + 2)n+2
Sn)  Smn—1)+n» 5 nn B (n+1nt”

(The first inequality follows from the rule that when the positive numbers
P, ¢, v and s satisfy 2 < L, then also 25 < I; the second inequality is a

consequence of (1+ 2)" < (1+ ;;37)™*!, which was given as a hint.)
6.7 (i) By 6.6.(i),

1 1 1 1 1 1 1 1
1 - — —_ )l =1 - - e — ==} —.
( 22) (1 23) (1 2,.) Zl-%~ % =2 om

(ii) The inequality L{n + 1) — L(n) > R(n + 1) — R(n) is obtained as

follows:
1 2
(n+1)zppa 2 E(Il +xo4---4x,) + P_;—:cn.,.l,

which is equivalent to 41 2 (1 + 22+ --- + T ) /n-

(iii) The inequality L(n + 1} — L(n) > R(n + 1) — R(n) is obtained as
follows: (n+1)2"Tp 41 +T1+ 222 +-- -+ 2% 1z, > (2"H — 1)z, 41 + 2" (21 +
2+ - -+ Ty,), which is equivalent to

(n2" — 2" + N)zpny1 > (2" — )21 + (2" — Qz2 +--- + (2" — 2" V),

This is the sum of the n inequalities (2" — 25— 1)z, > (2" — 2%~ 1)az, for
k=12,...,n.
(iv) Show that the inequality b,41b,—1 > b2 is equivalent to

2_ 2,
(@182 - @n—1)*(an41)™ ™ > (a,)" T2

denote this by L(n) > R(n). Show that the sequence of inequalities L(n) >
R(n} satisfies condition (i) of the principle 6.2.

(v) The inequality for fixed k € N follows from the chain S(0) > §(1) >
--- > S(k), where S(j) = a* b} +a§—jb{; +---+ak b, 0< j < k. The
inequality S(j) 2 S(j + 1) follows from the statement of Example 6.6.(iv),
where u; = a;, v; = b; and z; = af_j_lbf, 1<i<n.

(vi) For n =1 the statement is clear. Assume that the statement holds
for some n > 1 and consider an arbitrary set of n + 1 positive numbers z,,
T2, ...y Tn41 such that 1 + za+ --- + 2,11 = n + 1. Order them such
that £, <1 < zq4;. Then for n positive numbers y, = =z, y2 = 29, .. .,
Yn—1 = Tn—1 and yn = T, + Tny1 — 1 you have y1 +y2 +-- -+ g = n, from
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which, by the hypothesis, 12 - - - Tn—1(2n + ZTn31 — 1) < 1. It now suffices
to add that z,, + xp41— 1> TnTnsl-
(Vii) L(4) - R(4) = (I]_ — T2 +3x3— I4)2 >0,

L(n+1)— L(n) > R(n+1) — R(n)
— 2In+1($2 +---+ :Bn—l) + (Zn41 — 23’1)(311+1 - 211:) > 0.

The inequality on the right holds as long as z,,;; < z; and T4 < Tn.
By a cyclic permutation of the given (n+1)-tuple z;,%9, . - ., Zn41, arrange
Tn+1 £ Z; (1 £ 7 £ n); doing this, the inequality L(n+1) > R(n-+1) does
not change.

(viii) For n = 1 the inequality is equivalent to a§(a; — 1) > 0. The
induction step from n = k to n = k41 can be carried out with a “difference
method,” as long as

T
a1 +aly, >2a8,, +4dad (e +ad+---+af).

You may clearly assume that a1 < a2 < --- < Gx41- Then the expression
in parentheses on the right-hand side of the last inequality is not greater
than 13 + 28 4. -- 4 (ar41 — 1)3. According to 2.15.(i) of Chapter 1, this
sum is equal to (ax41 — 1)%aZ /4. Hence

20,y + daf, (0 + a3 +--- +a}) <20, +ai,1(aR41 — 1)%a3,,

= aj 41+ 0541 -
7.5 (i) Use the fact that the n-tuples af,d%,...,0? and a7}, a5, ... ,a;,]
have opposite orderings.
(ii) Use (74) with p = 1, a1y = 21T2---Tn = 1, @2 = %3 Ty, ---,
Gn_1 = In—1%n, and @, = Tn.
(iif) By Theorem 7.3, for two triples (a3,%,¢%) and (-%;, ;&, -&) having
the same ordering, the inequalities

1 1 1 1
a3 - 3 1 __ﬂ> 3 3 N
bc+b +c"‘ ab ac+b ab+c3 =
1 1 1

3 - il il N -
bc+b +csabza ab+b b,‘:+c:’l v

hold. Add them and divide the result by 2.

7.8 (i) Since s;; = Ziyi — Tiy; + T;Y; — Yi%;, you will find that the sum
81; + 825 + - - - + 8y for each j is equal to

(1gn + - - + Topm) — (Z1 + - + Za)ys + 079 — (1 +- -+ Yn)T5
Hence the sum of all n2 numbenrs s,; is equal to

2n(z1y1 + -+ + Tn¥n) — 2x1 + - + ZTa)(1 + -+ Yn)-
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(if) Assume that @) < a; < --- < an, and use the left-hand part of (76)
for =) = a; aan.nt:lg,u,—crzn_l_1 ks 1<k<n
(iii) If @1, a2, - .. ,a, € RY, then for r >0 and s > 0,

(a{+a‘2‘+---+a:;)(a;+a;+---+a;)sn(a’;+°+a‘2‘+’+---+a;+’).

while for r > 0 and s < 0 the opposite inequality holds. Both inequalities
are strict, unless ¢; = @2 =--- = @n.

(w) Use the nght—hand part of (76) for the ordered n-tuples (1,2,...,n)
a'nd (n! n—-17"° | 1)

(v) Use mductlon on k and the following consequence of Chebyshev’s
inequality:

(c* +ak +--- +a5)(er + a2 + -+ + @,) < nfaft + okt + - + afH).

(vi) Between the values of the left and the right sides there is the number
n(a} +a} +--- +al).

(vii) Use the right-hand part of (76) with y =251, 1 <k < n.

(viii) Rewrite the desired inequality as

af(n~Dzy+ 1] = [(n— 1z +1)[(n—-1)y + 1]

This is the right-hand part of (76) for the n-tuplesz; =z =--- = Zp_1 =
z,Zn=1and yy =y2 = -+ = Yn—1 = ¥, ¥n = 1. (Since by assumption
(z — 1)(y — 1) > 0 holds, these n-tuples have the same ordering.)

(ix) By Chebyshev’s inequality, for each 7 =1,2,...,k — 1,

n n
n- Z(aliam a_?t)aj'l'l,l (Z a1iaz2; - 'i) (Zl a4+ 1,i) 3
E —

i=1 i=1

hence the desired assertion can be proved by induction.

(x) Choose (if they exist) indices ¢ and j such that z; < A < z;.
Check how both sides of the inequality in question change if in the n-
tuple zi,...,Z, you replace the pair (z;,z;) by the pair (z],z7), where
z; = min{A,z; + z; — A} and =} = max{A,z; + =; — A}. This change
increases the number of those terms z; that are equal to the {fixed) mean
A of the whole n-tuple z,, ..., z,. If you repeat this change several times,
you finally obtain the n-tuple Z,,...,Z, consisting of n numbers A.

8.3 The inequalities (i)—(vii) follow from (84) with the following sets of
numbers:

(i) a?, a3, 4a, 4.

(ii) a?b, a?c, b®c, b?a, c*a, c*b.

(iii) a?, @b, a3b, ab®, ab®, b*

(iv) va, va, Vb, Vb, Vb

(v) a3, B8, 8.

(vi) a/2, a/2, 4/d>.
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(vii) 1,a,a2,...,a"L.

The inequalities (viii)—(xv) follow from (85) with the following sets of
numbers:

(viii)a, b, b,¢,¢,¢,d,d, d, d

(ix) Ay =k?+3k, A=Az =--- = Ax43 =k2 + 5k + 6.

(x) a/2, af2, b.

(xi) a, b/2, /2, ¢/3, ¢/3, c/3.

(Xj.i) A =A2=---=A5=1—a,A5=l+a, A7=A3=1+20.(for
a > 1 trival).

(xﬁl) A1=A2="'=A~k=b—a, Ak+1=b+ka.

(xiv) 1,2,2,3,3,3,... .k F,.... k.

(V) Ay =Ag=---=Ap =k, Amp1 = Amyz =+ = Apyp = .

(xvi) If you set S = a; + a2 + - -- + ax, then by (85),

. [(1+al)+(1+az)+---+(1+ak) *_ (1+%‘)"=Z"‘:(1f)g

It suffices to add that (§) - 3 < & (0<j <k).

8.5 () L > n%Gn(ar, - -,2)0n(al "), .., a0"1) = na103 -~ g
(ii) (ﬂ] +---+Gn) (% +---+ é) 2 ﬂzgn(al:"'san)'gn (%’-"vé
= n?.

(iii) Multiply the two AM—GM inequalities

n n
lkz_;agz tfa2-..a Zé

k=1
and take the square root of the result.
(iv) For a lower bound of the left-hand side use the three AM-GM

inequalities

Sl

3
|-
|

a2+ b2+ 2 >3- Va2b2c2,
ab+ be+ ca > 3 - Va?bh?c2,
a?b® + b2 + 2a® > 3. Vatbict.

{a) 03) + (az + aa) + (a2 —aq) + (a3 + a4)

v) L4+n= 4.

v o a3z +aq
J(en—az) + (e +02) ai+a;  az+as L Gnta
a; + a2 T aztas aatag a; +ag”

The sum of these n terms is at least n, since their product is 1.

M)n+l—Lo=1+3+234+-..421>pn-3/1.1...0-1 =g/l
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(vil)

at—b2 abr—t G 1 1 )
LGg,.(b +b2 bn+bl)“"“(b1+ba""‘b,.+b1
n

. gn(b1+bz, b ¥ 5) S An(lr ¥ b2l T )
(viii)) Multiply the inequalities (j =1,2,...,k)

n+ a; = (n + I)An+1(ﬂj, 11 1:- 00/} 1) 2> (n + I)Gn+l(ajg 1, 1, eey 1).
(ix)

atb-a) ont(b-an)
b—a; b—a,

1 1 1 1
e = e >"'bg 1=y
nb 'A"(b—al’ 'b—a,.,)" "(b—al b—a,.)

_ nb . nb 0%
_(}“(b—al,...,b—an)_An(b—al,...,b—a,,) nb—1"

This implies L > 2% —n=R.
{x) Multiply the ineqnalities (k =1,2,...,n)

1 a Qrp—1 OQp41 Gn
——1= 2 > (n—=1)Gn_1 .. ..
e 1= 2 2 (0= D (... 2 00 o

L4n=

(i) Use the AM—GM inequality for the following 2**! numbers: 2™ times
a?, 2" times af,...,2 times a2, and 2 times the number 1.

(xii) If G = {/aiaz---a,. then G* is the geometric mean of the set of
(}) products a;,a;,---a;,, where 1 < i) < iz < --- < i < m, for each
k =1,2,...,n— 1. Hence by the AM-GM inequality for these sets of
nurnbers you get

n—1
(A+a))(1+az)---(1+as) = I+Z(Zahas'z"'a':‘|.) +a162--a,

>1+ Y (’;)G"+G"=(1+G)“.

By taking roots you obtain the desired inequality.

8.9 (i) Under the assumption 0 < m < z; < M, 1 < j < 7, add, resp.
multiply, the inequalities v;m < v;z; < v; M, resp. m% < 2}’ < M%.

(ii) Use (94) withn =2, 1 = 1—p, a1 = a, vz = p, a.nd az =a+b
(a1 # a2).
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(iii) Use (94) with n = 3 and with v; according to (98), a1 = d**,
az = d°%, a3 = d°®.

(iv) By (94) withn =2, % .2 + c+d A > (°)‘h( )=¥4. Raising this
to the power ¢ +d and snnphfymg, you obtain the desu'ed inequality.

(v) Rewrite the inequality as

(b+0" - (c+a)” - (a+B)” < %(a+b+c),

where the v; are as in (98). By (94) the left-hand side is at most equal to

ab+bc+ca

vl(b+C)+'U2(C+a)+‘U3(a+b) =2'Tb+c'

It therefore suffices to prove the inequality 3(ab+ be +ca) < (a+b+¢)2.
(vi) By (94) with n = 2, 3, = @, and v, = b you have the following
inequalities: 2ab =ab+ba > b -ab, 2+ P =a-a+b-b > a* - bb, and

IR

Equality occurs only whena=b= 1.
(vii) By (94) with n = 2, v; = ¢, and v2 = 1 —c you have the inequalities

b <cat+(l—c)b and (1—a)*(1-b)1c<c{l—a)+(1-c){(1-b),

and by adding them you obtain the desired inequality.

(viii) By raising this to the power 1/a, you obtain (99) with the exponent
p=(a+1)/a>1.

(ix) By raising this to the power 1/b, you obtain (100) withp=a/b < 1
and z =1/a.

(x) The mequahty (101) is homogeneous. Under the assumption z§ +

4z =yi+---+yi=1laddn mequahtmﬁ (96) for x = zx and y = .

(m)Use(lOl) w1thn_2andp g=5,m=, =P yn=32,
va = d°.

(xii) Rewrite the sum of the two Holder inequalities

Y ar(ze+w)t < ()P @+ w)M)

and

Y wlz+nP ' < Q)P Q (@ + w5 .

(xdii) Use (94) with v = pe/(p1 + p2 + --- + pn) and ar = xx/px,
1<k<n
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3 Hints and Answers to Chapter 3

1.1 You have a -0 = 0, and thus a | 0 for any a € Z. Similarly, a-1 =a
gives ala for anya € Z.Ifa-x=b,b-y=c, thena-(zy) =c. Ifa-z=25,
6-y=c, thena(z+y) =b+c, a(x —y) = b—c. For ¢ # 0 it follows from
az = b that ecz = be and conversely. If axz = b, b > 0, then in the case
a < 0 clearly ¢ < b, and in the case ¢ > 0 you have z > 0, hence z 2 1,
since z € Z, which implies b= oz > a.

1.2 (N If3n+4| T+ 1,then3n+4| (7-(3n+4)—3(1n+1)), ie,
3n + 4 € {£1, 45, +25}, which means that n € {—3,-1,7}.

(ii) For n € {3,14}. [Use 9(5n% + 2n + 4) — (151 — 4)(3n + 2) = 4]

(iii) Use the binomial theorem for (3 + 1)®, or prove the assertion by
induction.

(iv) Use the binomia! theorem for (4 — 1)?"+3, or induction.

(v) Use the binomial theorem for (n 4+ 1)™.

(vi) Substitute 2" — 1 for n in (v).

(vii) Use the identities 2a + 3b = 4(9a 4 5b) — 17(2a + b), 9a + 5b =
81(2a + 3b) — 17(Sa + 14b).

(viii) If 2" — 2 = nt, then for m = 2" —1 you have 2™ — 2 = 2(2™* —1) =
2m(2nt-1 4 2n0-2) 4 ... 4 2" 4 1),

1.5 (i) Use the facts that a2 + (a 4 1)® = 2a(a + 1) + 1 and that a(a + 1)
is an even number for all a € Z.
(ii) Take the square (2g 4+ 1)2 = 4¢(g + 1) + 1 and proceed as in (i).
(iii) Induction on n.

1.18 () 1. (i) 17, if 17 | n + 8, and 1 otherwise.

(iii) 3. (iv) 11, if 11 | n 4+ 7, and 1 otherwise.

(v) Proceed as in 1.12.(iii), choose ip4+) = 6c+ 1.

(vi) For odd n choose 2 as one of the summands; for n = 4k or n = 4k+4-2
(k € N) choose 2k — 1.

(vii) Use (22" —1) = (22" + 1)(22" " +1)--- (22" + 1)(2%" - 1).

(viii) d | a, d | b imply d | (a, b). Conversely, (a,b) | a, (a,d) | b, and thus
(a,b) | ka +1b=d.

(ix) (27 —1,2™ —1) = 2¢ — 1, where d = (n, m). To prove this, use (5) of
Chapter 1 to verify that 22 —1}2"—1,29—1|2" —-1. Frd=nord=m
the proof is easy. Otherwise, by 1.8 you have d = tn 4 sm for appropriate
s,t€Z.Show thatt > 0,s <0ort <0, s >0. In the first case set k =
gM(t-1) g on(t=2) 4 ...y on 4 | = —2d(2m(a-Dpom(—e-2) 4 ... pom ),
show that (2" — 1)k + (2™ — 1)l = 2¢ — 1, and use (viii). The second case
can be dealt with analogously.

1.15 (i) Use 1.8, or prove ({(u,v),(=,¥)) = (u,v,z,y) and use 1.14.(i) three
times.

(ii) Use a proof by contradiction, apply 1.8 or 1.15.(i) for d = a.

(iii) Show that (ac, b} is a common divisor of ac, be, from which it follows



3 Hints and Answers to Chapter 3 313

by 1.14.(i) that (ac,b) | c. Use this to show that the numbers (ac,b) and
(c,d) divide each other.

(iv) Let m = (ab, ac,bc), n = 22, Show that n € Z and n = [a,b,d] - g,
where ¢ € N. Show that gisa common divisor of the numbers “b, 3 ﬁ
and derive from 1.14.(i) that (22, o, bey =1.

(v) Substitute ab, ac, be for a, b c in (iv) and divide both sides by abe.

(vi) By 1.14.(iii), (z,y) = 30 implies the existence of u,v € N such that
z = 30u, y = 30v, (u,v) = 1 and u + v = 5. Then = € {30, 60,90, 120},
y =150 — z.

(vil) £ = 495, y = 315.

(viii) z € {20, 60,140,420}, y = 8400

(ix)z=2,y=10,0r z =10,y = 9.

2.4 (i) One of the primes has to be even, i.e., 2. Then the second one is
6n + 3, which for n € N is not a prime.

(ii) » = 3. [Of the numbers n, n + 1, n + 2, exactly one is divisible by 3;
the same holds forn, n +1+9, n +2+ 12

(iii) p = 3. [It follows from 1.3 that any prime p # 3 is of the form 3k+1,
where k € N, while 2(3k +1)2 + 1 is divisible by 3.]

(iv) p = 5. [Proceed as in (iii), distinguish between the cases p = 5k +1
and p = 5k + 2]

(v)n=2 [Forn=1,2"—-1=1; for n > 2, 2" is of the form 3k + 1,
where k € N, k > 1. Then 2" 1 = 3k is composite.]

(vi)If p=3k+1,n € N, then 8p® +1 is divisible by 3. If p=3k, k € N,
then p= 3 and 8p? + 2p+ 1 = 79 is a prime.

(vii) n = 4. [Consider divisibility by 5.]

(viii) Rewrite in the form 52 + 230 — (510 4 215)2 _ 2. 510. 215 _
((510 + 215) + 55 . 28)((510 + 215) _ 55 . 28).

(ix) For n = 4k?, where k € N, k > 2, you have
m? + 4k? = (m? + 2k?)2 — (2mk)2 = ((m + k)? + K*)((m — k)% + k2).

(x) Use the fact that p — 1 is even, and add the first and the last
summands, the second and the second-to-last, etc. Then rewrite it as
n - Ggqﬁ?’ which means that m(p — 1)! = pgn, and note that p does

n
not divide (p — 1)

(xi) The condition is satisfied, for instance, by the numbers a; = i-n!+1,
wherei=1,...,n.

(xn) Ifz= (a,d) and y = (b, c), the natural numbers a; = 2, d) =
by=2% ¢ =¢ < satisfy (a1,d1) = (b, 1) = 1, by 1.14.(iii). Hom ab = cd
it fol]ows that albl = e1d;, and by 1.14.(ii} you obtain a; | ¢; and ¢, | a,.
Hence a; = ¢;, b = d; and finally a” + b +c™ +d* = (a] +b7)(=" + ¢*).

2.6 (i) For any divisor d of a decompose d and § according to 2.5; consider
the primes that can occur, and how the exponents of a particular prime in
the decompositions of d, &, a are connected to each other.

(ii) This follows directly from (i).



314 4. Hints and Answers

(ili) Write a, b, ¢ according to 2.5 and note that in the decomposition of
a, b the same prime cannot occur.

2.8 (i) If (a+b, ab) > 1, there exists a prime p dividing ¢ +b and eb. By 2.2,
p divides one of the numbers a,b, and from p | a + b it follows that it also
divides the other one; hence p | (a, b), which is a contradiction. Therefore,
(a+ b,eb) = 1.

(i1) (a,b). [Apply (i) to = = g2, ¥ = ;]

(iii) If p is the smallest integer bigger than 1 dividing a, then in the case
% # p the numbers %, p are factors of (@ — 1)!. In the case % = p you have
a = p?, and from a > 4 it follows that p > 2, and thus p, 2p are factors of
(a— 1)L

(iv) Write (p—1)!=p™ —1=(p— 1)(19"""1 +p™ 2 4..-4+p+1), which
implies m > 1 and (p — 2)! = p'“‘l +---+p+1. By (m), — 1 divides
(p— 2)"; hence it also divides p™ 1 +--- 4+ p+1=(p™ 1 - 1)+ (p™ 2 —
D+-++(p—-1)+m. Thlsmea.nsthatp—1|m and so m > p — 1, thus
(p—1)! = p™—1 > p~1—1. However, by multiplying the inequalities p > 2,
p>3,...,p>p—1 together, you obtain p~2 > (p — 1)), a contradiction.

(v) Proceed as in 2.7.(ii). Assume that p; = 3, p2 =T, p3 =11, ...,
pn are all the primes of the given form, and consider the number N =
4ps---p, + 3.

(vi) If 22" 41 = m5 — k5 is a prime, then it follows from the factorization

k5 = (m — k)(m* + m®*k + m?k? + mk® + k%) that m = k + 1, and

thus 22" = (k 4+ 1)% — k% — 1 = 5k(k® + 2k? + 2k + 1), a contradiction.

(vii) Show that for any prime p and 7 € N such that p’ | n, the number
m=1+a+---+a"!is also divisible by p". Use the expression

,
m= (1 +a¥ 4---4a™P ) H(l +a® 7 4o . +a(’—””'—'),
i=1

which is clear for @ = 1, and which for a # 1 can be shown by multlplymg
both sides by a — 1. Then any one of the r factors 1 +a?  +a2*' " +---+
aP-r =y (@ —1)+(a? " — 1) +--- -+ (alP- 0P _ 1) is divisible
by p, since from p" | (a —1)* it follows that p|a — 1.

(viii) If the prime p divides a + b and a® + b?, then it also divides 2a2 =
a®+ b* + (e + b)(a — b) and 2b>. For p # 2 you then have p | a, p | b, &
contradiction. For p = 2 it follows from 2 | ab, 2 | a + b that 2 |a, 2 | b, a
contradiction.

2.11 (ii) If vy(a) < vp(b), then v,{a) = 0, and thus vy(ab) = wv,(d).
Analogously in the case vp(a) 2 v,(b).

(ili) Assume that T/n = I, where s > 1 and (r, ) = 1. Then +™ = s™.p,
from which for any prime p dividing s it follows that p | ™, hence p | r,
which contradicts (v, 8) = 1.

(iv) For any prime p you have v5(+/n") = Zup(n) € N and thus s | ru,(n),
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which implies with 1.14.(ii) that s | vy(n). If therefore n = p% - - - pj*, where
P1,---,Pk are distinct primes, then m = p'i'/’ .- -p::/' €ENand m®* =n.

(v) Set ¢ = y/a + vb. Then the number d — a=b — Ja— Vb is also
ra.tlilona.l, and therefore /o = <3¢ and vb = ¢ are rational numbers as
well.

(vi) The assertion is clearly true if one of the numbers a, b, c,d is zero. In
the case abed # 0 it is enough if for any prime p you show that vy(ac) > k,
vp(bd) > k, vp(be + ad) > k, or b+ ad = 0 implies u,(bc) > k, vp(ad) > k.
In the case vp(bc) = vp(ad) use (8); otherwise, use (10).

3.5 (i) Use the facts that 2% = 3 (mod 13) and 72 = —3 (mod 13).

(ii) Use 722ﬂ+2_472n+282n—1 = (_3)2n+2_(_3)2u +32n—1 = 321:—1(33_
3+ 1) (mod 25).

(iii) This follows from 5% = 4° =35 =1 (mod 11).

(iv) By 1.3, any a € Z is congruent to 0, 1, or 2 modulo 3. If a = 0
(mod 3), then * = 0 (mod 3), and by 2.2 you have b = 0 (mod 3). If
a =1 (mod 3) or a = 2 (mod 3), then you always have a2 = 1 (mod 3);
this implies 42 = 2 (mod 3), which is impossible.

(v) Proceed as in (iv): If a # 0 (mod 7), then a? is congruent to 1, 2, or
4 modulo 7, which implies that b2 is congruent to 6, 5, or 3 modulo 7, but
this is impossible.

(vi) It suffices to choosea =1, b= 2.

(vii) Verify that for abc # 0 (mod 3) each of the numbers a3,b%, ¢ is
congruent to 1 or —1 modulo 9, and thus a® + 5% + ¢® # 0 (mod 9).

(viii) Proceed as in (vii).

(ix) Since 121 = 112 and a? + 3a + 5 = (a — 4)? (mod 11), it follows
from a% + 3a + 5 = 0 (mod 121) that 11 | (a — 4)2, and thus 11 | a — 4,
i.e., there exists a t € Z such that a =11t + 4. But then 0=a%?+3a+ 5=
121¢2 4- 121t + 33 = 33 (mod 121), a contradiction.

(x) The solution is given by all n congruent to 1 or 2 modulo 6. [Consider
all six possibilities, i.e., n congruent to 0, 1, 2, 3, 4, 5 modulo 6.]

(xi) Such a number does not exist. For, if 2*~1(2"*+1 — 1) were a third
power of a natural number, then by 2.6.(iii), both factors would be third
powers of natural numbers. First of all, this means that n — 1 is divisible
by 3,ie,n=3k+1fork€Z k>0.Then2"*' -1 =4.8-1=3
(mod 7); however, as one can easily see, a third power of a natural number
can only have remainders 0, 1, or 6 upon division by 7.

(xii) Write down consecutively the remainders of 2',22,23,...,2!2 ypon
division by 13.

(xdii) For n = 2k (k € Np) show that 3 | 19-8" + 17, forn = 4k + 1
(k € Np) show that 13| 19-8™ 117, and for n = 4k + 3 (k € Ng) show that
5|19-8" +17.

(xiv) For n = 1 and n = 2 this is clearly true. For n > 2 use equation (5)
from Chapter 1: n* —n?4n—1=(n""2-1)n%24+(n—1) = (n—1)(n" 14
n"* 2 4 ...+ n® 4+ n? 4 1). Derive from n =1 (mod n — 1) that
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nl4..-4n?241=0 (modn-—1).

(xv) For e € {—1,1} set b, = a? + ae + 1. Use the fact that (a® + 1)3 =
(b — ae)® = —a3e = —ae(b, — ae — 1) = a® + ae = —1 (mod b.). Both
assertions are therefore true.

3.8 (i) 400, 504, 48, 96, 720.

(ii) For 5 | » you have ¢(5n) = 5¢(n); otherwise, ¢(5n) = ¢(5) - p(n) =
4p(n).

(iii) p= 2,z > 1. [p* ! € Nimplies z > 1, and thus e(r*) = (p—-1)p 1)

(iv) z = 2, y = 3. [From 3 | 600 it follows that = > 1, and similarly
y > 1; hence (3%5¥) =2-3%1.4.5v71]

(v) p=3, > 1. [From 2-3p* 2 € Z it follows that £ > 1, and thus
e(rf) = (p—1p* 1 =2-3-p2]

i) (p,q) € {(3,61),(5,31),(11,13),(13,11),(31,5),(61,3)}. [Distin-
guish between p = ¢, where p(p—1) = 120, and p # g, where (p—1)(g—1) =
120, and consider all decompositions of the number 120 into two factors.

(vil) p = 2, m € N arbitrary odd. [If p | m, then p(pm) = pp(m);
otherwise, p(pm) = (p—1)p(m).]

(viii) p any prime, m € N any number divisible by p.

(ix) p = g, m € N arbitrary, or p = 2, ¢ = 3, m € N even and not
divisible by 3, or p =3, g =2, m € N even and not divisible by 3. [See the
hint to (vii).]

(x) No solution. [From @(m) = 14, and since neither 8 nor 15 is prime,
it follows that 72 | m, hence 6 - 7 | ¢(m), a contradiction.)

(xi) m € {17, 32, 34,40,48,60}. [¢(m) = 16 implies m = 2° - 3° - 5°- 174,
where a,b,c,d € Ng,b<1,¢<1,d < 1. So p(m) = 2-4¢-169 if a = 0 and
p(m) =22-1-2%-4°-16% if @ > 0. Hence either a =0 and b+ 2c + 4d = 4,
ora>0and (a—1)+b+2c+4d = 4]

(xii) m = 2%, where a € N. [3 € Z implies m = 2° - 1, where a € N and
t € N is odd. Then p(m) = 29~ y(t); hence t = ¢(t), i.e, t = 1]

(xiii) m = 2°-3%, where a,b € N. [% € Z implies m = 3%.t, where b € N,
teN, £ ¢ N. Then ¢(m) =2-3%1-¢(t), so ¢(t) = £. Use (xii).]

(xiv) No solution. {2 € Z implies m = 2° - t, wherea € N, a > 2 and
t € N is odd. Then g(m) = 2°71(t), so p(t) = £. Use (xii).}

(xv) Proceed as in 3.7.(iv), or substitute (m,n) and |m, n] for m and n
in 3.7.(iv) and use 1.9.

(xvi) p™. [With the exception of the first summand, factor out (p — 1)
and use (5) of Chapter 1.]

(xvii) Write m = p}* - --p;;* and note that by 2.6.(i) the positive divisors
of m are of the form p** - - - p;;**, where 0 < m; < ny,...,0 < my < ng, and
that you have o(pT" ---pp*) = w(p1") - - - w(p}*). Consider the product
(e(p))+o(pl)+e(pd)+ - +e(p1)) - - - (p(p) +o(ph) Ho(E)+ -+ (pR*)),
which by (xvi) is equal to p[* --- pp* = m. By multiplying out you obtain
exactly the sum of the products ¢(py™*)---@(pp*), where 0 < m; < n,,
eee 0 <My < 1.



3 Hints and Answers to Chapter 3 a7

8.15 (i) O for integers divisible by 5, and 1 for all others. [Use Euler's
theorem for m = 53]

(ii) Distinguish between the cases where a is or is not divisible by the
prime p, and use Fermat's theorem.

(iii) Decompose 2730 =2-3-5 - 7- 13 and use (ii) and 3.3.(vi).

(iv) Decompose 341 = 31 - 11. Using (i) with 341 = (11 — 1) - 34 + 1
you obtain 234! = 2 (mod 11), and from 341 = (31 —1)- 114+ 1+ 10 it
follows that 2341 = 2.21¢ (mod 31). Use 2!1¢ = 322 =1 (mod 31). Similarly,
3341 = 3. 3% £ 3 (mod 31), since 3!° = 2432 = (—5)2 = —6 (mod 31).

(v) Consider divisibility by 11, and use 2"+! =2.2%" = 2 (mod 10).

(vi) Consider divisibility by 29, and 2"+2 = 4 (mod 28).

(vii) Use 2107+ = 2 (mod 22) for divisibility by 23.

(viii) Use 25"+2 = 4 (mod 36) for divisibility by 37.

(ix) First convince yourself that the given number is an integer. Consider
divisibility by 7, using the fact that for k € N, 2* = 2 (mod 6) if k is odd,
and 2* = 4 (mod 6) if k is even.

(x) Show that 2 - 35"+3 1 4 = 2 (mod 28) and that the given numbers
are divisible by 29.

{(xi) For n = 6k + 4 (k € Np) the given numbers are divisible by 7, for
n =12k + 1 (k € Ny) they are divisible by 13, and so on.

(xii) For n = 1 this is clearly true. For n > 1 write n = p{*---pi*,
where p; < p2 < --- < pi. are primes and a;,...,a; € N. Note that from
1<pm—1<pa—1<---<p—1<n—1it follows that (p; — 1)(ps —
1)---(p —1) | (n — 1)L Also, p3*~1---p2 1 | n, and together ¢(n) | n!,
which by Euler’s theorem implies that 2™ =1 (mod ).

(xiii)) For p = 2 consider n = 2k (k € N), and for p > 2 consider
n=(kp—1)(p—1) (k €N).

44. (i)z=6+% (tcZ). (i) z=7+10t (te€Z).

(iii) z=—-6+31t (teZ). (iviz=1+45t (t€Z).

(vyz=1+43t (t€Z). (vi) No solution.

(vii) Use induction on n. For n = 1 it suffices to choose k; = 1. If
ky < k3 < --- < k,_; are chosen such that ak;+b, . . . , ek, _;+b are pairwise
relatively prime, denote by m their product and show that (a,m) = 1. Let
k. > k,—1 denote some solution of the congruence ez = 1 — b (mod m)
(existence is guaranteed by Theorem 4.2); then ak, + b =1 (mod m) and
the numbers k,, .. ., k, solve the problem.

4.8. (i) z = —3 (mod 55). (ii) No solution.
(iii) = = 20 (mod 42).
(iv) = = 13 (mod 36). [The first congruence follows from the second.]
(v) z =11 (mod 30). (vi) z =4 (mod 105).
{vii) For even a no solution; for odd a the solution is x = 4a—3 (mod 24).
(viii) No solution when a is not divisible by 4; when a is divisible by 4,
then z = —2 (mod 10) is the solution. [The second congruence gives z =
-2 4 10¢, where t € Z, and substituting this into the first one, —4420t =a
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(mod 4). For a not divisible by 4, this has no solution, while for 4 | a it is
satisfied by any ¢t € Z.]

(ix) If the integer c satisfies the system (17), then this system is equivalent
to the system obtained from (17) by substituting all the right sides by c.
Use 3.3.(vi).

(x) Use induction on k with the help of Theorem 4.6.

(xi) Choose k distinct primes p;,p2,. .., px. The numbers p},p3,--.,Pp
are pairwise relatively prime, and by (x) there exists an m € Z such that
m= —i (mod pf’) fori=1,2,...,k. The numbers m+1,m+2,....,m+k
have the required property.

(xii) To prove the more difficult part of the problem, set m; =
prte-epstt,i=1,...,k, where py,...,ps are all the distinct primes di-
viding m = [my,...,mp), nij € No fori =1,...,k; j=1,...,s Note that
the system (17) is equivalent to the the system

z=¢ (modp;™) (i=1,....kji=1,...,39).

Foreachj =1,...,8choosei(j) € {1,...,k} suchthatforalli e {1,...,k}
you have n; ; < n,(;) ;- If the condition of the problem is satisfied, this last
system is equivalent to the system

T=c¢(5) (mod p;*™)  (j=1,...,3),
which, according to (x), always has solutions.

4.13 (i) z=1 (mod 7).

(ii) z =1 (mod 5) or z = 3 (mod 5). [It is convenient to write the given
congruence in the form 22242241 = 0 (mod 5), respectively z2+z+3 =0
(mod 5).]

(iii) No solution. (iv) z =1 (mod 5).

(v) =1 (mod 6) or z = 3 (mod 6). [It is convenient to first solve the
congruence z? — 4z + 3 =0 (mod 2).]

(vi) z =0 (med 5). [By 3.11 you have 2° = = (mod 5); rewrite the given
congruence as —z2 =0 (mod 5).]

(vi)) z =1 (mod 11). [Using 3.11, rewrite as £ — 1 =0 (mod 11).]

(viii) z =1 (mod 5) or z = 2 (mod 5). [Using 3.11, rewrite as z% — 3z +
2 = 0 (mod 5); the trinomial on the left can be factored: z2 — 3z +2 =
(z— 2)(z - 1)]

(ix) z = 3 (mod 35).

(x) £ = 24 (mod 45). [Solve separately for the moduli 5 and 9. For
modulus 5 rewrite as 3(z + 1)2 = 0 (mod 5). In the case of modulus 9 it is
convenient to first solve modulo 3, which gives z = 3s + 1 or z = 3s; the
first case gives a contradiction, while the second one leads to z = 6 + 9t.]

(xi) No solution. [First solve modulo 11 and substitute the solution z =
11t — 5

(xii) All z = e (mod 35) are solutions, where a € {1,4,6,9,11, 16,19, 24,
26,29, 31, 34}.
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(xiii) This condition is satisfied if and only if m is a power of a prime.
[For m = p", where p is a prime, use Euler’s Theorem 3.13 to show that
the choice F(z) = 2¥(™) gives F(a) = 1 (mod m) for any integer a that
is not divisible by p, while the inequality ¢(m) =p*~(p-1)2>p" 1 2>n
shows that F(a) =0 (mod m) for any integer a divisible by p.

On the other hand, suppose that an integer m is divisible by two different
primes p and g and that a polynomial F(z) with integer coefficients satis-
fies the given condition. Then there are integers a, b such that F(a) = 0
(mod m) and F(b) = 1 (mod m). Due to Theorem 4.6 there is an in-
teger ¢ such that ¢ = a (mod p) and ¢ = b (mod g), so Theorem 4.10
gives F(c) = F(a) = 0 (mod p) and F(c) = F(b) = 1 (mod g). But in
this case you have neither F(c) = 0 (mod m) nor F(c) = 1 (mod m), a
contradiction.]

4.15 (i) If a is a solution of the congruence 22 = ¢t (mod p), then a® = ¢
(mod p), so {a,p) = 1 and by 3.11 you have t(*~1)/2 = g#-1 =1 (mod p).
(ii) Evaluate (t5+!)2 = ¢26+2 — g2k+1 .4 = ¢ (mod p).

5.4 (i) z=3t4+2, y=2t+1, t € Z arbitrary. [Other forms of the solution
are also possible.]

(ii) z=1+15¢, y = —1 — 17¢, t € Z arbitrary.

(iii) No solution, since (16, 48) = 16, which does not divide 40.

(iv) x=2t, y =4 — 5¢, t € Z arbitrary.

(v) z=—-3+13t,y=4-17t, t € Z arbitrary.

(vi)z =9+ 77, y =7+ 60t, t € Z arbitrary.

(vi) z = —7—58—5t, y=T7+3s+6t, z =1+ 2s, s,¢ are arbitrary
integers. [This expression is not unique; the solution can, for instance, be
writtenas x =3+ 58, y=—-5—6s8 — 3t, z =1+ 2¢, s,t € Z, and in many
other ways. This is similar in (viii) and (x)-(xii) below.]

(vili) x=—3+5s8+10t,y =4 — 123 — 9, z = T7s, s,t € Z arbitrary.

(ix) No solution, since (105,119,161) = 7, and 83 is not divisible by 7.

(xX)z=-3+s4+2r— 11, y=4—28—3r+10t, z2=8,u=r,s,rtecld
arbitrary.

(xi)x=4—-5s—4r—10t,y=4s—r+t,z=—-14r+3t,u=r,8,rtcld
arbitrary.

xi)z=2t,y=28—¢t, 2=2r—s,u=2—r,rs,t € Z arbitrary. Or
more easily, simplifying to the form z = —2y—42—8u+ 16, we immediately
see the solution x = —2r— 48— 8t + 16, y=r, z2=3s,u=1L.

58 (i) z=2+11t, y=4t+11t2 or z = 9+ 11¢t, y = 7+ 18t + 11£2?, where
t € Z is arbitrary.

(ii) No solution.

(iii) z = 2 + 21¢, y = 441¢3 + 168t2 + 20t + 1, where t € Z is arbitrary.

(iv) z = 125t — 12, y = 15625t — 4500t2 + 434t — 14, where t € Z is
arbitrary. [First solve the congruence z3 + 2z + 2 = 0 (mod 5), obtaining
the solutions £ = 1+ 5r, x = 3 + 5r, r € Z; substitute them back into
z3 4 22 + 2 and solve the same congruence modulo 25. The case z = 1+ 5r



320 4. Hints and Answers

leads to the contradiction 5 = 0 (mod 25), while the second case gives
z = —12 4 253, s € Z. Substitute this again into z® + 2z + 2 and solve the
congruence (253 — 12)3 + 2(25s — 12) + 2 = 0 (mod 125), which leads to
s=5tteZ ie,z=—12+4+125t]

(v) z = 11t — 4, y = 12183 — 2532 + 136t — 22, t € Z arbitrary.

(vi) No solution.

(vil) z=3430t,y=—1+6t+30t2 orz = —34+30t, y = —1—6t +30¢2,
where t € Z is arbitrary. [The congruence z2—39 = 0 (mod 30) is easiest to
solve using a system of three congruences modulo 2, 3,5 (see the paragraph
before 4.12) ]

(viii) z=2t, y=28+ 1, z=—J(t+s+ 1) {t + s)orz =2t + 1, y = 2s,
z=—3(t + 8+ 1)(t + s), where t, s are arbitrary integers.

(ix) z=t, y=1t+3s, 2=1% 4 3ts + 35> — 2t — 3s, where t,s € Z are
arbitrary. [Show that z =y (mod 3).]

(x) No solution. [Use the fact that for arbitrary a € N you have a¢® =0
(mod 8) oraZ =1 (mod 8) or aZ = 4 (mod 8). Hence z2+(2y)2+(32)%=7
(mod 8) has no solution.]

(xi) z = —600 — 2t + t2, y = 300 + %379, ¢ € Z arbitrary. [Choose the
substitution z + 2y = z.]

(xii) = —1-5s—7s%, y=2+73—(1+4+53+7s%)2 or z = —3— 93— 752,
y=4+73— (34 95+ 7s%)2. [Choose the substitution t = 2% + y and solve
the equation t2 4+ ¢t + 1 = —7z.]

5.10 (i) z =2k + 1, y = 2, 2 = 1(5- 25 + 9° + 2), where k,s € Ny are
arbitrary. [Note that 5% = 1 = 3%* (mod 8), 52**! = 5 (mod 8), 325+! =3
(mod 8).]

(i) z = 4 4+ 12k, y = 35(2%+12* — 3), where k € Ny is arbitrary. [Use
the fact that the smallest natural number n for which 2* = 1 (mod 13)
is n = 12, and therefore by 3.14.(v) for any £ € Ng you have 2= = 24
(mod 13) if and only if z =4 (mod 12).]

(iii) (.‘I:, y) € {(_21_11)1 (—41 3): (_11 _6)1 (“5’ '_2)' (l'l _2)! (_7! _6)1
(5,3), (—11,-11)}. {Express y = z — 1 — ;25 and consider the cases where
z + 3 divides 8]

(ivz=2 y=8orz=-2,y=0. [Express y =2z +1 + £ and
consider the cases where 22 + 7 divides 33.]

(v)z=1t3+2,y=1t*-3, t € Z arbitrary. [Express y = —3+ {/{z — 2)3,
which, by 2.11.(iv), implies = — 2 = ¢ for appropriate t € Z. (Consider the
cases < 2, £ =2, z > 2; 2.11.(iv} is stated only for natural numbers).]

(vi) z = (t +1)%, y = 2, t € Ny arbitrary. [Use 2,/f =z — 1 — y and
2.11.(iii) to obtain y = t2, where £ € Np.]

(Vil) (2',', y) € {(31 2): (_33 —2): (_31 4): (31 _4)! (_71 6): (71 _6)3 (_171 12):
(17, ~12)}. [It follows directly from the problem that y is even. If you solve
the equation for z, you find that ¥ has to be a divisor of 12; hence ¥ can
only be among the numbers +2, +4, 46, +12]

(viil) (z,¥,2) € {(1,1,5),(1,-1,-1),(-1,1, -1),(-1,-1, 1)}. [By solv-
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ing for z, you find that zy | 1, which is possible only when |z| = [¢] = 1]

5.13 (i) (z,9) € {(3,2), (6, 3),(12,4), (30,5)}. [Rewrite as (z + 6)(y — 6) =
—36, which implies y < 6.]

(li) (:':’ Y, Z) € {(2' 4, 4)1 (4: 2, 4)! (41 4: 2): (21 3: 6): (2: 6, 3)1 (31 2, 6):
(3,6,2), (6,2,3), (6,3,2), (3,3,3)}. [Assume that z < y < z and show
that 1 <z<4(if45:::5ygz,youwouldhave%+%+%5%.
Distinguish between the cases £ = 2, from which (y — 2)(z —2) = 4, and
z = 3, which gives (2y — 3)(2z — 3) = 9.

(ili) z =2, y=1. [If y = 1, then z(z*~! — 2) = 0, which implies z = 2.
If y > 2, then y(y¥! — 1) > 2, which gives z(z*~! — 2) < —2. Of course,
for £ > 2 you have z(z*" ' —2) > 0and for z = 1, 2% — 22 = —1]]

(iv) (7,1, 2) € {(2.3.4),(2,4,3).(3,2,4), (3,4,2), (4,2.3), (4,3,2)}.
[Suppose £ < y < z and show that z > 5 or z < 3 leads to a contradiction.]

(v)z=y=1orz =23, y=2. [As in 5.12.(iii), show that £ > 0,y > 1.
If y is odd, then 2* = 3¥ — 1 = 2 (mod 4), which means x < 1. For y = 2k
you have 2% = 32% _1 = (3% —1)(3*+1); hence 3*— 1 and 3*+1 are powers
of 2. Therefore, from 3* — 1 < 3* + 1 it follows that 2(3* — 1) < 3* 1,
which implies 3* < 3, ie,, k <1]

(vi) (z.9) € {(0,0), (1,0), (0,1),(2,1), (1, 2), (2,2)}. [Rewrite as (z—1)+
(y—1)%+(z—y)?> =2, whichimplies 0 <2 <2,0<y < 2]

5.15 (i) z = 11, y = 3. [If z,y is a solution of the given equation, then
A2 = A4+ 4y + 42 + 48 + 44, and thus (22 + )2 = ' + 48 + 42 <
(22)2 < 4y* + 45° + 9% + 4y + 4 = (2y® + y + 2)2, which implies 422 =
(2)2 = (2 + y + 1)? = 4* + 43® + 5y + 2y + 1. Equating this with the
given equation, you get y®> —2y —3 =0, i.e., y = 3 (y = —1 ¢ N), and thus
z=11]

(i) (z,v) € {(0,-1),(—1,-1),(0,0),(-1,0), (5, 2), (—6,2)}. [A solution
z,y of the given equation satisfies (2z 4+ 1)2 =4y* + 4y + 4% + dy+ 1 =
2174+ 1)% 4+ 3% +4y+1 = (2y% +y+1)2—(y*—2y). Show that for any y € Z,
y # —1, you have 3y? +4y+1 = (3y+1)(y+1) > 0, and that for any y € Z,
y#0,y# 1, y # 2, you have y> — 2y = (y — 2)y > 0. Hence for arbitrary
y€Z y¢ {—1,0,1,2}, you get (2% +3)? < (2z +1)% < (2 + y + 1)?,
which is a contradiction. It remains to consider y € {—1,0,1,2}.]

(iii) z = 0,y = 1 or z = 0, y = —1. [Show that a solution %, y of the given
equation satisfies the following: H = > 0, then (z3 +1)2 =254+ 223 +1 <
433 +1 =3 <z4+45°+4=(2+2)%ifz < -2, thenz* +3<0;
bence (z3+2)% = z8+473+4 < 28432 +1 = y* < 254223 +1 = (z3+1)?,
and in both cases you get contradictions. Therefore, £ = —1 or £ = 0; the
case z = —1 leads to y* = —1, a contradiction.}

(iv) z=0,y=1o0rz =0, y=—1. [For 2% > 0 you have (z* + 2%)? =
26 4+228 42t <P =78 +228 + 2204 + 202 +1 < 2® 42254 3z + 222 +1 =
(z* + =2 + 1)2, a contradiction.]

(v) For an appropriate k € N you have 2n? = kd. Suppose there exists
an = € N such that 2% = n? +d. Then kK*z? = K°n? + k?d = n?(k% + 2k),
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which implies k2 + 2k > 0 and vkZ 4+ 2k = %2 By 2.11.(jii) you have
VEZ ¥ 2k = m € N. But then k2 < k2 4 2k = m? <k2+21rc+1_(il:+1)2
a contradiction.

5.17 (i) £ = y = z, where z € N is arbitrary. [Use the AM-GM inequality
for 3,3, 23]

(ii) No solutions.

(iii) y = 2z, z = 3z, where z € N is arbitrary. [Use Cauchy’s inequality
for the triples z,y, z and 1,2, 3; see Chapter 2, Section 5.4.]

(iv) No solutions. [By symmetry you may assume that the natural num-
bers £ < y < z < u < v satisfy the equation. Then clearly = > 2, but at
the same time u < 3, since for « > 3 you would obtain

1 1 1 1 1 1 1 1 35
e = Sh-4o=—<1
2tgptatat 2—4+4+4+9+9 36

Then z =y = z = u = 2, from which upon substitution you get 1/v% =
a contradiction.]

520 () z=y=0o0orx=y =2 [Rewriteas (z —1)(y —1) =1]

(i) (z,3) € {(0.0), (0, 1), (~1.0), (~1,—1)}. [Rewrite as (2(2y+1))? -
(2z 4 1)? = 3 and use the identity A2 — B2 = (A + B)(A — B). The number
3 can be written as a product of two integers in only four ways.]

(lii) (I’ y) € {(11! 4)1 (11! _4)' (—111 4)' (_111 _4)1 (13' 8)1 (131 _8):
(—13,8), (—13,—8), (19,16), (19,—-16), (—19,16), (—19, —16), (53,52),
(53,—52), (—53,52), (—53,—52)}. [Note that if (xo, %0) is & solution, then
(zo0,—v0), (—%0, %0), (—%0, —y0) are also solutions, and therefore it suffices
to solve the equation in Ny. If you rewrite the equation as {(x+y){z —y) =
105, then the conditions x > 0, y > 0 imply z 4+ y > 0, and therefore also
z—y >0, and since z +y > z > z — y, it suffices to solve only the four
systems of equations.)

(iv) For p = 3 the equation has the solution x = 5, for p = 17 it has the
solution z = 13, and for all remaining primes it has no solution. [Decompose
2z° —z— 36 = (2z —9)(x+4) and consider the six possible decompositions
of p? as a product of two integers. For each of these decompositions solve
a system of two equations in the two unknowns z,p.]

(v) z =8, y = 5. [Decompose 222 + 5zy — 12y? = (22 — 3y)(z + 4y) and
use the fact that z 4 4y > 5 holds for z,y € N, and solve the three systems
of equations corresponding to the decomposmons 28=4-7T=2-14=1-28)]

(vi) z = 3. [Rewrite the equation as 2" —4(2=+2 — 1) = 25 . 31. Since for
z € N the number 2+2 — 1 € N is odd, it follows that 2+2 — 1 = 31, i.e.,
z = 3. Convince yourself by substituting that z = 3 satisfies the equation.]

(vi)) x = 4,y = 3,z = 1. [Rewriteas 2! = (y—1)}(y*+y* ' 4- - -+y+1).
Then y — 1 is 8 power of 2, which means that y = 2 or y > 3 is odd. From
y = 2 it would follow that 2°~ ' isodd; thusz=1and 2=0¢ N.Ify > 3
is odd, then z is odd, since y* + y* ' +---+y+ 1>y + 1> 4 is a power
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of 2. Hence z = 2v — 1 for an appropriate v € N, and 271 = ¥ —1 =
(¥ — 1)(%” + 1). This implies y* — 1 = 2%, y* + 1 = 2, where s,t € Ny
satisfy s+t =2 — 1, and thus 2 = (3" + 1) — (¥ — 1) = 2¢ — 2°. Therefore,
t>sand 2=2%(2"""—1),ie,8=1,t=2. Thenz=s+t+1=4and
y¥=3,s0y=3,v=1,and finally z=2v—1 =1

(viii) No solution. [Rewrite as 2%+1 = ¢*+1 } 1, which implies that »
is odd. If z is odd or y = 1, then 2*t! = 3*+! 1 1 = 1 + 1 (mod 4),
which would imply 2 = 0 ¢ N. Therefore, z is even and ¥ > 1. Then
2 = (y+ 1) v+ —y ). Now g —y* L b —y 1 =
(y—1)w* ' +v* 3 +---+y)+1>1is an odd divisor of 21!, which is a
contradiction. |

(ix) Assume to the contrary that for appropriate k,7 € N you have
k+(k+1)+---+ (k+7) = 2°, which implies (2k +7)(r +1) = 2"t Since
7+1 > 1 and 2k+r > 1, both numbers are even. Then also (2k+r)—(r+1) =
2k — 1 has to be even, which is a contradiction.

(x) Any natural number N that is not of the form 2®, n € Ng, can be
expressed as N = 2"(2m + 1), where n € Ng, m € N. You have to show
that there exist k,7 € N such that k4 (k+1)+---+(k+7) = N, ie,
(2k+7)(r+1) = 211 .(2m+1). In the case 2" > mset r = 2m, k = 2" —m,
andinthecase 2 <mset r=2"1 _ 1, k=m +1—2".

(xi) (z, v, z) € {(6.6,2),(6.2,6), (18, —4,0), (18,0, —4)}. [Subtracting the
two equations from each other, rewrite them as (y —1)(z—1) = 5 and solve
four systems of equations in terms of y, z.]

(x‘li) (Is % 2’) € {(1’ 1, 1)! (_5, 4, 4)! (4! —9, 4)1 (4! 4' _5)}' mom Table 4.12
in Chapter 1 (for z; = x, z2 =y, 3 = 2) you get with 01 =3, 33 =3,

B—z)B—-y)(8—2)=27—-901 + 302 — 03
= 0109 — 03 = %(crf —83) =8,
B-2)+B-y)+(3—2)=9—-0,=6.

Therefore, either all of the numbers 3 — z, 3 — y, 3 — z are even, or exactly
one is even. In the first case 3 —x =3 — y = 3 — 2 = 2, and in the second
case two of the numbers 3—z, 3—y, 3— 2 are equal to —1 and the remaining
one is 8]

(xiii) Use the result of Example 5.19.(v) to show that there exist a,b € N,
a > b such that zy = 2ab(a? —b?), 22 = a?+b2. If 7 does not divide zy, then
it divides neither a nor b. It is easy to verify that the square of a number
not divisible by 7 is congruent to 1, 2 or 4 modulo 7. Since none of the
sums 1+ 2, 144, 2+ 4 is divisible by 7, nor congruent to 1, 2, 4 modulo 7,
2 is not divisible by 7 and a® = b (mod 7) must hold. Then 7 | a2 — b and
thus 7 | zy, which is a contradiction. The condition (z,y) = 1 is necessary,
since, for example, 152 4 20?2 = 5%, while 7 does not divide 15 - 20.

6.3 (i) No solution. [Solve as a congruence modulo 3 and use the fact that
the congruence —y? =1 (mod 3) does not hold for any y € Z.
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(ii) No solution. {The left-hand side is congruent to 3 or 5 modulo 8,
since from the equation it follows that y cannot be even.]

(iii) No solution. [y? = 2 (mod 3) holds for no y € Z.]

(iv) No solution. [For z =1 (mod 3) you have 32%2+3z+7 = 4 (mod 9),
and for z # 1 (mod 3), 3224 3z47 = 7 (mod 9) holds. On the other hand,
y® can be congruent only to 0, —1, or 1 modulo 9.}

(v) No solution. [By Fermat’s Theorem 3.11 you have (z+1)3+{z+2)*+
(z+3)3+(z+4)3—(z+5)° = z+14+2+2+2+3+2+4—2-5=3x+5=2
(mod 3).]

(vi) No solution. [You have 19* =1 (mod 3), while 2% + 7V = (—1)* +1
(mod 3).]

(vii) No solution. [When  is even, then 27 +5¥ = 14+(—1)¥ # 1 (mod 3),
while 19 = 1 (mod 3). For odd z = 2n + 1, n € Ny, you have 2% 4 5Y =
2-4" =2 (—1)" (mod 5), while 19 = (—1)* (mod 5).]

(viii) z =y = 1, z € Narbitrary,orz =y =3, 2 = 1. [Thecase z = 1 was
dealt with in 6.2.(iii). For z > 1, first deal with z < 7: 1!4-2!4- - -4+ 7! = 5913
is divisible by 73, but not by 732, and for x = 2,3,...,6, ' 4+ --- + =l is
divisible by 3 but not by 27. Since for n > 9, n! = 0 (mod 27) holds, for
z>8youhave 1 421 4... 4+l = 114214 .- -+ 81 = 46233 =9 (mod 27),
and thus 1! 4 2! 4 - .- 4 2! is divisible by 9 but not by 27.]

(ix) For arbitrary x € Z you have '+ rz? 4+ s=z+z+1=1 (mod 2),
and thus z'° + rz7 + s # 0.

(x) Suppose that z,y, z is a solution, and set d = (z,¥), 71 = §, 11 = ¥.
Use 2.5. to conclude from d? | pz® that d | z holds and set z; = 4. Then
72 + 32 = pz2 = 0 (mod p), and from 3.14.(vi) it follows that 73 =3 =0
{mod p), which is a contradiction to (z1,11) = 1.

(xi) £ =y =z =u=0. [Proceed as in 6.2.(ii).]

(xii) £ = y = 2z = u = 0. [Proceed as in 6.2.(ii) and use 3.14.(vi) for
p=1]

(xiii}) No solution. [Assume that z,y,z € Z is a solution of the given
equation. Then y is odd, since otherwise 2 = y3+(42+2)3—1 = 7 (mod 8),
which is impossible. Rewriting, 22 +1 = (42 +2)3+ 3% = (42 +2) +y) - A,
where A = (42 +2)2 — y(4z + 2) + ¥* = (22 + 1 — y)? + 3(2z + 1)2. Hence
A>3 and A =3 (mod 4). As in 6.2.(iv) show that there exists a prime
p dividing A such that p = 3 (mod 4). For such a p you have 22 +1 =0
(mod p), and by 3.14.(vi) it follows that £ = 1 = 0 (mod p), which is a
contradiction.

(xiv) No solution. [Assume that z,y € Z is a solution of the given equa-
tion. Then z is even, since otherwise y* = 22 + 5 = 6 (mod 8), which
is impossible. Hence y* = 2 + 5 = 1 (mod 4), and therefore y is odd,
y=y ¥ =y =1 (mod 4). So for appropriate m,n € Z you have z = 2n,
y = dm+1. Rewriting, n®+1 = 3(2®+4) = 1(1*-1) = Hy-1)(*+p+1) =
m-A, where A=y +y+1 Youhave A = (3 +y + 1) = 3 (mod 4),
4A=(2y+1)?2 +3 > 0, and thus A > 3. As in 6.2.(iv) prove the existence
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of a prime p dividing a such that p =3 (mod 4). Thenn?+1=m-A4=0
(mod p), and by 3.14.(vi), n =1 =0 (mod p), which is a contradiction.]

(xv) Assume that z,y,z € N satisfy the given equation. Then (4z —
1)(4y—1) = 4(4zy—z—y)+1 = 422 +1, while4x—1 > 3,42x—1 = 3 (mod 4).
Asin the preceding exercises show that there exists a prime p dividing 4x—1
such that p =3 (mod 4) Then (2.?:)2 +1 = (4x—1)(dy — 1) =0 (mod p),
and by 3.14.(vi) you have 22 =1 = 0 (mod p), a contradiction.

6.6 (i) z = y = 2 = 0. [Show that if 7, y, 2 € Zis a solution, then £, ¥, 2 € Z
is also a solutlon]

(ii) 17 = y = z = u = (). [Show that if z,y,2,u € Z is a solution, then
2,%.%,3 € Zis also a solution.)

(iii) z = y = z = u = 0. [Proceed as in 6.5_(iii), but modulo 8]

(iv) =y = 2z = 0. [Show that if 7, y, 2 € Z is a solution, then £, %, 2 € Z
is also a solution.]

(v) z =y =2z =0, u € N arbitrary. [Show that if z,y,2,u € Zis a
solution, then zy is even (otherwise, 1+ 1 + z2 would be congruent to 1 or
0 modulo 4, which is impossible), and moreover, both z, y must be even (if
exactly one of the numbers x, y were even, then 1+ 2?2 = 0 (mod 4), which
is impossible). Then, of course, z must also be even. Set z; = £, 11 = &
z1 = %, uz = 2u, d = 2% + y? + 22 and show that z1,1, 21, u) satisfy the
given equation and =% + y? + 22 < d ifd > 0]

Vi)z=0,y=11%, z2=torz =11,y =0, 2 = ¢, wheret € Ny is
arbitrary. [First show that from z,y € Z it follows that z > 0. Setd = T2y
and for an arbitrary solution z, y, z with the property d > 0 show with the
help of 3.14.(vi) that z = y = 0 (mod 11). Hence z > 1 and x; = 57 € Z,
n =1 €Z, 2z =z—1€N, where

I2 y221

114

0 < o2ylz = < T2y%z < TPz =d.
By the principle 6.4 the equation has no solution satisfying d > 0.]

(vil) z = y = 2z = u = 0. [Proceed as in 6.5.(v) and solve the auxiliary
equation :¢:2+y2+z2 +u? = 22 1gyzu, where T, y, z,u € Z, v € N. Assume
that T, y, 2, u, v is a solution of this equation such that d = z24+y2 422442 >
0. Then z2 + 32 + 22 +u? is even. For all numbers z,¥, 2,u to be odd, you
would need 22 + 2 + 22 +uZ = 1414141 = 4 (mod 8), while 22"~ 1zy2u
is congruent to 2 or 6 modulo 8 for v = 1, and is congruent to 0 modulo
8 when v > 2. For exactly two of the numbers z,y, 2,u to be even, you
would need 2+ y2 + 22 +u2 =0+ 0+1+1 =2 (mod 4), while 22 1zyzu
would be divisible by 8. Hence all the numbers z,y, z,u are even, and
thus z; = %, 1 = ¥, 2z = § and wy = 3 are integers. Furthermore,
1,1, 21, u1, V1, where 'ul = v+ 1, is a solution of the auxiliary equation,
and 0 < 72 + ¥ + 23 +uf < d]

(vm) z = y = z = 0. [Show that if z,y,z € Z is a solution such that
d = z2 + y? + 2% > 0, then yz must be even (otherwise, 212 =72 -y’ =
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7 —1 = 6 (mod 8), which would imply z2 = 3 (mod 4), but this cannot
occur for any z € Z). Hence one of the numbers y, z is even, and from the
equation it follows that the other one is also even. But then 222 = Tz%2 —y?
is divisible by 4, and thus z is even. Setting z1 = £, 11 = ¥, z1 = 3, you
obtain an integer solution satisfying 0 < 7 + y% + 2% < d|

6.10 (i) For instance, z = —50t® — 75¢% — 36t —4, y = 5t + 2, z = 1, where
t € Z is arbitrary. [Choose z = 1 and use the method of 5.5.]

(ii) Rewrite as —1 = (2z+1)2— 22 = ((2z +1) + V2y)((2z + 1) — v2y).
The equation is clearly satisfied by z = 3, ¥y = 5. As in 6.9.(ii) use the fact
that the equation u? —2v2 = 1 has as a solution u = 3, v = 2, and multiply
out as ((2z + 1) + vV2)(3 +2V?2) = (6z + 3+ 4y) + V2(4z + 2+ 3y). If you
set 3 =3, y1 =5 and Tpy1 = 3z, + 2un + 1, Ynt1 = 42Zn + 2+ 3y, for any
n € N, then z,,,y, for all n € N are solutions of the given equation, and
O<a1 <Z2< -, 0<y <2 <---.

(iii) Rewriteas 1 = (2y)2—3(2z+1)2 = (2y+V3(2z+1))(2y—v3(2z+1)).
The equation is satisfied by = = 7, ¥ = 13. Use the fact that the equation
u2 — 302 = 1 has the solution u = 2, v = 1. Multiplying (2y + v3(2z + 1))
by 2 + /3 will not lead to a convenient form (the term not belonging to
v/3 is 0dd), hence you have to multiply by (2 + v/3)? = 7+ 4+/3. You get
(2y + V3(2x + D)7 + 4v3) = (14y + 24z + 12) + V3(14z + 7+ 8y). If you
setx) =7, y1 =13 and =, 43 = Tz, + Y, + 3, Ynt1 =122, + Ty, + 6 for
any n € N, then z,,,¥y, are solutions of the given equation for all n € N,
and <z <xT2<---,0<y <-+-.

(iv) For fixed y, z the equation 2+ % + 22 = 3zyz is quadratic in z, and
its roots z;, 2 satisfy, by Vieta’s relations, ; + z2 = 3yz. Hence, if z,y, 2z
are a solution of the given equation, then so are y, z, 3yz — z. The equation
is certainly satisfied by =1,y =1,z =1. Set vy = ug = uz = 1 and
Up 43 = 3Unt1Unt2 —Un for n € N. Prove by induction that ti; = us = ug <
g < ug < --- (for an arbitrary n € N assume that 1 < u, < un41 < tpy2
and show 4,45 < ti,43) and that for all n € N, u,, Unt1, Unt2 is a solution
of the given equation (assume, for an arbitrary n, that u,, un41,Un42 is a
solution and show that .41, Unt2, Un+3 is also a solution).

(v) Forinstance, z =n—1+2t, y = 2t(n— 1)+ 22— 1+ 3(n - 1)(n—2),
z=2t(n—1)+2t2+ J(n—1)}(n—2). [Choose z = y+1 and use the method
of 5.5.]

(vi) Rewrite the equation as (2x +n)% + (2y+n)?+ (22+n)2 + n? = 4n®
and show that an arbitrary number triple z, y,z solving this equation is

such that none of these numbers exceeds |[n®| — %, and none is less than
—|n®| — 2.

6.12 (i) Proceed as in 6.11.(3i). [If xp,x1,.-.,%5 is & solution for s € N,
set yo = 5z, ¥i = 3z; for i = 1,2,...,8, ¥s41 = 429 and show that
Y0.¥1, - - - » Yat1 is @ solution for s + 1.]

(ii) Proceed as in 6.11.(i). [Use the fact that for s = 1 the equation can
be written as a quadratic, and has therefore no more than two solutions.
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Further, use the fact that natural numbers a,b with a > b satisfy a + >
a>b+12> b+ ¢, which implies ;25 Fromu.<(s+1)zl/(1+:r
it again follows tha.t <z + (17:1:1) < (s + 1)/u]

(iii) Proceed as in 6.11.(ii). [Use the fact that (1/12)3 + (1/15)° +
(1/20)® = (1/10)2 and (1/(5-7-13))* + (1/(5-12-13))®* + (1/(7-12-
13)* + (1/(5-7-12-13))* = (1/(5 - 7- 12))3; these identities can be ob-
tained from the identities 3% + 43 + 53 = 63, 13 + 53 + 73 + 128 = 133
If 2o,21,...,Z, € N are such that (l/mo)3 (1/z1)3 +--- 4+ (1/z,)3, set
Yo = 10:::0, vi = 12z; for i = 1,2,...,8, Ys31 = 1529, Ys42 = 20z¢ and
show that (1/y0)® = (1/n)3+---+ (1/y,+2)3.]

7.3 (i) By 7.2.(iv) the number of such m is exactly [(107 — 1)/786] —
[108/786] = 11450.

(ii) By 7.2.(iv) the number of such m is exactly 999 — [999/5] — [999/7] +
[999/35] = 686 (the numbers divisible by 35 were subtracted once as divis-
ible by five, and a second time as divisible by 7; hence they must be added
in again).

(iit) In a similar fashion as in (ii) you see that there are exactly 99 —
[99/2] — [99/3] + [99/6] = 33 such numbers.

(iv) By 7.2.(iv) there are exactly [1000/5] — [1000/25] = 160 such
mumbers.

(v) Use 7.2.(ii) and show that

] < < 2 bt ]

(vi) Distinguish between even and odd n.

(vii) By (35) you have [-z] < —z < [-z] + 1, and thus —[—z] > z >
—1—z|—1.

[(vu]l) If both numbers (z), (y) are less than then both sides of the
inequality are equal to 2([z]+[y])- If, for instance, (:z:) > 1, thenz > [z]+3,
which means that [2z] > 2[z] + 1. From this last mequaht.y and from the
inequalities [2y] > 2[y] and [z + 3] < [z] + [y] + 1 (see 7.2.(iii)) the desired
inequalities follow also in that case.

(ix) By 7.2.(3) you have zy] = [(la]+(@))([s1+@))} = fel- W1+ {(=)- b+
(y)+(z)-(v)] > [z]-[y]- Since [{z}[y] +[z]{v) +(=) (v)] < [[¥] + =] +{z)(w)] =
[4] + (2] + [{=X)] = [v] + [=], it follows that [z3] < [z][y] + [z] + [y]-

(x) If z > y > 1, the assertion follows from 7.2.(iv) for n = 1. Reduce
the remaining cases to this one with the help of 7.2.(i).

(xi) By 7.2.(i) you have [z]+[—z] = [[z]—z] and by (35), -1 < [z]—z <O.

(xii) This follows from (xi), since {z} + {(—z) =z — [z] + (—2z) — [-2] =
—(la] + [~al).

(xiii) This follows from 7.2.(iii) with y = z.

(xiv) This follows from (xiii), since (2z) —2(z) = 2z — [2z] - 2(z —[z]) =
—[22] + 2[z]).
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(xv) By (35) you have for m = [$/[z]] that m < {/[z] < m +1, and
thus m® < [z] < (m + 1)*, which implies [z] + 1 < (m + 1)™. You obtain
thenm* < [gf]<z<[zf]+1<(m+1)",andsom < yz < m+1, ie,
m = (V3]

(xvi) Since 4n{n + 1) < (2n + 1)?, you have 24/n(n+1) < 2n + 1, and
thus (V7 + vn+ 1)? < 4n + 2, which implies [ + vr+1) < [V4n +2].
If [/# + vn+1] < [An+ 2], there would exist an m € N such that
Va+vn+1<m<an+2 But then 2y/n(n+1) <m?—(2n+1) <
9n + 1. Squaring the left inequality and keeping in mind that m has to
be an integer, you would obtain m? = 2(2n + 1), which, however, is not
possible: The square of a natural number is either odd or divisible by 4.

(xvii) This follows from 7.2.(v) by setting Z for z.

(xviii) Similar as in (xvii}. -

(xix) By 7.2.(v) you have " p ' [z + £ + 1] = [mz + 2!] and ;:01 [z +
£ | 1] = [nz + 2£], and thus both sides of the desired identity are equal
to Yhp Lyl + X+ 1)

(xx) This follows from (xix); however, it is also possible to use the second
identity in 7.2.(v) in the same way as the first one was used in identity (xix).

(xxi) Show that 72 = 7 4+ 1. Then for d = 7n — [rn] you have d =
(7 4+ 1)n — [(+ + 1)n] = 72n — [r2n], which implies that —¢ = d(1—7) =
(72n—[7?n]) — (**n—7[rn]) = 7[rn] — [r?n]. Then [+?>n] = 7[rn] + 2. From
this you obtain the result if you note that 0 < d <1< 7.

7.5 (i) You have to determine the highest power of 10 that divides (o) =
a5 - Since by 7.4 you have v5(125!) = 25+5+1 = 31, v5(62!) = v5(63!) =
12 + 2 = 14, then v5((}%)) = 31 — 14 — 14 = 3 (using the notation of 2.9).
Similarly, v2(125!) =62+ 31 + 15+ 7+ 3 + 1 = 119, v(62!) = v(63!) =
31 +15+ 7+ 3 +1 = 57, and thus v2((}3)) = 119 — 57 — 57 = 5. The
given binomial coefficient is therefore divisible by 25 and 53, but not by 54.
Hence its digit representation (to base 10) ends in three zeros.

(ii) These are exactly the numbers of the form n = 2%, t € Ny. For by
7.4 you have vo((2)1) =281 +2t-2 4 ... + 2 4+1 = 2t — 1, while all other
numbers do not satisfy this condition. If n = 2m + 1, m € N, then by 2.9
and 7.4, v2(nl) = v2(2m+1)+v2((2m)!) = vo((2m)!) = m+ [m/2] 4 [m/4)+
-+ + [m/2¥] S m+ (m/2) + (m/4) +- - - + (m/2*) = (m/2%) - (2F + 2%+ +
-+-+2+1) = (m/2F) (25 —1) < (m/2¥).2%¥+1 = 2m = n—1, and thus the
number n! is not divisible by 2" ! If n =2!(2m +1), me N, t € N, then
vo(nl) = vo(2(2m+ 1)) = 22" Y 2m + 1) + 20 2(2m + 1) +-- -+ 2(2m+1) +
(2m+1) +v2((2m+1)!) holds by 74. Now, v2({2m+1)!) < 2m by what you
have already shown, so vo(n!} < (2m+1)(2*"1 422 ... 424 1) 4 2m =
(2m+1)(2t—1)+2m = n—1. Again, the number n! is not divisible by 2"~1.

(iii) To prove the assertion it suffices to show that for every prime p the
inequality v,((3)) +2((37)) = vp((™*™)) holds. But this foliows from 7.4
with the use of 7.3.(viii), since for sufficiently large k you have
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v ((m) + v (7)) —w (("2") .
=3 (1] (2D + 5 (] -2[2)
-3 (=] - [21- [2))
-5+ [2]- [2-[2]- [ >

(iv) Set y, = (2“\/_ 2). If yn < 3, then zn41 = 22y, is even. If, on the
other hand, y, > 2, then 1 — yn 41 = 2(1 — y,.), and thus for appropriate
r € Nyou have 1 — yny4r > 3, i€, Yngr < 3.

(v) It is clear that 1 < 29 < 23 < z3 < ---. If for some n € N the
number z,, is even, then z,, = 2"(2k — 1) for appropriate r, k € N, and the
number Zn,, = 3"(2k — 1) is odd. If, on the other hand, z,, is odd, then

= 2"(2k — 1) + 1 for appropriate r,k € Nand £, =3"(2k— 1)+ 1is
even.

(vi) Set k = [y/m]. Then m = k3 + j for an appropriate j, 0 < j < 2k.In
the case 0 < j < k, set f7(m) = f(f7—1(m)) and prove by induction that
7 (m)=(k+rP +(j—r) bholds forr =0,1,,...,7. Then f%(m) is the
square of the integer k4 j. The case k < 7 < 2k can be reduced to the first
case by considering f(m) instead of m.

(vii) From the statement of the problem it follows that each of the
numbers 1,2,...,2000 is divisible by at most one of the given numbers
ai, .- - ,an. Using 7.2.(iv), you find that [22%0] 4 ... 4 [2990] < 2000. Hence
(2 —1)+ -+ (22 1) < 2000, which means that ettt <
14 50 5005 = 2-

7.7 (i) Proceed as in the special case m = 10 in 7.6.(iii).

(ii) z = 0 or £ = 1. [Use the fact that z = [z?] € Z]

(iii) The equation is solved by exactly those z satisfying —/3 < z < —v/2
or V2 € z < /3. [Rewrite the equation as 2 < z? < 3 and solve the
inequality.]

(iv) z = 1. [Use the fact that z = [3z2 — 2] —1 € Z, and thus [32% —z] =
3z2 —=z.

(v) :L']E {0, 2,3}. [Use the fact that 2(z) € Z, and thus (z) = 0 or

z

( )(v1) z =25,y =T [Set k = [v/y — 1] and from the equation z = 1 + k?
derive the inequalities k + 1 < /¥ + 2/ < k + 2. The second equation
then implies y = 2k + 3. Show that from the condition k = [V2k +2] it
follows that (k — 1)® < 3. Verify by substituting that of the values 0, 1, 2

only k = 2 works.]
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(vii) z € {—2,1.4,1,2}. [Using 7.2.(v) for n = 2 write the left-hand side
of the equation as m = [4272] € Z. Then z = 3+ 50 m = [4222]. Solve
the pair of inequalities m < 4—"“,;3 < m+1 in integers and verify that each
solution m € {—2, —1,0,1,2} leads to a solution of the given equation.]

(viii)) z = 5. [The condition [¢m] = k is for m,k € N equivalent to the
pair of inequalities k¥ < m < (k + 1)® — 1. For a fixed k, the number of
such m is exactly (k4 1)® — k3 = 3k? + 3k + 1. Then the left-hand side of
the equation is of the form Z:;: Sy, where Sy = k(3k2 + 3k + 1). Since
for k € N you have Sx > 0 and $1 = 7, S2 = 38, S3 = 111, S; = 244, the
equation has the unique solution z = 5.]

(ix) For all k € N it follows from (35) that kfz] < kz < k[z] + k, which
means that k[z] < [kz] < k[z] + k — 1. Therefore, S = [z] + [2z] + [4z] +
[8x}+[16z] +[322] < 63[z]+(1+3+7+15+31) = 63[z]+57 and S > 63[z].
Hence for some m = [z] € Z you have 63m < § < 63m + 57, and therefore
S can be congruent only to 0,1,2,...,57 modulo 63. On the other side,
12345 = 60 (mod 63), and thus the equation cannot have solutions.
Remark. Show that the sum S, upon division by 63 with different values
of z, gives only 32 different remainders. To do this, use the expression

) Qs as Q4 as
W=z +3+ s 6 =
where ax € {0,1} for k=1,2,...,5and 0 <r < 5.

(x) n® — n +1 solutions. [If n = 1, then = = 1 is a solution. Now assume
that n > 1. By rewriting you obtain ([z] + (z})2 — [[z]? + 2[z]{z} + (z}?] =
(z)2, and thus, in view of [z]2 € Z, you get 2[z](z) = [2[z](z) + (z}?]. Since
0 < (z)2 < 1, this last equation is equivalent to the condition 2[z]{z) € Z,
ie., () = 3fiy, where k € {0,1,...,2[z] — 1}. For each of the values [z] =
1,2,...,n— 1 the term (z) must take on exactly 2[z] different values, and
for [z] = n you have (z) = 0 (since £ < n), and thus the number of all
solutions is 2+4+---+2(n—1)+1=nn—-1)+1=n? —n+1]

(xi) Answer: Exactly the squares of natural numbers cannot be expressed
in this form. Denote f(n) = [rn++/n+ 1]- The difference f(n+1) — f(n) =
1+ [vn+1+ 1) - [vr+ 3] > 1 is greater than 1 if and only if there
exists a natural number m satisfying i+ <m < vn+1+ 1, which is
equivalent ton < m? —m + 1 <n+1,ie, n = m? —m. On the other
hand it follows from v/n+1 > v/n + 1 that f(n+1) — f(n) < 2. Hence

+ 7,

2

2 ifn=m®—mforsomemeN,m>1,

f(n+1) — f(n) ={

1 otherwise.

Therefore, the values f(n) for n € N are all natural numbers in succession,
with the exception of the integer 1 (since f(1) = 2) and the numbers of
the form f(m2 —m) +1=m?2-m+1+][ m? —m + 1] = m? The last
equation follows from the bounds m — § < vm? —m < m — 1, valid for all
meN.
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8.2 (i) 89. [Find & number 10a -+ b satisfying the equation 10a+ b = a + b2,
which means 9a = b(b — 1). Use the fact that the numbers b and b — 1
cannot be both divisible by 3.

(ii) 8281. [Find & number 1000a + 100(b + 1) + 10a + b = 2. Rewrite it
8s 101(10a + b) = (x + 10)(x — 10) and use the fact that 101 is 2 prime.]

(iii) 552 = 3025. [Find an z € N such that (10z+5)? = 3005+100a+10b.
Then b = 2, 2 + z = 30 + a, which means that 30 < z2 +z < 40, and thus
z=5]

(iv) 192 = 361. [Show that n is odd and is not divisible by 5 and check
all such n, 11 < n < 31, among which only 19 satisfies the condition of the
problem.]

(v) 432. [Find a number z = 100a + 10b + ¢ for which 2z = 3alblc!.
Since 100 < = < 999, you have 67 < alblc! < 666. This implies that none
of the numbers a,b, c exceeds 5, since 6! = 720 > 666. Furthermore, if
all the numbers a, b, c are less than 4, then two of them must be 3, and
the remaining one must be 2. Then alb!d! is always divisible by 8, which
means that z is divisible by 4. Now, z is clearly divisible by 3. So altogether
1<a<50<0<5,0<¢<5,3|at+b+c, 4]|2b+c, 67 <alblc! < 666.
Ifc=0,thenb=4,a=5;ifc=2,thenb=3,a=40rb=5,a=2;if
c=4,then b=0,a=50rb=2,a=3o0r b=4, a=1 Of the numbers
540, 432, 252, 504, 324, 144, only 432 satisfies the given problem.]

(vi) £ = 112, y = 896. [Set £ = 100a+10b+-c. Since y = 800a+80b+-8c <
1000 and = > 100, you have @ = 1. Then y —x = 700 + 70b 4+ 7c = n? for
an appropriate nn € N, which means that 700 < n® < 1000, or 26 < n < 32.
Since 7 | n, you have n = 28, which means that = = n2/7 = 112, y = 896.
In this case 112896 = 3362.]

(vii) The number n is divisible by 5 and is odd, so n = 10z + 5, where
z € N. Then n? = (10z + 5) = 100z{z + 1) + 25. Since z(z + 1) is an even
number, its final digit is even, and this is the hundreds digit of n?.

(viii) n = 1 or n = 9. [Assume that n has k digits, i.e., 105~ < n < 10*.
Then n? < 10%*, and thus the digit sum of n? is at most 9- 2k, so 10%1 <
n < 18k. For k > 3 it is easy to show by induction that 105~ > 18k, hence
k < 2. Therefore, n? has at most four digits, i.e., n® = 1000a-4100b+10c-+d,
where at least one of the digits a, b, ¢, d is nonzero, and n = a+b+4c+d. This
implies n(n—1) = 9(111a+11b+-¢). Since n, n— 1 cannot both be divisible
by 3, either n or n—1 is divisible by 9. Since 1 <n=a+b+c+d <36, n
can only be among the numbers 1, 9, 10, 18, 19, 27, 28, 36, among which
only 1 and 9 work out.|

(ix) 153846. [Write the desired number z in the form x = 10n + 6 and
assume that it has k digits. Then 4z = 6 - 10*~! 4 n, which implies 13n =
2(10*~! - 4). The smallest k such that 10*~! =4 (mod 13) is k = 6, which
means that x = 153846.]

(x) n can he an arbitrary number divisible by 10, or any of the numbers
11, 22, 33, 44, 55, 66, 77 88, 99, 12, 24, 36, 48, 13, 26, 39, 14, 28, 15, 16, 17,
18, 19. [It is easy to see that upon removing the final digit, the number n
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will be decreased by at least a factor 10, and that the factor 10 is achieved
exactly for all multiples of 10. Write #n in the form 10m + a, where m € N,
0 < a < 9, and assume that for some z > 1 you have 10m + a = m{10+ z),
which means that a =mz,s0z < 9. Forz=1youhave 1 <m=a <9
forz=2itis2<2m=a <8;forz=3,3<3m=a<9; for z =4,
4<dm=a<Bfor5<z<9m=1,a==z]

(xi) Show by induction that for each m € N there exists an n € N in
the decimal representation of which there occur only ones and zeros and
such that s(n) = m and s(n®) = m2. For m = 1 one can choose n = 1. If
n € N satisfies s(n) = m and s(n?) = m? forsome m € N, and if r € N is
determined by the condition 107 > n > 10"}, then set n' = 10'n + 1. It
is easy to see that the decimal representation of n’ again consists only of
zeros and ones, and that s(n') = s(n) + 1 = m + 1. Since 10" > 2n.- 107,
you also have s((n’)?) = s(n®) + s(2n) + 1 = (m + 1)°.

(xii) It is clear that for any m,n € N you have s(m + n) < s(m) + s(n).
If ag,...,a1,09 are the digits of n, i.e., if n = 2:;0 10%a;, then s(mn) =
s(z::-‘:o 10°ma;) < Z:;o s{ma;) < Zf __o ais(m) = s(n)s(m). Hence s(n) =
s(1000n) < s{125)s(8n) = 8s(8n). The example n = 125 shows that s(n) <
8s(8n) does not generally hold.

(xiii) The case m < 2 is clear, so assume m > 2. Set S, = n+ s(n). If
71 does not end in a 9, then S; ;1 = S, + 2. If, on the other hand, n does
end in a 9, then S, ;; < S,,. Let k be the largest natural number satisfying
Sk < m. Then Siyy > S; hencem < Sp 1 =S +2<m+ 2.

8.4 (i) Use the fact that 2? = 1 (mod 5), and thus 22° = 1 (mod 5) for
every integer n > 2.

(ii) 07. [Use the congruences 7* =1 (mod 100) and 9° = 1 (mod 4).]

(iii) 6667. [Since ¢(2%) = 8 and (5%) = 500 divide 1000, you have
31000 = 1 (mod 10%), and thus for z = 3% you have 3z =1 = 1 — 10*
(mod 10*), which implies z = —3333 (mod 10%).]

(iv) 36. [Note that 144" = 714" . 214 ghere 714™ = 1 (mod 100),
because 7* = 1 (mod 100) and 4 | 14™. Since 14! = 1 (mod 5) and
14" = 0 (mod 4), you have 14'* = 16 (mod 20), and since (25) = 20, it
follows from Euler’s Theorem 3.13 (or from 3.14.(v)) that 214 = 216 —
16* = 9* = 812 = 6% = 36 (mod 25). Since also 24" = 0 = 36 (mod 4),
you get 214" = 36 (mod 100), and altogether 144" = 36 (mod 100).]

(v) Since n =k (mod 4) and 7% = 1 (mod 100), it follows from 3.14.(v)
that 7" = 7* (mod 100). Since »(5%) = 100 and (23) = 4 divide 100, it
follows from 3.14.(v) that 77" = 77" (mod 10%). In complete analogy: Since

¢(5%) and (2*) divide 10°, you get 77 = 77" (mod 10%), and similarly
m & 777" T
77 =g (mod 10°) and 777 = 77 (mod 108) ]

(vi) For n = 100 both numhbers end in 001. [Find the smallest n ¢
N for which 19" = 313" (mod 1000). Since (5%) = 100 and (23) = 4
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divide the number 100, by Euler’s theorem, 1910 = 1 = 313!%° (mod 125),
191% = 1 = 313'% (mod 8), so that 19'%° = 1 = 313 (mod 1000).
Show that therefore the desired n has to divide 100 (divide the mmber
100 by n with remainder: 100 = ng + r, where 0 < r < n, then (19")7 -
19" = (313")7 - 313" (mod 1000), which implies 19" = 313" (mod 1000),
and thus r = 0). If n # 100, then n | 50 or n | 20 must hold. Now neither
19% = 31350 (mod 1000) nor 19%° = 313%° (mod 1000) will hold (you
have 192 = 1 (mod 5), 3132 = —1 (mod 5), which with 3.4.(vi) implies
19°° = 1 (mod 125), 313%° = —1 (mod 125); similarly, from 19% = 21
(mod 25), 313 = 11 (mod 25) it follows that 19%° = 215 = 101 (mod 125),
313%° = 115 = 51 (mod 125)).]

8.6 (i) Note that 3(10?" —1) — 230" - 1) = (10 - 2-10" +1) =
(3(10™ —1))?, where (10® — 1)/3 € N. Furthermore, (10" —1)/3 = 33...3.

n

(ii) Note that mm, = 2(10%* —2-10"+1) = £(10*"—1)— §(10"—1), and
so m;m;, is the difference between the number consisting of 2n twos and
the number consisting of n fours. Therefore, mym, = 222...21777...78,
with n — 1 twos and as many sevens.

(iii) Divide n by k with remainder: n = gk + r, where 0 < r < k. Then
10" —1 = 1095+ 1 = 107(10%% — 1) 4 10" — 1 = 10" (10— Dk 1 jole—2)k 4
-+ -410%41)(10% —1)4-(10"—1). Since 0 < 10"—1 < 10*—1, the remainder in
the division of 10" —1 by 10*—1 is 10" —1. Hence 10*—1 | 10" —1 if and only
if k | n. Now of course, 10*—1 | 10" —1 if and only if {(10*—1) | 1 (107 1),
ie,111...1|111...1

X ow

(iv) Assume that the desired number is written as m ones. The condition
of the problem means that mn > k, and furthermore (iii) implies k | m.
Since for m = 2k you have §(10%* —1) = 1(10* — 1) - 1(10* + 1) and the
number 10* 4 1 is not divisible by 3, then (10* 4-1)/3 is not an integer, and
therefore the number consisting of 2k ones is not divisible by the number
consisting of k threes. Hence m > 3k. However, for m = 3k you already
have 3(10% —1) = 1(10* —1) - 2(10%* + 10* 4 1), where 1(10%* 4 10* 4-1)
is an integer. The number consisting of 3k ones is therefore the desired
smallest number.

(v) a =5 (for n = 10) or a = 6 (for n = 11 or n = 36). [Clearly, a # 0.
The given sum is 1n(n+1). For a = 1 it follows from §(10*—1) = in(n+1)
that (3n + 1)(3n + 2) = 2-10* = 2k+1. 5k which is a contradiction,
since (3n + 1,3n + 2) = 1 and 2¥+! <« 2% — 4k < 5*. Furthermore,
8(3n(n+1))+1=(2n+ 1)?, and so the digit a is not among the digits 2,
4,7, 9, since otherwise (2n + 1)? would be congruent to 3 or 7 modulo 10,
which is impossible. If the digit a were equal to 3 or 8, then (2n+1)? would
be congruent to 65 or 5 modulo 100, which is impossible. Hence @ = 5 or
a=6.

(vi)lProve by contradiction that no such n exists: Assume to the con-
trary that such numbers exist, and denote by ny the smallest one among
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them. Let r € N be determined by the condition 10" > ng 2 107 1.
Since M,2M,...,9M do not have a digit sum less than m, it follows
from M | ng that ng > 10M and thus » > m. But then the number
ny =ng— 101+ 107" =g —9M 107 ™! is again divisible by M
and its digit sum does not exceed the digit sum of ng. Since n1 < np, you
have obtained a contradiction to the definition of ng.

8.8 Proceed as in 8.7, but choose a k such that 3V/m? < 1052 and n =
[10* - m] + 1. Show that then 10%3*m < n® < 10%*m + (10** — 1).

9.3 (i) Set a; = §(10° —1) fori =1,2,...,n+1 and proceed as in 9.2.(iii).
The difference a; —a; for i > j has the decimal representation of the desired
form.

(ii) The natural mumber m divides a,, for an appropriate n € N if and
only if (a,m) = 1. [If m | a,, then (@, m) must divide (a,a,), but of course
(a,a,) = (8,1 +a-a,—31) = 1. If, on the other hand, m is an arbitrary
natural number relatively prime to a, use the same argument as in 9.2.(iii)
to show that m divides a; — a; for appropriate 1 < j <i < m + 1. Then
a; — a; = a7 - a;_;, and since (m,a) = 1, then m divides a;_;.]

(iii) Prove this by induction on n, using the arguments of 9.2.(iv).

(iv) Use induction on n, as in (iii). To do this, use the fact that from
among any five natural numbers divisible by 3* one can choose a triple
of numbers such that their sum is divisible by 3*+!. [Distribute these five
numbers over three sets according to the remainder upon division by 3*+1.
If it is possible, choose one number from each set. If one of the sets is empty,
then by Dirichlet’s principle one of the remaining sets must contain at least
three numbers, which you then choose.|

9.5 (i) Proceed as in 9.4.(ii), but consider only nonempty subsets with even
numbers of elements. Use the fact that the symmetric difference of sets with
even numbers of elements has an even number of elements.

(ii) Proceed as in 9.4.(iii), but consider only nonempty subsets with one
or two elements, the number of which is () + (7) = 45 + 454 = 1035.

(iii) If the given numbers are a,,as,-.-,a29, set b; = a; - a? for i =
1,2,...,29 and continue to work with the numbers b;,bo,...,b29. (Show
that the product aga,,a, is the third power of a natural number if and
only if bbb, is a third power.) Introduce the same triple (€;,€2,€3) 8s in
9.4.(iv), but divide the numbers by, .. ., bog into 14 groups: Keep the group
that in 9.4.(iv) corresponds to the triple (0, 0,0}, while of the remaining 26
you combine in one group always those groups corresponding to (g1, €2, €3)
and (€}, €5, €3), where €} + €}, €2 + €5 and &3 + €} are divisible by 3; thus
you obtain 13 groups. If in the group corresponding to (0,0,0) there are
at least three numbers, choose three numbers from this group. If, on the
other hand, there are no more than two numbers in this group, then the
remaining 27 are distributed over 13 groups, and by Dirichlet’s principle at
least one of them contains at least three numbers. If you divide this group
into the two original groups from 9.4.(iv), then either one of them contains
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at least three numbers, in which case choose these three numbers; or both
contain at least one number, in which case choose one number from each
group, and take b; as the third number.

(iv) Proceed as in (iii) and divide the numbers into the same 14 groups.
[f the group corresponding to (0,0, 0) contains some number, then choose
it and set k = 1; otherwise, there are again 27 numbers distributed over 13
groups; hence at least one of them contains at least three numbers. Divide
them again into two groups and either choose one from each (k = 2), or
choose three numbers from one group (k = 3).

(v) Proceed as in 9.4.(v). Consider all n-tuples (€1,€2,-..,€,), Where
0<egi<sfort=1,2,...,n, of which there are s™. The rest is almost the
same.

9.7 Note that if = is an arbitrary integer, then z? is congruent to one of
the numbers 0,1,22,32,. ., (%1)2, of which there are %’ <p.

10.3 (i) Since 19 = 62 (mod 43), a polynomial F(z) with integer
coefficients must satisfy F(19) = F(62) (mod 43).

(ii) Proceed as in 10.2.(iii).

(iii) Assume that for some n € Z you have F{n) = 0 and show that for
eachi=1,...,5 you have g; = n+t1 or a; = n+ 73, and thus the numbers
G1,82,- .. ,06s5 are not all different.

(iv) Divide the five numbers a,,...,as into two groups according to
which value of the polynomial F(x) they take on. If none of these groups is
empty, then by Dirichlet’s principle one of them must contain at least three
numbers, and the other one at least one, which by (ii) is a contradiction.

(v) Find 7, s such that F(r) = 0 and F(8) = 1. Then by (ii) you have
s=7+1or 8 =r—1. In the case s = v + 1 prove by induction that
F(r + m) = m holds for each m € Ny. (This is true for m =0 and m = 1.
For integers m > 2 assume that Fr4+m—-2)=m— 2, Fr+m—-1) =
m — 1. Given an m, there exists a k € Z such that F(k) = m, and by
(ii) you have k = 7 + m — 2 or k = r + m. The first case does not occur,
since F(r +m —2) = m—2 # m = F(k). Hence k = r 4+ m, and so
F(r + m) = F(k) = m.) By 3.15 in Chapter 1 you have F(z) = =z —r.
Similarly, in the case s = v — 1 show that F(z) = —z + r. The solution of
the problem is therefore given exactly by all linear polynomials a)x + ag,
where a; = 1 or a; = —1, and ag € Z is arbitrary.

10.6 (i) Exactly when 6a, 2b, a+b+-c, d € Z. [Rewrite az® +bz? 4 cx+d =
6a(3) + 2(b+3a)(3) +(a+ b+ )(]) +4d]

(ii) Yes, since F'(0), F(1),...,F(7) are integers.

(iii) For » > 2 it exists, for n = 1 it does not exist. [Proceed as in
10.5.(iii), obtain the conditions ag,...,8n-1 € Z, @ ¢ Z, (n + 1)a, € Z,
i(n+2)}(n + 1)a, € Z. For n > 2 choose a, = "%_1; for n =1 it follows
from the conditions 2a; € Z, 3a; € Z that also a; € Z; forn = 1 it is
therefore not possible to satisfy all conditions.
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(iv) Such a polynomial exists for n = 3, n = 4, and n > 6, but does not
exist for n < 2 and n = 5. [Proceed as in 10.5.(iii), and see whether the
conditions a, ¢ Z, (n+ 1)an, € Z, 1(n+2)(n+ 1)a, € Z, g(n+ 3)}(n+
2)(n+1)a, € Z are satisfied. Forn=3,n=4,0rn > 6, a, = ;?'-T satisfies
them. For n = 1 it follows from 2a; € Z and 3a; € Z that a¢; € Z. For
n = 2 it follows from 3a; € Z and 10a; € Z that az = 10a; — 3 - 322 € Z.
For n = 5 it follows from 6as € Z, 2las € Z and 56as € Z that also
as = —57- 6ag + 19 - 21ag — 56ag € Z (this last construction can be carried
out by use of Bézout's equality; it follows from (6,21, 56) = 1).]

(v) Let F(z) = byz* +- - - + byz + bp. By Theorems 2 and 3 in 10.4 there
exist integers aq, - - - ,ax such that

@=ao+al(’l’)+---+ak(:),

which implles that the polynomial k'F(z)}/p has integer coefficients, so
plb; - k! for all i =0,1,..., k. Since (p, k') = 1, this means that p|b;.

10.10 (i)—(iv) Use 10.8 in (i) for p = 5, in (ii) for p = 3 (it does not work
for p = 2), in (iii) for p = 7 (p = 3 not possible). In (iv), first divide by
5, then use 10.8 for p = 5, and finally show that the original polynomial
cannot be decomposed either.

(v) z!%5 — 75. [Proceed as in 10.9.(ii), use 10.8 for p = 3]
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