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Preface

The Theory of Inequalities began its development from the time

when C.F.Gavuss, A.L.CavcHy and P. L. éEBYéEV, to mention only the
most important, laid the theoretical foundation for approximative meth-
ods. Around the end of the 19th and the beginning of the 20th century,
numerous inequalities were proved, some of which became classic, while
most remained as isolated and unconnected results.

It is almost generally acknowledged that the classic work ‘“Inequali-
ties” by G.H.Harpy, J.E. LitTLEwooD and G.PéLya, which appeared
in 1934, transformed the field of inequalities from a collection of isolated
formulas into a systematic discipline. The modern Theory of Inequalities,
as well as the continuing and growing interest in this field, undoubtedly
stem from this work. The second English edition of this book, published in
1952, was unchanged except for three appendices, totalling 10 pages,
added at the end of the book.

Today inequalities play a significant role in all fields of mathematics,
and they present a very active and attractive field of research.

J.DIEUDONNE, in his book “Calcul Infinitésimal” (Paris 1968), attri-
buted special significance to inequalities, adopting the method of exposi-
tion characterized by ‘“majorer, minorer, approcher’.

Since 1934 a multitude of papers devoted to inequalities have been
published: in some of them new inequalities were discovered, in others
classical inequalities were sharpened or extended, various inequalities
were linked by finding their common source, while some other papers
gave a large number of miscellaneous applications.

The book ‘‘Inequalities” by E. F. BECKENBACH and R. BELLMAN, which
appeared in 1961 and the second revised printing in 1965, contains an
account of some results on inequalities obtained in the period 1934—1960.

The present book — “Analytic Inequalities”’ — is devoted for the most
part to topics which are not included in the two mentioned above. How-
ever, even in the exposition of classical inequalities new facts have been
added. .

We have done our best to be as accurate as possible and have given
all the relevant references we could. A systematic bibliographical search
was undertaken for a large number of inequalities, and we believe the
results included are up to date.
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In writing this book we have consulted a very extensive literature.
It is enough to mention that ‘“Analytic Inequalities” cites over 750
names, some several times. As a rule, we have studied the original pa-
pers and only exceptionally have we leaned on the reviews published in
Jahrbuch {iber die Fortschritte der Mathematik (1868—1944), Zentral-
blatt fiir Mathematik (since 1931), Mathematical Reviews (since 1940) and
Referativnyl Zurnal Matematika (since 1953). Nevertheless, it was im-
possible to scan every relevant source and, for various reasons, some omis-
sions were Inevitable; we apologize in advance to anyone whose work may
not have been given proper credit through oversight. Besides, our selec-
tion from the enormous material considered expresses our preference for
simple and attractive results.

The greater part of the results included have been checked, although
this could not, of course, be done for all the results which appear in the
book. We hope, however, that there are not many errors, but the very
nature of this book is such that it seems impossible to expect it to be
entirely free of them. It is perhaps unnecessary to point out the advisa-
bility of checking an inequality before use. It is also worthwhile to turn
to the original papers whenever possible, since the reader will frequently
find the problem which first motivated the search for the inequality in
question.

Though we have emphasized only in a relatively few places that there
are unsolved problems, it can be seen from the text itself that there are
many results which can be improved or developed in various directions.

This book is, in fact, a considerably extended and improved version
of the author’s book “Nejednakosti” which appeared in Serbian in 1965.
Although following the idea and the outline of that work, “Analytic Ine-
qualities’” is on a higher level, and contains very little of the same mate-
rial. It also contains many inequalities which are now published for the
first time, owing to the fact that many mathematicians generously offered
us their unpublished results.

The material of this book is divided into three parts. In the first part
— “Introduction” — an approach to inequalities is given, while the main
attention is devoted to the Section on Convex Functions.

The second and probably main part — “General Inequalities” —
consists of 27 sections, each of which is dedicated to a class of inequalities
of importance in Analysis. Special attention was paid to some sections,
for instance to Sections 2.11, 2.14, 2.16, 2.23, 2.25, and we believe that
they will be of benefit for further research.

Finally, the third part — ‘‘Particular Inequalities” — is aimed at
providing a collection of various inequalities, more or less closely inter-
connected, some of which are of considerable theoretical interest. They
are classified in a certain manner, although we must admit that this has
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not been done perfectly. Part 3 is, in fact, a collection of over 450 spe-
cial inequalities, and with a few exceptions we were able to add biblio-
graphical references for each one. Owing to lack of space, only a few in-
equalities are supplied with a complete proof.

As may be inferred from the title — “Analytic Inequalities” — wvari-
ous topics such as geometric inequalities, isoperimetric inequalities, as
well as inequalities arising in Probability Theory have not beenincluded.
We have also omitted inequalities for univalent and multivalent func-
tions, inequalities arising in Number Theory, inequalities which belong
to the Theory of Forms, inequalities such as BESSEL’s inequality, which
belong to the Theory of Orthogonal Series, as well as inequalities arising
in the Theory of Special Functions.

This book could be used as a postgraduate reference book, but under-
graduate students may also successfully consult individual sections of
it. Naturally “Analytic Inequalities” will be of use to those researching
in the Theory of Inequalities, but we believe it will also prove useful to
mathematicians, engineers, statisticians, physicists and all who come
across inequalities in their work,

If it is true that ‘‘all analysts spend half their time hunting through
the literature for inequalities which they want to use and cannot prove”,
we may expect that “Analytic Inequalities” will be of some help to them.

A large number of inequalities also hold under weaker conditions than
those given here. This is especially true of inequalities involving integrals
or positive integers.

It is a shortcoming of the book that the conditions under which strict
inequalities hold are not specified everywhere. The form of exposition
is not uniform throughout Part 2, in which the majority of results are
stated as theorems with proofs, while the others are given more descrip-
tively without emphasizing the theorem.

In the final phase of composing this book, Assistant Professor P. M.
Vasi¢ gave a considerable help in the classification of various topics, in
writing some individual sections or subsections, as well as in the critical
review of almost the whole text, and for these reasons his name appears
on the title page.

Professor P.S. BULLEN of Vancouver Universitvy (Canada) wrote the
Scction 2,15 on Symmetric Means and Functions which is included here
with some minor changes and additions.

Professor P. R.BEESACK of Ottawa University (Canada) was good
enough to read the whole manuscript as well as the proofs. His remarks,
suggestions and comments were very helpful.

Individual sections or subsections of “Analytic Inequalities” were
kindly read by Professors J, Aczgr, P.S. BuLLEN and D. Z. Djokovi¢ from
Canada, Professors Roy O0.Davies, H.KoBer, L.MIrsky and R.A.



VIII ' Preface

RaNKIN from England, Professor M. JANET from France, Professor
E.MakAI from Hungary, Professors J.MusiELAK and Z.Op1AL from Po-
land, Professors S.MArcus and T.Popoviciu from Romania, Professor
P.H.D1a~xanDa from Singapore, Professor A. V. BoyD from South Africa,
Professors R.P.Boas, K.Fan, D.C.B.MaRsH, J.RyFr and O.TAUssKy-
Topb from the U.S.A,, and Professors S. KuREPA, M. MaRjANOVI¢ and
S.B. PreSi¢ from Yugoslavia. The author greatly profited by their
criticism, comments and suggestions.

Without their assistance many misprints and even errors would have
probably remained unnoticed. In addition, some sections or subsections
have been largely rewritten as a result of BEESACK’s and KUREPA’s sug-
gestions. ‘

The young Yugoslav mathematician J.D.Ke¢k1¢ not only helped
with the translation of the manuscript into English, but also gave valu-
able comments on the text itself. He also compiled the subject index.

‘Dr. R. R. Jani¢ assisted in collecting documentational material.
Dr. D.Dj.Tos1¢, D.V.SLavi¢ and M.D.M1TRINOVIC helped in the tech-
nical preparation of the manuscript for print.

The author feels indebted to all those mentioned above for the
help which they have, in one way or another, given him.

The author is also indebted to a number of mathematicians and insti-
tutions for their extremely valuable assistance in furnishing the necessary
literature and regrets his inability to quote all of them.

The author will be obliged to readers for further bibliographical data
and also for any comments on the content and form of this book. The
author believes that it can be improved in various directions. Such com-
ments would be especially valuable as the author, with several associates,
is preparing a series of books treating individual classes of inequalities as,
for example, integral inequalities, inequalities involving polynomials,
trigonometric inequalities, inequalities involving special functions, etc.

The author wishes to thank Springer-Verlag for publishing his book
in their distinguished series “Grundlehren der mathematischen Wissen-
schaften™ and for their readiness to meet all requests.

Finally, we list the main books and sources related to inequalities in
various directions:

1. Harpy,G.H., J.E.LitTLEW00D and G.PéLya: Inequalities. Cambridge 1934,

314 pp.

Russian translation by V.I. LEvin, with Supplements by V.I. LeEviN and
S.B.STECKIN, Moscow 1948, 456 pp. (Supplements: pp. 361 —441),

A selection of the above Supplements by R.P.Boas appeared under the title:
Levin,V.I, and S.B.STeCKIN: Inequalities. Amer. Math. Soc. Transl.
(2) 14, 1—29 (1960).

Second English edition 1952, 324 pp.

Chinese translation of the second English edition, Peking 1865, X + 352 pp.
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2. Perrovié, M.: Raunanje sa brojnim razmacima. Beograd 1932, 193 pp.; 2nd
ed. 1969, 169 pp.
3. P6LvaA,G., and G.SzEGS: Isoperimetric Inequalities in Mathematical Physics.
Princeton 1951, XVI + 279 pp.
Naranson, I. P.: Konstruktive Funktionentheorie. Berlin 1955, XIV -+ 515 pp.
AHRIEZER,N.I.: Theory of Approximation. New York 1966, X + 307 pp.
TimaN, A F.: Theory of Approximation of Functions of a Real Variable (Rus-
sian). Moscow 1960, 624 pp.
7. BEckEnBAacH,E.F,, and R. BELLMaN: Inequalities. Berlin-Heidelberg-NewYork
1961; 2nd ed. 1965, 198 pp.
Studies in Mathematical Analysis and Related Topics. Stanford 1962, 447 pp.
Margus, M., and H. Minc: A Survey of Matrix Theory and Matrix Inequalities.
Boston 1964, 180 pp. /
10, Mitrinovié, D. 8. Elementary Inequalities. Groningen 1964, 159 pp.
11, WarLTER, W, Differential- und Integral-Ungleichungen. Berlin-Gbttingen-Hei-
delberg-New York 1964, XIII 4+ 269 pp.
12. MitriNovié, D. S : Nejednakosti. Beograd 1965, 240 pp.
13. HarDY,G.H.: Collected Papers, vol. 2. Oxford 1967, pp. 379 —682.
14. Inequalities (Proceedings of a Symposium held at Wright-Patterson Air Force
Base, Ohio 1965), edited by O.SHisHA. New York-London 1967, 360 pp.
15. Szarski, J.: Differential Inequalities. Warszawa 1967, 256 pp.
16. MitriNovi¢, D.S., and P.M. Vasié: Sredine. Beograd 1969, 122 pp.
17. BoTTEMA,O., R.Z.DjorDpjEVIS, R.R. JANIE, D.S. MITrINOVI¢ and P. M. Vasié:
Geometric Inequalities. Groningen 1969, 151 pp.

S o
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Belgrade, May 1970 D.S. MrtriNnovIE

Organization of the Book

Besides the Preface, Notations and Definitions, and the Indexes, the
book contains three parts, each of which is divided into a number of
sections, and some of these into subsections. The numeration of theorems,
definitions, remarks and formulas is continuous throughout a subsec-
tion, or a section which does not contain subsections. If the theorem
referred to belongs to the same subsection, only its number is given,
while if it belongs to another, the numbers of the part, section, sub-
section and of the theorem are given. Similar notations are used if a sec-
tion is not divided into subsections.

There are many cross-references in the book. So, for example, 2.1.4
means Part 2, Section 1, Subsection 4.

As a rule, bibliographical references are quoted after each subsection
if it exists, or after each section, if it does not. Sections 1.1, 1.4, 2.15 and
2.25 present exceptions to this rule. ‘

The abbreviations of the cited journals are given according to Mathe-
matical Reviews,
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On Notations and Definitions

The notations and concepts used throughout the book are more or
less specified. The reader is assumed to be familiar with the elements of
Mathematical Analysis and with the basic concepts of GGeneral Algebra and
Topology, and since the standard notations were used, it was believed un-
necessary to define all of them. We shall, therefore, list only a few of them.

(x] denotes the integral part of the real number x.

If a > 0, and if p/q is any rational number, with $ and g both integers
and ¢ > 0, then a?/? means the unique positive ¢g-th root of a?.

If  is a real number, then (f(x))” is often denoted by f(x)", and
(/@ (@) by f* (1)

If A and B are two arbitrary sets, then the set 4 X B is defined by

A X B={(a,b)|ac A and b€ B}.

_ R" denotes the n-dimensional vector space of points x with coordinates
X1+, ¥, According to whether the coordinates are real or complex,
R* is called the real or the complex #-dimensional space.

A vector or a sequence is called positive (negative) if all its coordinates
are positive (negative).

The scalar, or the inner, product of two vectors a = (a,,..., a,) and
b= (by,..., b,) is the number (a, b) =a-b=a,b, +-+ a,b,, where
51, ..., b, denotes the complex conjugates of b,,..., b,.

For two sequences a = {(a,,..., a,) and b = (&,,..., b,) we define the r
sum and product as follows:

a+b=(a +b,...,a,+0,), a-b=(aby,...,4a,b,).
Their difference and quotient are defined analogously, provided in the
latter case that'b,% 0 for ¢+ = 1,..., n.

C [a, b] denotes the set of all real or complex functions continuous on
the interval [a, &].

L?{a, b] denotes the set of all real or complex functions f such that f#
is integrable on [a, b].

||7]| denotes the norm of f with respect to a certain space.

n
If A =(a;)isann X »n matrix, thentr 4 = 3 a;.
sl



1. Introduction

1.1 Real Number System

1.1.1 Axioms of the Set of Real Numbers

A systematic and a detailed construction of the real number system
can be found, for example, in the book 1] of E. LANDAU, or in the book
[2] of L. W. CoHEN and G. EHRLICH.

We shall, in a manner similar to that of J. DIEUDONNE [3], give
definitions and the system of axioms of the set of real numbers together
with a number of theorems which follow directly from these axioms.
Their proofs are more or less simple and will be omitted.

The set of real numbers is a nonempty set R together with two
mappings

(x,V>x+y and (x,¥) > xy

from RX R into R, called addition and multiplication respectively, and
an order relation x < y (also written y > x) between elements of R so
that:

1° R is a field,

2° R is an ordered field,

3° R is an Archimedean ordered field,

4° R is complete, i.e., R satisfies the axiom of nested intervals.

Since this monograph deals with inequalities, we shall consider in
some detail only the order properties.

1.1.2 Order Properties of Real Numbers

In all relations below x, v, z are arbitrary elements of R.
By “R is an ordered field” we mean that the following axioms are
satisfied:

2.1° x<yandy < zimply ¥ < z2;
2,2° x < y and y < x is equivalent to x = y;
1 Mitrinovié, Inequalities
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2.3° for any x and v, either x < yor y < x;
2.4° x << yimpliesx + 2 < vy 4 2
2.5° 0 < xand 0 < v imply 0 < «xy.

The relation “x <y and x == 9"’ is written x < v, or ¥ > x. The
relation x << y is equivalent to “x <<y or x = ¥"".

Let a << b. The set {x | @ << x < b} is called the open interval with
end-points @ and b, and written (a, b). The set {x | @ << x < b} is called
the closed interval or the segment with end-points a and b, and written
[a, b]. For a = b the notation [a, 4] denotes the one-point set {a}. By
[a, b) and (a, b] we denote the sets {x |a < x < b} and {x | a < x < b}
respectively, and these are called semi-open intervals.

Using the axioms 1°—4° in 1.1.1, and in particular, using the axioms
given under 2.1°—2.5° we can prove the following important theorems.

Theorem 1. For any x, v € R one and only one of the three relations x < v,
x =17, x> v holds.

Theorem 2. If “‘x <yandy << z’,or “x<<vyand y < 2’, then x < 2.

Theorem 3. Any finite subset A of R has the greatest element b and the
smallest element a, thus a < x < b for every x € A.

Theorem 4. Ifx = (x, ..., x,) and y = (yy, ..., V,) are two finite sequences
both of n real mumbers, such that x, < y, for k=1, ..., n, then

By X, Y A A Y,

If, in addition, x;, < vy, for at least one index k, then

e e A S e i il D

A real number x is called positive if x > 0; negative if x < 0. A real
number x is called nonnegative if x >> 0, and nonpositive if x << 0. If
x> 0and vy > 0, orif x << 0 and v < 0, we say that x and y are of the
same sign. If x > 0andy < 0, orif x << 0Oand y > 0, we say that x and y
have opposite signs.

Theorem 5. If x,, ..., x,, ts a sequence of n real numbers and if vy, ..., Y,
is a sequence of n nonnegative real numbers such that v, < x, for k =
1,..., n, then

yl...ynle...xn_

Theorem 6. If x + <y 4z (x +2<y -+ 2) for at least one z€ R,
then x < y (x < ¥).
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Theorem 7. The relations x <y, 0 <y —x, x —y < 0, —y << —x are
equivalent. Same results hold +f << is replaced by <.

For an interval (a, 8), with a << b, the positive number & — g is called
the length of the interval.

Theorem 8. Let [, ..., ], be n disjoint intervals, and let I be an interval
containing \n/ J3 Then, 1f 1, 1s the length of [y, for R =1, ..., n, and if
lis the leng’:,‘zlof I,
b4+, <0
For any real number x, we define
%] = x for x>0, and |x| = —x for x < 0.

Hence |x| = max (x, —x) and |—x| = |x|.
|x| is called the absolute value of x.

lx] = 0 is equivalent to x = 0.

For x == 0 we write

wr =2 (|¢| + %) (positive part of x),

X =

po| = o]

(¢l — %) (negative part of x).

We also write 0 = 0— = 0.
Using the above notations we have

¥t =x if x>0, x*=0if x<0;
x~=01if x>0, ¥=—x if x<O0;
x=xt—x, [x]=a"+x".

Theorem 9. If a > 0, then |x| < a is equivalent to —a < x <<a, and
x| < ato —a<<x<a.

Theorem 10. For any pair x, v of real numbers,

(1 lo + 9] < o] 4 |y,

(2) ol — ]| <% + 9],

and, by tnduction,

(%) 12+ e b, x| e A ]

Equality in (1) holds if and only if x = 0, or y = 0, or if x and y have
the same sign,

Equality in (2) holds if and only if x =0, or y = 0, or if x and ¥
have opposite signs.
1"
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Equality in (3) holds if and only if all the numbers x4, ..., x, not
equal to zero have the same sign.

Theorem 11. For any real numbers x, y
(] — )2 < |22 — 93],

with equality if and only if x = 0, or v = 0, or if the absolute values of x

and vy are equal; L L
Vil = Vil < Vs —l,

with equality if and only if x =0, o0r y =0, or x = y.
Theorem 12. If z > 0, then x << v implies xz < yz.

Theorem 13. The relations x << 0 and y > 0 imply xy << 0. The relations
x << 0and vy < 0imply xy > 0. Same results hold with < replaced by <.
In pavticular, x2 > 0 for any real number and x* > O unless x == 0.

Theorem 14. If x > 0, then 1/x > 0. If 2> 0, then x < y is equivalent
to xz < yz. The relation 0 < x < v is equivalent to 0 < 1y < 1/x.

A real number b is said to be a majorant (resp. minorant) of a subset
X of the set Rif x <b (resp. b <x) for every x€ X. Aset X CR
is said to be majorized, or bounded from above (resp. minorized, or
bounded from below) if the set of majorants (resp. minorants) of X is not
empty. If X is majorized, then —X = {—« | x€ X} is minorized, and
for every majorant b of X, —b is a minorant of —X, and vice versa.
A set which is both majorized and minorized is said to be bounded.

Theorem 15. For any real number a >0 and a == 1, there exists the
function x> a® from R onto the set of all positive numbers such that:

1° a*tY = a*. a¥ for any x, y € R,
2° a":_—l,
FPrx<yosad<difa>l,adx<yea*>a’if0<<a<< L

The inverse of the function x + a*is denoted by x +> log, x and called
the logarithmic function.

Remark. There is the unique number ¢ > 1 such that (e*)” = ¢* for any x¥€ R.
This number e is transcendental; ¢ = 2.7182818284... The function x> e* is
called the exponential function and sometimes denoted by exp x. In fact e =
lim {1 4 #)l/%,
>0
Theorem 16. Ifa > b > 0 and x > 0, then
a->b.
Equality holds if and only if a = b or x = 0.
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Theorem 17. Let a << b and let f and g be two real and piecewise continuous
functions on [a, b such that f(x) << g(x) for all the poinis of continuity of §
and g (except, perhaps, in a finite number of poinis). Then

ff(t) dt < [g(®) dt.

Equality holds if and only if f(x) = g(x) i all the points of continurty
of fand g.
In pariicular, if f is a piecewise continuous function on [a, b1, f(x) > 0,

b
except at the poimts of discontinuity of f and f f()dt =0, then f(x) =0

on [a, b] except at the points of discontinuity.

Concerning Theorem 17, see, for example, the book [41 of J. Diru-
DONNE,
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1.2 Complex Number System

The field of complex numbers is defined as the set R X R of all ordered
pairs (x, ¥) of real numbers with

(%1, 1) + (%3, ¥3) = (%3 + %y, ¥ + ¥o) as addition,
and
(%1, Y1) * (%, ¥a) == (%% — V1Va, %1¥3 + %p¥,) as multiplication.
Any complex number z = (¥, y) is written in the form z = x + iy,
where ¢ = (0, 1), and any real number x is identified with the complex

number (x, 0).
For z = x -+ 7y, the complex conjugate of z is defined by 7 = x — iv.

We have zZ = #% -+ 42, and the nonnegative number |z| = /52 + 42
is called the modulus of z.
Using the notations

Rez =3 (z+72), Im z = (2 — %),
we get
(1 l2; + 232 = (2 + 29) (71 + 25) = 2% + (1% + 72) + %7,
‘ = |51|* + |%|* + 2 Re(nz,),

where z; and zy are arbitrary complex numbers.
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Since
@) Re z < |z] = [(Re 2)® + (Im 2)*]'/2,
we have
(3) Re (z17)) < [2%3| = |a| |2].

From (1) and (3) follows
171+ 2 < [0 + |5l 4 2 g 2] = (7] + 2]

ie.,
C) 17+ 2] < o] + |zl

Equality holds in (4) if and only if there is an equality in (3). Since in
(2) there is equality if and only if zis real and nonnegative, we infer that
2,25 = 0 is necessary and sufficient for equality to hold in (3), and also
in (4).

If 2, and z, are nonzero, the condition 2,2, > 0 is equivalent to
]zzlzgL > 0, i.e., Z—l > 0. This has the following geometric interpretation

2 2

in the complex plane: the points z; and z lie on the same ray issuing
from the origin.

Inequality (4) is usually called the triangle inequality. The following
proposition which gives the conditions of equality in the triangle inequa-
lity is also important: '

In the case 2; &= 0 and 2, &= 0 equality holds in (4) if and only if
zy = 1z, with £ > 0.

Let us prove that
(5) 521—22|_>—H21]_132H-

From z, = (2, — 2,) + 2%y, using the triangle inequality (4), we find
(6) ] — |2g] <21 — 2]

Similarly, we obtain
(7) o] — |2 < |2 — 2.

Inequality (b) follows from (6) and (7).

Replacing z, with —z, in (b), we have

|5+ 29| = ||ag] — |l |-
Combining this and the triangle inequality, we find
o] ~ Jaal | < 21 + 2] < [} + |zal

We shall now examine the conditions of equality in (), i.e., when
(8) |lea] — leal | = 121 + 24
holds.
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If (8) is valid, then
(2] = [2])* = |21 + 2 2 = |F + {5 + 2 Re (7),
and so
Re (%) = — |l = — 5.
Hence it follows that Re(z,2,) < 0, and that
(Re (215_2))2 = (Re (313\2))2 + (Im (213_2))2,

i.e., Im(%2,) = 0. Thus 2,2, is a real nonpositive number, i.e., 242, < 0.
Conversely, if 2,2, < 0 we have

2y + 22 = |21* + [22® + 2 Re (242y)
= |7|? + [%* + 2242,
= [5? + |® — 2 |z [z)]
= (2] — |zal)?

and hence we get (8). Consequently, (8) is equivalent to zz, < 0.
If z; and 2, are nonzero, the condition 2z, << 0 is equivalent to

|2,/ % < 0, i.e., Z—: < 0. This has the followihg geometric interpretation

in the complex plane: the points 2, and z, lie on the same straight line
through the origin and are on opposite sides of the origin.
It is easy to prove by induction the more general inequality

®) R A A e A
We shall only examine under which conditions equality holds in (9).

Assume that 2z, &= O for k=1, ..., n I

10 x|+ F =l F g =G+ )+ 2

then
2] 4+ o Sy o] 4 g e

<lal 4 g + o] + 0+ ]z
This is equivalent to

2] + 2] < 2y + 2| < o] + |2l
and hence
|21 + 2| = |2y + 2.
Thus 2,2, > 0 and, since 22, &= 0, we have z,/z, > 0. Similarly, we
conclude that

(11) 250 for kj=1,...,n.
)
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Conversely, if inequalities (11) are valid, we have

Izl_!r—..._!r_znl_-:]zll ]_+..:£++j?_
1 21

— 1 oL __‘_z”

| 2,
=l (14 ]2 | 2])
1

= iz| + -+ + |2,
Accordingly, by the assumption that z, = 0 (¢ = 1, ..., #), equality
(10) is true if and only if inequalities (11) are satisfied, i.e., if and only
if the points 2, &= 0 (k= 1, ..., #) lie on the same ray issuing from the

origin.

%
4

1.3 Monotone Functions

In what follows let / be a real-valued function defined on an interval
ICR,

Definition 1. 4 function f is called nondecreasing on I if for each pair of
different points x, x, € I, the condition

(% — %) (f (¥y) — f(xz)) =0
18 valid, and increasing if the following strict inequality

(v — %) (f (1) — f(xg)) > 0
holds.

Definition 2. A function f is called nonincreasing on I if, for each pair of
different points x4, %, € I,

(1, — %) (f () — F(m)) <0,
and decreasing if

(g — %) (f (x4) — f(xz)) < 0.

Definition 3. If for a function { either Definition 1 or Definition 2 is
valid, then f is called a monotone function.

Clearly, if f 1s nondecreasing, or increasing, then —f is nonincreasing,
or decreasing respectively. We shall, therefore, give only the properties
of nondecreasing functions, since they can be carried over to other mono-
tone functions:

1° Let f and g be nondecreasing functions on I. Then f + g have the
same property.

2° If f is a nondecreasing function and if 4 is a nonnegative real
number, then Af is nondecreasing.
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3° If f and g are nonnegative and nondecreasing functions, then fg is
also a nondecreasing function.

4° If f and g are monotone functions (without further specification),
it cannot be concluded that f + g is monotone.

5° If f is a positive and a nondecreasing function, then 1/f is non-
Increasing.

In practice we often use the following criterion for monotony:

Theorem 1. If { is a diffeventiable function on I, it is monotone on I if
and only if the sign of ' remains the same throughout I. In particular, if
f' (%) > 0, except maybe on a set of points of I which does not contain any
interval of I, then and only then f is an tncreasing function; if f'{x) > 0,
then [ is nondecreasing; if f(x) << 0 on I, then f is a decreasing fumction
and for f' (x) < 0, [ is nonincreasing.

The above statements immediately follow from the definitions of
monotone functions.
The following result is of some use in Analysis:

Theorem 2. If fis a nonnegative, nondecreasing and integrable function on

1 .
[0, a), then x +—> —;ff(u) du is a nondecreasing function on [0, al.
i

A generalization of Theorem 2 is

Theorem 3. Let f and g be respectively nonnegative nondecveasing, and
nonnegative nom’ncreasz’ng integrable functions on [a, b]. If we put F (x) =

[Hw)du, G(x fg u) du, h(x) = F (x)/G (x),and S = {x | x € [a, b], G (x)
;}: 0}, then h is defmed and nondecyeasmg on S.

The above theorem, as well as the following result, is demonstrated
in [1] by T. E. MoTT.

Theorem 4. If f is a nondecreasing nonnegative integrable function on
(@, b], then

for every x € (a, b).

_/For other results in the above direction see the interesting papers [2]
of R. M. REDHEFFER and (3] of R. P. Boas.
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There exist many concepts of monotony from which we mention in
particular cyclic monotony defined and explored by S. N. BERNSTEIN
in a multitude of papers.

Definition 4. If two functions [ and g ave either both wnondecveasing, in-
creasing, nonincreasing or decveasing, we say that they ave monotone in the
same sense.

By analogy with the definition of monotone functions, we define
monotone sequences:

Definition 5. For a sequence of veal numbers a = (a4, ..., a,) we say that
1t is nondecreasing if for all k=1,...,n — 1 we have a, < a,,y and
that it 1s increasing if ap < a4 for k=1,..., n — 1,

Definition 6. For a sequence of real numbers a = (ay, ..., a,) we say that
it is nonincreasing iof for all R =1, ..., n — 1 we have a, > a,, and that
it 15 decrveasing if ap > a4 fork=1,...,n — L.

Definition 7. If for a sequence of veal numbers either Definition 5 or
Definition 6 1s valid, we say that the sequence in question s monotone.

In Definitions b, 6, 7 we supposed that the sequences were finite,
Similar definitions are used for infinite sequences.
Finally, we give the definition of similarly ordered sequences.

Definition 8. Two sequences of real numbers a = (a4, ..., a,) and b =
(by, ..., b,) are similarly ovdered if and only if for each pair (3, 1), where
1,1=1,...,n, we have

(a; — ay) (b; — b) = 0,

] P
and oppositely ordered if and only if this imequalily is reversed.

References

1, Mott, T. E.: On the quotient of monotone functions. Amer. Math. Monthly 70,
195—196 (1963).

2. REDHEFFER, R. M.: Remarks about quotients. Amer. Math. Monthly 71,
69— 71 (1964).

3. Boas, R. P.: More about quotients of monotone functions. Amer. Math.
Monthly 72, 59—60 (1965).

1.4 Convex Functions

1.4.1 Definitions of Jensen Convex Functions

In this section I denotes an interval (a, b), I a segment [4, b], and f
denotes a real function defined on I or 1.
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Definition 1. A function f is called convex in the JENSEN sense, or J-convex,
on I if for every two points x,y € I the following tnequality

1S valid.

Definition 2. 4 [-convex function f is said to be strictly J-convex on I if
for every pair of points x, yC€ I, x == vy, strict inequality holds in (1).

Definition 3. A function f is called J-concave (strictly J-concave) on I if
the function x> —f(x) is J-comvex (strictly J-convex) on I.

Remark 1. Sometimes, inp‘rthe literature, functions satisfying the conditions of
Definition 1 are called J-nonconcave and those which are defined as J-concave
are called J-nonconvex, whereas strictly J-convex and strictly J-concave func-
tions are called J-convex and J-concave, respectively,

By analogy with J-convex functions we define convex sequences, as
follows:

Definition 4. The real sequence a = (ay, ..., a,) is convex if for all kB =
2,...,m—1
2ay S ap_y o+ By

A similar definition can also be applied if the sequence is infinite.

Theorem 1. Let f be [-convex om I' and g J-convex onm I, and let T =
I' NI under the condition that I has at least two points. Then:

1° x> max (f (x), g(x)) is J-convex on I;

2° x> h(x) = f(x) + g(x) is J-convex on I;

3° x> f(x) g(x) is J-convex on I provided that both f and g are positive
and nondecreasing functions on I ;

4° x> h(x) = g(f(x)) is J-convex on I’ provided that g is a nondecreas-
wng function on 1" and [f(a), f(B)] T I".
Proof. The assertion 1° follows from

max (¥ + y, # + v) < max(x, ¥) + max(y, v),

which holds for all real numbers x, y, #, v.

For x, v € I we have

h(f__tz) =12 +e(*5Y) <[O+10) g) +80) b +E0)

which proves 2°,

|
‘
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The assumption that f and g are nondecreasing on I implies

() — 7o) () —g@) <0 (x,y€]),

1.€.,
(2) Flx) g +70) glx) < flx) g(x) + Fly) ().

If we multiply the following inequalities:
¥+ Y\ ¥+ f) ¥4y gx) + &)

where f and g are, by assumption, positive, then applying (2), we find the
desired result 3°,

Since g is nondecreasing on I'”, from

F(EE) <L) HI0) (v, ye )
we get
S e e

which proves 4°.
Next, we prove an interesting inequality for J-convex functions
which 1s, 1n some sense, the best of its kind.

Theorem 2. Suppose that f is J-convex on I. Foy any points x,, ..., %, € I

and any rational nonnegative numbers vy, ..., v, suchthatry + - + v, =1,
we have
® H( Sree) < Sriw.

i=1 i=1
Proof. Case 1: r; = % (i =1, ..., n). In that case (3) becomes

1 < 1
(4 f(-,—; Zx,-) < 3f).

i=1 i=1

The proof of (4) is by induction on #. For » = 2, (4) holds because it
agrees with Definition 1. Suppose that Theorem 2 holds for # = 2

where % is a natural number. For %, ..., %, €1 and for m = 2¢+1 —
2. 2% — 9% we have

1 2 1 2
¥+ 47, ?mé‘lxm + 7m§1”m+n
e R

n L ” n 2n
(5 Zm) +0(5 Btmen)  Zfo+ Zfmin  ESw
Y S ’ S. - 24 = 24 .
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Thus (4) holds for every natural number # € {2, 22, 23, ...}
Let us prove that if (4) holds for » > 2, then it also holds for » — 1.

Let %5,...,%, 1€ I. For numbers Ky, eees Xy_yand x, = ﬁ (% + -
-io 4 x,_4) (4) holds, i.e.,

(5)

wy e x,
T S +f( "1 )

The left-hand side of this inequality, after rearranging, becomes

f(xl 4o x”_l)’

n—1

so that () reads

f(ﬁ+...+xw1)g_71(f(x1) +‘._. + H,_y) +%f(x1+...

n— 1

which yields

f(xl NP +xn_1) <f(xl) + e+ ) .

n—1 — no—1

Therefore, if (4) is true for » > 2, it is also true for n — 1.

This completes the proof of Theorem 2 for the above case.

Case 2: Since 74, ..., r, are nonnegative rational numbers there is a
natural number » and nonnegative integers 4, ..., p, such that m =

by + - + p,and ”a=%(i= 1, ..., n). Now, by Case 1, we have

((x1+“'+’f1) e

+(xn+---+xn))
m

(6) f
o W) e ) A () o 4 )

— m >

where in the first bracket there are $, terms, ..., in the n-th bracket 2,
terms, Thus (6) reads

f(% sz) < S2 ).

Remark 2. The definition of a J-convex function and Theorems 1 and 2 apply for
any real valued function f defined on a subset J of an #n-dimensional Euclidean
x4y 1

) .

space, provided that T has the mid-point property, ie., x, ¥ € I implies

). L. W. V. JENSEN (see [1] and [2]) was the first to define convex
functions using inequality (1) and to draw attention to their impor-



14 1. Introduction [Ref. p.23

tance. He also proved Theorem 2. His impression, which we quote here,
was completely justified: “Il me semble que la notion de fonction convexe
est & peu prés aussi fondamentale que celles-ci: fonction positive, fonction
croissante. Si je ne me trompe pas en ceci, la notion devra trouver sa
place dans les expositions élémentaires de la théorie des fonctions réelles’
(see [2], p- 191).

However, even before JENSEN, there were results which refer to convex
functions. So, for example, in 1889 O. HOLDER [3] proved inequality (3)
under the condition that f is twice differentiable on [ and that /' (x) > 0
(ie. fis convex, though this was not explicitly specified in the article). Let
us also mention a result from 1893 due to O. SToLZ [4] on the existence
of left and right derivatives of a continugus function which satisfies (1).
This result is formulated in Theorem 1 in 1.4.4. We agree with T. Popro-
VICIU (see [D], p. 48) that it seems that Storz first introduced convex
functions by proving the result just referred to. A result of J. HADAMARD
(6] from 1893 also belongs to the period which precedes the publication
of JENSEN’s articles: If a function fis differentiable, and if its derivative

is an increasing function on I, then for all xy, %, € I (%; == %),

#y + Xy 1 7
(%) < szt @
(see also p. 441 of [T7).

1.4.2 Continuity of Jensen Convex Functions

If {is a J-convex function on I, then, by Theorem 2 in 1.4.1,
(1) flhe + (1 — A) y) < M (%) + (L — 4) F()

holds for all %,y € I and for all rational numbers A € [0, 1]. Hence if f
is continuous, then (1) holds for all real numbers A € [0, 1].

However, a J-convex function fon T is not necessarily continuous on 1.
We give an example of such a function (see [7]). Let f be any discontinuous
solution of CaucHY’s functional equation

fx +y) =1 + /()

(the existence of such solutions was proved by G. HameL [8]; for the
general solution of this functional equation see J. AczEL [9]). The func-
tion g defined by g(x) = max (x2, f(x) + x®) is J-convex and discon-
tinuous.

Furthermore, the function f defined by

f =5 (—l<z<l), FH=1)=/@1) =2

is J-convex on [—1, 41], continuous on (—1, 1) but it is not continuous
at the end points of the interval.
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There are many results which under various conditions on a J-convex
function guarantee its continuity. We mention only some of them. One
of the most important results is obtained by use of (1) and it is (see
JENSEN [1], and F. BERNSTEIN and G. DogeTscH [10]):

Theorem 1. If a [-convex function is defined and bounded from above on
I, then it is continuous on 1.

This result was generalized by W. Sterpifisk1 [11] who proved that
a J-convex function f which is bounded from above by a measurable
function (in the Lebesgue sense) is continuous. A. OSTROWSKI [12] ex-
tended that result by proving that a J-convex function which is bounded
on a set of positive measure is also continuoussS. KUREPA [13] observed

that a J-convex function f is bounded on a mid-point set -%— (T +7T) =

{t 42_ |, s€ T} if it is bounded on 7. Hence if a set T is such that the

interior measure of % (T + T) is strictly positive then boundedness of

f on T implies its continuity; if T is of positive measure sois 5 (T" + T).
An interesting fact in that connection is that there are sets of measure

zero for which T 4+ T is an interval. For some further results i this
direction see R. GER and M. Kuczma [14].

1.4.3 Convex Functions

Definition 1. A function f is called convex on a segment I if and only if
(1) Fox + (L =2 9) S M) + (L= N )

holds for all x, v € I and all veal numbers A€ [0, 1].

A convex function f on I is said to be strictly convex if strict inequality
holds in (1) for x == y.

Obviously a convex function is J-convex and every continuous
J-convex function is convex.

Remark 1. A function f is convex on I if and only if

px + qy pf(x) + qf(%)
@ f(p+q)5 b +4q

holds for all x, y € I and all real numbers p, ¢ > 0.

The geometric meaning of strict convexity of a function fon I is that the line
segment on [ joining (a, f(a)) and (b, f(b)) lies above the graph of f.
_ Bince this geometric interpretation replaces the analytic condition of convexity
it is often taken as a definition of a convex function (see N. BoURBAKI [15]).
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Theorem 1. A function f: I — R is convex on I if and only if for any three
points xq, %y, %y (% < %o < %3) from I the following inequality holds:

%y flxq) 1 >
Xy f(Hg) 1| = (%5 — %) f(%1) + (%3 — %) f (%5} + (wp — %) f(x5) = 0.
Xy [{xg) 1

(3)

Proof. Putting in (1) x = %y, ¥ = %3, Ax + (1 — A} ¥y = x,, after rearrang-
ing, we get (3). Conversely, putting in (3) x; =, x, =Ax - (1 — 4} y,
xg = v, we get (1) with the condition x < y. If x >y, then putting
X, =179, ¥, =Ax+ (1 — A)y, x3 =12, (1) is obtained again.

Consider %, %,, %,€ I, where x, <C %, << %5, and the values f(x,),
f(%5), f(x3). The area P of the triangle whose vertices are (x4, f(x,)),

(%a, f(%2)), (%3, f(x3)) is given by

% f(%) 1.
P=|x f(x) 1].
x3 flxg) 1

The function whose graph is represented in Fig. 1 is convex: in that
case P > 0. In Fig. 2 we have P < 0 for the case of a concave function.

y Y M,
E ; M
N 3
M M
", 3 ]
My
0 Xy X X3 X ] X X; Xy X
Fig. 1 Fig. 2
Remark 2. By rewriting (3), we find that f is convex if and only if
* X, X,
" £ fo o fm

(%1 — Ha) (%1 — #3) (%3 — #q) (¥g — ) (%5 — A7) (¥3 — #p) =

Inequality (4) is often written in the form

(5) [¥1, ¥g, %3: f1 =0,

where in general [x, #,, ..., #,,; f] is defined by the recursive relation
. [Hgr vons %3 f1 — [#1, vy %y 15 f] .
[xl, veey xﬂ'f] = x” _ x]_ »
[:f] = f(#).

L. GALvANI [168] was the first to define convex functions by inequality (5).



Ref. p.23] 1.4 Convex Functions 17

Definition 2. 4 function {: I R is called convex on I of order n > 2
if and ondy if, for all %y, ..., %, o€ I,

[xl,...,xn“;f] > 0.

For convex function of order # results similar to those listed about the
continuity of convex functions have also been obtained (see [5], [17] and

[59]).

1.4.4 Continuity and Differentiability of Convex Functions
O. Storz [4] has proved the following result: If f is a continuous

function on I and if f satisfies

X%+ flx) + fly)

then f has left and right derivatives at each point of 1.

Theorem 1. Suppose that f is a convex function on I. Then: 1° f is con-
tinuwous on I; 2° f has left and vight devivatives on I and 3° f_(x) < f (x)
for each x € 1.

Proof. We shall give a geometric proof of the first part of this theorem
(following W. RupIiN: Real and complex analysis. New York 1966,
pp. 60—61). Suppose that a << x; < %, < x3 < %, << b and denote the
point (x;, f{x;)) by X, (¢ =1, 2, 3, 4). Then X, is either on or below the
line which connects X, and X,, while X is either on or above the line
which joins X, and X,. Furthermore, X is either on or below the line
which joins X, and X,. When x; — x,, we have X; — X, i.e. f(x3) = f(%,).
Applying the same procedure to the left-hand limit, the continuity of f
follows.

Notice that this theorem states the fact that a function convex

on I is continuous only on I and need not be continuous on I. Indeed,
the function f(x) = 0 (0 < x<C1) and f(1) =1 is convex on [0, 1] but
it is not continuous on that segment.

The following theorem provides a criterion for convexity:

Theorem 2. If the function f has a second derivative in the interval I, then
F'(%) >0 for xc1

15 a necessary and sufficient condition for the function f to be convex on thal
interval.

Proof. The condition is necessary. Indeed if the function f is convex, then
for any three distinct points x,, x4, #3€ I inequality (3) in 1.4.3 holds. This
2 Mitrinovi¢, Inequalities
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inequality can be written in the form
flrg) — flxs)  flxg) — flx)

Ko — X, Xy — X
3 2 2 1
>0,

which implies ' (x4) > 0 for all x,€ 1.

The condition is sufficient. Let x; and x, (x; << x,) be two arbitrary
points of the interval (a, 5). Applying TaAYLOR’s formula in a neighbour-

hood of the point % (%, + x,), we get
g =145 4 (=) (29 + 4 (s - 245
fom) = F(B5) o+ (= 25 2) 7 () 1 5 (m - 2E2) 178,

where §, € (xl, y%jg) and &, € ({1_4214’2, xz).
From there we get

()  LEEIEE ) e a2 () + (6]

| = o]

Since ' (&) > 0 and f" (&,) > 0, from (1) we get

[ +70) f(ii;.fs) (x1, %2 € I)

which means that the function f is J-convex. Since the second derivative
exists, f is continuous on I, and therefore, J-convexity implies convexity
as defined by Definition 1 of 1.4.3.

This completes the proof.

Similarly it can be shown: If /" (x) < 0 on I, the function /is concave
on I.
The following, more general, theorem also holds:

Theorem 3. 1° A function f is convex on I if and only if for every point
f(x) — f(xo)
X

0

%o € I the function x> is nondecreasing on I.

2° A differentiable function f is convex if and only if f is a nondecreas-

ing function on I.

8° A twice differentiable function f is convex on I if and only if j* (x) > 0
for all x€ I,
1.4.5 Logarithmically Convex Functions

Definition 1. A function f is logarithmically convex on I, if the funciion f
is positive and the function x +» log f(x) is convex on I.
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Theorem 1. If f, and f, are logarithmically convex functions on I, then
the functions x +— f,(x) + fo(x) and x > f,(%) [, (%) are also logarithmically
convex on 1.

P. MoNTEL [18] has proved the following theorem:

Theorem 2. A positive function | is logarithmically convex if and only if
x> e f(x) is a convex function for all real values of a.

For a development of the results of P. MONTEL see particularly the
papers [19] and [20] of G. VALIRON.

Theorem 3 (Three lines theorem). Let f be a complex-valued and an ana-
lytic function of a complex variable z = x -+ iy. Suppose that f is defined
and bounded in the stripa < x < b, —oco <y << +o0. LetM:[a,b] >R
be defined by

ME = sup |fx+)].

-~ OQ <Y<+ 00

Then M 1s logarithmically convex on [a, b].
This theorem 1s due to M. RIEsz,

Theorem 4 (Three circles theorem). Let f be a complex-valued and an
analytic function in the annulus domain a < |z| << b. Then log M (7) is a
convex function of log v (a < r < b), where

M(r) = max|f(z)].

lz|=r

This result is due to J. HApDAMARD.

Theorem 5. Let f be a complex-valued and an analytic function in the
annubus domain a < |z < b. Let 1 < p < + oo. Then log M,(r) is a
convex function of log r (a << r << b), where

1
2n ) “5
M,(r) = (()f |f (re”?) | dtp) .
This theorem is due to G. H. HArRDY.

Theorem 6. Let | be a complex-valued and an analylic function in the
annulus domain a << |z| << b. Let 0 << x < 1 and

M. () = max & —f@l
i nlmin=r |4 — 2

Then M, (r) is a convex function of log r (a << r << b).
2%
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Concerning Theorems 3—6 and their generalizations, see [21], [22]
and [23].

1.4.6 Some Extensions of the Concept of Convex Functions
We have already given the definition of a convex function of order =,
and now we shall quote some results which extend the concept of a

convex function.
I. E. OvCARENKO [24] introduced the following definition:

Definition 1. A bounded function f is convex on I with respect to the function
g if for every x € I there is a number 6, > 0 such that

Hx) glx — %g) + (%) g(xg — %) + flxd g( — %) <O
for %, < x < xg and xg — %, < 0,.

For g(x) = x, this definition reduces to the definition of convex
functions.
In the book [25] of T. BoNNESEN we find:

Definition 2. Lef g: R?— R be a continuous function on the square
(@ by x{a, b) and let &« < g(xy, %) <1 — o where o (0 < <<1) is a
fixed number. A function f s convexoidal on [a, b] 1f for all x; < x,,

}'(xlg (%1, %) + %5 (1 — g(xy, xz))) < g%y, %g) Fxq) + (1 — g (%, xz)) f{%5).
For g(x,, x,) = 1/2 this definition yields the definition of J-convex
functions.
The following theorem holds for convex functions (see, for example,
M. A. KrasNoseL’skif and Ya. B. Rutickii [26]):

Theorem 1. Any convex function f such that f{a) = 0 can be represented
in the form

Hu) = [P0,

where P is a nondecreasing right-continuous function.
The following definition is connected to the above theorem.

Definition 3. A function f is called an N-function if it can be represented

i the form
u]
f(u) =0f1b(¢) dt,

where the function P 1s continuous from the right for t > 0, positive for t > 0,
and nondecreasing, and such that

pO =0, lim p{)=+oo.
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Definition 4. Let p be a function with the same properties as in Definition 3.
For s > 0, define the function ¢ by

g(s) = sup ¢.
Pt <s
Then functions
] o]
f(u)téfﬁ(t)dt and g(v):OIQ(S) ds

are called mutually complementary N-functions.

Remark. If p is a continuous and monotone increasing function, then g is the inverse
function of p. Otherwise, ¢ is called the right-inverse function of p. It can easily be
verified that ¢ has the same properties as those given by Definition 3 for the func-
tion p.

More about N-functions, complementary N-functions and their
applications to the ORLICZ spaces can be found in [26].

We finally mention a definition of intern functions due to A. CsAsz4Ar
1271:

Definition 5. A real function f defined on I 1s called an intern function on I
if for all x, vy € I,

min f (), /() < /("5 ¥) < max (f(), /().

Properties of intern functions were the subject of study of A. Cs{sz4r
(see [27] and [28]) and S. MArcuUS (see [29] and [30]).

In terms of normal mean values, J. Acz£L [31] gave a generalization
of the notion of convex function.

For an interesting and important extension of the idea of convexity,
see the paper [32] of A. OSTROWSKI.

The theory of J-convex functions as opposed to the theory of convex
functions, was only partially transposed to the functions of several
variables. Some properties of these functions which correspond to those
cited by F. BErRNSTEIN and G. DoktrscH [10], were given by H. BLum-
BERG [33] and E. MoHR [34]. S. MARcUS [3D] gave an analogue of the
theorem of A. OstrowskI [12] and of M. HukUHARA [36] for the func-
tions of several variables.

As a natural generalization of the concept of convexity for functions
of two real variables, the concepts of subharmonic and of double convex
functions have been studied. Concerning such functions, see papers of
P. MoNTEL [21] and M. NicorLEsco [37].

A great deal of intensive work has been done recently on the theory
of convex and generalized convex functions. Besides the literature
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quoted in the books of E. F. BECKENBACH and R. BerrLman [38], G. H.
Harpy, J. E. LittLEwo0oD and G. PéLvya [39], and T. Poproviciu [b] and
in the paper [7] of E. F. BECKENBACH, also see [40]—[64].

Concerning the applications of the convexity of order #, see, in parti-
cular, the expository article {65] of E. MoLpovaN-PorovicIv.

1.4.7 Hierarchy of Convexity

Let K (b) be the class of all functions f: R — R which are continuous
and nonnegative on the segment I = [0, 4] and such that f(0) = 0.
The mean function F of the function f¢ K (b), defined by

Foy=tfia  (0<x<®), FO)=0,
0

also belongs to the class K ().

Let K, (b) denote the class of functions € K (b) convex on I.

Let K, (b) denote the class of functions f € K (b) for which F € K, ().

Let K4(b) denote the class of functions / which are starshaped with
respect to the origin on the segment I, i.e., the class of those functions f
with the property that for all x€ I and all ¢ (0 < ¢ << 1) the following
inequality holds:

f(tx) < tf(x).

We say that a function f belongs to the class K, (5) if and only if it is

superadditive on I, i.e., if and only if
flx+9) =>f(x) + f(y) for x, y and ¥ 4+ y in I.

If F belongs to the class K4(b), we say that f belongs to K;(b), and
if F belongs to K,(b), we say that f is from Kg(b)

A. M. BruckNER and E. Ostrow [55] have proved that the following
inclusions hold:

Ky (0} C Ky (b) C Ky (b) C K,y (b) C K5(b) C KelD).

E. F. BecKENBACH [66] has given examples which show that
Ko (0) =+ K5(b), K5(b) + K, (0), K, () == Ky (b)) , Ky(b) = K (D),

K, (b) + K1 (0).

The following result of M. PETROVIC [67] is also related to this:

Theorem 1. If [ is a convex function on the segment I = [0, a], if
x€l(i=1,...,n) and x, -~ -+ + %,€ I, then

O Fr) + o+ 18 S Fy + 5 + (5= 1 F0).
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Proof. Putting p = x;, g =%y, x =%, + %, ¥ = 0 (x4, %, > 0) in (2)
of 1.4.3 we get

g

%1 f (%1 + %)
©)  Hmy<BIBER L Ao,
Interchanging x; and x, we find
%y f (%1 + %) %
(3) flxg) < P +x1+x2f(0).

Adding (2) and (3) we get
(4) flxy) + F () < Flrg + %) +77(0).

Theorem 1 is therefore true for n = 2. Suppose that it holds for some
n. Then, by (4) we have

f(xl + - + Xn + xn-+1) :f((xl + Tt + xn) + xn+1)
Zf(xl + -+ xn) + f(xn—i—l) - f(O),
and by the induction hypothesis,

Flxg) 4 o+ F&) + Hxq) S0+ + %,44) + #/(0).

This completes the inductive proof.

For n = 2, we get that if /(0) = 0 and if }is convex, then f is super-
additive.

Some generalizations of (1) were given by D. Markovi¢ [68], P. M.
Vasi€ [69], and J. D. Ke¢griC and 1. B. Lackovi¢ (see 3.9.57).

Finally, it should be emphasized that the theory of convexity devel-
oped in this section, taken together with a few elementary devices, can
be used to derive a large number of the most familiar and important
inequalities of Analysis.

References

1. JENSEN, J. L. W.V.: Om konvexe funktioner og uligheder mellem middel-
vaerdier. Nyt. Tidsskr. for Math. 16 B, 49— 69 (1905).
2. JENsEN, J. L. W. V.: Sur les fonctions convexes et les inégalités entre les
valeurs moyennes. Acta Math. 30, 175—193 (1906).
3. H6LDER, O.: Uber einen Mittelwerthssatz. Nachr. Ges. Wiss. Gottingen 1889,
PP- 38 —47.
4. Storz, O.: Grundztige der Differential- und Integralrechnung, vol. 1. Leipzig
1893, pp. 35—36.
Poroviciu, T.: Les fonctions convexes, Actualités Sci. Ind. No. 992. Paris 1945.
HapaMmarp, J.: Etude sur les propriétés des fonctions entidres et en particulier
d’une fonction considérée par Riemann. J. Math. Pures Appl. 58, 171215
(1893).
7. BEckENBACH, E. F.; Convex functions, Bull. Amer. Math. Soc. 54, 439—460
(1948).
8. HaMmEL, G.: Eine Basis aller Zahlen und die unstetigen Ldsungen der Funktio-
nalgleichung: f(*) + f(y) = f(¥ + »). Math. Ann. 60, 459 —462 (1905).

@ o



24

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31,

32.

33.

34.

1. Introduction

. AczfL, J.: Lectures on Functional Equations and their Applications. New York-

London 19686.

BERNSTEIN, F., and G. DoeTscH: Zur Theorie der konvexen Funktionen. Math.
Ann. 76, 514—526 (1915).

S1erPINSKI, W.: Sur les fonctions convexes mesurables. Fund. Math. 1, 124 —
129 (1920).

OsTROWSKI, A.: Zur Theorie der konvexen Funktionen. Comment. Math.
Helv. 1, 157—159 (1929).

Kurera, S.: Convex functions. Glasnik Mat.-Fiz. Astronom. Ser. II, Drustvo
Mat.-Fiz. Hrvatske 11, 89—94 (1956).

GER, R., and M. Kuczma: On the boundedness and continuity of convex
functions and additive functions. Aequationes Math. (to appear).

Boursaxki, N.: Fonctions d’une variable réelle. Paris 1958, Chap. 1.

GALvANI, L.: Sulle funzioni convesse di una o due variabili definite in aggre-
gate qualunque. Rend. Circ. Mat. Palermo 41, 103 — 134 (19186).

KurePaA, S.: A property of a set of positive measure and its application.
J. Math. Soc. Japan 13, 13— 19 (1961).

MonTEeL, P.: Sur les fonctions convexes et les fonctions sousharmoniques.
J. Math. Pures Appl. (9) 7, 29—60 (1928).

VaLIrRoON, G.: Remarques sur certaines fonctions convexes. Proc. Phys.-Math.
Soc. Japan (3) 13, 19—38 (1931).

VALIRON, G.: Fonctions convexes et fonctions entiéres. Bull, Soc. Math. France
60, 278 — 287 (1932).

MonNTEL, P.: Sur les fonctions sousharmoniques et leurs rapports avec les
fonctions convexes, C. R. Acad. Sci. Paris 185, 633 —635 (1927).

THoRIN, G. O.: Convexity theorems generalizing those of M. Riesz and Hada-
mard with some applications. Medd. Lunds Univ. Mat. Sem. 9, 1—57
(1948).

SaLEM, R.: Convexity theorems. Bull. Amer. Math. Soc. 55, 851—859 (1949),
or Oeuvres mathématiques de R. SALEM. Paris 1967, pp. 432-—440.

OvCARENKO, I, E.: On three types of convexity (Russian). Zap. Meh.-Mat. Fak.
Har’kov. Gos. Univ. i Har’kov. Mat. Obs¢, 4 (30), 106 — 113 (1964).

BonnNESEN, T.: Les problémes des isopérimétres et des isépiphanes. Paris 1929,
p. 30.

KrasnvosieL’skii, M. A., and Ya. B. Rutickii: Convex Fanctions and Orlicz
Spaces (Russian). Moscow 1958, and English edition, Groningen 1961.

CsiszAR, A.: Sur une classe des fonctions non mesurables. Fund. Math. 36,
72—76 (1949).

CshszAR, A.: Sur les fonctions internes, non monotones. Acta Sci. Math. (Szeged)
13, 48—50 (1949).

Marcus, S.: Fonctions convexes et fonctions internes. Bulk. Sci. Math. 81,
66—70 (1957).

MaRrcuUs, S.: Critéres de majoration pour les fonctions sousadditives, convexes
ou internes. C, R. Acad. Sci. Paris 244, 2270—2272 and 3195 (1957).

AcziL, J.: A generalization of the notion of convex functions. Norske Vid.
Selsk. Forh. (Trondheim) 19, No. 24, 87— 90 (1947).

OsTROWSKI, A.: Sur quelques applications des fonctions convexes et concaves
au sens de 1. Schur. J. Math. Pures Appl. (9) 31, 263 —292 (1952).

BLUMBERG, H.: On convex functions. Trans. Amer. Math. Soc. 20, 40—44
(1919).

MoHR, E.: Beitrag zur Theorie der konvexen Funktionen. Math. Nachr. 8,
133~ 148 (1952).



35.

36.
37.
38.

39,

40.
41.

42.
43,

44,
45.

46.

47.
48.
49.
50.
61,
52.
53.
54.
55.
56.
517,
58.
69.

60

1.4 Convex Functions 25

Marcus, S.: Généralisation anx fonctions de plusieurs variables, des théorémes
de Alexander Ostrowski et de Masuo Hukuhara concernant les fonctions
convexes (J). J. Math. Soc. Japan 11, 171 —176 (1959).

Hukunara, M.: Sur la fonction convexe. Proc. Japan Acad. 30, 683—685
(1954).

Nicoresco, M.: Familles de fonctions convexes et de fonctions doublement
convexes. Bull. Soc. Roumaine Sci. 40, 3— 10 (1938).

BeckenBacH, E. F.,, and R. Berrman: Inequalities. 2nd ed., Berlin-Heidel-
berg-New York 1965,

Harpy, G. H., J. E. LitTLEwooD and G.PérLva: Inequalities. 2nd ed.,
Cambridge 1952,

BeckenBacH, E. F.: An inequality of Jensen. Amer. Math. Monthly 53, 501 —
505 (1946).

Marcus, M., and H. Minc: A Survey of Matrix Theory and Matrix Inequalities.
Boston 1964.

PoNSTEIN, J.: Seven kinds of convexity. SIAM Review 9, 115—119 (1967).

Poroviciu, T.: Sur les fonctions convexes d'une variable réelle. C. R. Acad.
Sci. Paris 190, 1481 —1483 (1930).

THUNSDORFF, H.: Konvexe Funktionen und Ungleichungen, Inaugural-Disser-
tation, Géttingen 1932,

Cinguini, S.: Sopra una disuguaglianza di Jensen. Rend. Circ. Mat. Palermo 58,
335— 358 (1934).

TaYLoR, A. E,: Derivatives in the calculus. Amer. Math. Monthly 49, 631 — 642
(1942).

BrckenBacH, E, F,, and R. H. BinG: On generalized convex functions. Trans.
Amer. Math. Soc. 58, 220—230 (1945).

Woobps, C. L.: A restricted class of convex functions. Bull. Amer. Math. Soc. 52,
117—128 (1946).

SENGENHORST, P.;: Uber konvexe Funktionen. Math.-Phys. Semesterber. 2,
217—230 (1952).

WriGHT, E. M.: An inequality for convex functions. Amer. Math. Monthly 61,
620 — 622 (1954).

Mirsky, L.: Inequalities for certain classes of convex functions. Proc. Edin-
burgh Math. Soc. 11, 231—235 (1959).

BRUCKNER, A.: Minimal superadditive extensions of superadditive functions.
Pacific J. Math. 10, 1155— 1162 (1960).

Gotusso, L.: Sulle funzioni convesse e su una estensione del teorema di Cava-
lieri-Lagrange. Periodico Mat. (4) 40, 287—313 (1962).

BRrRUCKNER, A. M.: Tests for the superadditivity of functions. Proc. Amer. Math.
Soc. 13, 126 —130 (1962).

BRUCKNER, A. M., and E. OstrRow: Some functicn classes related to the class
of convex functions. Pacific J. Math. 12, 1203—1215 (1962).

KarLIN, S., and A. NovikorF: Generalized convex inequalities. Pacific J. Math.
13, 1251 —1279 (1963).

BRUCKNER, A. M.: Some relationships between locally superadditive functions
and convex functions. Proc. Amer. Math. Soc. 15, 61 —65 (1964).

MarsHALL, A. W., and F.ProscHAN: An inequality for convex functions
involving majorization, J. Math. Anal. Appl. 12, 87—90 (1965).

CiesieLskl, Z.: Some properties of convex functions of higher orders. Ann.
Polon. Math. 7, 1 —7 (1959).

I . . ‘g
‘'BorEdME, T. K., and A. M. BRuckNER: Functions with convex means. Pacific

J. Math. 14, 1137— 1149 (1964).



26

61.

62,

63.

64.

65.

66.

67.

68.

69.

1. Introduction

Gopunova, E, K.: Inequalities based on convex functions (Russian). Izv.
Vys§. Ulebn. Zav. Mat. 1965, No. 4 (47), 46— 53.

Gopunova, E. K.: An integral inequality with an arbitrary convex function
(Russian). Uspehi Mat. Nauk 20, No. 6 (126), 66— 67 (1965).

Poroviciu, T.: Sur certaines inégalités qui caractérisent les fonctions convexes.
An. $ti. Univ. AL T Cuza Iagi Sect. I a Mat. (N.S.) 11B, 155—164 (1965).

Gopunova, E. K.: Convexity of composed functions and its applications to the
proof of inequalities (Russian). Mat. Zametki 1, 495 —500 (1967).

MoLpovan-Poroviciu, E.: On the notion of convex functions (Serbian).
MatematiCka Biblioteka, vol. 42. Beograd 1969, pp. 256—40.

BeckeENBACH, E. F.: Superadditivity inequalities. Pacific J. Math, 14, 421 —
438 (1964).

PetrovI¢, M.: Sur une fonctionnelle, Publ, Math. Univ. Belgrade 1, 149—156
(1932).

Marxkovié, D.: On an inequality of M. Petrovi¢ (Serbian). Bull. Soc. Math. Phys.
Serbie 11, 45—53 (1959).

Vasié, P. M.: Sur une inégalité de M. Petrovié. Mat. Vesnik 5 (20), 473—
478 (1968).



2. General Inequalities

2.1 Fundamental Inequalities

2.1.1 Simple Means

Definition 1. Let a = (ay, ..., a,) be a given sequence of positive numbers.
Then the harmonic mean H,(a) of the numbers ay, ..., a, 1s defined as
n
BO=1 T
ay + a

n

their geometric mean G, (a) 15 defined as
Gn (a) = (al ot an)lln;

and their arithmetic mean A, (a) is defined as

a1+ Ly + a’"
= " .

4,(a)

Theorem 1. For any finite sequence of positive numbers a = (ay, ..., a,)
we have

(1) min(ay, ..., a,) < H,(a) < G,{a) < A,{a) < max(a,, ..., a,),
with equality if and only if

a, =---=a,.

For the sake of brevity, the inequality between the harmonic and
geometric means will be called inequality (HG), while the inequality
between the geometric and arithmetic means will be called inequality
(GA).

There is a large number of proofs of Theorem 1 in mathematical
literature, especially proofs of inequality (GA). The most complete
information, so far, can be found in the book [1], and a number of proofs
can be found in the books [2] and [3].

~ The first concept of the arithmetic and geometric means of two real
positive numbers is probably due to the Pythagoreans. It is likely that
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they knew of the inequality
Vab < 2@+t (a6>0),

but there is no doubt that it was proved by EucLIp.

The first, and one of the most beautiful proofs of inequality (GA),
was certainly the one given by A. CAUCHY (see [4]; his original proof can
be found in [17, pp. 21—22, and [3], pp. 17—18). In his proof, A. CAUCHY
was the first to use the method of regressive induction. However there
1s a shortcoming in this proof in that the case of equality was not dis-
cussed.

We shall give here another beautiful proof due to J. Li1oUvILLE [b]
which is, as far as we know, not quoted in the literature on this subject.
This must be the reason why this proof has been rediscovered many times
later (see [1], pp. 28—29). A translation from French of that proof runs:

We shall prove that

x]. + v + x n

2) ——n_ff:l/xl---x,,

whenever all the quantities x4, %, ..., ¥, are equal, and that
¥+ -

® e,

In other cases.

Notice that formulas (2) and (3) are true for » = 2, since in this case
the first term is equal to

%1 ”52‘ ¥2 __ V’ﬁ V"z + Vxlxz ’

while the second reduces to Vxlxz Therefore 1t is enough to show that
if the formulas (2) and (3) are true for a certain value of #, they do not
cease to be true if this value is increased by unity: in other words it is
enough to prove that, assuming that (2) and (3) hold for a given value of
n, the function

c XX

Yy = nnt1

n 4+ 1
is always positive or zero, the later case only when x; = %3 = -+ = %, ==
%n, 1. We shall treat %, , as a continuous variable, and taking the demn-
vative of y with respect to that variable, we find that it is equal to

x1+x2+-'-+xn+x+1”
( n+1 d ""'xlxg"'xn.

This derivative is therefore an increasing function of «x,,,, which
vanishes when

Xppy = ~(% + 23+ + ") + (» + 1)l/x1x2 _

x1+xz SRR +xn+ xn+1 n+t1
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This value reduces to x;, when %y = %y = --- = %,,. For the values
%4,y Which are smaller or greater than the one written, the above deri-
vative is respectively negative or positive; therefore, the function ¥ is
respectively decreasing or increasing: it has a minimum when its deri-
vative is zero: this minimum is

X+ x4+ x, #
NE Xy = X, " "‘Vxlxz e X, )

and by formulas (2) and (3) it is either zero or positive: therefore, a

fortiori, the function y 1s also > 0; in order that it should reduce to

zero it is necessary: 1° that the determined minimum be zero which

happens when xy = %, = --- = x,,; 2° that %, , takes the value which

corresponds to that minimum, that is to say, that x,,_ , is also equal to x,.
This completes the proof of J. LIOUVILLE.

For the numbers a7}, ..., 4!, by (GA) we have
1 1
1 g~
iy e T @,
(4) (_..._) < %
ay a, #
Equality holds here if and only if aj = ... = a;},ie., gy = -+ =a,.
From (4) we get
n " .
< ()"
— + Ve .+. —
ay a,n
that is to say, inequality (HG).
Let us now prove that
(5) min (a,, ..., a,) < ——— .
— + L) + R
ay Cln

Without loss of generality, we can suppose that
(6) 0<a < - <a,.
Then,
min{a,, ..., 4,) = a,.
Using inequality (6), inequality (5) becomes
o B §
E— + + @ g n:

1 [

which is true, since by (6), we have

A<t (k=1,...,n.
dy
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The inequality
@+ + a,
— < max(ay, ..., a,)
can be proved in the same way.

This completes the proof of Theorem 1.
A generalization of G, (a) < A4, (a) in the case n = 2 is given by

Theorem 2. If x>0,y > 0and 1/p + 1/g = 1 with p > 1, then
11

7 Pyt <X LY
(%) 2yt S5+

with equality holding if and only if x = y.

The proof of (7) reduces, for instance, to finding the extremum of the

function f defined by
1

1
— P, * Y
flr) =x"y — % T
Inequality (7) is, in fact, the inequality between the weighted arith-
metic and geometric means of nonnegative real numbers x and y with
weights 1/p and 1/g, where 1/p + 1/g =1 and p > 1 (see also 2.14).
Replacing x by #? and ¥ by ¥? in (7), we have
o
P
This inequality plays an important role in the Theory of Inequalities.

7 1
(8) xy < +y? (x20;y20;-;;+?:1,p>1).
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2.1.2 Cauchy’s Inequality

Theorem 1. If a = (a4, ..., a,) and b = (b, ..., b,) are sequences of real
numbers, then

" 2 " n
(1) ( Zahbh) < ( 2“2) ( Ebi)
N1 A=t K=1
with equality if and only if the sequences a and b are proportional.
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Inequality (1) is called CAUCHY's inequality, or the CAUCHY-SCHWARZ
inequality, or the CAUCHY-SCHWARZ-BUNIAKOWSKI inequality. We adopt
the first name.

Proof 1. Consider the quadratic polynomial in %

) k%ww+%ﬁ

1.e., B

) ( Zai) R ( Zakbk) ‘4 B,
R k=1 k=1

Using (2), we conclude that (3) is nohnegative for all real x, which
implies inequality (1).

Equality holds in (1) if and only if the sequences a and & are propor-
tional as can be seen from (2).
This proves Theorem 1.

Proof 2. Since, for arbitrary real numbers x and y,
1 2 1.0
we have, for the terms of real sequences a and b,

1 1 11
@be] = A | - ) < 5 Aoz + 5 37 b

where 4 &= 0 is an arbitrary real number.
Summing the above inequalities from 2 = 1 to £ = n, we have

”

" 1 s 11
Slab| <52 Fak+ 5 5 S8
k=1 k=1 E=1

Choosing A so that

n

2 a1 e ”2”21/2
12%=ﬁ2h=(2%2@ ,
k=1 k=1 k=1

E=1
we obtain
n n n 1/2
@ Slani<(Sa 3n)
k=1 B=1 k=1
Since
2 4b) < 2lab, |,
. R=i k=1

from (4), we derive (1).
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Theorem 2. If the sequences a and b are complex, inequality (1) then

)
with equality holding if and only if the sequences a and b are proportional.

2ab
E=1

Proof. Let A be a complex number, Start with the identity

Sla,— [ = Sia,— b @ ~ )

k 1

1|akl2 + AR :g;b " — 2 Re (z Sab )

Ifl= ( Zakbk)f( P bklz), where & 3 0, we have
f=t 7 2
2 agdy
k=1
Sl
which implies CAUCHY's inequality (5) in the complex form.
In virtue of (6) we conclude that equality holds in (5) if and only if

a, — b, =0 k=1,...,n),

=0,

(6) Zn'l“k - Ab—k 2= Zn’(aklz
E=1 E=1

i.e., if and only if the sequences a and b are proportional,

Remark. In 2.6 we shall give other proofs of Theorems 1 and 2, as well as some
generalizations,

2.2 Abel’s Inequality

Theorem 1. Let ay,...,a, and by, ..., b, (by > +-- > b, > 0) be two se-
quences of real numbers, and let

S,=a, + - +a, . (k=1,...,n).
If m = min s; and M = max s, then
1<k<n 1<<k<n
(1 mb, < aby + - +ab, < Mb,.

This inequality is known as ABEL’s inequality.

Proof. The sum a,b; 4 --- + a,b, can be written as follows:
by =5 + (55— )b+ -+ (5, —5,.4) 0,
k=1

= sl(bl — bz) + -t suwl(bu-l - bn) + subn'
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Since
m(by — by) < 51(by #_bz) < M (b — by,

 —b)<s, b, ,—b)<M@®,_,—85,),

n— —= n—1

mb, < s,b, < Mb,,
by addition we get inequality (1).

m (b

2.3 Jordan’s Inequality
Integrating both sides of the inequality
sec2f >1 (0 <0 < 7/?)
over the interval (0, 6), we get
tanG >0 (0 <6 < n/2).

Therefore we obtain

%(ig‘g)ﬂco;ae (6 —tan @) <0 (0 <6 < f2).

We infer that

N
sin —

sin 6 2 2

(1) ) = =

(0 <6< 7f2).

z
2

Equality holds in (1) if and only if § = =/2.
On the other side we have

sinf < 6 6 >0).
Combining this inequality with (1), we get the double inequality
() 2O <o <)

Inequality (1) is known as JORDAN's inequality.
Remark 1. Inequality (2) is an immediate consequence of the concavity of 8> sin 6
2
on the interval [0, 7£/2]. The straight line y = o B is a chord of ¥ = sin 6, which

joins the points (0, #) and (7/2, 1). The straight line y = 0 is a tangent toy = sin f
at the origin. Hence, the graph of ¥ = sin 8 (0 < 8 < #n/2) lies between these
straight lines.

Remark 2. Inequality
sinf __ #% — 6%
@) 6 St
where § is real, is due to R. REDHEFFER.
Inequalities (1) and (3) do not imply each other,

Reference
REDHEFFER, R.: Problem 5642. Amer. Math. Monthly 76, 422 (1969).

8 Mitrinovié, Inequalities
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2.4 Bernoulli’s Inequality and its Generalizations

Theorem 1. If x > —1 and if n s a positive integer, then
(1) (1I-+2">1+4 nx.

This inequality is called BERNOULLI's inequality.
Proof. If » = 1, then (1) is an equality. Let us assume that (1) holds if
n=F% >1,1ie., that for x > —1, '
(2) (L -+ ) > 1+ ks,

Multiplying (2) by 1 + x (> 0), we get

L4+ 21> 0+ +kx) =1+ (B+ 1) x - ka3,

whence
(3) 14+ 2t >1 4 (B +1)x.

This completes the induction proof.
For —1 < x 4 0 the following generalizations of BERNOULLI's in-
equality are valid:

(4) l4+x*>14ax if a>1 or a< 0,
and
(5) (14 xf<<ltax if 0<a<<l.
Indeed, by TAYLOR’s formula
(6) L +ap—1—a=20"D" g g2 p<h<).

By our assumptions, 1 4+ 6x > 0, and
sgn{(l + %)* — 1 — ax) = sgn(a(s — 1)) (x & 0),
so that (4) and (5) are true. ’

Remark. Inequality (1) holds also if —2 < ¥ < —-1. Indeed, for such ¥ we have
QFdxr=>—1+rr>—|1+2=14+25>1+ nr.

Theorem 2. If n = 2,3, ... and —1 < x<;’1_—1, then

nx

(7) (1+x)”sl+m,

with equality holding if and only if x = 0.

Proof. Applying (1) to (1 — ;:T_—l)", we obtain

®) (I“T:-'x)nzl_—”lix'
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wheren — 1, 2, ..., and — I j_ S > —1 since ¥ > —1. However
1 — ¥ 1
14+x 144’

so that (8) is equivalent to
1 ~ 14 % — nx .

L+x 14#
. 1
Ifl +x—nx>0and n=2, 3,...(1.&.,x<n—:—1), then
" 14« L ny
(1 + %) S1—{—;«:—1:,44_1—l_l—l—z:——m:'

Therefore, inequality (7) is established.
The following generalization of BERNOULLI’s inequality is easy to
prove.

Theorem 3. If each of real numbers x;(t = 1,..., n) is greater than — 1,
and either all are positive or all negative, then

(L4 %) (L4 %) (L4 2,) >1 42 4+ %+ -+ 4 %,.
N. Hapzuvaxov and I. PrRopANOV [1], among other things, proved:

Theorem 4. Let f, (x) = (1 + x)* — 1 — nx, where n > 1 is an odd integer.
Then f,(x) = 0 has only one root x,,, such that

1
~—8£xn<——2—? and %, < %, o (r=23,5,17,..1),

and
[o,x) >0 for x>x, (x=0),

f.x) <0 for x<x,.

If nis even, then f,(x) > 0 holds for every real x == 0,
Another extension of inequality (1) is given by the following result.

Theorem 5. Let
Fkya,x)=1+ax 4+ C(a, 2) 4 + -+ + C(a, k) #*

bhe the k-th partral sum of the binomial series for (1 4 x)%, where x > —1.
Then, if the first omitted term 1s

1° positive, then (L + x)* > F (%, a, x),

2° zero, then (1 + x)* = F (%, a, x),

3° negative, then (1 4 x)* < F(k, a, x).
g
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This result is due to L. GERBER [2], who at the end of his short note
establishes the following: These inequalities can be used to generate
inequalities for functions which are integrals of binomials such as the
logarithm, the inverse trigonometric functions and elliptic integrals.
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2.5 Cebysev’s and Related Inequalities

Theorem 1. If a = (aq, ..., a,) and b = (b, ..., b,) are two real sequences
such that

(1) ay< o< ay and by < <b

n?

ora, = >a, and by > > b,

then the following inequality vs true
) Lol Ly} <t Sap
nv=1v ,nv=1v — /e T
It is called the CEBYSEV inequality.
Proof. Using the simplified notations
Ja=2a, b=, 2ab= ZFab,
k=1 k=1 k=1

we have

22 apb, —ab)= > mab,—a, 3by=mn3ab— 3'a 3D,

7

23 (ab, —ab) =3 (nab —a Sb)=n3ab— 3a2b.

v

Therefore

8) » =wab— 3adb=— - Z’Z(a‘ubu — a‘ubv + ab, — avbﬂ)
ow

[,

=233, a) b, —b,).
Condition (1) implies o

@, —a)(,—0b)=0frpur=1,..., n.
Hence, from (3) we obtain

ndab — 3a3b>0.

This inequality is equivalent to (2).
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From (3) one can also deduce that equality holds in (2) if and only if
ay = - =a, Or b1: :bn‘

Theorem 2. If
0£a1_<_..
(4) 0< b, < -

A
=

" ?

1A

n?

o<y <-- <1,

then
fn n n . "
Sa, b, i Iapyi,
() E=1 0 k=1 k=1 Sk=1
»n »n n n

As a special case, we have the following result: If 4, > 0 for & =

1,...,n and m 1s a positive integer, then
1 " m 1 %
(rZa) <1 S
" r=1 " r=1

We mention that the restriction to nonnegative numbers in (4) is
necessary if we consider three or more sequences. This fact is overlooked
in a number of textbooks.

The conditions (1) that both sequences a4 and b are increasing, or both
decreasing, give a sufficient condition for CEBYSEV’s inequality to hold.
However, those conditions are not necessary. Some other sufficient con-
ditions, which are also not necessary, were given by D. N. LABUTIN [1]
though he did not mention CEBYSEV’s inequality explicitly.

This problem was completely solved by D. W. S5assgr and M. L.
SLATER [2]. They gave the necessary and sufficient conditions for
CEBY3EV’s inequality (2) to hold, by proving the following theorem.

Theorem 3. Let a,, ..., a, and by, ..., b, be two sequences of real numbers.
Let a and b be n-dimensional column vectors whose components are a4, ..., 4,
and by, ..., b, respectively. Furthermore, let ¢ be an n-dimensional column
vector with all entries equal to 1. Then, a necessary and sufficient condi-
tion for CEBYSEV’s inequality to hold is b= Aa + ce or a = Ab + ce,
where c 1s a real number and A is a real positive semidefinite matrix, such
that the sum of the elements of any column or row is 0. Equality occurs in (2)
tfand only if (A + AYa=00r (A + A"} b = 0.

Remark 1. A quadratic real matrix 4 is called positive semidefinite if and only if the
quadratic form (¥, A%) is nonnegative for all real x.

The following inequality, proved by G. SErtz [3], contains both
Caucny’s and CEBYSEV's inequalities.
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Theorem 4. Lef x = (%, ..., %), Y =01 -, Vu) 2=1(21,...,2,) and
w = (uy, ..., u,) be given sequences of real numbers, and let a; (i,

1,...,n) be given real numbers. If for every pair of numbers i, 7 (+ << )
and for every pair v, s (r <s)

>0, and

u, U

v ¥
then

"
2 ﬂ@;,- i%f - i,;§1aijyiz"

’i;_’j_
— .
,E_‘ L%y Z L%

The following result of T. POPOVICIU [4] is closely connected to
CEBY$EV's inequality.

Let a = (a4, ...,a,) and b = (b, ..., b,) be nondecreasing sequences
of real numbers and let x,; (5,7 = 1,...,n) be real numbers. Then
necessary and sufficient conditions for the numbers x;;, so that the in-
equality

(6) F(a, Zx ab, >0

3§y =
1,j=1

holds: 1° for all nondecreasing sequences a and b, or 2° for all nonnegative
nondecreasing sequences a and b, are contained in the following two
theorems.

Theorem 5. With the condition 1°, F(a, b) = 0 if and only if

'x.. >0 r=1...,8n;, s=2,...,n),
1

i=7¢ j=35
.Z_Z ; (r=1,...,n).

Theorem 6. With the condition 2°, F (a, b) = 0 if and only if
ZZ‘xﬂ_‘ r=21..,n;s=1,...,n),.
i=rj=s

Remark 2. Theorems 5 and 6 refer only to the cases of nondecreasing sequences
{Theorem 5) and nonnegative nondecreasing sequences (Theorem 6). Similar results
are obtained in other cases.

Inequality (6) is a generalization of a number of known inequalities.
For example, taking

x;=n—1 (1=y), ig=—1 (7)),
we get the inequality of CEBY3EV.
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H. W. McLavgHLIN and F.T. METCALF [5]- proved the following
interesting result:

Theorem 7. Let 1 and ] denote nonempty disjoint finite sets of distinct
positive integers. Suppose that (a;) and (b)), with k€ I'\J J, are sequences
of nonnegative real numbers, (p,), with k€ I'\J ], is a sequence of positive
numbers, and v > 0. Define M, and T, by

o [(EY
M {a;p, 1) = —fg ’
FET
and
T, b5 1) = (Z0) (M, (6bi . 1 — M, (054, 1) M, (63 . 1Y).

If the pairs
() (M@ p, 1), M,(@;p,])) and (M,(b;p, 1), M,(b;p,]))
are similarly ordered, then
(8) T (a,;INV]) =T, (a, b, 1)+ T,(a,b;]).

If the pairs (1) are oppositely ordered, then the sense of (8) reverses.
In both cases equality holds if and only if either

Mia;p, ) =M, (a;p,]), or M, (b;p,I)=M,(b;p,]).

An integral analogue of CEBYSEvV’s inequality (2) is given by the
following theorem :

Theorem 8. Let | and g be real and inlegrable functions on [a, b] and let
them both be either increasing or decreasing Then

(9) b_aff dx>——ff

s
— Jgx) dx

a
It one function is increasing and the other decveasing, the reverse in-

equality holds.

The CEBYSEV inequality (9) can be, as shown by O. DUNKEL [6],
generalized to # functions:

Theorem 9. If f,, ..., [, are nonnegative functions which are monotone in
the same sense, and mtegrable on (a, b), then

b
[hix)dx ff dx/b—a"’lff1 coo o (%) du

The following generalization of inequality (9) is due to P. L. CEBY3EV

[7):
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Theorem 10. Let f and g be two functions which are integrable and monotone
in the same sense on (a, b) and let p be a positive and inlegrable function on
the same interval. Then

b b b b
(10) [P (%) Fx)g(#) dx [p(x) dx = [p (%) /() dux [ p () g (%) dx,

with equality if and only if one of the functions f, g reduces to a constant.
If f and g are monotone in the opposite sense, inequality 1n (10) reverses.

From (10) for 4 (x) = 1 follows (9). For p(x) = f, (%)%, f(x) =g (x) =
f1(%)/f5(x), (10) yields the BUNIAKOWSKI-SCHWARZ inequality (see 2.6.1).

M. BIERNACKI [8] proved inequality (10) under different conditions
from those given in Theorem 10. In fact, he proved:

Theorem 11. Let f, g and p be infegrable functions on (a, b), and let p be
positive on that interval. If the functions

J$Mﬂnm ;Mmmmw
f{x) =%——, ) ="——
{p(x) ax !p () dx

reach extreme values only in a finite number of common points from (a, b),
and if they are monotone in the same sense on (a, b), then (10) holds.

In the statement of Theorem 11 functions f; and g; can be replaced by
the following functions:

b b
;ﬂwﬂmm {Mﬂﬂﬂm
fal#) ="——— and g#)="— —r-.
[ () dx : {Mﬂ@

X

If the functions f; and g, (or f, and g,) are monotone in the opposite
sense, inequality ir (10) is reversed.

Theorem 10 was rediscovered by M. FujiwaAra [9], in a somewhat
different form. In fact, FujiwaARrA’s inequality follows from (10) setting
p(x) = [ (%) g2 (%), 1(¥) = /,(*)/f5 (%) and g(x) = g (x)/g2(*). In connec-
tion with this, see also certain results of S. Isavama [10] and T. HAvAsHI
[11].

The paper [12] of N. A. Sarocov is closely related to Theorem 10.
Besides, the same paper contains a very simple proof of CEBYSEV’s in-
equality and also a number of references concerning the topics in que-
stion.

Some generalizations of (10) are also due to J. SHOHAT (13].
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2.6 Cauchy’s and Related Inequalities

2.6.1 Some Refinements and Extensions of Cauchy’s Inequality

First of all we shall give a new proof of the following important

Theorems 1 and 2, which were already proved in 2.1.2.

Theorem 1. Let a = (ay, ..., a,) and b= (by, ..., b,) be two sequences of
real numbers. Then

(1)

(34 39> (3]

Equality holds if and only if the sequences a and b are linearly dependent.

Proof. Starting with the LAGRANGE identity,

i=1 feel 1<i<i<n

which holds for real numbers, we obtain (1).
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Since CAUCHY's inequality (1) (see [1]) follows from the above
LAGRANGE identity, it is also called LAGRANGE’s inequality.

Theorem 2. For arbifrary complex sequences a = (a4, ..., a,) and b =
by, ..., b,), we have

) (Slar) ()=

with equality holding 1f and only if the sequences a and b are proportional.

n 2

2 ab;

i=1

b

Proof. By application of the BINET-CAUcHY identity for determinants one
can obtain the following identity

(Z aicz') ( 2> bidi) - (Z aidi) ( 2 bici) = (“ibj - ajbi) (Cidj — de’i) .
i=1 i=1 i=1 i=1 1<i<j<n

Replacing a;, b, ¢;, d; by @, b,, a;, b; respectively, we get

(B (Eor) = ey

= 3 la b, —a, b
1<i<j<n
From this identity follows (2).
For a stronger inequality than (2), see 3.8.5,
In the following we give some inequalities which generalize or refine
CAucHY’s inequality.

"

2ab;

1=1

Theorem 3. If a =(ay, ..., a,) and b= (b, ..., b,) are sequences of real
numbers and 0 < x < 1, then

(Z’akb + x Sab )2_(Z‘ak+2x2 )(2’62+2be )

P <] 1< f

For.x = 0, this inequality reduces to CAUCHY’s inequality.

A simple proof of this inequality, due to S. S. WAGNER, was given by
P. Fror [2].

D. K. CALLEBAUT [3] proved:

Theorem 4. I'f a = (a4, ..., a,) and b = (by, ..., b,) ave sequences of positive
numbers and 1 < 2 <y <200 0 <y <21, then

(32 (3= o)

A simple proof of these inequalities, which interpolate CAucHY's
inequality, was given by H, W, McLAUGHLIN and F. T. METCALF [4]. In
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fact, they showed that the above inequality is a consequence of HOLDER's
inequality (see 2.8).

In [5] C. J. ELIEZER and D. E. DAYKIN present a general extension of
CALLEBAUT’s result.

In the case when the considered sequences @ and b have an even
number of terms, H. W. McLAUGHLIN [6], p. 66, has proved the follow-
ing inequality which refines CaucHY’s inequality.

Theorem 5. If a = (ay, ..., 4y,) and b = (by, ..., bs,) are sequences of veal
numbers, then

2n 2 2n 2n n 2
(Zakbk) = ( Z“i) ( Zbg) - ( 2 Aoy — “2k—1bzk) .
=1 E=1 h=1 k=1
H. W. McLauGHLIN [6], p. 70, has also proved an analogous inequa-
lity for the case when the sequences 2 and b have 4n terms each.
Notice that an inequality analogous to inequality (1) holds for qua-

ternions. This result was obtained by H. W. McLAUGHLIN [6], p. 24, and
it reads:

Theorem 6. Lef a4, ..., a, and by, ..., b, be quaternions. Then

n |2 " n N
- 112

Sai) <( Shatt) ( Sinr)

k=1 k=1 R=1
with equality if and only if a; = -+ == a,, =0, or b, = Aay, for real A and
fork=1, ..., n. '
Remark. If a = R(a) + il(a) + jJ(a) + RK (a), where 2 = j2 = k2 = —1, ij =
—ji = k, jk = —kj = i, k1 = —ik = j, then the conjugate a of the quaternion a
is given by

a = R(a) — il(a) — jJ(a) — kK(a),
and the norm ||a|| of a is defined by

lla]lt = R(a)? + I(@)* + J(a)® + K(a)™

For other generalizations of CAUCHY’s inequality see 2.6.2 and 2.8,
We shall now prove an integral analogue of CAUCHY’s inequality:

Theorem 7. Let f and g be real and integrable functions on [a, b]. Then

b 2 b b
®) (J10 s as) <( freor ax)(feeraz),
with equality holding if and only if | and g arve linearly dependent functions.

Proof. For every real number ¢,
b

[(t(x) + g(m)2dx >0,
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b b

2 [f(x)2dx 4 2¢ [ f(x) g () dx %—fbg(x)2 dx >0,

a

1.e.,

which directly implies (3).

Inequality (3) is called the ScHwARz or, more correctly, the BuNia-
KOWSKI-SCHWARZ inequality.

Let us finally mention a result of A. SiGNORINI [7], which is a conse-
quence of the BUNIAKOWSKI-SCHWARZ inequality.

Theorem 8. Let f,, f,, Py, Po be almost everywhere continuous functions in
the region V, and let py = py > 0 but not p,= p,. Then

Jszf%dvvfﬁﬁ av _Jpzf1f2 av
2]151]? dePifg av "‘f?1f1f2 ayv > 0.
1% 1% v

There are a number of papers which extend the CAUCHY inequality
in the BaxAcH, HILBERT, or other spaces. See, particularly, the papers
(8], 91, [10] of S. KurEPa, [11] of J. B. Diaz and F. T. METCALF, [12]
of E. R. LorcH, and [13] of F. D. MURNAGHAN,
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2.6.2 Gram’s Inequality
Let x4, ..., x, be vectors of a unitary space X. Then

(2, 20) » -+ (%3, %,)
G(xy, oons ) = :

(xn’ .xl) (xn’ xn)

is called the GrRAM matrix of vectors x4, ..., X,,.
The determinant I'(y3, ..., ¥,) = det G(xy, ..., %,) is called the Gram
determinant of vectors %y, ..., %,.

Theorem 1. The following inequality
(1) I'(xy,...,x,) >0,
holds with equality if and only if the vectors x4, . .., %, are inearly dependent,

This inequality is called GrRam’s inequality.

Proof. If the vectors x4, ..., x,, are linearly dependent, then there exist
scalars &4, ..., «, not all zero, such that
(2) &%y A o 4 o,x, =0,

Multiplying the above equation by x; (£ =1, ..., n), we get
(3) o (o, 2) + o0+, (%, %) =0 (f=1,...,n).

System (3) will have nontrivial solutions for «; if I'(x4, ..., x,) = 0.
Therefore, if the vectors x4, ..., x, are linearly dependent, then ['(x4, ..., x,,)
= 0. Conversely, if I'(xy, ..., x,) = 0, then the system (3) has nontrivial
solutions for «;. Let us prove that the equality (2) holds for those values
of x,.

System (3) can be written in the form

(g% + -« Fox, %) =0 (k=1,...,n).

Multiplying by &, and adding, we get

n

20 (0% 4 e +ox,, 7)) =0,
E—1
i.e.,

(0 %y 4 -0 XXy X% oo F X, = 0.

This implies the equality (2). _
We have, therefore, proved that equality holds in (1) if and only if
the vectors x4, ..., %, are linearly dependent.
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Let us now prove that I'(xy, ..., x,) > 0 if the vectors xy, ..., x, are
linearly independent. Let

| xl

GEy oo %pmy)
(4) Vr= | i:xr-l fe

4 (xn xl) e (xn %—1)2 Xy

Then
(xls xs) ‘

G(Xy, ooy Xpm1) :

®) r, %) = (Hp—1, %s)
(%, %1) -+ (%, xr—l)é (%rs %)

If s << 7, then there are two identical columns in (4), and therefore
(¥r, x5) = 0.

Multiplying (4) by v, and taking into account that (y,, x,) =0
(s << 7), we get : :

Wel2 =T (g, ..o, 1) (g, .0u 2y)
Specifically, for r = 2,
Iy2!2 = -r(xl) F(xla xz) r

1.€.,

I'(x,, a=%}—:

Therefore I"(%,, 9;;) > 0, and so I'(xy, x3) > 0. It can then easily be
shown by induction that

I'(x,...,%,) >0.

In many books, in some or more detail, the GRAM inequality is ex-
posed. See, for instance, [1], pp. 346—357, or [2], pp. 176—187.

We give some special inequalities which involve GRAM's determinant
(see [1], pp. 382—383).

If x4, ..., %, are vectors of a unitary space X, then, for 1 < k < #,

Dy e, 2,) < |2 2,2

f(xl,....xn) Ixg, ..., x,)

P(xl:--uxks - I'(x'...., x,.) é .“ Sr(xk'} 1? ""xn);
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y

I(xg,eon2,) ST (%, oo, %) Iy 45 o000 %)

1

G(xl,...,xn)gf <o
1=

1.-1 0

The following inequality also holds for GrRam’s determinant (see [2],
pp. 184—18b):

Iz, + 9p, %9, oo 2 )12 < (g, %9, oons )12+ T (yy, %, .00, %) 12,

If the vectors x4, ..., x,, are elements of an arbitrary HILBERT space,
then we have (see [3] and [4]):

Theorem 2. Given the vectors x4, ..., %, and a projection P with v, = Px,
(t=1,...,n), then

',y ....2) 2T (¥ o0, v,)»
with equalityyif and only if x, = v, (s =1, ..., n).
Theorem 3. Given the vectors x4, ..., X, and a projection P with y; = Px;
(t=1,...,n), then

I'(yp oo ¥y y) < %y oo, %y_q)
TOn vy = Ty sy

where I'(V, ..., Vu) - T'(%1, ..., %,) == 0.

Concerning other inequalities invelving the GRrRAM determinant,
consult also the interesting paper [5] of F.T. METCALF. This paper
contains at the end a list of literature of 19 items.

An integral interpretation of (1) is given by

Theorem 4. Let /4, ..., [, be veal and integrable functions on [a, bl. Then
b

b b
Jh(x? dx Jh@) Ry dx o [/ () fulx) dx

a

b b b
Jhx) himydx  [fy(x)?dx [ 12(2) fa (%) dx

b b b
ffn(x) f1(x) dx ffn(x) fa(x) dx f]‘,,(x)2 dx

For this inequality see, for example, the paper [6] of L. ToccHr.
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2.7 Young’s Inequality
Theorem 1. Let f be a veal-valued, continuous and strictly increasing func-
tion on [0, ¢], with ¢ > 0. If (0) = 0, a€ [0, ¢] and b¢ [0, f(c)], then
a b
(1) [1®) dx + [f7(x) dx > ab,
d 0

where {1 is the inverse function of f.

Equality holds in (1) if and only if b = f(a).

Since this result is due to W. H. Young [1], (1) is called YOUNG's
inequality.

Proof. We set
@) ¢(a) = ab — [f(x) dx,

0

and consider b >0 as a parameter. Since g'(a) = b — f(a), and f is
strictly increasing, we have

g >0 for 0<Ca<<f(),
ga)=0 for a=/72(d),
g@ <0 for a>f71(b).

Hence, g(a) is a maximum of g for a = f~1(b). Therefore, we have

© gla) < max g(x) = g (2 (t))-
Integrating by parts, we obtain
=) fe)
g1 =bf1(0) — [ fdx= [ #F (x) dx.
0 g

Substituting v = f(x), the above integral becomes

4 g(FL0) = [ 0) dy.

]
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Putting expressions (2) and (4) into (3), we get (1).

Geometric interpretation. The area of the curvilinear triangle OAP is given by
. b

f f(¥) dx, and the area of the curvilinear triangle ORB by f fYx) dx

0 0

¥ ¥
8
8
0 x 0 A L x
Fig. 3 Fig. 4

Figs. 3 and 4 affirm that inequality (1) is justified.

Example 1. The function x> f(¥) = ##—1 (p > 1) in each interval (0, ¢) (¢ > 0)
satisfies all the conditiOns assumed in Theorem 1. Applying (1), we get

a b 1 1 p—1
fxt—1 dx -I-fx P~1 gy >ab, ie, —-af + p? 1 > ab.
0 P P
The latter inequality ds usually written in the form
(8) L P+1b42b her b>0;p>1 1+1 1
—a — ab, where a,b > 0; i — +—=1
P q g

Remark 1. Inequality (5) is, in fact, the inequality between the arithmetic and
geometric weighted means (see 2.1.1 and 2.14.2). For another proof of this funda-
mental inequality consult paper [2] of F. RiEsz.

Example 2. The function » > log(1 -+ x) also satisfies all the conditions imposed by
Theorem 1. Applying (1) we get

a b
flog(1+x)dx+f(ex—1)dx_>_ab,
0 0

ie.,
(14+a)log(l4+a) —(1+a)+ (¢ —b)>ab with a,b>0.

Theorem 2. Lef f and g be positive functions, with ' and g' nonnegative and
continuous on [0, bl. Let f(0) = 0. Then, for 0 << a < b,

fa) g <fg dx+ff x) dx,

with equality if and only if a = b, or a < b but g constant on (a, b).

Hint for proof. Integrate by parts the first integral on the right-hand side.
4 Mitrinovié, Inequalities
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Remark 2. The above inequality is similar to Young’s inequality, but more ele-
mentary.,
Remark 3. The above result was communicated to us by P. R. BEEsAcCK.

Among others, R. CoorEr [3] and A. OPPENHEIM [4] gave some
extensions of YOUNG's inequality, from which we quote that of OpPEN-
HEIM.

Theorem 3. Let /4, ..., [, be continuous, nonnegative and strictly increasing
functions, at least one of which is zero at x = 0. Then

H 2 f pr dfq
k=1 A=10 p.9=1
g

wheret, = 0 for k=1, ..., n, and where the integrals involved are STIEL-
TJES’.

T. TAkaHASHI [0] has proved the converse of YoUNG's inequality.
His result reads:

Theorem 4. If for x > 0 f and g are continuous and increasing functions
such that f(0) = g(0) = 0, g72{(x) > f(x) for all x > 0, and if for every
a>0and b > 0 we have

ab < faf (%) dx 4 fbg(x) dx
0 0.

then f and g are inverse.

References

1, Young, W. H.: On classes of summable functions and their Fourier series.
Proc. Roy. Soc. London A 87, 225 —229 (1912).

2. Riesz, F.: Su alcune disuguaglianze. Boll. Un. Mat, Ital. 7, 7779 {1928).

3. CooPER, R.: Notes on certain inequalities I, 1I. J. London Math. Scc. 2, 17—21
and 159—163 (1927).

4, OPPENHEIM, A.: Note on Mr. Cooper’s generalization of Young’'s inequality.
J. London Math. Soc. 2, 21 —23 (1927).

5. TakxaHasHI, T.: Remarks on some 1nequa11t1es Téhokn Math. J. 36, 99—106
(1932).

2.8 Holder’s Inequality

Theorem 1. If a; >0, b, >0 for k=1,...,n, and%+—}=1 with
P> 1, then

0 (3" (30" Suo.
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with equality holding if and only tf xa = pbf for k=1, ..., n, where
o and  are real nonnegative constants with 2 + 2 > 0.

~ This inequality i1s called HOLDER’s inequality (see [1]).

#?

Proof. If 3/a? = 0 or >'by = 0, then equality holds in (1). Assume
k=1 k=1

now that >'a? > 0 and 2'b! > 0. Putting
k=1 -1

k

" —1/p n —1/q
® e=a () o= Zn)
k=1 )
into inequality
1 1 1 1
3 —a 4+ b >ab (—+—=1, 1 and a, b>0),
3) p + g (15 g p>1 &n o )
we get
» »
1 1 b 2,0,
1 S > :
p 1 g # 1p; » 1/q
2405 ()75
Adding together these inequalities for y = 1, ..., #, we have
b
EE = S
? g

= n  \1/p n 1/g°
()" (5
k=1 k=1

This inequality is equivalent to (1) since %— + 7;— = 1.
Since equality holds in (3) if and only if 4? = %, we conclude, in

7 -1
virtue of (2), that there is equality in (1) if and only if ( Zaﬁ) - ab =
k=1

n -1
(h%b%) b for k=1,...,n, ie, if and only if wa? = b for k=
i, ..., "«

Theorem 2. If a, > 0 and b, >0 for k=1,...,n, and —{——i——;—:l

b4
with p < 0 0r g < 0, then
1 L
(4) 2% 20 < Saby,
k=1 k=1 k=1
with equality if and only if cah = b for k=1, ..., n, where x and f3
are real nonnegative constants with «® + 2 > 0.
.“
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Proof. Assume that p < 0, and put P = —p/q, 0 = 1/g. Then 1/P 4 1/Q

= 1 with P > 0 and Q > 0. Therefore, according to (1), we have
1 1

n P
(S40)"(27)' = Sam,
k=1

where A, > 0and B, > 0fork=1,...,»

The last inequality for A, = 4,7 and B, = afb{ becomes (4).

J.L.W.V. JENSEN [2] proved the following generalization of HOLDER’s
inequality:
Theorem 3. Let a; 1 =1,...,7%; 1 =1,...,m) be positive numbers and

C 1
let xq, ..., &,, be positive numbers such that ;1- + o 4 - > 1. Then

1
1 1

] . n ;;
‘Z]I.ail'” m—(Z“ ) '(.Z;a:‘;f) *

The proof of the above theorem will be given in 2.14.2,

E. F. BECKENBACH [3] gave the following generalization of HOLDER’s
inequality:
Theorem 4. Let ¢ = (¢cq, ..., Cp) and k= (ky, ..., k,) be positive vectors
such that 0 < m < n, and p and q be real numbers such that % -+ —;— =1,
Then, for positive numbers Xy, 1, Xpyo,+-., %, and for p > 1,

1 1
m H) e m " e
(z v 3 x;?)" (‘Zcfﬁ-, > ‘ci-’)”
(5) =1 =m- ~ i=1 i=m+1
»m —_— m 7 4
Z'Gk-l- Z' 2k 2kt X Tk
i=1 i=m+1 i=1 t=m—+1
where
S
=1 G=m+ 1 )
m
gcjkj

Equality holds in (b) if and only if
(6) %; = ¢, t=m-+1,...,n).

Inequality is reversed in (D) tf p << 1 and p == 0, with equality holding
if and only if condition (6) 1s fulfilled.

For m = 1, from this theorem we get HOLDER’s inequality.
For some other results analogous to the above, consult also the inter-
esting paper (4] of E. F. BECKENBACH.
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In all the above theorems we have assumed that % 4 —3— =1, In

the case where % 4 ";T< 1, D.E.DavyriN and C. J. ELiEZER [5]

proved some inequalities analogous to HOLDER’s inequality which they
have formulated in

Theorem 5. 1° If a, > 0 and b, 0 jor k=1,...,n and %+i—< 1,

then
11 1 1

o e () (3

1

(e pba) (- q)?

2 Ifap<l,bp<lfork=1,...,n,0rif P= H “:“;b;bj aab@b]<1

i,j=1

1 1
nwd — -+ —-<<1, th
a P+9< en

(oo {2 (3

3 Ifap>1,b,>1for k=1,...,n, orif P> 1 (P is defined as
in 2°) and% 4 —ql—< 1, then

For complex numbers we have:

Theorem 6. If a — (ay,..., a,) and b = (by, ..., b,) are complex vectors
and 1 < p < 400, i+%= 1, then

with equality if and only if the sequences (|ay|?) and (|by|?) for k=1,...,n
are proportional, and arg azby is independent of k.

(7)

The conditions of equality in (7) can be obtained using, for instance,
the three lines theorem (see 1.4.5). This can be found, for example, in
Thesis of G. O. THORIN [6].

Let us now quote an integral analogue of HOLDER’s inequality (1).
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+

Theorem 7. Let p > 1 and % —ql—z 1. If f and g arve real functions

defined on [a, b] and if |f|? and |g|? are integrable functions on [a, b], then

1 1
b =

[ 110 g | dx < (j]f(x) g dx)? (flg(x) . dx)q ,

a

with equality holding if and only if A |}(x)|? = B |g(x) |? almost everywhere,
wheve A and B are constants.

Notice that W.N. EveErITT [7] obtained some interesting results
related to the integral form of HOLDER's inequality. We shall quote one of
these results,

Theorem 8. Let p > 1, % + —(} — 1. Let E and E' with E' C E be LEBES-

GUE-measurable linear sets. If f, and f, are complex measurable functions
such that f, € LP(E), f, € L1 (E), define the function H by

1

H(E) = ([IN0)P 22)7 ( [lfy00 e et s

Then

0< H(E — E)<H(E) — H(E").

Finally, we note the following:
y — i Y —

From (1), for p =- _i (r>s>tl>0), ak = pyxt,

¥y — 5’ q"_s

b = pux; (pr = 0, x, = 0 for £ =1, ..., n), follows
n r—1i¢ 1/ r—3s "
( Zpkx;) < ( 2 ?kxlte) ( 2 ka;)
k=1 k=1 =1

This is called LyapuNov’s inequality.

s—i
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2.9 Minkowski’s and Related Inequalities
Theorem 1. If a, > Oand by > 0, for k= 1,...,n, and p > 1, then
" 1/p n 1/p n 1/p
@) (S +or) " =<( Za)" +(20)
B=1 k=1

k=1
with equality holding if and owly if the sequences a = (ay, ..., a,) and
b= (by, ..., b,) are proportronal.

This inequality carries the name of H. MINKOWSKI.

Proof. We start with the identity
(@, + b)? = a,(a, + b)P 1 4 by(a, + B,)? .

Summing over £ =1, ..., n, we get

n

(2) i(“k +b) = Ya,(a, + bt +k£-‘.bk (@, + b2t

k=1 k=1

By HOLDER's inequality, for % —;~ =1 and p > 1, we have

” 7% 1]1> n qu
Sa,(a, + )1 < ( Z‘a;‘;) ('Z‘(ak + bk)q(;b—l)) ,
k=1 k=1

k=1

“ " L 1/g
Zbk (Clk -+ bk)P—l g( Z‘bi‘g) ( Z(“k + bk)‘I(f"”) )
k=1 bey .

1

Using ¢(p — 1) == p and adding the last two relations, we obtain

" n /¢ " 1/t n 1/g
Sty 00 =(( Sat) "+ ( Zn))( Zw o)
k=1 k=1 k=1 E=1
#n 1/q
Dividing both sides of the above inequality by ( 2 ay + bk)f’) ,
we get (1). =1
D. E. DavkinN and C. J. ELIEZER [1], as a consequence of a more
general result, proved a number of inequalities contained in

Theorem 2. Let a, = 0,0, > 0 for k= 1,...,n. If p > 1, then

n i/p n 1/p 1/¢

& (kZai) +(2bfz) z(Z(aﬁbk)ﬁ) |
=1 k=1 k=1

and

4) ( ﬁ*ai“’)ﬁ + ( ibi’f’)P < ( (e, + bk>1’P)P.
k=1 k=1 k=1

For 0 < p < 1, we have the converse inequalities in (3) and (4).
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Ifay > 0and b, >0, for k=1, ..., n, and p < 0, then (3) holds with
the sense of inequality changed.

(3) 1s, in fact, the MINKOWSKI inequality. The case 0 << $ < 1 con-
cerning this inequality is also considered in § 22 of the book [2] of
E.F.BECKENBACH and R. BELLMAN,

For complex sequences the MINKOWSKI inequality reads:

Theorem 3. If a = (ay, ..., a,) and b = (b, ..., b,) are complex sequences,
and if p > 1, then
1/p 1/p

" 1/ " "
(Sl 0it) < ( Zla) o+ ( Zior)
k=1 k=1 k=1
Consider the set function M, defined by
M, (a,b; 1) = ((Zlaklf’)l’p + (Zlbklp)””)p — Xla + 5,
keI kET

k€I
where I is an arbitrary nonempty finite subset of the set of positive
integers and a, and b, for 2 < I denote complex numbers.
H. W. McLavGHLIN and F.T. METCALF [3] proved the following
result involving M,:

Theorem 4. Let I and ] denote nomnempty disjornt fimite sets of distinct
positive integers. Suppose that (ap) and (by), with k€ I \J J, are sequences
of complex numbers. If p > 1 or p << 0 (tn the second case it will be assumed
that ay, by, and a, + by, are nonzero), then

(5) Mp(a,b;IU])ZMp(a,b;I)—{—Mp(a,b;]),
where equality holds if and owly if the ordercd pairs

(Zl%l"» Sy and(Zlalt, 2L
keI kel kT k€]

are proportional. If 0 < p < 1, then the sense of this imequality reverses,
while the necessary and sufficient condition for equality remains unchanged.
If p = 1, then equality always holds in (5).

The above result, in fact, extends inequality (1) of MINKOWSKTI.
Replacing M, by the following function of the index set I

(kEZI'] a, + bk IP)I[}"
(ké.lak|p)llp + (k%'I'bk“,)l/P’

similar results were obtained in [3].
The following result of H. P. MULHOLLAND [4] presents also a genera-
lization of MINKOWSKI's inequality (1).

Theorem 5. Let the function f for x > 0 be increasing and comvex with
F(0) = 0. Furthermore, let the function F, defined by F (t) = log f(¢'), be
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convex for all veal t. Then for the sequences of nommegative numbers
Ay, ..., Ay, and by, ..., b,

F( S +00) <2 ( Srtan) + 12 Srew).

In the same paper there are other inequalities which are connected
with MINKOWSKTI's inequality (1).
An integral analogue to inequality (1) is given by

Theorem 6. Let f and g be veal-valued functions defined on [a, b] such that
the functions x> [f(x)|P and x> |g(x)|?, for p > 1, are integrable on
[a, b]. Then

(jlf(x> rewpa) <(flepa)” +( flewp o)

Equality holds tf and only +f f(x) = O almost everywhere, or g(x) =
of (%) almost everywhere with a constant x > 0.

1/p

Concerning Theorem 6, see, for example, the book [6] of N. I.
ACHIESER, pp. 4—1.
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2.10 Inequalities of Aczél, Popoviciu, Kurepa and Bellman

Theorem 1. Let a = (ay, ..., a,) and b = (by, ..., b,) be two sequences of
real numbers, such that

b2 — 5 — .- —b2>0, or a] —a5— - —al>0.
Then
(@ —ay — - —ay) (0] ~ b — - — bE) < (aydy — aghy — - —a,},)%,
(1)
with equality if and only if the sequences a and b are proportional.

This is AczEL's inequality [1].
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Proof. First, we assume that a and b are not proportional, and let % — b2
wm vn — b2 > 0. We have

(2) Flo) = (B} — b — - — by #® — 2(a;by — agby — - —ab,) x

+ (0 —af - —a)

= (b — a))° — (byx — ay)* — -+ — (b,x — a,)%

Again, by the above hypotheses, we have b, &= 0 and
“9Y= (5,2 — g — o — (0% Y
f(b1) o (b2 by az) (b” by a”) < 0.

Since f(x) > + o0 (x> + o0) and f(x) > + oo (x> — o0), we
conclude that the polynomial f has two zeros belonging to the intervals
(~— oo a—l) and (a—l + oo) ‘

' B b’

Therefore, since the discriminant of the polynomial (2) must be posi-
tive, we obtain (1).

From (2) it follows that there is equality in (1) if and only if 2 and b
are proportional.

Owing to the symmetry, the proof is the same if the condition 4§ — 53
— ++» — bZ > 0 is replaced by a% — a3 — .-+ — a2 > 0.

The following generalization of (1) is due to T. Poroviciu {2]:

Theorem 2. If a = (a,, ..., a,) and b = (by, ..., b,) are sequences of non-
negative veal numbers such that.

(3) at —ab—...—a?>0, or b —b — ... —b >0,

then, for p > 1,

(@] —af — o —al) (B — B — - — D) < (aby — @b, — - — a,b,)”.

R. BELLMAN (3] proved the following result:

Theorem 3. If a = (a,, ..., a,) and b = (b, ..., b,) are sequences of non-
negative veal numbers which satisfy (3), then, for p > 1,

(@ — af — o — @BP (B — b — ... — pRYUIP
< ((a, + &) — (a5 + by)? — -+ — (a, + b)P)MP.

In the mentioned paper [2], T. Poroviciu gave simple proofs of
Theorems 1, 2 and 3.

The following generalization of (1) is due to S. KUREPA [4]:
Theorem 4. Let B be a Hermitian functional on a vector space X. Set
Xo={x€¢ X |B(x, %) =0}, K={xcX|B(x, %)< 0}
and for a given vector 2€ X, X = {x€ X | B(x, z) = 0}.
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1° If e€ X is such that Ble, ) == 0, then X = L(e) & X9 where @
denotes the dirvect sum of spaces X'© andr L (¢) 1s a subspace spanned by e.

2° If the functional B is positive semidefinite on X'© for at least one
¢ € K, then B is positive semidefinite on XU) for every f € K.

3° The functional B is positive semidefinite on X© (e € K) if and only
if the inequality
(4) |B(x, %) 2> B(x,x) B(y,)

holds for every x€ K and all v€ X, Equality holds in (4) if and only if theye
is a scalar a such thaty — ax € Xy N X®.

For other generalizations, see also [5] and [6]. In [6] inequality (1)
is generalized to a HILBERT space and it is obtained by the use of the
complexification of a real HILBERT space.

Remark. H. SCHWERDTFEGER in Canad. Math. Bull. 1, 175— 179 (1958) has obtai-
ned certain results on possible combinations of signs -+ and — which allow in-
equalities analogous to (1).
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2.11 Schweitzer’s, Diaz-Metcalf’s, Rennie’s
and Related Inequalities

P. ScHwEITZER (1] proved the inequality

1 < 1 <1 (M+ m)?
» (5 Zm) (- 2 a) =
where 0 < m<ag, < Mifork=1,...,n

In the same paper, P. SCHWEITZER has also shown that if functions
x> f(x) and x> f(i) are integrable on (g, 6] and 0 <m < f(x) < M
on [a, b], then

b ) .
(2) [F) dx | f;x) dx<MEMW G e
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G. P6LvA and G. SzEGO [2] proved that
o 2 MM, mlm2 2
(kZ ak> ( ) lemz Mz
( Z’ by )
where

@ O<m<a, <M, 0<m<b <M, for k=1,...,n.

(3)

Inequality (3) reduces to equality if and only if the numbers

M, M,

Lot iy
= n, L= n
M, 3, M, M,
"y L my My

are positive integers and if K of the numbers a4, ..., 4,, are equal to m,
and L of these numbers equal to M, and if the corresponding numbers b,
are equal to M, and m, respectively.

L. B. KaNTorovI¢ [3] proved that

o (E) (Ean) =023 (3

where 0 <m <9y, <M for k=1,...,n, and he pointed out that
inequality (b) is a particular case of (3).
W. GREUB and W. RHEINBOLDT [4] proved that

” . (MM, + m;my)?
(6) (Zak“k) (k§1 bi”"%) = imlinleluz (Z“ bk“k)
where 0 <<y <a, << M,and 0 <my, <bh < Myfork=1,...,n

Remark 1. The integral analogues of (3), (5) and (6) are known and are similar to
the analogue (2) of (1).

Remark 2. Inequalities (3), (8) and (6) can be deduced from (2). Indeed, putting in
2)a=0b=apb, ++*+ a,b, and

a, k-1
f(x)=£;—1for0__<_x<a1b1andf(x) ——for 2 ab, < x < Zab k=2, ..,n),
1 k r=1

where
0<m <ay<M and 0<m<b, <M, for A=1,...,%
we have
= — _ — = M
m M2<bk<m2 ,

and this reduces (2) to (3).
Fora =0, b=ui+°'-+u,2,and

-1
f) =y, for 0 < ¥ < w2 and f(x) = y for Zu2 <x< Zu2 =2,...,n),

=i



Ref. p.65] 2.11 Schweitzer’s, Diaz-Metcalf’s, Rennie’s and Related Inequalities 61

where

0<m<yp < Mifor h=1,...,4%,
from (2) we obtain (5).
Finally, if we replace y; by «,/b, and u; by ]/a:kbk g, where
0<m<a,<M,and 0 <my, <b; <M, for k=1,...,n

we have

<?k<

2 T My

§|§

and this reduces (5) to (6).

Applying the above procedure, E. MAKAI [5] in 1961 showed that the inequality
of KanTorovIC can be deduced from (2). At the same time, P. HEnrICI [6] also
gave an easy dérivation of (5) from (1).

Conversely, it is clear that (6) implies inequalities (1), (3} and (5).

The above simple results have evoked, in the recent time, a consider-
able interest, and many refinements, generalizations and inversions of
cited inequalities, together with various applications, have been given.
Concerning this, see, in particular, papers [7] —[24].

J. B. Diaz and F. T. METCALF [14] proved

Theorem 1. If a, (== 0) and b, (k = 1, ..., n) are veal numbers and if
(7) mg.a_:gM for k=1,..,n

then

® Sh M 3 @< (M ) 3 ey

Equality holds in (8) if and only if in each of the n inequalities (1) at
least one equality sign holds, i.e., either b, = ma, or by, = Ma, (where the
equation may vary with k).

The proof of Theorem 1 is easy and elementary. Indeed, by virtue of
(7), the inequality

1s obvious. Summing up, we get

(9) 0< 2 (b — may) (Ma, — by),
k=1

1.¢.,

0< — 3 [ — (M + m) ab, + Mma?],
k=1

which is inequality (8).
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In inequality (9), or equivalently, in inequality (8), equality holds if
and only if each of the summands (b, — ma,;) (Ma, — b,) is equal to zero,
which proves Theorem 1.

Inequalities (1), (3), (d) and (6) are contained in inequality (8) as
special cases, as well as some other inequalities. Let us prove it for in-
equality (3).

Putting m = my(M,, M = M,/m, in (8), we obtain

n

sz mz Mz Z /M2+ mz) Z“k
k=1 k=

”‘\ml

Adding to the last inequality the following obvious inequality

n o 1/2 e M n 5 1/272
0< ) — (22 vy ,
=\ &) - (@24

"

1/2
M M
og(J %ﬁ) é‘akbk— (’”2 —2 Zak 2 b”') ,

we find

! k=1
Le., ’
(2] (25
a 2 b )
k§1 B (k:1 k <i M m, (M1M2 + m1m2)2 .
(g’, b )2 — 4 Mym, Mym,
a
=1 K7k
Since
1 E@ EET — 1 Mym (M1M2 -+ ""1”""2)2
4 m M, M,M 4 M,m, M,m, ’

we have already proved that (3) is a consequence of (8).

1jr n
Consider now M (a ( 2P ka;) with 23'p, = 1. W. SPECHT
= k=1
(see 2.14.3) proved that ’
[sl¢,. s v/ s n1js—1jr
a0) M o () ()
M7 @p) T\ — 1 s s ’

where 0 <m <a, <M (k=1,...,n), g=M/m, s >r and sr 5 0.
For s = 1 and » = —1 the above inequality is, in fact, (D).
A. J. GoLpMAN [19] deduced inequality (10) from the following result:
If s» << 0, then

(11) (M* — m®) MU (a; pY — (M" — m') M (a; p)° < MPwi — M'm*

The opposite inequality holds for s > 0.
Inequality (11) was also proved by A. W, MARsHALL and I. OLKIN
[21], and B. C. RENNIE [12]. .
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For s = 1 and » = —1 inequality (11) yields the following inequality
of B. C. REnNIE [12]:

S paymM S < M.
E=1 =1 %

J. B. D1az, A. J. GoLpMAN and F. T. METCALF [20] showed that the
inequality which appears in Theorem 1 is equivalent to that of B. C.
RENNIE.

J. B. Diaz and F. T. METcALF in [14] also proved the foliowing two
theorems:

Theorem 2. Let a, &= 0 and by (k= 1, ..., n) be complex numbers such that

by by
(12) m<Re— 4+ Im - M,
ak ak

(13) mZRe——Im—-<M
@y @y

fork=1,...,n Then

(14) S + mM I (a2 < (M +m)Re Sayh, < |M + m]
k=1 k=1 k=1

Fd .
2 b,
k=1

Equality holds on the left of (14) if and omnly if for each k such that
Im (by/a) == 0 one equality sign holds in (12) and one equality sign (neces-
sarily the “opposite” one) holds in (13); while for each k such that Im(by/a;)
= 0, at least one of the equality signs holds in (12) (or, what is the same in
this case, in (13)).

Theorem 3. Let | and g be real-valued and square integrable functions on
(a, b]. Assume that

oy

(15) m<EE <M (with }x) =+ 0)

SFm =

for almost every x € [a, b]. Then

.

b b b
(16) [ex)?dx + Mm [ f(x)2dx < (M +m) [ f(x)g(x) dx.

I'quality holds in (16) if and only if, for almost every x in [a, b], at
lvast one of the equality signs holds in (1D), where the equality sign in question
may vary with x.

Incquality (16) taken together with the obvious inequality

0 < l(fbg(x)2 dx)”2 — (Mm fbf(x)Z dx)m]

2
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gives some integral inequalities proved by G. P6LvA, P. SCHWEITZER and
J. KURSCHAK (see [2]).

Among some other results proved by J. B. Diaz and F. T. METCALF
we mention the following theorem which is more general than Theorem 1.

Theorem 4. Let the complex numbers a, (£ 0), b, (k =1, ..., n), m and M
satisfy

b b
Rem+1mnge.;+Imf_gReM+ImM,

Rem—~Imm<Re——Im <ReM Im M,
a, ay

fork=1,...,n. Then

3l + (Rt 3

k .

k-—

< Re ((M—l-m)Z‘ak )< M +m|| >

Inequality (3) yields an upper bound of the following quotient
n b2
(k21 ak) (k§1 k)
2 ?
b
()

while a lower bound is given by CAUCHY’s inequality (see 2.6.1). There-
fore, inequality (3) and its analogues are called in the literature inverse
or complementary to the CAucHY inequality.

There exist also the inverse inequalities of the other important in-
equalities. So, for instance, the GRUss inequality (see 2.13) is the inverse
of CEBYSEV's inequality. We shall mention the inverse of HSLDER’s
inequality, proved by J. B. Diaz, A. J. GorpmaN and F.T. METCALF

[20].

Theorem 5. Let functions x v f(x)? and x> g{x)? where —;— + % = 1

and p > 1 be positive and integrable on [a, b] and let, on [a, b],
0<m <) <M, < +oo, 0<m<Lgx) M, < +o00.
Then

b 1/p b 1/g b
( ff(x)”dx) (fg(xwx) < C, [ 1) et d,

where
MEME— mimd

r (pm.M.(M,M{t i ’"1"-"'{: i)-)‘ﬂp"(q'ml Ml(M.}\}f“l - "’lm{ml))”q '
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Z. NEHARI [24] deduced many generalizations of the inequalities
inverse to HOLDER’s inequality. We mention only the following:

Theorem 6. Let /y, ..., f, be real-valued nonnegative concave functions on a
veal interval [a, b]. If p, > O0for k= 1,... ,nand p;* + -« + p-1 =1,
then

n b —1 b n
kI=T1 (f fk(x)Pkdx)pk =C, f (k]l fk(x)) ax,
where
(n + 1)!

G e

k=1

Equality holds if f, (x) == x for [%] of the subscripis k, and f,(x) =1 — x
otherwise.

A number of papers had as their aim to extend the aforementioned
inequalities in the HILBERT, BANACH or other spaces. Concerning this, see,
for example, paper [17].

Remark 3. In connection with the above topics, it is of interest to consult the
review of papers [15], [16] and [17] by S. D. CHaTTERJI published in Zentral-
blatt fiir Mathematik 135, 347 (1967).

Rewmark 4. Concerning paper [24], see also a review of J. V. RyFF in Math. Re-
views 37, 289 (1969).

Remayk 5. For some interesting generalizations of the KanToroviC inequality,
see paper [25] of E. BEck.
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2.12 An Inequality of Fan and Todd
In the book [1] of A. M. OsTrROWSKI the following result is noted:

Theorem 1. Let a = (ay, ..., a,) and b = (by, ..., b,) be two sequences, not
proportional, of real numbers. Let x = (x4, ..., %,) be any sequence of real
numbers for which the following holds

(1)

Sax, =0, Sbx =1,
i=~1
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Then

(2) 3=
. =1

(3) = — - fO?’ k:l,...,n.

Proof. Let
9 A= Sa, B= 38, C— Sap, and y — i
(4) = 2 4, _51' i —-551' i% Yi=Jm_— 2

i=1 i

It can be verified that the sequence v, ...,v, satisfies (1). Any
sequence %, ..., %, subject to (1) satisfies

Say, =4
< XY= 4p ¢

and, in particular, we have

i’ 4
2 e e
_Z Yi = gp_¢E
=1
Hence, any sequence %4, ..., %, subject to (1) satisfies
n n n
o) SH- I=3 -y
i=1 i=1 te=1

wherefrom follows

IV

H (3
2
Z4z 5wt

which was to be proved.
From (5) it follows that equality holds in the above inequality if and
onlyif x; = v, for7 =1, ..., n, i.e., if and only if condition (3) is fulfilled.

Remark 1. The case of equality is not stated in the book [1].

K. Fax and J. Topp [2] proved:

Theorem 2. Let a = (ay,...,a,) and b=(by,...,,) (n>2) be two
sequences of real numbers such that ab; = a;b; for 1 = j.

It
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In the double sum

L
_ " —1 . 1 jﬁ\
15'1“1"%”(2) Zza.b.—wa.b-

the n(# — 1) terms can be grouped in pairs of the form

n\—1 4, aja, .
(2) (a-b-j_ja-b-—l-a-b-] ia-b-) (¢ ==1),
1t 177 1 ]— 7

and the sum of each such pair vanishes.

7
Hence, we deduce that > a;x; = 0.

i=1
Similarly, we find that >'bx; = 1.
i=1

According to Theorem 1, we derive

2
H _21 a;
>#= =

T ({i a?) (£ :1 b?) - (151 aibif |

which was to be proved.

Remark 2. 1f a; = sinoajand b; = cos «;fori = 1, ..., n, one obtains an incquality
proved by J. B. Cnassan [3] using arguments based on statistical considerations.

K. Fanx and J. Topp in [2] also proved the following generalization
of Theorem 2:

Theorem 3. Let p,; (1,7 =1, ..., n; 1 &= §) be veal numbers such that
Pij :Pﬁs P'ij - Z Pz'j + 0.
1<i<j<n
Then for any two sequences of veal numbers ay, ...,a, and by, ..., D0,
satisfying ab; &= ab; (i 3= 1), we have

(13 a2' ) 2
=1 " i p,a,
N D n 2<_15§.Z(.Z.a.b..._ib)‘
(Z “s‘)(z b.‘) P(Z “;‘b;') i~1 \ft¢ 7 1%
T | fam i i
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For complex numbers we have the corresponding result:

Theorem 4. Let a = (ay, ..., a,) and b = (by, ..., b,) be two sequences of
complex numbers which are not propoviional. If for a complex sequence

X = (%4, ..., %,) the following conditions hold
ax, =0 and 3 bx =1,
i=1 i=1
then
# , 'Zl I“«;Iz

n r—
2 by
=1

(2 1) (g]w) -

The following generalization of Theorem 2 is also due to K. FAnand
J. Toop [2]:

Theorem 3. Let m and n be integers such that 2 < m < n. Let

%, == (%, .- %) for 1<i<m

4

be m vectors in the unitary space X such that every m > m submatrix of the
wm X n matrix

AT T R P

i

 Xa1  Fap Xon
(6) |

|

;xml Xma Zmn

is nonsingular.

Let M (fy, ..., Im_1) denote the deteyminant of order m — 1 formed by
the first m — 1 rows of (6) and the columns of (6) with indices 41, ..., Jm—1
taken in this order. Let N(jy, ..., 1,,) denote the determinant of ovder m
formed by the columns of (6) with indices §,, ..., ,, taken in this ovder. Then

Iy, oo %y y) n\—2 2 MGy oons fppei)
0 T =) 2 NG

m) 4 jm=1 ]1<...<]m_1 ’
]'1;---:jm_1=)=jm
where I' 1s GRAM's determinant.
The summation inside the absolute value sign of (1) sums oveyr all
(m — 1)-tuples (fy, ..., Jm—1) Of tntegers different from the fixed j, and
suchthat 1 <j; < o <oy < .
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2.13 Griiss’ Inequality
Let f and g be two functions defined and integrable over (a, b). Let
p<iH) =P, y=gl<Tr

for all x € (a, b), where @, @, v, I' are fixed real constants.
H. GrUss (see footnote in [1]} conjectured that

b
(1) b_aff e ff dxufg(x)dx

<L@—9) (=)

G. GrUss [1] proved that (1) is true and that the constant 1/4 is the
best possible.

We shall give a proof of (1). First, by making the substitution x =
(¢ — a}/(b — a) the problem is reduced to the special case a = 0, b = 1.
In that case we write

F= flf(x)dx, G= flg(x)dx
0 g

and
f F{x) g(x) dx — FG.
Then (1) reads
(2) DG )| <5 (@—p) (I —y).
Note that ‘ ‘
3 DY, f) = Of 2 dx — (Oflf e dx)zz 0

holds by the BUNIAKOWSKI-SCHWARZ inequality.
On the other hand,

D(,)=@ —F)(F —¢) — Of (@ — f(%)] [f(x) — @] dx,
which implies that
4 DG}, < (@ — F)(F —q).

One can easily verify that

D(f, g) <fU(x — F] [g(x) — G] dx.
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Using the BUNIAKOWSK!-SCHWARZ Inequality, we get
1

D{f,gP < Of [f(x) — F1*dx [ {g(x) —GPdx=D(f. /) D(g.g).

0
According to (3) and (4), we infer that

(5) D}, gP<@—F)(F —¢)(I' - G) (G — ).

Since
4D - F)(F — ¢} < (@ — ¢,

4 —=6) (G —y) < (I'—p),
we conclude that (5) implies (2).

Taking f(x) = g(x) = sgn(2x — 1), the constant 1/4 in (2) is seen
to be the best possible.

Remark. A.M. OsTROWsKI has given some interesting results which are connected
with inequality (1). See Basel Math. Notes No. 23 and 24 (1968), and Aequationes
Math. 2, 362—363 (1969).

Inequality (2) can be improved if we impose further restrictions on f
and g. Let A%/ (x) be the n-th difference, i.e.;

A%M%=£it—ﬂ”*(§)ﬂx+kM-

A function £, defined over (a, b}, is said to be monotonic of order p if
Af(x) =0, or Alf(x <0

foralln=1,...,p and all x€ (a, b), & > 0, x + nh < b. If f is mono-
tonic of order p in (a, b) for all p =1, 2, ..., we say that it is absolutely
monotonic in (a, b) (“‘vollmonoton’’, ‘‘absolument monotone”’).

S. BERNSTEIN [2] proved that a function f monotonic of order p > 2
over (a, b) has continuous derivatives f' (x), ..., f#~(x) and =1 (x)
has right and left derivatives for all x€ (a, ). Consequently, if f is
absolutely monotonic in (4, b), then it has derivatives of all orders and

M) >0, or fMx)<0

foralln =1, 2,... and x€ (a, b).
If f and g are absolutely monotonic functions in (0, 1), G. GrUss [1]
proved that

(6) D(f, )* < 3z @ — )",

and

() ID(f8)| < (@ — @) (' — ).
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The constant 4/45 in (6), and also in (7), is the best possible, as 1s
seen by taking f(x) = «2.

G. GRUSS in his proof of (6) and (7) used the BERNSTEIN polynomials.
A simpler proof was given by E. LaAnpav [3]. He derived (6) and (7)
from the following proposition:

If n is a positive integer and

¥

A,:Z‘(;)pk with 4, >0(r=0,1,...,1),

k=0
then
n—1

1 tsa) <2 4y
720' ;T goy <4, — 4y)%

E. LAxDAU [4] proved that (6) and (7) hold if f and g are monotonic
of order 4. Needless to say this is a nontrivial improvement of GRUsS’
result. Tor functions monotonic of order 2 = 1, 2, 3 E. LANDAU proved

D9 <@ —@) (I —y) for k=1,
DO <5 @ —g)(I'—y) for k=2,

Do < (@ —¢) (I'—y) for k=3

G. H. HARDY [5] established an improvement of (7) for a more re-
strictive class of functions. Following his definition, we shall say that f
is totally monotonic on (g, b), if

fl#) =0, f{x <0, [f(x=0, [f"(x)<0,...

in (a, b). We note that in this case f(—x) is absolutely monotonic in
(—b, —a).

HarpY's result is: If f and g are totally monotonic on (0, 4 o) and
e <flx) <D,y <g(x) <I'on{0,a),then

(8) D, g)| <55 @ — @) (T — ),
where
-jf dx—-—ff ) dx [g(x) dx
0

The constant 1/12 is the best possible.

For example, we cannot apply (8) to f(x) = (a — x)2 (0 < x < a),
since this function is not a restriction of a function totally monotonic on
(0, 4+ o0).

The estimates obtained so far for |D(f, g) | involve only the bounds ¢,
®, y, I'. There is another kind of estimate which include also F and G,
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for instance (5). From a result of PH. FrRANCK and G. Pick [6] the follow-
ing theorem can be derived (cf. also [1]).
If f and g are positive convex functions in (0, 1), then

D(f, ) <5 F-G.

Some other estimates can be derived from theorems proved by PH.
Franck and G. Pick [6], and G. Pick and W. BLASCHKE [7].

Further estimates of this type were obtained by M. BIERNACKI,
H. PipEK and C. RyLL-NarRDZEWsK!I [8], and S. FEmpL [9].

In addition, K. K~xopp [10] has generalized GRUSS’ inequality to
other means.

GrUss’ inequality provides the bounds for the difference D(f, g).
An analogous result for the ratio

Jf(x) dxofg(x) dx
R(f,g) = —5
Jﬂmamm

was obtained by J. KAraMATA [11]. He, namely, proved that if f and g
are integrable functions on (0, 1) and if

0<a<fx) <A and 0<b<<g(x)< B for 0 <x<L1,
then
) L Vab +VaB
'—'<R B <K“, Wlth K:t—“—:*>1.
= RO = VaB + 4b —
J. KARAMATA obtained this result as a consequence of a more general

result for which A. Birmmovi¢, as an addition to the same paper [11],
gave a simple geometric proof.
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2.14 Means

2.14.1 Definitions

Arithmetic, geometric and harmonic means are only special cases of
more general means which we shall define now.

Definition 1. For a sequence of positive numbers a = (ay, ..., a,) and
posttive weights p = (Py, ..., Dn), the weighted mean of ovder v (v is an
extended veal number) is defined as

n 1/r
.EIPMZ
(1) MINa; p) =\ "5 (r 30, ] < 4 o0},
" " 1/P
~ (1 ) (r = o),
i=1
= min (a,, ,a,) {(r = — o0),
= max (dy,...,4a,) (r = -4 ©0),

n
where P, = >'p;.
i=1
For » = —1 we obtain weighted harmonic, for » = 0 weighted geo-
metric, and for » = 1 weighted arithmetic means.
The above defined mean is a continuous function with respect to
on the extended set of real numbers, since

7 1/ P,
it ("
1=1

r—0

r—lsl—llinooME:] (@; ) = max(a,, ..., @),

lim MVY(a; p) = min(ay, ..., a,,).
r—>—00

In applications normed means of order r are often considered instead
of (1). Those are means of order » for numbers a4, ..., a, with weights

p1, ..., Py such that 3'p, = 1.

foml
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However, this is not an important limitation, since we can pass from
ordinary weighted means to normed means by introducing new weights
defined by

P

== -a— (1;:1,...,%).
P1+--- +Pn

q;

Non-weighted means of order » (or simply: means of order r), i.e.,
those means for which p; = .-- = p,, = 1, are of special interest. There-
fore, as a special case of Definition 1, we have

Definition 2. Let a = (a4, ..., a,) be a finite sequence of positive numbers
and let v be an extended real number. The mean of ovder v is defined by
@ MP@=(TREET ko< b oo,
= (g a,) " r=0),
= min (4, ..., @,,) (r = — o0},
= max(a,, ..., a,) (r = + o0).
As can easily be seen, for ¥ = —1 we obtain the harmonic mean, for

r = 0 the geometric, and for » = 1 the arithmetic mean.
More general means than the ones defined by (1) are also considered in
the literature. For example, there is the following definition:

Definition 3. Let [ be a real-valued function, which is momnotone on the
closed interval [, B). If a = (ay, ..., a,) is a sequence of real numbers from
(o, B] and p = (p1, ..., Pn) a sequence of positive numbers, the quasi-
arithmetic non-symmetrical mean of numbers a,, ..., a,, 1s defined by

pflay) + o+ P, fla,)
(3) Mf(ﬂ;?)zf_l(l 1 i )

_P]_ + vt + pn
where [~ 1s the inverse function of f.

If $ =+ =p, =1, we obtain symmetric quasi-arithmetic means
of the numbers a4, ..., a,.

For f(x) = " we get from (3) weighted means of order 7.

For even more general means see [1].

The integral analogue of (1) is given by

Definition 4. Let [ and p be defined, positive and itntegrable functions on
the closed interval [a, b]. The weighted mean of order r of the function f on
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[a, b] with the weight s

b 1/r
uf b (x) f(x)" du
) M7(ipiab)=|"——— (r 0, | < + o0),
ufp(x)dx
fP ) log f(%)
= exp - P (r = 0),
ufp(x)dx
= MW : (r = — o0),
=M (r = —}—OO),

where m = inf f(x) and M = sup f(x) for x € [a, b].

For p (x) = 1 we have the integral analogue of (2).
More general means of functions are defined in the literature in a
way similar to Definition 3.

Refevence

1. Mrrrinovié, D. S, and P. M. Vasié: Sredine. Matematicka Biblioteka, vol. 40,
Beograd 1969.

2.14.2 Inequalities Involving Means

Inequalities which hold for the arithmetic, geometric and harmonic
means considered above, are special cases of the inequality which
appears in the following

Theorem 1. If a)=-.- =a, = a, then MU(a;p) = ab. Otherwise,
MUl a; p) is a strictly increasing function of r, i.e., for —oo <s <t <
+ oo we have -

(1) M a; p) < M a; p).

Proof. Consider the functions f and F defined by

F(t) = 1—"1“1+ +Pnt 1
P+t 2, ’

3 p!
’t d [
F(t):tzj}(%lzﬂdt(lg = )

Z'pa log a; ZP.“,
=" o — log T (

pn =2ps)
Ep., P

i=1
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Since f(£) > 0, functions ' and F are of the same sign. Therefore,
we should prove that F(f) > 0. Since

" n 7 2
F'(t) = w—t—z((_ﬂ)iai) (_2 p;a;log? ai) - (_Z’zb,;ai log a,;) )
(iglpia:) i=1 i=1 i=1

by CAUCHY's inequality we conclude that F' has the same sign as ¢.
Therefore, F is an increasing function for ¢ > 0, decreasing for ¢ << 0, and
has a minimum for ¢ = 0. Functions F and f are, thus, positive for all
values of £, except perhaps for { = 0. However, for { = 0,

#n n 7 n 2
n 1/_%151' "—Z-‘lpi'g'lpi (log “,‘)2 - (g‘lp@ log “i)
o= ()

and /' (0) = 0 only in the case when 4y = ... == 4,, (as the expression in
the numerator of the above fraction is, according to CAucHY’s inequality,
always negative, except when the sequences }/p;loga; and )p; are
proportional).

Remark. Theorem 1 was proved in 1858 by O. ScurémiLcH [3] for the case p; = -
-+« = P whereas s and ¢ are natural numbers, or belong to the set {1/2, 1/3, ...}.

For p; = «++ = p, and arbitrary s and ¢, this theorem was proved in 1888 by
H. Sivon [4].

For arbitrary py, ..., p,, Theorem 1 was formulated without proof by J. Biexn-
AYME [§] in 1840. The first published proof is due to D. Brsso [6].

The proof given here is a modification of the proof given by N. NoRrris [7] who
used the above method for proving Theorem 1 for thecasep; = +++ = p .

We give the following theorem without proof:

Theorem 2. Inequality
My(a; p) = M,(a; p)

holds in an interval I containing the numbers ay, ..., a, if and only if:
1° f is strictly increasing and g strictly decreasing in I,

2° f and g are strictly decveasing ov strictly increasing in I, and gff is
strictly increasing in the same interval.
In opposite cases inequality is reversed.

The proof of Theorem 2 can be found in the article [8] of R. COOPER
(the theorem is proved there only for the case py = .-+ = $,, but the
proof holds in the more general case, also).

Finally, notice that starting with these results, the corresponding
thcorems for the means defined by (4) in 2.14.1 can be obtained without
difficulty.

More on inequalitics involving means may be found in the books [1]
and [2].
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Using Theorem 1 we shall now prove

Theorem 3. If 2, + --- + A4, > 1land 4,> 0, A;; > 0, then
m P P m Ay m Ay
® S an<(Ea) (24
i=1 i=1 i=1

Proof. Let us prove this inequality for the case 4; -+ --- + 1, — 1. Put-
ting in {1)

Ajv
S:(), ?:1, aj-—-—‘”;'*, P_‘]:z] (1213 ,n):
2 Aj
i=1
we get
Alv M Amv n
LA S <A + o+ A, — (r=1,...,m).
.ZAM' ZA 2 Ali Z Am’
t=1 i=1 i=1 =1
Adding the last inequalities, according to the condition 4, + --- + A4,
= 1, we get (2).

Suppose now that A, + --- -+ A, == & > 1. Putting A, = kA, where
k>1andi§—l—~-+ﬁ;1:1andfl = Aj;, we find that

O Faedie Sapoaie(Sa) (S
i=1 ’ =1 i
k m Ay fk
:(ZA?z)l/‘“(ZAZi) /'
1=1 i=1

Since, for £ > land a; > 0 (# =1, ..., n), we have

n
2% " g noab \VE_m g
S aE T T 2 e ) 22
k / i=1 k / j=1 k j=1 k
1';'1% i§1ai ¢§1ai 2 i

inequality (2) follows from (3).
From Theorem 3 we obtain immediately Theorem 3 in 2.8.
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2.14.3 Ratios and Differences of Means

Leta = (a,,...,a,) and ¢ = (¢4, ..., g,) be two sequences of positive

numbers such that g, = 1. We shall consider the ratio and difference
i=1

of two weighted means of order s and ¢ (— oo << § << 5 << 4 00):

, ML a; g)
(1) Qsa; q) = m ’
(2) D, (a;9) =M a; q) — MB(a; q).

According to Theorem 1in 2.14.2 we have the following lower bounds
1<Qfa;q9) and 0D, ,(a;9).

We shall consider the problem of finding upper bounds for (1) and
(2). See 2.11 for the upper bound of (1) when s =1, ¢ = —1.

K. K~xopp [1] has determined the upper bounds for (1) and (2) in the
caset =1, s > 1. ‘

The problem of determining upper bounds for (1) for arbitrary s and ¢,
was first solved by W. SPECHT [2]. He obtained the following result:

Theorem 1. If 0 < m < a, < M (z = 1, ..., n) and ¢t < s, then the follow-
ing inequality holds

(3) Qs,t (61; g) g Ps,t’
where C = M|m and

. t(CS . Ct) )1/3( S(Ct _ CS) )—1,’t ;
FS"—((s—t) (¢t — 1) (t — s) (C° — 1) (st == 0)

cS—1 1/s
_ csl'( ) (t _ 0)
e log(CS"(Cs_l)) .

( Ct/(ct—l) )mm
e log (CH(CLI))

(;. T. Carco and O. SHI1sHA [3] have rediscovered this theorem. How-
ever, they also considered the equality case in (3), which was not done
explicitly in [2]. Their result reads:

(s = 0).
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Let
1 ¢ s
L = — st == 0
S—t(_c‘ 1 c‘—1) (st == 0)
g€ o1 t=0
1 1

Equality in (3) for a point (a,, ..., a,) holds if and only if there exists a
b
subsequence (ky, ..., k) of (1,...,n) such that qui =T, ay, = M
i=1
(t=1,...,p) and ay = m for every k distinct from all k;.

The upper bound for ratio (1) was also discussed by E. F. BECKEN-
BACH [4].

Finally, let us mention the result due to O. SHIsHA and B. MoxD [5]
which refers to the upper bound of the difference (2).

Theorem 2. If 0 <m < a, < M (1 =1,...,n) and t < s, then
(4) _ Dgy(a;q) <o

where

Voo = (0M° 4+ (L — 0) m*)* — (0M' 4 (1 — 6) mH)!/* (st 5 0),
Veo= (0M° + (1 — 6) m*)'/° — M'm'~?,
Vo= M'm' ™" — (OM' 4+ (1 — 6) m')/".

6 is defined in the following way. Let

B(x) =z — (ax - b)Y/ (st == 0)
v —mS MS —mS
— s __ m(%)( /(M2 —m) t = 0)
Y MY (=) (M - m})
= —}—m(a) (s = 0),
where
a__Mt—mt mesmt_ths
M —m®’ MS—m®

Let ] denote the open interval joiming m® to M° if s 5= 0 and let | =
(M', m*) if s=0. There is an x' € J such that h(x) << h{x") for every
x€ Jand x = x'. We set

’ I3 ’ 4
—r-m (s==0) and g="*""

2 = 0).
M —mf M~ (S )
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Equality in (4) for a point (a,, ..., a,) holds if and only if there exists a
b

subsequence (ky, ..., ky) of (1,...,n) such that 2'q, =0, ay, =M
i=1

(t=1,...,p) and a, = m for every k distinct from all k;. Finally, if
s >> 1, then x' 1s the unique solution of h' (x) = 0 in J.

For some interesting generalizations see the paper [6] of E. BECK.
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2.14.4 Refinement of the Arithmetic-Geometric Mean Inequality
First we cite some results which are associated with the inequality
(1) A, (a p) — G, {a p) > 0.
We shall use the following notations:
d,(aq9) =4, q) — G,a9),
Spla)= 3 (@ —a)?,

1<i<j=<n
S,(aq) = 3 qg;@ —af),

1<i<i<<n
where a = (a4, ..., a,) IS a sequence of nonnegative real numbers and
g = (g4, --., ¢,) is a sequence of positive real numbers such that ¢; 4- ---
+ g, =1

H. KoBer [1] has proved the following result:

Theorem 1. If not all of the numbers a4, ..., a, ave equal, the following
inequality holds

min(gq,, ..., q,) _A4,{a, q)

® =75,

p— < max(gy, ..., 4,).
Proof. Without loss of generality, we can suppose that ¢, < ..+ < g,.
Suppose first that g, << ¢,, and put

d,=4,a,9— ;27 3 @ —aPfr=4,09 - 250

— —_ n
n— 1, i Cn n—1

6 Mitrinovid, Inequalities
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applying the inequality between the weighted arithmetic and geometric
means for the case when the sum of the weightsis 1, we get 4, > 0, with
equality if and only if
ay = =a,= (4,8)'" = = (a,_a,)'",

ie., ifand onlyifay = --- = a, = 0 and a, > 0.

Similarly we proceed in the case g, = g, < g3, etc.

In this way the first inequality of (2) is proved.

Let us now prove the second inequality of (2). This proof is based on
the fact that, for x; > 0,

(3 | - Zntalear -2 T () >0,
i=1 1<i<j<n
with equalityifand onlyif ; = Qand % = - =%, 1 =%,y =+ = %,,.
For the proof of this inequality see 3.9.69.
Since

S, (a) = nA, (a) — nG, (a)

i=1 1<1<]<n

applying inequality (3) we see that the expression in curled brackets is
always positive except in the case when one of the numbers a,, ..., a, is
equal to zero, and all the others are equal. Therefore
4,0 q) 4,(a 9
S(e) " wD, @’

where D, (a) = 4,(a) — G, (a).
We have two cases:

1° ¢y = --» =g¢q,=1/n; then 4,(a,q) = D,{(a) and the second in-
equality of {2) is also proved.

2° Suppose that not all ¢, are equal. Since

D,@) — P L o+ o [Tt — ] al",

”qn ”qn il "9',, =1
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applying the inequality between the arithmetic and geometric means we

A,(a g : L .
get D, {(a) — g ) > 0 and in this case the second inequality of (2) is
proved. |

Finally, if g = --- = ¢,, > ¢4, then
4, (a,
Dn(a) - ”(a Q) =0
ng,
if and only if x; = 0, x, = --- = %,,, which together with inequality (3)

completes the proof.

H. KoBER has proved that the upper bound in (2} is always reached.

P. H. DiaNANDA [2] has, however, proved that this is not always the
case with the lower bound.

P. H. D1aNANDA has proved the following result:

Theorem 2. If not all the members of the sequence a are equal, the following
tnequalities hold:
1 Ay (a, g) 1
4 . < .
( ) 1 — min (g4,...,9,) — S,(@ g) — min{g,,...,q,)

Both bounds in (4) are always reached.

Let us finally mention a result proved by P. H. DianaxDpa [3] which
is a generalization of Theorem 2, namely,

Theorem 3. The following inequalities hold

m,n(ql q,,) (91 qn)
in{—,..., - MAX | 5, veny —
g, 7, Ayla, q) 7 g,

S”(a.v q') m.in{qil MR | q;;)

¥

where ¢ = (g1, - .., 4,,) 15 a sequence,of positive numbers such that g + -
+ g =1
Both bounds in (D) are always reached.

For other results which refer to inequalities of the type

A9y >a 3 Bya” —a?),
1<i<i<n

where « and §;; are some rational functions of ¢y, ..., g,, see article [4]
of A. DINGHAS.

We shall now quote, without proof, some results which refine the
inequality
6 An (@) >1
( )) G” (a) — *
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Let a = (a4, ..., a,) be a sequence of positive numbers. We shall use
the following notation:

o= 2 f(a,—a)?

1<i<j=n

A= JI (& —a)?,

1gi<i<n

L t 4+ R\r—F—1
Pl _n'H(n——k) !

M= ( )

C. L. S1eGEL [5] has proved the following result:

Theorem 4. If n > 2 and A == 0, then

(7 4,(a)" > G,(a)" Q,(u),
where u 1s the only positive root of the equation
(8) P,(u) 4 =G, (@)™,

Since Q,, () > 1 for all positive ¢, inequality (7) is really a refinement
of inequality (6).

Inequality (7) is at the same time a refinement of an inequality of
1. ScHUR [6]:

©) 4, (@Y > 4R, (0),

where

R, (f) — —

Indeed, by eliminating G, (@) from (7) and (8) we get
4,(@)"" "V 2 AR, (u),

which is sharper than (9) since R, (¢) is an increasing function with respect
to Z.

The following result due to J. HUNTER [7] is in a way related to
Theorem 4:

Theorem 5. Let y be the root of the equation
o =p(n — 1) (nd, @))%,
which belongs to the interval (0, 1). Then, we have

(A_(“))> ______ W_l_‘-_____
Gal@)) (1 + pln — 1) (L — @
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The results obtained by A. DiNnGHAS [4] follow from above. In this
paper inequalities involving elementary symmetric functions were also
considered.

_ We notice that all the known proofs of the above results are rather
complicated and it would therefore be of interest to find some simpler
proofs.

Remark. Refinements of (6) analogous to Theorems 1 and 2 have been given by
P.S.BuLLEN in Pacific J. Math. 15, 47—54 (1965).
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2.14.5 Some General Inequalities Involving Means

Let I and J denote finite nonempty sets of positive integers, let N (I)
be the number of elements of I, let @ denote the empty set, and let
I,={1,...,p} { = 1). Furthermore, let a = (a4, ..., a,) (n > 1) be a
sequence of real non-negative numbers.

We shall consider the mean of order 7, which is formed from a sub-
sequence of a, for the case 0 <<y << + oo. Then

(1) MP @) =N (Say (0<r <),
i€l
M) = (1] 3.
(iEI
We shall also consider the difference
(2) e, (a; I) = N(I) (MY (@) — M} (a))

for0<s<r7r<< 4 oc.
Since M/1(a) is an increasing function of », we have

e, 1) =0,

cquality occuring only in one of the following cases:
1°ifr =s,
2° if all a, (n € I) are equal.
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W. N. EVERITT [1] has proved the following three theorems:

Theorem 1. Let IN J = 0. Then:
1° for 1 < v << 4 00,
(8) NIV J) M, (@) = N(I) MY @) + N(]) M} (a).

Equality holds if and only if
(4) M a) = M} (a);
2° forv = Land IN | =0, equality always holds in (3);
3° for 0 <r <1, inequality in (3) reverses, equality holding if and
only if condition (4) is fulfilled.
Theorem 2. If 0 <s<<1 <7 < + o0, then
(5) 5@ IV J) 2 0,.(a; 1) + ¢, ]).
Equality holds if and only if one of the following conditions is fulfilled
PPs=r=1andIN ] =0;
2 0<s<l1<r< +ooand

(6) M7 a) = MY (a),
(7) My (a) = Mi(a);

F0<s<1l=rand(7);
4° s =1<r<< -+ ooand (6).

Theorem 3. If 0 <s <1< 7 << + oo, forall p > 1, we have

0,s(a; I,.4) >0, (a:1,),
with equality if and only if one of the following four conditions is fulfilled :
1° s =y =1;
X 0<s<l<r<+oo and all the numbers a, (1 <<n<p + 1)
are equal ;
Fo<Ls<l=r, apH:ME’;(a);

£ s=1<r< —i—oo,aHl:M};j(a).

Unifying the results proved by W. N. EveritT [1] and D. S. MITRI-
Novi¢ and P. M. Vasi¢ [2], H. W. McLavgHLIN and F. T. METCALF [3]
obtained some interesting inequalities for means of order r. Later, D. S.
MrtriNovIC and P.M. VAsiC [4] proved even more general results which
contain inequalities of H. W. McLAuUGHLIN and F. T. METCALF from [3]
and some inequalities of P. S. BULLEN [5]. We give the results of MiTRI-
Novi¢ and Vasi¢:
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Let I be a nonempty subset of the set of natural numbers, The weighted
mean of order # (r is real and finite) is defined by

§Piz i 1/E’pi
M@ = |55 | =0, M@ =(IT"
7" 1
where @; > 0, p; > 0 ic I)and 3 = 3. Wealso write MV1(a; p)¥,... for
FRRT
(MY (a; p)), ...

Theorem4. If A 4+ u>1 with A > 0, u> 0, and f Iy, I,, J,, Jo are
subsets of N such that I, \ [, =0 and I, I\ J, =0, then

(8) ( Z’Pi)’“( p) 9’@)” MYy s p) My, (05 9

IIUJI IIUJZ

> (IZ p@-)“ (Z qt-)“ MV a; p)" ME(b; gy
+ (JZP;) (ZQ)‘“ MY a; o) MG (D; g).

. Ja
Equality takes place if and only if A +p =14, u > 0 and

(32 M7 @i 9" (Zp-)ME”(a-p)”
(ZQ)M[”b a)° (Zq)M[“bq)

Ifi+p=1and A>1, 0r A+ pu=1 and 1 <0, the opposite in-
equality holds.

Proof. Putting » = 2, m = 2 and
Aq = (Zibg) ME{] (@;9), Ap= (ZP ) Mm a;p),

l

Ay = (Z’ 91) MEI(b;q)°, A= (}Z’%) MEI(®; q),
then since

(AIZ’P,»)ME']( (%’P;)M[” ;P Z(Z’P)MEGJ( P P)

vy
from (2) in 2.14.2 follows (8).

Corollary 1. If I, = I, =1, [ = Jo=J and IN J =, mequalztv (8)
becomes

IV ) = HT) + ),
= (ZPY (Za) MY @ " MP G 0"
1 1

where

The function f is, therefore, superadditive.
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Corollary 2. If I, = J, =1, [, = I, = J and I N\ ] =0, inequality (8)
becomes

( sz)l( p) 9;)” MEU]( Y M_%J(bi gy
oy oy
A ' ,uM[r] . Ar M[s] b g)s
z(gpt) (?%) I (a!p) J ( !g)
AA ) ,uM[r] . Ay M[s} b gl
+(§p¢) (;‘gi) J (Q’P) I ( Jg)
This inequality states the following property
HLT) + 1D <jfIV ], JVI),

HILJ) = (IZ P,,-)A (? %)" MY (a, p)* MF (2, g

where

Theorem 5. IfA +u>1,2>0,u > Oandif Iy, ..., I yand Iy, ..., 1,
are monempty subsets of the set of natural numbers N, such that for k, ] =
1, ..., m with | == k,

I,NI, =9, I,NI,—0,

then
(o 2) (o e Mt (@3 1 M1, 05 00
= (T2 (Z 0y Myl oML 050"
+ ...
+ ( %1’ P@-) ( 1%; qt)’“‘ MY (a; p) MY (b5 g)*.

Equality holds if and only if A +u=1 (A> 0 and u > 0), and if
the sequences

(Zp@-) Milas; p) (=1,...,m),

In

[
‘.H
:

g

(2 q,) MELGbs g G

Iig

are proportional.

The proof of Theorem 5 is analogous to the proof of Theorem 4, and
is obtained from inequality (2) in 2.14.2 with n = 2.

Theorem 6. If Ay + - + 4, =1, A, >0fori=1,...,n and if I, are
nonempty subsets of the set of natural numbers N, such that

Iklanl =ﬂ,..., Ikﬂ{\ IJ” - ﬁ
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for k,g=1,...,mand k == 7, then
(9) ( 2 Pu)’l‘...( > ?mz)’“" MY 1 (815 £1)™"
FETVER VY P & AV P A
MJ[T?:@]U UImn( n; Pn) nrn

(Z Y (3 )7 M £ M) a5,

Iy Inn

(Z P (3 P M (o ) o M @5 )7

Iml Im'n
Proof. Inequality (9) can be obtained by putting in (2) in 2.14.2
Ay = (Z‘pki) [’k](ak, P)E G=1,....mk=1,..., n).
Ijk

Theorem b is, of course, merely a special case of Theorem 6 with
n = 2.

As has been said before, Theorems 4, b and 6 contain a number of
known results. We shall mention the following particular results which
areincluded in those theorems (see D. S. MiTriNOVIC and P. M, Vasi¢ [2]).

Theorem 7. If rs << 0, then

# ;‘i—, rs n—1 s_j-; rs S
(10) (Elp ) ( [’]W'P)f'_’ - (»Elp ) ( M@ ) ); N
- .
v s \MP@a) T o \MEL (asg) -
(2 (5 :
v=1 v=1
If rs > 0, the inequality is reversed.
Equality holds if and only if
1 1 A
r—Ss p —S y—8
( ) b (gn) a1 (gn—l) al(gl)
Theorem 8. For » > 0,
1 ”
L T(vil q,,) . ; p

12 2P MY @ p)\ =t
(12 Z”' G,la;q)

v=1q”

1 n—1
n—1 7(:):21 q,,) ngl
P q_r” vé'i Py M['] N
q” Z gi’ n 1(“ Q)
ye=1

with equality if and only if equalities (11) hold.
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Notice that inequalities (10) and (12) can be iterated, so that we get,
for example,

¥ §—7?
#n S—7r s _;S_
Mg] (a,p) ~ (v§1 qi’) Z”"‘ 1Js—r
N N L =
5oy
r=1

and Theorem 2 in 2.14.2 follows {from this inequality if we put $, = g,
('i: 1, ,%)
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2.14.6 The A-Method of Mitrinovi¢ and Vasié

This method (see [1]) can be summarized as follows:

1° Start with an inequality which can be proved by the theory of
maxima and minima;

2° In a convenient manner introduce one or more parameters into
the function from which that inequality was obtained;

3° Find the extreme values of such a function, treating the parameters
as fixed.

In this way an inequality involving one or more parameters is ob-
tained. Assigning conveniently chosen values to those parameters, one
may obtain various inequalities whose forms bear no similarity to the
original. This method often unifies isolated inequalities and yields
known inequalities as special cases.

We shall demonstrate the method by a simple example.

The inequality

nd, (@) — nMM (@) > (n — 1) 4,_, (@) — (n — 1) M, (@),

which holds for » < 1 (the inequality is reversed for > 1) can be proved
by the method of examining functions, starting with

M g(a,) = nd, (@) — nM\/'(a).
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Instead of g, we shall consider the function
(2) - fa,) =nd, (a) — nM. (a),

where 4 > 0 is a parameter.
From (2) we get

f(a,) =1—2a, L (M (@),

F1a,) = —hlr — )2 @ (M @) (ME, (@)

n

4

If 0 < Al=7 << n, the only positive zero of the function / is

1

— n—1 \1/r
an 32147M5r11 (d) 14 .
” _ZE

Since for# > 1 and 1 > 0, f'(a,) << 0, we get the following inequality

(3) nd, (@) — MY (a)

<=1 4, @ — =1 (- 7 (n— ai%*)r:l) M7 (),

where » > 1 and 0 << 217" < n.

If » < 1, the sign < in (3) should be replaced by =. In this case,
excluding the case 7 == 0, the inequality is obtained from previous
considerations. For » == 0, the following inequality holds

®

(4) nd, (@) —nG,(a)=n—1) A, (@) =2 (0 — 1) Gy (a) (A>>0),

which can be obtained from (3) by letting » — 0, or by examining the
corresponding functions, as in the proof of (3).
Putting A = 4 _(a)/M["(a) in (8), we get

M a) \I=7 M (@) \1=7
n ‘A_(Etf > (n — 1) ?’1,,,_—1(“7 +1 (1‘<0)

From this inequality, using a? instead of a; and setting s = 72, we
get the following, more general, inequality

ks ks
MOV (MO <o
"\uti) = (n — 1) (ME,"_]I @ + (ks << 0).

This ineqquality has been proved in [2].
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Putting A = A4,(a)/G,(a) in (4), we get

G, (a)\* G,_q(a\*—1
(ZT;;VT)) = (“%;1(“)) ’
which has been proved many times (see, for example, [3] and [4]).

By a similar method, and by a suitable choice of the parameter 4,
other classical and new inequalities can be obtained from proven in-
equalities.

Up to now, for the sake of simplicity, we have considered only the

most elementary cases. We shall now quote some more general results,
without proof, using the following notation:

n

PnZZPi and Qn:_Zi’q@-

t=1

Theorem 1 (D.S. MrtriNovi¢ and P.M.Vasi€ [17). Ifr << 1, the following
wmequality holds:

0wl n(a; q) —1 P WM (a; )

non

r—1
= Qn—lAn—l(a;g) ——ﬂ, { (P _'p A f) § }M»E:]_1(a;},))J
oy —
where 0 << 177 < S P,.

For r > 1, the sign of the inequality is reversed.

Theorem 2 (D. S. MitriNovi¢ and P. M. Vasi¢ [1], P. S. BuLLeEN [5]).
For any 2 > 0 we have

Qudnla;q) — P_.,PG( %3

P,/P,_19n .
> Qi y(@ig) = 2P G, (@),

Theorem 3 (P. S, BULLEN [B]). For any 4 > 0 we have

(A” (a’ q + ﬂ‘)Q”'>(An 1 a’ q + AQ /Qn I)Q" 1
(G. (a; ))qn n/Pn ( 1(“ P))‘In n/f’n

with equality only when A, (a; q) = a, + A
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Theorem 4 (D. S. MrrriNovi¢ and P. M. Vasi¢ [6]). Let A and y be two
real numbers such that Ay > 0. If up, — P, < 0, we have

n
QnAn(a» Q) - Z’E; Pn(Gn (a; p))# 2 Qn—lAn—l (d; Q)
Py wPy 9

- gn 7 “ Pn
— (d) 7. (Go1(a; P))P v (—‘u‘ — Pn)-

In the case where up, — P, > 0, the inequality is reversed.
In both cases equality holds if and only if

Py BBy, 4
Py—uby Pp—npy,
a, = (u) """ (Gu_1(a;9)) e

(]

Theorem 5 (D. S. MiTrRiNovIC and P. M. Vasi¢ [6]). Let x, 3, 4 be real
numbers such that 2 > 0 and §(x — fp,) > 0. If x — fp, > 0, we have

(4, (a; q) + 1)
(G, (a; p))FFn

~ (q_n)ﬁl”n (i)“ ‘_Qn_l x—Bpn (A, _y(a;q) + AinQn_l)“\ﬁ”"
—\bp, & — Bpy G,y (@; p))FFn—1 '

Qn

In the case when x — Bp,, << 0, the inequality is reversed.
In both cases equality holds if and only if

(0‘ T ﬂPn) gnan — ﬁpn (Qn-—lAn_—l (d; Q) + }'Qn) .

Theorem 6 (P.S. BULLEN [7)). Ifr <{s5,5 =0, 4+ coand 0 < p,,,}.r’ < P,
then

0, (M) (a; g)) — 222

5 PalM @ ) = Qo (My24 (23 9

20 , . =

with equality only when E:a,’,p,, = aj, (Am P, — pn) .

If v > s then the inequality is veversed.

In the following theorem we use the notations:

a= (A, ..., Byim) a=(ay,...,a,), a="{(Api1, ) pim)
Poym=p1+ -+ Puim Pa=p1+ "+ Pu Po=tuos+ -+ boim
Quim=G1F "+ uim Q=1+ -+ gu On =Gus1 + + duim

(a1
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Theorem 7 (P. S. BULLEN [7]). I[f — > 1, and 0 < P,J*~" < P, ,,, then

e i s 5 P”*"” r s
5 L, @)y — 5 (MY, 45 4)

5 s—r r \r—s
= (M[S] (d Q)) 5 (M[’] ) P (Pn+m _' Pm;"s—f) ’

éoll QO

+(M55,](?i:é")) AN MG B)) s

Quim Prim (M“’ @:9)°
2 (MY @5 gy =4 E " (M @A) e

P
:1'_ ) (g 1 (M (7 B
> 5 M@ 9y — 1 5" (@ 7)

[5]/% . ~y1s8 s_—_: r \r—s
ma
(8@ T N
m L]
Remark 1. The above Theorem 7 which appeared in [7] is given here in the
corrected form, at the request of P. S. BULLEN.
Remark 2. Inequalities whose form is analogous to
ndy(a) — nGy (@) > m — 1) Ay_1(a) — (v — 1) Gp—1(a)
are sometimes called Rabo type inequalities, while inequalities analogous to
Gy sl
< N
4,@)) —\4,_4@)
are sometimes called Popoviciu type inequalities,
Those names are often used in 2.15.2.
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2.15 Symmetric Means and Functions

2.15.1 Definitions and Main Relations between Symmetric Means

Definition 1. Let a = (ay, ..., a,) be a positive sequence. Then the v-th
symmetric function is defined by
(1) o= EY) = ¢,(@) = Ef'(a) = 3 [] o,

j=1

the sum being over all r-tuples iy, ..., t,, such that 1 < iy < -+ <4, < n;
m addition we define eq = 1. The y-th symmetric mean is

[r]
(2) P,=P,[,’]=ﬁ%"_ for »r=0,1,...,n.
(%)
A series of simple but remarkable inequalities follows from the follow-
ing simple observation; see [1], p. 11, [2], p. 104, and [3], pp. 1156—117.

n

Theorem 1. I} f(x) = Dc;x* has n real yools and if ¢ :(?)di, for
i=0

i=1,...,n — 1, then

(3) a—d,_,d, >0,

?

the inequality being strict unless all the roots are identical.

Inequality (3) implies the weaker result (see [2], p. 52, and [3], p. 117)

(4) c?—c,._lci+1>0 for 7=1,...,n — 1,

Theorem 2. Forr =1, ...,n — 1 we have

(5) p? - pr—lPr—-}—i _>,_ 0:

and

(6) 33 - gr-—ier-}—l > O?

with equality in (5) if and only if ay = --- = a,,.

Proof. Since
Seox =3 (G ot = 11 @+ ),
k=0 k=0 k1

this result is an immediate corollary of Theorem 1.
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Corollary 1. If » <C s, then e, _je, < e,6,_4.
Corollary 2. If 1 <y <n — 1l and ¢, 4 > ¢, then ¢, > ¢, 4.
Proof. These are immediate corollaries of (6).

If & is any sequence we define, for m > 0,

m

A, = z(m1)1‘(”.") by ;-

i=0 v
D. S. MitriNoviC [4] has obtained some interesting extensions of (6)
and Corollary 2, as for example:

Theorem 3. 1° If1 <k <n - 1, 0<v <<k — 1, then
(7) (Aey_,)* — (Le_, ) (Lep_, 1) 2= 0.
X If (=12 N, 1 > 0,1 < p <, then (—1)Ae_, > 0.

Proof. 1° follows from (4) applied to the polynomial (x — 1)* [ (a; + x).

k=1
2° we prove by induction on ». The case v = 1 is just Corollary 2. Let
us assume the result forv — 1. By 1°

Av_lek——v Avﬁlek—wz < (Av*lekuvA—i)z:
which by the induction hypothesis is equivalent to

y—1 v—1
4 Chvi2 A ey yiq

r—1 — y—1
A ey _yiy A" ey

(8)
But by hypothesis (—1)* A%¢;, _,. ; > 0 is equivalent to the inequality
(—1) 1At 0> (—1) A" 1e,_, 4, O to

v—1
4 by

~ 1.
r—1
A" ey iy

(9)
Inequalities (8) and (9) imply that
A1 Y

Tr—1 >1’
A gk_

v

which is equivalent to (—1)* A%, _, > 0, as was to be proved.

The basic idea in the proof of 1° in Theorem 3 can be used to

obtain further results. For instance applying (4) to the polynomial
n

(x — &) [] (a, + %), D. S. MiTriNOVIC obtained the following result (see

[4] and [5]):

2 2
4(er—-ler+l - 6') (er——zef - erul) —>- (er--ler - 6,__26’_“)'.
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Results analogous to Corollaries 1 and 2 and Theorem 3 can be ob-
tained for symmetric means using (3) and (5), rather than (4) and (6).
In particular if » << s, (D) implies that p,_;p, < p,p,_4, with equality if
andonly if g = --- = a,,.

Using (2), this last inequality implies the following improvement of
Corollary 1, due to J. DoucaLL [6]. If » < s, then

rim—s+1)ee_ ~smn—r+1e_e,>0.

The identity Xe* =]] (1 + a;x) suggests the following genera-
k=0 j=1
lizations of (1) and (2) (see [7], [8] and [9]):
400 +o00 %
Dt =3TH @) =TT 1 +ap) for s>0,
k=0 E=0 j=1
=J] (1 —~ax)® for s<0,
j=1
tk,s
sn\’
(%)
J. N. WHITELEY [8] has shown that if s > 0, with » < s if s Is not
an integer, » << s if s is an integer, then

(10) w? , — wr—i,swr-}—i,s = 0.

1,8 =

and w;, ; = Wk a) =

The inequality is reversed if s <C 0: since w, y = p,, (10} is a signifi-
cant generalization of ().

Theorem 4. If 1 << s <<t < n, then
(11) Gu(a) =G, <pl < p'< 4, = 4,(a),

with equality if and only if a; = -+ = a,,.

Proof. Since p; = A, and p* =G, it is sufficient to consider the centre
inequality.
By multiplying together inequality (5) in the form (p, _1p,.4)" < #%,

1 <r<s, we get that p° > plll5+Y), which implies (11). The cases of
equality are immediate.

Remark 1. In the same way inequality (10) implies an inequality similar to (11) for
the WHITELEY means [8].

Remark 2. 1t is possible to deduce (11) from the weaker inequality (6) [10]. This
method can be used to extend (11) to the weighted symmetric means |

El]
PE"] (a; q) —_ "i'l(aQ) .
E, " (9)

7 Mitrinovid, Inequalities
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However, this expansion is not very satisfactory as it requires sequences a and
g to be similarly ordered [10].

2.15.2 Inequalities of Rado-Popoviciu Type

Inequality (11) in 2.15.1 suggests the investigation of Rapo-Poroviciu
results (see Remark in 2.14.6} for symmetric means; a fairly complete
analogue for the PoroviciU inequality is known ([10], [11] and {12]);
results of the Rapo type are incomplete, although recent results in this
direction have been proved by D. S. MitriNoVIC and P. M. Vasi€ [13].
D.S. MitriNovIC ([B] and [14]) has also obtained RADO type extensions
to his results given in Theorem 3 in 2.15.1.

Let us introduce the following notations. If a == (a4, ..., a,.,), then
a={ay, ..., &), &= (A1, ---» a,.,), with a similar notation for the
corresponding symmetric functions and means; thus e, = El"!(a),
p, = PI'(a), etc.

The following identities can easily be proved [10]:

8§
1° e = e, 2, s < min(n, g),
t=0
n+g—s
= 2 &_f_ny»  S>max(ng),
t=0
q s ~—
z
= € 164, g<s<mn.
t=0

2°If1 <s<#n-+ g, u=max(s —#,0),r = min(s, g} and

_ (" a\ifr+4
l(s,t)_u(s_t)(t)/( 0, 0<t<s,

then
(1) b= 2A(s.4) Py

t=u

3° In particular, ifa, ; = -+ = 4, ,=f, (1) reduces to

(2) b= 2A(s )P F,

f=u
and if in addition, ¢; = --- = a, = «,
(3) p, = D'A(s, BB

t=u

Remark 1. The following is a simple applicationof (1). If ¢ = 1, thenu = 0, ¥ = 1
and (1) becomes

__n—l—l—-s s
ST a1 P ’*‘”_*_laoull’x i
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which is equivalent to

b b= 1P (a P )
s =71 -1 +1 — = .
. § " +1 & n PS~1
But from (11) in 2.15.1

2bsl

and so
— 5 — —
Ps — ps = w1 Ps—1l(@ni1 — An).

Hence if a is increasing, p, — p, = 0; thus Pl(a), P{(a), PYl(a), ... is
increasing exactly when « is; further, it increases strlctly ifa does
Theorem 1. Let 1 <r <<k <mn -+ ¢, u = max(r — #, 0), v = min(r, g),
w = max (k — #», 0), x = min(%, g).

1° Ifv<wandr — u <<k — x, then

Pkfr (k x),/(r—-u) Tw v
(4) > R
by Pros P
2° If v < w, then
klr Twiv
P P, v
(5) =
k Pw
Proof. Rewrite (4) as
k
L e fk < Pr — — R'

Pk xpr —Pr(._k;x)/(rgu) z:))rfv
By (11) in 2.15.1

(6) Pf = (tmzv‘l(r, 1} %rw:ﬁz) (Z‘A r, t) B! 57— t [r—u) Pf)/”)k-

(This inequality is strict unless a; = --- =4, ,. However in certain
cases this step is vacuous; in particular when» = 1, 2 = # -+ ¢, when all
the means in (4) are either arithmetic or geometric means.)

It follows from (3) that this last expression is the k-th power of the
r-th symmetric mean of &,, ..., b, ,, where b, = pHUM fori =1,...,n
and b; = p”” forj=mn +1,...,n + ¢. Hence by (11) in 2.15.1 and (3}

again,
r

= Zawnpepe)
:(_k;x)/(r u®) wr/v(zz k f (x— tf(r—u) 551-—&))/1})’.

t=w

(This inequality is strict unless ) _, = p} ; if the previous application
of inequality (11) in 2.15.1 had not given a .stnct inequality, then neither

7‘
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can the present application. However if, as noted above, the previous
application had been vacuous, then strict inequality could occur here.)
Using this last expression it easily follows that

R> (Zx'it(k, )y %&f““’”v)'—_— S.
t=w

In a similar way, using (1),

M p= (im DBy, ;b) < (quk, By BN ,)
f=w t=w

by (11) in 2.15.1, the inequality being strict unless 4, = --- = a So

i < bh Bl ( S Ak, t) pyT i) ;,g—w»w) ,

t=1w

n+q*

which immediately gives

B s
t=1w

But by (11) in 2.15.1, T << S, this inequality being strict unless v = w

andy —u =% — x,0ora,=-.. = a, .. This completes the proof of 1°.

The proof of 2° is similar except that when (11) in 2.15.1 is applied to

the right-hand side of (6) and (7), it is applied to the second part of each

~

term only, that is, to p,.

Remark 2. In any particular application of this result the case of equality can be
obtained from the above proof [15].

Remark 3. 1f v =1, k = n 4+ ¢, then (4) gives the following generalization of

Poroviciu’s inequality
ntg T\ {37 \¢
Gusg T \G,/ \G,

with equality if and only if 4, = 4, (see [10] and [15]).

Remark 4. Taking k = s + 1, ¢ = 1, (5) reduces to

—ifr\ s 1fr s+1
. ? ¥
8) (-—1/.9) < (—lf(s+1)) :
s ps—|— 1
Remark 5. Inequalities similar to (8) have been obtained for elementary symmetric

functions by D. 8. MitriNovi¢ and P. M. Vasi¢ [12]. In particularif g = 1, v < s,
1<s<nand 0 < &< B, then

(e)* _ (e)°

(0)f = ()
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We now quote a case of the application of the A-method developed
in 2.14.6.

Theorem 2. If A > 0, a = (ay, ..., a,, ), then for k = 2, 3, n -+ 1,
(9)  (n+1) (1 — 45y/")

< e+ D)k~ INoye-050k-1) T+ 1— & by
2%(?1 ( nk ))“ pk—l nk ;bk~1 )

with equality if and only if a, | = 7—1—7} ! ARIF=1) ;bk/(kl_l) ~ = +}: —* ;k .
k—1

Proof. Put x =4, , and
Fx) = (n 4 1) (py — 4p:"")
=npy +x—(n+1)2 (n B Pk j_ 1‘731;-1">1/k-

. . . . 1—k P . .
Then f is defined provided x > — il 5 z * and is easily seen
k—1
. - 1 ek 1951/ (h— 1—k P
to have a unique minimum at x = n—z-_——lk”(k Dpylth = * :

7 .
Pr—1
This completes the proof of Theorem 2 due to D. S. MITRINOVIC and
P. M. Vasi¢ [13].

Remark 6. In a similar way D. S, MiTrinovi¢ and P, M, Vasi¢ [13] also proved the
following PoPoviciu type inequality for symmetric functions. If g > 0, then for
k=23 ...,n-+1,

(10)

with equality if and only if a, 1 = E%T (y, + e, — ), (én+1 being defined
to be zero).
Setting & = » -} 1, inequality {9) reduces to
(0 4+ 1) (Aus1 = AGpiy) Z 0 (dy— 20D G,).
Now, putting 2 = »n -+ 1 and y = 1 (» 4 1}, inequality {10) becomes

n+1].

(An+1+1)"+1 An +
<., ) = 5

G

n+l n

1t would be of interest to generalize (9), replacing p, by py ¥ say;also to obtain
a complcte Rapo analogue of Theorem 1.
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The following result is due to D. S. MiTRINOVIC [14].

Theorem 3. Let a = (aq, ..., 4,.,) and a = (a,, ..., a,).
1° If (—1)P A%, _, > 0,1 < p <, then
(11) (—1) A, > (1) Le,_,.

2° If (— 1Y Ay 5> 0, (—1Y A,y > Oand (—1) A, > 0,
then
(12) (Aep ) — (Ae_,0q) (Aey_, 1)
> (Ae,_,)2 — (Aey . ) (Aey__y).

Proof. The hypothesis implies by Theorem 3in 2.15.1 that (—1)* 4% ¢, _, 4
> 0; this, together with the identity

Ko ,=a, Ve , | +4¢._,,
mmplies (11).
Put x =a,, and
J(@) = (e )* — (Lep,py) (Ao, o)
=A%, + e )i—(xA_, o+ , ) (xle ,+A_,. ).

Simple calculations and (7) show that /'’ (x) > 0. In particular, these

calculations give
f' (0) == Au—ék~vf1 Av—ékgv - szkmv—Z szk*v+1 2 O’

by the hypotheses and (7).

Hence if x > 0, f' (x) > 0, which implies f(x) > f(0), but this is just
(12).

In particular if ¥ = 0 the hypotheses are automatically satisfied and
(12) reduces to 6§ — ¢,_16x,1 = €3 — €x_165.1.

2.15.3 Concavity of Certain Functions Involving
the Elementary Symmetric Functions

The results in this Subsection due to Marcus and Lorgs, McLEoD and
WHITELEY (see [16], [17], [7] and [11]}) are much deeper.

Let us introduce the following notations: if there exists a number A
such that a; = Ab;, 7 > 1, write a ~ b; if this is not the case, write a ~ b;
a; means the sequence a with the term a,; omitted.

Theorem 1. I/ 1 < p <y < m, then

e, (a + b) \li? e, (a) \UP e, (b) \VP
1 —_— > — -
o e =65 e

with equality if and only if a ~ b orv = 1\,vp‘: 1. In addition ¢,(a)/e, ,(a)
1§ an increasing function of each a,.
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Proof. First suppose that (1) is known when $ = 1. Then
( e, {a + b) )up ( poe, ;. (la+ b))l/p

€_p (a "I‘—b_) er_;b(a + b)

j=1
Pe, .. (@) e, (B)\lP
> rog AV =g v
= (}} e @ T e m )
by (1) with p = 1. From this, using Theorem 10 of [2], we get

e, (a + b) 1/p P e, _joq(@) 1/p P ey 1 (0 1/p
aen) =(Tw) ()

j=1 G-l 1 et
e, (@) \1P e, (b) \'/?
()
7—p(a) erfp (b)
e,{a)
If f(ay, ..., a,) = o, @’ then
' e, playe,_la;) —ela)e,_, ,(a})
filag ..., a) =7 1 3 —
¢ _p(a)

o Y R ey

- i ' 2

Hence by Corollary 1 of 2.15.1, fi(ay, ..., 4,) > 0, which proves the last

part of the theorem.
It remains to consider (1) with ¢ = 1. We may clearly assume

¥y > 2and a ~ b, and let us write
gr(a)z‘ff ST Q”r(d, b):gr(d—l—b)—-g,(d)—g,(b)
Zn (a;B, — b;4,)

1=

720400 =5 4 B4, + B,

where A, = Ya,, B, = 2'b,. This proves (1) in the case » =2, so
i=1 i=1

let us assume 7 > 2.
The following identities are easily demonstrated.

H

re, (a) = Z‘aier -1 (a:)’ e, (a) = aier—-l (d:) + er (d;) )
i=1
(n — 1) e, (a) = e, (a), re,(a) = d,e,(a) — 3 aje, »(a)-
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From these we easily deduce that

" @

Vg,.(a) - An - 2 W

1=

and
1 X a? b? {(a. + b2 y
p@ ) = 3 (i + - )
i\ teg @) b4 0) a;+b+g,_y(a+0b)

We now complete the proof by induction on 7. By the induction
hypothesis
8roq (o + 8) > g,y (a) + ¢, (b))
unless a; ~ b;, in which case we have equality. Suppose first that for some
i we have a;~ b; then
a5 b2 {a; + b,)®

1

@) 9, (a, b) >-- Za+&()+b+hﬂ) a;+ b+ &, (@) +¢,, )

t]f»

__;_ﬁ, (a; 8,4 (b)) — bg,_, (a}))?
T (“1; + gf_l(a;;)) (b + g,_l b’ ) (a + b -+ 8p-1 (@ ;) +g,._1 (b;)) )

ge=]

Now suppose that a;~ b; for every i when (2) is an equality; suppose in
fact that a; = A,b;. Then

(@81 (0) — big, 1 (a)))* = (a; — A:D)* &, _; (B))*

Hence since a ~ b this last expression is positive; and so in all cases
@,(a, b) > 0.

Corollary 1. If 1 < r < m, then
e,(a + D) > ¢, (a)'" + e, (b)'",
with equality only when v =1 or a ~ b.

Proof. This is just the case » = $ of Theorem 1.

Remark 1. This last result has been extended to WHITELEY means [7];
(3) (T?Ek,s] @ + b))l,’k > (T’Ek,s] (a))ljk © (Tﬁk,s] (b))ljk

if s > 0; the inequality being reversed if s < 0.

Remark 2. Since E,[:] (@) = > ai‘ e g™, this concept, and the corres-
fy et =7 i
f-j=0,1

ponding mean is capable of considerable generalization [7]. One such generalization
has been studied by R. F. MUIRHEAD [2], p. 44, and more recently by G. BEKISEV
[18]. Their results are mainly concerned with the comparability of the various

means they define.
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One of the generalizations mentioned in Remark 2 is the complete ele-

mentary function, ¢, =¢,(a) = C"1(a) = > a%--.a' A general-
Tyt iy =r
. C["J (a
ization of the r-th symmetric meanis: D, (a) = D1 (a) = PR—
( n—1

The case s = —1 of (3} shows that
(C,[,:l (a + b))l,’r S (C,[:] (a))l,/r + (CE:J (b))lf”_

This result has also been proved by J. B. McLEoD [17]. It would be
of interest to obtain a more direct proof of this last inequality. J. B.
McLeop [17], and K. V. MENON [19], have conjectured that a result
similar to Theorem 1 should hold for the complete elementary functions.
Certain other results have been obtained by K. V. MENON [19]; in parti-
cular the following analogue of Corollary 1, and Theorem 3 in 2.15.1.

Theorem 2. If » <C s then: 1° c,ci_y > ¢, _4¢,, 2° ¢}/ > clis

Proof. Let a = (a, ..., a,.4) and a = (a4, ..., a,); then it follows easily
that

¢, = Z‘aan (co=1 and ¢, =c,(a)).

Hence
s—1

Cls 1 — 6 46 = 2 an-{-l(ErEs_l—j "'"_Cr 1-5¢ )+ an-{-l Z C —1-—j°
j=r

From this 1dent1ty 1° can be obtained by a proof by induction on #,
since clearly the result holds when # = 1.
2° follows from 1° in the usual way since 1° implies that

2
C — Cr-—lcr—{-l > 0.

We also quote some other results from the paper [19] of K. V. MENON:

Glatds _ i@ e
crta4 b~ clr g e

for r=1and » = 2, n = 2 (in other cases a proof is not known);
Dr—l(a) Dr+1 (a) - Dr(a)2 2 0
forr =1, 2, 3 (for » = 4 a proof is a not known);
D,_,(a) Dr+1(a) — D, _5(a) Dr+2(“) =0

for n = 2 (for n > 2 the inequality has not yet been proved).
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Concerning the topics of this Section see also papers [20] of G. POLyA,
] of G. S. MAHAJANI, V. R. THIRUVENKATACHAR and V. D. THAWANT,

and [22] of G. S. MAHAJANT and V., R. THIRUVENKATACHAR,
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2.16 Steffensen’s and Related Inequalities

This Section concerns a general inequality due to J. F. STEFFENSEN
[1], published in 1918. The STEFFENSEN inequality does not appear in
the book Inequalities by G. H. HArRDY, J. LitTLEW0OD and G. PéLya,
from 1934, which assembled almost all important inequalities.

The Jahrbuch {iber die Fortschritte der Mathematik did not review
STEFFENSEN'’s paper [1], but G. SZEGS quoted the STEFFENSEN inequality
in his review of papers [2] and [6] by T. Havasat.

The following result and its proof were given by STEFFENSEN [1].

Theorem 1. Assume that two integrable functions f and g are defined on
the interval (a, by, that | never increases and that 0 < g () < 1 i (a, b).
Then

b b a-+ A
(1) bflf(t) a< [f)gyat< [ fi)at
where
b
(2) L= [gadt.
Proof. The second inequality of (1) may be derived as follows:
at+ i b
[reydt— [{ gy at
a :+A
= [T g1/ [0

at+i
a+ A

Sfa+d) [ [1—gh]d— jf

@

at+ i b
1o+ |3 [ dt]—jﬁf 0
© b a4 “ 'I
= f(a + ) f jg dtJ-—{Af

b

[ (?) dt—ff(t)g(t) dt

+4 a+
- L g) [f(a + 4 — /() &

=> 0.
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The first inequality of (1) can be proved similarly. However, the
second inequality of (1) implies the first.

Indeed, let G{¥) =1 — g(f) and A :be(t) dt. Note that 0 < G(f)
<1if0<g@# < 1lin (a,d). Then ’
(3) b—a=21+ 4.

Suppose the second inequality of (1) holds. Then

a-t+A

JHOG@at< [ f) ar

ie.,
ff(t) 1 —g()]dt < :f
ie.,
j () dt — :f_fj(t) &< f 1O 2@ at,
ie.,

b

[y at < [ f) gt at

b—A
which is the first inequality of (1).
Remark 1. Roy O. Davies has communicated to us the following interesting proof

of the second inequality of (1).
The function H, defined by

x
a+ fgtydt
a

Hx) = [ 7 at - ff gt)d
is zero when ¥ = g and has a positive derivative:
H’ (%) =f(a —l—fg(f)dt)g(x) —fx g =0

X
since a - f g (#) dt < x, because of the hypothesis 0 < g (¢) < 1, and thus
a ‘

(a+fg dt)>f (%)

as f is decreasing.
This holds for smooth functions, and can be extended to others by the usual
approximations,

T. HAavasHI, in [2], generalized inequality (1) slightly by taking the
condition
0 <g(t) <A (Aisa constant > 0)
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instead of 0 < g(f) < 1, and proved that

at+A

b b
Affoa<[loena<alina

where

1 b
A:z!g(t)dt.

Some slight generalizations of the STEFFENSEN inequality were given
by MEIDELL [3].

In [4], J. F. STEFFENSEN used the second inequality of (1) to derive a
generalization of JENSEN’s inequality for convex functions. He proved
the following

Theorem 2. If f is a convex function and x, (kR = 1, ..., n) never decreases,
and if ¢, (kR =1, ..., n) satisfies the conditions
/_ 0 gkg Ck {_\/k%ck (’V = 1, reey T’L), W'ith' kzck > O,

then

2 Cpiy b ckf(xk)

k=1 =1
(4) ] s——

k§1 “ k§1 “

This inequality is evidently more general than JENSEN’s inequality [5]
since the numbers ¢, (¢ =1, ..., #) need not necessarily be positive.
A corresponding inequality for integrals was also given:

Theorem 3. If f is a convex function, g never incrveases and h satisfies

1 1 1
0< [hx)de < [hix)dx, with 0<0<1, and [h{x)dx>0,
[/} 0 0

then
1 1
0fh'(ﬂ«')l_s:(x) dx th(x)f(é’(x)) dx
(9) Hl——— | = 5
[h(x)ax [hx)dx
0 0

T. HavasHI in [6] obtained an upper bound for the right-hand sides in
(4) and (5).

Assuming that f(f) > 0, for { > 4 oo, and that f is integrable in
(0, + oo), J. F. STEFFENSEN [7] applied (1) to deduce the following
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inequalities:

+00

> (—1) f(kn) <+f°f () cos ¢ dt < ?(—1)’7 (kn),
0 k=0

kg(—l)kf((k + —;—) n)<;Tc;‘(t) sintdt<f(0)+§:]°(_1)kf((k +_;_) n).

J. F. STEFFENSEN also gave more precise inequalities in terms of
x+1

glx) = [ f@)adt.

It should be noticed that R. BELLMAN, in [8], refers to STEFFENSEN’s
paper [7] from 1947, as a source of inequality (1) but not to paper [1]
from 1918, nor [4] from 1919, though this inequality was published
for the first time in 1918. This is probably the reason why R. BELLMAN
does not mention Theorems 2 and 3, in his paper [8], or monograph [9],
published in cooperation with E. FF. BECKENBACH.

R. Beriman [8] gave the following proof of STEFFENSEN’s inequality
(1) requiring f to be nonnegative.

Assuming that there does not exist an interval on which /() = 0,
define the function # by the equality

s #%(s)
(6) [ityewat=[foat,
whence # (¢) = a, and
s+h u(s+Ah)
(7) [ihetyat= [ f)dt (@<s+h<b.

Let > 0. Then (6) and (7) yield

s+ h u(s+h)

[iyemdi= [ j@a.

2#(s)

This equality is valid only if »(s + A#) > u(s), i.e., if # is increasing.
Since 0 < g(f) < land f(f) > 0 (0 < £ << b), we have

(8) Og_f]‘(t)g(t)dtgfsf(t)dt (@ <<s<b).
From (6) and (8) it follows that
u(s) 5
[1@)at < [t de,

whence % (s) < s.
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] q

Starting from (6) and (7), we obtain
1qs+h) u(s)

[ 1 dt—uff(t Ydt = |u(s + h) —u(s)| - p
. s+h 's+h
ff(t dt\-— [ 1) g@)at
_<,lh|f(a,
where

inf /(f) < u < sup F ()
for tc[s,s +-h] if >0 or tc s + h,s] if A< 0,

This proves the continuity of #.
By differentiation equality (6) gives

du

f () = 7(s) g(s) (almost everywhere),

whence

taking account of the fact that # (s) << s and that /(s) is decreasing. Hence

fdu < fsg(s) ds
1.e. \ ’ ’

9) wls) <a+ [ gls)ds

(6) and (9) yield the right-hand inequality of (1).

Using the same procedure, R. BELLMAN, in [8], also established one
of, as he points out, many possible generalizations of STEFFENSEN’s
inequality. His generalization reads:

Theorem 4. Let f be a nonnegative and monotone decreasing function in
(a,b] and f€ L?[a, b], and let g be a nonnegative and monotone increasing
b

function in [a, b] and fg(t)‘f dt <1, where p>1 and 1/p + llg=1.
Then
P a-+2
(10) (ff dt) <ff
where

b b4
(11) A:(fg(t)dt).
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Remark 2. In connection with the formulation of Theorem 4 see [24].

BeLLMAN’s paper [8] from 1959 was preceded by a series of notes in
which various inequalities, actually all of the STEFFENSEN type, are
established. These were given in the following.

G. SzeG0 [107 proved in 1950 the following result:

Theorem 5. If a; > a, > -+ > ay,,_; > 0 and f is a convex function in
10, a,], then
2m—1 2m—1
S e = /(3 -0 )
=1 =

In 1952, H. F. WEINBERGER [11] proved Theorem 5 for the function
x> f(x) == " (r > 1), namely

Theorem 6. If ay, > --- > a, > 0, then
n " ¥
SEg (S ente) >,
E=1 k=1
In 1953, R. BELLMAN [12] proved a generalized version of Theorem 6:

Theorem 7. Let ay > --- > a,, > 0 and let f be a convex funciion on [0, a,],
with f(0) << 0. Then

"

(=0T flay) > f(ié'i("—l)k*1 “k) .

k=1
We note that the condition f(0) << 0 cannot be relaxed if there is an
even number of terms, but may be omitted if # is odd, as given in Theo-
rem 5.
E. M. WRIGHT [13] in 1954 pointed out that Theorem 7 is a conse-
quence of Theorem 108 in [14], p. 89, which reads:

Theorem 8 (Majorization theorem). The conditions

xlz "'an» yl._>_'“2yn)

B 2
D%, < Dy, for kR=1,...,n—1,
i=1 i=1

and

VP

n
X, = 2
i=1
are necessary and sufficient in orvder that for every convex function f,

1) < 3.

il i=1

| i

A proof of this theorem is given in Theorem 1 of 2.24,
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M. BiErNACKI [15] in 1953 proved:

Theorem 9. Ifay > --->a, >0, by > - >b,>0, ..., 0y > - >h,

> 0and p > 1, then

(@4 B0 ) — (B8 o ) 4 e B e )

= (@~ ag+- - a,) + Oy =yt b)) e (B — Ry - B
The tnequality is reversed for 0 < p < 1.

This theorem is an immediate consequence of Theorem 6,

Theorem 10. Let f be a convex function for x > 0 and let f(0) = 0. Further,
let
0< a,_ 1 < b@'_l < a, for 1=2,...,n,
and
0 < byby+ o+ b, <ay+ o+ a,.
Then

(fla)) + -+ F(@)) — {F(by) -+ -+ + 1(D,))
Zf((‘% + @) — (b 4 - b))
H. D. BrRUNK [16] proved in 1956 a general result having as a corol-
lary:

Theorem 11. Let | be a comvex function on [a, b, with f(0) < 0. Let
b>ay>ay> - ->a,>0,andlet 1 > hy > hg > - > h,>0.Then

(12) kZ;Tll)k'l haf(as) = f (kZ’l(—l)k*1 h’kak) :
If hy =-.. = h, = 1, Theorem 11 reduces to Theorem 7.

I. OLxiIN [177 in 1959 proved:

Theorem 12. Let 1 > by > - >h, >0 and ay > --->a,> 0. Let F
be a convex function on [0, a;]. Then

(13) (1 - é’l (=1 h’k) F(0) + ,Zn”(‘—l)k_1 mF (@)

k=1

L]

>r(3 (1))

k=1

This theorem can be obtained from Theorem 11. Indeed, put f(x) =
I (x) — F(0). Then (12) becomes
0 (e — FO) 2 F( 5 (-1 he) - FO),
k1 Bt
which is precisely inequality (13).

8 Mitrinovié, Inoquaiitics
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Now, we shall prove that inequality (13) can be derived from the
second inequality of (1). First, for ¢€ [0, ,], put

gty =4, for a ,<it<a, (k=1,...,n), with a =0,

where

l1ih1, ;":szl_hz’-": ;"n:hl_k2+"'_|"(_1)n-1hn,

whence 0 < g(#) < 1in [0, a,].
Since

&
l:fg(t) dt:(al_QZ) Al_l" (a2—a3)22+'“ + ((’ln—l_an)an—l +anln
0

= ayhy — aghy + - + (1"t a,h,,

non

we have

[

A= 3{(—1)"""ha,.
k=1
Now, if I is a function with increasing first derivative F’, then
x> f{t) = —F'(t) is a decreasing function.
The functions g and f, defined above, satisfy all the conditions which
allow the application of STEFFENSEN’s inequality

[0 g de < [ 1) de.

Thus we have

1.e.,

2(Flagq) — Fla) (by — by + - &+ (1)1 ly) = F(2) — F(0).
E=1 '

This inequality is equivalent to inequality (13).

To the best of our knowledge, the following theorem was also proved
for the first time by J. F. STEFFENSEN (see [18], p. 141):

Theorem 13. Let g, and g, be functions defined on [a, b] such that

x

[et)dt > fgz (¢ydt  forall x€ [a,b]

a
’

and

b b
fgl(t) dt =fga(t) dt.
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Let { be an increasing function on [a, b], then

[1(%) g1(%) dx < [ (%) galx) dx.

If f 1s a decreasing function on [a, b, then
b b
[ 1) @) dx = [ £(x) gal) dx.

Proof. Put g(x) = g,(x¥) — g, (%) and G (x) = f g (#) dt. Then, by the above
hypothesis, u

Gx)>0 (@<x<b and G(a) =G =0.

Using the STIELTJES integral, we get
b b
1) g@)at= [}() dG ()

= OGO |, — [6) 0

b

— —fG(t) af ().

a

This proves Theorem 13.

M. MaArjANOVIC, in [19], considered the above inequality as a specia
case of a general inequality due to K. FAN and G. G. LoreNTZ [20] and
used it to give the following short proof of (1).

b

Let gy (x) == g(x), 4 :fg(x) dx and g;(x) =1 for x€ [a,a 4 4] and

g1(x) = 0for x€ [a + 4, b).
Then, we have
a+a b

b
[{x)dx = [ f(x) g (x) dx = [ }(#) g () dx,
which proves the second inequality in (1). One similarly derives the first
inequality in (1).

P. VERESS, in [21], used the technique of the STIELTJES integration to
obtain an inequality containing the inequality in Theorem 13, as well as
its discrete form.

Now, we shall state some results of Z. CiesieLsk! [22], related to
Theorems 2 and 3 of STEFFENSEN. Apparently CIESIELSKI was unaware
of STEFFENSEN's results,

B*
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Theorem 14. Let (p,) denote a sequence of real numbers such that
k %"
2p:=>0 for k=1,...,n and 3'|p;>0.
i=1 i=1

Let x;,€ [0, a] (where a is a positive constant) for i =1,...,n and let
Xy = oo > %, Further, let | and | be convex functions in [0, a] and let
F0) < 0. Then

f i=1 & <’b:1
2 12l 2 12
i=1 i=1

Theorem 15. Let the function g be nonincreasing tn [o, f1 and let a > g (1)
> On [o, B1. Let f and {' be convex in [0, a] and let {(0) < 0. Further, let
b be a function integrable in the Lebesgue sense in [, B, such that

fxﬁ dt >0 for x¢€[x,B! and fﬂ1p(t)ldt>0.

22

Then

a
f P glt) dt oty fle@) at
S X

7}
flp ()] at aflp(t)idt

In the same paper analogous results were given for functions of two
variables and applications were made to establish generalizations of
CEBY3EV’s and BIERNACKI's inequalities [15].

Remark 3. R. P. Boas, inspired by a paper of D. S. MiTRINOVIC [see: Univ. Beo-
grad. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 247 —273, 1—14 (1969)], has pro-
ved that Theorems 14 and 15 are corollaries of Theorems 2 and 3 in a stronger
form: all that is needed on f is that fis convex-and f(0) < 0. This is a private
communication, which has not yet been published. P. R. Boas has also obtained
some interesting results concerning Theorems 2 and 3.

R. APERY in his short note [23] which contains no references, proved
a variant of STEFFENSEN’s inequality. His result reads:

Theorem 16. Let f be a decreasing function tn (0, - oo). Let g be a measur-
able function in [0, + oo) such that 0 < g(x) < A (A is a constant == 0).
Then

ff(x dx<Affx)dx,

where
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R. APERY, in his elegant proof, starts from the identity

;jr‘o;(x) g(x) dx = Aoff(x) dx —Of (A —g(0)] [f(x) — F(A)] dw

+00
— if g (%) [FA) — F(x)] dx.

STEFFENSEN’s inequalities (1) follow immediately if we use APERY's
idea, namely if we start from the identities

atA b
[HOydt— [ @) g () dr
at A b
— f[f(t) — fa+ N1 —g)]dt + L[f(a +4) — )] g() at
and

b b
[10e0a— ] i

h—A4 b
= [0 —10~)gl)di 4 [F6—H— (O] L~ g)] .

Finally, we notice that E. K. Gopunova and V. I. LEvIN [24] have
recently obtained a general result which contains STEFFENSEN’s in-
equality (1). This, once again, affirms the importance of this inequality
which arises from various other inequalities,

We believe that it would be more appropriate to speak in [24] of a
generalization of STEFFENSEN’s inequality, rather than a general in-
equality which contains STEFFENSEN's inequality as a particular case.

Also related to the STEFFENSEN inequality are references [26] and
[26].

Remark 4. Though the STEFFENSEN inequality is not included in the source book
for inequalities [14], in recent time it is cited even in books dedicated to university
studies, as for example, in [27], p. 83, and [28], p. 50. It should be noted that
STEFFENSEN’s inequality can be found in Boursaki [29]. J. DieuDonnE [28],
p. 50, gave the STEFFENSEN inequality in the following form:

Let fand g be two piecewise continuous functions on [a, b] such that fis decreas-
ing and 0 < g(¢) < 1 on [a, b]. Putting

b
A=[fgi) at,

we have
a4

b b
Jrea<[ioewa <[roa,

with equality holding only if fis a constant on [a, b] orif g is equal to 0 orto 1 in
all its points of continuity.
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2.17 Schur’s Inequality
Theorem 1. If x, v, z are positive numbers and if A is veal, then
() Yr—9)x—)+yV—2—2+7 -5 (E—y=0,
with equality if and only if x =y = z.

This i1s I. SCHUR’s inequality (see [1], p. 64; [2], p. 217, and [3]—[7]).
Among various generalizations, the widest seems to be that due to U. C,
GuHA [8], which may be formulated as follows.

Theorem 2. If a, b, ¢, u, v, w are positive real numbers, and

1 1
(2) a? +c? < b?,
1 S
(3) ub 1 bt Pl
then, if p > 0,
(4) ubc — vea + wab > 0.

If —1 << p < 0, the inequalities (3) and (4) must be reversed ; if p < —1
the inequalities (2) and (3) must be veversed. In each case theve is equality
tn (4) tf and only if there is equality in (2) and (3) and also

Y

Mp [

Proof. When p > 0, it follows from HOLDER's inequality that

BN 1 1 1 il 1 1\p
[ap-u (,MC)P-H 4 P (wa)p+1] < (uc 4 wa) (ap + CP) >
in other words
1 1 \p+1 L1y
ac(ui’fl _}_wﬁl) < (uc—}—waz)(cl?’> —I—Cp) ,

and (4) follows immediately by (2) and (3). The other cases are dealt with
similarly, and the conditions for equality can be read off from those for
HOLDER'S inequality.
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Derivation of Theorem 1. We may suppose without loss of generality
that 0 <z <<y <x In Theorem2 put p=1,a=vy — 2 b=x — z,
c=x—1%, u=2x" v=19" w=2% then (4) becomes (1). Condition (2)
holds with equality, and (3) holds because
ul‘l/?. 2 v]./2 or wﬁ/Z 2 vﬂ./z
according as A > 0or 4 << 0.
SCHUR’s inequality was partially generalized in another direction by

K. S. AMUrR [9], whose result (for the case # = 5) was completed as
follows by A. OpPENHEIM and Roy O. Davies [10].

Theorem 3. The necessary and sufficient conditions on a set of n (= 3)

real constants ay, ..., a, for the inequality
(5) A 2=_,_Z;“;(’Q — X)) (% ) —xy) e — ) 20
to hold for all real numbers x,, ..., x,, satisfying xy > --- > x,, are that
for n = 3:
a; >0, 4y < (a7 + a5)?, a3 >0,
for n > 4:
(6) ay < a, (—1)" (4,3 —a,) =0, (—1)*" 2, >0,

where l < k<mn, k2, n—1.

(Forn=5,a4; = .-+ = a3 =1, and x, = x; = 0, (5) becomes SCHUR’s
inequality for 4 = 2.)

Proof for n = 3. Sufficiency. This is immediate from the identity
(7) = [0 (4, — x) — a3f® (%, — x,)]?

+ [(@f® 4+ a3)* — a,] (%, — %) (%, — %),
which incidentally also shows when equality can occur in (3).

Necessity. Putting x; > %, = x3 or x; = x, > %5 in () gives the necessity
of the conditions a4, > 0, a; > 0; that of the other condition then follows
from (7) upon choosing %; — %, 1%, — %3 = al® 1al/2.

Proof for n > 4. Sufficiency. If the conditions are satisfied, then the first
two terms in 2 have the sum
a (% — %) - (% — x,) + @y (% — %)) -+ (% — x,)

= (% — %) [ay (%, — %) -+ (g — %,) — Ay (% — %) -+ (% — %,)],

which is nonnegative if @y > 0> a,, ora; > a3 > 0 and x; — 23 >
Xg— X3 =>0,...,% — Xy > % — %, > 0. A similar argument applies
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to the last two terms in 2'; and each of the other terms is obviously
nonnegative if (6) holds, since (with x, — x, omitted) (x, — xy) ---
(x, — x,) > 01if risodd, and << 0 if r is even, that is, it has the same sign
as da,.

Necessity. If (6) implies (5), then putting x; > xy > x3 = -+- = x,, and
dividing by x; — x, yields that

ay %y — Xg) oo+ (%) — %) — Ay (%y — xg) -+ (%, — %,) =0,

and by continuity this also holds for x; > xy > x3 = .-+ = x,. Putting
Xy > X3 = X3 NOW gives the necessity of the condition 4, > 0, while
putting x; = xy > x5 gives that of the condition 4, > a,. A similar argu-
ment applies to 4, _; and 4,; and the conditionon ¢, for 3 <r <<n — 2
is obtained at once upon putting

x1=...=x’_m1>xr>xf+1=... X, -

A. OppENHEIM and Roy O. Davigs [10] also noted the following as an
immediate corollary.

Theorem 4. The necessary and sufficient conditions on a set of n (> 3)
real constants ay, ..., a, for the inequality (D) to hold for all real numbers
X1, «+v, Xy are that

for n = 3:
0<a, < ai® +a*  for every permutation ijk of 123,
for n = 4 and n = 6:

ay=-+-=a,=»20,
for n = b5:
alz"'=a5201
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2.18 Turan’s Inequalities

Let z4, ..., 2, and by, ..., b,, be arbitrary complex numbers such that
z+0((k=1,...,n and by + --- + b, &= 0. For any integer m > —1
we define

Q__ max |b13;+"‘+bn3;l

remtd,gmbn by oo 4 bnllér}zignlzklw

In his book [1] P. TURAN was interested in finding a lower estimate

for Q¢ which is independent of the b,’s and z’s. P. TurAN ([1], p. 40)
found that

W #
y 0= (gtn )
This estimate was improved by I. DaNCs [2] to
1 n n—1
(2) Q= 2¢ (23 (m + n)) )

V. S6s-TuRAN and P. TURAN [3] proved that the constant 2¢ in (1)
could not be replaced by a number less than 4/7.

The best possible estimate was found by E. MARA1 [4] and somewhat
later by N. G. pE BruIJN [5]:

o) 0= (22 (" )) |

It seems that estimate (1) (or (2)) is more suitable for applications
than (3).

From the fact that the estimate (3) is the best possible, from (1) we
deduce that

kglzk (m ;5 k) < (2.8( nj@ )n ‘

Result (1) is known as “‘the first main theorem of TUrRAN". We quote
an application of this theorem (see P. TURAN: Acta Math. Acad. Sci.
Hung. 20, 357--360 (1969)):

“Let @ > b and ¢ > 0, and let y{¢) be an arbitrary complex-valued
solution of the differential equation

(4) Pt @yt e ey =0,

where the a’s are arbitrary complex constants. Let all the zeros of the
corresponding characteristic equation of (4) lie in the half-plane Re z = L.
Then the inequality

a+te b+c/2

O [ lOPa = () T T @R

a b

holds.”
Another theorem of P. TurAN ([1], p. 47) is the following:
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Let 2, ..., 2, and b, ..., b, be arbitrary complex numbers such that
1 =lz]| > lz| > -+ = |2,|- Then there exists a constant A4, independent

of m and #, such that

(6) max

kE%%E%X@%?Q min 16y 4o+ 5]

V. S6s-TURAN and P. TURAN [3] have proved that 1.32 < 4 < 24,
S. UcHivamA [6] has shown that ¢ << 4 < 8e. E. MARAI [4] proved that
A > 2¢flog 2. Finally, E. MARAI [7] showed by an ingenious example
that 4 > 4e.

In a previous paper [8] E. MAakAI proved that the exponent » in
(6) can be replaced by n — 1.

In [8] E. MAKAI established the following inequality:

If zp=b,= 1l and 4, ..., b, are arbitrary complex numbers, then

inf  max |b&}, + b2y + o0 + D4
+%

Izl - ll |32 - 1| I_Zn - 1|
o Sl + |y o+ 15, ’

where the s;’s are the elementary symmetric functions of z,, ..., z,.
Improving a theorem of TurAN ([1], p.27), F. V. ATkINsON [9]
proved the following result:
If z,...,2,_; are arbitrary complex numbers such that |2,/ <1
(k=1,...,n—1) and z, = 1, then

(7 max |2+ 4 4[>

In a technical report [10] F. V. ATKINsON has shown that the lower
bound 1/6 could be raised to 1/3, but this result is not the best possible.
In [11] V. F. ATkiNsoN has given an improved version of the results
from [10]. He demonstrated, in fact, that the lower bound =/8 is valid
for a large range of values #, and that this bound is good at least for
n < 1.6 - 103, For large values of #, ATKINSON obtained a lesser lower
bound, the root of a given transcendental equation.

Let us denote

— : ¥ ¥
(8) M, = min max |z} 4 -+ 2|,
s 1< 721,
where the minimum is taken over all zq,...,z,_, z, satisfying lz;] < 1

(k 1,....m—1) and z,= 1. It is easy to show that M, = '3 — |/5
and that this minimum 1s attained only for

21::1/5; : cxp(j: 2%)
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It was proved by S. UcHivamA {127 that
M, > (1 —g)Bl8”
log n

for arbitrarily small ¢ > 0 and » > #,(¢).

J. EawriNnowicz [13] proved that M, in (8) can be defined also by

M,=min max |2 + - + 4|,
zp r=1,.n

where 2z, = 1 and the minimum is taken over all complex numbers
Ziyeoes Bp_q-

An application: if 4 is an # X% matrix, then all its eigenvalues are
contained in the disc

(9) |z} <8 max [trd"|'".
r=1,.,n

,,,,,

J. W. S. CassiLs [14] considered the case, where » ranges over the
values 1, ..., 2n — 1. He proved that

(10) max |& 4 - 42, |>1, i  max |5]=1.
r=1,.2n-1 k=1,.,n

As an application of (10), the disc (9) can be replaced by
|zl < max |trd"|"".

r=1,.,2n—1

In [15] P. TURAN proved the following proposition:

Let z, ..., 2, be complex numbers such that max |z;| = 1. Let
M, = min max ls,|,

2, r=1,.,n
where the minimum is taken over all z; satisfying the additional restric-
tions 8y = sy = -+ =S,y =0and s, =2 + -+ 4 2.
Then, for n = 2m + 1,

2m 1 i -1

M2m+1 < ( Z T) ’

r=m-1
with equality if and only if z, are the roots of the equation
2m-+1 2m+1 2m41—r
1 Sm+ 1 & _
( Z T) 2 - 2 " — = 0.
r=m-41 y=m-i1]
Let zy, ..., 2, be arbitrary complex numbers not all zeros and

Sy = 2% - oo b 28 (k=1,2,...).

Let further m = max |z| and M = max |s/n|"/.
1<j<n 1<k<n
J. D. BuckHoLTz proved in [16] that
Y2 —1 M

where both bounds are the best possible.
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Another result of J.D. BuckroLTtz [17], with the same notations,

is: f 4> —1and #isan integer greater than (6 + 34)3, then

Zkﬁlk[> Hlogn
k=1

where the constant (1 4- 4)/2 is the best possible.

The papers [18] and [19] are also related to problems exposed in this

Section.

Remark. ]J.M.GEvseL, R. TiypEMAN and A. J.vaN DER PoorTEN have also ob-
tained some interesting extensions of certain results exposed above [see detailed
reviews in Zentralblatt fiir Mathematik 179, 70—73 (1970)].
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2.19 Benson’s Method

D. C. BENsoN has given an elementary method for proving inequali-
ties and using it deduced a large number of known classical inequalities.
This method is contained in the following:

1° Start from a suitably chosen algebraic inequality and use it to
show that an expression which contains a function together with its
derivatives is nonnegative.

2° To both sides of the inequality add something which 1s, for ex-
ample, an exact derivative,

3° Integrate both sides of the inequality to obtain the wanted
inequality.

The main results obtained by D.C. BENsoN by this method are
contained in the following two theorems.

Theorem 1. Let u(x), P(u, x), G(u, x) be continuously differentiable
functions and let P{u, x) > 0. Then, the following inequality holds

b = T
(1) f (Pu’2" + (2n — 1) PG 4 ZnGx) dx
> 20(G(u (b), b} — G (u(a), a)),

where G, = a—i— G{u, x), G, = % G (n, x).
1
Equality holds if and only if w' = (G,/P)**~1.

Remark. For the sake of brevity in this Section we write, for example, P! for 1/P.

Proof. 1° Start from the following algebraic inequality
(2) ¥ — 2ux + 20— 1> 0,

which is true for every real x and n =1, 2, ... (see 3.3.24), equality
holding if and only if x = 1.
L -t
Put x = «'(P|G,)> ! in (2). After multiplying by P 2»-1G¥—1
which is positive, we get
~1 2n
Pu'® 4 (2n — 1) P~ 1G — 2nu'G, > 0.

2° Add to both sides of the last inequality the following expression:
a

3° Integrate from a to b. Inequality (1) results, equality holding if
1

and only if x = 1in (2), i.e., w' = (G,,/P)’;—'T
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Theorem 2, Let u be twice continuously differentiable, P (u', u, x), G (s, u, x)
continuously differentiable functions and P (u', u, x) > 0. Then the follow-
ing inequality holds

b
(3) [(Pu?+GLP ! 420G, + 2G,) dx

a

> 2G (' (b), u(b), by — 2G (' (a), u(a), a),

where the same abbreviations are used as in Theorem 1.
Equality holds if and only if v’ = G, P~

Theorems 1 and 2 also hold under less restrictive conditions.

Inequalities (1) and (3) contain a number of known inequalities.
We shall show how WIRTINGER’s inequality can be obtained from (1).

Let # be a continuously differentiable periodic function of period 2z
and let m ==infu(x), M = sup u(x). Further, let m = u(x;), M =
#(x,), (0<%, — x5 << 27;). Putting in (1) P(u,x) =1, n=1 and
assuming that x, << x,,

2L

G, x) = ~ [ (M~ u) (u— m))'*du (2 < & < xy),
M
— f((M—u) (4 — m))V/? du (x > x; or x << ),
i

we gct the following two inequalities

J_l(ur?. + (M —u) (v — m)) dx => _2f((M — ) (u — ,m))1/2 du
i M
a(M — m)2
4
and
.’f{:wz + (M — ) (w —m))dx > —2 [ (M —u) (u — m))uz du
1 5
_ (M~ m)?
o 4
FFrom those inequalities we obtain
P ’ M 4+ m\?2
/ (u > —(u— ") ) dx > 0.

2
If additionally we assume f u dx = 0, we have
¢

2 W
f (W2 — ud) dx > (M + w
B o 2



128 2. General Inequalities [Ref. p. 129]

Since the right-hand side of this inequality is always positive, as a
special case we obtain WIRTINGER's inequality (see 2.23.1).

Let us now state a useful special case of (1) which can then be applied
to prove WEYL’s inequality.

Let # and g be continuously differentiable. Then
b

(4) J (w2 + (g (%) + g (%)) u?) dx = u(b)? g (b) — u(@)*g(a).
Equality holds if and only if #' = ug(x).
Inequality (4) can be directly obtained from (1) by putting » = 1,

P =1and G, %) =5 u(x).

WEYL’s inequality can be proved in the following way. Replace g (x)
in (4) by Ag(x). (4) then becomes

2 [ g(x)? P dx — A (’M(b)2 g(b) —u(@)gla) — [ & (x)w dx)

22

b

—l—fu’zdxz().

Since this inequality holds for every real A, the discriminant of the
above quadratic polynomial in A must be nonpositive, i.e.

(fb g'u* dx + u(a)® g(a) — u(b)? g(b))2 <4 fb g%u? dx f w? dx.

Putting in the last inequality g(x) = %, 2 = 0 and letting b tend to
infinity, we get WEYL’s inequality:

+00 2 +co +co
(fuz dx) < 4 [ 2Putdy [ w?dx,
0 0 0

provided that the above integrals exist.

D. C. BENsoN has cited a number of inequalities which are special
cases of Theorems 1 and 2. Some of them are listed below:

1° Let # be a differentiable periodic function of period L and let
m = inf u{x), M = sup u(x). Then

L

: N o« T onatpird (@ + 1) LB+ 1)
Of(u2+(M u)* (m — u)**) dx > 4(M — m) Taifia
Wherecx>—%andﬁ>——%.

2° Let u be a differentiable periodic function of period L. Let m ==
inf # (x), M = sup u(x). Then
L

f(%'% + (2% — 1) (u — m)" (M — u)n) dx > _wn(2n)!

0 (n)3 2472 (M = m)™,

where 7 is a natural number.
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Remark 1. The author — D. C. BENsoN — has communicated to us in a letter that
the condition for the equality in this inequality, stated in his paper, is not correct.
The same holds for some other inequalities established by D. C. BENsoN and
concerning conditions for the equality. See also the comments in Zentralblatt fiir
Mathematik 146, 75— 76 (1968) by P. R. BEESACK, related to the paper of D. C.
BENsON.

Generalization. Let u be an n-times continuously differentiable function,
PV, ..., u, x)and G(®"Y, ..., u, x) be continuously differentiable
functions and let £ > 0. Then

b -1 2m
f (P(u(n))mn + (2m — 1) pam-1 G‘iﬁ;_ll)
+ 2" NG gy A+ Qme) dx

> 2m (G0 Q). (b), B) — GV @), o, a), @),
1
Equality holds if and only if %/ = (%_ Gu(”_l))%—l_

The proof of the above inequality is similar to the proof of Theorem 1.
The only difference lies in the fact that x in (2) is replaced by
1

u® (GPM)EJI .
u("’ - 1)

Remark 2. 1t would be desirable if the elegant Benson method were further deve-
loped, since the very first applications indicate ifs fruitfulness and give nice results.

Reference
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tives. J. Math. Anal. Appl. 17, 292 —308 (1967).

2.20 Recurrent Inequalities of Redheffer
Definition 1. Let Dy, (R =1, ..., n) be given sets and let
fo=fulay, .o a) and g, =g lay, .-, a)
be real-valued functions defined for a, € Dy, ...,a,€ D,.
Inequality
iy + e S8t 8

where py, are veal parameters, will be called recurvent if and only if there exist
functions Fy (p) such that

sup (fr — &) = Fy(p) fr (k=1,...,nfp=1.
k

Rt
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This definition is due to R. REDHEFFER. For recurrent inequalities
R. REDHEFFER [1] has proved the following theorem:

Theorem 1. The recurrent inequality of the above definition holds for all
a, € Dy, 1f and only if there exists a sequence of real numbeys 8, such that

wy = F, 1 (0;) — 0,4 (k=1,...,n).
F, 1(0) denotes one of the solutions of the equation Fy (u) = 0.

Proof. We shall prove the above theorem by induction on #. Clearly the
theorem holds for » = 1. Suppose that it is true for # — 1. The inequality
will hold for % if and only if it holds for the unfavourable choices of a,,
assuming that the other variables are constant. Since the inequality is
recurrent, using the induction hypothesis, we get the relations of the
theorem for £ << » — 2 together with

Fn (Mn) + Hy—1 = F;jl (6HR1)'
Defining 9§, = F, (u,) we see that the theorem is valid for #, which
completes the proof.

Using Theorem 1, various generalizations of known inequalities can be
obtained. We illustrate this by an example.
Start from the following inequality

(]) M1G1+"'+MnGnS}'1a1+”‘+}'nan’

where 4, > 0 are given numbers, G; is the geometric mean of a,, ..., a
and yu, are parameters which will be determined so as to make the in-
equality (1) hold for all a; > 0. Inequality (1) is recurrent. To see this,
start from the identity

UGy, — Aa, = G, _, (ut — M),

where ¥ = G:il’ k> 1and A = A, We therefore get
1 _k
Fo() = (k— 1) 31——75(%)’” (u > 0),
=0 (n << 0).

Therefore F, (¢) = 0 for g < A, and F, (y) = + oo for u > 4. Since

Fy () = 0 implies 0, > 0, put
1

5 = (k — 1) fi-t .
We then get
My = k((}'kﬂk)”k - Ile":})'

where f3, are arbitrary real numbers such that 8, < 1,8, > 0,8, ,, = (0.



2.20 Recurrent Inequalities of Redheffer 131

Putting 8; = ¢*~1) (¢ > 0), by LAGRANGE’s theorem we have
BB — Bilfn) > —te
Supposing that not all g, are zero and putting 4, = 1, we get

G G,
Gn<Ane“‘+t1+ ,

n

where A, is the arithmetic and G,, the geometric mean of the numbers g
(k=1,...,n).

G
Fort = E’f — 1, where G = % (Gy + -+ + G,), we get the following
inequality :
e(a, + - + a,) = e/ . G,

Since €%#/ > 1, we obtain T. CARLEMAN’s inequality [2]:
Gy + - +G,<ela, + - +a,).

Similarly, the following inequality can be obtained
ZM‘A}CIP + Wf_iAi/P < (1— ﬁ)—l./P Zn‘a}c/ﬁ"
k=1 1—¢ k=1
where A, is the arithmetic mean of the numbers a,, ..., a;. This inequality

is a generalization of HARDY's inequality {3].
From the above theorem the following inequality can also be deduced

a(@ + -+ al) <al + (@, — a2+ -+ (@, — a,_)* + bal,

which is valid if and only if there is a number (0 < § < ), such that

a<2(1—cosf) and b>1 _sinlr+ 10
- Sl 7
In the special case when § = ﬁ_ 1 we get the inequality proved by
K.Fax, O.Tavussky and J. Topn [4]. For 6 = 2;; 7, another inequality

proved by the same authors can also be deduced.
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2.21 Cyclic Inequalities

This Section is concerned with the cyclic inequality

x x
1 *1 2 nol n o>
() Xy + Xy x3-|—x4+ +xn+x1+x1+xz_2
where

and its generalizations and variations.

The challenge of inequality (1) has recently evoked lively interest
among mathematicians, as may be seen from the historical sketch which
follows.

As will be seen, at the present time, the only undecided cases of (1)
are w = 11, 12, 13, 15, 17, 19, 21, 23, 25.

The simplest case for # = 3 of this inequality appeared in the litera-
ture in 1903 [1] though it is possible that it is not its first appearance.

In 1954 H. S. SHAPIRO [2] raised the question of proving (1) for all
n =3, 4, ... In 1956 a partial answer [3] to this question was obtained.
Namely, the editors of the American Mathematical Monthly noted that
M. J. LicHTHILL succeeded in proving that (1) is not true for # = 20.
The editors also announced that H. S. SHAPIRO submitted the proof of
(1) for n = 3 and 4, and C. R. PHELPS for # = 5. The counterexample
of M. J. LicHTHILL was published in detail in [4].

In 1958 L. J. MorDELL [5] has proved that (1) is true for n = 3, 4, 9, 6.
There is a short note [6] by A. ZurLaur appended to this paper of Mor-
DELL. In this note he gave a counterexample by which he proved that
(1) does not hold for » = 14. This result implies that (1) is not true for
even n > 14. Indeed, if we put

¥y | Xg "

Kyyoney X,) == 2— 4+ "2 L ..o 00
Fu (% > %) g+ xy | ¥y + Ay ¥, +x %+

then the following functional identity holds

(3) Fogol®p oo %y gy X, Xy, X,) = [ (2, o0y ,) + 1.

Hence, if (1) is false for some #, then it is also false for # 4+ 2.

Another counterexample for #» = 14 was given later, in 1960, by
M. HErscHORN and J. E. L. PEck [T7].

All these counterexamples are of the same kind. Namely, if we set
n = 2m, Xop, = Aye, Xop_1 = 1 + bpe (kR =1, ..., m), and e is sufficiently
small and positive, then

f2m(x1""'x2m):m+q82+0(83) (6—)'0):

where ¢ is a quadratic form in a, and b;. If m == 7 then 4, 2> 0 and b,
can be found such that ¢ < ). For instance, in the counterexample by
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ZULAUF we have
(@y, ...,a;) = (7,6,5,2,0,1,4),

(byy ooy b) = (7,4,1,0,1,4,6) and g = —2.

Dina GLapys S. THOoMAS [8] has proved that, for# = 8,10, 12,g1sa
positive definite quadratic form in a, and &,. Hence, in these cases there
does not exist a counterexample of this kind.

Let us define

uin) =inf 7, (xp, ..., x,), Afw) =42

x, 20 n
Identity (3) implies that
(4) aln+ 2 <p) + 1.
In 1958 R. A. RANKIN [9] has proved that there exists A = lim A(%)
and n— 400
(5) lim A(n) =inf A (n).
=00 n=1

He also proved that 4 <C 1/2 — 7 - 10-8, which implies that (1) is false
for sufficiently large #. In his later paper [10] he proved that A > 0.33.

The upper bound for 4 was improved by A. ZuLau¥F {11]. He proved
that 1 < 0.49950317. In the same note he proved that (1) does not hold
for n = 83, i.e., 1(53) <€ 1/2. This and (4) imply that A(#) << 1/2 for odd
n > di.

L. J. MorpELL [12] has proved that (1) holds for » = T if besides (2)
we have

(6) x1_>_x72x22x6, Xy = X, Xy = Xg.

K. GOLDBERG informed L. J. MorRDELL in his letter of February 9,
1960, that he has checked (1) for » = 7 and he found it to be true for
300000 pseudo-random values of x,.

A. ZuvLAUF [13] remarked that the supplementary inequalities (6) are
very restrictive. He proved that if # positive random numbers are chosen,
then the probability that (1) is satisfied is at least 1/2. This is implied by
the inequality

Fulgs oo %) A £ (X Xy gy vvns %) = 10,

The proof of the last inequality follows: If A, = x5 + %5y (%51, = 24),
then
fn(xll"' )+f(n’ n— 1,...,961)
SRt Xy g Ay — Ay + 409

=3

k=1 k+1 Ak+1

A, " A
=__n+2______+2 k+72>n

Ay WSk T
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since
|
AR
".
Ak+1 , Z‘A -
k=1""%4+1

P. H. DiaNnaNpa [14] has obtained the following result: If (2) is
satisfied and x,, .y, ..., %y » (¥1,, = %) 1S monotone for some natural
number m, then (1) is true.

The bounds for A were improved by P. H. DiaNANDA in [15] and [16].
Namely, he proved that

0.461238 < 4 < 0.499197.

In 1963 D.Z.Porovi¢ [17] proved that (1) is true for n = 8.
P. H. DiananDA [18] and B. BajSanski [19] have proved independently
of each other that this result of Pokovi¢ implies that (1) is true for
# = 7. More generally, they proved that

(7) w(@m) <p(@m—1) + 5.

P. Nowosap [20] has proved that (1) holds for » = 10. Therefore,
according to (7), inequality (1) holds also for n = 9.

P. H. Diananpa {18] has also proved that (1) does not hold for
n = 27. The only undecided cases therefore are » = 11,12, 13, 15, 17,
19, 21, 23, 25.

A, ZULAUF [21] has proved that for the modified cyclic sum

2 % (%, + Xein)
the following inequalities hold

1 %1 + xg__?_+'..+ Fp—1 + Fn en—1
Xy ok 2y Xy o+ A F,_q+ 7, x, + %, ?
where x4, ..., x,, (# > 3) are nonnegative, and all denominators positive.

These bounds are the best possible.

Let %y, ..., 2; be any nonnegative numbers such that 4; = %, + x4
(% 7 = xy) 1s positive for £ = 1, ..., 7. In this case A. Zuraur [22] has
proved the following inequalities

3, -t >9
Apis

(8) 29 >3, 2?

k+2 k+4

and some others. All bounds in (8) are the best possible. For instance,
putting (x4, ..., x7) = (28, ¢, 0, 2, £2, 0, £}, we obtain

x
Z‘Ak+3_1+ +§‘—--+1 — 2 (t —> + o0).
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In [b] L. J. MORDELL conjectured that

" 2 ”
(9) (Z"%) >k 2% (%0 F Kp)
i=1 i=1
where x,,; = %), and xy, ..., %, are all nonnegative, # > m + 1 and
B—min (2, 22,
W wm

He proved this assertion forn — m + 1, #n = m + 2 and for» > 2m.

It was remarked by T. MUrPHY that this conjecture does not hold for
m = 4, n = 7. The best possible value of % is 12/7, which is smaller than
T/4.

In the same paper L. J. MORDELL proved that the minimum values
F, G, of

F, (x) :'Z (xf - 2xixi+1) (xn-i—l =1x,),

n n-—1
Gn(x) :Zx3 — 22’%" +
i=1 i==1
are
1 1
F,=——2 (n=345), F,=—=+ (13>6),
Go=10, G=—L, 6, =—1 @m>4q
2 H] 3 7! ) 6 = »

where x; >0 (¢ =1, ...,n)and %y + --- + x, = L.
In [23] P. H. D1aNANDA obtained interesting results concerning (9),
namely: Let & (m, #) be the largest value of %, such that (9) holds. Then

1° k(m,n):%ifn\m—i—i’ or 2m or 2m + 1 or 2m + 2,

or if w|{m+ 3 and =8 or 9 or 12,

or if n|m + 4 and n =12,

k(m, n) <£i— otherwise ;
22 kimm)="""2if > om 42
0o 12n B
3 k(m,n):n_'_m-m-:-ﬁ- if #|2m—1 and #» > 6;
o R{m — rn, n) . .
4 k{m, n) = : ~ i rm<m (r=1,2,..);

T L rh(m — ru, n)

H° kim,n 4+ 1) > kim, n) > k(m+ 1,4).
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V.]J. D. BasTox [24] has complemented these results by the following:

6° k{m, 2m — t) = 43(:—1_—4—) ft#Bandm>max(2t-—+2)

7 k(7,11)§k(m,2m—3)§—ﬁ)’- for m > 7;

. G L )+ ) w1 — ]
R S HET Nt o m—m rae ry TMTES

n < 2m — 1 and 7 is an integer such that

v+ 2 y +1
<

P. H. DiaNnaNDA [25] also considered the following two inequalities

10 ; % >
( ) @:1 Fip1 +7.“ +7’1”1'+m_._u._”2“ ’
n "
(1 (= ) > 21 Mg b )
where x,., = x, and x (z=1,...,1n), and proved the following

results:
1° Inequality (10) is true if
(12) sin =70 > sin (2m + 1) =z @:1[%])
2° Inequality (10) is true if
(13) n|m+ 2 or 2m or 2m+ 1 or 2m + 2.
3% If (12) is true, then inequality (11) holds.
4° If (13) is true, (12) is true.
In [26} P. H. DiananDa obtained more general results, as for example,
(f_ 4y? @ + 22)2) _

yz+yz—[—zx ex + 2xy

inf
x,9,8>0
Let x; ({ =1, ..., n) be positive real numbers and x,,, = x,. P. H.
DiananDpA in three papers [16], [27], [28] respectively has proved the
following results:

4 e 1 1=
e L5 w —ros (s=1T2)).
31 ,,,,, x, B iﬁl Xy T Xt |"'z‘+1 — xz'+2| n L3
1nf ; * = I:n +1
. — ===,
T iy M1 T Yip1Fize T FiLe 2

: ¥ n+m—
)
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Finally, we note the following cyclic inequality [29]

X e o Hg vk Ay xn+x1+"°+”kq—1> nk

o

G+, Ha s gt r, . T e—k

where x,, ..., %, are positive numbers, and » > & > 1.
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2.22 Inequalities Involving Derivatives

Let f be a real function, defined and bounded, together with its first
n derivatives on R, and let for 2 = 0,1, ..., #n

M, =sup [P (x)| (x€R).
G. H. HArDY and J. E. LiTTLEWOOD initiated in 1914 the problem
of determining the constant C, , for general »# in the inequality
Mi< G My M,
J. HApAMARD proved in 1914 that C,; < 2*~! and, as a special
case, obtained the inequality

(1) M < 2MM,.

The result C, 4 == }/2 also appears in a paper of E. LANDAU from 1913,

Concerning the references of the problem in question, see an inter-
esting review of paper [7] by R. P. Boasin Math. Reviews 1, 298 (1940).

G. E. SiLov [1] solved the problem for some % and #. In fact, he
proved the following inequalities:

M:<2M M, for k=1 and n = 2;

ME< %Mgzkr3 for k=1 and n = 3;

M3 < 3M M for k=2 and »n = 3;

Mi< 22 MM, for k=1 and n = 4;

My <2 MM, for k=2 and # = 4;
5 125 , /8. 00

Mgg?j-MOM5 for =2 and #» = b,

the first of which is HADAMARD's inequality (1). These inequalities are
the best possible. See also papers of A. M. Ropov, reviewed in Math.
Reviews 8, 65 (1947) and 17, 716 (1956).

A. GORNY, unifying his results published in [2], [3] and [4], but in a
somewhat modified form, proved in [5] the following result:

If f is an #n-times differentiable function on a closed interval I of
length 6, and if |f(x)| < M, and |f™ (x)| < M, then for x€ I and for
0<k<mn,

k '
|F® @] < 4621:(1”:) M(’, (k/n)Mnk,‘n’
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while, at the midpoint of 7,
1) | < 16(2e)* MY~ EmALEm,
where
M, = max(M,, M,n!d " ").
If I = (0, + o) or (— o0, 4 o0), then M, = M, and for (— oo, + co)
any point can be considered as the midpoint. He thus proved that
Cor < 16(2¢)F.

The complete solution of the quoted problem was given by A. KotL-
MOGOROFF in [6] and [7] who proved that

—k
Cop = Koo/ K7,

where
+o0 k
—1
Kn:i =D ; for neven,
mozo 2k 4+ )"
and L .
K, =— D) for nodd.

im0 (28 + pnt!
i A

2

He also showed that 1 << C,, , < f—;— for allwand £, and that C,, ,,_;—
and C,; — 1 both as # — 4 co.

The same problem, determining C,, in (1), was treated by S. B.
STECKIN [8] for the interval (0, + oo). He proved that

amfk)* < C,, < A(Snj(4R), 1<k < n2,
am— k)T (nfn —R)FLSC,, < ARnjn— R, n2<k<mn,

where a and A are positive constants.

These inequalities present improvements and simplifications of in-
equalities obtained by V. M. OLovyaNISNIKov and A. P. MaToRrIN which
are discussed in [8].

Just recently, V. A. DuBovik and B. I. KoreNBL]JUM, in Mat. Za-
metki 5, 13—20 (1969), considered the problem of HADAMARD and
K 01LMOGOROFF, with a complementary condition on the derivative /& (x).

Besides the ones cited above, there exist numerous inequalities which
involve derivatives. We shall quote some of them.

If f is an #-times differentiable function of the variable ¢ € [a, 6] and
ifay,....,a, @<a <---<a,<b) are zeros of f, then for a <t < b
and fork=0,1,...,#n — 1,

1
1R e] < w0~ “)nmkargfglf(") ) |-

‘The above estimate is improved in the paper [9] by G. A. BESSMERT-
NYH and A. Yu. LEvIN,

In the book [10] the following result is given without a proof:
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Let / be an #-times differentiable real function defined in (—1, 1)
and such that [f(f)| < 1in that interval. Let m, (J) be the smallest value
of [f* (#)| in an interval J contained in (—1, 1). If J.is decomposed into
three consecutive intervals [, J,, [3, and if [, has the length y, then

1
m, (J) < z (mk—l (J1) + ey (]3)) .
From the above inequality follows

1
— k(k+1
g3 ME+1) 4k

ﬂk

»

my () <

where J has the length A.

Finally, we mention the following result due to G. AumMaNN [11].

If a complex function F (x) is in ¢ < x < b twice continuously differ-
entiable, and if it is not constant in any subinterval; furthermore, if
F(@) =0, F(b) == 2y > 0 and 4 = max |Im F(x)| > 0, then

as<x<h

F' (x)

min |- )

a<<xyx<h
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2.23 Integral Inequalities Involving Derivatives

2.23.1 An Inequality Ascribed to Wirtinger
Let f be a periodic real function with period 2z and let /' € L2 Then, if

2n
f f(x) dx = 0, the following inequality holds
i
2 2n .
(1) [i@Rde < [f (x)?dx
0 i

with equality if and only if /(x) = A cos x 4 B sin x, where 4 and B are
constants.

Inequality (1) is known in the literature as WIRTINGER's inequality
(see [1] and [2]). As far as we know, the proof of W. WIRTINGER was first
published in 1916 in the book [3] of W. BLASCHKE.

However, inequality (1) was known before this, and with weaker
conditions on the function f. For example, in 1905, E. ALmANsI [4] has
proved that

© [repae= () [1wran,

— @

under the condition that fand f' are continuous on the interval (a, 5), that

/(a) = f(b), and that f}‘ (x) dx = 0.

Those conditions were weakened, in 1911, by E. E. Lev1 {5] and,
again in 1914, by L. ToxeLL1 [6]. However, inequalities of the form (2),
as well as more general inequalities, can be found even before ALMANSI’s
result. For example, in the book [7] of E. PicarD the problem of finding
the function f which maximizes the expression

h

J# ) fl)?dx
b

Jf w2 ax

was considered, where f and f' are continuous functions, f(a) = 7(b)
and where $ is a positive continuous function on (a, ). This problem
under other conditions was later considered by P. R. BEEsack [8],0f which
we shall talk later.

Inequality (2) can be also found in the book [9] of J. HADAMARD
from 1910,
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H. A. ScHwarz in his paper [10] from 188b has determined the
maximum valae of the quotient

ffP (%, ¥) flx, )2 dx dy

[+ @)

H. PoincarE [11] proved that the above quotient of ScHwARrz for
p(x, y) = 1is less than 7/2/24, where T is a convex region and f is a func-
tion such that f f f(x, %) dx dy = 0 and where / is the maximal chord of
that region.

In the same article, H. POINCARE considered the analogous problem
for a three-dimensional region and gave the estimate for the correspond-
ing quotient.

E. E. LEvi [12] studied the same quotient for the case p(x,y)=1
under somewhat different conditions and proved the following result:

If T is a convex region with respect to a point O whose minimum and
maximum distance from the contour of T is / and L respectively, and if
f [#(x,y)dx dy =0, then this quotient is less than 1/K where K =

3l 1
mm(QL"’ 13L2)

E. E. LEv1 [13] has proved a number of inequalities involving the
same integrals as in (1), together with some other inequalities whose form
is analogous to (1). Thus, for example, he proved the following result:

Let f be a function whose derivative is bounded on (a, 8), and such
that f(a) = f(b) = 0. Furthermore, let |/(x)]| < «. Divide the interval
(@, b) into two complementary measurable subsets %, and %,. Then

(b

ff( tar <O [F @Rl —a) 1 @),

+1) Sl .

2

Jita) ()| de < +8ff 2dx+oc(;

We have not succeeded in finding an older source than that from 1885.
Actually, our attention was drawn to it by Professor M. JANET in our
correspondence concerning the priority of WIRTINGER's inequality.

A. PLEIJEL [14] has proved that

ff ( ?dx 2n 2x 2n 2
27 02n [fx)?dx < 2 [ f(x)? dx — (ff(x) dx)

ff”(x)zdx 0 0 0

0

2n
< o [f (%2 dx,
0
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where f is a real function of period 27, with a second derivative in 12,
The second inequality above is, in fact, an improvement of (2). This in-
equality was established earlier by M. JANET in [13] in a somewhat more
general form.

Inspired by papers [15] and [16] of M. JANET, G. CimMINO [17] has
proved the following result: Let 4 << %, and let the function f together
withits first # — 1 derivatives be continuous on (a, b) with f(a) = f'(4) =

= [0 D(a) = f(B) = f () = -+ =/ V(5) = 0. Then
b
(m)
(3) d[f (x)zd,‘i - Vo b )271217
b =\p —_ ’
J’f(P) (2dx “

a

where v, , is the least positive zero of the Wronskian of # independent
solutions of the equation

[ ) — (1) o) (3) = 0.

Later, M. JANET, in papers (18] and {19] considered the problem of
determining the minimum value of (3) explicitly.

The following result due to M. JANET ([18], [19]) is also interesting:
Let (C) be the curve described by the point whose Cartesian coordinates
are

__#{1 4 cost) ot —sint

§= t+sing n_tt+sint 0=t=<n),
and

__#(1 4 coshi) __psinhé — ¢

C= s 1=Camire  (0=9.

This curve consists of two branches: one which decreases from
(0, %) to (1, 0); and the other which increases from (1, 0) to (+ oo, + o).
The point

1 . !
5 (f(0)2 + f(1)?) [f (%)2dx
X=vqg—, Y:O1———"»
[ fix)?dx [fx)2dx
0 0

where f and f* are continuous functions on (0, 1), can only belong to the
region above C, or to C itself,

IFor some more results which are related to (3), see the papers
120] —[22] of M. JANET, [23] of G.CimMiINO and the doctoral dissertation
(24] of TcHENG TcHOU-YUN.

E. ScHMIDT [20] has proved the following result:

Let z be a continuous fanctionon [0, 4], with z(0) = z(4) ,Dréltiglz (t) =m,

nax :(f) = M and M + m = 0. Suppose that its derivative 2’ is defined
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and continuous except at most in a finite number of points; further-
more let it be absolutely integrable.
Then

A 1/a 1/b
1 1 1 b
(-;1—0f|z(t)l“dt) <iu(L ,—3—)(# 1f|z ]”dt) ,
where a > 0, 4 >> 1, and

. u'y” I+ u 49
B ) = o Fis b Fa + o)

If the conditions under which the aboveinequality holdsarealtered so
that @ = b > 1, and if the condition m + M = 0 is omitted, then, for
0 < ¢t < A, it becomes

1 Eb 1 b.nbblfb
z@—?m+M)ﬁgﬁj@?mﬂlngwﬁ

from where for & = 2, together with the supplementary condition
2

f z(f) dt = 0, we obtain an improvement of WIRTINGER's inequality
¢
1
fzm2ﬂ<:ﬁ—jzuﬁdr~lcﬁiﬂq.
; 2
For this inequality in the case 4 = 2, see 2.19.
In connection with this result of E. ScHMIDT see also the papers [26]
of R. BELLMAN and [27] of B. Sz.-Nagy.
Generalizing a result of D. G. NortHCOTT [28], R. BELLMAN [29] has
proved the inequality

() [H0? dx < @ 1 ()% da

where %, # are natural numbers and g, are constants (e.g., a, = m/2,
a, = 728, etc.) under the condition that j™ e L?*, f(x) = f(x + 2n)

+n
and [ f(x) dx = 0.

Notice that, for 2 = 1 and » = 1, inequality (4) is weaker than (1).

In [8], P. R. BEEsAck has given several generalizations of inequality
(1). We quote the one which was mentioned earlier:

Suppose that the differential equation

() oY) F )y =0,

where p is a continuous function on some interval (—a, a), with a > 0,
ta

has a solution y,{x) > 0 for x € (—a, a), and that fp(x) dx > 0. Then,



-
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+a
if f(—a) = f(a), /€ L2 and [ p(x) f(x) dx = 0, the following inequality
holds: —a

+a +a
_ff’ (x)2 dx zufp(x) f (%)% dx.

Equality holds here if and only if f(x) = Ay, (x), where 4 = 0 if
either y, (—a) == 0 or y;(a) == 0.

In the same paper, P. R. BEESACK has also considered inequalities
of the form

ff” %) dx > fp %) f(x)2 dx.

We shall also mention the following inequality of W. J. Kim [30]:

Let f be a continuous function on [a, b] together with its derivatives
up to m-th order, and let it, together with its first m — 1 derivatives, be
equal to zero for x = 4 and x = b. Then

b m— b
/ f("*>(x)2dx>(b—;“-)2”’knl(2k+1)2 L —

=0 2 (a— x)2m b — %)

This result isin connection with the results obtained by P. R. BEEsack
[8], and Z. NEHARI [31].
P. R. BeesAck [32] has also proved the following generalization of in-

equality (1): Let /' € L* on [—=n, +x], f(—a) = f(x) and ff x)2 1 dx
== (). Then the following inequality holds

=+
(6) _ff 2kdx§ﬁ:1(k51n ) ff

In this paper, cases of equality were also considered.

In the same article P. R. BEEsAck has proved the following result: Let
r, ¥, s be continuous functions on (a, b) and let r(x) > 0, s(x) >> 0 on
that interval, except that » may have a single zero or a single discontinuity
at a point x (@ < x <C b). We shall say that the function f is an integral
on (a, b) if for all ¢ € (a, b),

flx) = f(c) +ff (@ <<x < b).

Let p= 2k, g = %I and let the differential equation
d dvyp 1 b1
Erw @) ) +swyr =0

Y Mitrinovie, Tnequalitios
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have a solution y(x) which is an integral on (4, b) and y{x) < 0 for
a<<x < xand y(x) > 0 for x < x < b. Suppose that
1

i% =0(;=5) ﬁ((x)) - O(xéd)i j;((f)) =0(=)

for x near x, a, b respectively, and that r satisfies the three conditions

r(x) =0((x — %)) or r(x)?? fr(t)”‘”p dt = O(x — %),
r(x) =0(x —a)? ') and rx)"? fklr (£)"¥*dt = O(x — a),

r(x) = O((b —x)*~") and r(x)”‘”fr(t)'m dt = 0(b — %),
ks

for x near x, a, b respectively. Here %,, &, denote any constants such that
ky < x < k.
Now, let f be an integral on («, ), and suppose that
b b

[r®) [ (x)Pde < 400, [sx)fx)? 'dx=0.

a a

Then

b b

[s(x) fx)? dx < [r(x) f (x)! dx

with equality if and only if f(x) = ¢y (x), where ¢ = 0 unless
b

[r(®) ¥ (%)? dx < + oo,
Further generalizations of inequality (1) were given by W. J. CoLEs in
[33] and [34]. One of them reads:
Let m be a natural number, # = 2m and let &; (0 << 7 < m) be either

0 or 1 so that X%, is an even number. Let &, = 'k, p; = (— 1),
i=0 =0

g; = (—1)" p;. Let $ be a real continuous functiorjl on [a,b], ¢;=
(1—k)a 4 kbd, =k a+ (1 —k)band d;=a + b —d;. If the
differential equation ™ (x) — $(x) y{(x) = 0 has a solution v such that
(—1)" p(x) v(x) = 0 (but not identically equal to zero) on [a, b],
Py M ey) >0 (1 <e<m) and gy THd) >0 (0<i<m— 1),
then the following inequality holds for each function f such that f™ (x)
€l?2and f9(d,,_,_;) =0of at least order 1 (0 < ¢ < m — 1):

b b
(=1 [p () f(x)?dx < [ (x)* dw.
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~

The case of equality was also discussed, but the conditions are too
complicated to be included here.
W. J. CorLEs has also considered inequalities of the form

2 n+efp f(’) )2 dx 2 0’
T=0

where p, and f are functions which satisfy conditions which we shall not
quote here,

J.B. D1az and F. T. MetcaLrF [35] have proved a number of inequali-
ties which generalize inequality (2). Their main results are inequalities
(7), (8) and (9) below.

1° Let the real-valued function f be continuously differentiable on the
finite interval [a, ). Let {; and £, be real numbers such that a <, </,
<< b and f() = f{t;). Then

b

() @ — )R dx
4 _
ﬁFmax((t — a)?, (b —t,)% (2 ))ff x)2 dx.
2° If the function f satisfies the same conditions as in 1°, together with

f@) = i(®), then
® [ — )P

a

ﬁ;lg' max ((ty, — #)%, (b —a —t, + ))?) fbf (%) dx.

3° If the function f satisfies the same conditions as in 2°, together with

(b—a) [(h)?* = 2/ (4 ff(x

then
b
O) [ dx< pmax((t,— 1) (b —a— b4 + ) ff %2 dx.

In all three inequalities, conditions for equality were discussed, but
the results obtained are too complicated to be included here.
Inequalities of the form (2) can be extended in the following way:
If 7 possesses a continuous second derivative on [, ], then for every
> 0,

(10) j’f’ (x)2dx < et:fb)"'(x)2 dx + K (e) fbf(x)'zdx,

10*
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where

K(e) ==+ (bfa)z and P=1, Q=12
The constants P =1 and ¢ = 12 are the best possible in the sense that
if P<<1orQ <12, then (10) does not hold for all f and all & > 0.
For this result see I. HALPERIN and H. PrrT [36], W. MULLER [37],
L. NIRENBERG [38] and R. REDHEFFER [39].
Instead of inequality (2), A. M. PFEFFER [40] has considered, among
others the following best possible inequality
b b

b
(11) SO @Rde <& [ ™ ()2 dx + Hy, (6) [ £(%)? dx,
and has proved that it holds under the condition: f(x)¢c C™[a, ],
1<k<m, fla =f@), fa) =B ¢t=1,...,m — 1) and g > 0.
In (11) H, ,, denotes

b — 2m—2k
H,,)=0 for &> (2;“) ,
k 1
R \mE EN .. b—a/k\sm_ ok . .
H,, () = (;1—6) (1 — ;ﬂ—) if o (%) 1s a positive integer,

and otherwise

H, () = max ((2J’L)2k__ e (ﬂ_ﬂf)zm , (2 (J+ 1) ;!_'{:)2’?'_ . (ggg + 1) ﬂ)zm) |

b—a b—a b—a — a

where

J = \Zi_:“ (-k_)?"‘%ﬁ]
2n \me )

Following an observation of P. R. BEESACK, we have replaced in the
k

m—k

. kim—Fk
above formulas the incorrect constant (-M%) by its true value (;,%)
B. A. TroEscH [41] has established the following result:
Let & be a positive function with piecewise smooth derivative on
I = [0, 1] such that —Ais convexon I and #' (0) < 0. Let f be continuous
and piecewise smooth on I with f(0) = 0. Then

1
[ h(x)f (%) dx
0 - n?

Z'Z,

1

1
fh(x) (Jlef(x)2 dx
0

0

with equality if and only if 4 is a constant and f(x) = A sin (_;: :rzx),
where 4 is a constant.
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In the problem whose author is not cited, and which was proposed
and solved in [42], the inequality

Iff(xl,...,xn)dTg 1( )f[ axl +...+(%)2]dT

was proved, where f is a finite and a continuous function together with

its partial derivatives in the region T which is bounded and measurable,

and where f vanishes at the boundary of 7. D denotes the diameter of T.
A. WEINSTEIN [43] studied the quotients I/H, I/D, D/H, where

H=fff(x:3’)2dxdy,

D= [f{G) + @)
=[G+ ar)

determining their minimum values. He reduced this problem to finding
eigenvalues of corresponding partial differential equations, using the
methods of the calculus of variations. In connection with that he only
mentions article [20] of M. JANET, though the quotient D/H was studied
by H. PoiNcarg [11] and E, E. Lev1 [12]. A, WEINSTEIN obtained some
interesting results which are too long to be quoted here.

D. M. MANGERON [44] has generalized inequality (2) to functions of
several variables, but in a direction which differs from the cited result
107 of H. A. ScuwaRz. In fact, D. M. MANGERON has determined, under
certain conditions which we shall not quote here, the minimum value of
the quotient

& f (w2, )\2
(e, )

m

by by
f... fp(xl

1 m
o fqr oo %,) flay, .o, 5,,)2 dry -0 dx,

-

H. D. BLock [45] has formed a class of integral inequalities which
contain inequalities of WIRTINGER's type.
V.I.LEvIN and S. B.Ste¢KIN [46] have indicated a number of
interesting analogues of inequality (1).
D. W. Boyp [47] has given a method for determining the best possible
constants K in the inequalities of the form
p+q

b b
(12) f|f(x)[”|/‘”’(x)|“w(x)dx5K(f[f‘” )" v (x) dx)f,
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where f(a) = f' (@) =+ = f* " Y(a) = 0, and where /Y is an ab-
solutely continuous function.

If v and w are sufficiently smooth functions, the solution of the
problem in question reduces to a boundary value problem for a differen-
tial equation. D. W. Boyp illustrated his interesting method by deter-
'mining the best constants in the case when («, b) is a finite interval, and
vx)=wlx)=1,n=1.

Before Bovp’s result, O. ArRaMA and D. Ripianu [48] gave two
particular cases of (12):

1)=wx) =1, n=1, p=g=r=2,
and
vix)=w(x)=1 n=1, p=4, ¢g=0, r=2.

However, the constants used by O. AraMA and D. RipiaNU are not
the best possible, even more so in the second case as there is a comple-
mentary condition f(b) = 0.

Inequality (12) appears to be the first to connect the WIRTINGER and
the OpIAL inequalities. For OPIAL’S inequality, see 2.23.2.

Results on discrete analogues of inequality (1) and its variations
which will now be listed are due to K. Fan, O. Taussky and J. Topp [49].

If x,, ..., x,, is a sequence of » real numbers, with x; = 0, then

n—1 n
_ 2 12 T 2
2 = B) = Asint g gy 2

with equality if and only if

k—1im (k

x, — sin
k 2n — 1

We also have

(13) 2% — %p4)* = 4sin? 2 3} (xn+1 =Xy 2% = 0) ,
k=1 A k=1
with equality if and only if
xszcosg?%-Bsinziﬁ (=1,...,n).

Notice that, passing to the limit in (13), we get (1).

Discrete analogues of inequality (3) and some other inequalities were
also given in the mentioned article [49]. In connection with results from
[49], see also the paper [50] of H. D. BLock.

A. M. PreFFER [40] has proved the discrete analogues of inequalities
(10) and (11).

From the exposition made above it follows that there were two al-
most independent trends for determining the estimates of quotients as
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are, for instance,

[ p(x) flx)2dx f J o, 9) fle, v)? ax dy

frevas " [[(E < @)se

In fact, there is also a third orientation in the study of the quotients
in question which is closely related to some problems of mathematical
physics. So, for example, if

[JGE) +@)eo\™

A = min ’
f [ fw y2drdy
T
then 7
7T
Ad<5 2 4

where T is a 31mply connected plane domain, L the length of the perime-
ter of 7', A the area of 7, and where f, ¢f/0x, &f/dy are continuous in T
and f(x, ¥) = 0 on the boundary of 7.

The above inequality, which is the best possible, was proved by
G. PoLya [51].

E. Maka1 [62] has proved that if T is a convex domain, then

A24A’

and this estimate is the best possible.

On these topics see in particular the book [53] of G, POrLya and
G. SzEGO.

Papers [52] and [53] involve the comprehensive literature related to
the considered subject.

Remark 1. In papers [54] and {63] the history of inequality (1) as well as of some
inequalities connected with (1) was given. The attention was also drawn to the fact
that the name WIRTINGER’s inequality is not justified for (1).

Remark 2. For some generalizations of results in {49] see a paper of R, H. Sap1-
Kova published in Voli. Mat. Sb. 1969, No. 7, 161—165.
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2.23.2 An Inequality of Opial
Z. Or1aL [1] has proved in 1960 the following result:

Theorem 1, If f' is a continuous function on [0, 1, and if f(0) = f(h) = 0
and f(x) > 0 for x<€ (0, h), then

(1) (116 el dn< ff (02 dx,

where the constant hj4 is the best possible.

This result of Z. OpiaL has led to numerous articles whose contents
can be classified into three groups: 1° those whose aim is to give the
simplest proof of inequality (1); 2° those which give various generaliza-
tions of inequality (1); and 3° those which aim to find discrete analogues
of Op1AL’s inequality and its generalizations.

The first result to follow Z. OpiaL is due to C. OLECH [2]. He has
weakened the conditions of Theorem 1 and proved

Theorem 2. Let f be an absolutely continuous function on [0, h] and let
1(0) == f(h) = 0. Then inequality (1) holds.
Equality holds if and only if
f(x) =cx for 0 <x< Al2 and f(x) =c(h—x) for h[2 < x < h,
where ¢ 1S a constant.

OLECH’s proof is simpler than OprAL’s.
In order to prove (1), it is sufficient to prove the following:

Theorem 2’. If g is an absolutely comlinuous functron on [0, a] and if
g(0) = 0, the following inequality holds

®) [le@ ¢ Wl ar < [¢ (w2ax,

where a2 1s the best possible constant.
Equality in (2) holds if and only if f(x) = cx, where ¢ is a constant.
Indeed, putting in (2) /=g, a=»A/2 and then g(x) = f(h — %),
a = h/2, we get the following inequalities:
hj2 , M2
JUG) 1 @) dx < [7 (0P d,
0

hj2 B2

[ 11 =5 (b = 2)|dx < [F (h— 2 ax.
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Putting in the second inequality # — x = ¢, and adding the obtained
inequality to the first, we get (1).

Besides OLECH’s proof, simpler proofs of inequality (1) were given by
P. R. BEesack [3], N.Levixson [4], C.L. MarLrows [B] and R. N.
PEDERSEN [6].

We shall give MaLrLows’ proof of inequality (2), which according to
the above, proves (1).

Put

—flgwla  ©<r<a).
0

Then, for 0 < x < a, |g(x)| < A (x), and so

a

2 [lea) 809 dx < 2 () o) de = (o

0

However, according to the BUNIAKOWSKI-SCHWARZ inequality we have

(3) 2—([11, dx) <fdxfh'(x2dx~—af1g x) 12 dx.

Equality holds in (3), and therefore in (2), if and only if g(x) = ex
(¢ is a constant).

P. R. BEESACK has, in the cited paper [3], proved among other things,
the following two theorems:

Theorem 3. Let p be a positive and continuous function on (a, X)
1
(oo <a< X < + o0) and let fm dx << + oo. Furthermore, let

f be absolutely continuous on [a, X| and let

:fxf'(t) dt (@a<x<X) and f(x)Z:O(fxpt—Z)) (x—>a +).
Then the following inequality holds

X X X

Jierwlar<g [0 [p@ 1 e,

with equality +f and only if

where ¢ is a constant,

Theorem 4. Let p be a positive and continuous function on (a, b) and let

]
© dx

',’ P

£

< oo, Let | be absolutely continuous on every subinterval
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@, X, X, b] and let

W) = [0 dt (a<x<X), Nr——ff@ﬂ(X<x<m
fr—o( [-2) woras)y, fr=0(f-2) @b,
=o(f ) eounr ror=o(f k) e

Then

(4) jﬁﬂx |dx<: fp x)2dx,

where X and K are determined by
b'e b

dt o ﬂ-_
JEE_me_K

Equality holds in (4) 1f and only if

X

dt
=A [ — < X
fW=Afsy  @=x<X),
7 at |
Op1Al’s inequality results from Theorem 4 by putting ¢ = 0 and

plx) = 1.
BeESACK’s proof of these theorems has been simplified by G.-S. Yana.
[7]. He has, at the same time, obtained a generalization of Theorem 3.

Theorem 5. Let p be a positive function on [a, X and f 5 < + oo,

and let g be positive, bounded and nonincreasing on [a, X . I f f 18 absolutely
continuous on [a, X| and f(a) = 0, then
X

g : 1 dx X o2
af‘fl(x) |7 (x) f (x)|de—2—af}T~f ) g (%) f (x)2dx,

with equality if and only if

t
d (c = const).

g(x) = const and f(x) = cf
A generalization of Theorem 4 can also be obtained from the above

theorem.
A generalization in the other direction of OpPIAL’s inequality is
contained in the following theorem:

Theorem 6. If f 1s absolutely continuous on [a, b] and f(a) = 0, then for
dlp>0,q9g2>1,

’ b
O S @< L e—a? 1 0P
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Inequality (5) for ¢ = 1 and $ a natural number, was first shown by
L.-K. Hua [8]. For ¢ = 1 and p > 0, inequality (D) can be obtained as a
special case of a more general result of J. CALVERT [9]. In this case, a
very short proof was given by J. S. W. WoNG [10]. Inequality () has
been proved by G.-S. YaNc [7] for p, ¢ > 1, but the proof also holds for
p > 0,9 > 1, as noticed by P. R. BEESACK.

If f(a) = f(b) = 0, then Theorem 6 yields

Theorem 7. If f is absolutely continuous on [a, b] and f(a) = f(b) =
then for all p > 0 and g > 1, we have

(6) afblf(x)]f> I (x [ff‘dx_pﬂ(f) f[f (x) [P+9 dx.

The above results were generalized by P. R. BEEsAack and K. M. Das
[11]. We shall only quote the following result:

Theorem 8. Let p, g be real numbers such that pg > 0 and either p 4+ q¢ > 1,
or p+g¢ < 0 and let v, s be nonnegative measurable functions on (a, X)

such that f V@+a-1) dx < 4 oo and the constant K, defined by

1 q ¢/ - g ’ﬁ
K (X, p,9) =( -,,—f’g)“q (fX SO F ) F ( [ 7 du)“ ﬂu)“

1s finite, where —oo < a<< X < + oco. If fis absolutely continuous on
[a, X7, f(a) = 0 and [’ does not change the sign on (a, X), then
X
[s@) [f) P 1f ) dx < K, (X, p, 9) fr(x I (%) |27 dx.
Equality holds if and only if either ¢ > 0 and f = 0, or
p(1—9)
B b Y S N S I
s 5 (%) = Ry (x)p+a-1 (fr(t)ﬁql dt) ,
and

=k f P+q 1 dt
for some constants ky (> ), Ry real.

This paper of P. R. BEEsAck and K. M. Das contains other results
on inequalities of the form
b b
[s@) [F@ P10 de < K(p, g) [r(x) |F (x) [P~ dx,
which we shall, owing to the lack of space, not expose here.
J. CALVERT has, in the quoted paper [9], proved the following two
theorems which genceralize Ortal’s inequality:
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Theorem 9. Let f be absolutely continuous on (a, b) with f(a) = 0, where
—oo<a<b<< +oo. Let g be a continuous, complex function defined
X

for all t in the range of { and for all real t of the form ¢ = f |f (n) | du.

Suppose that [g(t)| < g(|t) for all t and g(t) < g(ty) for 0t <ty
Let v be positive, contmuous and in L'7%a, b], where p71 +qg1=1

(p>1).If F(x fg dt for x > 0, then
b /g { b 1/p
.fmU)fuldxf;F((fruf—%u) (f 0 |7 (x V¢4 ),
with equality if f(x) = ¢ fr(t 12 4t

b
The same result (but with equality for f(x) = ¢ f r{f)177dt) holds if

f(6) = 0, where —oco << a << b < 4 o0. x

Theorem 10. Let f, g, v be as @n Theorem 9. If p < 1, 1/p + 1jg =1,

X

—oo<La<<b< —|—ooandf(a)=0and6(x)=f a then

J e
b g ( & 1/p
f g(f) ((f 7@’ qu) (af r(2) | (%) [P dx) )

with equality if f(x) =c¢ f Y9 ax.

A corresponding result holds if f(§) =0, —oc0 < a < b < 4 0.

Asnoticed by P. R. BEESACK, the conditions for equality in the above
theorems are only sufficient, but not necessary.

The following theorem of D. W. Boyp and J. S. W, Wong [12] bears
some relation to Theorem 9.

Theorem 11. Let w and o be nonnegative continuously differentiable real
functions on [0, a] (0 < a << + ©0), such that the boundary problem

d 4 k '
0 (o w @) = 1o’ @) uie)?,
#(0) =0, o(a)u (@) =iwla)u(@?, o >0 on [0,a
has a solution.
If f is an absolutely continuous function on [0, a] and f(0) = 0, then
the following inequality holds for all p > 0

! fif’(t)f(t)"lw(t dt < -—— Y|P o (2) dt

2o (P +1 f 17
where Ay 1s the largest positive eigenvalue of the boundary problem (7).
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Remark. In the formulation of Theorem 11 we have taken into account a comment
of J. V. RyrF in Math. Reviews 35, 563 (1968).

OrIAL’s inequality is obtained foro = w =1, p = 1.
Results analogous to CALVERT's were obtained by E. K. Gopu~Nova
and V. I. LEvIN [13]:

Theorem 12. Let f be absolutely continuous on [a, b with f(a) = f(b) =
b
Let, further, g(x) > 0 for x€ [a, b] and fq(x) dx =1 and let ¢ and vy

be convex increasing functions for x > 0 and ¢ (0) = 0. Then we have

3 £ )|
®  Jrrea rwle< (v fomn(40)a).

Theorem 13. Let f be an absolutely continuous function on [a, b] with
fla) = 0. If @ is a convex increasing function for x > 0 and ¢ (0) = 0, then

b b
[o (F) [F ()] dx < gv(f}f’(x)ldx).

@

2
Putting in (8) ¢ () = =, w({t) = #*, $ > 1, and

b 1

g(x) = s{x)i-¢ ( [s@i-+ dt)“ :

a

where s(¢) = 0 for ¢ € [a, b], we get

b b 2/p
©) [176) F ()] dx < C(fs(x) () wdx) ,

a

where

1 B
1 e b4
C= (afs(t)lﬂb dt) :
Inequality (9) has been proved by P. MaronNt [14] but only for
1 < p < 2, but instead of C, with a weaker constant C - 22/#—1,

The following generalization of OpIAL’s inequality is due to R. RED-
HEFFER [15]:

Theorem 14. If u, v, w, f are absolutely continuous functions on [a, b] and

O pe B @R <0 @Y ()20, v +0, 90 >0,
then
S [ e+ (0 ey ] x> B — 4,
where

B=1lim u(x)?f(x2"Y  and A =1lim u(x)?f(x)2 "),

A h v(x ) e vix)
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Finally, let us mention the following generalization of OriaL’s in-
equality:

Theorem 15. Let f€ C*~[a, b] and let {*~1) be an absolutely continuous

function such that f(a) = f (a) = -+ == f*"U(a) = 0 (n > 1). Then there
exists a constant c,, such that

b b
(10) T1HE) £ () | dx < o, (b — @) [ | (@) 2 dx.

D. WILLETT [16] has proved that ¢, << 1/2. He used inequality (10) to
prove the existence and uniqueness of the solution of a linear differential
equation of order #.

K. M. Das [17] improved the estimate given by D, WILLETT. In fact,

1/2 . T .
he proved that ¢, < 55 (21:4 —) and that this inequality is strict except

in the case n = 1.

Finally, D. W. Boyp [18] determined the best possible constant in
(10), by proving:

For n odd (= 2m + 1), the best possible constant is 4y/2"(n — 1)!,
where 4, is the largest positive eigenvalue of the following (m + 1) X (m + 1)
matrix

2”?) (2m — 2/ + 2% + 1) (,j=01,..., m).

A = (a;), with aﬁ:(m

For # even (= 2m), the best possible constant c, is (a22"(n — 1) 1)1,
where «, is the smallest positive solution of the equation det B(x) = 0

and where B(x) = (b;;(x)) is the m X m matrix defined by
2ij 2 e k& D) .. '
bij(“):wJoct kz; (—1) i_’k_ﬁ_ | Z717=0...,m—1),
with

g;{x) = cosh (wax) and @ = exp ﬂ

In the same article D. W. Boyp has proved the following result:
Theorem 16. Let c,, be the best constant in (10). Then

) 1 n 2p\—1\1/2
Cp = 57 where ?<bn£(4n_2+(%) )

s0 b, — 1/2 as n— 4 oco.

D. W. Boyp in paper [19] connected the inequalities of WIRTINGER
and of Z. Op1AL, by proving an inequality which contains, as special
cases, both quoted inequalities. Concerning this, see (12) in 2.23.1.

J. M. HoLt [20] generalized the inequality of P. R. BEEsack which
appears in Theorem 3. His result is too complicated to be exposed here.
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Discrete analogues of OP1AL’s inequality and its generalizations were
given by J. S. W. WoNg, CHENG-MING LEE and P. R. BEESACK.

J. S. W. WonG [10] has proved the following analogue of the in-
equality of L. K. Hua, i.e,, inequality () for ¢ = 1.

Theorem 17. Let u,; be a nondecreasing sequence of nonnegative real num-
bers. Then, for p > 1, we have

(1) S - <O
=1

4=

CHENG-MING LEE [21] has given a discrete analogue of inequality (5).
This inequality includes the result of J. S. W, Woxe.

Theorem 18. Let u; be a nondecreasing sequence of nonnegative real num-
bers. If p,q > 0,90 +qg=>1orp, g <0, we have

where

__1 _ el
Kﬂ_p—:—g and Kn-—max(K 1+P+q v n=12..).

Ifp>0,9<0,p+¢<1L,p+qg+00rp<0,¢>0,p+g=1,
then

n k()
S, —u, ) ut >C Z’u ~— u, P (with uy = 0),
i=1 —1

where
9 i R (U Vil _
Co_p—l-gand Cn—mln(Cnl—l—p_'_g py ) n=12..)
If , ¢ > 1, CHENG-MING LEE has proved that
K, =100,
?+q
if p <0,¢g<<0, then
ey = 1 —_— p-1 — N
K,=1, and K, = +p+92¢ (n=2,3,..);

ifp>0,p 4 qg< 0, then

Q:n.mdc;=1+pi ittt (=23, ..).

11 Mitrlnovie, Tnequalitios



162 2. General Inequalities

References

1. Op1AL, Z.: Sur une inégalité. Ann. Polon. Math. 8, 29— 32 (1960).
2. OLEcH, C.: A simple proof of a certain result of Z. Opial. Ann. Polon. Math. 8,
61—63 (1960).
3. Beesack, P. R.: On an integral inequality of Z. Opial. Trans. Amer. Math. Soc.
104, 470 —475 (1962).
4. LevinsoNn, N.: On an inequality of Opial and Beesack. Proc. Amer. Math. Soc.
15, 565— 566 (1964).
5. MarLrows, C. L.: An even simpler proof of Opial’s inequality. Proc. Amer.
Math. Soc. 16, 173 (1965).
6. PEDERSEN, R. N.: On an inequality of Opial, Beesack and Levinson. Proc.
Amer, Math. Soc. 16, 174 (1965).
7. YANG, G.-S.: On a certain result of Z. Opial. Proc. Japan Acad. 42, 78—83
(1966).
Hua, L.-K.: On an inequality of Opial. Sci. Sinica 14, 789—790 (1965).
9. CALVERT, J.: Some generalizations of Opial’s inequality. Proc. Amer. Math. Seoc.
18, 72—75 (1967).
10. Wong, J. S. W.: A discrete analogue of Opial’s inequality. Canad. Math, Bull.
10, 115—118 (1967).
11. BeEesack, P. R, and K. M. Das: Extensions of Opial’s inequality. Pacific J.
Math. 26, 215—232 (1968).
12. Boyp, D. W,, and J. S. W. Woxa: An extension of Opial’s inequality. J. Math.
Anal. Appl. 19, 100—102 (1967).
13. Gopunova, E. K., and V. I. LEvIN: On an inequality of Maroni (Russian). Mat.
Zametki 2, 221 —224 (1967).
14. Marow1, P. M.: Sur l'inégalité d’Opial-Beesack. C. R. Acad. Sci. Paris A 264,
62— 64 (1967).
15. REDHEFFER, R.: Tnequalities with three functions. J. Math. Anal. Appl. 16,
219 —242 (1966).
16. WiLLETT, D.: The existence-uniqueness theorem for an #-th order linear
ordinary differential equation. Amer, Math. Monthly 75, 174 —178 (1968).
17. Das, K. M.: Aninequality similar to Opial’s inequality. Proc. Amer, Math. Soc.
22, 258—261 (1969).
18. Bovyp, D. W.: Best constants in inequalities related to Opial’s inequality.
J.- Math. Anal. Appl. 25, 378— 387 (1969).
19. Boyp, D. W.: Best constants in a class of integral inequalities. Pacific J. Math,
30, 367—383 (1969).
20. Hort, J. M.: Integral inequalities related to non-oscillation theorems for differ-
ential equations. STAM J. 13, 767— 794 (1965).
21. LEg, CHENG-MiING: On a discrete analogue of inequalities of Opial and Yang.
Canad. Math. Bull. 11, 73—77 (1968).

&

2.24 Inequalities Connected with Majorization of Vectors

Definition 1. Lef x4, ..., x, and ¥y, ...,y, be real numbers. A vector y =

(Y1, «-+» Vu) ts said to be majorized by a vector x = (xq, ..., %,), 1n symbols

x> v ory < x, tf, after possible reordering of its components so that
K22y and Y = 2,
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we have
3 k
(1) x>y, for k=1 ..,0n—1
r=1 y=1
and
(2) 2%, =2y,
r=1 r=1
If condition (2) is replaced by
(3) 2% =2,
r=1 r=1

we write x >y or y X x.

Definition 2. Let x = (xy, ..., %,) and y = (¥4, ..., V) be two real vectors.
If for k=1, ..., n, %, > v, we write x > y.

Definition 3. Let F be a real function of an n-dimensional vector variable.
We say that F is a symmetric gauge function if it satisfies:

F(x)>0 for x == 0;

(tx) = [¢] F ()
Fx+y) < Flx) + F(y);
Fx,) = I (x);

Fx]) =),

where x and y are arbitrary vectors, t 1s a real number, x,, denotes the vector
obtarned by permuting the components of x, and where J is an arbitrary
diagonal matrix whose elements are +1 or —1.

Definition 4. Let the function x +— [ (x) be nonnegative and integrable on
(0, 1) so that it is measurable and finite almost everywhere and let u(s) be
the measure of the set on which f (x) > s. The function x +— f* (x) whichis
1nverse to p 1s called the decreasing rearrangement of f.

Definition 5. If x, y € LY(0, 1), we say that y majorizes x, in writing x < vy,
1f

*t)dt_<_fy*(t)dt for 0 <<s<< 1,
0 1]
and

flx(t) dt = fly(t) dt

1



164 2. General Inequalities [Ref. p. 169

G. H. Harpy, J. E. LittLEwooD and G. POLya [1] proved in 1929
the following: ‘

Theorem 1. A necessary and sufficient condition in ovder that

n

(4) ywséw

r=1

holds for every convex function f on I, with x,, v, € 1, is that x < y.

This inequality is a generalization of JENSEN’s inequality for convex
functions. Indeed, putting in (4 » =--- =z, _——"% Zn'y,, we get
JENSEN's inequality. "

Proof. Functions f and g defined by f(x) = x and g(x) == —x are convex
on an arbitrary segment. Thus

2%, <2y, and 3 (—x) < X(—y,),
r=1 y=1 r=1

whence

The function f defined by
fix) =0for x <<y, and f{x)=x—y, for x>y,

is positive and convex on an arbitrary segment, and f(x) > x — v,.
Therefore

L ry,SZl‘f(x,-) SZlf(y,-):yl + Y7y,
from which follows x < y.
So the condition ¥ < ¥ is necessary. Let us now prove that it is also
sufficient.
For any convex function f, for x; > v, %3 > ¥s, %; == %3, V1 == ¥y, We
have
fla) — f({z) >f(3’1) __f(yz) .

¥ Xg Y1 — Ya

Denote
_f(xk) - f(Ji}i)—

Dy Y Yk

(% =+ ¥i)-
Then D, > D,_.,, and in virtue of x < y we have

n—1

) 3 (X, — Y}) (D — Dyy) + (X, ~ Y,) D, <0,

kw1
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where

k
X,=2x and Y,=2y,.
r=1 r=1

From () follows

ZXk(Dk — Dk+1) + XnDng
k=1

M =

Yk(Dk - Dk+1) -+ Yn Dn»

k

I
—

1.e. .

Z(Xk - Xk_1) Dk < Z(Yk - qu) ‘Dk'
B==1

k=1

Since X;, — X,_; =x,and Y, — Y, _; = y;, from the last inequality
we get (4).

Therefore, the condition x < y is also sufficient, which completes
the proof of Theorem 1.

The proof of necessity of x < y 1s taken from the mentioned paper [1].
The proof of sufficiency is due to L. FucHs [2].

In 1932 J. KArRAMATA [3] rediscovered Theorem 1.

We shall now quote some results which extend Theorem 1.

Theorem 2. A necessary and sufficient condition for inegquality (4) to
hold for every convex and increasing function fis x < v,

This theorem was proved in 1949 by M. TomI¢ [4], and in 1950 by
G. PéLya [5]. H. WEYL [6] in the same year as M. Tom1¢ has obtained
Theorem 2 for x > 0 and y > 0, while M. Tomi¢ did not require these
restrictions,

M. Tom1¢ proved that Theorem 2 containsin a certain sense Theorem 1.
He gave a geometrical proof for this, basing it on GAuss’ theorem about
the centroid [7]. G. POLYA proved Theorem 2 starting with Theorem 1.

L. FucHs [2] gave the following generalization of Theorem 1.

Theorem 3. Inequality

émmsémw

holds for every convex function f and for arbitrary real numbers Py, ..., D,
if and only if

k k
le"'_>..xm y12"'2ym Zprxrgzpryr (k:l,,n—l)
r=1 r=1

and

prx’ = pryf°

rm=1 rmi



166 2. General Inequalities [Ref. p. 169

T. Popoviciuin [8], [9] and [10] generalized Theorem 1 for the func-
tions which are convex of order #.

Theorem 4. The inequality
2 b (%) =0
r=1

holds for all %y < -+ < %, $; = 0 (@ =1, ..., m) and for every function {
which 1s convex of order n, if and only if

wm
o =0 for k=0,1,...,n,
r=1

and if for t€ (o, o) and k= 1,...,m —n — 1,
k m
—Z?r(xr —t)n :pr(xr—t)nz_ 0.
r=1 r=k-+1

K. Fan [11] has proved the following theorem.

Theorem 5. I[f x > 0 and y > 0, then x < v is the necessary and sufficient
condition so that for every symmetric gauge function F we have

Fx) < F(y).

L. Mirsky [12] gave an elegant proof of Theorem 5.

In the further text we shall use the following notations:

S the set of symmetric functions,

I the set of increasing functions,

L the set of functions F such that F(xA) < F(x), where x is an
arbitrary vector and A an arbitrary diagonal matrix whose elements are
Oor 1,

C the set of convex functions,

G the set of symmetric gauge functions.

The following three theorems are due to L. Mirsky [12].

Theorem 6. The inequality
(6) F(x) < F(y)
holds for any function F€ C N\ S if and only if x < y.

L. MirskyY deduced from this theorem Theorem 1 as a special case.

Theorem 7. Ineguality (6) holds for any function F€ CNSNI if and
only if x < y.

From this theorem the cited results of M. TomMI¢ and (5. POLyaA can
be obtained, as well as Theorem 5 of K. FaN,
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Theorem 8. 7he inequality (6) holds for any function F€ CN\ SN L if
and only if

x <Ly, —x < {=9)"F,

wherve x* = (x,7, ..., x}) and x;7 = max(x, 0).
The following four theorems are also connected with majorization.

Theorem 9. If a; > 0,...,a,>0, by >--->b,> 0, and byfa, <--.
< b,/a,, then {, defined by

o |

s an increasing function.

a;+---+a_;)1f'
b;+...+b; ’

The above theorem was proved by A. W. MarsuaLL, I. OLKIN and
F. ProscHaN [13].

Theorem 10. Let X4, ..., X, be random variables such that their joint
distribution is invariant undey permutations of its arguments. If a > b,
and if F is a convex and a symmetric function, then

EF(a,X,,...,a,X,) > EF(0,X,, ..., b,X,),

w here I denotes the mathematical expectation.

This theorem of A. W. MArRSHALL and ¥. PRoscHAN [14] contains
Theorem 1 as well as the following theorem of R. F. MUIRHEAD [15].

Theorem 11. If y, > O for k=1, ..., n and if a > b, then

a Ay 1 by
(7) Zlyp oy, > Ty ey,
where 2| denotes summation over the n! permutations of vy, ..., Yp-
More generally,
2V F(ax,...,ax,) > 2V F(bx,..., b0,%,),

where F 1s a convex symmetvic function and where X'\ denotes summation
over the nl permutations of xy, ..., x,,.

MUIRHEAD’S inequality is considered in detail in the book of G. H.
HarpDY, J. E. LittLEwo0D and G. POLyaA [16], pp. 44—49. Also see the
paper [17] of R. Rapo, and the paper [18] of G. A. BEKISEv,

Definition 6. A r¢al function F of n real variables is called SCHUR’s func-

tion, if for all i == |,
oF oF
(% — x;) (Eg o 07;) =0
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Remark. In the above definition it was supposed that Fis a differentiable function.
However, a definition of ScHEUR’s functions which are not differentiable is also given
in the literature.

A. OsTROWSKI [19] has proved the following result:

Theorem 12. I nequality
Fx) = F(y)

holds for any SCBUR’s function F if and only if x > v.

We shall now quote some integral inequalities which are connected
with the majorization of functions.

G. H. HarDY, J. E. LITTLEWOOD and G. POLya proved in [1] an
integral analogue of the inequality which appears in Theorem 1.

The following theorem is due to J. V. RYFF [20].

Theorem 13. Let x and v be bounded and measurable functions on [0, 1].
The inequality

(8) I log( [u@re dt) as < [ log( [ut d.t) ds

holds for any positive function 1 such that u? € L' for any finite p, if and
only if x < v.

Inequality (8) represents an integral analogue of MUIRHEAD's inequa-
lity (7).

Finally, we shall quote the following result due to G. F. D. DuFrF [24].

Let the sequence a = (ay, ..., a,) be rearranged as a* = (af, ..., af),
with af > -+ > aF. Then

o) 5 dat < 3 day

k=

where p > 1 and Aa, = az ., — ag, daf = af. 1 ay.
Equality in (9) holds if and only if a, = af for £ =1, .
The continuous analogue of (9) is

b b
JIF@Pax< [|f )P dx,

where $ > 1 and where f* is the decreasing rearrangement of f.

DurrF also proved other interesting results, but J. V. RYFF in Math.
Reviews 37, (9 (1969), has given some critical comments on the rigour
of the proof.
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The gquestion of priovity of Theorem 1. From the above exposition follows that
Theorem 1 is due to G. H. HarDY, J. E. LitrTLEWoo0D and G. POLvaA [1]. However,
in the literature one can find that Theorem 1 is also ascribed to J. KARAMATA,

In the book [21] of E. F. BEckenBacH and R. BELLMAN the titles (pp. 30 and
31) concerning Theorem 1 are ‘“An Inequality of Karamata” and ‘“Proof of the
Karamata Result’.

In the expository article [22], p. 20, of N. G. pE BruijN Theorem 1 is again
ascribed to J. KARAMATA {3], H. WEYL [6] and G. Pérva [5]. However, G. P6Lva
has quoted in [5] that the result in question of WEvL [6] is similar to [1] which is
due to G. H. Harpvy, J. E. LittLEwooD and G. PérLya, published in 1929 and re-
discovered in 1932 by J. KarAMATA [3].

A. OsTrROWSKI in [19], p. 261, L. FucHs in [2], p. §3, L. MIrsKY in [23], p. 159,
acknowledged the priority of Theorem 1 to G. H. Harpy, J. E. LitTLEWoOD and
G, PorLva,

In Zentralblatt fiir Mathematik 5, 201 (1933), W. FENCHEL in his review of
KaraMaTA’s paper [3] has written: ,,In einem Zusatz wird darauf hingewiesen,
daB sich das obige Resultat schon in einer Note von Hardy, Littlewood and Pélya
[Messenger Math, 38, 149 — 152 (1929)] findet”, However, we cannot find in [3] such
an addition.

W. W. RogosiNskI in Jahrbuch iiber die Fortschritte der Mathematik 58, 211
(1932), for the same paper, at the end of his review draws attention to {1] without
further comments.

It is interesting to notice that in [4] M. Tomi¢ did not attribute sufficient
importance to his result cited above as Theorem 2, which was discovered by H. WEYL
[6] at the same time, but with less generality. Tomi¢’s paper was written in Serbian
with summaries in French and Russian. However, in these summaries Theorem 2 is
not cited.
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2.25 Inequalities for Vector Norms

2.25.1 Triangle Inequality

Definition 1. Let R be the set of all real numbers and R™ the set of all
ordered m-tuples a = (aq, ..., a,,) of real numbers.
The function

(1) (@, )r=a-b=ab, + - +a,b,

from R™ < R™ into R is called the scalar (or inmer) product on R™. The
function

2) ars ol =Va-a=Va: + .- +

18 called the Euclidean norm on R™.

Theorem 1, For any a, b€ R™,

(3) @ + D[ < fa 4[],

equality holding if and only if a == 0 or b = ta with { > 0.
Proof. By the CaucHY inequality we have

(4) (Zaby) < (Za}) - (ZBy),
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1e., .
(@-8)2 < |af? |b]%.

(5) @+b-(@a+b —=a-a+b-b+2a-b
<a-a+b-b42lal[b] = (la] + b))%,

from which the triangle inequality (3) follows.

Equality holds in (3) if and only if it holdsin (5), i.e., if a - b = |a]| |b],
which together with the corresponding result for the CAuCHY inequality
implies that 4 and & are proportional.

Hence a == 0 implies & = fa ({ € R). Replacing this in

lal + bl = la + b],
we get
T+ t|=]1+1¢

which implies ¢ > 0. .
R™ becomes a vector space by defining

(ay, ..., a,) + (by, ..., b,) = (a, + by, ...,a, +b,)

as addition, and
ta,...,a,) = (tay, ..., ta,)

as multiplication by a real number ¢.
If we put
d{a,b) =|a—b| for a,bcR",

then the function 4 has the following properties:

d(a,b) >0,
da,b) =0&a =10,
da,b) <d{a,c) + d{c,b) for al a,b,cc R"™.
The last inequality is the usual triangle inequality from Analytic
Geometry.

The set R™ together with the function 4 is called the s-dimensional
Euclidean vector space and will be denoted by E™ in the sequel.

2.25.2 An Identity of Hlawka and the Associated Inequality

Now we shall prove that

() lal + ol + ] o +e|—lc+a|=Ja+bl+]a+b+c[=0,

where @, b, ¢ are arbitrary vectors in E™.
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This inequality follows immediately from the triangle inequality and
the following identity

(2) (lal + [l + el = 1o+ e[ = |e+al —]a+ bl + e+ +c|)
X (lal + o] + |e] + |a + b + ¢])
= (1l 4 lef = 6+ ci) (la] = [+ e[+ [a + b +c))
+ (el + lal —fe +af) (o] = le +a| 4 [a + b +¢|)
+ (laf + bl = la+ b)) (lel = la + 2] + [a + b +c]),
which is due to E. HLawgka [1].
The proof of this identity can be obtained by direct verification.
We note that the triangle inequality and HiAwgkA’s identity hold
also in unitary spaces.
It was conjectured [2] that the inequality (1) holds in every real

normed space. This conjecture was shown to be true, see for instance [3].
The analogous assertion for complex spaces is not true.

2.25.3 An Inequality of Hornich
Theorem 1. Let a€ E™ and a, € E™ (B =1, ..., n). If these vectors satisfy

(1) Zak = —la (t Z 1) ’
k=1
then
(2) kZ(\“k"‘“l“ |a,|) < (n — 2) jal.
=1
Ift << 1 n (1), then (2) need not necessarily hold. .

Proof. From the inequality of HLAWKA we get
(3) max (|a; + a| — |a;] + |4 + a| — |a;)
<la+ a4 + a) —la; + 4| + laj,

where the maximum is taken over all pairs of vectors a;, a; such that
a; + a; = const. Using (3) we see that the sum on the left-hand side of
(2) does not decrease if we replace the vectors a,, a,, ..., a, by the vectors
0, a; + do, as, ..., a,. In the same way we conclude that the new sum
will not decrease if we replace the vectors 0, a, + a5, as, ..., a, by 0, 0,
a; + as + as, a4, ...,a, By repeated application of this procedure we

conclude that
n

) 3 (14 + a| — |a) skz"l(lb,. +a| — [b)),

kw1
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where by = ---=b,_, =0, b,=a, + --- + a,. Putting these d, into
(4), we get i

é(l“k“i" al| = la) (e —1)faj +[ay + -+ +a, +a|—[a + - +a,].
k=1
By application of (1) we obtain that
é;(]ak +al— )< (m—1—[t)) la] + |t — 1] |a}.

Since |t — 1| — [f{] = —1 {t > 1) it follows that HorNICH's inequality (2)
is true.

H. HorNicH [1] gave his inequality in a different form which is a
special case of (2). We shall still call it HORNICH's inequality.

The lengthy original proof of HORNICH was shortened by R. P. Lu¢iC
[4] who used induction on #. The above general form of this inequality
and the proof are due to D. Z. Djoxovi¢ [].

2.25.4 Generalizations of Hlawka’s Inequality

D. D. Apamovi¢ [6] has established the following inequality

|
> 3 e+ a (n > 2),

1<i<j<n

O =2 X |al+
k=1

n
A
E=1

where a,€ E™. This inequality contains HLAwKA’s inequality as a
special case when # = 3.

D. D. ApamoviC’s proof is based on an identity which is a generaliza-
tion of the identity (2) in 2.25.2.

In [7] P. M. Vasi¢ has, among other things, given a straightforward
proof of this inequality by the method of induction.

D. Z. Djoxovi¢ [8] has proved the following more general inequality
which contains (1) as a special case:

The values of #» and % are given by n = 3,4, ..., A= 2,...,n — 1.
Independently of D. Z. Djorovi¢ the inequality (2) was proved also
by D. M. SmiLey and M. F. SmiLey [2]. Conditions for equality in (2)
arc given in {2} and [8].

Inequality (2) was used by T. Popoviciu [9] as a new characteriza-
tion of continuous ‘convex functions. In fact, he proved the following
theorem:

(2) ) ‘“il"‘"'“i‘“ik]5(::;)(%_51%1“|‘_ZZ;“;‘

15i < i <n
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Let n >> 3 be a positive integer and £ an integer such that 2 < %k <
n — 1. A continuous function f is nonconcave over some interval I if and

only if
xil - ,-I_ xik
=

L<h < i<

<1273 [w S (2]

holds for any x4, ..., x,€ I.
Let D be an additive Abelian semigroup with neutral element 0 and
let E C D be a set with the following properties:

1° 0¢ E;
2° q€EGi=1.. N YacE=2a cE (1<1, < - <i,<n).
i=1 r=1
Furthermore, let G be an ordered Abelian group, il.e. this group is
endowed, with a relation of total order < with the property:

‘ (@, b,c€EGNa<<b)=(a+c<<b+4 ).
For a function f: E — G, denote by C,, , the condition

> flg o)+ (" k=D HO)

1 iy <o i<

ﬁ(::?)iél‘(“z‘) +(Z:Z)f(2”1“¢)

=1
(aié E 1<i<n), Xac E)
=1
P. M. Vasi¢ and D. D. Apamovi¢ [10] have proved

Theorem 1. Conditions C, , (2 < k < n; n 2> 3) are fulfilled if and only
if one of them is satisfied, i.e., each one of these conditions is equivalent to
all others.

Inequalities (1) and (2) are contained in.this theorem.

Remark. H. FREUDENTHAL [11] has proposed the following problem: If ay, ..., a
are arbitrary m-dimensional vectors, for what values of » do we have

H

n
_leafl— Y laitel+ ¥ la+ 4+ ak

1<i<j<n 1=i<j<hsn
e S Gt ) Ea I“l 4+ e 4+ ani > 0.

If » = 2 thisis the triangle inequality. If » = 3 this is the inequality of HLAWKA.
If » > 4 it was shown by W, A, J. LuxEMBURG that this inequality is false. His
counterexample is the following:

a;=b (i=1,...,m—1), a,=—2b (b | 0).
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The following very general reduction theorem for linear vector in-
equalities is due to F. W. LEvr [12].

Theorem 2. Let &, and p; (i =1,...,m; =1,...,7) be real constants.
Suppose that for all real numbers x4, ..., x, we have
(3) i:ZI’ki[?nxl + o+ Py | 20,
Then
(4) _Zn;ki [Py + -+ paa, | =0
holds for arbitrary vectors a,, ..., a, € E™ and any positive integer m.

Proof. Let 5€ E™ and
F(b) = f |a - b]da,

where the integral is taken over the unit sphere |a| =1 in E”. It is
evident that F () has the properties

Fo)=F() if b=,
(5) ' F(th) = [¢| F(b) for any realt,
F(e) =4,>0 if [g]=1.

Replace «x; in (3) by the scalar product a; - a, where a € E™ is also arbi-
trary. Then we get

Dk (e, + -+ pya,)-al > 0.
i=1

By integration over the unit sphere |a| = 1, we get

Zk’f l(?ﬂal + o pirar) -a[da => 0.
i—1
Using (b) we obtain
Zki [pilal + o+ Pz’rar“bm 2 0:
i1

which implies (4).
As an application of the reduction theorem F. W. LEvr [12] proved
that
' i\
(6) Zltat-tal=2(",") Sl
i=1
where ¢ = [y;—l] dy, ...,a,& E™; and the sum on the left-hand side is

taken over all 27 combinations of -+ and —.
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It is easy to verify that

()=() =[] w3

In the case m = 1, inequality (6) has been rediscovered by M. Mar-
jaNovi¢ [13].

2.25.5 A Steinitz-Gross Result
Leta, € E™ (k =1, ..., n) be such that

) Sa,—0, o<1 (1<kE<n).
k=1

Let these vectors be arranged so that they form a closed polygon in
E™ namely
04,4,---4,_,0 O4y=ay, ..., 4, 4, =a,, ..., 4,_0=a,).

Let p,, be the least positive number having the following property:
Given any system of vectorsa, € E" (k= 1, ..., n; n > 2) satisfying (1);
then we can permute a,, ..., 4, so that the corresponding polygon asso-
ciated with these # vectors arranged in a new order is contained in the
sphere |a| < 4, with centre at the origin O.

We have evidently $, = 1. Independently of each other W. Gross
[14], V. BERGSTROM [15], and I. DAMSTEEG and I. HALPERIN [16] proved
that p, = }/2. The values of p,, for m > 2 are not known.

I. DAMSTEEG and I. HALPERIN [16] proved that

{ —
F. A, BEHREND [17] has proved that
pw<m, py<Vb+ 23 =2.90...
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2.26 Mills’ Ratio and Some Related Results
The function R defined by

+o00
Je= P at oo
2 — 122
R(x):x—e—:—w:e”zfe # dt
X

1s usually called M1LLs’ ratio.

We shall give here some results which refer to the problem of finding
some simple functions which approximate R.

One of the first such results was obtained by R. D. Gorpox [1] who
proved in 1941 that for all x > 0,

1
A year later, Z. W. BiIrNBauM [2] improved the lower bound of
R. D. GorDON, thus obtaining that for all x > 0,

(2) sVt —x) <R <.

BIrRNBAUM's proof uses properties of convex functions.

Other results were mainly based on improving inequalities (1) and
(2) or extending the domain in which they hold.

Thus, for example, M. R. SAMPFORD [3] has proved that, for all real
%, 0 <(1/R(x) <1 and (1/R(x))" > 0, and as a consequence that
R(x)<4/(3x—{-]/8-{- ) forx > — 1.

12 Mitrinovi¢, Inequalitics
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Sharpening the combined GORDON’s and BIRNBAUM's inequalities (2)
written in the form

_(,_
3 ( 4 2 — %2 <iA wt/2 af < — _x=/2,
3) 2|/2:rz I/ T %) —]@;J _]/2:zx

R. F. TATE [4] has proved that for ¥ > 0,

y  +-V3 Lt Ly b +4i3~y’ e~

The upper bound in (4) is an improvement on that in (3) for x > 0,
while the lower bound cannot be compared with BIRNBAUM's since for
some values of x >> 0 it is greater and for some smaller than the lower
bound in (3).

Y. KomaTu [D] has given an elementary proof of the inequalities
2 2
]/fx2+4+x< R(x)<]/x2+2 —{-x.

(5)

The lower bound in inequality {5) is equal to the lower bound in (2),
while the upper bound is an improvement on the result of GorDON.
H. O. PorLrak [6] has shown that the greatest value of § for which

2
R(x) < o=
(%) T .
is # = 8/m. It can easily be shown that the least value of § for which
. _

e < R{x

Va2 + B + x *
is f = 4, i.e., that BIRNBAUM’s lower bound for R( ) is the best possible

2
bound of the form —=—=———. However, -~=—————— tendsto 1l as »

Vir + B + 5 Va? 4 4 x

tends to 0, whereas R{x) in that case tends to ]/:rz/ 2. {The upper bound,

2
]/xg - (8/31:) o - also tends to ]/n/? as x tends to 0.)
In order to get lower and upper bounds which have the same limits

as R{x), A. V. Boyp [7] tried to find approximations for R in the more
general form

(0.4

Vi + B +yx

He first noticed that for the approximation to be good for both large
and small #, it is necessary that « =y + 1, f = 2a%/zm, i.e., that the
approximating functions are of the form

y+1
Va2 £+ (2[m) (y + 1)2 + yx
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By expanding R(x) for small and large », A. V. BoyD succeeded in
proving that y == 7 — 1 and y = 2/(m — 2) give the sharpest lower and
upper bounds respectively, thus obtaining for x >> 0 the inequalities

TT 7T
(©) ]/x2+2n+(n—1)x<R(x)<]/(n—2)2x21i—”éTz+2x'
Notice that in this case, both bounds in (6) tend to ]/:z—r/_2m as x tendsto 0.
The above bounds are better than PoLLAK's.
Concerning the function R, see also papers [8]—[11].
Generalizing MiLLs’ ratio, W. GautscHI [12] has proved that, for
p>1land 0 < x << 4 o0,

+o0
(7) %((xp + o — x) < ex}"fe‘tf’ i <C, (( N )w B x) |
% Cp

where C, = (F (1+ ))4"1.

A special case of the above inequalities

1 o

¥+ Va2 ¥+ VR4 (4m
obtained by putting 4 = 2 in (7) is quoted in [13].
A somewhat different line of approach was pursued by R. G. HART,

and W. R. ScHucanNy and H. L. Gray.
R. G. HART defines in [14] the function

00
< e"’fe*‘2 dt <

ile‘)

e (1 4 ba%)13/(1 4 ax?)
Plx) =— (1 " Pox + (Pi® 4 exp (—#%/2) (1 + ba?)12[(1 + ax?))m)’

where Py = |/71J2, a =5 (1 + (1 — 2n2 4 6m)'?), b — 2aa®, showing
that it has a number of properties in common with F (x) = f e” P12 dt:

1° For all real x, P is real, positive and finite.

2° For all real x, dP/dx is real, negative and finite.

3° For all real x, P(x) + P(—x) = (2m)'2.

42 As x — 0, P(x) > (z/2)12

h° As x — 0, dPjdx — —1.

6° As x - + oo, P— 0 and x exp(x2/2) P(x) — 1.

7 As x —> 4 oo, dP[dx — 0 and (d/d (x7?)) (x exp (x2/2) P{x)) > — 1.

Moreover, it was shown that functions P and F have approximately equal
values for a number of values of x.

12*
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W. R. ScHUcAaNY and H. L. Gray [15] defined the function £ by a
simpler expression

E _ xexp(—a%[2) % 4 6a1 — 1457 — 28
(x) = %2 4+ 2 4% 4 Bt — 2042 — ¥

Properties analogous to 1°, 2°, 6° and 7° hold for all x > 2.

E (x) is a better approximation than P (x), but unfortunately it is not
certain whether it holds for x < 2 (while P(x) approximates F (x) for all
real values of x).

The following results are also related to MiLLs’ ratio:

1° Define I,, by the following expression [16]
+ o0
I, =fx”‘e"”‘”2 dx for m=0,1,... and n=1,2, ...
0

Then the following inequality holds
I,.>1,.
2° For all x > 0, we have [17], p. 229,

ﬂx 2 2 2
e [ dt-_<_—g;(1—-e”").
o

Remark. In Statistics the function R is named after J. P. MiLLs who has conside-
red it for the first time in [18]. In the literature the name MILLS is often wrongly
used as MiLrL. For this information we are obliged to R. F. Tatg, Z. W, BIRNBAUM
and C.L. MALLOwS.
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2.27 Stirling’s Formula

We start with the expansion

1 1 1 1
log-1%:2(x+?x3+?x5+7x7 4 ),

which holds if ~1 < x << +1.

l.e.,

For x = 2—14—1+T with # a positive integer, we get
1 1 1 1 1
log(n + 1) =log n + (35 + 5 i T 5 @i ),
1 1 1 1 1 1
(r+)os(L+3) =1+ 5 e+ 5 e
Since
1 1 1 1
B W L e
1 1 1
<1+?((2n+1)2+(2n+ 1)4+"')
- 1 1
- 12 n(n + 1)

we obtain

(2)

o
-3
+
e
S
p—
o
xx
Ve
[,
+
SI-—
s’
A
k.
+
=
(3]
3]'—
I
p—
[
=
4+ =
-
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On the other hand, we have

1 1 11 11
(n o+ 3) e (1) > 14 5 gt 5 @
1 1 »
T o @t T
=1 1 1 1
o +_3_(2n+1)21_1-m1#
5/3 (2n + 1)2
12
=¥ T s 5 14
12
> 1+ a5 4 150m T a0j16 (n=2)
1 1
=t T e 1A

Se we have proved that

(=Y

1 1 1
B (re ) log (1) > 1 i~ g 2

If » > 2 from (2) and (3) we get

1 1 1\n+1/2
) ¢ eXp(mn Yy TY P 1/4)< (1 + Z)

1 1
< ecexp (Tm T 12+ 1))'

Let us now consider the sequence (a,) of positive numbers

a, — ;’%1;1”72 (n>2).
Since
(5) a:; :ei(l +;t—)n+”2,
we obtain from (4) that
1 1 a, 1 1
exXp (1214 14 12(n + 1) %”1/?) S, P (1"2‘2 T 12 Tﬁ)

It follows that

1 1
Dnr1 eXP(_ 1200 & 1) + 1/4) < % eXP(_ 120 + 1/_4)

and

Using
1< (n + %) log(l + —:,—), ie., e< (1 + —1—)"”/2,

n
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183
we get the inequality

1 1 \#n+1/2
t<(t+)7
According to () this leads to

1<

le.,, a,,,<a,.
a’nJrl

The sequence of positive numbers a4, exp(u 17;1) is monotonely
increasing and

212
anexp( )<a Ly < < g

The sequence of positive numbers a, exp(

— m) 1$ monotone-
ly decreasing and

1 1
4, > 4, exp(— m> > 1 o0 (= g5, 1/4)
ie.,

1 21 ¢®
Ay 1 exp(— Eﬁm) <<y <<y
Consequently, we have

. 1 . 1
Jim [a e (=g, - ya)] = lm [anexe (= 5,,)] = lim e, o
where ¢ is a finite positive constant which has to be determined

We shall use WALLIS® formula

nsto0 (20)! Y '
By setting n! = ane””n”ﬂfz, we find that
1' 22n ai n2n+18—2n 1 ai a
m = lim - — = lim = = .
1/ R 00 (2n)2"+1/2a2n3_2” Vn n—>+00 @y, V2 V2
Hence, we have proved that
1 o i
a, eXp (— Eﬁ) <a=V)2%< a,, exp (— _12;:Pl_l4>'
Further, we obtain
nte" e e” 1
W@XP( ) <V < i GXP(— T 1)
ATy [ gt

n!e" CXP 12”> V2n = Tl “*P 12n + 1/4°
1 o 1

{ s 2ann"e " ex Mo~ R axD oo .

(13) | pnte “exp o, n ”4<n1<],/27mne exp 13-
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These inequalities hold for n > 2.
The asymptotic formula

(7) nl~V 2mnnre "

is due to J. STIRLING (1764).
CeEsArRO-BUCHNER's inequalities (6) (cf. [1] — [d]) are more accurate
than (7) since they give also lower and upper bounds of »!.
The lower bound can be improved, as follows
V 2men nre~

"exD
eXP o oo < (m=3).

H. Rossins (cf. [6] and [7]) in 1955 proved that

o 1 o 1
n, -n ' " ,—n -
]/27m ne T eXp 5 iy < nl < l/2:m nie" exp o -
However, these bounds are weaker than those found by P. BucaNER which
were published in 1951.
In a recent paper, P. R. BEEsAcK [14] used the method of CESARoO,
given above, but carried one additional term in the expansion leading to

(2) and (3) to obtain the improved estimates

/__ n.—n 1 I ! o n_ —H 1 ___ilgu _,)
V 2mn n”e exp(m 360n3) <! < ]/27mn e " exp (12—” ~ 3801y )03)’
where y, = 30(n(n 4+ 1) 4 1)/n®{n 4 1)%

W. FELLER [7] mentioned the following asymptotic formulas

— 1/2
nl~Von (n + %)H / e "2

— 1 1
nl~V 2mn n exp(—n + o~ seeE + ),

and the inequalities
Vé; (n n %)n+1/26ﬁ(n+1/2)-(1/24)(n+1/2)< nl< V%(” 4 %)n+1/26_(”+1/2).

Concerning STIRLING's formula there exists an extensive literature.
See, in particular, papers [8]—[13].

Refevences

1. CesAro, E.: Elementares Lehrbuch der algebraischen Analysis und der Infini-
tesimalrechnung. Leipzig 1922, p. 154.

2. BucHNER, P.: Bemerkungen zur Stirlingschen Formel. Elem., Math. 6, §—11
(1951).

3. VoeLLmY, E.: Fuinfstellige Logarithmen- und Zahlentafeln, bearb. von P. BucH

NER. 12. Aufl,, Zarich 1958, p. 134.

DarMots, G.: Statistique mathématique. Paris 1928, pp. 315—317.

5. UsPENsSKY, J. V.: Introduction to Mathematical Probability. New York 1937,
p. 3582.
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3. Particular Inequalities

In Part 3 a large number of inequalities, more or less elementary, are included
and roughly classified according to the subject matter. A few of these inequalities
could also have been incorporated in two or more sections of this Part. All these
inequalities can play a certain role in Pure and Applied Mathematics in the proofs
of various theorems, or in some other ways.

While in the most cases proofs are omitted because of the lack of space, a very
ample bibliography is given as a rule.

Notice that in the references which are cited after almost every inequality,
besides the given results there are also other interesting inequalities, but owing to
the lack of space they could not be included here.

In the books listed at the end of the Preface and below, other inequalities which
do not appear in this Part can also be found.

References

1. PérvaA, G., and G. SzeGc6: Aufgaben und Lehrsatze aus der Analysis, vol. 1.
Berlin 1925.
2. KryzHanovskif, D. A.: Elements of the Theory of Inequalities (Russian).
Moscow-Leningrad 1936.
. Neviazuskil, G. L.: Inequalities {IRussian). Moscow 1947.
4. OSTROWSKI, A.: Vorlesungen iiber Differential- und Integralrechnung, vol. 2.
Basel 1951.
5. Korovkin, P, P.: Inequalities (Russian}, Moscow-Leningrad 1952,
6. Korovkin, P. P.: Ungleichungen. Berlin 1954.
7. OsTROWSKI, A.: Vorlesungen iiber Differential- und Integralrechnung, vol. 3.
Basel-Stuttgart 1954.
8. Mrrrivovié, D. S.: VaZnije nejednakosti. Beograd 1958.
9. KazariNoFF, N. D.: Analytic Tnequalities. New York 1961.
10. MitriNovié, D. 8., and D. MianarLovié: Linearna algebra, analititka geo-
metrija i polinomi. 2nd ed., Beograd 1962. — See, in particular, pp. 423 —
472,
11. Mrrrivovié, D. S,: Zbornik matemati¢kih problema, vol. 1. 3rd ed., Beograd
1962. — See, in particular, pp. 295 — 368.
12. OsTrOWSKI, A.: Aufgabensammlung zur Infinitesimalrechnung, vol. 1. Basel-
Stuttgart 1964.
13. K£sepi, F.: Inequalities (Hungarian). Budapest 1965.
14. Sivasinskii, I. H.: Inequalities in Exercises (Russian). Moscow 1967,
15. MaNoLov, S. P., and K. Docev: Inequalities (Bulgarian). Sofia 1967.

o2

Throughout Part 3 we adopt the following abbreviations:
HarpY, LITTLEW0oOD, P6LY A for [1] from the Preface,
OstrOWwsKI1 1 for [12],
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OsTROWSKI 2 foT [4],
OsTtrOwsKI 3 for [7],
Mitrinovi¢ 1 for [10] from the Preface,
MitriNovi¢ 2 for [12] from the Preface.

3.1 Inequalities Involving Functions of Discrete Variables

3.1.1 Let a, b, 7, s and #n denote positive integers. Let, furthermore,

By =1+5++,  g@) =ha) —h().
Then,

a a
1 1
0< ()~ @) <t— ',
0<g@—g@<——L it r<s,

Reference

LamBEK, J.,and L. MosERr: Rational analogues of the logarithm function. Math.
Gaz. 40, 5—17 (1956).

3.1.2 Let # > 1 denote a natural number. Then

10g(n+1)<1+-;—+ -|—%<1+logn.

Refevence

ScuLoMILcH, O., and H. LEMoNNIER: Problem 455. Nouv. Ann., Math. 18, 68
and 151 (1859).

1 1 1
3.1.3 Ifsn:—l"-}—?%— —{——%-, then
C<S,+8,—8,<1,

where C is EULER’s constant.

Reference »
SanpHaM, H. F.: Problem E 819. Amer. Math. Monthly 55, 317 (1948).

3.1.4 If a fixed real number @ and a natural number % satisfy the condi-
tions :

0<a<1l and k>>T4

1—a’
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then the following inequality holds for every natural number #:

+o > 1 +a.

*+n+1 nk — 1

Proof. Denote by S, (n) the expression on the left side of the last inequa-
lity. Using the well-known inequality

__|_ Lo % +b (a,b> 0 and a 7% b),
we get
25.&(”):(%+nk1——1)_i;(n:—1+nk1—2)+“'+(’Ek—1:_i+;lz—)
> n{k — l)n(k +4-1) 1= kj_(k1ili/n
>4}£k+——11m)- )

The stated inequality holds for every natural number # if

2(k — 1)
E41

>1+a, ie, k>7"% (0<a<l).

Refevence

Kirov, G.: Problem 3. Matematika (Sofia) 1968, No. 5, 35 — 36.

3.15 Forn =1, 2, ..., we have

1 1 7T 1
e T A i Sy S T Tt
1 n B1 1
FyPEEE T kzzl( 1) log2¥< T

Reference

KazariNoFF, D. K.: A simple derivation of the Leibniz-Gregory series for s/4.
Amer. Math. Monthly 62, 726 — 727 (1955).

3.1.6 Let n, $ and ¢ be positive integers and ¢ > . Let

an gn+1
S ( Z and Sn(p) Q) = Z e
ket " _ kepmi1F

D. D. Apamovi¢ and M. R. Taskovi¢ [1] have proved the following:
1. For any two fixed natural numbers p and ¢ (> p), sequence
s, (p, g} 1s strictly increasing, and therefore,

ammSamm<m%,

where n = 1, 2, ... The above bounds are the best possible.
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2. Let p and ¢ (> #) be fixed natural numbers.
1°Tig< —p andp+2a+1orgakba+bl@=23,...;6=12),

then the sequence S, (p, ¢) is monotonely decreasing, and

log £ < S, ) <Si(p9)  (r=1,2,..),

wheré the above bounds are the best possible.
2° If ¢ > 3p, then S, (p, ¢) is monotonely increasing. In this case

Sl(p’Q)SSn(P’Q)<log% (n:1:2)"'):

and those bounds are the best possible,

3° For all other values of $ and ¢, S, (p, ¢)is strictly decreasing if »
is large enough.

R.P. Lu¢i¢é and D. Z. Dyoxovié, independently from the above
results, have earlier proved the following:

5 o = 37
i
Putting
1 1 1 1
S”_3n+1+3n+“2+.”+51—a+5n—|-1'
we get
1 1 1 1 1
S”—_S””H:Im-{—l+3n+2+3n—|—3_5n+2_5n+3
1 o 1 o 1
T bu-+4 bu-+b bn-+6

L Ps (n) i
1580 - 1) Bn + 2) (n - 1) (5u - 2) (bn - 3) (bn + 4) (5n + 6)’
where Py (n) is a polynomial in # of degree b with all coefficients positive.
Hence, S, >> S, ,; foralln =1, 2, ... Hence,
lim S, < S, <S,.

n—-+00

It 1s easy to show that

37 . 5
51:6_0’ n_lirfoosn_logg,
which completes the proof of (1).
Thisis in agreement with the cited results of Abpamovi¢ and Taskovi€.
Statement 2° does not give an answer to the question of the best possi-

ble bounds of S, (p, ¢), for the following cases:
5
10 _;)_p < q < 3pr
Xp-2at l,g=ha+bla=223..06=1,2).
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However, guided by the statement 3° of 2, and some particular check-
ing, ApaMovi¢ and TaskovIC have conjectured that S, (p, ¢) is strictly
decreasing in those cases also.

Remayk. The above result is an answer to a problem proposed by D. S. MiTriNoviIE

21.

Refervences

1. Apamovié, D. D, and M. R. Taskovi¢: Monotony and the best possible bounds
of some sequences of sums. Univ. Beograd. Publ. Elektrotehn. Fak. Ser.
Mat. Fiz. No. 247 —273, 41 —50 (1969).

2. MitriNovié, D. S.: Problem 108. Mat. Vesnik 4 (19), 338 (1967).

3.1.7 If » > 1is a natural number, then

11 2n 11

1
" 2n+1<k§1k_2<n—1 2n

Proof. Since

and

EE—1) k—1 k° EkE+L E  E+1°

we obtain, for » > 1,

2n 2n 2n
1 1 1 1 _ 1 1 1 1
n—1 2n (k 1”?)>an2/kzn(F k_"+—)_? 2 + 1

3.1.8 For any positive integer #,
Lot
k=n k2 n — _1.; .
2
Reference

OsTROWSKI 1, p. 39.

3.19 If m and # are natural numbers, then
1 1 4
m - n 41 (m+ 1) (n 4+ 1)

flm, n)=
Proof. We have
L) =fLY=fE)=1<
For 2 =m 4 n + 2 > 6, we have

4
45°

1 4
f(m.")f.,;—__—*l"—;ﬁ,
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since
1 4
m 1) (n 1) = (m - n - 2)2°

with equality only if m = n.

4
— 1s decreasing for £ > 6, we have

Since the function 2+ 1 %

f(m, n) 5415.

Remark. This inequality is due to G. GrRUss and the above proof can be found in:
E.Lanpau: Uber einige Ungleichungen von Herrn G. Griiss. Math, Z. 39, 742—744
(1935).

3.1.10 Let fp and g be positive integers. Let there hold an inequality
n+1
between p/g and ]/2 where n is a positive integer. The sign of this

inequality reverses if p/q is replaced by

A Rl S o
T R A

n+1

and this expression 1s a better approximation of ]/P_jchan plq.

Reference
Kfsepy, F.: Inequalities (Hungarian). Budapest 1965, pp. 34—35.

3111 Ifry, ..., 7 are_positive integers then
k

+151

where equality holds if and only 1f k << 2 and either 7, or 7, is equal to 1.

Reference

Mixc, H.: Upper bounds for permanents of (0, 1)-matrices. Bull. Amer. Math.
Soc. 69, 789 —791 (1963).

3.1.12 If » > 1 is a positive integer, then

(1) 21/n+1——2<2k<2]/n—1

k=1

Proof. The first inequality in (1) follows from

n n

v L 2 oS (VEa1-VE)—oVn 1o
k‘:1|/k>k§1‘l/k+l/k+1 gl(]/+ VR)=2Vn +

The function x +— 1/]/; is strictly decreasing on [1, #]. Therefore

H

L_1+§Vi 1+fo 2 n — 1,

i1V

which we had to prove.



192 3. Particular Inequalities

Remark. T.NaceLL and W. LJjUuNGGREN in Norsk. Mat. Tidsskr. 7, 106 —107
(1925), have proved that

— 1 LA |
2Vn—2+ < <2]/n n>1),

=0
which follows from (1). Indeed,
noy 1 n— 1 i
§ Vi T Vn T
n (1

Applying the first inequality in (1) with » — 1 instead of #, we get

ké 1/% > 17% +2)n—2

3.1.13 Let » be a positive integer. Then

(1) Cn—1)" + 2n)" < 2n + 1) for n > 2;

(2) (2n 4 2" — ()" < 2(2m + 1f*sinh o for m > 4
(3) 2n)" + 2n + )" > 2n + 2)"  for 1 <n<15.

Reference

FrYE, C. M.: Problem E 1624. Amer. Math. Monthly 70, 891 (1963) and 71,
683 (1964).

Remark. For the proofs of (2) and (3), see MiTrIiNOVIC 2, pp. 236 — 237.

3.1.14 If » > 2 is an integer, then

w? < nl < (n ;_ 1)n.

Reference
CaucHvy, A.: Exercices d’analyse, vol. 4. Paris 1847, p. 106.
3.1.15 If » > 11is a natural number, then
> 2n— D1 and  (n = 1" > (2)1).

3.1.16 If » is a natural number, then [1]

. 1/ 54 _(@n—1)!1 _ 1/ 3/4
1 V‘ </
() 4n—|-1£ @n)!l — V¥ 2r +1
Remark. For n = 1, 2, ... the following WaLL1s’ inequalities hold
1 (2n —1)!! 1

== <{ < =,
Vam + 1/2) (2m)!! Van
which are stronger than (1) except for certain first values of «.
D. K. KazariNoFF [2] demonstrated the following improved inequalities

o < (2n — 1)!' 1
l/n (m -{——1/2) {2m) 1! V.'E (n l/4)
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References

1. RanxkiN, R. A.: Introduction to Mathematical Analysis. Oxford-ILondon-New
York-Paris 1963, p. 13.

2. KazariNoFF, D. K.: On Wallis’ formula. Edinburgh Math. Notes 40, 19—21
(1956).

3.1.17 1f » > 1 is an integer, then

() > ot

3.1.18 If » > 2 is an integer, then
2041 (2m)! > ((m + D).
3.1.19 If » > 2 is an integer, then

'I’l' < 2u(n—1)/2.

3.1.20 For arbitrary integer # >> 2 we have

n

R24+1 1 1
S i<
pooks — 1 RLE 2

3.1.21 If # is a natural number > 3, then

211 nﬂ'

— =< g1,
n n!

3.1.22 Let # > 3 be a fixed natural number. Then

w>al, w" >all, L,
< nll, " < alll ..,
where n!l = (n1)], n!1! = ((»!)1)!, ... and where n*" —=nl") |

Reference

TrorpPE, E., and F. RicumanN: Problem E 1860. Amer. Math, Monthly 74,
862 —863 (1967).

323 If x, =x(x — 1) - (x —7 4+ 1) (r is a natural number) and
Xy = 1, then
(1) (2% - 1)11,»1 (2"’ - 3)11—2 v > Ry B3 7"

where products on the both sides extend over all nonnegative indices
of the same parity as # — 1 and » > 1.

A proof of (1), due to S, B. PRESIE, is given in: MitriNovIE 1, pp. 84 —85.
18  Mitrinovié, tnequalities
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3.1.24 If » > 11is an integer, then
nlogn — n < log n! <(n —|--%)logn —n 4+ 1.

(1)
For the proof of (1) see: MiTRINOVIC 1, pp. 8587,
3.1.25 Let 7 be an integer greater than 1 and put f(#) = (). Then
flr+1)
1 1<
(1) <=7 <1 +
and
flr + 1) fr)
(e — > 1.
i VT o>
Inequalities (1) also hold for » = 1.
If i, 75, ..., 7, are integers greater than 1 and s <7, (k=1,..., s},
then

) 1 5 f( k)
< l l

kglf("k ~ 1) 7 fe—
with equality if and only if s = v, = -+ = 7.

Reference

Minc, H., and L. SATHRE: Some inequalities involving (1’!)1/ ’. Proc. Edinburgh
Math. Soc. (2) 14, 41— 46 (1964/65).

3.1.26 1f » — 1, p, g are nonnegative integers, with p + ¢ < 10, then

< (n + 1)ﬁ+q+1.

ptg+l)! Z’kw—k)

1)p+q+1<( a2

(n —

Refervence
AcosTINI, A, Rileggendo la ‘‘Geometria speciosa” di Pietro Mengoli. Periodico
Mat. (4) 20, 313—327 (1940). — See also Review by J. E. HoFmaN in Jahr-

buch iiber die Fortschritte der Mathematik 66, 16 (1940)
3.1.27 Let #n be a given natural number and let #,, ..., 5, € {0, 1,2, .. .},
+ n, = n. Then
#nylmgleeeomy! <i
201 @) 1+ (2ny)! = o7

with #y + -+

Reference
KuiNTCHINE, A.: Uber dyadische Britche. Math. Z. 18, 109—116 (1923)

3.1.28 If » > 2 1is a natural number, then
22" 2n\ _ (2n + 2)"
(1) n‘+1<(n)<'(n+1)! ‘
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If » > 2 is an integer and if ¢ is a positive number, then

T < (1) < h ey,

. _nm +1)
w1thr——2a +n

Refervence

Barto0§, P., and S. ZNAM: On symmetric and cyclic means of positive num-
bers. Mat.-Fyz. Casopis Sloven. Akad. Vied. 16, 291---298 (1966).

Remayrk. For a stronger inequality than the first in (1), see 3.1.29,

3.1.29 For natural numbers # > 1 we have
2’n) 4"
> -,
('” 2 ]/n

Sierprikski, W.: Elementary Theory of Numbers. Warszawa 1964, p. 132.

Reference ) 3

3.1.30 If #» and & (k << n) are positive integers, then

(:)Skk(n f B R

This result, due to N. AsLunp [1], is generalized by G. KaLaypzié
in the following form: '
Let £ be a positive integer and « a real number such that a > k. Then

a

(1) (:)gbkk( 4 with b= (1 + 1/R),

a — k)ﬂ—k 4

G. KaLaypzié proved (1) using induction and monotony of (1 + 1/&).

Reference

1. Asiunp, N.: The fundamental theorems of information theory II. Nord.
Mat. Tidskr. 9, 105 (1961).

3.1.31 Let # > 13 be a positive integer and 2 = 2, ..., n — 2. Then
(m+ 1P <n(n+1—4k2*1,

n ( :) < 21—u+nkfk’.

Reference

Moon, J. W., and L. MosgR: Almost all tournaments are irreducible, Canad.
Math. Bull. 5, 61 —65 (1962).

3.1.32 If #» and » are natural numbers with # > » > 2, then
1 1 ”n —r 1
1T 2 < o) <(r)" <3

13¢
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Refevence

MacDowaLp, j. K. L.: Elementary rigorous treatment of the exponential limit,
Amer. Math. Monthly 47, 157 — 159 (1940).

3.1.33 Let » > 0 and let # be a natural number. Denote

= 1 "
) L “kg:)wk+1(k)‘
Then
2"t _ 4 2t +l _ 4 ¢ _
(1) 1 —<I,,n<y(n+? or 0<r<<1l and #n>1;
(2) =200 o >
1,n n 4 1 =
oM ontl _ ‘
(3) < I,,,,,L<~;2 1 for 1<r<2 and nZ=3;
(4) ﬁfi <lI,,< 2 for »>2 and #2>2
r(n + 1) T T an—1 = =

The second inequality in (3) is valid also for » = 1 and #» = 2. The
first inequality in (4) holds also for n = 1.
If » >0, then

and this bound is the best possible.

The above results are an answer by M. R. Taskovi¢ to a problem by D. S. M1-
TRINOVIC, See: Problem 94, Mat. Vesnik 6 (21), 89— 90 (1969).
Concerning the inequalities

7 h

2
? < I2,n <

for n > 3,
n—1

see H. W. Smith and J. BarLaz: Problem 4378, Amer. Math. Monthly 58, 498 — 499
(1951).

3.1.34 If x, y, z denote real numbers and # a natural number, such that
A" 4 y" = 2", then

0<()=(G)-C)<C2h):
Refevence

LeExo, T.: Problem 201. Glasnik Mat.-Fiz. Astronom, Ser. II, Drustvo Mat.-
Fiz. Hrvatske 12, 229231 (1957).

3.1.35 Let # and % (# > &) be natural numbers, and let

000 =Y o () (20
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then
111
Q(n k) 12n+1/4 12k 12(n— k)<( )
and
B 1
(:)<Q(ﬂ, ) ei2n 12E41L 12—k 1174
Reference

BucHNER, P.: Bemerkungen zur Stirlingschen Formel. Elem. Math, 6, 8—11
(1951).

3.1.36 If » denotes a natural number, then
2"-1(%)1/2 < i @r — )12,
pmg VR

3.1.37 If m and # are nonnegative integers and a > 0, then

mi“(z’”,’”)(m—k-{—a)(n—-k—l-“)(k_zmz)z 0.

Py m — k n — k

Reference

LoreNTZ, G. G., and K. ZELLER: Abschnittslimitierbarkeit und der Satz von
Hardy-Bohr. Arch. Math. (Basel) 15, 208—213 (1964).

3.1.38 If m and # are positive integers, then
n—1
n—-ifm +n—1 g+ k nm-J,-n-—l)
2 (n—l )<kf_§;2(k)<2(n—1 )

Reference

Maxar, E.: The first main theorem of P, TurAn. Acta Math. Acad. Sci. Hung.
10, 405 —411 (1959).

3.1.39 Letay, ..., a, and by, ..., b,, be positive integers such that b, < a;
(¢ =1,...,m). Then

(1 o<g(;;)s(g),

where 4 = Ya,and B = Y'b,.

i=1 i=1

Proof. By comparing the coefficients of % in the expansion

(14 54 = H(l x)a,-=ﬁ[1+( )x—l— -|-( )x¢+...+x“i?‘,

fm1 i=1

we conclude that (1) is true,
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Remark. A. MobRr gave, without proof, the generalized inequalities

m P\ [ A* m (@ AT\
o< M (o)) < () o<di(s)<(5)"

I3 13 )

m m
where », p, g, (i = 1,...,m), A*= Z; pa, B* = 2; g,b, are positive integers,
1= q==

A and B being the numbers defined above.

References

Bareiss, E., and F. GoLpNER: Problem 132. Elem. Math, 7, 117 {1952).
Mo6R, A.: Problem 132. Elem. Math. 7, 117 (1952).

3.2 Inequalities Involving Algebraic Functions

3.2.1 If a == 1 is real, then

(1+a+ a®)? << 3(1 +a%+ a%).
3.2.2 1f a, b, ¢ are real numbers, then

(@ 4+ b+ ¢ + x)2 > 8(ac + bx)
forall x,if and onlyifa > b >c,ora<<b<c.

3.2.3 For every natural number # and 0 < x < 1,

1
22ﬂ—§ .

xn—l(l . x)n S
Refervence

OsTROWSKI 3, p. 95.
3.2.4 If » is a natural number and a > 0, then
(l+a2 +oee + a2'n£n(a2n+1 + 1)-
325 1f 0 < x <1, then

n

JI(1—5#)=1—x+ g

k=0

3.2.6 For any natural numbers # and $ and 0 << x << #, we have
[ 1= 1P (5 — 2P e (r— m)? | < ()P,
Reference

OsTrROWSKI 3, p. 95.

327 1t

%t — 2mx | P2
(1) y_x’+2mx+p"
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then, for all real x,

. (p—m P+ (P = +
(2) m1n(P+m,P_Z)<y§ ax(erZ._g—_“%) (0 < |m| < Ip)),

p—m ptm A i
(3)y<m1n(p+ jb_m),oryzmax(lber,P_m) (0<<|p|<|m)).

Proof. 1f m = 0, then y = 1. Suppose that m == 0 and write (1) in the
form

(v — 1) 224 2m(y + 1) x + p2(y — 1) = 0.

A necessary and sufficient condition that the roots of this equation
in x be real is
(m? — p%) y2 + 2(m? + Py + m? — p2 = 0.
We suppose also that |m| == |p|. First, we have
(m? — p7) y2 + 2(m? + p%) y + mP — p2 = (m® — p%) (y — ) (¥ — %),
where

p—m p+m
p+m’ ‘

If mp > 0 and 0 < [m| < |p|, then

Y=

P —m P+ m
<y << .
p-}—m_y‘—p—m

If mp < 0and 0 < |m| < [p], then

P+ m P —m
<y < .
p—m“‘y‘”p—}—m

If mp > 0 and 0 < |p] < lm|, then

P+ m p—m
y<EER or y22on
If mp << 0 and 0 < |p| < |m/|, then
p—m p+m
ygﬁﬁ; or yZp—m'

This proves (2) and (3).

3.2.8 If a = cos &, ¢ = sin &, b% = sin 2x (0 << « < z/4), then

ax® 4- bx + ¢
cx? + bx + a

329 If 0 & kn (k = 0, +1, +2, ...), then, for all real x

(secx — 1) (cosecx + 1) < < (sec & + 1) (cosec x — 1).

x2cos @ — 2x 4 cos 6

—1= W — 2rcos @ + 1

< +1.
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3.2.10 Let a 4 & = 2nn (n integer) and

_ ¥~ 2ycosa+ 1
y—x’——.‘axcosb-l— 1°

If sin b = 0 (b = k), then

5[+ (—1)* cos a] <y < + oo,
If sin & == 0, then

1 -cosa 14 cosa
1 —cosb’ 1+ cosb

min( )Sygmax(l—cosa 1—}—cosa,).

1—cosb’ 1 Jcosbh

3.2.11 Let x > 0, x & 1 and let # be a positive integer. Then

x —1

(1) s sm izl
) x ¥ —1

Proof. We can transform (1) into

@) ("1 4 1) (»" — 1)

*x —1
The identity

1) G —1)
xr—1

> 9nx",

— (xn+1 + ]) (xn—l + xn—2 + + 1)

/[ < 1
=" (xh + -;)
k=1 ¥
together with x* + — > 2, implies (2).
X

Remark. This proof is due to R. Z. DJoRDJEVIE.

Refevence

Beck, I.: Problem 224. Nord. Mat. Tidskr. 10, 96 (1962).

3.2.12 If » is natural number and 0 << x < 1, then

1 < ];i—_ ,nxn—f-l

T 1) A"

<14+ 21—
2x

This result is due to V. I. LEVIN.

3.2.13 For all integral values of # and »r with# > 1, 0 << » < #, and for
all values of x with 0 << x << 1, the following inequality holds:

()ra—apr< -t

4 2enx (1 —x

)112' .
Refervence

HERzog, F.: Problem 4186. Amer. Math. Monthly 54, 485 — 486 (1947),
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3.2.14 If x > 0, then
2
(1) Viga>1+ L2,
If x> —1, then
) Vitx<1 3.

Proof. By TavLor’s formula

X

VI ¥ 2 —3/2
+ax=1+5—5(+0x (0<<b <,

so it follows immediately that (1) and (2) hold.

3.2.15 If x > 0, then

3
0<V1+x-—1 —%x+—é—x2<~85—1x3.

3.2.16 If —1 << x < 1 and # 1s a natural number, then

1+%—~n_1x2§l/1+x31+%.

In?

3.2.17 If n = 3 is an integer and x > —1/2, then

2 4 (1 + 2x)"2 < (x + 1),
3.2.18 For any real numbers a, b, c,

(bc + ca + ab)? = 3abc(a + b + ¢).
3219 Ifa, b,c > 0and a 3= b & ¢ &= a, then
at + 0+t > abc(a +b+0).

3.2.20 Let %, y, 2, #, v, w be real numbers. Then

24 y2 L2 —yz—zx — xy + u? 0?2 4 w?

u x 1

—vw —wu —w >3 vy 1|,

wzl‘

Proof. Let (u, x), (v, ¥) and (w, z) be three points determining a triangle
whose sides will be denoted by 4, b and ¢ and area by P. Then, the above
incquality is equivalent to

m B ooz sp.
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Of the triangles having a given perimeter a -+ & + ¢ == 3p, the equi-

lateral triangle has the maximum area —43— p2. Also, a® & b2 + 2 > 3p2,

unless @ = b = ¢ = p, in which case the two members are equal.
Hence, equality holds if the triangle ABC is equilateral.

Remark. Concerning (1) see 4.4 in book [17] cited at the end of Preface.

Reference

Langman, H., and F. Avyres: Problem 3315. Amer. Math. Monthly 36, 238
(1929).

3221 Ifa, , +a,. > 2a,forn=2,3,..., then

A, 1 +4,.,=24,,

forn = 2, 3, ..., where
ay + -+ a,
A = e

n

Reference

Ozexi, N.: On some inequalities (Japanese). J. College Arts Sci, Chiba Univ. 4,
No. 3, 211—214 (1965).

3222 Ifay > - >a, >0, then

(S (Z v 0n) o)

The above inequalities improve those of G. MANTELLINO.

and

Reference

Lovera, P.: Sopra alcune diseguaglianze che si presentano nella matematica
attuariale. Giorn. Ist. Ttal. Attuari 19, 131—139 (1956).

3.2.23 If a, b, c arc real numbers satisfying @ 4- 43 + ¢ = 0, then

(1) (Za2)® < (2(b — c)?) Za*.
Proof. If s, = 24", then
11 12 3 s s
A=(@—02*0—c)c—aP=ia b ¢ =5 S S
at b c? Sy Sg 341

= 5,(35; — 57) — Sg(3sg — ;5) + 52(5155 — 7).
Using
2@ —b)? =25, — 2¥ ab= 3s, — %,
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we get .
(X(a — b)) Za' — (Za®)® =5,(8s, — s7) — s

Since s3 = 0, we infer that

(X(a — b)Y Za* — (Za?P=4>0,
which proves (1).

Reference

LynEss, R. C., and L. Caruirz: Problem 4791. Amer. Math. Monthly 66, 241
(1959).

3.2.24 For all real numbers a;, &;, ¢; (1 = 1, 2),
(1) (ayby + aghy 4 bicy + byty + ¢1ag + @y — 2ay8; — 2b1by — 2¢yc,)?
< 4(af + bF + of — byoy — 12 — ayby) (f‘% + b5 4 65— byCy — Cafly — Aghy),

. , . . ] bl 2 a4y bl ‘
with equality holding if and only if 5 =0,

|
4|
azbz‘

Ca gy

.

2C2
Proof. The inequality
(@a— B2+ (b—c)® + (c—af >0,

which is valid for all real g, b, ¢, is equivalent to

(2) a2 + b2+ 2> bc + ca + ab,
with equality if and only if a = b = c.
Setting a = ay + ta,, b = b, + tby, ¢ = ¢4 + fc, (¢ Teal) in (2), we get
(@5 + B + 5 — byoy — Coty — ayby) 22
— (@165 + 50y + bycy + byey + cia, + coa; — 2aya, — 2biby — 20465) ¢
+ (@3 + b2 + & — bje, — cya — ayby) >0,

Since this inequality is valid for all real ¢, the discriminant of the
quadratic expression in f on the left side of the above inequality must be
nonpositive. This condition yields (1).

Reference
CogniTA, C,, and F. Turroiu: Collection of Problems in Algebra {Romanian).

Bucuresti 1965, pp. 172—173.

Generalization due to P, R. BEESACK. Beginning with

n
mn—1)Yai= 3 @+a)=>2 3 ag
i1 1<i<j<n 1<i<jsn
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for all real a,, by setting a; = b, + 7¢; and using the discriminant, one
can obtain

[ (n—1) Z”' > (bi-cj - cibj) ]2

1<i<j<n

g[(ﬂ——l)‘ﬁ'b%—226ibj][n——l 205—220 ]

i<j i<
valid for all real &;, ¢;.

3.2.25 Let a = (a,,...,a,) be a sequence of real numbers and & =
(b4, ..., b,) be a sequence of positive numbers. Then
.ﬂ
A

— a
(1) min E.'V—’i<k";1 < max —

2 b

k=1

1<k<n by 1<k<n by
Equality holds in both above inequalities if and only if the sequences
a and b are proportional.
These inequalities are called CAUCHYs.

a a
* k k -
Proof. If m == min +- and M = max;=, then we have successively
B O kP

ay
mg_gM:
by
mb, < a, < Mb,,

mZ‘b <Z’ak<MZbk,

k.__
Z“k
m<< k=1

. <M,
2 by
k=1

ie., (1).
Application. If ¥ > 0, then
14+ 2%+ -0 a1

1
—< < n,
n

n—-}—(n—l)x—{—---—]—x”—i

and
1 1+ 2% 1 e 1
1 t+wg +nx_1£1'
(N WA - PR P

All the bounds in the above inequalities are the best possible.

Reference
CAucHy, A.: Oeuvres complétes II, vol. 3. Paris 1897, pp. 368 —309.
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3.2.26 leta,, ..., a,and by, ..., b, be real numbers such that

a<a, <A and bgbigB (1::1,...,7@).
Then
n 1= » A
— (A —_ 1’1) (B -— b) -—2—] (1 — ;— T..)—]) §1221’a1b' — —;151‘ aizgl'bi’
7 1=
< (A —a) (B —b) -2-](1-_7 ?)
Reference

Biernacki, M., H. PiDeExk and C. RYLL-NARDZEWSKI! Sur une inégalité entre
des intégrales définies. Ann. Univ. Mariae Curie-Sklodowska A 4, 1—4 (1950).

3.2.27 If the real sequence a = (a,, 4, ..., @s,4.1) 15 convex, then

@) 4 A3 + " T A4y Gy T Gy Tttt Gy,

(1) S ,

n+1 7

with equality holding if and only if @ presents an arithmetic progression.

Proof. Since a 1s convex, we have
(2) @, — 2a,, 4 +a,,,=>0, fork=1,2,...,2n — 1.
In virtue of this, we conclude that for 2 =1,..., n,

B{n —k + 1) (ag,_y — 2ay, + “2k+1) =0
and

R(n — k) (@, — 2a5;, 1y -+ ag; ) = 0.

Adding these inequalities, we get (1).

In order that equality holds in (1), equality should hold in each of
inequalities (2), which will happen if and only if the sequence a is an
arithmetic progression.

Remark. (1) was proved by E. J. Nansox [1]. For a¢,= xk_l(k =1,2,...,2n + 1),
where x is a positive number, (1) becomes )
1+ wt b 442" pd

= i

x+x3+...+x2”f1 "

(3)

with equality if and only if ¥ = 1. For ¥ % 1, (3) is equivalent to

2n+2
x — 1 n 1
> + .

x (¥ — 1) n

(4)

As far as we know, inequalities (3) and (4) were first proposed as a problem by
J. M. WiLson [2]. After this, a number of proofs of (3) and (4) were given (see {2],
[3] and [4]), in spite of which, 80 years later they were again proposed in [5]. How-
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ever, sharper inequalities than (3) and (4) were alsc known from 1868: C, TAvLOR [6]
proved that, for » =1 and x > 0,

1+ bt 142" m — 1\
(8) ' 2—};—1 > +\Vr — =
¥ o Vi

and

(6)

R R 1n+1( 1)
- ¥+ =)
g4 T2 7

It would be interesting to try to obtain for the sequence a which appears in (1)
inequalities analogous to (5) and (6).

Refevences

1. NansoN, E. J.: An inequality. Messenger Math. 34, 89— 90 (1904).

2. WiLsoN, J. M.: Problem 1521, Educ. Times 3, 14— 15 (1865); 5, 98— 99 (1866);
6, 105 (1866).

3. IncLEBY, C. M.: An inequality. Oxford, Cambridge, Dublin Messenger Math. 3,
235 (1866).

4. SHARPE, J.: An inequality. Oxford, Cambridge, Dublin Messenger Math. 4,
123—125 (1868).

5. OrLps, C. D.: Problem E 1167. Amer. Math. Monthly 63, 43 (1956).

6. TavLor, C.: Problem 2426. Educ. Times 8, 58 — 59 (1868), and 10, 31 —32 (1868).

3228 If x; <x, ¢t < k) and vy, <y, (1 << k), or if x;, > x;, (¢t < k) and
vi = ¥ (¢ < k), then

D, <D, , with D = r Dxy, — ( va) (Zyv).
=1

v=1 v=1

Proof. We have

n " n
Dn+1 _ Dn = nyyv + nxn+1yn+1 — Yui1 va — Xpi1 Zyv
v=1 =1

v=1

I
M -

xv (y'u - yn+1) + xn+1 Z(yn+1 - yv)

v=1

<
fi
s

DM =

(%ps1 — %) (3’n+1 — ¥,) = 0.

I
—

v

Equality holds if and only if x; =x,,4 for 1€ I C{1,...,%} and
Yi=Yne1 for 1€ {1, ..., n}\I.

Remark. 1t x, < x,(6 < k) and y, >y, (i <k), orif ;> %, ({ <k) and y;, < y,
(¢ <C &), then the reversed inequality holds.
This proof is due to R. R. Janic.

3229 If a, > 0 (k= 1, ..., #n), then
) (z)( zi) .y
L)

A=1 =1 %
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Proof. Putting x, = ],/c;; =1 V&; in CAUCHY's inequality

(30 )=o)
()= {rm ) ()

- Equality holds in (1) if and only if all the a,’s are equal.

we get

Remark. This presents an other proof of the inequality 4 (a) > H,_ (a).

3.2.30 For any real numbers a, we have

(23] =(E#) ()

3.2.31 Ifa,, b, and ¢, (k =1, ..., n) are real numbers, then

(o] (39 (3934

Proof. Applying CAUCHY's inequality twice, we get

( S: (a,5) Ck)2 < (Z (“kbk)z) ( Zn;C%) ,

Therefore,

(oo (9 (39" (39),
(Seoe) =(34) (34 (39

which we had to prove.

3.2.32 For any real numbers g, and &, we have

(e =(2) (23)

3.2.33 For all natural numbers # and all real numbers a > 1,
Ll 4
'.Z‘:Hjl < 'Z‘:z']"
where 1 + j = n.

207
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Reference

LEwiN, M.: Aninequality and its application to a property of Mahler’s partition
functions. J. London Math. Soc. 43, 429-432 (1968).

3234 Ifa,> 0 (k=1,...,n)and [] a, — 4", then
| k=1 ‘

n

(1) T (L + a) = (1 + by

k=1

Proof. Since f(x} = log (1 + ¢*) is convex on (— oo, 4 oo©), we have
Slog(l + ¢ %) > nlog (1 + exp (—L Zxk)) .
k=1 " k=1
Replacing x, by loga, (k =1, ..., n), we get
logH + a,) >nlog (1 + ),

which 1s equivalent to (1).
Equality holds in (1) if and only if all the a;'s are equal.

3.2.35 In the case when all the factors are positive, inequality
tagag 2> [ ] (ay + a3 — a)) = (ay + a3 — ay) (a3 + ay — ap) (ay + a5, — ay)
holds.

If all the factors are positive, inequalities

ayx0qdy > [ [ (ag 4 ag + a, — 2ay),

ay - a, > H(“z + et a, — (n—2) ‘11)

also hold.

More precisely, the following can be stated in connection with the
Inequality
(1) al'”a1:2H(a2+”'+an_.—(n_2)a1)’
where a,, ..., a, > 0forn =3, 4,...:

1° If all the factors are nonnegative, (1) holds, and in this case
reduces to equality if and only if a; = a5 = -+ = a,,.

2° For # = 3, (1)’is valid without any restrictions, and reduces to
an equality if and only if a; = a4y = a,.

3° For each n = 4, 3, ... there exist (positive) 4,’s so that (1) does
not hold.
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Proof. Putting a,,,,, = a,, m=1,...,n — 1) and

(2) Gy T ot Ty, — =2 a,=x (k=1..n),
and assuming

(3) %, =0 (k=1,...,7),

it is easy to check that (2) implies '

4) ,w—n%=§%w (m=1,...,n),

with %,,,, =x,, m=1,...,n — 1). Using (3) and the arithmetic-

geometric mean inequality, we obtain
1

O He= 1 )z I (1)

m=1 =1 \r=%
= [[x,=1] (@5 +a;+ -+ a,— (n—2a).
m=1

Under condition (3), equality in (b) holds if and only if x; = x,
(k=2,...,n), i.e, according to (2) and (4) if and only if a;, = a, (¢ =
s eees R).

Let # == 3. The following inequalities

%, << 0, %<0 (1<r<<I<3),
with the notations already introduced, imply the inequality a,, << 0
(me {1, 2, 3}, m == k, 1), contrary to the hypothesis a,, a,, ag > 0. There-
fore, at most one factor on the right side of (1) may be negative which
implies both assertions in 2°,

Let » > 4. Suppose that (1) holds without any restrictions on
ay,...,8,>0.8¢eta;=a,=1,a3=a,=- = a,=¢> 0. Then

&E> (2 — )R (=7 + 3 4+ (n —2) 8)2 (e>0)
and when £ — 0,
0>2"2%(n—3°%>0,
which is impossible. Thus, assertion 3° is proved.

The above result, due to D. D. Apamovid, is an answer to Problem 46 proposed
by D. S, MiTriNovIC in Mat. Vesnik 3 (18), 218—220 (1966).

n

3.2.36 Let a,, ..., a, be positive numbers such that >’ a; = 1. Then

=1
a3 n—1 a 1 ay+ o+ oay n\ p_1
< - 1 >t m>k( )n .
‘.%: a,+a, — 4 Z‘a,--- a, — >3 accra, k
Equality in these inequalities holds if a; = - = a, = 1/n.

14 Mitrinovie, lucqualities
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Reference

Baicev, I., and M. PETkov: Problem 48. Fiz.-Mat. Spis., Sofia 5, 142143
(1962).

3.2.37 Let a,c (0, 1) for k=1, ..., n. Then .

(1) Ja—a)>1—Ya,
k=1 k=1
) (1+a) < ———
k=1 I —ay)
k=1

Ifa,c (0,1) fork=1,...,nand Xa, <1, then

k=1
(3) T +ay<—t—,
=l 1— Z“k
k=1
(4 IT0—a)< —-
kot 1+ Z“k

Combining the above inequalities (1), (2), (3), (4), with the same con-
ditions on the a,’s, we have

1 n n

n_>H(1+ak)>1+Zak,

{—3a F=t E=1
k=1

1

>ﬁ(1—dk)>1—2ndk-

k=1

All the above inequalities are usually called WEIERSTRASS' inequali-
ties.

Reference

BromwicH, T. J. I’a: An Introduction to Theory of Series. 2nd ed., London
1955, pp. 104—105.

3.2.38 If, for n > 2,

(1) Zx—i’ 2 X%, =q,

i<k
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then

—1 2
o Lrsi)fpo N
fori=1,..., n.

Proof. Starting with the obvious inequality >’ (x; — x;)2 > 0, we get
1<k

n

(3) (n—1) 3xF — 2¢>0.

i
i=1

Since, by (1), 3 x7 = p? — 2q¢, inequality (3) becomes
z=1

2n g > 0.

n—1+—

4 p* —

Writing equalities (1) in the form

(9) Xp oA g F Xy e X, =P — A,
(6) XiXg 4 oor A XXy g+ XXy o X 4%,

=g —%& + Xy F A+ X)) =9 — %00 — %),
then for equalities (0) and (6), inequality (4) also holds with ¢, ¢, »
replaced by p — «x;, ¢ — x,(p — x;), » — 1, respectively. So we get

(p — %)* — ‘““‘__:“2““‘ (g — p% + %) =0

ie.,
(7) na? — 2px, + 2(n — 1) g — $2(n — 2) < 0.

The discriminant of the quadratic polynomial in (7)

(n — 1) (1)2 n_ﬂ)

15 nonnegative according to (4).
Since all the x,'s are real, (7) implies (2).

Remark. This result is due to E. LAGUERRE. See also B. S. Mapuava Rao and
B. S. SasTry: On the limits for the roots of a polynomial equation. J. Mysore Univ,
1, 5—8 (1940).

3.2.39 If ¢y, c,, ¢cg are elementary symmetric functions of » real numbers

Xy, «.., X, of degrees 1, 2, 3 respectively, then
(8cg — ¢169)° o 1
2(ct — 2¢g) (26§ — Beyey) — n
Equality occurs if and only if all the x,, ..., x, are equal.

14*
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This inequality is equivalent to
2(n — 1) (Z03) (2Zn5x3 + Zadao%s) — n(Znix,)? = 0.

Reference

OBRECHKOFF, N.: Sur le théoréme de Hermite et Poulain. C. R. Acad. Sci. Paris
249, 21 —22 (1959).

3.240 Let a = (a4, ..., a,) be a sequence of positive numbers and

n
1 n
P, (a) —ig;rm: Qn(“)—ﬁ_m:
where G,(a) is geometric mean of a4, ..., 4,.

-1
Ifa,.--a,_y>1anda, > (a; -+ a,_)"**, then

(1) Pn(a) - Qn (d) = Pn—l(a) — Qw—l(a)‘

—1

Ifa,--a, ;< 1and aq, << (a;-a, )", the above inequality is
reversed.

By a repeated use of inequality (1) the following result can be ob-
tained: '

% 1

f]]a,>1anday, > (a4 - ay) ¥2(k=1,...,n — 1), then
i=1

(2) P, (a) = Q,(a).

1

k
I [Ja; <1 and ap., < (ay--ay) 2 (h=1, .
t=1

above inequality is reversed.

n — 1), the

ey

Remark. The inequalities (1) and (2) were proved by D. S. M1rriNovI¢ and P. M. Va-
sté [1].

Ifay,...,a >1(ra,...,a, < 1) P.HENRICI's inequality proved in [2] can
be obtained from the inequality (2).

For a generalization of (1) and (2) see the paper [3] of P. 5. BULLEN.

References

1. MitriNovié, D. S, and P. M. Vasi¢: Généralisation d’une inégalité de Henrici.
Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz, No. 210—228, 35—38
(1968).

2. Hewrict, P.: Problem 245. Elem. Math. 11, 112 (1956).

3. BuLLEN, P. S.: An inequality due to Henrici. Univ. Beograd. Publ. Elektro-
tehn. Fak. Ser. Mat. Fiz. No. 247 —-273, 21— 26 (1969).
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3.241 Ifa; (i = 1, ..., n) are positive numbers such that ¢, < --- <. a,,
< 1, then
A
(1 9 >1lp ),
A,@ +G,@" "

where 4, and G, are arithmetic and geometric means and P, () has the
same meaning as in 3.2.40.

Proof. Using the inequalities
4,(a) > G,(a) and G,(@)" " <G,(a)
(since a; < 1lforz =1, ..., n), we get

A4, (a) ~ 1 - 1
A, (@ +G,@" T 1+6G, @t T1+G,(a

and then by the inequalities of P. HENRICI (see 3.2.40), we get (1).

Reference

Aovagl, M, : Problem 5333, Amer. Math. Monthly 73, 1022 —1023 (1966).
Remark. The inequality (1) is also valid under weaker conditions for 4, namely

1

when 0 << ay < -+ < a, < -——— . See D.BoRwEINs proof of (1) in Amer. IMath.
n 1

Monthly 73, 1023 — 1024 (1966).

3242 If g, > 0 for k= 1,...,nand s = > g, then

k=1

1+ a,) gz%.

k=1

Proof. By the arithmetic-geometric mean inequality, we have °

iiu+aasﬁéli%y=(r+%f

=1 Fr(- D)0 E ST

3243 Leta, > 1 fork=1,..., % Then

n 2”

(1) I[(1+“k)2n+l(1+kéak)-

k=1
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Proof. If b, > 0 (k= 1, ..., n), then

I 214y Sh

w

T(t+9)=1+

k=1

1

ol

For b, = a; — 1, we have (1).

Reference

BruN, V., and G. ARFwEDsoN: Problem 180, Nord. Mat. Tidskr. 8, 48 (1960).

3.2.44 If »n is a nonnegative integer and x, > 0 for A =1,...,n 4 1,

then
141 1 n-1 1
> >n= [[ —>n"tl,
el B i 7" k=1 %k

Remark. This problem was proposed by ]J. BERkEs and the solution of C. BIND-
SCHEDLER was published in Elem, Math. 14, 132 (1959). However, that solution is
not simple,

3245 Ifx, > 0(k=1,...,n)and > (1 + )1 < 1, then 3)27* < 1.
k=1 k=1

Reference
WHITTAKER, J. V.: Problem 4712. Amer. Math. Monthly 64, 677 —678 (1957).

3.2.46 If » > 1is an integer and a4, > 0 for A = 1, ..., n, then

R=1 r—1 %
and
[ s n . n
Z SW:_ -d’- = — Wlth § = Z a,
E=1 kP k=1
References

TrzECIAKIEWICZ, L., and S. Tomaszczvk: Problem 537. Matematyka 11, 43
(1958), and 12, 296 —297 (1959).

Paascur, I., H. KuMmMeER and C. BLATTER: Problem 365. Elem. Math. 15,
138—139 (1960).

H
3.247 Let > x, = na, with x, ..., x, nonnegative. If £ > 1 is an inte-

1=1
ger, then
k x‘l’].,”x‘.l’n k+1
1 " k a
— <nm — 1) —,
(1) vlu%’:‘zo fyll tee v”! —_— ( )(k + 1)!

where >'v; = k& + 1.

i=ml
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Proof. The multinomial expansion can be written in the form

k nH!
® > BELl g
il ey 1 "

pytobr,=k4+1 1 "

k=v,>0 .

n E+1 n -
i=1 i=1
From the relations between means of different orders, we havefork > 1,

n " k41
(3) 0 3af™t —n (%i in) :
i=1

t=1

Since 3, x; = na, by adding (2) and (3) we get (1).

i=1

Inequality and proof of G. KaLajniié.

3.248 Let X'a% = 1, Yapx, = 0 and Y a2 > 0, then
=1 F—1 r=1

"

2 4

k=1

. 5 ;j‘ (a;b; — a;b)?
bx,| <° .
()

Reference

OsTROWSKI 2, p. 290.
3249 i x, > 0 (t = 1, ..., n), then
n 1 1 2
(3) 3 =4 2 )

1<i<j<n i) t<i<jsn i

Equality holds if and only if all x; are equal.

This inequality is due to D. D. Apamovié.

3.2.50 If 0 <« b << 4, then
1 (a—02 _a+t+bd
8 a = 2

(a — b)®

1
—Vab <5

3.2.51 1If a, b, ¢ are different real numbers, then
3min(a, b, ¢) < Za — (Za® — Zab)'® < Za + (Za® — Zab)'?.

< 3max(a,b,c),
where

Ja=a+b4c¢ Zat=a% + b% 4 Xab=ab 4 bc + ca.
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Proof. The function
f(x) = (x —a) (x — b) (x — ¢) = a3 — (Za) x® + (Zab) x — abc
vanishes at a, b, ¢. Its derivative f' (x) vanishes for those x which satisfy
3x% — 2(Xa) x + Zab= 0.

The roots of this equation lie between min(a, b, ¢) and max(a, b, c).
This is equivalent to the proposed inequalities.

Remark. This inequality was proposed by D. S. MitriNovi¢ in Nord. Mat. Tidskr.
9, 138—139 (1961). The published proof by J. LoHNE in this journal is more compli-
cated than the one given above.

3.2.52 Let a, b, ¢, d, ¢ and f be nonnegative real numbers which satisfy
(1) a+b<<e and c+d<f.
Then \
(ac)1/2 + (bd)1/2 S (ef)1/2.,

Since one may interchange ¢ and 4 in (1), another valid inequality is

(dd)llz s (b0)1/2 S (e]l)l,’Z‘

Proof. Multiplying the inequalities in (1), one obtains

ac + bd + (ad + be) < ef.

But
2(ad - be)'? < ad + b,
which means that

{(ac)'® + (bd)'P*)? = ac + bd + 2(ad - be)*?
< ac + bd + (ad + be) < ef.

Reference

Diaz, J. B,, and F. T. METcaLF: Complementary inequalities III. Math. Ann.
162, 120—-139 (1965). — See, in particular, p. 133.

3.2.53 Let a,, ..., a, (m < n) be real numbers. Then

;on 3 ” 2 n
i ey < ( 2 [“klalz) 2R
k=m E=m k=m

Reference

OsTROWSKI 2, p. 44,
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3.3 Inequalities Involving Polynomials

A lot has been written on bounds of the zeros of a polynomial. Various estimates
for polynomials of LEGENDRE, LAGUERRE, HerMITE, CEBY3EV and for other poly-
nomials arising in the Theory of Special Functions are also known. From all this, we
have only included here some results which seemed especially interesting to us.

In book [1] of G. SzEGY, [2] of M. MARDEN and [3] of A, . TiMAN one can find
almost all the more important inequalities related to the topics mentioned above.

These books contain a large number of references concerning the topics in question.
See also [4].

References

1. SzeG6, G.: Orthogonal Polynomials. Amer. Math. Soc. Coll. Publications,
vol. 23. Rev. ed., Providence 1959.
2. MARDEN, M.: Geometry of Polynomials. Amer. Math. Soc. Math. Surveys, vol. 3.
2nd ed., Providence 1966.
3. Tmman, A. F.: Theory of Approximation of Functions of a Real Variable. Ox-
ford-London-New York-Paris 1963.
. Dieubonn%, J.: Recherches sur quelques problémes relatifs aux polynomes et
aux fonctions bornées d’une variable complexe. Ann. Ecole Norm. Sup. (3)
48, 247—258 (1931).

>

3.3.1 If ax® + bx + ¢ is a polynomial with real coefficients and real
roots, then

(1) a—}—b—}—cg%max(a,b,c\).

This inequality is due to L. MoSER and J. R. Pouxper. J. D. Dixon
gave the following generalization of (1). ‘

For all real polynomials P(x) = a5 + a;% + .-+ 4+ a,x" of degree n,
with only real zeros, we have

a, +a; + -+ +a”§o¢”m§txak,

and
min g, << 8, max a,,
k k
where

RO re e O £
N

The constants «, and 3, are the best possible.

References

MoskeR, L., and J. R. Pounper: Problem 53. Canad. Math. Bull. 5, 70 (1962).
DixoN, J. D.: Polynomials with real roots. Canad. Math. Bull. 5, 259—263
(1962).
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3.3.2 Let x,, x4, x4 be roots of the equation
BApx+qg=0 (where $ and ¢ are real numbers)
and define 4 and D by

Nl'ﬁ-
g

. 2
d = min(|x; — %), |x5 — x|, |4, — %)), D 2% +

Then the following statements are valid:
1° If D < 0, then 2(—3D/[p|)'® < d < 3(—3D/1p))"* <V|pl;
2° If D = 0, thend = 0;
3° If D> 0and p > 0, then p'2 <d < (p + 12(g3/4)3)72;
4° If D > 0 and $ < 0, then
V3 (—q/2)'F — (—p)' 2 < d < 2(p + B(g2[4)' 1),
Reference

WRoNA, W.: On minimal distance between roots of the equation of third degree
(Polish). Zeszyty Nauk. Wyz. Szkoit. Ped. Katowice 1966, No. 5, 9—12.

3.3.3 A necessary and sufficient condition that
B tax4+bx+1>0 for x>0
is given by
ab+46(@a+b) +9+2@+ b+ 320
(2 and b real numbers and a + b + 3 > 0).

Reference

VERBLUNSKY, S.: A theorem on cubic polynomials. Arch. Math. (Basel) 2,
281 — 282 (1950).

3.34 Let P(x) = a@* + 4a.x® + 6ayx® + dagx + a, be a real poly-
nomial with g, > 0, |as| + |ay| > 0. Put
E = aja, +3a3 — 4a,a,,

g 2 2 3
F = aya; + aja, + a; — aya,a, — 2a,a,a,,

ll

S a4 + 2a,ay,
D — 27F2,

R=5— 9a0a2a4

H

Then P is nonnegative if and only if D > 0 and either R < 0 and
@y > 0,0or R > 0 and — < 7 Fdy < aydy < agly.
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Refervence

Makik, J.: Real polynomials of the 4-th degree. Casopis P&st. Mat. 90, 33— 42
(1965).

3.3.5 If the roots of the equation
" n 0 n Hn— "
Ao _(1)“1" 1+(2)a2x 2o (—=1)"a, =0
are positive and distinct, then
a,d, => a4,
forallp,q,7,swithp + g=1r + sand |p — ¢| < | — s|. In particular,
aﬁan—ﬁ>a0an (P:L""n—l)'

Reference

Orps, C. D, and E. P. STARKE: Problem E 1143. Amer. Math. Monthly 62,
445—446 {1955).

3.3.6 If all the zeros x,, ..., %,, of a real polynomial

) -1
apx” +ax"" 4 -4+ a, x+ a,

are positive, then
A1y 3

- > n?,

Gy,

Proof. By the arithmetic-harmonic mean inequality, we have

Bt

@y

" n 1
Z"iZ;?_nz-

e
N

Reference

FRrRANSEN, A, and J. LoaNe: Problem 196. Nord. Mat. Tidskr. 8, 188 (1960).

3.3.7 Suppose that a polynomial
Pl)=ay+ap+ - +ax (4,4 0)
has all its zeros in |x| < 1. Then
la,|®

>z

"
k
k=0
n 2
Z a2
E=0

Reference

NEwwMmaN, D. J.: Problem 5040. Amer. Math. Monthly 69, 670 (1962).
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3.3.8 Let
Pr)=ay +ax + - +ax", Q) =0by + byx + -+ + b,x"
(¢, >0, b,>0)

be real polynomials all of whose roots are real. If these roots separate

each other, then, form =nand k=1, ..., #,
@by — by >0,
and, form —=#n —land k=1, ...,n —1,

a_1by — apby_y < 0.
Reference’

ConsTANTINEsSCU, ¥.: Relations entre les coefficien ts de deux polynomes dont
les racines se séparent. Casopis Pést. Mat. 89, 1 —4 (1964).

339 Let P(z Z 4,2 be a polynomial of degree # such that
|P(2)] < M for [z1 = 1 C. Visser proved that
lag| + la,| < M.
0. 1. RAHMAN has given the following generalization:

Let P(z Zaz and Q (z) sz be polynomials of degrees »

and m respectlvely such that [P |< |Q(z)| for |z| = 1. If Q(z) has
all its zeros in the closed exterior of the unit disc |2[ < 1, then

(1) %] 4 |a,) < [b,] for m<m,

(2) |ao] + [an] < [bo] + [b,] for m=n,

®  max(al o) <P — | for m>on.

If, on the other hand, Q(z) has all its zeros in the closed interior of
the unit disc, then the following inequalities
lao] + |@,] < |by]  for m<m,
max ( al) |0 — 1o for m>mn,

together with (2) hold.

Reference

Raaman, Q. I.: Inequalities concerning polynomials and trigonometric poly-
nomials. J. Math. Anal. Appl. 6, 303 -324 (1963).

3.3.10 If P(x) is a nonzero polynomial with integer coefficients, and if
P(1) = 0 and P(2) = 0, then a coefficient of P{x) is < —2.
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Reference

Frarro, L., N. C. Hsv and A.G. KoNdEIM: Problem E 1493. Amer. Math.
Monthly 69, 568 (1962).

3.3.11 Let az? 4 bz 4 ¢ be a polynomial with nonzero complex coeffi-
cients. Then the zeros of this polynomial lie in the closed disk

(1) |

[

Ak

Proof. Since

V2 — dac = |3 V1 —4‘“ <|p| ]/1 il “"‘“
2
<[pI(L +\zf:1)
__Ib[ 4|29 2ac
starting with '
z_—_———{— ]/b2—4ac
one obtains
b b
|z\£-2;|+ =+ =

ie, (1

3.3.12 Let 2" + a2" ' + --- + a,_42 + a, be a polynomial with non-
zero complex coefficients, and let z; ( =1, ..., #) be the zeros of this
polynomial. Then

rogmax( e Ay 2|i_1], | ),

Ia'l l“n—z Gy —1 ‘
where

7o = max |z,;].
1<i<n
Reference
Boureaki, N.: Topologie générale. 2nd ed., Paris 1955, Chap.5—8, p.97,

Exerc. 1.

3.3.13 If x4, ..., x, are roots of the polynomial

Pxy=x"+ ax"" ' +-.- 4 a,,
then

] < fay| + [ay|'"? 4 -0 + |, ' (k=1,...,n).

Remark. This result is due to J. I.. WaLsn [1]. For a generalization, see paper [2]
of J. Rubnickl,
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References

1. WaLsH, J. L.: An inequality for the roots of an algebraic equation. Ann. of
Math. (2) 25, 285— 286 (1924).
2. RupNIcKI, J.: Remarque sur un théoréme de Mr. Walsh. Mathematica (Cluj)
« 8, 136—138 (1934). ‘

3.3.14 If x,, ..., x, are roots of the polynomial
Px) ="+ a;x" ' +--- 4 a,,

then, for kA =1,...,n
(1) % < (U + e + - + e, )
and

%] < (1 + |ay ~ P4 Jay —ayff + - + |a, —a, P+ |a,[P)
Remark. Inequality (1) is due to R, D, CarMicHAEL and T. E. Mason [1], while (2)
is due to K. P. WiLL1aMs [2].

References
1. CarMmicHAEL, R. D.,and T, E. Masox: Note on the roots of algebraic equations.
Bull. Amer. Math. Soc. 21, 14—22 (1914).
2. WiLLiams, K. P.: Note concerning the roots of an equation. Bull. Amer. Math.
Soc. 28, 394—396 (1922).
3.3.15 If o, B and 4,, for £ =1, ..., n, are real numbers with g, > 0
and 4, > Ofork=1,..., n, then

g min () =5 Em — < (3

Equality holds if and only if the sequences x = (x;,...,x,) and
B = (B4, ---, Bu) are proportional.

This result is a consequence of CAUCHY's inequalities given in 3.2.25,

D. MarkovIC in several papers used (1) for obtaining the bounds for
moduli of the zeros of a polynomial. We give a result of his [1].

Consider P (z 2 a;z* and f(2) Zbkzk with b, > 0 for &k =

a
0,1, ... Let »ybea positive zero of Mf(#) = |a,|, where M = max (|_k|)

, 1<<k<n
Then all the zeros of P lie in [z > #,.
Hint for the proof. For each zero z = 7¢"® of P we have
d ! kI k
b, ¥
@<"——w——1 2 <M.

o
ke1
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In the particular case when b, =¢% for k=1, 2, ..., and g(¢) =

 max (lay| #¥), where ¢ is any positive number, we have that all the zeros
S R&R
|a| £

of P lie in the domain [z| > PEYIR
0
The same result was also given by E. LANDAU [2] in another way.

D. M. SitmeuNovI¢ {3], assuming that 4, > .- > 4, > 0, improved (1)
and his inequalities read:

1

"
2 % 2 %k 2 %

(% . E=1 i=1 k=1 i
min (—) < min - < ——— < max . < max (—)
1<isn \Pi/ T 1<i<n <i<

s P RPN 2B

Using the above inequalities he showed that all the zeros of P lie in
the domain

Z

k
0y ¢ 2 layl
(1]

. N k=1
2| > Tl TG with  A(f) = max - __<_1r_<nkaé<n(]ak[ ).

References

1. MarxovITCH, D.: Sur la limite inférieure des modules des zéros d’un polynéme.
Acad. Serbe Sci. Publ. Inst, Math. 2, 236 —242 (1948).

2. Tanpav, E.: Uber eine Aufgabe aus der Funktionentheorie. Téhoku Math. J.
5,97—116 (1914).

3. SiMeuNovié, D. M.: Sur les limites des modules des zéros des polyndmes. Mat.
Vesnik 4 (19), 293 —298 (1967).

#
3.3.16 Leta,, ..., a, be real nonnegative numbers such that > a; > 0.
i=1
Let ¢ be a positive root of the equation

(1) =" a4 oa,
and let 4,, ..., 4,_; be arbitrary positive numbers. Then
a Ay,
(2) t_émax(ﬂl,---,ln_l, (a1+/1_2+"'+,1n—1))'
1 n—1

Proof. Let 4 = max(4,,...,4,_4). If 1 > ¢, then (2) holds. Let A << ¢.
Then 4, ..., 4,1 < ¢, and therefore
a a, a _a, a4 pa,
atgt ot amzatyt ot o=y =

n—1

and inequality (2) is true.

The above interesting proof is due to S. B, PrReSic,
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3.3.17 Let f(z) = 2" + $2* ' + --- + p, be a polynomial with zeros
2y, ---, 3y, In an arbitrary order. -

E. LANDAU and W. SPECHT proved that

|2y

. v=1
where 1 < ¢ < n.

J. VICENTE GoNGALVES found the following improvement:

]z ...z}2+ lzt+1

with 1 < ¢ << n. This result is the best poss1b1e
A. M. OsTrOWSKI made a generalization as follows:
Partition of the set of zeros of f(z) into £ nonempty sets,

1 1) B k
R () HECR F R i) B
with m; + --- + my = #. Then, for any 1 > 2,
1 )2 k
R S ol & KRLE i

n A2
_<_(1+zw) Fhog,
p=1

where equality occurs if and only if Al =42 =2 or,for A=21if 2 — 2 of
the left-hand terms are equal to 1.

References

Laxpavu, E.: Sur quelques théorémes de M. Petrovié relatifs aux zéros des
fonctions analytiques. Bull. Soc. Math. France 33, 251 —261 (1905).

Laxpavu, E.: Uber eine Aufgabe aus der Funktionentheorie. T6hoku Math. J. 5,
97 —116 (1914).

SpecHT, W.: Abschitzungen der Wurzeln algebraischer Gleichungen. Math. Z.
52, 310—321 (1949).

VICENTE GONCALVES, J.: L'inégalité de W. Specht Univ. Lisboa Revista Fac.
Ci. (2) A 1, 167—171 (1950).

OsTROWSKI, A. M.: On an inequality of J. Vicente Gongalves. Univ. Lisboa
Revista Fac. Ci. (2) A 8, 115119 (1960).

3.3.18 Let P be a real polynomial defined by

Plxy=1ay, + ax + --- + a,x".
Then

max |P(x)|?— min |[P(x)[>*> = .
—1<y<1 —1<x<d 2"

This inequality contains CEBYSEV's inequality
max | P (x)| > I "I

—I<x<1
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Reference

vAN DER CorpPUT, J. G., and C. VissER: Inequalities concerning polynomials and
trigonometric polynomials, Indagationes Math. 8, 238 — 247 {1946).

3.3.19 Let P(x) = a4 + a;x + - + a,x" be a polynomial of degree »
whose roots are x,, ..., x,. If none of Im x; 1s equal to zero, then for all

real x,
"

Z( 1 )2 ~ _gRe W) P — P'(@)?
k=1

Imx, Px)?

If none of Re x, is equal to zero, then for all real x,

"

1 \2 P(ix) P” (ix) — P’ (ix)?
L V> gRe
kéi( ) -

P (ix)?

The above inequalities are equivalent respectively to

2”, ( 1 ) > 8 Re? 2a0a2 Zn, (_L_) ~ 8 Re 2aya,y —_a_f
¥ a -
k=1

ag 0

Reference

OsTROWSKI, A.: Note sur les parties réelles et imaginaires des racines des poly-
nomes. J. Math. Pures Appl. (9) 44, 327—329 (1965).

3.3.20 The complex polynomial P (x) = qx" + - + a,,_;% + a, has »
zeros whose moduli are greater than 1 and # — 7 zeros whose moduli are
smaller than 1 if

a,| > ]“0| + et i“rqi + i“r+-1| + ot |“ni-

Remark. Thisresult is due to D. E.MAYER [1]. A simple proof was given by M. TAJIMA
in [2].

References
1. MAYER, D. E.: Sur les équations algébriques. Nouv. Ann. Math. (3) 10, 111—
124 (1891).
2. Tajmma, M.: On the roots of an algebraic equation. Téhoku Math. J. 19, 173 —
174 (1921).
3.3.21 Let P(x) = (x — &) - (x — a,), where 44, ..., a, are real num-

bers with @, < a, , fork=1,...,n — 1. Let
Pix)y=(x —¢p) - (& — ¢, y)

and let a, << ¢ <C akﬂfork—l ,#n—1. Then,for k =1, ...,n—1;
1~ % Cpy1 — %
Gt a1 S S Gy
Reference

PEYSER, G.: On the roots of the derivative of a polynomial with real roots.
Anter. Math. Monthly 74, 1102 — 1104 (1967).

16 Mitrinovie, Inequalities
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3.3.22 If a polynomial P of degree # has no zeros in the circle |z| <
a - b, where ¢ > 1 and b > 0, then for —a < x <T q,

P@I = (5—1) P(5)|-

This inequality, together with a number of inequalities which are analogous to
it, has been proved by D. I. MAMEDHANOYV,

Refevence

MamEDHANOV, D. I.: Some inequalities for algebraic polynomials and rational
functions (Russian). Izv. Akad. Nauk AzerbaidZan. SSR Ser. Fiz.-Mat. Tehn.
Nauk 1962, No. 5, 9—15.

3.3.23 Let P(2) be a polynomial of degree n with zeros z,,..., z, and
let z;, ..., 2,4 be zeros of its derivative P’ (z). Then, for p > 1,

1 " 1 n—1 nll
?kZ‘[Imzklf’> _1k-a1|1mzk]: 2’k|p>“§]kp

Reference

DE BruIJN, N. G,, and T. A. SPRINGER: On the zeros of a polynomial and of its
derivative II. Indagationes Math. 9, 264 —270 (1947).

3.3.24 For all real x and for any even natural number #,
Px)y=x«"—nx+4+n—1>0,
equality holding if and only if x = 1.

Proof. According to DESCARTES’ rule of signs, the polynomial P cannot
have more than two positive zeros and can have no negative zeros. This
polynomial has a double zero at x = 1, and those are, therefore, its only
real zeros. This implies the above inequality.

Remark 1. This elementary inequality, indicated in HARDY-LITTLEWoOD-POLYA'S
book on p. 61 (Theorem 60), has been used in a number of cases as a starting point
in the process of finding other inequalities. (See, for example, BEnson’s method,
in 2.19),

Remark 2. P (x) > Oholds for all ¥ > 0 when # is any real number >1 (with equality
if and only if # = 1), and forall ¥ > — 1 when » is an odd integer >1. These exten-
sions are sometimes useful.

3.3.25 Let P(x) be a polynomial of degree # > 2 all of whose roots are
real and which satisfies the following conditions:

P(—1)=P(+1)=0, P =*£0 for —1<x<+1

and max P(x) =1,
—1<a<+1
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Then, if P(a) = P(b) =d <1 (—1 <a<<b<< +1), we have
b—a<2(1 —d)'e,
with equality if and only if P(x) = 1 — #%.

Reference

ErDpds, P.: Note on some clementary properties of polynomials. Bull. Amer.
Math. Soc. 46, 954958 (1940).

3.3.26 Let P(z) =ay+ a2+ - + a,2" be a complex polynomial,
where a, is real, and |Re P(2)| < 1 for {z| < 1. .
Then, for |2] <1,

g LH/2)(r+1)]

(25 — 1)

References

SzeGd, G.: On conjugate trigonometric polynomials. Amer. J. Math. 65, 532 —
536 (1943).

MurHoLLaND, H. P.: On two extremum problems for polynomials on the unit
circle. J. London Math. Soc. 31, 191 —199 (1956).

3.3.27 Let P(x) = ay 4- a4 + --- + a,x" be a real polynomial of degree
# > 0. Then
min b, < P(x) <max by, (0<x<1),

0<k<n T0<k<n

where
k

bk=i£z@(f)/(f) (h=0,1,..., 0.
Reference

CARGo, G. T., and O. SHisHA: The Bernstein form of a polynomial. J. Res. Nat.
Bur. Standards Sect. B, 70 B, 79— 81 (19686).

3.3.28 Let F denote the set of all quadratic polynomials P (x) satisfying

+1 .

Px) >0(—1<x< +1) and fP(x) dx = 1.
~1
Then
. ' 2
_111511511Sl (mﬁz‘lx P (E)) =3
Reference

SCHOENBERG, I. J.: Problem 28. Wisk. Opgaven 21, 28—30 (1960).

3.3.29 If all zeros of a real polynomial P of degree # are real, then
(n — 1) P’ (%)2 — nP(x) P"(x) > 0,
where P’ and P”’ denote the derivatives of P.

Reference
Love, J. B.: Problem L 1532. Amer. Math. Monthly 69, 668 (1962).

15
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3.3.30 If the moduli of each of the roots of a polynomial with complex
coefficients

Piz) =a, 4+ a2 + -+ + a,
do not exceed a positive number M, then
[PY @) < k() ol (2] + M)"*,
where £ =0, 1, ...,n; PO (z) = P(2).

Reference

Coruccr, A.: Generale maggiorazione dei polinomi e delle derivate e una sua
conseguenza. Boll. Un. Mat. Ital. (3) 8, 258 — 260 (1953).

3.3.31 Let P denote a polynomial in x, and let deg P be the degree of P.
(S. BERNSTEIN.) If deg P = #, then

| P (%) ] n
<< < x < b).
max | P#)| = Vb — 2) (x — a) a=r=9b

If deg P =— 2x + 1 and P is increasing in a << x << b, then

| P(x)] 1 b—a
max [P =2 nr1y W @SxAsD).

(A. MARKOFF.) If deg P = #, then

|pl-(’f~)]—< 2n (a < x < 0b).

max | P(x)| — b—a

(I. ScHUR.) If deg P = n > 2 and if P(a) = P (b) = 0, then

7
lP’(")I___'S 2n cot%

max | P(#)|

(a < x<b).

b—a

(P. ErDSs.) If'deg P = n and P has only real zeros, none in (a, b),
then

This is the best possible result.
(S. BERNSTEIN.) Let P be a complex polynomial in complex z with
| P(z)! <1 for |z| < 1. Then
P ()] <mn for |z| <1,
(P. D. Lax.) If [P(z)| <1 for |2/ <1 and if P has no zeros inside
lz] = 1, then
| P’ (2)| gl;- for 2| < 1.

The following results are due to A. B. SOBLE.
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1° If the coefficients of P are real and nonnegative, then
P (%) n
Px =5 x
(The case P (x) = x” shows that this is the best possible result). If, more-
over, the constant term is zero, then
P’ (x) 1
Pi) = % (x> 0).

(The case P (x) = x shows that this is the best possible result.)
2° Let

(x > 0).

P(x)= Yex"* | (¢, > 0).
k=0
If0<<c<efery (B=1,...,n), where ¢ is a fixed number, then
Pxy n
F(“)va (0<x <o)

The constant ; is the best possible.

3° Let P(x) = " + e I o <e— 1L e>1 (h=1,...,n),
then k=1

P’ ()] (¥ — ¢/2)*

] ‘ x(x~o (x> ¢).

4° Let P(x) = chx”“" (cp > 0).If ¢, > ¢, 1 (k=1,...,n), then
k=0

P’ (%) n -4 1
P{x) = sx

(0 << x <exp(—sfe) and s> e).

References

SCHAEFFER, A. C.: Inequalities of A, Markoff and S. Bernstein for polynomials
and related functions, Bull. Amer. Math. Soc, 47, 565 —579 (1941),

SosLE, A. B.: Majorants of polynomial derivatives. Amer. Math. Monthly 64,
639—643 (1957).

3.3.32 Let P be a complex polynomial of degree << ». If for —1 < x
< +1, |P(x)| <1,then, for —1<x< +landk=1,...,n

(1) | PR @) < M, (x),
where
M, (x) = (F COS nt) -+ (;’E sin nt) with x = cos ¢.
X X

Remark. Putting 2 = 1 in (1), we get BERNSTEIN’s inequality (see 3.3.31). Inequa-
lity (1) also contains the following inequality of MARKOFF:

T(pd — 1) ee (43 — (K — 1)2
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Refevence

ScCHAEFFER, A. C., and R. J. DUFFIN: On some inequalities of S. Bernstein and
W. Markoff for derivatives of polynomials. Bull. Amer. Math. Soc. 44,
289 — 297 (1938).

3.3.33 Let Zukx<1f0rx€[ 1, +1]. Then

Zlog(k + 1) ax*| < Clogmn,
k=0

where C is a constant.

Reference

SzeGo, G.: On some problems of approximations. Magvar Tud. Akad. Mat.
Kutato. Int, Kozl 9, 3—9 (1964).

3.3.34 Consider 3'a,x" = a, || (x — x,) with a;, == 0. Then

r=0 r=1

n »
Sla| o < jau| IT (¥ + |5
¥= r=
Reference
OsTROWSKI 3, p. 32.

3.3.35 Let P be a real polynomial of degree » > 2 having only real
zeros, and let P be positive on (—1, +1). Then

+1
; 2
P s
wjl () dx =2 5 max P(a)
I, in addition, P(—1) = P(41) = 0, then
+1 B
_f1 P(x) dx>m(1 + = 1) / _1123;<+1P(x)

These inequalities are still valid when the condition of having only
real zeros is replaced by the condition of having no zeros in the open disk
2] < 1.

References

SEnDovV, B.: An integral inequality for algebraic polynomials with only real
zeros (Bulgarian). Ann. Univ. Sofia, Fac. Sci. Phys. Math. Livre 1, Math.
' 53, 19—32 (1958/59).
Dmvovski, 1., and V. Caxarov: Integral inequalities for real polynomials
(Bulgarian). Ann. Univ. Sofia, Fac. Math. 59, 151 — 158 (1964/65).

3.3.36 Let P be a real polynomial whose derivative P’ has only real
zeros. Let P(x) > 0 for x€ (—1, +1) and let P* have only one zero in
(_1! +1)'
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1° If —1 and -1 are two simple zeros of P, then

P 4 P(1) P'(—1)

2° If —1 and -+ 1 are two zeros of P, then

+1 4
lpumﬂg?PmL

where x, is the zero of P’ which belongs to (—1, +1).

In both cases equality holds if and only if
P(x) =c(1 — &7).

This result is due to P. ErRpds and T. GROUNWALD.

It was later generalized by H. KunxN.

References
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1. ErDos, P., and T. GRUNwALD: On polynomials with only real roots. Ann. of

Math, (2) 40, 537— 548 (1939).

2. ErDoOs, P:: Note on some elementary properties of polynomials. Bull. Amer.

Math. Soc. 46, 954— 958 (1940).

3. IveNGaRr, K. S, K.: A property of integral functions with real roots and of order

less than two. Proc. Indian Acad. Sci. A 12, 223 —229 (1940).

4. Kuun, H.: Uber Polynome mit lauter reellen Nullstellen der Ableitung. Disser-

tation, Karlsruhe 1966, 40 pp.

3.3.37 Let » denote the number of real zeros (multiplicity of zeros is

taken into account) of a polynomial

Pz)=ayz" + a2 ' + - 4 a, (a,a, == 0)

and let
1

N = =——(jay| + |24 + -+ + |a,]),

Vk aﬂa’nl
M=-—1_ max|P().

Vl“o“n| lz] =1

Then, for every integer n > 1,

2 — 2 << 4dnlog N,
rir+ 1) < 4(n 4+ 1) log N,

v+ 1)+ (P — 9P < 4(n+1)loghM,

where p and ¢ denote the numbers of positive and negative zeros,

respectively, of P(2).

The constant 4 in all above inequalities is the best possible.
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References

Scumiprt, E.: Uber algebraische Gleichungen von Pdlya-Bloch-Typus. Sitzungs-
ber. Preuss. Akad. Wiss., Phys.-Math. Kl. 1932, pp. 321 — 328,

ScHUR, I.: Untersuchungen iiber algebraische Gleichungen. I: Bemerkungen zu
einem Satz von E. Schmidt. Sitzungsber. Preuss. Akad. Wiss., Phys.-Math.
Kl. 1933, pp. 403 —428.

SzeGd, G.: Bemerkungen zu einem Satz von E. Schmidt iiber algebraische
Gleichungen. Sitzungsber. Preuss. Akad. Wiss.,, Phys.-Math. Kl. 1934,
pp. 86—98.

3.3.38 The FiBoNaccI polynomial F,, defined by
F (%) =2, () + F, (%), Fix)=1Fx)=x,

satisfies
F () < (o + 1) (& + 277
forn =3, 4, ...
Reference
Swamy, M. N. S.: Problem E 1846, Amer. Math. Monthly 73, 81 (1966).

3.3.39 Let P(x) = ax" + a;x"~! + .- 4+ a, be an arbitrary polynomial
with complex coefficients. Define

H(P) = max(|a,

’lalyo-'slu );

L(P)=lao| + [ar] + - + |a,

n

and
M{P)=0 if P(x)=0,

1
M (P) = exp ( [log | P (&™) dt) otherwise.
0 .

Then, for any two polynomials P and Q,
L(PQ) < L(P) L(Q),
LIPF Q) <L(P)+ L(Q).

The height H, the length L and the me;lsure M of P are connected by
the inequalities

n \-1
([nlz]) HP)<M(P)<HP)Vn+1,

27" L(P) < M(P) < L(P).

If both P and Q are at most of degree 7, then

MPFQSLPFQSLP)+LQ) <2 (M(P) + M(Q).
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R. L. DuNcaN proved that 2" in the inequality of K. MAHLER
M(P + Q) < 2"(M(P) + M(Q))

21\1/2
can be replaced by ( :) .

Let L*(P) = (lap* + &> + -+ + |a,[*)*% Then

(2,,)_1f2 L*(P) < M(P) < L(P),

n

r0)= () () 12 @)

~

where P and ( are polynomials of degree » and m respectively.

Remark. These inequalities have applications in the theory of transcendental num-
bers.

References

MAHLER, K.: On two extremum properties of polynomials. Illinois J. Math.
7, 681 —-701 (1963).

Duncan, R. L.: Some inequalities for polynomials. Amer. Math. Monthly 73,
58—59 (1966).

3.3.40 Let x4, ..., %, (%, < -+ <x,) be the zeros of a real polynomial
P(x) of degree #» and let vy, ..., v, (¥; < - < ¥,_,) be the zeros of
the derivative P’ (x). Put

(n—1)m= (2 + - +2%) — 15,
and

(m— 2y =¥ + - F Voor) — V-

Furthermore, let x + f(x) be a nonconcave function.
Then, the following inequalities hold:

1 J 1 It
f_kéxkﬂj—Tk;;yk’
1 n—1
ER = Y
n—1
- SHm) = Do,
n —1
F S <t 3.

If x,, ..., x,, are real nonnegative numbers and

xyp ot o, o
_ . “;hm_A—-_" , G — Vxl oo X

nt
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th [
o Ggl/xn.“‘xngA:
n\—1 r ot
ng(2) 3 xlx, < A2,
wheret=1,...,.n —land k=7 +1,...,n
References

Poroviciu, T.: Sur certaines inégalités entre les zéros, supposés tous réels, d’'un
polyvnome et ceux de sa dérivée. Ann, Sci. Univ. Jassy Sect. I, 30, 191 —218
(1944/47).

See also:

Brav, H.: On the zeros of a polynomial and of its derivative. Amer. J. Math. 53,
864 — 872 (1931).

Topa, K.: On certain functional inequalities. J. Sci. Hiroshima Univ. Ser. A-I
Math. 4, 27— 40 (1934).

3.3.41 Let ¢; denote the real zeros of the following real polynomial:
Px) =ax" 4+ ax"' + - + a, (a, > 0).

Let &; denote the real parts of its imaginary zeros, a4 = max(c;, &3),
b = min (c;, x;), and let P" (x) be the m-th derivative of P(x). Then,
unless identically zero, the derivatives of P (x) satisfy the inequalities

P™(x) < 0 for x> a;
(—1) P (x) > 0 and (—1)" P®"+1(x) < 0 for x< b,
where 7 is the number of real zeros of P (x).

Reference

Marxkovié, D.: Sur les zéros réels des dérivées de quelques fonctions (Serbian).
Bull. Soc. Math. Phys. Serbie 4, No. 3—4, 1—5 (1952).

3.3.42 Let P be a real polynomial of total degree » in % real variables.
Then

1
max |Plx,, ..., > - max |P*(x,...,x
s ‘ (%5, xk)‘ S Wi l (%0 -ens k)[,
r=1,...,k r=1,..k

where P* denotes the sum of the terms in P whose degree is #.

Reference

VissER, C.: A generalization of Tchebychef's inequality to polynomials in more
than one variable. Indagationes Math. 8, 310—311 (1946).

3.3.43 If P and Q are two polynomials in z of degrees m and % respecti-
vely, and if E denotes a bounded continuum, then

max | P(2) Q(z)] = C(m, n) max | P(2)] mgx]Q(z)

»

where the constant € (m, #) depends only on m and =,
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This result, due to G. AUMANN [1], was improved by H. KNESER [2]
who showed that ][ tan® %’L_}_% 7t is the exact value of C (m, n), and
k=1
determined when it is attained.
The above result has the following geometric interpretation: Let
Ay, ..., 4, and By, ..., B, be fixed points in the z-plane, and M a point
of E. Then

max (IIMA IIM'B) > C{m, n) maxHMA max HMB
E i=1 i=1 E = E =1
M. BierNacKi [3] later proved a number of analogous inequalities
replacing the products by the sums or other symmetric functions, or
replacing fixed points in the plane by other geometric elements and also
considering the problem in space.

References

1. AumaxN, G.: Satz tiber das Verhalten von Polynomen auf Kontinuen. Sitzungs-
ber. Preuss. Akad. Wiss., Phys.-Math. K1. 1933, pp. 924 —931.

2. KNEsER, H.: Das Maximum des Produkts zweier Polynome. Sitzungsber.
Preuss. Akad. Wiss., Phys.-Math. Kl. 1934, pp. 426 —431.

3. BierNacki, M.: Sur quelques propriétés des fonctions de distances. J. Math.
Pures Appl. (9) 31, 305—318 (1952).

3.3.44 Let a, b and ¢ be three points in the complex plane, and let
A (a, b, ¢) denote the area of the triangle determined by those points.

Let P be an arbitrary polynomial of degree n with zeros z,, ..., z,
and let {,, ..., {,, 4 be the zeros of the derivative P’. Then the following
inequality holds

3ZA CP’C'”C — 32‘4 Z; ]’Zk)

where lgi<y<kgn and 1 < p <<r<<s<<n — 1 are the ranges
of summation.
Reference

KraMER, H.: Uber einige Ungleichungen zwischen den Nullstellen eines Poly-
noms und seiner ersten Ableitung., Mathematica (Cluj) 10 (33), 89—93
{1968).

3.4 Inequalities Involving Trigonometric Functions
341 1f 0 < a < b < /2, then

Re ference

GARNIR, H. G.: Fonctions de variables réelles, vol. 1. Louvain-Paris 1963, p. 267.
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342 Iin > 3 and —Z—__<_x§n—~%, then

sin sin ny

3 2n > 0.
3.4.3 1If x > 1, then
. 1
(1) 51nx_1~251n—+s1n7-1>0
Proof. If y = sin —;—;, then
’e 1 1 1
¥ =;I(2x——tan-;—)c037>0 (x = 1).

So, y is a convex function of x on [1, + o) and (1) follows from
JENSEN’s inequality.

J44 If0< x, <mfork=1,2,...,and if » > 1 is an integer, then

n
sin D, x,

k=1

n
< 'sinx,.

k=1

3.4.5 If x is real with 0 < || < @, and |r — s| < 1/2, where 7 and s are
real, then

sin rx sin sx

2sin(#/2) & <1

Reference

Makai1, E.: On the summability of the Fourier series of L? integrable functions
IV. Acta Math. Acad. Sci. Hung. 20, 383—391 (1969).

3.4.6 The largest a and smallest b for which
cos bx << %ﬁ < cos ax
n (0, 7/2) are |
2 2 1
(1) . @ = -—arccos —, b:l—/?.
The following inequalities also hold:

/i

is oS X
v 1>cos—~>cosax>f> osl77>]/cosx>w>cosx
Reference o v | \g. 2 “j 0

IvENGAR, K. §. K, B. S. MaDHAvVA Rao and T. S. NANJUNDIAK: Some trigono-
metrical inequalities. Half-Yearly J. Mysore Univ. B (N.S)) 6, 1-—12 (1945).

347 If 0 < B — x <, then

max |1 + a cos x + bsinx| > tan? Zﬁ.
agargp
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Refevence .
Goncarov, V. L.: Theory of Interpolation and Approximation of Functions
(Russian). 2nd ed., Moscow 1954, pp. 233—234.

348 Let 2<<a < 3. Then

oy A ey 4
cos — << cos? .
a a-+1

For 4 > 3, the inequality is reversed.

Reference
LAUFFER, R.: Problem 144. Wisk. Opgaven 19, 204 — 205 (1950/54).

3.4.9 If 0 << » < 1/2, then
costr > 1 — 2r.
If 1/2 << r << 1, then
cosqr < 1 — 2.

Reference
KosER, H.: Approximation by integral functions in the complex domain.
Trans. Amer. Math. Soc. 56, 22 (1944).

3.4.10 If a,, ..., a, are real numbers, then
Scos(a,—a) = — .
1<J

3.4.11 If 0 << a << /2 and if { is an arbitrary real number, then
2(cos a — sin a)? < [cos(a + ¢) + sin(a + #)]?
+ [cos(a — £) + sin(a — )] < 2(cos a + sin a)?.

34.12 If 0 < 4, b < 7, then

|cosa — cosb| > |a — b] Vsinasinb.
Reference
vaN DER CoRPUT, J. G.: Problem 96. Wisk. Opgaven 16, 243 — 244 (1935).

3.4.13 If 2 1is a natural number and if 2 and b are real numbers such that

cos a = cos b, then
coska —costh 4
| cosa —cosd |~
. €Oos kb cos a — cos ka cos b <R 1.

cosb — cosa
Equality holds only in the limit as @ and b approach zero.

Reference
GoobpmaN, A. W.: Problem £ 723. Amer. Math. Monthly 53, 271 (19486).
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3.4.14 Let 0 <7 < 1. Forallrgal a and & the following inequality holds:

(1 —#%)cosa + 2vsinasinb

(1 + 72 cosa — 2¢
(1) ‘ 1 —2rcosb + »2 = 1 — 72 |
Proof. Inequality (1) is equivalent to
(2) [2r — (1 + 7*) cos alcos b — [(1 — #%) sin a]sin b

<< 1 — 2rcosa -+ 2.

For fixed » and a, the maximum value of the left-hand side of (2)
is the positive square root of the expression

(27 — (1 + 72 cosal?> + [(1 — ) sinal2 = (1 — 27 cos a + »2)2.

Thus (2) and (1) are verified.
For given » and a there exists b for which equality occursin (2} and (1).

Reference

RosERrTsoN, M. S.: Radii of star-likeness and close-to-convexity. Proc. Amer.
Math. Soc. 16, 847852 (1965).

3415 f 0 < p < 1/2and 0 < x < 7/2, then

sin x

14 pcosx’

T—I—pcosx— -

(p+ Ysinx

z
2
Remark. The above inequalities represent a partial answer to the problem E 1277

proposed by A. OPPENHEIM and solved by W, B. CARVER in Amer. Math. Monthly
65, 206 —209 (1958).

3416 If 0 < a < tland 0 < x < 7z/3, then
sinx <1 — 2acosx + a® < 1,

1 — 2a cos ¥+ a® 1
2(1 —cosx) — sin® x’

3
+<

3.4.17 If 0 < a < xf2, then

M ' H
1 1 1
2, -+ = Z, _—
cos — sin i k=1 gin 2 cos 4
R k k

3.418 If a < 3, and 0 << x << 7/2, then

sin x)a

(1) cos x << (—~x~_
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If a > 3, then there exists x, € (0, %/2), depending on a, such that

cos x > (Sljx)a (0<% < xy),
sin x,\4
(2} CoS %; = ( - -3) ,
coS x << (-S-i—j—:mf)a (%, << ¥ << 7wf%).

Proof. 1t is sufficient to prove (1) for ¢ = 3. Denoting
1

(3) f(x) =% —sinx (cosx) *,
we obtain
a—1 _a+1
(4) /(%) == 1 — (cos x) ¢ — %sinzx(cos x4,
2a-+1

() '{x) = (i}v-fl—)z sin x (cos x)

If a==3 and 0 << x << /2, we have f"(x) << 0, /' (¥) << /(0) =0, and
f{x) < f{0} = 0 which proves (1).

[cos2 X — (:j— 11)2] .

If @ > 3, then (@ + 1}/(a — 1)®2 << 1 and (b) implies that there exists
£ € {0, /2) such that

/' (x) >0 (0 < x <),
') =0,
f'(x) <0 (C<x< mf2).

These relations imply that the function x> f (x) is increasing from
(0} = 0to /' ({) > 0and then decreasing to ' (/2 — 0) = — oo. Hence,
there is 5 € (0, /2) such that

f{x) >0 (0 <% <7},
'(n) =0,
f{x) <0 (n < x < =2}

From these relations we conclude that (2) holds.

Remark. fa < b < 8 and 0 < x < /2, then

(sin x)

xb

[23

cos & <C

This is a consequence of the above result and the obvious inequality

(sinx)® > (sin x)b (@< band 0 < & < n/2).
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Generalization. Let f(x) = x — (sin #)? (cos x)?. There exists a strictly
decreasing function ¢ +> A(p) defined over (— oo, 1) and such that
Al—o0) =0, A(1 — 0) = —1/3 and:

1° If p = 1and ¢ > 0, then f(x) > 0 for all x€ (0, 7/2);

2° If p<< landg<< A(p),orp =1land ¢ < —1/3, then f(x) << 0 for
all x€ (0, =/2);

3° If p < 1, ¢ = 0, then there exists x, € (0, 7/2) such that f(x) < 0
for 0 << x < xy, f(xy) = 0, f(x) > 0 forx;, < x < 7/2;

42 If p < 1,A(p) < ¢ < 0, then there exist x,, x, € (0, /2) such that
fxy < 0 for 0 << x << 2y, flxy) = 0, F(&) > 0 for xy << x < %, fxy) = 0,
f(x) << 0 for x, << ¥ < 7/2;

5° If p < 1, g = A(p), then f(x) < O forall x€ (0, z/2) and f(x) = 0
only for one value of x = x; € (0, /2};

6° If p>1, g<<0, or p=1, —1/3 << g<C 0, then there exists
%€ (0, /2) such that f(x) > 0 for 0 < x < 2y, f(x,) = 0, f(x) << 0 for
X < x < 7[2.

The proof of the above result can be found in [1]. The analysis of the
inequality :
(sin x)z_

(cos x)° << ——— (0 < x < 7/2)

is given in [2].
See also [3], where the above results are checked on a ZUSE-Z 23
digital computer.

References

1. Mrirrivovi¢, D. S, and D. D. Apamovi¢: Sur une inégalité élémentaire on
interviennent des fonctions trigonométriques. Univ. Beograd. Publ. Elek-
trotehn. Fak. Ser. Mat. Fiz. No. 143155, 23— 34 (1965).

2. MrrriNovi¢é, D. S, and D. D. Apamovié: Complément & larticle “Sur une
inégalité éiémentaire ol interviennent des fonctions trigonométriques’’.
Univ. Beograd. Publ. Elektrotehn, Fak, Ser. Mat. Fiz. No. 159—-170, 31 —32
(1966).

3. Jovawnovi¢, S. M.: An investigation on the function f(¥) = ¥ — (sin %P (cos x)7
in the interval ¥ € (0, 7/2) for different values of the parameters $ (>> 1) and
g (<< 0). Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 143 —155,
35— 38 (1965).

3.4.19 If x > /3, then

- T Tt
(1) (x+1)cosx+i—xcos~;>l.
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Proof. Using TAYLOR’s expansion of cos ¢ near the origin, we get

fx) = (x + 1) COS;;E? —x cos%
“+00 o 160 o
— -1 k it 4 . 1 & _.7”
E=0 ( ) (Qk)' (x -+ 1)2k_1 ké(; ( ) (2k)!x2k—-1
+00 9%
— T T 1
1+ 2 (—1) (2k)! sz—1 "+ 1)2k1] .

In order to prove (1), it is sufficient to show that

2 3 (gt T [t L 0 (x>)3)
(2) kg (—1) (2k)! L%—1 - o + 1_)2k—1] > (x =V 3).

The series (2) is alternating for x > 0. We can prove that
(3) ”2’1:_1 - 1:% 1 21: o 1
T (# 4 1)~ P (x + 1)2’”“1
holds for x > ]/5 and £ =1, 2, ... It is evident that (3) implies (2). In
order to prove (3), it is sufficient to show that
1 1

X) = i —
fr (%) L2R—1 2RI

decreases for x > ]/f’; (k=1,2,...).

Since

b —(ZR—1) [, k41
fk(x) _ x2k+T (x - 2% — 1):

we conclude that f, decreases for

2% + 1 L
x>|/2k_1 (k=1,2,..).

Since _
% +1 _ /7 B
V%_15V3 (kE=1,2,..),
we infer that f, for all £ = 1, 2, ... are decreasing on []/3_, + oo).
Therefore, inequality (1) is true. .

3.4.20 For every ¢ > 0,

.

3sint ; N -
0<t_2—l—cost<-1_§)’ [}»\/}” ¢ \g)

___3sint (1 — cost)? ) r
0<t 2—|—cost(1+9(3+2cost) <2100'

Reference

FraME, J. S.: Solving a right triangle without tables. Amer. Math. Monthly 51,
36-- 38 (1944).

18  Mitrinovié, Tnequalitios
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3.4.21 The following inequalities are valid:

(3 — x2/10} sin & (3 — #%/n?) sin x

2 — #2/10 + cos x x<2—x2/ﬂ2—|—cosx 0<x<m),
(3 — x2/20) sin ¥ L—l— sin x (3 — lel,o) S_I_I_l_x )
1 — #2/20 4+ 2 cos # lo coSs ¥ 1 — 22/10 + 2 cos » (0<x < 5ﬂ/12) -
Reference

FraMmE, J. S.: Some trigonometric, hyperbolic and elliptic approximations.
Amer. Math. Monthly 61, 623 —626 (1954).

3.4.22 For all real values of x and «,

x2+x51na+1 1
1) ?4—1/7 x2+xcosa+1—?4+l/7

Proof. We can assume that sin a == cos a. Let

_ x*f xsina 4 1
y_x2—[—xcosa—|—1’

le.,
(v —1)%®> + (ycosa —sina) x + (y — 1) = 0.
The variable y can take all values which satisfy
(ycosa —sina)® — 4(y — 1)2 > 0.
This inequality is satisfied if and only if y; <y < y,, where y; and vy,

are roots of
(ycosa — sina)2 — 4(y — 1)2=20.

These roots are found to be

2 —sina 2 4+ sina

2 —cosa’ 2 fcosa’

In order to prove (1), it is sufficient to show that

— sina
(2) FU—VN = TR sy eV,
and
2 4+ sina
(3) 4—1/7 —2—[—cosa§3 4+V7

for all real a.

It is sufficient to prove only (2), since (3) follows after replacing a
by a + 7 in (2).

Putting f(a) = (2 — sin a)/(2 — cos a), we get

f(a)=

}_ — 2(cos a+ sm a)
(2 — o8 a)
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The roots of /' (a) = 0 are
7 R4 . 1
a1=a.——,a——oc+— & = arcsin —— .
4 2)/2
Since
17 1+)7
sin @y =—_—, cosa, 1
14+ V7 — V7
sin ay, = j;l—l{— , COSay = 4 ,

we find that
Ha) == @ +V7),  fa) = @ —V7).
Hence f(al) = fmaxs f(az) = fminr which proves (2)

3.423 If 0 << 0 < f < «[2, then
0 cosec § < tcosect and 6 cot@ >t cott.

From these inequalities, under the same assumptions, we get

2 2 2
) 6<1—‘3—2< sec29(1—sfn 6).

sin? ¢ sin? #
. . 1
If » is an odd integer and r takes the values1, ..., - (n — 1), then,
for 0 < x < =,
sin2 % 2 x sin2%
n—1

m\t—-— <1 — ) <se I e

sin< — S11Y 7

[f0< < n/2and 0 <t < n/2 then

sin? 0 | \
si

sin? 0
sin2 ¢

1 — 1—

Reference

DureLr, C. V,, and A, Rosson: Advanced Trigonometry. London 1948, p. 240.

3.4.24 For any real x and for any positive integer #, we have

(1) d_”(sinx) < 1

dx" \ ¥

an (.1 = COS") <-

dx" x

(2)

Equality in (1) holds only for # even and x = 0; equality in (2) holds
only for #n odd and x = 0.
16¢ '
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Remark. These inequalities were proposed by T. H. GRoNwALL and proved by
O. DunNxkEeL and H. S, UHELER [see Problem 339 in Amer, Math. Monthly 27, 81— 85
(1920)].

The problem of proving inequalities (1) and (2) was proposed for the first time
in 1913, and then again in 1919 [see the above journal, 26, 213 (1219)].

Before this, T. H. GRoNwALL proposed to establish the identities:

, a" fsin x 1 F o, n+ 1

(1) E'( o ):x"+16ry Sm(y+ 2 ﬂ)dy,
and

, d" /1 — cosx | S n

(2%) c;’( - )=x”+1 (.)fy Sm(y‘i'?“)dy-

These identities were proved in 1913 [see Problem 331. Amer. Math. Monthly 20,
138 (1913)].

It is interesting to note that inequalities {1) and (2) are direct consequences of
(1Y and (27) although no connection was made between Problems 331 and 339 in
the aforementioned journal.

3.4.25 If

then

Sgn—1®2) _sinx,  Sypq1 )
Syp_1 %) sin x; S4n+1 (%y)

(1)

Proof. We have

sin?xf, (%) = S,, ,(#)sinx — S,, , () cos x.

Since Sy, .1 (x) = —S,,_3(x), we obtain’
(Sinzxf; (x))' = [Sgu_1(¥) — Spp_5(x)] sin x
(_l)n—l " .
:(21@—-1)!%2 lgin x .

If n is even, we get
(sin?xf,(0)) <0 for O<x<am,
sin?x f, (%) < 0 for O0<ax<m,

fx) <0 for 0<x<m.
Hence

Sin—1(%1) _ Sgn_y(*2)
" sing, sin x4

< <x <.
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If0<x < ]/ET, then

4k —3 4k —1
M T (k=1,...,n)
(4 — 3)1 7 (4 — 1)!

so that

n leik—'z’. xik—l
Sn—1 (%) :k‘§1 {(41@ — 3! T (4 — 1)1] > 0.

Assuming also that 0 < x; < %, < ]/6i we conclude that (2) can be
transformed into

Sgn—1¥) _sin Xy

San—1 (%y) sin x,

(0 < <z <V6).

‘The right-hand inequality in (1) can be proved in the same way.

3.4.26 If n is a positive integer, then for x| < #/2,

"

1 1

2 2
(1) cosec ¥ — g <k=§“'” T < cosec? x,
and, for 0 < % _<_%,
2n k
x (—1) x
(2) cosecx——4n+1<k=§;nxmkﬁ<cosecx+4n+2.

Remark, Inequalities (1) and (2) were used by E. H. NEVILLE for evaluation of
+0o0

f

]

sin x
dx.

Refevence

NeviLLE, E. H.: A trigonometrical inequality. Proc. Cambridge Phil. Soc. 47,
629 —632 (1951).

3.4.27 If inequalities

(1) !+ af* < tant <t + b3

hold for each ¢ & (0, 4), where 0 << 4 < 7/2, then the best possible con-
stants a and b are given by

1 tand — 4
(2) a:—?’—, b—-':"'—ls

Proof. Denoting f(f) = (tan ¢ — #)/#3, inequalities (1} become

a<<fi)<b (0 <t << A).
We find that
’ ¢ ' in ¢ .
/(t):‘%_’, gt) =ttan*t — Btant + 3, ¢'()) = . (2 —sin ).
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Hence, g'(t) > 0 (0 <<t < 4} which implies that g(#) > g(0) =0
(0 << t << 4). We infer that f is anincreasing function on (0, A). Therefore,
the best possible values of 4 and b are

1
—i(04+) =%, b=1(),
which is in agreement with (2).
Remark, If A = m/6, then b < 4/9 and we have
1 4
t—[—?t3<tant<t+§t3 (0 < ¢t << /B).
This proof is due to D. Z. Dyoxovié.

3.4.28 For 0 < tan x < 1, the following inequalities hold:

(1) tanx—%tan3x<x< tanx—%talﬁx +—£1,)—tan5x<tanx;
(2) sinx=~w:-t—é-l—r—l__L——>tanx — L tans
V1 + tan?x 2
(3) 1 —cosx=1— ot <——tan2
V1 + tan? x

Remark. Inequality (1) can be obtained if » is replaced by tan x in the power series
for arctan ». Inequalities (2} and (3} can be obtained if » is replaced by tan x in the

power series for (1 + xz)_l/z. In both cases alternating series are obtained. T. H.
GRONWALL has given inequalities (1), (2) and (3} without proof.

Refervence

GronwALL, T. H.: On the influence of keyways on the stress distribution in
cylindrical shafts, Trans. Amer. Math. Soc. 20, 234 — 244 (1919). — See, in
particular, p. 243.

3.429 If 0 << x << /2, then

(1) 2

T :ﬂ:—2

< tan x.

Reference
STECKIN, S. B.: Some remarks on trigonometric polynomials (Russian). Uspehi
Mat. Nauk (N.S.) 10, No. 1 (63), 159—166 (1955).
3.4.30 If 0 < x << 1, then

6(1 — x)1/2 31/2(1 — w2
212 (1 4 %)/ TEN O

These inequalities of B. C. CARLsoN are cited in the paper [1] mentioned in
References of 3.7:1.

< arccos x <
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3.4.31 For x > 0, we have

6()J/1 +x — )1 — x) 3x

arcsin x _—,
>4+V1+x+|/1—x 2 4 V1 — &2

These inequalities are due to R. E. SHAFER.

3.5 Inequalities Involving Trigonometric Polynomials

There are a large number of results on inequalities involving trigonometric
polynomials. In this Section we quote some simpler cases, as well as some more gene-
ral results provided that their formulation is not complicated. Many results on this

topic could not be incorporated, as, for example, those contained in the following
interesting papers:

Rogosinski, W. W,, and G. SzeG6: Extremum problems for nonnegative sine
polynomials. Acta Sci. Math. (Szeged) 12, Part B, 112 —124 (1950).

Rogosinski, W, W.: Extremum problems for polynomials and trigonometrical
polynomials. J. London Math. Soc. 29, 259275 (1954).

Rocgosinski, W, W.: Linear extremum problems for real polynomials and tri-
gonometrical polynomials. Arch. Math. (Basel} 5, 182—190 (1954) and
Corrigenda 6, 87 (1955).

HyLtEN-CavaLLius, C.: Some extremal problems for trigonometrical and com-
plex polynomials. Math. Scand. 3, 520 (1955).

MurLsoLLaxnp, H. P.: On two extremum problems for polynomials on the unit
circle. J. London Math. Soc. 31, 191 —199 (1956).

3.5.1 If 0 << x < 27, then
1 x . 1 x
(1) — 5 tan gkésm kxggcotf.

Proof. Since
COS il cO0Ss 1 )x
n ) —2- — 0 (ﬂ + 2
D)sinky =——— "

x
k=1 2 sin —
. 2

2

together with —1 <C cos (n + %)x < land 0 < x << 27, we obtain (1).

Comment of D. V., SLavi¢é. The statement in Elem. Math. 10, 69—70 (1955), that
(1) holds for any » == 2mn (m = 0, -1, -+2,...) is not true.

3.5.2 If 2 and » are positive integers and if x is a real number such
that x &= 2maz for m = 0, 41, +2, ..., then

1 . X
—2— cosec ~;)—"

< .

(1) —; + D' cos kx

k=1

1
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Proof. Since

"
1 1 .
Dlcoskyx = — — —Jr-—cosec—’i sin (n + —1—~) x,
= 2 2 2 2

together with —1 <|sin(n -+ 1/2) x < 1 and % &= 2mz, we obtain (1).

3.5.3 Let % and m be nonnegative integers, # a natural number and let
Dy, denote DIRICHLET’s kernel defined by

) 1
1 Sm(k—i—?)x
D, (x) =§+C05x+ veo 4 COS RX = —-

Then
Z’Dk(-zir)>0 for kR m=0,1,... and n=1,2,...
r=40 n

If0 <k <mand 1 <m < n, from the above inequality it follows

i 2n n i 2n n-—Hk +m
r%:Dk (~n— r) <5 and rng (—; r) < S

2
Reference
Maxkar, E.: A property of Dirichlet’s kernel. Studia Sci. Math. Hung. 1, 11— 16
(1966).

3.5.4 Let n and m -+ 1 be natural numbers.. If 0 << x << 2x, then

m-+n . 1
(1) S o<
k=m41 sini
2
Proof. Since
. nx
m+n nx Sin —
37 k| = | gitmtlin f — 1] __ 2
ix_ . x ’
k=m-1 ¢ 1 sin - |

inequality (1) is evident.
See also 3.5.37.

3.5.5 For all natural numbers # and all real x,

. T
| ~ Sin kx| sin x
. < f

dx=1.8519...<%+1.

0

References

Jackson, D.: Uber eine trigonometrische Summe. Rend. Circ. Mat. Palermo
32, 2567—262 (1911).
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GronwaLrr, T. H.: Uber die Gibbssche Erscheinung und die trigonometrischen
1 1
Summen sin x 4 5 sin 2x 4«0 - —n—sin nx. Math. Ann. 72, 228--243
(1912).

3.56 If 0 << x << &, then

References

TurAN, P.: Uber die Partialsummen der Fourierreiche. J. London Math. Soc. 13,
278—282 (1938).

HyrTéEn-CavarLrius, C.: Geometrical methods applied to trigonometrical sums.
Kungl. Fysiografiska Sillskapets i Lund Férhandlingar 21, No. 1, 19 pp.
(1950). .

3.5.7 Foralln =1, 2, ... and for real %

n k [ _
(1) Z(—_klsin kx!§V2 |xf.
k=1

Proof. First let x >> ~/2. Then the right-hand side is > 2, whereas the
left-hand side is (with x = & + ¥)

sin Ry
k

<fsmud <2
0

M s

1 " A

| —1 .

i é (_k—) sin kx
"ke=1 k=1

I

If x — |g (x)| denotes the function on the left, we have, for 0 << x << n/2,

1 _
—_— << 2,
nl“V

2

:Zcoskyig

(k=1

(%)] = % Zn' % cos kx

k=1

since —n < v < —n/2. This yields |g(x)| < )/2|* in 0<x < /2,
which completes the proof of (1).

Remark. Compare the above result with 3.5.6.

Reference

GaIEr, D, and J. Topp: On the rate of convergence of optimal ADI processes.
Numer. Math. 9, 452459 (1967).

3.5.8 Let n be a positive integer and let 0 << x < &/(n + 1). For

sin2x+ N (__1),.“ sin nx

x
2 ) 2

T(x) = sinx —
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we have
T(x) >0 ifnisodd, and T(x)<<0 ifniseven.

B. Sz.-NacGy proved the following general theorem: Let a, , a,,,, ...
be a sequence of real numbers with the following properties:

fork>n—|—1and lim a; = 0. Then

k—100

Z a sin kx > 0
k=nt1

. B
on thé interval (m , n) .

References

SzAcz, G., L. GEn£g, I. KovAcs and 1., PINTER : Contests in Higher Mathematics.
Budapest 1968, p. 19 and pp. 175—176.

Sz.-Nagy, B.: Uber gewisse Extremalfragen bei transformierten trigonometri-
schen Entwicklungen. I: Periodischer Fall. Ber. Math.-Phys. Kl. Sichs.
Akad. Wiss. Leipzig 90, 103— 134 (1938). — See, in particular, p. 131.

3.5.9 Let m - 1 and # be natural numbers, If 0 << x < 27, then

M-
sin Ay 1
Fmee o
k=ma1 (m + 1) sin —-

Proof. Starting from 3.5.4 we get

1 mt+n ] ‘ m+n ‘ 1
(2) 2 sinky =1Im 3 e** | < ,

k=m1 ’ k=m+1 } sin %

and using ABEL’s identity

m-n

\ D Ul = (”m+1 - “m+2) Uty T (“m+2 — “m+3) (Um+1 -+ 7’m+2)
=m+1

+ - +‘um+m(vm+1'%"'+‘vm+n):

we obtain
"I sin ka \ 1 1 )
k=§+1“T - (m 1 n}'ﬁ) sin(m + 1) %
1 1 . .
+(m T+ z_m +3)[51n(m+ 1) x 4 sin{m + 2) x]

A —[sin(m 4+ 1) x + .-+ 4+ sin{m + ») x];.

m +
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Using (2) we infer that

men <1_1) 1_1)_”1‘
—(m—}—l m + 2 +(m+2 m+3+ +m+n5

sin kx
2

k=m+1

which proves (1).

3510 If —m<i<mandm=0,1,...,2=1,2, ..., then
m4n .

1 1 k+1smkt< 2 .

( ) k:%l( ) kR — (m 4 1) cos (¢/2)

Refevence

OsTROWSKI 2, p. 109,

Remark. Inequality (1) can be obtained from (1) in 3.5.9 replacing » by = — &.

3.5.11 If 0 << x << =, then

n
sin Ax . x x T— X
2.7 FRA

> 5 >4s1n2(cot2 5 ) (n > 1).

k=1
Reference
TurAN, P.: On a trigonometrical sum. Ann. Soc. Polon. Math. 25, 155— 161
(1952).

3.5.12 If 0 < x < =, then

— X%
2

"

k .

> cos k% < — log sin -~ + hi
o k . 2

Remark. C. HyLTEN-CavaLLius has obtained the above inequality, as well as
some others, using geometrical methods.

Reference

HvyiTéEN-CavarLius, C.: Geometrical methods applied to trigonometrical sums.
Kungl. Fysiografiska Sillskapets i T.und Férhandlingar 21, No. 1, 19 pp.
(1950).

3.5.13 If 0 < x << 2x/3, then

ké(”*‘;‘k)ksinkx>o.

Remark. This inequality was first proved by G. SzeG6 [1] but only for the interval
0 < x <y, where sin®(p/2) = 0.7 and #/2 < y < n. M. SCHWEITZER [2] later
proved that y can be replaced by 2r/3 and that y cannot be greater than 2x/3.
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Refevences

1. Szeco, G.: Power series with multiply monotonic sequences of coefficients.
Duke Math. J. 8, 559—564 (1941).

2. SCHWEITZER, M.: The partial sums of second order of the geometrical series.
Duke Math. J. 18, 527—533 (1951).

3.5.14 For all real «,
3 —k+ 1) |sinkx] < T
k=1

Reference

Tureckii, A."H.: On a function deviating least from zero (Russian). Belorussk.
Gos. Univ. U¢. Zap. Ser. Fiz.-Mat. 16, 41—43 (1954).

3.5.15 In 1913 W. H. Youna [1] proved that the cosine polynomials
" 1 cost cos nt
T”(t) 1+cx+1+cx+“.+n+cx
are nonnegative whenever —1 << x < 0.

In 1928 W. W. Rocosinskl and G. Szecd [2] extended this result
to —1 << o << 1. They also showed that there is a number 4,1 < 4 <
2(1+ Vg), such that the polynomials 7% (), for » = 0, 1, ..., are non-
negative for —1 << « < 4, while this is not the case for & > 4.

In 1969 G. GasPER [3] proved the following result:
Let A be the positive root of the equation

90" + bha® —14a° — 948t — 324743 — 50132 — 3780 — 1134 = 0.

If -1<<ax<<A4, then T%(#) > 0 for n = 0,1, ... However, if x > 4
then T3 (¢) < 0 for some ¢,

A simple computation yields 4 = 4.5678018 ...

G. GASPER also showed that: 1° T¢() >0 for £ = 0, 1, ..., nimplies
TPy >0 > B> —1;and 2° T*(f) > 0 for n > 4 and o = 4.57.

As an extension of the above results, G. GASPER also proved:

Ifay,>a, > -+ >a, >0, then

a, cos t a, cos nt

rxa T T

)
144

>0,

+ nrd =

and if —1 <<« << A4, then for allreal {,, ..., ¢,

Hcoskt = 0.

References

1. Young, W. H.: On a certain series of Fourier. Proc. London Math. Soc. (2) 11,
357—366 (1913).
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2. RocosiNskl, W. W., and G. Szec6: Uber die Abschnitte von Potenzreihen, die
in einem Kreise beschrinkt bleiben. Math. Z. 28, 73— 94 (1928).

3. GasPER, G.: Nonnegative sums of cosine, ultraspherical and Jacobi polynomials.
J.Math. Anal. Appl. 26, 60—68 (1969).

3.5.16 If 4, ..., b, is a nonincreasing sequence, then, for all real p and ¢
and 0 < x << =,

< b sin(kp + q) x < b .
in 2% k=0 in 2%
Sln-—z— 5111 P

__,bo

Reference

KaraMaTa, J., and M. ToMi¢: Considérations géométriques relatives aux poly-
nomes et séries trigonométriques. Acad. Serbe Sci. Publ. Inst. Math. 2,
157—175 (1948).

3.5.17 If ay, ..., a, is a positive, nonincreasing and convex sequence, then
for 0 << x < 2m,
0<—~ay+ Zna cos kx < " A cosect =
— 270 T &k 2 2 -

See the reference in 3.5.16.

3.5.18 Let b = (b,, ..., b,) be a sequence of positive real numbers. If this
sequence is monotonely decreasing and convex, then for 0 < x < =,

b
bysinx + - + b, ysin(n — 1) x + sinnx = 0.

If the sequence of nonnegative real numbers a = (ay, ..., a,) is
monotonely decreasing, convex, and if 4, , > 2a,, then for all real x,

1
2 % 1+ 31€0s X A - + a,cosnx > 0.

Reference

FEJER, L.: Einige Sidtze, die sich auf das Vorzeichen einer ganzen rationalen
Funktion beziehen; nebst Anwendungen dieser Sidtze auf die Abschnitte
und Abschnittsmittelwerte von ebenen und rdumlichen harmonischen Ent-
wicklungen und von beschrinkten Potenzreihen. Monatsh. Math. 35, 305—
344 (1928).

This article contains numerous interesting inequalities concerning trigonometric

polynomials together with the literature on that subject.

3.5.19 Let ¥ b, sin(2k — 1) 8 > 0 for 0 < 6 < . Then
k=1

b
S Ssinkp>0 for 0<g<u,
k=1

unless all b, == 0,
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Proof. We have

d  sinod ) __ sin{a — l)f
dt \ x (sin £)* (sin £)* T

Letting o« = 2k and ¢ = ¢/2, we obtain

sinkp _ w2 (sir} tp/2)2k sin(2k — 1) 8 50
k 2 sin 6 sin @
Thus
" b, sin kfp W2 ssin @f2\2%k df
= 2 b(_"”) sin(2k — 1)8 20
§ J; ké;, k né sin #

Buthkrz" lsin(2 — 1) 0 > 0 for 0 << » < 11f2'bksm ok — 1) 6
- k=1

> 0 and not all &, are zero.
This completes the proof.

The above result is due to P, TUrRAN [1] and the cited proof to R. AskEvy,
J. Fircu and G. Gasper [2].
See 3.5.20.

References

1. TurAN, P.: On a trigonometrical sum. Ann. Soc. Polon. Math. 25, 155—161
(1952).

2. Askey, R., J. Frrcr and G. GaspPer: On a positive trigonometric sum. Proc.
Amer. Math. Soc. 19, 1507 (1968).

3.5.20 If not all real numbers a,, ..., a, are equal to zero and if

L] "
Da,=0, da,coskx >0 (—a<x <nm),
= k=0

then
P SR ’
D G sinkyr >0 (0<x<<m).
k=1 k
References
TUrAN, P.: On a trigonometrical sum. Ann. Soc. Polon. Math. 25, 155— 161

(1952).
HvyLTEN-CavaLrius, C.: A positive trigonometrical kernel. C. R. 12e Congrés
Math. Scandinaves, Lund 1953, pp. 90—94 (1954).

3.5.21 If 0 << a < =@, then
n—1

2
max |cos #nt -+ 23 a,cos ki { > sin 2) "
k=0

—a<i<a

This result is due to S. B. BERNSTEIN. See TiMaN, A. F.: Theory of Approxima-
tion of Functions of a Real Variable. Oxford-L.ondon-New York-Paris 1963, p. 80.
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3.5.22 Denoting by E the class of trigonometric polynomials of the form
C(x) =cy+ ¢, cos x + -+ 4 ¢, cOs nx,
where cg > ¢; > -+ 2> ¢, > 0, then

max | C (%) |

2 1 onaf2<y<nm 1 1 1
(1 —?)nT'1£r&1£ max |C(#)] g(?+V§ )n—}- 17
0=<x<2m
Reference

Szicz, G., L. GEHER, 1. KovAcs and L. PiNTER: Contests in Higher Mathematics.
Budapest 1968, p. 20 and pp. 177—178.

3.5.23 Let ay, a4, ..., a, and ¢ be real numbers. If

(1) ay>a > >a,>0,

and

(2) Aop = ?"%%_1 Aoy 1 (1< k< nf2),

then

(3) Znaksinkt> 0, kzn'akcoskt>0 O<t<m).
k=1 —0

These inequalities are due to L. VIETORIS [1].
Putting @y = 1, a, = 1/k (k =1, ..., n}, inequalities (3) become

(4) kg;%sinkt>0 0 <t< ),
(5) 1+ ké;% coskt >0 (0<t< m).

Since in this case conditions (1) and (2) are fulfilled, the truth of (4)
and (b) is an immediate consequence of (3). Inequality (4) is known as
the FEJER-JACKSON inequality and () as the W. H. YouNG inequality.
There exist also various proofs of (4) which will not be mentioned here.

Generalization. D. Z. Djoxovié [2] proved the following result:
Ift, (w =1, ..., m) satisfy

(6) L, >0 (p=1,....m), D't <am,
v=1
then
" L sin At
(7) 2 [[ 5 >0 (n:1,2,...).
Bl \p-t

For m . 1, (7) reduces to the FEJER-JACKSON inequality (4).
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The proof of (7) is based on (4) and proceeds by induction on .
Note that the function F defined by

" o[ ™ 1sink sin Ax\2
F(x)=Z(H k’”)‘ y

k=1 \v=1

.. ) 1
isincreasing for 0 <y < 5 (mw — 8 — - — 4, _4)

L. VIETORIS communicated to us the following result:
If (1) and (2) hold, then

i ™ sin At
2 \ka, [T >0
k=1 v=1 %

m
for0<t, <ama(p=1,...,m) and 3 t, < m.

v=1
References

1. Vietoris, L.: Uber das Vorzeichen gewisser trigonometrischer Summen.
Sitzungsber. Ost. Akad. Wiss. 167, 125—135 (1958), and Anzeiger Ost.
Akad. Wiss. 1959, pp. 192 —193,

2. Dyokovié, D. Z.: Sur une généralisation de 1’inégaﬂlité de Fejér-Jackson. Univ.
Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 35—37, 1—4 (1960).

3.5.24 Let T,(x) = 2 (ax cos kx + by sin kx) with real a, b, If
k=

[

0. =1 d " (a2 b%) = An,
max (|a, |5,]) and 2 (@ + by) = An
then there exists ¢ > 0 which depends only on 4, such that}in& c(A) =0,
and ~

n 1/2
max |7,(91> 550 ( 5+ )

0<r<2n Ve
Reference

Ernos, P.: An inequality for the maximum of trigonometric polynomials. Ann,
Polon. Math. 12, 151 — 154 (1962).

3.5.25 If in the interval —a < x << +a (0 << @ << ) the trigonometric
polynomial :

T,(x) = kz (ay cos kx + b, sin kx)

. =0
satisfies the inequality max [T, (x)| <1, then for any »
—a=x<a

1T, (%) < % (tang” —:— + tan 2" —Z—) .
Reference :

GoncCarov, V. L.: Theory of Interpolation and Approximation of Functions
(Russian). 2nd ed., Moscow 1054, pp. 231—232.
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3.5.26 Let a,, ..., a, be real numbers and

(1) S = D exp(2ay),
k=1
n—1
, 1 . 1 . ]
(2) S = - eXp (2ay) + 5 €Xp (2a,1) + kZ’exp (2a,1).
=2
If
(3) O<B§—a2—a1_<_"'$an_'an—1£q}<777':
then
0 P
(4) | 2|S|gcot?+tan?,

(5) 2.5

_ iexp(2a;, — 0)i
[ 2sinf

<l cot @ + tan%.

If Aay = ay . — ay, A%, = A(da,), ..., and

<0< da, <af4 (k=1,...,n—1)

A, > 0 (h=1,...,n—2),
Aa, > 0 h=1,....n —3),
then
1
(6) SI<as

If (3) holds and ¢ << n/2, then
(7)

Proof. The identity

" (e Ay Ay
0 A = o+ 1 +zn(1 )

k+}“k-}_1 A 1+Ak)
}k—lk“ g — A

+zz(

after the substitution 4; = exp(2a;t) yields

25 = ¢*(1 + ¢ cot(ay — ay)) + €¥#'(1 — i cot (a, — a,_y))

n -1

+ Zie* ¥ [cot(a,,, — a;) — cot(a, — a4, )]
k-2

17 Mitrinovi#, luequalities

257
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Using (3) and the fact that cot x decreases in (0, ), we infer

1 i
sin (a; — aq) sin(a, — a, _4)

(8) 25| < + cot (ay — ay)

a — an_l

— cot(a, —a,_ )<cot 1—i—ta.n

and (4) follows immediately.
Inequalities (5), (6), and (7) can also be proved starting from (8).

Remark. For the complete proof and bibliographical references see the followin g
paper by L. J. MorDELL: On the Kusmin-Landau inequality for exponential sum s.
Acta Arith. 4, 3—9 (1958}, and the following book by J. F. KoksMa: Diophantisch e
Approximationen. Berlin 1936.

3.5.27 Let T, be a trigonometric polynomial of order #, defined by
Tn (x) - 2 Ckeikx
k=—n
and let x4, ..., x,, (m > 2) be distinct points in (—=n, ) such that

min |x;, — %, | = 20.
Jkk

Then we have the following inequalities due to H. DAVENPORT and
H.HALBERSTAM [1]:

m . E n 5
(1) PEACALES 4.4max (n, 26)k£”1Ck| ;
and the following due to M. Izumr and S. Izumr [2]:
(2) kZ T, (%) |2SAk 2 laf
=1 =—%n

for small §, where 4 < 2.34 (N +3)or 4 <313(N + 2-"%) .

Neither of inequalities (1) and (2) implies the other.
If 1/p + 1/g =1 (p = 2), then under the same conditions, we have

m 9 n plq
2T, <4 ]/pmax( : 5) Y e
k=1 ——»
where A is an absolute constant (see [1]) and
n , ) - ” Blq
Sl <aua+a® +2)( 3a)
k=1 k= —n
for any &£ > 0 and sufficiently small §, where

, 2?2 |smt|f1 Pl (2 ginze 7P
e B (T (o)

T APt
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References

1. Davenrort, H., and H. HaLBersTaM: The values of a trigonometric polyno-
mial at well spaced points. Mathematika 13, 31 —96 (1966).

2. Izumi, M., and S. Izumri: On a theorem concerning trigonometrical polynomials,
Proc. Japan Acad. 43, 71—76 (1967).

3.5.28 1f T, is a trigonometric polynomial of order #, then for 0 < 4 <
2n/n

S () Tt + k)

3

with equality if and only if

T,(x) =acosnx + bsinnx + c.
Reference

STECKIN, S. B.: A generalization of some inequalities of S.N. BernStein
(Russian). Doklady Akad. Nauk SSSR (N.S.) 60, 1511 — 1514 (1948),
See also the review by R. P. Boas in Math, Reviews 9, 579580 (1948).

3.5.29 Let T, be a trigonometric polynomial of order » with 7(0) = 0
and

(28 + ) L o
‘TM(T)‘gl (k=0,1,..., 210 — 1),

Then, for |x| < 7/(2n),
(1) |7, (6)| < |sin n].

There is equality in (1) for some x (and hence for all x) if and only if
T, (x) is a constant multiple of sin #x whose modulus 1s 1. If T, (x) 1s real,
the hypothesis 7,(0) = 0 can be replaced by T,(0) < 0. If n/(2n) <

¥y < m, there is a trigonometric polynomial 7 of order not exceeding »
with [T (x)| < 1, T(0) = 0 and T (x,) = 1.

Refevence

Boas, R. P.: Inequalities for polynomials with a prescribed zero. In: Studies in
Mathematical Analysis and Related Topics. Stanford 1962, pp. 42—47.

3.5.30 If m, are natural numbers and 0 << 6 < =, then for all real ¢

< (ﬂ)n max

0 /i-s<a<tis

n n

max | D a.e
—n<x<n | k=1

2 akeimkxl .

k=1

imkx

This inequality is due to P. TURAN (see A. DiNGHAs: Vorlesungen tiber Funk-
tionentheorie. Berlin-Gottingen-Heidelberg 1981, p. 128).

3.5.31 If C,(f) = 5 a5+ 3@ cos k, then
k=1

" ak b1
lgjanf <4 [Ic, 0],

17*
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where

n T sin ¢ .
T4 Of‘—rdtzl.So. .

Under the additional requirement that the a;’s have the same sign,
the exact value of 4 is n/2.

References

Hivig, E., and J. TAMARKIN: On the summability of Fouricr series I, Trans,
Amer. Math. Soc. 34, 757— 783 (1932).
Sipon, S.: Uber Fourier-Koeffizienten. J. London Math. Soc. 13, 181—183

(1938).
STECKIN, S. B.: Some remarks on trigonometric polynomials {Russian). Uspehi
Mat, Nauk (N.S.) 10, No. 1 (63), 159—166 (1955,

Remark, For some refinements of the cited results, see: Ref. Zurnal Matematika
1956, No. 9, Review 6512 by A. F, TiMAN.

3.5.32 Let 1 < g < + oo. Then, for any trigonometric polynomial 7', of

order #,
1/q

(jnﬁ T (%) |7 dx)lfq < (j'n[ T, (%)l dx)

Refevence

Nikor’'ski1i, S. M.: Generalization of a proposition of S. N. Bern3tein (Russian).
Doklady Akad. Nauk SSSR (N.S.) 60, 1507— 1510 {1948).

1

3533 Let P(e) =2" + 21 + .- 41,72 > 0. Then
1 2 . ———— -
= f| P(e'®] db < I/n 4+ 0.97.
0
Remark. D. J. NEwMAN observes: “‘“To prove, however, that
LT 1P a8 <y
25

for » large would call for a completely new approach. It has even been conjectured
that

127! "
55[ [Py do<c)n + 1,
0

for 0 << ¢ << 1, but we are far from this result”.
This result is related to 3.5.24.

Reference
NEwMAN, D. J.: Norms of polynomials. Amer. Math. Monthly 67, 778--779
(1960).
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3.5.34 If P is an algebraic polynomial of order # and p > 1, then

2n ,QF(% + 1) 2n _
f|P’ (Eie) Ipdﬁgl/ﬂ ***** 5—_':1-(11’9 flRe P(eie) ]p d@,
b F(ﬁ'"‘) b

with equality if and only if P (z) = Az".

Refevence
ZveMUND, A.: Two notes on inequalities. J. Math. and Phys. 21, 117123
(1942).
3.5.35 Let
i ¥ { L 2k )
M) =, [lWlds M0 =5 3 oy -

If 7 (x) is a trigonometric polynomial of degree » and T (x) is its con-
jugate trigonometric polynomial, then

M, (T?) < A? M (1?) (1< p < +00),
M(T?) < B*M, (T?) (1<p <+ o),
M, (T?) < CPM (T?) (1< p<+o),
M(T?) < D*M,(T?)  (1<p < +o9),
M(T?) and M(T?) < E*M(TY*  (0<p < 1),

where A4 is an absolute constant, while B, C, D, E depend on .

Refevence
MARCINKIEWICZ, J., and A. ZvGMUND: Mean values of trigonometric polyno-
mials. Fund. Math. 28, 131 —166 (1936).

3.5.36 Let T be a real trigonometric polynomial defined by

T = 3 ae” with a_,—a,,

ke —n

2n
and let I, = [ |T'(#)] dt.
0

A number of papers (see [1], [2], [3]) were devoted to determining
the best possible estimate of

A,
(1) max 20[%[-; la—’fl— for 0<k<n,

n

where A4, 4, are given nonnegative numbers.
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In the cited papers the best possible estimate was found only for
k>nf2 (== 0)or k> n[3 (4, =0).

Ya. L. GEroNmMUs [4] showed that the problem in question is only
a special case of a result of his own (see [5]), in which he established the
equivalence of finding -

"
2 ac,
max ——*
3
In

where (¢, ..., ¢,) is a given sequence of complex numbers, with a result
of N. I. Aniezer and M. G. KrEein [6].
Ya. L. GERoNIMUS proved that

i
]aol + A lakl SZ;IW

where 4 is an arbitrary positive number, x is the least positive root of

mo MI rre mP
m_y M My 1| _ 0
M_, M_pyy My
2a4)° . _
and where my = 2 cos &, m; = ( ,) e*,m_,=m,fors=1,..., p.
S

This estimate is the best possible.

The method used by GErRONIMUS in [H] is essentially analogous to
the method used by Boas in [3], but Boas did not make use of the results
[6], without which, as can be seen from [4], the best possible estimate of
(1) cannot be obtained.

References

1. vanx pER CoRrpuUT, J. G., and C. Vissir: Inequalities concerning polynomials
and trigonometric polynomials. Indagationes Math. 8, 238 —247 (1946).

2. Boas, R. P.: Inequalities for the coefficients of trigonometric polynomials.
Indagationes Math. 9, 298 — 301 (1947).

3. Boas, R. P.: Inequalities for the coefficients of trigonometric polynomials 11I.
Indagationes Math. 9, 369372 (1947).

4. GERoNIMUS, Ya. L.: Refinement of estimates of van der Corput, Visser, Fejes
and Boas for the coefficients of trigonometric polynomials (Russian).
Doklady Akad. Nauk SSSR (N.S.) 63, 479482 (1948).

5. GErRoNIMUS, Ya. L.: Sur quelques propriétés extrémales des polynomes tri-
gonométriques. C. R. Acad. Sci. Paris 198, 2221 —2222 (1934).

6. AHiezer, N. I., and M. G. Krein: Uber Fouriersche Reihen beschrinkter

summierbarer Funktionen und ein neues Extremum-Problem, Zap. Har’kov.
Mat. ObS&. (4) 9, 9—23 (1934) and (4) 10, 3—32 (1934).



3.5 Inequalities Involving Trigonometric Polynomials 263

3.5.37 Let the sequence 7,,7,, ... be monotonely decreasing and let
lim #, = 0. Then, for 0 < § < 2x,
> 400
00 ¥
(1) S et <2
k=n+1 i i
Sl 9

Proof. If 0 < 6 << 2x and m > 1, then

ngz eJikB B 3i(n+1)6(1 _ efmﬂ) L < 9 - i
h=n-+1 £ — " ‘ - It~ gwl sin 5

Therefore, by ABEL’s inequality (see 2.2),

' ontm
5 ] <o
Vh=n+1 l " sin 5 sing—

Letting m — + oo, we get (1).

Reference

BLaANKFIELD, J., and D. ZEITLIN: Problem E 1220, Amer. Math. Monthly 64,
4748 (1957).

3.5.38 Forallrealxand»r=1,2, ...,

i sin zna\27
3 (=t (B = o
n=1

n

This inequality, due to J. N. LyNEss and C. MOLER, is generalized as
follows:

HO0<x,<mand N =1, ..., k, where £=1, 2, ..., then

N ok sinnxi
ST o
n=1 i=1

[f0<x,<mand k=3, 4, ..., then
+ o0 k
2n ]l

n=1 i=1

sin nxi

> 0.

n
References

I.yNEss, J. N., and C. MoLER: Problem 67-6. SIAM Review 9, 250 (1967) and
11, 82-- 86 (1969).

AsKEY, R, and J. FircH: Some positive trigonometric sums. Notices Amer,
Math. Soc. 1§, 769 (1968).
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3539 For0 < v <o, —n < t<< +m, |#| = x and £ &= 0 we have

. i
giinkxsm(k—?)t
1 k

b=

> 0.
2sin—‘-—
2

ForO<<x < 0<t<mwand = x, we have

¢ 1
cos—2— —cos(k—i-?)t
> 0.

-E‘o gin_kx
k ¢

k=1 in —
2 sin 3

Refevence

HyrTeENn-Cavarrius, C.: A positive trigonometrical kernel. C. R. 12e Congrés
Math. Scandinaves, Lund 1953, pp. 90—94 (1954).

3.5.40 Let the sequence a = (a,, 44, ...) be four times monotone , i.e., let

T e ]

Then, for 0 < x <m,

+00
. a, ¥

(1) 2 & sin kx < Steot 5.

k=1
Remark. Inequality (1) together with a number of other inequalities, was proved by
M. Tomi¢ in [1], who used geometrical reasoning. Almost at the same time, similar
methods were used by C. HyLTEN-CavaLLIUs [2].
References

1, Tomi¢, M.: Sur les sommes trigonométriques a coefficients monotones (Serbian}.
Srpska Akad. Nauka. Zbornik Radova 18, Mat. Inst. 2, 13—52 (1952).

2. Hvrtén-CavaLrrius, C.: Geometrical methods applied to trigonometrical sums.
Kungl. Fysiografiska Sillskapets i Lund Férhandlingar 21, No.1, 19 pp.
(1950).

3.5.41 If T, 4 () is a trigonometric polynomial of order # — 1, then
max |7, ;(x)|<n max [T,_,(x)sinx.|
] <

—a<r<n —a<y=<n
Reference

Bari, N. K.: Generalization of inequalities of S. N. BernStein and A. A, Markov
(Russian). Izv. Akad. Nauk SSSR Ser. Mat. 18, 159 — 176 (1954).

3.542 Let T,(x) =9 + 3 (aycos kx + b, sin kx). Then, if |T,(x)]
< 1, we have k=1

1 n
- Flal+ 3 (] + ) < an

where A 1s a constant.

Reference
ZYGMUND, A.: Trigonometric Scries, vol. 1. Cambridge 1959, p. 244.
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|
3.5.43 Let S,(x) be the n-th partial sum of FOURIER series of f& L?
(p > 1). Then -

+n

'(jf:lsn )P dx)”ps c, ( 1116 de)w,

where C,, depends only on 2.

Refevence

ZvoMUND, A.: Trigonometric Series, vol. 1. Cambridge 1959, p. 266,

3.5.44 For any trigonometric polynomial T, (x}),

+ 7 i/g +n 1/p
( [1T,(x)] dx) < 2ntiP—te ( [T, dx)
for 1 <p<g<< -+ oco.

Reference

Nikor'skil, S. M.: Inequalities for entire functions of finite degree and their
application in the theory of differentiable functions of several wvariables
(Russian). Trudy Mat. Inst. Steklov 38, 244 —278 (1951).

3.5.45 Let (a;) be a sequence such that a, > 0. If a2~ * is decreasing for
s > 0, (a;) is said to belong to the class A,. If a,° is increasing for some
s > 0, (a) is said to belong to the class 4 _.

If x 4= 2km for R =0, 41, 4-2, ..., then

a” s
(B tor (@)ed,,
! sm—é-
Saftn) <10
(k=n _ m LAY f A
sin % (5) fr ed
2

where f(x) = cos x or f(x) = sin x.

Reference

LeBeD’, G. K.: On trigonometric series with coefficients which satisfy some
conditions (Russian). Mat. Sb. 74 (116), 100—118 (1967).

3546 Let A0 =1, A2 =A%t 4 A2~% ... L AP tforn=0,1,...
and p=1,2,... Then, if {¢ (0,n), n=0,1, ... and if » is an integer
> 3, we have :
Loott —L S 41 Ssin > 0.
2 ”n—yp =

*
2 Au y=0 p=0

Reference

TaBerskI, R.: Asymptotic formulae for Cesaro singular integrals. Bull. Acad.
Polon, Sci. Sér. Sci. Math, Astronom. Phys. 10, 637 — 640 (1962).



266 3. Particular Inequalities

3.6 Inequalities Involving Exponential,
Logarithmic and Gamma Functions

36.1 If a > 0 and x > 0, then |

c2 (). .
a T \éx

1ogx§—:-]a/;,

These inequalities are of importance for large values of a.

3.6.2 If a and ¢ are real numbers such that « > 1 and [¢t| < 4, then

2
a

0< et — (1 —i)“<

a —

If 0 <t<<aanda> 2 then

Oée-t_(l__f_)“stz(l—l—t) e_".

a

Ho0<t<aand a >0, then

oge*'—(l—i) <£

a — 2a

Remark. These inequalities were the object of a sharp discussion between G. N. Wa1-
son and E. H. NEVILLE.

References

WaTtsoN, G. N.: An inequality associated with gamma function. Messenger
Math. 43, 28— 30 (1916).

NeviLLg, E. H.: Two inequalities used in the theory of the gamma function.
Math. Gaz. 20, 279—280 (1938).

NeviLLg, E. H,: Addition to Note 1209, ‘\/Iath Gaz. 21, 55—56 (1937).

WaTsoN, . N.: Comments on Note 1225. Math, Gaz. 21, 292295 (1937).

Duxker, O.: Problem 3766 (Editorial note). Amer. Math. Monthly 45, 58
(1938).

WHITTAKER, E. T., and G. N. WaTtsoN: A Course of Modern Analysis. Cam-
bridge 1952, p. 242,

3.6.3 Let S, (x) =1 + x + a2/2! 4 ... 4 a"/n!l. If n is a natural number
and x > 0, then

(1) 0< e"-—-(l

)x/2 ’

—
c
I/\
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Proof. Inequalities (1) are equivalent to

(1 " %)n << (1 4 )n+x/2.

We shall prove more general inequalities
AV p+ %2
1+ <e<(1+ =

Let

(x>0 and p > 0).

Foy=(1+2), ¢y =(1+%)""

f(p) =log F(p), g(p)=1logG(p).

Since, for p — + oo,

(1 + %)ﬁ — ¢ and (1 + %)ﬂz -1,

)p+xl2

it is sufficient to prove that F is an increasing and G a decreasing func-
tion of p, both for p > 0. This is equivalent to the assertion that f is an
increasing and g a decreasing function, both for » > 0.

By differentiation we get

o X P + x X x2
—— == — —_——— 0
X
P+
") — — 2. 2 P —l— ¥ r A

It follows that
F'(#)>f(+00)=0, g(p)<g (4 00) =0,

which proves the above result.
Inequality (2) is equivalent to

E+1 +00 k+1

1o x x
g; (k+1)!Sk§; Rin’

1e., to
n—1 xk+1

g YRR n ok
k‘=ZO‘ ! +Z(k+1)' =0,

which is obviously true for all x > 0.

Remark. Inequalities (1) and (2) are due to W. E. SEweLL [1]. Inequalities (1) also
contain the following (see [2]):

) n ‘xz
(3) 0ge‘—(l+£—) <" u>1, 0<i<n

n =
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Combining inequalities (1) and (2) we get

” 1
\(1+-§3) ~ % Se"[1+-,f:————,;~;,—2 , #20,
| (t+3)

while (2) and (3) together yield
x\n
(1+5) - s,

1. SEweLr, W.E.: Some inequalities connected with exponential function
(Spanish). Rev. Ci. (Lima) 40, No. 425, 453 —456 (1938).
2. DuNKEL, O.: Problem 3766 (Editorial note). Amer. Math. Monthly 45, 58 (1938).

Refevences

3.6.4 If x > 0, then

. % xn—l xn—i—i %" %2 1/2
A TR T 1)!+(n+1)!+7ﬁ(1 +(7z—§CT)§> '

This inequality 1s a consequence of

21n+1[n~1 => Ii’

where

xn

In=e"—-(1+%+---+—) for x> 0.

n!

Reference

Kesava MENoN, P.: Some integral inequalities. Math. Student 11, 36—38
(1943).

3.6.5 For all real x, the following inequality holds:
(1) |6 (12 — 62 + #%) — (12 + 6x 4 #%) | < |x\5 el

Proof. Consider the following identity

—-(1+x+x2/2) 1

48

Differentiating twice the above identity, we get

e (12 — 6x + #2) — (12 + 6x + »?)
x5

I D
=5 T Ty X T

1 "

(n + 3) (0 + 4) ( + 5) nl

1
=gt + -
60

1
w1+t EreEranie Tt )
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60 | [#" .
n+ 3) (n+4) (n + 5)77S?ZT’WE obtain

€ (12 — 6x 4 #?) — (12 4 6x -+ x2)
5

However, since

=*

nl

60 4 o=,

<1+ +
which yields inequality (1).

The above proof of inequality (1) is due to F. MoTTE: Problem 3707. Revue
Math. Spéc. 46, 129 (1935/36).

G. KavLajpZi¢ gave the following generalization of (1):

For any real x and any natural number z, we have

n—k l

i z Rk x FILE! n+k d 1 2n+1 x|
Sy () G S T

The proof is similar to the one given above.

3.6.6 For the exponential function the following rational approximations
are valid:

Py (%)
- .
Pop(—2) = = Paypq(—

Pops1(#)

0<x<ux,),

N3

where

%, being the least positive zero of P, (—x};
2ET 0<x<?);

1+x+§gfg1+x+gh~fﬁ (0<x<3);

23 — %)
¢ < —— 2

- nm—x n!

1

-3 (0w < n).
=0 :

Reference

KaraMarta, J.: Sur approximation de ¢* par des fonctions rationnelles (Ser-
bian). Bull. Soc. Math. Phys. Serbie 1, No. 1, 7—19 (1949).

3.6.7 If n 1s a natural number, then
xn-i—l

(n— x4+ 1) (n])

2:—!<e" forall x>0, and ¢ < Z’:—
r=0

=

=]

for0<x<n 4+ 1.

Proof. Setting
nry ni+1

f=e* Z5.60 =10 + e g an

we have f'(x) < Oforallx >0and g’ (x) > 0for0 < x < n + 1.
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Hence, we obtain the desired result.

Remark. See the last inequality in 3.6.6.
368 If a, b > 0, then

|cosha —coshb| > |a — b{l/sihh a sinh b.

Reference
vaN DER CoRpuT, J. G.: Problem 96. Wisk. Opgaven 16, 243 —244 (1935).

3.69 If x &= 0, then

sinhx)?». o ’ 9 N

x

(1) cosh x < (
The exponent 3 is the least possible.

Proof. Let us put f(x) = x — sinh x (cosh x)~ %%, We find that f(0) =
7 (0) = 0, and

f(x) = — % sinh® x (cosh x) /3.

Hence f(x) is concave on (0, + oc) and its graph is tangent to the
x-axis at the origin. Therefore f(x) <C 0 on (0, + oc) which implies that
(1) holds for 0 << x << + oco. All that remains is to note that both mem-
bers of (1) are even functions.

Since

sinh x

2 a 2
COth:l-{——;—'—{----,‘and ( ):1+_:_%+...,

for x in the neighbourhood of the origin, we infer that a = 3 is the
smallest value of a such that

cosh x < (S—in;f)a (x & 0).

Inequality (1) and its proof are due to I. LazaReEvié.

3.6.10 If x > 0, then
arctan x << -2n— tanh x.

Reference
GARNIR, H. G.: Fonctions de variables réelles, vol. 1, Louvain-Paris 1963, p. 268.

3.6.11 For x > 0 we have

tanh x > sin x cos x.
References
LocHs, G.: Die Konvergenzradien einiger zur Lésung transzendenter Gleichun-
gen verwendeter Potenzreihen. Monatsh. Math. 58, 118 —122 (1954).
LAzAREVIE, I.: Sur une inégalité de Lochs. Univ. Beograd. Publ. Elektrotehn.
Fak. Ser. Mat. Fiz. No. 230 — 241, 55— 56 (1968).
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3.6.12 1f 0 << x <€ b, then

(3 + #®/11) sinh v < x< (3 + #°/10) sinh »
2 + cosh x + #2/11 2 4+ cosh» + #2/10 °

Refevence

FraMmE, J. S.: Some trigonometric, hyperbolic and elliptic approximations.
Amer. Math. Monthly 61, 623 —626 (1954).

3.6.13 If x > 0 and y > 0, then

1—e " 7% 1 1
1 __<_
1) FH+nU—e™F) (-7 2T 12

Proof. This inequality is equivalent to

=B P R
1 — e % 1—¢ 7
1.e.,
flxy + fly) <1,
where
1 X
f(x)zl_gux“‘j*"ﬁ

Since f(x) < 1/2, inequality (1) is proved.

References

Harpy, G. H.: A note on two inequalities. J. London Math. Soc. 11, 167—170

(1936).
BromwicH, T. J. I’a. Inf1n1te Series. 2nd ed., London 1926, p. 299.

3.6.14 Forx > 0 and r > 1, we have
(1) sinh”** #x 4+ cosh’™! rx < cosh’ (r + 1) x, -
while for x > 0and 0 < < 1,

(2) sinh” ! yx 4 cosh’""! 74 > cosh’(r + 1) »

Equality holds eitherif r = 0or» =1, or if x = 0.
The substitution y = ¢ ?* reduces inequality (1) to the algebraic form

(3) (1 =)™+ ()T < 2(1 + 9y,

valid for 0 << ¥ << 1 and # > 1. The inequality is reversed for 0 << » << 1
and the equality holds on all the boundaries.

Reference
FraME, J. S.: Problem 3764, Amer. Math. Monthly 45, 54— 56 (1938).
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3.6.15 If x > 0 and x == 1, then
(1) log » < 1

Proof. Putting x = (1 + #)?/(1 — ?)?, inequality (1) becomes

14¢
——logl_t 1—t2<0 for 0<|t] < 1.
Using the power series expansions, we get

+00

1 2
~ "> t
”;21(1 2n+1)t >0 for |t <1,

which is evidently true.

Inequality (1) is due to J. KarRamMATA (see 3.6.16), and the above proof to
B. MesinovIC. '

3.6.16 If x > 0, and x &= 1, then
(1) log x 1+

F— 15+

Proof. Setting x = (1 + #)3/(1 — #)3, inequality (1) becomes

14+t 243
EEIOgt—t 1=

<0 for O0<Jt]<<1.

Using power series expansions, we get

+oo +00 +0o0 2n
DR RALINE B Y LY B e for It <1,
=0 n=0 n=>0

ie.
+00 ) +00 s
. in -+
350(1 i) +,§1( wrs) 20,
which 1s obviously true.

Inequality (1) is due to J. KaARAMATA, and the above proof to B. MeEstHoOVIC.

Remark. Starting with (1), which is very precise because

log x 1 + #13 -1
F—1 41 481620 for =1,

J. KaramaTa demonstrated that 1/3 < f(n) << 1/2, where

1 £"n!

fn) =14 —

P

] n
_ (1+ e ) with n =12, ..
'n 1!

J. KaramAaTA proved, in fact, that f is a monotonely decreasing function from
1/2 to 1/3, when » increases from 0 to 4 oc.
Compare with 3.9.7.
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Reference

KarRAMATA, J.: Sur quelques problémes posés par Ramanujan. J. Indian Math.
Soc. (N.S.) 24, 343365 (1960).

3.6.17 If 0 << vy << x, then

x+y x—y
(1) 2 >logx-—}ogy'

Proof. We integrate the inequality

1 2
e Y
and we get
[y z[y
1 di 1
v/ 77w
i.e.,
1 x ¥ —y
?log7>x+y for 0<y<x.

This inequality is equivalent to (1).

Remark. This proof is due to B. MEsiHoOVIC. Two other proofs are given in MITRINO-
vié 1, p. 158, and in MitriNovIC 2, pp. 192 —193.

3.6.18 For x > 0,

2 1 1
M) <) <y

Proof. Consider first the function f defined by
2 1
Fo) =5 — 1og(1 + 7) for x> 0.

Since

y 1
f(x):x(1+x) (2x+1)2>0 for x>0,

f is an increasing function. From this fact and since lim f(x) =0, we
=>4 00

conclude that f(x) << 0 for x > 0.
Now, consider the function g defined by

1 1
g (x) _log(l—{— }—) _VT+? for x> 0.

Since
. 21 1
8 =5 " a1t A

>0 for x>0,

we see that g is an increasing function. By thisfactand since lim g(x) =0,
x> 00

we obtain that g(x) << 0 for x > 0.
This establishes (1).

18  Mitrinavi¢, Tnogualities
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Comment by P. M. VasiC. If in the second inequality of (1), for ¥ > 1, we replace
x by 1j(x — 1), and for 0 << ¥ <C 1 we replace x by x/(1 — ), we obtain
log x 1 '
g < Iy =———
x—1 7Yy

(see 3.6.15).

Replacing 1 + (1/#) by #/y (¥ > » > 0) in the first inequality of (1), we have

x+y> ¥y
2 log x — logy

(see 3.6.17).
3.6.19 For x > 0,

2 / 1 2 1 1
(1) Wﬁ<l°g\1+7)<2x+1(1+E¢_12(x+1))'

According to a remark by P. R. BEESACK, (1) can be improved to

2 { 1 { {
§x+1(1+m_12(x+1)_360x3+ <1°g(1+7)

1
360 (v + 1)3)
<

2 1 1 1 i
2x + 1(1 T 12(x + 1) (360 + p(x)) 4® ""(%6 + @) (v + 1)3)’

where
. 722 + Tx + 1
y(x) = 30 xZ(x + 1)2 ’

so that for large x the upper and lower bound are very close. These re-
sults can be used to give a good form of STIRLING’s formula.

Remark 1. Inequalities (1) play an important role in the theory of gamma function.

Remark 2. The second inequality in (1) cannot be compared with the second in-
equality in 3.6.18.

Reference
CaMPBELL, R.: Les intégrales Eulériennes et leurs applications. Paris 1966.

3.620 Ifa > 1, 4> 0and 0 <« x < 1, then
0 <log,(p + x) — log, p — x[log,(p + 1) — log, p]

Reference
LerorT, G.: Algébre et analyse: exercices. Paris 1964, p. 229.

3621 If x - b5>1,x 4+ a> 0and x < y, then
logx+b(x + Gl) = logy-{—b (y + a) (a = b)!
log, (¥ + a) <log,.,(y +a) (a<Cb).

In particular,

log,(x + 1) > log,(y + 1) (1< x<).
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3.6.22 If » > 2 is a positive integer and x > 0, then
(1) (*x +n—1log(x +n—1) —xlogx
<n—1+log{(x +1)(x +2):--(x +7n — 1)]
< (% 4+ n) log(x +n) — (x + 1) log(x + 1).
Proof. Let us put
fxy=(x +n—1)log(x +n —1) —xlogx
—log[(x + 1) (x + 2) --- (x + n — 1)]

and
g(x) = (x + n)log(x + n) — (x + 1) log{x + 1)
~ —log[(x + D (x + 2) - (x +n — 1)].

Differentiating with respect to x, we get . »
1 1

f,(x):log(x—}—nml)—Ing—m_x+2_...mm_l
n—2
1
= k:ZO [log(% + k+ 1) —log(x + &) — TE AL
and
M) — B R S
g (x) = log(x + n) — log(x + 1) bl a2 PP

n—1 1
:kg[log(x k1) ——10g(x+k)—x+k:|.

By the LAGRANGE mean value theorem we have

1

log(x + & + 1) —loglx + k) = 4~ (0<O<1),

which implies that
x>0 and gx <0 O<x< + o0).
Therefore, we have
(2) flx) <f{+0o0) and g{x)>g(+00} (0<x<<+ 00).

We compute

f(+ o0) = lim [x log

R N

r—>+400 x (x +n — )" 1
=n—1,
since
lim xlogi"}_n—l:n— 1
and e
lim ¥ T D& 12 :_:__(;j_lr__zf;}) = 1.
- |00 (x4+n—-1)

18*
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In the same way we find that g(+4 o0) = n — 1. Substituting these
values into (2), we obtain
R < n—1<glr) 0<2r< + o)

which is equivalent to (1).

3.6.23 Ifx>1 then

1 nl 1
=1 2 e e oeer<l—1) 2 imseT

3.6.24 11 0 < a <1 and x > 0 with x %= 1, then
¥ — 1

(1) (x 4+ 1)21 >
Proof. It is sufficient to prove (1) for x € .( 1) since (1) is invariant

under the substitution x —> 1/x.
If x€ (0, 1), (1) is equivalent to

@ L+ (-2 <1z
Let f(x) = (1 + x)17* (1 — %%); then we compute that
[rix) =a(l—a) 2" 2(L + %717 (1 — 2*7%).

Hence f is strictly convex on [0, 1]. Since f(0) =1 and /(1) = 0,
we infer that (2) is true.

Reference

KoOBER, H.: Approximation by integral functions in the complex domain.
Trans. Amer. Math. Soc. 56, 22 (1944).

3.6.25 If p > 1and 0 < x < 1, then
2Tl < 4?4 (1 — )P < 1.

36260 Ifa>1,p>¢g>0and p — ¢ <1, then
(1) At — 12> (p + g) (af — af).

In particular, for $ = (n 4 1)/2 and ¢ = (# — 1)/2 (n is a natural
number), inequality (1) becomes
It N
a”——lzn(az —az) for a>1.

3.6.27 letx >0andy > 0and if 0 << 7 < 1, then
L+ 1@ +9N7"=1+ 4"y,
with equality if and only if x = v,



3.6 Inequalities Involving Exponential, Logarithmic and Gamma Functions 277

3.6.28 If a, b, x are real numbers such that 0 << ¢ << band 0 << x << 1,
then

1 — xb b 1 — 4% \@
@ (1 — x“+b) >(1 — x’”‘b) )
Proof. We can write (1) in the form
(2) blog(l — %) — alog(l — %) — (b — a) log(1 — 2°*?) > 0.

Using series representation of log (1 + x), inequality (2) becomes

k=1 R ‘

Hence, it is sufficient to prove that

b—a)tT fat* b >0 (0<t<l),
1.e.,

1—8 _ b 4 ,
>t 0<t<1).

1 — ¢ a

The last inequality is a simple consequence of CAUCHY’s theorem of
differential calculus:

11— pg"t

1 —¢ af=1

Lo pa (t<< < 1).
a a
Hence, the inequality (1) is established.

The above result is due to D. S. MitrINovIé and D. Z. Dyokovié.

Remark. Inspired by the method of proving the above inequality, as well as 3.6.15
and 3.6.16, S. B. PRESIC has communicated to us the following result.

Let ¥ > 0 and let oy > ++- > > 0. Let
P(x) = A 5™ 4«0 4 277

and let (C) be a condition for 4 ;and o such that

(1) Px) >0 forall 0<x<1,

whenever (C) is fulfilled. Then the following inequality holds

(2) A fE) o+ 46 =0 0<x <),

where f is an arbitrary function which can in (0, 1) be written in the form
+oc

(3) fl#) =3 a " with a_>0.
n=Q

As a special case, if f(¥) = —log(l — x) according to (2) we get

(4) (1 =g —amin <t o< < ).
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Examples of use. 1° Let

Px) = (b — a) £ T% + ax® — ba?,

where ¥, @, b are real positive numbers. Then, as can easily be checked, a condition
(C) is given by: b > a > 0. From inequality (4) we get

1__xb b lu_xa a
&) (1—:;“_3) >(1—xm)’

where 0 << g < band 0 < v << 1.

Here the sign > was written instead of >, since in this case the same replace-
ment of signs can be done in {1).

2° Let P{x) = (#2 + 2px + g)x. A condition (C) is

@=ZO0AN1+ 204+ g2 A {(-1<p < 0= p2P<g).
According to (2), if the condition {C) is fulfilled, we have
J) + 26 (%) + ¢f () 20 (0 <x << 1),

where f is an arbitrary function satisfying (3).

3.6.29 Let m, n, p, ¢ be positive numbers with m < n. If > g, then
(1) (1 — 2" > (1 — x9)" (0 < x < 1).

If p < g, then
@) L=< (L—x)  (0< 2 < 1),
(3) =) > (L—a) (p<x<1),
where x,€ (0, 1) is the unique solution of

(1 — )" = (1 — a)",

Proof. If p > ¢,then1 — x? > 1 — x?for 0 << x < 1 and (1) is evidently
true.

Putting x? = £, a = q/p, b = n/m, we transform (2) and (3) into
(2) 1 —t << (1 — %P (0<<t<ty),
(3) L—t> (1= (f<t<),
where £, € (0, 1) is the unique solution of

1 —t= (11—,
For p << g and m <<n we have a > 1 and & > 1. Let us consider
fi) = (1 — % (0 <t << 1)
and its derivatives
Py = —ab( —rptet,
Pty =ab(l — )2 * 2(t*(ab — 1) — (a — 1)\,



3.6 Inequalities Involving Exponential, Logarithmic and Gamma Functions 279

Hence, f(f) is concave on (0, ;) and convex on (¢, 1), where

a — 1\la
tl - (ab —_ 1) '
From f(0) =1, (1) = 0, f (0) = f (1) = 0 we conclude that f(&) >
1 —eand f(1 — ¢) < & for small positive values of e. Under these condi-

tions the graph of f(f) intersects the graph of 1 — ¢ in only one point
o€ (0, 1) and

fiy >1—1¢ for Q<t<t,
f)<1~1%t for f<t <1,
These inequalities are identical to (2’) and (3').

This proof was communicated to us by E. K. GopuNova. Inequalities (1), (2)
and (3) are due to D. S, MiTriNovi¢ and D. Z, Djokovié.
See also CHR. KXARANICOLOFF: Sur une inégalité concernant la fonction puissance.

Mat. Vesnik 1 (16), 159— 161 (1964).
3.6.30 If 0 << a << 1, then

l+a (- <l<({l4+a*™1—a)l
3.6.31 If a > 0 and x > 1, then

) T

Proof. Simplifying (1), we get

ax*? 4 g7 — (a + 1) x* >0,
l.e.,
a ad-2 1 —a a
(2) a#+1x +a—-+1x > x*,

Inequality (2) is a consequence of the arithmetic-geometric mean
inequality. Indeed, the left-hand side of (2) is the arithmetic mean of
x**% and x~? with weights a/(a 4+ 1) and 1/(a 4+ 1), and the right-hand
side is its geometric mean with the same weights.

3.6.32 If x > 0, then
x> et

3.6.33 Let 0 << x < ¢; then |
(e + x)° % > (e — ).

3.6.34 If 2, b and x are positive numbers, with a == b, then

a -+ x\b+x a\b
(b+x) >(T)
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3.635 If 0 << a < 1, then

a 1
(1) 2<d <
Proof. Denoting
fo=(1+aa—  (0<a<1),
we obtain
logf{a) =log (1 + a) + 7 i alog a,
fflag 1 1—ay__ gla)
fo = i ap g T2 50) =T
and

R 1 /1 — a\2
¢ (a) _7(1 +a) )
We infer that
gla) <g(1) =0, f'(a) <0,
lim f{a) < f{a) << lim f(a).
a-—>1— a—0+
The last inequality is identical to (1) since

2. lim f(a) = 1.

¢ a—0+

lim f(a) =

a—1—

The above result is due to D. S. MiTrINoVI¢ and D. Z. Dyokovié.

3.6.36 1fp + g = 1,0 < p < 1, and if #, s are positive numbers greater
than 1, then

(L—§f + (L—¢)>1.
Reference

TURNER, J. C., and V. Coxway: Problem 68-1. SIAM Review 10, 107—108
{1968).

3.6.37 1f » is a positive integer and

a 1+2a—1 +3a—1 R a—1

nin+ )21 ’
then
fla) <1l if 0<a<<l or a>2,
flay>1 if 1<a<?2,
flaj=1 if a=1 or a=2.

Remark. These inequalities are due to C. RYLL-NARDZEwsKI. See the paper:
M. BiErNACKI: Sur une inégalité de M. Riesz et sur quelques inégalités analogues
Ann. Univ. Mariae Curie-Sklodowska A 6, 7989 (1952).
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3.6.38 If 2 > 0 and b > 0, then
(1) &+ 5> 1.
Proof. Inequality (1) holds if @ > 1 or 4 > 1. We have to prove that it
also holds if 0 < a2 < 1 and 0 << & < 1. We set
f(o) =a® + b —1 0<a<l, 0<bdb<],
and obtain
f0)=0, f(1)=a>0, f () =a"loga+ ab* '

Assuming that (1) is false we infer that there exists b € (0, 1) such that
f(b) = 0 and f(d) < 0; i.e.,
(

2) dloga+ab*1=0, a® +5*—1<0 (0 <a<l).
From (2) we find

1 b2 b <y 0<a<1).

a

We shall prove that the last inequality cannot hold for any a € (0, 1)
and &€ (0, 1). If '

then
¢ (5) =loga(a — =) B =—a’(loga)

a

Since 0 << a < 1, we conclude that
g <0, g()>¢g1)=0, g >g(0)=0.

Hence, this contradiction proves that (1) is true.

Remark. The above proof was communicated to us by R, Lucié. Three other proofs
are published in MiTrINOVIC 2, pp. 182 —186.

3.6.39 1° If p > 1 is a real number and ¢, > 0,06, > 0 (=1, ..., n),
then

i n \Yp no \1ljp
o (E) (2

where P denotes the set of all permutations of the set {1, ..., n}.
2° Excluding the trivial cases p =1 and # = 1, inequality (1)
becomes an equality if and only if its right-hand side is equal to zero.
3° With the additional conditions,

gmin{ZIak—bM)[ 1€ P},

k=1

+o0 T
Sab < +o00 and b < + oo,
k=1 k=1

statements 1° and 2° are true also for » = + oco.
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This result presents an answer of D. D. Abpamovié to Problem 109 of D. §. Mi-
TRINOVIC proposed in Mat. Vesnik 4 (19), 453 (1967), and solved in 5 (20), 548—
549 (1968).

3640 Ifx > 1, x + 8 >1,and x, > 0for k=1, ..., n, then
n 1 B " a+f

i=1 =1

Remark. This is one of the results obtained by P. R. BEEsack who studied inequali-
ties of the form

n N i B n a+f
2 A (Z%) SAn(“,ﬁ)(____Z; "’i) ,

i=1 j=1
and
n £ B " ]
X
2";‘(_2";‘)2%(0‘)5)(2’%) )
i=1 j=1 i=1
where « and § are real parameters and x, > O for 2 =1, ..., n.

In view of the length of the discussion, we are not able to include all those
interesting results.

Reference

Beesack, P. R.: On certain discrete inequalities involving partiall sums. Canad.
J. Math. 21, 222234 (1969).

3641 Ifx, >0(k=1,...,n), % + - + x,=1and a > 0, then

1\e _ (0% 4+ 1)%
(1) Z(xk—{—%-) 2( a—f)_'

Proof. We shall apply the method of LAGRANGE multipliers. Let

n

Flx),...,%,; ) = Z(xk —{—x—lk)a + /'Lkz,'xk.
=1

k=1

The stationary points are determined by the following system of equa-
tions

aF 1\a—1 1
@ (T (1-g) im0 e=1m,
(3) 2%, = 1.

k=1

First, we shall prove that the function

fly =(x+ 3y (-12—— 1) (0<x<1)

X

is strictly decreasing. We have

(4 fo=(x+5) s
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with
. 1 2 2 1
(8) g(x):'(l_“)(:g‘_l) —;g(x‘l—*;),
i.e.,
14+ a 2—a
6 — 1 —_— -—_ = 2 .
(6) ¢(x) o — 1% 5

If a>1 it is evident from (H) that g(x) << 0 for 0 < x << 1. If
a < 1 it is evident from (6) that g is increasing for 0 < x << 4 oo
which implies that

gr) <gl)=—4 0 <=x<1).

In both cases g(x) << 0 in (0, 1). So equality (4) gives f (x) << 0 for
x € (0, 1). Hence, f is strictly decreasing in (0, 1).

It follows that the equation f(x) — A/a has a unique solution in x.
Using this fact together with (2), we conclude that v, = --. = %,,. Taking
(3) into account, we get ¥ = -+ = %, = 1/n.

This stationary point is a point of absolute minimum because when
(%, ..., x,) approaches the boundary of the region determined by

D, =1 and x>0 for k=1,...,n,
k=1
then

Therefore,

" 1 \e "1 e  (n® 1 1°
Z(xk +;}:) = Z(g+”) R

k=1 k=1

Remark. This result is due to D. S. MiTriNovIé and D. Z. DjokovIE.
If a = 2 and n = 2, we have the inequality

1\2 1\2 25
(x1+_’ ‘J‘(xz‘l‘_) > (> 0x>0zx 4+ x,=1)
X *y 2
given in: G. H. HarDpY: A Course of Pure Mathematics. Cambridge 1948, p. 34.

3642 {0 <a<b,a+b=1,0<<y<land 0 < x —y <1, then
a b 1

< -
1—[—x+ 1—{—y'—1+xayb
Reference
BorwEIN, D.: Solution of Problem 5333. Amer. Math. Monthly 73, 1023 —1024
(1966).

3.6.43 If r is a positive real number and if s is a real number greater

than 1, then
L SN IR
A (N Do) B B WA R PR O
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This inequality is due to D. S. MiTrINoOvI¢. For a proof of A. Lupag, see Prob-
lem 106, Mat. Vesnik 5 (20), 249 (1968).

3.6.44 1f a4, ..., a, are distinct positive numbers, then

a a a; ai,
(1) all...ann>alal...ann,

where 7,, ..., 7, is a permutation of 1, ..., #w and (4, ..., 4,) = (1,..., »n).
Proof. Every permutation is a product of disjoint cycles. Therefore, we
can assume, without loss of generality, that 4, ..., 2, is a cyclic permuta-

tion of 1, ..., n. By renumbering the numbers a,, we can suppose that
ay>a, (k>1),4=2,...,4,_, = n, i, = 1. Inequality (1) becomes

ay 8 a &y 0 a
(2) AaTy s Ayt 2> ay'dy’ -yl

If n = 2, (2) becomes
ajay: > agay, le., af > apT .

This is true since a; > 4,.
Using induction, we can suppose that

a a Ay  a
azﬂ “es a:n > ag’ - an4lani.
Multiplying by a§* we get
a,
(3) apay o agr > apay -+ a,” ja,r.

Since
ay .4 &g .8
apay > aya, (a; >a, and a, > a,),

(3) implies that (2) is true.

3.6.45 If a, b and x,, ..., x, are positive numbers and if " =%, --- %,
then, for all real ¢,

Z", 1

i=1 (e + x,’)

n
'S (@ + b’
according as x; 2 aft (1 =1, ..., n).

Refevence

Kesava MENoN, P.: Problem 1817. Math. Student 11, 64 (1943).

3646 Leta, >0(k=1,...,n)andp, >0(r=1,...,7)witha,, ;= a
fors=1,...,7. Then

”n ”
R P Py
2%, = a4,
k=i k=1



3.6 Inequalities Involving Exponential, Logarithmic and Gamma Functions 28

Proof. This inequality is equivalent to

Q) (a4t pat,  — (SR, ) =0,

k=1
where 2p = $; + -+ + p,, since
n
Zafpz - Zak+r 1*
k=1
By virtue of the ineQuality
pray” + e+ pa,” £.Zp ,Eb\1/Zp
EP > ( g )
= a,f‘ e af’ ,

inequality (1) is proved.
The above result is due to D. S. MiTrRINovI¢é and D. Z. DJokoviIE.

3.6.47 Leta,; ¢t =1,...,m;5=1,...,n) be nonnegative real numbers
not all equal to zero and let 0 << » << s << + oco. Then

(321(1_5* & )”S)uf _
(,E; é;a:j)sf’)lls =

The constant on the right is the best possible.

(min (e, n)j/7 15,

Refevence

Tovama, H.: On the inequality of Ingham and Jessen. Proc. Japan Acad. 24,
No. 9, 10—12 (1948).

3.6.48 Ii x,, ..., %, are positive numbers and

(1) % 4+ x, = nx,
then
(2) I(xy) - I(x,) = I'(x)",

where I" denotes the gamma function.

Proof. We shall use the formula (see, for example, [1], p. 250):

a2 R
Elog F(Z) =”§)m .

Hence, z > log I'(2) is a convex function in the interval (0, + oo).
We may apply JENSEN's inequality

log I'(x;) + --+ + log I'(x,) = n log I'(x),

which is equivalent to (2).
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Since
I < VIG) Ty <SP + - + Iix),
we have
(3) x4+ x> nxl,
where x and x,, ..., ¥, are natural numbers with x; - .-+ 4 x, = nx.
Equality holds in (3) if and only if ¥, = ... = x, = «.

The above proof is due to D.Z. Djokovié and P. M. Vasié.

Refevence

1. WHITTAKER, E. T., and G. N. WaTtsoN: A Course of Modern Analysis. 4th ed.,
Cambridge 1927.

3.6.49 If m is a positive integer, then

1
m + —
1 1 Y2 Iim 4 1) 2
(m+1“+m) ol VS 3 { \ie
(m+3) (+s+smrw)
Refevence
Bovp, A. V.: Note on a paper by Uppuluri. Pacific J. Math. 22, 9—10 {1967).
r (x + -é—)
3.6.50 If “TC’V_-:I'—T)— = (x -+ B(?G))—_l'iz, then
<) <~ f >—L and 1<l <L for x>0
== (x)_—z— or x=—5 a T = (x)_;z— or x>0,
Reference

WaTtsoN, G. N.: A note on gamma functions. Proc. Edinburgh Math. Soc. (2)
11 (1958/69), Edinburgh Math. Notes 42, 7—9 (19569).

3.6.51 If # is a natural number and 0 << s << 1, then

1-s ~4'(n + 1) 1—s
Gt s BRI

These inequalities are due to W, GautscHi [17. A strengthened upper bound for
I'in 4+ 1)/I'(n 4 s) was given by T. ERBER [2].

Refevences

1. GavutscHI, W.: Some elementary inequalities relating to the gamma and in-
complete gamma function. J.Math, and Phys. 38, 77— 81 (1959).

2. ErBER, T.: The gamma function inequalities of Gurland and Gautschi. Skand.
Aktuarietidskr. 1960, 27— 28 (1961).
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n n

1 ¥ —1
365210 H, = 3 —andG, £(1+ . ), then
1"() 1 1
——f(-—)<Hp+Hq——Hpqg—; for xzz
L Gqu> for 0 < 1 andL GGq<xforx>1
T~ 6, =7 <r<lbandyey <,

Remark. For the case ¥ = 1 the first inequality above has already been included in
3.1.3.

Reference
NanjunpiaH, T. S.: Problem 5022. Amer, Math. Monthly 70, 575—576 (1963).

3.6.53 If b and ¢ are real numbers such that ¢ > 0and ¢ — 26 > 0, then

(1) F(c — 2b) F(E) 1_72_“—{:"_(:'
I'c—-b6 — ¢

with equality holding if 5 =0 or b = —1.

Remark. Inequality (1) is due to J. GurLAND [1] and it improves and generalizes the
‘WaLLIs inequality.
D. GoNkALE [2] demonstrated the following inequality

2
@) F(; 2b) I;(c) -1 (e 2)_2 ,
(¢ — b) (¢ —b—1)

where b and ¢ are real numbers such that ¢ > 2, ¢ — 2b > 0, b &= 0 and b 4+ —1.

In the case b <Z 0, (1) is stronger than (2). If b > 0, inequality (2) is stronger
than (1).

H. RuBgx [3] gave the following result, connected to inequality (1): If b and ¢
are real numbers such that¢ > 0 and ¢ — 2b > 0, then

I'c—2p) I L1 ((0)p)°
@ I'(c — b)? § kU (©),
where (x) denotes F(P:; )y)
Equality holds in (3) if6 =0, —1, ..., — (n — 1).

Another extension of (1) was given by I. OLkIN [4].
A. V. Boyp [5] has given a simplified proof of (1).

References

1. GURLAND, J.: An inequality satisfied by the gamma, function. Skand. Ak-
tuarietidskr. 39, 171 —172 (1956).

2. GoNkALE, D.: On an inequality for gamma functions. Skand. Aktuarietidskr.
1962, 213 —215 {1963).

3. RuBkeN, H.: Variance bounds and orthogonal expansions in Hilbert space with
an application to inequalities for gamma functions and 7. J. Reine Angew.
Math. 225, 147 — 153 (1967).

4. OLKIN, I.: An inequality satisfied by the gamma function. Skand. Aktuarie-
tidskr. 1958, 37— 39 (1959).

6. Bovp, A. V.: Gurland’s incquality for the gamma function. Skand. Aktuarie-
tidskr. 1960, 134 - 135 (1061).
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3.6.54 Let n be a positive integer and let ¢ > —1 be independent of .
Then

2n — )11,/ 1 ' 1
,AW],n+c<_; for ch,
i ' w41
>'ﬁ fOrl CZE"’:E
For all integers n > 2,
V(]
s i Y =
(1) o -3 n—l'rn——l 2% — 1
=

Furthermore, for all odd integers # > 3, the first member in (1) can
be replaced by

2V @n —2) (2n + 1).

There exist also the following estimates

_4%_:3 29 —1 2% j ) —4’” — 2
In o < 2 “Tom B (71, n) <Z Vm——m—-

where n = 1, 2, ... and B is the beta function.

Refevence

Cnu, J. T.: A modified Wallis product and some applications. Amer. Math,
Monthly 69, 402—404 {1962).

3.6.55 If x > 1, then
1
0 < logl'(x) — l:(x ———2~) logx — x +—;~log(2n)] <-j7,

' _ 1

1
—2_;<10gxh—11(x) %

and
1 d2 1
—x-<c—i;§10gl“(x) <;i_1"
where I" denotes the gamma function.

Remark. The function g, defined by
1

I'ix + 2)"—H
gy =4 =5,

Iz 4 1)_"_

is strictly concave for » > 8.
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References

Minc, H., and L. SATHRE: Some inequalities involving (71)1/'. Proc. Edinburgh
Math. Soc. (2) 14, 41—46 (1964/65).
Bass, J.: Cours de mathématiques, vol. 1. Paris 1961, p. 548.

3656 Ifn=1,2,...and 0 << 7 << 1, then
n — (n—1) _>_7£-‘-11(n + 7).

Reference
ZIMERING, SH.: On a Mercerian theorem and its applications to the equicon-
vergence. Publ. Inst. Math. Beograd 1 (15), 88—89 (1961).

3.6.57 Let functions G and H be defined by

Gu)=cu"I'(1 +u), GO)=1
and
H(u,U)IG(u+v)_ u” v° T+ u+v)

GWGE) (ot Tl+u)I(A 40"
Then, fora > O0and b > 1,
1 1 1 5—1
7<:z;“‘"_TSH(? )<,
(%)
1

1 1
T

Lgi)g 1.

Reference

ScumipT, E.: Uber die Ungleichung, welche die Integrale iber eine Potenz einer
Funktion und tber eine andere Pctenz ihrer Ableitung verbindet. Math.
Ann. 117, 301 — 326 (1940).

3658 If p> 0,¢ > 0,p >r and ¢ > s, then for r > 0 and s > 0, we
have

B9 <(, 1<) (5) B —rg—>9),

where B is the beta function.
For y < 0 and s < 0, the reverse inequality holds.

Reference

Kesava MENON, P.: Some inequalities involving the I'- and {-functions. Math.
Student 11, 10—12 (1943).

3.7 Integral Inequalities

In many Sections inequalities involving integrals were treated. In this Section
we also give some unconnected integral inequalities which are more or less general.
However, our aim was mainly to collect those which appear to be simple, but
interesting, and which at the same time seem to be useful in various research.

19  Mitrinovié, Incqualitios
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3.7.1 Let x, v, z be positive numbers not all equal, and define

+00
= %Of (¢ + #3) (¢ + %) (¢ + 2) 72 dt;

3 3 \1/2 3 /2 3
“:Z‘ﬁ’ ﬁ:(zxz) s 7’:('2_95}) s 6:2(xy)fi§,

x

_ 1 1 1 1\1/2 i x
e= () t=5 35 n=(335) . 0=525

where 2' denotes a summation over the three cyclic permutations of

x, Y, 2.
Let «,, ..., 0, denote the result of replacing x, ¥, z in the expressions

for «, ..., 8 by %,, ¥,, 2,, where

1 o 1
xn-l—l = 'E' (xn + yn)ll2 (xn + zn)l,"., Vg1 = ? (yn -+ zn,)l/2 (yn + xn)lms

frgr = (o 1) (5 ) (= 0,1,..)
and xg = x, yy =¥, %, = 2. Then, for n > 2,
a <Pl <pfy< <o, <p, <R,
R<é, <<, < - <H << <E<T <O,
R<y, <dp<eg, <& << <ym<h<g<ldy <p<i
<e< &< .

This result was privately communicated to us by B. C. CarLson [1],
and it contains the results obtained earlier by G. P6Lya and G. SZEGO
[2], G. N. WaTtsoN [3], G. Szeco [4], G. PéLya and G, SzeGO [5].

References

1. Carrson, B. C.: Inequality for a symmetric elliptic integral, Proc. Amer. Math.
Soc. (to appear).

2. POLya, G., and G. Szecé: Problem 542, Arch. Math. Phys. (3) 28, 81 —82
(1919).

3. WaTtson, G. N.: An inequality. Quart. J. Math. Oxford Ser. 5, 221223 (1934).

4. SzeGS, G.: An inequality. Quart. J. Math. Oxford Ser. 6, 78 —79 (1935).

5. PéLya, G., and G. Szegd: Inequalities for the capacity of a condenser. Amer.
J- Math. 67, 1—32 (1945).

3.7.2 Real polynomials P,, P,, ..., defined recursively by
P,) =1+ [P, (t—®dt (n=12..), with Pylr)=1,
0
satisfy

0< P,(x) — Pn_i(x)g%forogxgl.

Reference
Problem 16346. Revue Math. Spéc. 76, 221 (1965/68).
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3.7.3 If a > 0, then
fe"‘ dx < mm(V“ —at —l—e“‘i').

Reference

OsTrOWSKI 3, p. 303.

x

3.7.4 Let f be defined by f(x) = e="dt. Then for x>0 and
y > 0 we have V” 0
(1) F®) ) = fx) + o) — Fle + ),

with equality if and only if x or ¥ is an end point of the closed interval
[0, +ool.

Proof. First note that f{0) = 0 and f(+ oo) = 1. Then for any fixed
v > 0, the function F defined for x > 0 by

Fx) =fx) flvy) — F(x) — Hy) + Fx + )

satisfies F(0) = F (+ oo) = 0. ROLLE’s theorem applied to the interval
[0, + oo] insures the existence of a ¢ in (0, 4 oo) such that F'(f) = 0.
The derivative F' given by

F(0) =2 e lf) — 1+ o)

1s a decreasing function for x > 0. It follows that such a £ is unique and
F' has the same sign as { — x. Therefore 0 and 4 co are the only zeros
of I' and F is positive elsewhere.

The above proof is due to R. J. WEINACHT.

Reference
Mitrivovié, D. S.: Problem 5555. Amer. Math. Monthly 75, 84 and 11291130
(1968).
Remark. In MiTrINovVI¢ 1, pp. 132—133, a proof of the inequality
(2) h(—% — y) < 2h(—2) h(—y)

for x > 0 and y > 0 is given, where

M) = fxe‘“"/”dt
2 —00

which is similar to (1).
Inequality (2) is duc to C. G, EssgeN [see Nord. Mat. Tidskr, 9, 137 (1961)].

19*
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3.7.5 For all real x,

4 — %2 o —x’___i — x2/2
Ofe dx > /51 —e 5t 7).

Reference
KRISHNASWAMI AYYANGAR A. A.: Problem 1800. Math. Student 11, 63 {1943).

3.7.6 If x > 0, then

n/2
f e " S"”smt‘dzﬁ< (1 —e ™,

nf4
3.7.7 Let f(n) = f tan” x dx (» is a natural number). Then
0

fln 4 1) < f(n) for n > 1,

1
n+1< 2f (n )< for n>2,

3.7.8 1f » is a natural number, then
/2

2
2(’@1 T (fsm Bdﬂ) <——.

379 If x > 0 and p > 1, then
P .
2 sin #42 1
;JGT)”Sl—;-
Reference

Masani, P. R.: Problem 134, Nieuw Arch. Wisk. (3) 15, 172173 (1967).

3.7.10 For x > 0,
x+1

f sin (¢2) dt‘<——

3.7.11 1f » denotes a positive integer and la positive number, then
(n+1)n

4 4
e <l e X <
U I 1)'171:}')1"’2 nn 1+ x* sin2x (1 + 'n;‘:rzj')lf2

From University examination papers, The University of Glhsgew 1958.

Comment. A proof of these inequalities as well as some stronger ones can be found
in: D. 8. MiTriNovIC: Zbornik matematickib problema, vol. 3. Beograd 1960, p. 267.

Those stronger inequalities are:
(n+1)n

7 1 1 1
z . ST

T

44 1 + 1
<5 )5 T e I
2 {(1 + nia)l/? [1 + (n I %)‘na]m}
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3712 If 0 << ¢ << wand
1

1
I{)) = dx,
® Df (1—2xcost+x2)3/2 *
then

2w — 1) 7

(1) 1) <=5 (0<t§?),
1
(2) )<  (0<i<m).

Proof. Substituting x = cos ¢ -+ y sin £, we get

1 /1 7 ot
3) I()= Sinztaf T (wherea: tan (t — -2-) and b = tan 2)

b

1 .
= —5 sin(arctan )

a

1 S . 7T
= Sint: [sm? — SIn (t m— —2-)]
(3) together with
sinx —siny < [x — y| (x==9),
and
. 2 i1
sint > —¢ (0<t<?)
implies (1).
Inequality (2) can be proved as follows:
(x — cos £)2 4 sin?¢ > sin? ¢,
1 —2xcost -+ x2 >sin?¢,

1 1
(1 — 2x cost + x2)3/2 — sin®¢ .

By integration over (O, 1) we obtain (2).
The proof of inequality (2) is due to B. MEsiHOVIE,

Remark. Substituting (3) into (2), we get an interesting inequality

.t 1
Sm?+COSt<si—nt (0<t <.

It is’easy to prove this inequality by dividing the interval (0, z) into two subinter-
vals (0, »/3), (=3, 7).

See also 9.14 in MiTRiNovI€ 1, where is proved that

:
I(t)<;-, for 0<t£%,

and this result is weaker than (1).
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3.7.13 The following inequalities hold:

1
1
(1) Oftanhadx<1 for 0<a<l1
and | '
1 ‘j t.
(2) ftanh-:—xdx<1+:§3 for a > 1.
0

Proof. Since tanh x << 1 and tanh x < x for x > 0, we have

tanhi< min (1-—1-) for a>0 and x > 0,
ax ax

and therefore
! 1 ' 1
Oftanh;;dx <0fm1n (I’E})dx (a > 0),
from where we get (1) and (2).

Revised from a proof by D. V, Sravié.

n—1
3.7.14 Let # be a natural number, ¢ a real number and /() = [] (¢ — %).
Then k=1

1 T _ 2 \n
woi) i ar< (%)
Reference

OLps, C. D.: Problem 4198. Amer. Math. Monthly 53, 225 (19486).

3.7.15 Ifa,,..., a, are real numbers, then

+00
e * (14 ax + -+ + a,x") > .
Of 1 n -1

Remark. This inequality was posed as a problem in book [1] by F. BowMaN and
F. A. GERARD. A simple proof was given by L. J. MorDELL in [2]. This inequality
was later generalized by L. J. MorDELL [3] who determined the minimum value of
some integrals of the form

g
Pff(x) (@ + @ + -+ + a x")2dx,

q
where f is a real function such that for » > 0 the integral f f(#) &" dx exists.
b4

References

1. BowmMman, F., and F. A. GErARD: Higher Calculus. Cambridge 1967, p. 327.

2. MorpELL, L. J.: The minimum value of a definite integral. Math. Gaz. 52,
135—136 (1968).

3. MorpELL, L. J.: The minimum value of a definite integral 1I. Aequationes
Math. 2, 327—331 (1969).
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3.7.16 Let P, be a real polynomial of degree # with the property
P,(x) > 0 for x > 0. Then

n +00 B +00’ . +o0 B
— [_2.]0f P, (x)e *dx gof P,(x)e | dxgoan(x) e~ " dx.

Equality holds in the first inequality if and only if P, (x) is a non-
[(n/2] 2
negative multiple of ( 2 L (x)) , where L;(x) 1s the LAGUERRE poly-
i=0
nomial of degree ;. Equality in the second inequality occurs if and only
if P,(0) = 0.

Reference
Paiirres, D. L.: Remark on an inequality of Shampine. Amer. Math. Monthly
75, 511 —512 (1968).

3.7.17 If f and g are real integrable functions on [a, ], then
b

[ min(f(#), g(x)) dx < min (fbf(x) dx, fbg (x) dx)

< max (fbf (x) dx, fbg (x) dx)

b
< [ max(f(), g(x)) dx.
Communicated by P. R. BEEsAcCK.

3.7.18 Let fo(x) > 0 for x> 0 and let f,, ff,, () dt for n=
1,2,... Then, forx > 0andn =0, 1, 2, .

(1) M1 (%) < o, (%)

Proof. The result is obvious for » = (. If we assume that (1) holds for
some #, then for x > 0,

s (X _nffnﬂ dt<ftf (£) dt = «f, (%) — f,i2(%),
wliich implies
(0 + 1) 000 < af, 1 () for x> 0.
This completes the induction proof.

The above result is due to Roy O, Davigs.
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3.7.19 Let f be a continuous nonnegative function for x > 0 and let

+00
—!of(x) dx =

If g is defined by
+ o
= [ f(x) costxdx (t real),
— o0

then
g(2) > 2g(t)2 — 1 for t F 0.

Remark. A proof of this inequality can be found in: MiTrINOVIC 1, pp. 133 —134.

3.7.20 Let f be a positive continuous function on {0, 1] and
1

In:ff(x)"dx;
0
then, for n > 1,

rr . <II

nin—2°*

Proof. Applying the BUNIAKOWSKI-SCHWARZ inequality, we obtain
1 _71 n—2 9
B =(ff(x)”*1dx) (ff Y2 f(x) 2 dx)
L]
1

..<... ff(x)n dxff(x)”_2 dx = InIn—Z'
Reference " ’

Problem 19241. Revue Math. Spéc. 75, 473 (1964/65).

3.7.21 If the integrals

b b
[ F(x)?dx and f(F(x) — &2 dx (= 22)
exist, then ’ )

p2r+1 _ p2r+1\1/2]2 b
) = (5 ) < P
p2r1 _ g2rt1\1/2
S‘[MH( 2r + 1 ) } '
Proof. Let F(x) = G(x) 4+ H (x). If the integrals involved exist, we have
1/2 '
(2) (fF 2dx) (fG 2dx) (fH(x)zdx)

1/2 -

( fb (F(x) — G(x))®? dx) < (“fF( )%c)”2 + (f G (x)? dx) .

a



3.7 Integral Inequalities 297

1.€.,

b 1/2 b 1/2 b
(8) ( [ F(x)2dx) > ( [(Fx) —G@)? dx) — ( [Gx)? dx)

a

1/2

Putting G (x) = " in (2) and (3), we get (1).
Reference

Kramxin, M. S,, and M. J. CoHEN: Problem 543. Math. Mag. 37, 281-282

(1964).
3.7.22 Let f be a differentiable real-valued function defined on [0, 1]
and such that
1f(%)| <M for 0 < x<< 1.
Then

M
<-—.
n

1 " [
1 k
x)dx — — 3'f (',;)
k=1
Reference '

MackEy, G. W.: The William Lowell Putnam Mathematical Competition.
Amer. Math. Monthly 54, 403 (1947).

3.7.23 Let f be a differentiable function on (a4, b) and let, on (a, b),
x)| < M. Then, for every x € (a, b),

| (x et b)2
1 2
Reference

OstrowsKI, A.: Uber die Absclutabweichung einer differentiierbaren Funktion
von ihrem Integralmittelwert. Comment. Math. Helv. 10, 226-—227 (1938).

3.7.24 Let f be a differentiable function on [a, 8] and let |/ ()| < M
(M > 0). Then

(1)

fria)ds =56 a) (@ + f(b))‘

M@®B—a2 1

<3 Tim (1) — f(a))%.

Inequality (1) has been proved by K. S. K. IVENGAR [1], while the
same inequality has been proved geometrically by G. S. MAHAJANI [2].
Using similar geometrical arguments, G. S. MAHAJANT [2] has also
proved the following results:
1° If f has a bounded derivative on [a, b],i.e.,if |f' (x) | < M (M > 0)
b

and if [f(x)dx = 0, then for x € [a, 8],

(2)

[1) as| <
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2° If, besides the conditions given in 1°, f(a) = f (&) = 0, then

(3)

16

‘<M(b——a)2

Remark 1. Putting f(a) = f(b) = 0 in (1), we obtain an inequality which is equi-
valent to the one indicated in Problem 121 of [3].

Remark 2. Putting g(x f f(t) dt, from 1° and 2°, we obtain the following results:
If |g”(x)]| < M on [a, b] and if g(b) = 0, then

M@ — a?

g < ——5

If g (x)| < M on [a, b] and if g (b) = g’(a) = ¢’ (b) = 0, then

M@® — a)

g < —

Comment by P. R, BEESAcCK, Inequality (1) of K. S. K. IYENGAR appears to be a
very good one. A related inequality which is very easy to prove is

(b

m <ff Vdx — (b — a) fla) < M &=

2 H

if " is continuous on [a, b], and m < f'(¥) < M on [a, b].
b

To prove this, just integrate [ (f(#) — f(a)) d» by parts.

@

Remark 3. Let f have a continuous 2xn-th derivative on [a, b] and let | f (2n) (0)| <M
and f" (@) = f"(b) = 0 forv = 0,1, ..., n — 1. Then

|} (m!y*M om 11
E [ 1) Semlgnt 9

This inequality (see [4]) is in some connection with the above results.
References

1. IVENGAR, K. S. K.: Note on an inequality. Math. Student 6, 75—76 {1938}.
2. ManAJANI, G. S.: A Note on an inequality. Math. Student 6, 125— 128 (1938).

3. PoLva, G, and G. Szec6: Aufgaben und Lehrsitze aus der Analysis, vol. 1.
Berlin 1925, p. 62, Problem 121.

4. Problem E 2155. Amer. Math. Monthly 76, 188 and 1142 — 1143 (1969}.

3725 Let n >m > 1, and let f be a real nonnegative function on

[0, + o©) such that the integral f 7 (%)™ dx exists in the LEBESGUE sense.
Q ’
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Then the integral y = f f(x) dx is finite for every x and
0

. 1 (@) Ve
[ i [rwmax)
g ’ ni-r—1 p(%)[‘(n___l) 3
where r = — — 1.

m
Reference

Briss, G. A.: An integral inequality. J. London Math. Soc. 5, 40—46 (1930).

3.7.26 Letp > 1, f(x) = 0,7(x) > 0 for x > 0, and let » be an absolutely
continuous function. If for some 4 > 0 and for almost all x

p—1 2 (x) 1
LT =
and if
1 X
H (x) :W(x)ofr(t) f () dt,
then

+00 400 .
[H @) dx < 7 [ f(#)? dx.

Remark. The above result together with some similar ones can be found in article

[1] by N.LevinsoN, For #{(#) =1 and 4 = ;b]i—l the inequality quoted in [2],
p. 240, is obtained.

Refevences

1. LEvinsoN, N.: Generalizations of an inequality of Hardy. Duke Math. J. 31,
389 — 394 (1964).
2. HarpY, LITTLEWo0OD, P4LYA: Inequalities.

3.7.27 Let f be a function which has a continuous first derivative on
[a, b]. Then, for a < x < b, .

(10 T OF IO ([0 sy

2 2

b . 0 b 11/2
_s[f(f(x)—fm‘ S x [ 1 (2

Reference

OsTROWSKI 3, p. 360,

3.7.28 If f is a periodic function with the primitive period 2z, and if f
is continuous, then, for every x and v,

12 = el < ff (3P dx 'f'f (2 da.

This result is duc to S, WARSCHAWSKI (sce; OsTRowskI 3, p. 360).
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3.7.29 If the second derivative f'' of a real function f is a continuous
function on [a, b], then

b

[ @pdr= 5= [f@ -2 (455 + 10 -

a
Reference
ZMoroVvIC, V. A.: On some inequalities (Russian). Izv. Polytehn. Inst. Kiev 19,
92— 107 (1956).

3.7.30 If fis never increasing for x > 0, then, for any 4 > 0,

o0 g 5
2 [ f(x) dx S-gf.ﬁf(x) dx
i 0

This inequality is due to GAuss. See [1], and for a generalization, [2].

Refevences
1. CraMmEr, H.: Methods of Mathematical Statistics. Princeton 1946, p. 256, Ex. 4.

2. VoLkov, V. N,: Inequalities connected with an inequality of Gauss (Russian).
Volz. Mat. Sh. 1969, No. 7, 11—13.

3.7.31 Let f be a positive and nonincreasing function over the interval
1, 4 o). If

g, @) =t"{(f") for ¢>1 and n=0,1,...,
then

tn—}-l

gn—}-l <ff yax < (f—1) g, ().
3732 If 0 <a<<band f(x) > 0, (xf/(x)) = 0, then .

) cos (log x) dx| < 2bf (b).

Proof. From (xf(x))’ > 0 it follows that x — xf(x) is an increasing func-
tion. Hence,

) cos (log %) f xf () cos log ¥

<< bf (b) f cos (log x)

b) | sin(log &) — sin (log @) ]|
< 26/ (3).
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3.7.33 Let g be a monotone and integrable function on [a, 5]. Then

b
[e(x) cosxdx, < 2(lg(a) —g(®)] + |g(®) ).

Reference
OsTrOWsKI 3, p. 137.

3.7.34 Let f be a real-valued, continuous function of x on [a, ] which
is not identically zero, and which satisfies the condition 0 < f(x) < M.
Then

b 2 b
(1) 0<(ff(x)dx) —(ff(x) cosxdx)

2

b 2
— (ff(x) sin x dx) S%Mz(b — a)t,
a
This result is due to Q. DUNKEL.

Remark 1. A. A. BENNETT has proved a rather extensive generalization of the above
inequalities. However, since the formulation of his hypotheses is rather complicated,
we do not quote BENNETT’s generalization. '

Remark 2. D. 7. Dyokovié gave the following comment on DUNKEL’s inequality:
Let

9

b 2 b 2 b 2
J=(ff(x)dx) —(ff(x) cosxdx) ~(ff(x) sinxdx).

Then
J =_”f(x)f(y) (1 — cos x cosy — sinx sin y) dx dy
D

= [[f®) ) (1 — cos(x — ¥} dvay,
D

where D is the square [a, b] x [a, b].
Therefore,

b —a\?
sin

b—a
2
This is the best possible bound for J, and is, therefore, better than (1)}.

0< J'<M2[[ (1~ cos(x —y)dvdy = M*(b — a)? |1 —
D

Reference

DunkeL, Q., and A. A. BENNETT: Problem 3104, Amer. Math. Monthly 32,
319—321 (1925).

3.7.35 Let g be a monotone and integrable function on [a, b] and let
gla)g(®) =0, |g(a)| > |g(b)|. Let, further, / be a real or a complex
function, integrable on {a, 5]. Then
b x
! [ 1) g(x) dx‘ < |g(a)| max
'a |

a<u<h

[ #x) dx

a

Reference
OsTROWSKI 3, p. 141,
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3.7.36 Let g be a monotone and integrable function on [a, 4] and'let f
be a real or a complex function integrable on {4, b]. Then

< |g(a) | max

a<u<h

ff(x) dx

U

fuf (x) dx

@&

b
[1(%) g(x) dx

4 :]g(b) | max

a<u<b

Refervence
OsTROWSKI 3, p. 141.
3.7.37 Let x+—+ x + {(x) be a nondecreasing function on [—1, 4 1] with
+1 |
f(1) < f(—1), and let [ {(x) dx = 0. Then
-1
+1 9
- [iwPdx < 5
-1
For f(x) = —x, equality holds.
Reference

vAN DaNTzZIG, D.: Problem 92. Wisk. Opgaven 19, 196 —199 (1950/54).

3.7.38 Let f be a nondecreasing continuous function on [0, x], such that
F(0) = 0 and f(n) = «. Then

fnexp (5f () — 48 dt‘ > 2
0 i

and the constant 2 cannot be replaced by any greater number,

Refevence

UrrLman, J.L,, and C. J. Trtus: An integral inequality with application to
harmonic mappings. Michigan Math. J. 10, 181 —-192 (1963).

3.7.39 If fis a nonnegative and nonincreasing function over 0 < x < 1,
then

1 1

[xfm2dx [ f(x)?dx

(1) - <% .
~ Of xf (%) dx Of flx) dx

Proof. By the above hypotheses we have

11
JJ1010) & =) [0 — 1)) dy <0,
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or ) o)) )
—( / f(x)?dx)( / }'f(y)dy)+( flyf'(Y)de)( )
) ) o) o ) o

whence (1) follows.

le.,

Refevences

SCHWERDTFEGER, H.: An inequality for monotonic functions. Newsletter of
the Canadian Mathematical Congress, 4th Issue, Dec. 1955, pp. 11—13.

Bush, L. E.: The William Lowell Putnam Mathematical Competition., Amer.
Math. Monthly 64, 650 (1957).

Remark, For p(x) = F(x)?, f(x) = x, g(*¥) = 1/F(x), Theorem 10 in 2.5 yields
inequality (1).

3.7.40 Let f be an integrable function for x€ [a, ] and let F(x) =

ff(t) dt, F(x)| < M(x —a) for a<<x<b (M a positive constant);

furthermore, let g be a nonnegative, nonincreasing and integrable func-
tion. Then

(1)

dx <Mfg

Proof. Let a << x << 8 < b; we have

fg x)dx > (o — a) g(x).
Then

8 8
Iff %) dx — g( )ff(x)dx‘: ff(x) [ (%) — g(B)] dx

<|Flx) [glo) —g(BI] +

fF )d[—g(x) + g(ﬂ)]’

g
SMa—a)gle) + M [(x—a)d[—g(x) +g(h)]

o

a B
<2M [g(x)dx + M [g(x) dx — M(f — &) g(B).
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b
Letting &« and 8 tend to a, we see that f f(x) g{x) dx exists. Taking
@+

f = b and letting &« — a+, we obtain
! b

b

{f(x) g(x)dx'\ <M [g(x)dx + g () [F(b) — M — a)],
which is somewhat st.ronger than (1), since g(b) [F () — M (b — a)] is
negative, : ,

Remark. The above is, in fact, a review of R.P.Boas, published in Math.
Reviews 9, 136 —137 (1948).

Reference

Nartaxnson, I. P.: On an inequality (Russian). Doklady Akad. Nauk SSSR
(N.S.) 56, 911—913 (1947).

3.7.41 Let a and b be given positive numbers and let f be a real function
such that f(0) =0, f(a) =5, f(x) > 0 and /" (x) > 0 on the segment
[0, a]. Then

2faf(x) (1 + 7 (x)2)1/2 dx < b(az + 52)1/2’

with equality if and only if f(x) = (b/a) x.
Reference

PoLvya, G.: Problem 4264. Amer. Math. Monthly 54, 479 (1947).

3.7.42 Let H be a real function depending on ¢ and u,4, ..., #,, defined
for 0<t <1, —co<<u; << 400, for i =1,...,n, and having con-
tinuous second derivatives. In order that

JHERD, - LO) 8 < JHE 6, .., 6.00) &

holds for each system of decreasing bounded functions #;, g, (1 <1 < #n)
satisfying

x

[Loa<fema (©0<x<1, 1<i<m
and 0 . 0 .
Jhdt=[gtya  (1<ign),

it is necessary and sufficient that

o?H C .
6Mi_auf_}_() (i,7=1,...,n)
and 82H-
ﬁé;{so (l/“—:l,...,n).
Reference

Fan, K., and G. G. LoRENTZ: An integral inequality. Amer, Math. Monthly 61,
626—631 (1954).
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3.7.43 If f' is continuous on [0, 1] and if f(0) = /(1) = 0, then

(1) Of |77 @)[f () | dx > 4.

This inequality is the best possible.

Remark. Inequality (1) is due to A. M. LyaruNov (see 3.9.66). It is a special case of
an inequality due to A. BEURLING, which is, in turn, a special case of an inequality
due to G. Borag. See [1]—[3].

Inequality (1) has important applications in ordinary differential
equations. See, for example, G. BorG [4]. For similar applications, as
well as generalizations of (1) to complex differential equations and uni-
valent functions, see Z. NEHARI [b] and P. R. BEEsAcCK [6].

References

1. Borg, G.: Uber die Stabilitat gewisser Klassen von linearen Differentialglei-
chungen. Ark. Mat. Astr. Fys. 31 A, No. 1 (1944), 31 pp.

2. CorpEs, H. QO.: An inequality of G. Borg. Amer. Math. Monthly 63, 27—29
{1956).

3. CoHEN, H. J.: Problem E 1205. Amer. Math. Monthly 63, 582 — 583 (1956).

4. Borg, G.: On a Liapounoff criterion of stability. Amer. J. Math. 71, 67—70
(1949).

5. NEHARI, Z.: Univalent functions and linear differential equations. In: Lectures
on Functions of a Complex Variable. Ann Arbor 1955, pp. 148—151.

6. BeEEsack, P. R.: Nonoscillation and disconjugacy in the complex domain.
Trans. Amer. Math. Soc. 81, 211242 (1956).

3.7.44 Let f be a convex and a nonnegative function, and let F, L be
increasing on [0, + oo) and absolutely continuous, let F (0) = 0 and let
G = F - L. Then

fG’ )dx<L (max f) fF'( )} dx.
If F"(0) = 0, F' (x) > 0for x > 0, finite equality holds if and only if,
for some a, & > 0,
f(x) =b(1 — x/a) for 0<x<a and f(x) =0 for x> a.
Remark. This result is.due to L. SHEPP and is an answer to Problem 4954 proposed
by D. J. NEWMAN in Amer, Math. Monthly 69, 321—322 (1962). In fact, the above

result generalizes the following inequality of NEwMAN:
If f(x) = 0 and if f is a convex function, then

f flx)2dx < 3 (max f(x) f f)

The constant 2/3 is the best possible,
20  Mitrinovié, Encqualitics
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3.7.45 Let the real function f be differentiable on [a, 4], and let ' be
continuous and monotone. If, for a < ¢ <4, < b,

ty — 8
|f" (t2) — [ ()]

where K does not depend on ¢, and ¢,, then

<K

<MVK.

J. G. vaN DER CorpUT and E. LanDAv [1] have found that a value
of M is 4 ]/2. E. Lanpav [2] showed later that the best possible constant

isM=2 ]/Z_max f sin (x — #2) 4t

0<zx<<m O

References

1. vaN DER CorruT, J. G, and E. Lanpavu: Uber Gitterpunkte in ebenen Berei-
chen. Nachr. Ges. Wiss., Math.-Phys. Ki. 1920, pp. 135—171.

2. Lanpauv, E.: Uber eine Integralungleichung. Christiaan Huygens 1, 235—237
(1921/22),

3.7.46 If a function [ possesses a second derivative on (a, b), then, for

16 =0,

1 by — 2
ff 20 —a)fla - 5 YOS

according as "' (x) = 0 on (a, b).

Refevence

KEesava MENON, P.: Some integral inequalities. Math. Student 11, 36 —38
(1943}

3.7.47 Let f,, ..., f, be convex functions, defined on 0 << x < 1, such
that

L =0, L(0)=0 (kA=1,...,n);

ff1 dx>———(ff1 )"'(Offn(x)dx)-

then

Reference

ANDERSSoON, B. J.: An inequality for convex functions. Nord. Mat. Tidskr. 6,
25— 26 (1958).

3.7.48 Consider a closed real interval {4, b] and real numbers x and f8
with 0 <<« << . Let { be an integrable, concave and monotonely decreasing
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function on {a, b] for which f(a) = f# and f(b) = «. Then the following
inequalities hold [1]:

b

b
1t fmasf L s

b~ a2,

Blog fle) B+
(o= ~o5)
25— o (P20 )

These inequalities improve a result given in [2].

References

1. WiLkixs, J. E.: The average of the reciprocal of a function. Proc. Amer. Math.
Soc. 6, 806 —815 (1955).

2, Pdrva, G, and G. SzEG6: Aufgaben und Lehrsitze aus der Analysis, vol. 1.
Berlin 1925, p. 57 and p. 214.

3.7.49 Let m and #» be nonnegative numbers and m << . Then
1/n

1 1/m 1
((m 4 l)ff(x)mdx) < ((n + 1) [ flx) dx) ,
0 0
where f{x) is a convex function in 0 << x < 1 and f(0) = 0.

Reference

THUNsDORFF, H.: Konvexe Funktionen und Ungleichungen. Inaugural-Disser-
tation, Gottingen 1932, 40 pp.

3.7.50 Let x,, ..., %, be real numbers such that x; < .-+ < %, and let

h

Fs %y, 0o, %) = [ (50— ),

=1
szlgaén[f(x;xl,...,xn)],
gty ooos k) =37 [ F (%55, 0.0, %,) dx.
Then
(— 1yt

This is a conjecture due to D. Z. Djokovié. See Problem 5311. Amer. Math.
Monthly 73, 788 (1968). No solution has appeared until now.

3.7.51 Let f, g, 5 be real functions defined for x € 4, such that f, g are
integrable and 4 measurable and bounded on 4. Let

AW) = {x|h(x) =y} B(y)=A — A(y) = {x|h(x) <y}.

If
' [1x) dx > ([g(x) dx forally¢ [0, + oo)
A(y)

TAWY
20"
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and if
[/ dx < [g{x)dx forally€ (~— oo, 0),

then ,
Af g§(%) k() dx SAf f(%) h(x) dx

Remark. As a special case of this result, due to D. Banks [1], we have an inequality
of P. R. BEEsack [2], which in turn, as a consequence, yields an inequality of
K. TATARKIEWICZ [3].

References

1. Banks, D.: An integral inequality. Proc. Amer. Math. Soc. 14, 823 —828 (1963).

2. BEEsAaCK, P. R.: A note on an integral inequality. Proc. Amer. Math. Soc. 8,
875—879 (1957).

3. TararxkiEwicz, K.: Sur une inégalité intégrale. Ann. Univ. Mariae Curie-
Sklodowska A 7, 83—87 (1953).

3.7.52 Let f be a real-valued, positive, continuous, increasing function
defined on I = [0,1). Then there exist two convex functions g; and
g, on I such that 0 < g,(x) < f(x) < gy(x), and

1
2fg1 dx>ff dxk%fgz(x)dx
0

Constants 2 and 1/2 are the best possible.

The above result is due to A. S. BEsicovitcH and Roy O. Davies [1].
In connection with this T. Nisu1ura and F. SCHNITZER [2] proved the
following :

Let x = (%, ..., %,), h = (hy, ..., h,). Let f: I"—> R be such that
fx)>0and f(x + k) — f(x) > Ofor; > 0(¢ =1,...,n),andx + A< I".
Then there exist two convex functions g, and g, such that 0 < g,(x) <
{x) < gy(x), and

|
%) dx > i d
Constants (#n + 1)! and #!/(n 4 1)* are the best possible.
This result of T. N1sH1URA and F. SCENITZER appears as a corollary
of a more general result also formulated and proved in [2].

Refevences

1. BesicovrrcH, A. S, and R. O. Davies: Two problems on convex functions.
Math. Gaz. 49, 6669 (1965).

2. NisHIURA, T., and F, ScHNITZER: Monotone functions and convex functions.
Michigan Math. J. 12, 481 — 485 (1965).
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3.7.53 In the real interval [a, ] let the real-valued function f be cong
tinuously four times differentiable. Then

b
FO— ) (@) +10) < [16) dx + 50— 22 (7 ) = 7 @)

y
EEZ (b — a) fmax(—— ¥ (x), 0) dx.

Reference

Arxinson, F. V.: Some further estimates concerning sums of powers of complex
numbers. Acta Math. Acad. Sci. Hung. 20, 193—210 (1969).

37564 f 0 < ay <ap, < -~ < ag,yy < 1and

(¥ — @) (¥ — ay) -+ (v — ay,)

¥ —a) (¥ — ag) - (¥ — a2n+1)

»

Fio) =

then, for 0 << £ <C 1,

rlL e (it .
W (22):)1/-(,;1- )<f'f < Ty

Equality holdsin the first inequality of (1) if and only if f(x) = 7—1“172 ,
x — 12

x#x —1)°

and in the second if and only if f(x) =

Reference

Harpy, G. H.,, and N. Levinson: Inequalities satisfied by a certain definite
integral. Bull, Amer. Math. Soc. 43, 709—716 (1937).

3.7.55 Let A be a given negative semidefinite quadratic form
A%, 9) = ap¥® + 2a3,0) + agyy? (a1, @9y < 05 4185 — a3, = 0).

If D(M) is a parallelogram in the xy-plane, whose centre is M, then
the function ¢ defined by

= f e dx dy

DM)
is a logarithmically concave function of M.

Reference

Bopin, N., and V. ZALGALLER: On the concavity of some functions connected
with the two-dimensional normal distribution (Russian). Litovsk. Mat. Sb.
7, 389393 (1968).
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3.8 Inequalities in the Complex Domain

In several Sections of this book inequalities involving complex numbers or
complex functions appear. In this Section several unconnected inequalities which
cannot be incorporated in other Sections are cited. However, this Section could be
considerably more extensive if, for example, inequalities related to properties of
univalent or multivalent functions were included. Because of the lack of space we
have restricted ourselves to some particular presented results,

Concerning these topics, see books [1] of P. MoNTEL and [2] of W. K. HAYMAN,
which contain many inequalities with bibliographical references.

References

1. Mon~TEL, P.: Lecons sur les fonctions univalentes et multivalentes, Paris 1933.
2. Havman, W. K.: Multivalent Functions. Cambridge 1958.

3.81 If z, ..., z, are complex numbers, then
L<1+zul+]a+z|+]%+ 5|+
1< |1+ 7| + |5 + 22, + |225 + 3z4]

+ | — 1)z, +nz,| + |nz,].

>

Proof. We have
121(1+21)_(21+22)+(22+23)‘23[
<M 42|+ |2y 4+ 2] 4+ |2 + 2| + |z,

and, similarly,
L= (14 2) — (5 + 229) + (2 + 32,)
— o ()T — D) 2, + nz,) + (1) 0z,
<L+ 7 + (2 + 25] 4 |22 + 3z
+ ot = 1) 2,y +omg |+ 0z,
3.8.2 If a and b are two complex numbers with
| larga —argh| <0 <m,
then, for positive integer #,
la —b" < (|a” + |b]") max (1, 97~ 1 gin® %)

Reference

vAN DER Brijy, F.: About generalizations of the triangle inequality. Simon
Stevin 25, 231—235 (1946/47).

3.8.3 Let « be a real number and let 0 < 0 < =/2. If 2, ..., z, are
complex numbers such that

x—@<argz, <x+0 (v=1,...,n),
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then

(1)

Proof. \We have
E .

on
g*zmzzv
r=1 ‘

= Zﬂ |2,| cos (—« 4- arg 2,) > (cos 6) Zn'[zv[.

r=1

'z, > Re (e‘i“ Zz,,)
r=1 r=1

Remark. Inequality (1) is a complementary triangle inequality, It is difficult to
say where it appeared for the first time in literature. We have found that the special
case & = 0 = m/4 was proved by M. PerroviTca [1] in 1917, The general case of
this inequality appears in a later paper [2] of M. PETROVITCH. He also applied (1) to
derive some inequalities for integrals. Inequality (1) can be found also in J. KArRA-
MATA's book [3] (pp. 300—301). In [3] one can find the following proposition:
If fis a complex-valued integrable function defined in the interval a < » < b
and
—0<argflx) < 48 (0<8<af2),

then

i b ‘ b

i [ fiw) dx‘ > (cos 0) [ |f(x)]dx.

a a
J. KaramaTa has also published inequality (1) in another book [4] (p. 155).
Inequality (1) has been rediscovered by H. S. WILF [5] in 1963.

Generalization. The generalization of (1) to HiLBERT and BaNacH spaces has been
given recently by J. B. Diaz and F. T. METCALF [6]. We quote their theorems which
hold in any HILBERT space H:

Let a be a unit vector in H. Suppose the vectors x;, ..., x  satisfy
Re (”i’ @)
0<r<— - (t=1,..., %),
7

whenever %, = 0. Then

v(|wy] e !xnl) <lw+ -+ x

n{’

where equality holds if and only if
xy bk x, = v (|xy + o+ Iz a.

Let a,,...,a  be orthonormal vectors in H. Suppose the vectors ¥, ..., »
satisfy
Re (x;, ay)
0<r <
i1

\vhent:\'cra". + 0. Then

I B A R N N B E R R M
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where equality holds if and only if
wp ot b, = (w] oy ) (e + e ).

The following variant of (1) for § = /2 appears in M. MARDENX [7] (p. 1):
If each complex number z, (v = 1, ..., ») has the properties that z == 0 and

o < arg z,< o+,

then their sum z; -+ -+ + z, cannot vanish.

References

1. PETROVITCH, M.: Module d'une somme. Enseignement Math. 19, 53—56 (1917).

2. PerrovrrcH, M.: Théoréme sur les intégrales curvilignes. Publ. Math. Univ.
Belgrade 2, 45— 59 (1933).

3. KaRaMaTa, J.: Theory and Praxis of Stieltjes’ Integral (Serbian). Beograd 1949.

4. Karamara, J.: Complex Number with Application to Elementary Geometry
(Serbian). Beograd 1950.

5. WiLF, H. S.: Some applications of the inequality of arithmetic and geometric
means to polynomial equations. Proc. Amer. Math. Soc. 14, 263 —265 (1963).

6. Diaz, J. B., and F. T. METCALF: A complementary triangle inequality in Hil-
bert and Banach spaces. Proc. Amer. Math. Soc. 17, 88 —97 (1966).

7. MARDEN, M.: The geometry of the zeros of a polynomial in a complex variable.
Amer. Math. Soc. Math. Surveys, vol. 3. New York 1949.

3.8.4 If z and gz, are complex numbers, and if ¢ is a positive number,
then

@ 4P < (9 e+ (1 2 s,

with equality if and only if z, = cz,.
This inequality is due to H. Bonr [1], p. 78.

Generalization. In the book [2] by J. W. ArcHBOLD the following genera-

lization of (1) can be found: "
If a4, ..., a, are positive numbers such that >’ 1/a, = 1, then
k=1
(2) |2y + - + 2,2 < ay [ + - + a, [5,]%

n

Proofof (2). If a;, b, (¢ = 1, ..., n) are realnumbers such that 3'1/a, =1,
then by CAUCHY's inequality (see 2.1.2) we have =1

S (52)( 3=

=1

Putting b, = |z // 2|z for k=1,...,n, we get
i=1 :

(3) Enlak |zl* — (lf_‘j1 lzkl)g > 0.
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Since

?

é;lzkl =

n
2 %
k=1 |
(3) yields (2).

This is a proof of G, KarLajpZid,

Remark. A, MaxowsKI [3] has proved the following inequalities which are related
to Bour’s inequality (1) in the case when z, and z, are real numbers: If a, b, & are
real numbers and ¢ > 0, then

[cos2oc|)b2
¢

(@ —b)2sinx + (2 + b)2cosa < (1 + ¢ |cos 2x)) a2+(1 -
1
< (1 +0) a2+(1+7)b2.
References

1. Bour, H.: Zur Theorie der fastperiodischen Funktionen I. Acta Math. 45,
290—127 (1924).

2. ArcHBoLD, J. W.: Algebra. London 1958, p. 75.

3. Maxowski, A.: Boletin Mat. 34, 11 (1961).

385 Ifa,,...,a, arereal and 2,, ..., 2, complex numbers, then
" 2 n n #n |
1 !
() San <3(Za) (S + 23).
k=1 k=1 k=1 k=1

which improves CAUCHY’s inequality.
Equality holds if and only if, for 2 =1, ..., n, a, = Re(4z,), where 4

H

is a complex number, and 2222 is real and nonnegative,
k
k=1

Proof. By a simultaneous rotation of all the z,’s about the origin, we get

2 a2, > 0. This rotation does not affect the moduli
k=1

g , o] *k=1,...,n).

>

n
2 A%y
E=1

Thence, it is sufficient to prove inequality (1) for the case > azz; > 0.
k=1
If weput 2z, = %, + 1y, (A =1, ..., n), then

" on 2 n 2 n n
}Zakzk =(Zakxk) S(Zai)(zxi),
=1 k=1 k=1 k=1

where we made use of CAUCHY’s inequality for real numbers (see 2.1.2).
Since

2x2 = |2,[® + Re 23,

we obtain

" 2 " n "
- 1
S| <3(Za) (S + Ere ).

k=1
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From this inequality we get (1) taking into account that

SRes—ReS4<| 54
k=1 k=1 k=1

.

Remark. Inequality (1) is sharper than CAUcHY's 1nequahty
\
| &

oy r <(Zpmr)(Zar).

which also holds if we allow the a,’s to be complex, since
> .
P Z
TS
Reference

DE BrRUIJN, N. G.: Problem 12. Wisk. Opgaven 21, 12— 14 (1960).

3.8.6 Let a;; be elements of an # x#n complex matrix A. Then,
Re (Zk‘ aikaki) < %‘}a‘ik lz )

with equality if and only if A is hermitian.
If z,, for k =1, ..., n, are complex numbers, then

Re(2:122 + e + Zﬂ—lzn + znzl) é leklg’
k

equality holding if and only if 2y = 23 =2, = -+ = 2 = 2, == 25 =

Reference

ARGHIRIADE, E.: A characteristic property of hermitian matrices. An. Univ.
Timigoara Ser. $ti. Mat.-Fiz. No. 3, 17— 20 (1965).

3.8.7 If 24, ..., z, (n > 3) are complex numbers, and z,,; = z,, then
Dz — By = 2 (tan%) Im ( Z‘E;zkﬂ)',
k=1 © k=1

with equality if and only if
zk:aexpgjjk—Q—ﬁ 1<k n,

where x and f§ are arbitrary complex numbers.

Reference

Fan, K., O. Tavssxy and J. Topp: An algebraic proof of the isoperimetric
inequality for polygons. J. Washington Acad. Sci. 45, 339—342 (1955).

3.8.8 Ifa,, ..., a, are complex numbers such that >'|a,| < &< 1, then
A=1

[T+a)—1-3a|<,™ .
ket ’

k=1
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If a,, ..., a, are complex numbers such that
1
IT(1+a)—1 Sg{

kel .

for all subsets I of {1, ..., n}, then

- 8
R
Reference

Boursaxi, N.: Topologie générale. 2nd ed., Paris 1955, Chap. 5—8, pp. 110—
111.

3.8.9 Let #, and z, be complex numbers, and let # and v be real numbers
such that # == 0, v 4= 0 and «# + v == 0, Then

|51 + 2 < I,ZJE + |2l? for —+4+ —>0,

w-tv U v u U
and

[ T T Y S S )

u - v 22 v U v

Equality occurs if and only if vz; = uz,.

Proof. The above inequalities follow from the following identity:

7 I e o) 1 Wl 1

s v ® + v uv (1 + v)
Remark. The above inequalities are in connection with 3.8.4.

Reference

BergsTROM, H.: A triangle-inequality for matrices. C.R. 11le Congrés Math.
Scandinaves, Trondheim 1949, pp. 264—267 (1952).

3.8.10 Given# > 2,¢ > 0and complex numbersz,, ..., z, and a,, ..., a,,
then
n n n n—1
(1) 2o — a4 <e= e — JTal<e XS ' 7F,
k=1 k=1 k=1 E=0
where S, denotes the k-th elementary symmetric function of {all, ey gl

Proof. If |2, — ay| + |2, — a3] < &, then
43y — @y | = [(5y — ay) (% — ay) + a4(2p — ap) + ay(z — ay)]
<z — 4yl |2 — aa| + lay] [20 — a5 ] ‘fl“z[ |2y — &y
ie. < &le+ || + [ag]),
(2) o —m|+ [ —ap<e=|nzm —a| <ele+ o) + [ay).
Hence, (1) holds for #n = 2.
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Let us suppose that assertion (1) holds for some fixed » > 2. We
shall prove that it is also true for #» + 1. We suppose that

n+1
2l —al<e.
k=1 -
Using the identity
n+1 n+1

L% — I o~ (H iy — Hak).«z,,ﬂ e, + )
k=1 k=1 k=1 k=1
+ (kH “k) (zn—I—I - an+1)
=1

together with (1) and (2), we obtain
n4-1 ntl

Iz, —]]a
k=1 R—1

n—1
< (e + [‘“nﬂI)kz(;sia:&”w’iﬂ + & lan+1! S,

b

=gt ek§ (Sp + 1@ps1| Se_y) &7F

n
=g > S¥" 7,

k=0
Here, S¥ is the k-th elementary symmetric function of |a, ..., |a, ],

‘an+11‘
The-proof by induction is complete.

This result is due to D. S. MitrINovIC.

3.8.11 If
_ la — b]
0 H D) = T
then
(2) dla,b) < d(a,c)+ d(b),

where a, b, ¢ are complex numbers.

Proof. Starting from
(@—B) (14 c6) = (a — ¢) (1 + b6) + (¢ — b) (1 + a?),
it follows that
(3) 1a—b{(1—|—lc[z)_g[a——clll-l—bﬂ—}—|c—b|[1+a5|.
Applying the inequality |# — v|? > 0, written in its equivalent form
(1 + ) (1 + %0) < (L4 [uft) (1 + Jof),
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to |1 + bc|, one finds that

(@ LR Be = (100 (14 h) < (L4 Y (0 [eP)
— (L+ BB (L + o).
Since
(5) 114 ac < (1 + |a) (1 +][c]P),

inequality (3) reduces to (2) by the use of (4) and ().

This elegant proof was given by S. KAKUTANI (see E. HiLLE: Analytic Function
Theory, vol. 1. Boston-New York 1959, p. 49).

Remark. d(a, b) is called the chordal distance of 2 and b. It can easily be proved that
d (a, b) also satisfies
d{a, a) = 0,

(6) d(a,b) >0 (aD),
d(a, b) = d(b, a).

Since d, given by (1), satisfies (2), together with (6), it is a metric function on
the set of complex numbers.
Function 4 also satisfies d (a, b) < 1, which can easily be proved.

3.8.12 If a and b are nonzero complex numbers, then

(1) @ = 8] = (lal + o] |,

C‘ﬁl |b|‘
Equality holds if and only if |a| = |b].

Proof. Putting a = re*’, b = —ge™ with 7, o > 0, we get

la—b] | 7 i e ip| .

T e’ Trred [T
1,a_ ] e
] A R

In the complex plane # lies on the chord, joining the points ¢'® and ¢,
of the unit circle, and v is precisely the midpoint of this chord. Therefore
|u| > [v| with equality if and only if # = v, i.e., » = . This proves (1).

This proof is due to M, MarjaNovICé.
Remark. A more general result is demonstrated in the paper [1].

Reference

1. Dunkr, C. F,, and K. S, WiLLiaAMs: A simple norm inequality. Amer, Math,
Monthly 71, 53— 54 (1964).
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3.8.13 Let z and ¢ be complex numbers such that |z| < 1 and [f] < 1.
Then
s — Isl

7 — ¢ l2] + |#i
<
1=l =

= < 1.
@ — 1) L+ [z

Reference

Beuxkg, H., and F.SomMER: Theorie der analytischen Funktionen einer
komplexen Verdnderlichen. 3rd ed., Berlin-Heidelberg-New York 1965,
pp. 336 —337.

3.8.14 Let a and ¢ be positive numbers and & a complex number such
that

f(2) = azz + bz+5§+020
for every complex number z. Then
(1) bb < ac,
(2) Hz) < (@ + ) (1 + 22),
with equality in (1) if and only if f(z) = 0 for some value of z.

Proof. Put z = re?® and b = pe*, where # and p are positive or zero and
f and ¢ are real. Then, by the hypothesis,

(3) f2) =ar® + 20rcos(f +1) +¢c =0,

(4) f(2) = art — 20r + ¢ >0,

for all values of » and 6, with equality in the first inequality of (4) for
cos{f + t) = —1. From (4) it follows that ¢® — ac < 0, with equality

if and only if, for some value z = 2, we have
f(z) = arﬁ — 201, +¢c=0,

where |z5| = #,. Thus (1) is proved.
From g2 — ac < 0 it follows that

(5) grérl/gzl/a-crz g%(a—{-mﬂ).

Now, we deduce from (3) and (5) that
F2) <<art+4 201 + ¢ < (@ +¢) + (a + cr®)
=(a+¢) (r* + 1),
and (2) 1s proved.

Remark 1. This result is due to N. ARoNszAJN and can be found in: H. HAMBURGER
and M. S. GrRiMsHAWw: Linear Transformations in »-dimensional Vector Space.
Cambridge 1951, pp. 76—77.

Remark 2. 11 f(z) > 0 for every z, then the circle
arz + bz 4+ bz +c=0

must be imaginary or reduce to a point, This fact also yields (1).
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3.8.15 In the following we shall give estimates of the modulus of a
homographic function on a circle.

If the point z varies along the circle (y &= 0) or the line (y = 0),
which is given by

(1) yzz+oxz-+oz—p=0 (f,y real and ax + fy > 0),

the point
_az+b
Tzt d

(ad — bc == 0)
also varies along the circle or the line
() e —yd) d + (Be + ad) ¢ ww — [ve — yd) b -+ (B + xd) a]w
— (3¢ — pd) b -+ (fc 4 ad) a] W + [(xa — yb) b + (Ba + &b) a] = 0.
This equation determines a circle if

D = (xc —yd) d -+ (fc + ad) ¢ =% 0.
Comparing the equation |w — p| = R with (2), we get

~  (xa — )b + (fa + &b) @
(3) R =pp — VIO E A
and
4 p=[Ge—yd) b+ (Bc + ad)al.

These imply that

R =2 {[(3¢ — yd) b + (B + ad) a] [ — pd) b + (Bc + ad) a]

— [(va — yb) b + (Ba -+ xb) @] [(wc — yd) d + (Bc -+ &d) ¢]}
— 5 (ad — be) (ad — be) (s + By),

and consequently
(6) R =5 |ad — be|Voa + By .

Starting with (2), we find directly

— |p2=— % [(xa — yb) b + (Ba + &b) .

So, it follows that
6 R — [p|| = 2121
())-' ’ IPH R-F-IP\
|(o¢a —yb) b + (Ba + ab) 4]
|ad — be| I/oca + ﬂ'y + |{ac — pd) b + (fc + ad) a[
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If the point z varies along (1) and if D 4= 0 and ad — bc == 0, starting
with

w —p| — ]| < |w| < |w — p| + 8],

we get ,
2+ b
(7) R—pl| < S5 | < R+ 18,
where |R — |||, R and p are given by (6), (5), (4) respectively.

If D = 0 and ad — bc == 0, starting with
|Aw + Aw| < |AD| + | Aw| = 24 w|,

we get, according to (2)

. 121

(4 =+0),

az + b
cz +d

where ~ B
A= (xc—yd) b+ (fc + od)a,
B = —[(xa —yb) b + (Ba + xb) a].
Inequalities (7) and (8) present the requested bounds.
Remark. If z is a real variable, then (7) becomes

¥

o lab—tal a2 40| _Jad = bel 4+ |ad —be]
ad —be| + ad —be| 12+ a1 qed—ae|
References

MitriNovI¢, D. S.: Limitations en module d'une fonction homographique sur
un cercle. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat, Fiz. No. 143 —
155, 3—4 (1965).

MitriNoVIC, D. S.: Problem E 1841, Amer. Math. Monthly 74, 442—443 (196'7).

3.8.16 If »n is a natural number and if z and a are complex numbers
such that |zl < # and ja| < #, then

. 2t — a” " 1 -
- ma 1_<_P2—n(n——1)r"2|z—aﬂ (z = a).

Proof. We have

Z” — an _ n—1 . 4
2T opgtl = szan 1-k __ na
g — a E—0
n—1
— Zan—-l—-k (zk _ ak)
k=0

n—1
=3@—a)a" '@ 4@t 4 42 Y,
k=0
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Therefore,

n—1

n—1
<le—al Zla" 1 F (a4 o a4 Y
k=0
n—1
<l|z—al S kR
k=0

:-;—n(n — 1) 2z —al,

as asserted.

Remark. Revised from a proof by 1. LAzZAREVIC.

3.8.17 If Rez > 1, then for any positive integer #,
(1) |27 — 1] > 4" [z — 1],

Rewmark. This inequality was conjectured by R. SpIra in Amer. Math. Monthly 68,
577 (1961), Problem 4975. A proof of (1) was given in the same journal, 69, 927928
(1962). Another proof, given by D. Z. Djogovié, was published in: MITRINOVIC 1,
pp. 140— 141,

3.8.18 Let 5 &= 0 be a complex number and a > 0. If z is a complex
variable satisfying

(1) %z —I—};—]———a,
then
{ o —
max |2] :—_?(Vaz + 4 |b| + a),
i i = (Va2 £ ] —
min [z = 3 (Va2 + 45| — a),

where C is the curve defined by (1).

Remark. For a proof of the above result see: MITRINOVIC 2, pp. 216—218.

3819 let 0 <argz <1, —~co<t<< 4 oo, 0<arg(z + §) < m; let
7 be an integer and 0 < #n <7 < # + 1. Then, uniformly with respect
to 2,

—

<A, Y,

\(z + 4 — zn'(;)t’*z"k

k=0

21 Mitrinovit, Inequalities
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where the best possible value of 4, is

4,=1 (O<r—n§—;~ or r:n+l),

A,,_<_2”+1Ar5in&2——ﬂ (_15<y__n<1)‘
Reference

Koser, H.: Approximation by integral functions in the complex domain.
Trans. Amer. Math, Soc. 56, 22 (1944).

3.8.20 If z = " cos § with 0 << # < #/2 and if » is a positive integer,
then '

1 —z| <[1—2"
Reference

BreuscH, R.: Problem 5394. Amer. Math. Monthly 75, 85 (1968).
3.8.21 If z and w are complex numbers and 4 > 2, then
(1) 2(]ef" + o) < |z +w] + |z — w|".

, ¢o that

Proof. Without loss of generality, we can assume that {z| > |w
w = zre’® (0 < v < 1; @ real).

Now, (1) can be written as
(2) 21 + ) <L+ e[ 4 |1 —re" [} = f(r, ¢, 3),
where

Fr, @, ) = (1 + 72 -+ 2r cos ) + (1 4 #* — 27 cos g)*2,
But
min f(r, @, A) = 2(1 + /A)*2,
9

so that inequality (1) holds if
(3) 14+ 74 < (1 AP

The last inequality is true if

1 +~g—r2 <@+ and 147 <1 -{——2—72.

Since these two inequalities hold for 0 <7 < 1 and 4 > 2, inequality

(1) is proved.

Reference

vaN DER CorpuT, J. G., and E. W, BETH: Problem 172. Wisk. Opgaven 16,
421422 (1937).
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3.8.22 Let 2z be a complex number and 0 < [z‘ < 1. Then

—lz|<|e —1|<— | .
Reference
Diengs, P.: The Taylor Series. Reprint, New York 1957, p. 135.
3.8.23 TFor all complex numbers z = x + 4y,
le — 1| <ell — 1 < [z] el
|sinhy| < |sin z| < cosh y,
|sinhy| < |cos z| < coshy,

| cosec z| < cosech |y|,

isin z| < sinh [2],

f |zl < 1, then

|cosz| <2 and |sin z] S%M.
Reference

ABraMOwICZ, M., and I, A. STEGUN: Handbooic of Mathematical Functions.
New York 1965, p. 70 and p. 75.

3.8.24 If-—<r<1and |z1< , then
. 42 2r(2r — 1)
S P— l < 4 -1
Reference

Warr, H. S.: Problem 4052, Amer. Math. Monthly 49, 549 (1942).

3.8.25 For any complex number z and for any natural number #,

" nt+1
. LRI A R IO - W P!
¢ (1+1! + +n!) Swmrm o
Proof. We have
2 M +0o0 zk +o0 zk
S L
) B=n+1 E=n+1
1 400 ik
< |’f+__ ) AN C G
— (n 1)' k! {(n + 1)!
Rq[ermce
GARNIR, H. G.: Fonctions de wvariables réelles, vol. 1. Louvain-Paris 1063,
pp. 368 - 370,

21*
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Remark by P. R. BEEsack. By using a geometric series to majorize Z M one

gets k=n+i1
L. (n + 2) Je""
“(1+1!+ +n!)5(n+1)!(n+2-—|z|)

This is an improvement of the above at least for all 7| < n + 1.

for |z < » + 2.

3.8.26 If » is a natural number and z any complex number, then
| 2\ % |z| a l2[?
(1) e—(1+g)\<‘e” (1+ l<e|l'n'

Proof. For n = 1 the above inequalities are true. Suppose that # > 2.
Then

(1+%)n:1+z+§(1—71{)---(1—k;1)%

and T
e = ER s
- 3 n _ S
= 2 Bl () (-

Since all the coefficients are positive, we may replace z by |z} to get
the first inequality in (1).

If 2 < #u, then |
a0 =) <a - () =y
because

1—a)-(1—a)=1 ——_Za- for ay,...,a,€[0,1].

=1

For £ > »n, we have

1 1

WS 20—
This yields

+o0 E
s _ AR S I . R P
¢ (1+ ) on = E—2)1 2w ©

which, in turn, proves the second inequality in (1).

(3

is due to H. D. KLoOSTERMAN, See: Problem 23. Wisk. Opgaven 18, 70— 72 (1843),

Remark 1. The inequality

jof |2

<e 2n
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Remark 2. Concerning the first inequality in (1) the following result is valid: If

-+ 00
fz) =k§)akzk with a, > 0 for |¢s| < R,

then
lf)| < f(lzl) for |2} < R,
because

< F
2 apzt |l < Xafsl” for lz) < R.
| k=0 k=0

This statement was also applied in 3.8.25,

Reference

GarNIR, H. G.: Fonctions de variables réelles, vol. 1, Louvain-Paris 1963,
p- 370.

3.8.27 For the function
Ee = —zespls + 5+ +5)
the following inequalities hold
1°E( p) — 1| < Bt (e < 1),

2° log |E(z p) | <{|z‘f’+1 (|z1 <1)
EPI= e+ 10g8) 27 (> 1)

Proof of 1°. For E (z, p) the following expansion is valid:

+00
1) E(zp) =1+ 34,7
k=1
For the derivative of E (2, p), we have
d ping
(2) EE(Z, ?) == -—ZP (1 -+ ZkaZk) R
k=1

where By, (¢ =1, 2, ...) are positive.
Starting with (1), we get

d e _
(3) EEGP) = Shdy 2
By (2) and (3) one finds that
(4) A,=4,,==4,,=0 and A4, <0 (k>p).
Using (4), by (1)} it follows that
+oc J00 .
() |E(zp) —1|=| X Akpzk < 2 |[4pll7]
k=p+1 k=p+1
+o0
B =2"*" 3 |dgp| |2 P

Rmptl
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By (), since |z| < 1,

+oc
(6) |E(z, p) — 1| < J2fPF! 3 |44,
E=p+1

Since E (1, ) = 0, by (1) and (4) follows -

+ 00
E=p+1

As all the 4,,’s are negative for k > p, (7) gives

+o0

(8) S |4, =1

k=p+1
Starting with (6) and using (8), we get
[E(zp) — 1< |1,
where |z/ < 1 and p a natural number.
This inequality is due to L. FEJER (see for example [1]).
For 2° see [2].

References

1. Hirrg, E.: Analytic Function Theory, vol. 1. Boston-New York 1959, p. 227.
2. Hirrg, E.: Analytic Function Theory, vol, 2. Boston-New York 1962, p. 195,

3.8.28 For |z| < 1,
log (1 + 2)] < —log (1 — |2}).
Reference

ABramMowiIcz, M., and I. A. STEcUN: Handbook of Mathematical Functions.
New York 1965, p. 68.

3.8.29 If 7, denotes the sum of the first # 4+ 1 terms of the exponential
series, then

ez—Tn (,n_|_2)2{<2('n—f—2)
A1 nn+4) —nn + 4)
(n + 1)!

for s <landun=1,2,...

Reference

WaLrw, H. S.: A class of functions bounded in the unit circle, Duke Math. J. 7,
146 — 153 (1940).

3830 If 0 << a < 1and
(1) b=1{ 1),
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then
(2) €] <1+ 2 (1 + 8,
for all complex numbers z satisfying |z| < a.

Proof. Put 2 = x + #y, {2l = o€ (0, 1). We have

~ P 2 2y

e
1+ z|

:1+Q2+2x:f(") (—oe<x<o).

Since f' (x) < 0, (2¥ < —0%), ' (¥) > 0 (2x > —0?% and

e ¢ ! e®

1
=%~ 17e (0<o<1),
we conclude that
3 LA 0 1
(3) ‘fﬁ‘,i’;;’1+z—1_g—g(9) (0 <o <)

From the fact that g(p) is convex on (0, 1), and g(0) =1, ¢'(0) = 0,
we deduce that

(4) glo) =1+bo 0<e¢=<a),
where b is given by (1). Inequality (2) 1s a consequence of (3) and (4).

2

e
Remavk. As a consequence of (3) we see that the majorization of O in a closed

disk |z < a (0 < @ < 1) by a function %(|z|) is equivalent to the majorization of
1— g
The above proof is due to S. B. PRESI¢ and D. D. Apamovié,

Reference

MitriNOvVIE, D, S.: Problem 85. Mat. Vesnik 5 (20), 117—119 (1968).
3.8.31 Let z be a complex number and |z| < 1. Then

4] 1+ |4
(1) 147 < |log(1 + 2)| < 2 Tk

Proof. To prove the right-hand inequality, we start from the TavLor
series for log (1 + z), which represents the principal value of the logarithm
for 2| < 1. We have

(Lt 2 log(t 42 = (14 (s =5 g (a1 )

22 23 n z
g Tt T Ty, T )

1 z " 2"
ey =2t 0 s )

il
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Since |z| < 1, we get

1+ 2| |log(t + )| <[l [1 + 1 (F+33+  +omam + )]
= lfr =)+ G ) )
= |o (1 + |4),

whence we have the second inequality of (1).
For the left-hand inequality, after setting 2 = |z| ¢’® = r¢*®, we obtain

v 8
log(1 = .
Og( +2) Of 1+ te*?
and consequently
r [ r
' 1
log (1 — dt —
|log (1 + 2) | = .]1+te \ 1 4 2 l
Since, for 0 <t <r < 1,
Re 1 . 1 4+ ¢cosf 1 1

ﬁ};ﬁiﬁl—i-%cosﬂ%—tz—l—]-t214*7’
we conclude that
‘ r

log(1 +zl>Re[ dt

>f'———d0—— oy
l—l—te16 147

i.e., the first inequality of (1).
The above proof is due to S. E. WARSCHAWSKI.

Reference

WaLr, H. S.: Problem 3965. Amer. Math. Monthly 49, 72—75 (1942).

3.8.32 Let # be a natural number greater than 1 and let

( n 1 +0o0 (___z)m

E, () = gy [—log 2 + y(n N—2 Gy im
mt=n—1
n—1 1
where |argzi <=, w(l)= —y, ypHr)=—y + —, and y=
0.5772156649 ... is EULER’s constant. m=1

We also define

= (=1
E(z)=—y —logz Z; o

where |arg z| < .
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For x > 0 and » = 1, 2, ... the following inequalities hold:
" 1E,) <E,.,n) <E,(x),
E, 0 <E, ,(%)E, ),

1
X
7_{_——-<6E() x—{-n——l

d { E,®)
E(En—l(x)) = 0.
If x > 0, then

Slog(1+2) < #Ey (v <log(1+ ).

Reference

Arramowicz, M., and I. A. STEGUN: Handbook of Mathematical Functions.
New York 1965, p. 220.

3.8.33 If a and c are positive numbers such that ¢ — a4 > 1, and

)1 @ al@a+1) o .
(1) Fa 1l,¢;—2)=1 c,z-k!c(c_]_l)z ,
then

E H? H(H — 1)
(2) .F(a,1,c,—z)—2H_1 < ol 1 for izlgl,
where
H=F(a,1,c;1)
_1+2a(a (a—l—n)

”Oc(c—]—l (c—i—n)

o afa+ 1) (a+ w)ynl{c+ 2n + 1)
_1+n§}c(c+1)---(c+n)(o—a)(c—a+1)---(c—a+n)‘

If z = —1, then equality holds in (2); and if |z| << 1, the real part of
Ffa, 1,c; —2) is not less than H/(2H — 1).

Consider now the hypergeometric function F(a, 1, ¢; —z) defined by
(1), where a and ¢ are real numbers such that ¢ > a > 0. Then

(3) Fla, Lo+ 1;—2) — o< % for |2<1;
(4) Fla,Lo+1;—2) 20 <zt for Re s> — =
O |reteod ™ ey | Segkl for | <1
(6) f-(a,1lc,_}7"ct:{;a2\5a’:£|zl for Rezz—%'
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Remark. From (3) and (4), for |z| < 1, follow inequalities 3.8.31.
References

Watrr, H. S.: A class of functions bounded in the unit circle. Duke Math. J. 7,
146— 153 (1940).

Warr, H. S.: Problem 3965. Amer. Math. Monthly 47, 491 {1940) and 49, 72— 75

(1942).
3.8.34 Let z,, ..., 2, be arbitrary complex numbers. Then there exists a
subset M of {1, ..., n} such that
[ 1 o
1 2| = —= 2.
() }ké;k——{“/z §lk{

Proof. Forr =1, 2, 3, 4 let
M,:{k|1gkgn, (R A argzkg(r——l)%—l—%}.

By a known inequality we have

izzk’ZV;_— Sz r=1,23,4).

| k€M, KEM,

Taking M to be that of the M,’s for which the sum 3 |z is
maximal, we get (1). k€M,

Remark. For a stronger version of (1}, see 3.8.36.

Reference

Rupin, W.: Real and Complex Analysis. New York-St. Louis-San Francisco-
Toronto-London-Sydney 1966, p. 119.

3.8.35 Ifx, ¢ E"(k =1, ..., m), then there exists a subset [ of {1, ..., m}
such that

kel

(1) PN 22—2"%%!%]-

We can prove a stronger inequality

2) | Y, > Xy
( kEZ; kI In K Z| ki
where
/2
=fcos”0d9,
0
le.,
_ @@=l = _ (2n
Bo= @entr 2’ K2'+1_(2r+1)n'
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Proof. For a unit vector x define
M

= > (o)t

k=1
where, for real x, we write x* = max (x, 0).

Integrating over the unit sphere [x| = 1 in E”, we get

1 wm
x) dx = Sy ké; [ (o)™ dx,

where S, (1) is the surface area of the unit sphere.
Since the surface area of S, () is

S,r)=n-2"-K, -..K#?,

n

" w2
o) [(n — 1) 2*7'K, .. K, ,sin" 6 cosf df
1 ¢

1 m
= 2—”}2_; kél'l“k| .
Hence, there is « such that
(3) f(OC) - 2 K Z '(xk|

Let us define I = {k |1 <k < m; x> 0}. Then

S| > S, :f? (3 * = (),

kel kel
so that (3) implies (2).
The constant 1/(2»K ) in (2} also is the best possible.

Remark. Inequality (1) appears in: N. BourBaki: Topologie générale. 2nd ed.,
Paris 1955, Chap. 5—8, p. 85.

Inequality (2) and its proof are due to D. Z. Djokovié. This result, as well as
that in 3.8.36 below, was recently rediscovered by W. W. BLEDSOE in Amer.
Math. Monthly 77, 180— 182 (1970).

3.8.36 If z, ..., z,, are complex numbers, then there exists a subset 7
of {1, ..., m} such that
(1) > % > Z|zkI

kET

Proof. For real ¥ we shall write x* = max(x, 0).

Let 2 = 7, (cos 0, + isin 6,), 7, = |z], 0 < 0, < 27. We define

A /(8) =

k

7, (cos(6 — 6,))*.

1Ms
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Integrating, we get

" 2n
ff (6) 46 = 5 37, [ (cos (6 — 6)+ a8
1 m +n/2
=3 Z; [ cos 6 db
= —mf2
1 m
Consequently, there is a number 9 such that
1 m
@ O Sl
If I ={k|1<k<m,cos(f — ) > 0}, then
Sn/ =[S
kT k€T |
> Re 3 e %,
k€T
= >'r,cos(6 — 6,)
ke
= 3'rfcos(6 — 6,))*
k=1
= £(0),

so that (2) implies (1).

Remark 1. If at least one z, < 0, it can be shown that we have strict inequality in
(1). The constant 1]z is the best possible. This can be proved by taking

2kmi
By =EXp— B=0,1,...,m — 1).
Remark 2. Inequality (1) is taken from: N. Bourraki: Topologie générale. 2nd ed.,
Paris 1955, Chap. 5—8, p. 113. The above proof is also indicated therein. Inequal-

ity (1) is just the special case » = 2 of inequality (2) of 3.8.35.

Bk
3.8.37 Let Dy = max IT II |z — 2, for k=23, ..., where
{ zk} m=1 n=1
m=fpn
{21, ..., 2} ranges over all the sets of 2 complex numbers which satisfy

|2m — 2,| L 2form,n=1, ..., k. Then

kD, > (sec ﬁ)k(k_ > exp ( n® (1 — —;—)) for k=1 (mod 2);

5 2
ERDy > 1+ o k(1—2_k-_-ﬁ) for k= 2(mod 4) and k> 6;

4 6
E~*D >1—|—32k(1——;—;,—) for k=0{(mod4) and %= 8.
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We also have D, = 4, D, = 64, D, = 256(1 + (2 — }/3)2)2
For sufficiently large 2,
D, < K exp (15%°77).
In particular, for 2 = 360 we have
D, < K exp(8k(k — 2)717).
Refevence

DANZER, L., and CH. PoMMERENKE: Uber die Diskriminante von Mengen gege-
benen Durchmessers. Monatsh. Math. 71, 100—113 (1967).

3.8.38 Let f be a regular and univalent function in the disk |2| < 1 such
that 7(0) = 0. Then, for |z;| << 1 and |z| < 1,

%l

flay) LY (|1_3132|+|31"32|) (i1*31321+|31_‘32|)1 ~|542a) -
flzg) %3 1— |z |1 — 52| — |2 — 2
Reference

Krzvz, J.: On a problem of P. Montel. Ann. Polon. Math. 12, 55— 60 (1962).

3.8.39 Let f be regular in the disk |z| < 1. Then, for |z| < 1,

72 2a )
i @ | < g [17e]

|zl + (1 + Mz)lia
Reference

MacINTYRE, A..J., and W. W, RoGosINSKI: Some elementary inequalities in
function theory. Edinburgh Math. Notes 35, 1—3 (1945).

3.8.40 Let 7 be an analytic function in the region Re z > 0, except
possibly for poles on the axis of imaginaries. Furthermore, let

f(z) =fz) and Ref(z)>0 in Rez>>0.

Then, for Re z > 0,
, f&) + f(2)
F| <O

Refervence
Reza, F.M.: A bound for the derivative of positive real functions. STAM
Review 4, 40—42 (1962).

3.8.41 Let f( z) be an analytic function in the circle |z] < R. Let M () =

|z!ma§1a|f (r)-—llmax Re f(z). For 0 < |2| = r < R, we have
| F(z)| < 1£(0) ~ (4 (R) — Re f(0)),
Re /(z) < Re (0) + 0r- {4 (R) — Re /(0)),

-

|Tm £(z) — Im £(0) | < s

(A(R) — Re f(O)).

— 2
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Reference

Rajacoray, C. T.: Carathéodory’s inequality and allied results I1. Math. Stu-
dent 15, 5—7 (1947).

\ +60
3.8.42 Let ay, a,, ... be real numbers such that 0 << 3'a2 << + oo. If
0<ax<1, then k=0
+o0 a;a; ﬂ +00 ,
2 i—l—j—]—l—rxs 7T 2 a,

) 1:,_]'=O 2co8 — k=0
{t4j even) 2

with equality if and only if 0 << x << 1, @y = ¢, a; = 0 for odd % and

1
a, = ¢ 5

2
for even k&, where ¢ is an arbitrary real constant different from 0.

Remark. This inequality is obviously closely related to HiLBERT's inequality (sece
3.9.36).

Reference

HuBeRr, A.: On an inequality of Fejér and Riesz. Ann. of Math. (2) 63,
572 — 587 (1956).

3.8.43 Let f be an analytic function in the closed disk |z] << 1. Then
for every 6 (0 < 0 < 27) and & > 0, '

+m

1
et 2] e d.

—

with equality if and only if f = 0. Constant‘ 2 is the best possible.

Remayk. This inequality is due to L. FEJER and F. Riesz [1]. For its generalizations
see [2]—[5].
L4

References

1. FEJER, L., and F. Riesz: Uber einige funktionentheoretische Ungleichungen.
Math. Z. 11, 305—314 (1921).

2. Frazer, H.: On regular functions. J. London Math. Soc. 9, 90—94 (1934).

3. BeckenBAcH, E, F.: On a theorem of Fejér and Riesz. J. London Math. Soc. 13,
82— 86 (1938).

4. LoziNskil, S.: On subharmonic functions and their applications to the theory
of surfaces (Russian). Bull. Acad. Sci. URSS Sér. Math. 8, 176 —194 (1944).

5. HUBER, A.: On an inequality of Fejér and Riesz. Ann, of Math. (2) 63,
572 — 587 (1956).
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3.8.44 Let f be a continuous complex-valued function of a real variable
x on {a, b]. If 6 denotes any real number, then

b b b
Re (e“’ff(x) dx) = [Re (¢” j(x)) dx < [ | (%) | dx,
since for any complex number z the inequality Re z < |z| holds. Now,
b
f f{x) dx is itself a complex number, i.e.,
b _ ‘
ff(x) dax = re* (t real; » > 0).
If 6 == —¢, then

Re(e“’fbf(x) dx) = r:—-’ fb)‘(x) dx|,

which establishes the 1nequahty

(1)

ff %) dx <f|f nldx  (@<b).

We have tacitly supposed above that f f{x) dx &= 0, but (1) also
holds lfff dx = 0.

Th]S well known inequality can be used to deduce some interesting
inequalities which would be difficult to prove otherwise.

Example. Taking, for instance f(x) = 1/{x + iz')”’“, where ¢ is the imaginary unit,
n a positive integer and 4 a real number, we get

1 (@ + X)" — (b +2)" fb 1
a0 T e i

(2) dx,

where @ < b.
For » = 1 and A = 0, (2) becomes
(3) b —a <1(rtnb rctna) (a < b)
—{arc tan — — arc tan —- .
Vie* + 73 @2 + 23 — 4 A A

Remark. Inequality (3) was proposed by D.S. MirriNovIC as Problem 5283 in
Amer. Math. Monthly 72, 428 (1965). A solution, based on some geometric considera-
tions, was given by M. F. Neuts and M. N. Tarta in the same journal, 73, 424 (1966).
It was noted also that S. U. Rangarajan has proved an inequality in the other
direction, namely

b—a

2 Via¥+ 1) 92 + 1)

arc tan b — arctana << —

where ¢ < b and gb > — 1.
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3.8.45 If a rectificable curve L lies inside another convex closed curve. C
and f 1s a regular function inside C, then an absolute constant A exists
so that

W J116)] 1dz} < 4 [17Q)] jd.

This is called GABRIEL’s problem.

The best possible constant A’ is not known, but it has been conjec-
tured that A’ = 2, which has been verified in the case when C is a circle.

There exits a very simple proof that (1) holds with 4 = 4. A refine-
ment of the argument yields A = 3.6.

-

Refevences

GABRIEL, R. M.: Some results concerning the integrals of moduli of regular
functions along curves of certain types. Proc. London Math. Soc. (2) 28,
121—127 (1928},

GaBrieL, R. M.: Concerning integrals of moduli of regular functions along
convex curves. Proc. London Math. Soc. (2) 39, 216—231 (1935).

CarLson, F.: Quelques inégalités concernant les fonctions analytiques. Ark.
Mat. Astr. Fys. 29 B, No. 11 (1943), 6 pp.

ANDERSS0oN, B.: On an inequality concerning the integrals of moduli of regular
analytic functions. Ark. Mat. 1, No. 27, 367— 373 (1951).

3.846 If 0 <p<<g and P{2) =ay+ a2 + -+ + a,2" is a complex
polynomial of degree %, then

(= S|P )" < ap et (1P Pde])

EES! T el
where A4, , 1s a constant which depends on $, ¢ only.

Refevences

Nikor’skil, S. M.: Some inequalities for entire functions of finite degree of
several variables and their applications (Russian). Doklady Akad. Nauk
SSSR (N.S.) 76, 785—788 (1951).

SzeGd, G., and A. ZygMUND : On certain mean values of polynomials. J. Analyse
Math. 3, 225—244 (1953/54).

3.9 Miscellaneous Inequalities

391 Ifa,b,¢c,d > 0and ¢ + d < min(g, b}, then
ad + bc << ab and ac + bd < ab.

3.9.2 Let ¢, be the A-th elementary symmetric function of real variables
%y, -+, %y. The two systems of inequalities

(1) 6, >0,...,6,> 0
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and
(2) % >0,...,%,>0
imply each other.

Proof. The implication {2} = (1) is trivial. In order to prove that (1) =
(2), we shall consider the algebraic equation

(3) X" — e x" g — e - (—1)% ¢, =0,
whose roots are %, ..., %,. After multiplication by (—1)", that equation
leads to

(=) + e (=27 4 oy (=2 e g, = 0.

Since ¢; > 0, it follows that all the roots of this equation are
positive (we use the known fact that all the roots are real). This proves
the above statement.

Reference

MrtriNovi¢, D. S.: Equivalence of two sets of inequalities. Math. Gaz. 43, 126
(1959).

3.9.3 If @ and b are positive numbers, then, for x, y real and x% 4 y2 > 0,

min (a, b <3M—++M< a? + b2.
@8 = Va2 + 5 <Ve+

Reference

OsTROWSKI 2, p. 290.

3.9.4 For x% 4'v2 4- 22 > 0, we have

2 2 2 2 2 2 -
o LVETATVEF Yyt
Va2 + y2 4 22
where the lower bound is attained if and only if precisely one of %, v, z
is non-zero, and the upper bound is attained if and only if x =y = z.

Reference

OsTROWSKI 2, p. 290.

3.9.5 Let by, ..., b, be real numbers, let a; > --- > a, > 0, and let

k k
(1) Sa,<3b  (k=1,...,n).
y=1 r=1
Then .
(2) S <3n
r=1 o]

22 Mitrinovié, lnequalitios
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Proof. After multiplication by 4, — a4, ,, (1) becomes

k k
(3) (ay, _“k+1) 2a, < (a4 —a, )b, (k=1,...,n),
r=1 r=1

where @, ; = 0. Summing both sides of (3) from 2 =1 to 2= n, we
obtain

(4) Sa? < Yap,
=1

By CaucHY's inequality,

(San) <(3a)(2).

which with inequality (4) yields

(£ = (S =(29)(32)

so (2) follows.

Equality holds in (2) if and only ifa, =0, forr =1, ..., .
3.9.6 Assume that

10 élz, b@’ C’L’ d‘i (i:]-, ...,'H)

are all positive numbers;

2° Xa; > e,

30 ai—”cl‘:bi—di (7;21,...,%).

Then
Xa. Xb. a b
T e G| non
T 3q, = max (cldl e cndn)

In order that
2a; 20, . By a,b,
s = (i 7).

condition 2° would have to be replaced by X'a;, = Xe¢,.
Rewmark. These inequalities for a pseundo-mean were given by C.S. PaTLAK and

proved by D. C. B. MarsH. See Problem E 1449. Amer. Math. Monthly 68, 670— 671
(1961).

3.9.7 If a and & are real numbers and » >> 0, then
(1) la + 8" <c,(|la]” + |b]),

where

¢, =1 for r<1 and ¢, =2"' for r>1.

4
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Proof. Since x> f(x) = |x|" ( > 1) is a convex function, we get

—+ bl 1 ’ ’
< g e+ o,

whence
@ + 8" < 27 (|al” + 8.
For r = 1, inequality (1) becomes
@+ b < la] + |0].
Now, let 0 <r» << 1. If a and b have opposite signs, the result is
evidently true. Otherwise, let ¢ = b/a with a &= 0. Then inequality (1)

becomes
(L8 <1+4+7¢ (0<r<1).

For » = 0 this result is trivial. Consider the function
=01+ -1~ (0<r< 1),

which vanishes at £ = 0 and decreases as ¢ increases, This yields inequa-
lity (1) for a 4= 0. (1) also holds when a = 0.

This proves inequality (1) which is important in the Theory of Pro-
bability. :

Remark. Inequality (1) is true also for @ and  complex numbers. See, for example,
MiTriNovIC 2, p. 99, and R. SHANTARAM : Problem E 2147. Amer. Math. Monthly 76,
1072—-1073 (1969).

3.9.8 Let ay, a5, a3 be positive numbers and let
(1) min (aq, @y, ag) < €, << Max(a,, a, a;) for k=12, 3.
1° If (1) and ¢; + ¢5 + ¢35 = ay -+ ay + ay hold, then necessarily
Ci€9Cy = AqAgdg,
CoCq + €301 + €10y = agag + aza, + a4a,.
Equality occurs if and only if the 4,’s and ¢;’s in some order are equal.
2° If (1) and aya,a3 = c,6,¢5 hold, then necessarily

(and indeed

ay +ay +ay = +og+ (m > 0)),
with equality if and only if the 4,’s and ¢;’s in some order are equal.

3° If (1) and aya; + aga; + 4,85 = coCy + 46y + € hold, then
necessarily
-~

a; + a;, + a3 = ¢; + ¢ + c5,
with cquality if and only if the a,'s and ¢,’s in some order are equal.
20+
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The above result is due to A. OppENHEIM [1]. He recently showed
(see [2]) that the first inequality in 1° can be strengthened, which is not
the case with 2°. Namely, he proved:

V. Suppose that 0 < # < 2, that the ¢,;'s, a;'s satisfy (1) and that
¢, + ¢g + €3 = a; + a, + a5. Then

(ay + ag + ag)" ¢10563 = (01 + €2 + €4)" a1a505;
equality implies equality of the ¢;’s and 4;’s.

For any # > 2 the inequality fails for appropriately chosen a,’s, ¢;’s.

2'. Let & be an arbitrarily small positive number. Numbers a;, ¢
satisfying (1) and a,a,a5 > ¢;6464 exist such that

(@1 + a3 + a3) (016063)° < (e1 + €3 + €a) (@10909)°
although (by 2°)
ay + ay + ag = ¢; + ¢, + ¢Cs.
Refevences

1. OPPENHEIM, A.: On inequalities connecting arithmetic means and geometric
means of two sets of three positive numbers. Math. Gaz. 49, 160—162 (1965).

2. OrPPENHEIM, A.: On inequalities connecting arithmetic means and geometric
means of two sets of three positive numbers II. Univ. Beograd. Publ.
Elektrotehn. Fak. Ser. Mat. Fiz. No. 210—228, 21 —24 (1968).

399 If aq, ..., a, (n > 1) are different real numbers, then

: PR B 12
() 15521;19; (4 @)t =< nin —1) (n 4 1)

(ay + -+ + aj).

Proof. Let a, << -+- < a,, 151}21’;191 (a, — a;))* = d? (d > 0), mt_in a; = a
where 7 is a fixed index. Then, for ¢ > 4, 4; > 0, while for7 < ,a < 0.

For : =1,...,n, put b, =a;+4 (i —j)d which implies b, = b, +
(z — 1) d.

Then, for 7 > 4,
(2) “e:(“i_“i—1)+"'+(“j+1““j)+aj_>.(’i_‘j)d+“j

== bi = a; = —da;,

and similarly for ¢ < g,
(3) a, <b < —a,.

From (2) and (3) we have

' a: > b2,

— 7%

1.e.,

2 a; > 30 =30} + 264G — 1) + (¢ — 1)*d%).

i=] [T D] $= ]
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Whence, by the formula for the sum of squares of natural numbers,
we have

2 12

nn—1){(n + 1)
= 15 a2,

which implies inequality (1).

Z“?Zzb?=n(bl+”‘1d)2+"(n—~1)(n+1)d2
=1

This proof is due to J. PoLajNar. Another proof of (1), by indirect method, is
given in Amer. Math. Monthly 76, 691 — 692 (1969), as an answer to Problem E 2032
proposed by D. S, MITRINOVIE,

Comment by S. B. PRES16. From (1) follows that the inequality
) 12 "
min_ (@, — a)? <~ 3 (a, + 1)

1<i<k<n n(nt — 1) =

holds for any real number £.

n
Since the function f defined by f(f) = D (a, + #)? attains its minimum

r=1

Z‘ a, —— ( Z‘ “») fort = - w Z a,, we get the inequality
¥ p=1

12 " 1 7n 2
: g e 2 _
L<ich<n @ — &P <, (n% — 1) ,,‘=Z; S (v;; a”) ),

which is stronger than (1).

3.9.10 Let a,, ..., a, and by, ..., b, be two finite sets of real numbers with

A= max (¢, +b,) and B =min (a, +b,).
k

Furthermore, let ¢, ..., ¢, and 44, ..., 7, be permutations of 1, ..., #n

such that
dilz"‘zain and bjIS"'Sbjn.

If A = max (@; + b;,) and B = m:;m (@;, + b;,), then
() B<B<AZA.

Proof. Clearly, min (;, + b;,) = B. In the sequence of sums {a; + 0, }
ik

consider @; + b, and a; + b;. If they are replaced by a; + b; and
a; + b;, the minimum of the new sequence is not less than B, since the
new sums are not less than the smaller of the removed sums.

Next, in the same way, replace the summands in the sums which
contain @, and a;,, and so on. At each step the minimum of the sequence
cannot decrease. After % such steps the sequence {a;, + b, } transforms

into the sequence {a,-* + bfk}’ and thus we obtain B << B.

—

Analogously we prove A < A4.Since B< A4, inequality (1) is, there-
fore, proved.
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This proof is due to G. KarajpZié.

Remark. Inequality (1) was proposed as Problem 50 in Matematieskoe Prosve$lenie
6, 330 (1961). However, this journal does not appear any more, this issue being the
last published. So, no solution has been published in that journal.

3911 Let a;;and x; = 1,...,k; 1 =1, n) be nonnegative real
numbers such that the numbers a,; are not all equal, and let

k n n n
>x,=1, and  min (H %) H i max ( II aij) =[] a,
r=1 i \j=1 i\j=1 i=1

fori =1, ..., k Then
n " k
(1) 110y = JT{ 35as).

with equality if and only if x, = 1, x;, = 0 for ¢ & u.
In addition, the inequality

(1) 11 ( fxtai) < _131 “

ji=1 i=1

holds if and only if

" oa - a, "ag—a, )
(2) (Z'Jw—])(zmja J-)20 fori =1, ..., k.

j=1 a'vj ji=1 iy

In this case, equality is attained in (1”) if and only if x, = 1, x; = 0 for

i F7
Proof. We have

#oa \1l/n n
3 0>n—n d >n— A
®) =nn([152) 2030 = 30

7
i=1 %

=1 “i
and, if we assume that (2) holds, then

z aij — @y s
(4) AT <0 (@i=1..,k).
j=1 v
Further,
(5) Z%ta“ZO, xi2 0 (?: 11 v, n).
i=1
Putting », =1 — ( , from (4) and (5) we find

T(Zm) =11 “w(; (Z572,) 1)
<[] (+ Zn(E% ")+ 1) < [Ta,

i=1 =1 \j=1 % i=1.
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Conversely, suppose inequality (1’’) holds, and consider the function

A k Gij — By
fxy, .ooox) = [T a{ 3= — +1).
i=1 i1

vi

For x,€10,1] ( = 1, ..., k), f assumes its greatest value at the point
with coordinates x, = 1, x, = 0fors &= ( = 1, ..., k). This means that
the partial derivatives of the first order must be nonpositive; i.e.,

(6) (g) i § i %< G =1,...,k; i==9).

bvj
From (3) and (6) we obtain (2).
Let us now prove inequality (1’). Putting x, = 1 — (Z xX; — xu) ,

by the inequality between the weighted arithmetic and geometric means
of positive numbers, we have

U(inat,)>nnau ~ e 11(115)" = 010,
i=1 \i=1 j=11 =1 = j=1 M j=1

Ifall the numbers a,; (j = 1, ..., #) are equal, then (1') and (1) reduce
to equalities.

Remark. The above result is due to G. Karaypzi¢ and is a development and a
generalization of an idea suggested by Problem E 2113 by F. SaND published in
Amer. Math. Monthly 75, 780 (1968).

"

3.9.12 Let a and x,, ..., x, be positive numbers such that 3 x;, = 1.
71=1
Then

L (zx) =W
I (Fo-e) =
=) (e -
)6
E (=)

Equality holds in all these cases if and only if x; = --- =¥, = 1/n.
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The above inequalities are due to V. VoLENEC, who, starting with these inequa -
lities, gave a number of geometric inequalities which generalize some results of
H. GaBar, J. ScHoprp, V. THEBAULT and Z. ZivaNovié.

3913 Ifa, > 0for k= 1,..., n, then
' )/k “n

n (a
S < Say.

Reference

AxERBERG, B.: A variant on the proofs of some inequalities. Proc. Cambridge
Phil. Soc. 57, 184 —186 (1961).

3.9.14 Let a4, ...,a, and «,, ..., &, be real numbers such that
% =a, +--+a,,
ay + cee e a,,

Xy %o

Ocl ”'(X’n-»l = an—l + an’
061"'0(-" =4a,.

Then the system of inequalities

(2) 0<a, <1 (k=1,...,n)
1s equivalent to
(3) a +--4a,<l, a>0 (k=1,...,n).
Proof. From (1) we obtain
@, =&y K&,
Ay =0y - %y (1 — ),
(4) Ay g =0y e, ol =, ),

and also
x% =a; + -+ a
ag 4 +an
Ky = ,
ay + - +a,
- ag + * + a,
1) - )
() 063 a2+.. +an
) a,
X, = —
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From (4) we infer that (2) implies that ¢, >0 (A =1,...,#%) and
a+ -+ a, << L,sincex; =a; + -+ + a,.
From (5) we infer that (3) implies (2).

3.9.15 Let ay, ...,y and by, ..., b, be real numbers and let
x=n""Xa and p=n"'2Xp,.
Then
(1) Za2 202 — (Zab)} > P X0 — 2 Xab; + 2 Xak,

with equality if and only if the three row vectors
a=(a,...,a,), b=(b,....,0) and e=n""2(1,...,1)

are linearly dependent.

Proof. If 4 is a real mX#» matrix, then the matrix 4’4 of type nX# is
semidefinite positive, ie., det 4’4 > 0, with equality if and only if
rank 4 < min (m, 7).

Now, let
a; by n?
A=

a, b, n?

Then
det A’'A = X2 X0 — (Zab)? — (62 X0 — 26 Xab, + 2 Xa°).
The condition det 4’4 > 0 reduces to (1), with equality if and only

if rank 4 << min(n, 3), i.e., if and only if the vectors 4, b, e are linearly
dependent.

References

ScHWERDTFEGER, H.: Problem 19. Canad. Math, Bull. 3, 79 (1960).
ScHWERDTFEGER, H.: Introduction to Linear Algebra and the Theory of Ma-
trices. 2nd ed., Groningen 1961, p. 142,

rw
Remark. Inequality (1) is an improvement of CaucHY’s inequality. For, the right

side of (1) is => 0, because the discriminant of the quadratic form in «, § is not
positive, by CaucHY's inequality.

3.9.16 Let a,, ..., a, be nonnegative real numbers and
(1) A, =4 —(n—1)a, (k=1,...,n)
with
A=a, + - +a,.
Ifall 4,, ..., A, are also nonnegative; then
(2) a--a, =>4, 4

[ %
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ie.,
ay - a, =2 [(ul + o+ an) - (% - 1) al]
ol e a) — (- 1) a].
Proof. From (1) we find that, for 2 =1, ..., #,

Ay gt Ay A+t 4,
n—1 -

ak:

By the arithmetic-geometric mean inequality we have

(3) > (Ay o Ay Apyy o A,

Multiplying inequalities (3) for 2 =1, ..., #, we obtain (2).

Equality will hold in (2) if and only if there is equality in (3) for all %
or if some a, is zero. Hence, we have equality in (2} if and only if a; =
=a,> 0,orifalla,, ..., a, are equal except one which is zero.

If n = 3 we can omit the condition concerning 4;. If# > 3 the con-
ditions 4, > 0 are essential. This can be seen by taking a; = a, = 1,
dy = @y == --- = a, = ¢ > 0, where ¢ is sufficiently small.

Itemavk. The above proof is revised from a proof by D. D, Apamovic.

Refevence

MitriNovi¢, D. S.: Problem 46. Mat. Vesnik 3 (18), 218—220 (1966).

3.9.17 If x4, ..., x, are real numbers such that
n 12

Szl =1 and >x,=0,

E—1 k=1
then

I n

1  Yax, < —(max a, — min a),
(1) lké kVE Fz(lgkc_:nkz i<ken ¥
where a,, ..., a, are real numbers,

Proof. We can assume, with no loss of generality, that

min g, =a, and max q, = a,.
1<k<n 1<k<n

"
Then, in view of the hypothesis > x;, = 0, we have
. =

n

1 ‘l
(24, — a, — ay) xk\ Z

M=

@) zax

Since the inequality

—ay| |7

[y

‘.
|k
|2a, — a, — a;| < a, — a, is equivalent to

ai—(a1+an)ak+ala”50 (k=1,...,n),
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which is true for ¢, < a, < a,, and, furthermore, since > x, =1, in-
equality (2) yields k=1

juy

i »n
] 1 .
a.x, | < — a — ay) |x,| ——{ max a, — min 4,\.
kg; R 2 kgly( " 1) |74 2 (1£k£n i<k k)

This completes the proof of (1).

The above proof is due to G. KaLaipzic.

1 & : ol "
3.9.18 Let w, =—-2 %7, subject to the conditions 3 x; = 0 and
i=1

i=1
n

2 x% = n, where x, ..., x, are real numbers.
i=1
x5 and «, especially play an important part in skewness and kurtosis.

The following inequality
(1) oy 2> o + 1

seems to have first been stated by K. PEarsoN [1]. Inequality (1) has
later been proved by different methods by J. E. WiLkins [2] and M. C.
CHAKRABARTI [3]. In [2] J. E. WILKINS also established that

2) ng < 2

and that this value is attained at the point P:

1
=n—-1, %= =x,=——.
1 l/ 2 % ]/n 1
M. C. CHAKRABARTI also proved inequality (2) using STURM's theo-
rem, and then showed that

1

and that this value is attained at the same point P.
All the above results are contained in an interesting paper [4] of
M. LAksHMANAMURTIL. He proved that

Xom 2 “?n—H + (x?n
giving the conditions of equality, and also showed that

(n — )" 14 (=)

m = T

nin

/
where &, attains its upper bound at the point I, where m need not be
a positive integer.
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References
1. PEarsoN, K.: Mathematical contributions to the theory of evolution. XIX:
Second supplement to a memoir on skew variation. Phil. Trans. Roy. Soc. A

216, 432 (1916).
2. WiLxins, J. E.: A note on skewness and kurtosis. Ann. Math. Statistics 15,

333 —335 (1944).
3. CHAXRABARTI, M. C.: A note on skewness and kurtosis. Bull. Calcutita Math. Soc.

38, 133—136 (1946).
"
4, LAKsHMANAMURTI, M.: On the upper bound of Z #7 subject to the conditions
i=1

"
x, = 0 and 3 2 = n. Math. Student 18, 111—116 (1950).
1 i=1 1

M«

!
o

)

3.9.19 Consider a real sequence (a,) such that

MAa,>0 for »=0,1,....,k A%, =a, and A4*7'a, =0,

where A%a, is as defined in 3.9.20.
IfS,=ay+ - + a, then
e 1)
m - n < og+n < k -+ 1 )
- H
(k -+ 1)

"

Reference
Marxkovi€, D.: Quelques remarques sur les progressions arithmétiques (Serbian)

Bull. Soc. Math. Phys. Serbie 1, No. 2, 17—21 (1949).

3.9.20 Let a,, a,, ... be a sequence of real numbers, and let
A%y, =a, Aa,=Aa,=a;, , — a,,

Na,=AAN ) for »=2,3,... and k=0,1,....

If b > —1, (—1)* 4%a, > 0 and
(—=1)*""A"""a, >0 for =1,...,n,
then

Ifb < —1,4"%,> 0and
A", >0 for m=1,...,n,

then

n

(—1)”k-2()(:)b’°ak > 0.
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Let x— f, (), ..., f,(x) be given continuous functions over the interval
[0, ], each differentiable » times on (0, #) and f,(») >0, ..., f,(#) > 0.
If, furthermore,

(—D* /7 (%) = 0

forp=1,...,q, k=1, ...,nandn — k <x < n, then

kg n gq
>(3)v i, >0,
r=0 p=1

where b > —1.

The above inequalities are due to M. P. DRAZIN.

Reference

Drazin, M. P.: Some inequalities arising from a generalized mean value theo-
rem. Amer. Math. Monthly 62, 226— 232 (1955).

3.9.21 Generalizing some results of H. C. PockLingToN [1], T. NoMURA
[2] has proved the following results:

1° Let #,,...,%, and a, b, & be positive numbers, and suppose
0<y <Ly, If

" s :
2% <ka, X% <a and 2y, <b for n>s>t>k,

r=1 r=1 r=1

then

> xy, < ab.

r=1

2° Let A and B be positive numbers. If af(x,) << Ax,, and bg(y,) <
By, (r =1, ..., n} in addition to the conditions of 1°, then

n

2 f(x) gly,) < 4B.

r=1

m

Proof of 1°. If weput X' x, = X,,, then
r=1

4]

Z‘xryr S ins + yS(Xﬂ - Xs) - (yl - ys) Xs + yan

r=1
<@y —y)a+yka=[y +yk—1la
< +ytE—1la
S +y++y)a
< ab.
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Proof of 2°. We have
" " AB AB

2x)gly) < 2 ay, = 2%,

r=1 r=1 r=1

Using 1° we get

#

2 1x)gl,) < AB.

r=1

In his paper T. NoMURA has also proved an analogous result in which
the sequence ¥y, ..., ¥, is substituted by several such sequences.

References

1. PockrLiNGgTON, H. C.: An inequality. J. London Math. Soc. 10, 242—243 (1935).
2. NomurA, T.: On some inequalities. Sci. Rep. Tokyo Bunrika Daigaku A 3,
181—183 (1937).

3.9.22 Let a4, ..., a, and &, ..., b, be real numbers such that

a>-+>a,>0 and b >a, bby>aa, ..., b, ---b,>a, - a,.
Then

(1 byt by Za ke + g

Under the same hypothesis we have the following inequality
2
r=1

which is stronger than (1).
Another possible generalization is the following. Put

b, —a " b —a
r 7227 1’,
r=1

a,

a,

loga,=«, logh =f, for r=1,...,n.

The condition b > a4, ..., b, -+ b, > a, a, and (1) take the form

k k k
SB>3x and I >3
r=1 r=1 .

r=1 r=1

fork=1, ..., n.
k

2

More generally, if '8, > X, fork=1,...,nis true and f is a
. r=1 r=1

monotonely increasing convex function, then

k
gi(ﬁk)zgf(ak) for k=1,...,n.

Reference

Szhcz, G., L. GEHER, I, Kovics and L. PINTER: Contests in Higher Mathema-
tics. Budapest 1968, p. 19 and pp. 1456 148.
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3.9.23 Let a and b be two arbitrary positive numbers satisfying the
condition 1 << a << b. If

1
w, =5, v, =a, uuﬂz?(uﬂ—l—vu), Vyiq = T

b — a)?
0 < un-i—l - vn-;—l <L*_é§)—

3.9.24 Let a = (a;) and b = (b,) be two sequences of real numbers such
that:

1° ¥a, >0, forsomem,

=1

20 a]< O (7'> 1)©aj_1< OJ

37 1<y <. <,

Then

(1) 2 aph, = D ay.
E=1 k=1

Proof. If there are no negative terms in the sequence @ up to the m-th
term, there is nothing to prove. If there are negative terms, then thereis
some &y such that
a, <0, a, >0 for k>Ek.
We now have

m w wm m
2 b, EZ'akbk,, = bkozak > 2a,.
E=1 E=1 E=1 k=1

Obviously one single strict inequality in 3° implies strict inequality
in {1).
Reference

Lewix, M.: An inequality and its application to a property of Mahler’s partition
functions. J. London Math. Soc. 43, 429—432 (1968).

3.9.25 Let p, =0, py, Py, ..., P2yt be a sequence of real nonnegative
numbers such that
P < bor—y  and Py, < Py for k=1,..., 7.
Then
n 2 # n
(Z0uii—20) + Se12 Sttees.

k=0
KReference

OriaL, Z.: Sur unce indgalit¢. Ann,. Polon. Math. 8, 20— 32 (1960).
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3.9.26 Let a,, b, (1 = 0,1, ..., 2n) be real numbers such that

a;+a, >0 (=01,..,2n—1),

a2i+1<0 ((=0,1,...,n — 1),
Sh>0 (0<p<g<n).
k=2p

Then
2n
2(_1)” aibi _>... Os
i=0

equality occurring if and only if a; = 0 for all 4.

Reference

- MASSERA, J., and D. S. GREENSTEIN: Problem 4608. Amer. Math. Monthly 63,
49 (1956).

3927 Tet 0 <y <y <+ - << 4, <1 (n>1)and let

X, —%,_,>d>0 (k=1,...,n).

Let 7 (0 << 7 << #) be an integer and let x < [0, 1]. Then

}1‘1
1 — kd)
" x—xl L

‘ k k=0 ]
Hl% | -

Reference

SuisHA, O.: The Chebyshev polynomial of best approximation to a given func-
tion on an interval. Math. Comp. 20, 267— 268 (1966).

3.9.28 Let x, y, $, g be real numbers and 1 < p < 2, %— + —;—: 1. Then

7 sgn & — [y|"” sgn yf? < max (2, (L)) |x — y[? (e~ + lyjeh),

Reference

Ci1TLANADZE, E. S.: On the variational theory of a class of non-linear operators
in the space Lp (p > 1) (Russian}. Doklady Akad. Nauk SSSR (N.S.} 71
441— 444 (1950).

3.9.29 Let a be a positive constant. Define f by f(0) = /(1) = 0, and

f(x) =exp(—2~"— (1 —x)7%) for 0<x< 1.
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Then
1@ < (Cw ) dor m=10,1,..., and 0w <1,

where C depends on a only.

Reference

DE BrurjN, N. G.: Problem 168. Wisk. Opgaven 19, 357— 358 (1950/54).

3.9.30 Given
(L4 24 - B =l pbmy g plRn e
then, for An odd,

k, k, &, — Ak k, k,
ot Lo < < CE e = cfk””}rl)/z > kanuj-m/z > e 2

and, for An even,
C(Ok’n) —<_ C(lk,n) S . S C}:;E) 2 C(Z;:;)z > ... 2 Cg:;"') .

Remark. We have

. ¢
et l) = ey
t=max(0,p—k)

ch»2)=p+1 for 0<p<h.
Forn > 2,
kn
c;k'”) > Gék'fl) (1 << [?], e — c(k’")) .
References .
TURAN, P.: Problem 3950. Amer. Math, Monthly 47, 182 (1940).

FrAME, J. S.: Solution of Problem 3950. Amer. Math. Monthly 48, 562—563
(1941).

3.9.31 Let m and n, with » < m, be natural numbers, and let

m
L

Lb oz oee 4"
Then:

1° fis strictly increasing on [0, + oo},

2° g defined by g(x) = f(«) - 4"~ ™ is strictly decreasing on (0, + o0},

30 1<;f(x)<g‘—§f—11 0<x<1),
F(x) >:“—_;_'"—1lxm—" 0 < %< 1),
fo) > (1< 5< +o00),

1</(x)<m7{71xm’” (1<x< 4 00).

n_+—1
28 Mitrinovié¢, Incqualities
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Proof. Since
x"l‘xz"l‘"' _I_x'm—ﬂ

1 1
b — ot 5
X

flx) =1+ ;
result 1° immediately follows, ;
2° follows from 1° by noting that g(1/x) = f(x).
From 1° and 2° we get

HO) <flx) < F(1) 0<x<1),
g{x) > g(1) (0<x< 1),

f(x) > f(1) (I <x < + o00),

g{+ oo} < glx) < g(1) (1<x < + o0).

It turns out that these inequalities are equivalent to those in 3°.

Remark. Revised from a proof due to D. D. Apamovic.

3.9.32 Let # > 1 be an integer and 0 < ¢ < n. Let F, (f) be defined by

’ t " RS 1
F, () :(—n——:—lﬁo (t — x)" " sin x(m) dx,
F_(0)=1.
Then
(1) F <0 for 0<t<a and F,(0)=0.

An application of (1) gives
Fa)<F,H<F,(0)=1 for 0<t<az and n>1,

where

\ s—1 £2% ntl \~-1
F,(t)y=(—1) ‘cost——gg(—-1ﬁ‘2M!}(_j__jT) :

] k=0
ifn=2s —lands > 1, and

o s—1 1y k41 1 -1
ifn =2sand s > 1.
Some particular cases of the above result are the inequalities

smt<2(1—c052), smt<2—|-cost’ 7 (/}\5} "2

i — A t — 3 C”
sint>4—4cost—t2’ sint>cost+4——t3/3,
: #2 ¢ 5

all valid for 0 < ¢ << @& and with equality only when ¢ = 0,

Reference
EveritT, W. N,: A trigonometric inequality. Math, Gaz. 44, 52— 54 (1980).
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3.933 If sz € E*, x| < 1.(k=1,..., m)and

m
2
k=1

xa, .

then there exists a permutation o of 1, ..., # such that

n—1

? .
Dogm < (@a+1)52 forallp=1,..., m.
k=1

The above result can be found in [1].

Refervence

1. BourBaki, N.: Topologie générale. 2nd. ed., Paris 1955, Chap. 5—8, p. 87.

3.9.34 Let P be the set of all mappings of a set S into the nonnegative
reals. Let M be a mapping of P into the nonnegative real numbers,
satisfying

1° M(0) = 0, M () = AM (),
where 4 > 0 and f € P;

2° f(x) < g(x) forall x€ S and f, g€ P implies M (f) < M (g);

8 M(f + g) > M() + M(g) for all f, g€ P.

Leth(ty, ..., t,) be a real-valued function of # real variables ¢,, ..., ¢,
defined and continuous for¢; > 0 (i = 1, ..., #). Let % have the following
properties:

4° Inequalities #; > 0 (s = 1, ..., #) imply that A (¢, ..., ¢,}) > 0.
5° If A > 0, then A (A, ..., A,) = Ah{ty, ..., 1,).

6° The set K ¢ E* of all points (¢, ..., ¢,}, whose coordinates satisfy
£ >0 (t=1,..., 1)

and
Bty ..., t) > 1,
IS convex.
Under these conditions, if f,, ..., f, € P, we have
(1) M (B(fyyoer 1)) S B(M(f), .. M (1),
fo<a<l,0<pf<l,x+B=1and f, g< P, then
(2) M (f¢") < M (/) M (g)°.
Iftp>=1and f g€ P, then -
¥ M((f -+ g7)" < M) + M@
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HOLDER’s inequality (2) and MINKowsKI's inequality (3) are im-
mediate consequences of (1), We have only to set k(x,y) = x** and
h{x,v) = (x1? 4 yYP)? respectively, and prove that K is a convex set
in both cases.

v

Example. Let us take S = {1, ..., n}. Then P is the set of all nonnegative sequences
(ay, .-, an) of real numbers, We can take
12
wLa
k§1 k%x
M(al,...,an)m w
w
k§1 k

where w, > 0 for all %.
Inequalities (2) and (3) give

2 5 n o« n 8
(4) w, asb _<_( wa)( wb)
and
(5) MP @+ b3 0) < MP(aiw) + M @5 w),
where 0 < a<1,0<f<1,a4 =1 and p > 1; besides, a = (ay, ..., an),
b= (by,..., by) are nonnegative sequences and w = (w,,..., wy) IS a positive
sequence.
Reference

Boursaki, N.: Intégration. Paris 1952, Chap. 1, No. 1, 2, pp. 9— 14,

3.9.35 Let m = min{g, ax*~!) and M = max(a, ax*~ ') for x > 0 and
for positive rational a. Let H, G, A be the harmonic, geometric and arith-
metic means of m and M, respectively. Then the quotient

x* —

for x 1

¥ — 1
is contained in the intervals
(m, H), (H,G), (G, 4), or (4, M)

in the following respective cases

-—%—<a<1, 0<a<—%—, a>2or 1<a<?2.

Refevence
IvEnGar, K. S. K.: A deepening of the binomial inequality. J. Mysore Univ.
B 3, Part 19, 135138 (1942).

Remark. G. KarajpZi¢ proved that the above result is valid also when @ is an
arbitrary positive real number.
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3.9.36 Let ay, a4, ..., ay be positive real numbers. Then

N
(1) > §m+n+1_n2a

Generalization. There are a number of extensions of (1) which is known
as HILBERT’s inequality [1].
For instance, H. FrazER [2] demonstrated that the constant s can

be replaced by a smaller constant (N 4 1} sin - v —I- -1 - E.H.CospEyY,

H. Frazer and W. W, SAwWYER [3] proved that in certain cases even this
constant can be lessened.
N. G. pE BruijN and H. S. WiLFr [4] showed that the best possible

constant Cy in

N N
‘ Z'm—l—nSCN"garzn
is given by
Cy = — 5 a° (log N2 + Oflog log N (log N3} (N — + o).

F. C. HstanG [5] proved that, if ag, a4, ..., ay and b, by, ..., by are
sequences of nonnegative real numbers,

ab,, o N . 1/2 / N , 1/2
S sy a)( zn)

Related to this inequality, see paper [6] of Q. A. M. M. YAHYA.
D. V. WIDDER [7] demonstrated the following inequality

(m + n)!  Cpfy
Z‘Z‘m-l-~m-|-1—-7rZ'Z’ gm+n+17

15l
n=0m=0 nOmOmn

which is stronger than that of HILBERT. HILBERT’s inequality is also
+00

valid when N — -+ oo, under the assumption that >’ a2 converges. For
n=0

this case as well as for its integral analogues, consult [8] and [9].

References

1. Hegert, D.: Uber die Darstellung definiter Formen als Summe von Formen-
quadraten. Math. Ann. 32, 342—350 (1838).

2. Frazer, H.: Note on Hilbert’s inequality. J. London Math. Soc. 21, 7—9 (1946).

3. CospEY, E. H., H. FRAZER and W. W. SAwWYER: Empirical data on Hilbert's
inequality. Nature (London) 161, 361 (1948).

4. pE BruynN, N. G., and H. S. WirLF: On Hilbert’s inequality in # dimensions.
Bull. Amer. Math. Soc. 68, 70— 73 (1962).

8. HsianNg, F. C.: An inequality for finite sequences Math. Scand. 5, 12—14
(1957).

8. YaHvAa, Q. A. M. M.: On the generalization of Hilbert’s inequality. Amer. Math.
Monthly 72, 518 — 520 (1965).
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7. WIDDER, D. V.: An inequality related to one of Hilbert’s. J. London Math. Soc.
4, 194—198 (1929).

8. GopuNova, E. K.: Generalization of - two-parameter Hilbert's inequality
(Russian). Tzv. Vysi. Ulebn. Zav. Mat. 1967, No. 1 (56}, 35— 39.

9. LeviN, V. I, and S. B. STECKIN: Inequahmes Amer. Math. Soc. Transl. (2)
14, 1—29 (1960).

3.9.37 Let fbea function of fand x defined forax < ¢ << fanda < x < b,
and continuous in this rectangle. For each fixed ¢, let f be positive, twice
continuously differentiable, and logarithmically convex as a function of x.
Then the function F defined by

8
:ff(t,x) dt

is logarithmically convex.

Reference

HirLE, E.: Analysis, vol. 2. Waltham-Toronto-London 1966, p. 521.

3.9.38 Let x, be an approximate value of VIV , where N is a natural

number. Then
oy 3N + a2
0352 + N

is a better approximation of VN in the sense that if x, < |/N, then x, <
% < /N, while if x, > /N, then %y > > VN,

Similarly, if x, is an approximation of ]/N then

Xy =

AN +
*1 = x{]2 3 5 4+ N
is a better approxunatlon of V N.If xy < ]/N then x; << %, << ]/N and

if x5 > ]/N then VN < Xy < %y

These approximations can be obtained from a generalization of NEWTON’s
method due to R. E. SEAFER, who privately communicated to us this result.

3.9.39 If a,, ..., a, denote real numbers and if

= () (e (T et

1 — ayx) =+ (1 — a,x)

then, forr =0, 1, ...,

Q?H < G942y With g, = 1.

Reference

GHIRCO1AS1U, N.: On the expansion into power series of the inverse of a poly-
nomial (Romanian). Stud. Cerc. Mat. 6, 51— 77 (1955).
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3.9.40 If
+00 N

Stem) =2 Eoar

then we have

7T 2 n -+ a
S(a, n) < Vica T -arctan l/ﬁai (0 < a < 2),
i
S(a, n) <?_}_—1 (a = 2),
1 2n + a + l/az — 4
S(a, n) < log — (a > 2).

Va2—4 2n—}—a—l/a2—_—4

Proof. The quadratic polynomial x2 —|— ax + 1 {a > 0) is positive increas-

ing for x > 0. It follows that x> f(x) = 1/(x® + ax - 1) is a positive
decreasing function for x > 0 and f(x ) ~—> 0 as x — -+ oo. Therefore we
have .

+00 1 +00
(1) k-—%‘,_lm_i < J f(x) dx

When we look for a primitive function of f, we must distinguish three
cases: 0 < a < 2, a = 2, a > 2. Evaluating the definite integral on the
right-hand side of (1), we obtain the corresponding upper bounds.

3.9.41 Let F,(x L (1 —x) e (n — ) for n > 2, and let<I(n)‘:
%!

f F,(x) dx. Then
1

I(n) >m for n>2,
100
whence it follows that 3’ —I(n) diverges.
n=1

This result is due to Ya. GaBoviC.

3.9.42 Let, for x > 1, the function f be decreasing and positive and

assume that 3'f(n) converges. Let a,, ..., 4; be positive, and a;% + ...
n=1

+ a; ' = 1. Then

S(na) + - +2’f nay) <Zf

n -1

Refevence
pE BrRupyN, N. . Problem 31. Wisk. Opgaven 19, 104— 105 (1950/54).



360 3. Particular Inequalities

3.9.43 Assume 0 <a< 1, a1+ b1=1, and let [x] denote the inte-
gral part of x. Then

400 +00 +o0
Dmal~2 4 > nb]2 < 3n 2,
n=1 n=1 n=1

Equality holds if and only if a4 is irrational.

Refevence

DE BrRUIJN, N. G.: Problem 52. Wisk. Opgaven 19, 105 — 106 (1950/54).

Remark. Compare with 3.9.42.

+00
3.9.44 If p > 1 and 3'|a,l? << + oo, then
%n=0

A Bl ? +90
[ 12| s Xa,pf.
0 #=0 n=0
If 4 > 1 equality holds only if a,==a; = --- = 0. For no value of

—+ 0

p > 1 can we replace the right-hand side by C 3’ |a,/?, with C not
n=0

depending on a,, a4y, ..., and 0 < C < 1.

Reference

DE BruirN, N. G.: Problem 53. Wisk. Opgaven 19, 107 — 108 (1950/54).
3945 Forp =2,3,...and £ =1, 2, ... we have

+ 00

i 1 1
> — < — [ + ]
R R Y e L N (L g (b + 1
Reference
MATSUOKA, Y.: Evaluation and estimation of series of certain special type. Sci.
Rep. Kagoshima Univ, 13, 11—15 (1964).
3.9.46 If x == 0, then

+oo
i In i
(1) e E ——— e
1 (n? + %2
2 4 T u=
X+ 3 1

;’2— .
These inequalities are called MATHIEU’S.

Proof. Let # > 0 and let x be real. Then
i i 2n

o 2 T (n2 2 _ % (2 2
Sy ey | e SRS LR

4

2n
CEr

>
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Summing for n = 1, 2, ..., we obtain, for x == 0,

X gy 1
(2) 2 A <
Let # > 0 and let x be real. Then
1 . 1 2n

n_.}_)z_}_xa_}__l_ n+—1-)2+2 1 2 2)2 2 1
(-3 r (rrg) FEtp e

2n

S A
Summing, for n =1, 2, ..., we get

1 T 9y
<>
n51(n2 + x2)2

(3)

2+ -;—
Inequalities (2) and (3) prove (1).

Remark. Inequality (2) was conjectured in 1890 by E. MaTHIEU [1] and proved only
in 1952 by L. BERG [2]. A very elegant and at the same time elementary proof of
(1) given above is due to E. Makar [3].
M. TipEMAN [4] has proved
e < ! (t>0; k=12..)
Wi pftt T2 T A

For & == 1 and ¢ = 2 one obtains inequality (2).

H. W. GouLp and T. A. CuapmaN [5] have proved in 1962 the inequalities

1 1 <2’” 2 _ 1 1
A1 R L e+ 1)L (R AR AR omt

from which we can derive weaker inequalities than (1).
See also papers [6]—[9] which are related to the MATHIEU inequalities.

References
1. MatHIEU, E.: Traité de physique mathématique, vol. VI—VII, part 2, Paris
1890.

2. BERG, L.: Uber eine Abschiatzung von Mathieu. Math. Nachr. 7, 257259
(1952).

3. Maxkar, E.: On the inequality of Mathieu. Publ. Math. Debrecen 5, 204—205
(1957).

4. TipDEMAN, M.: Kommentar till en gammal olikhet. Nord. Mat. Tidskr. 6, 27— 28
(1958).

8. Gourp, H . W.,, and T. A. CHAPMAN: Some curious limits involving definite
integrals. Amer. Math. Monthly 69, 651— 653 (1962).

6. vaN pER CorrurT, J. G, and L. O. HEFLINGER: On the inequality of Mathieu.
Indagationes Math. 18, 18— 20 (1956).
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7. EMERSLEBEN, O.: Uber die Reihe X'k (42 + ¢)~2. Math. Ann. 125, 165—171
(19562).

8. ScHRODER, K.: Das Problem der eingespannten rechteckigen elastischen Platte.
Math. Ann. 121, 247—320 (1949).

9. ZmoroVvIC, V. A1 On an inequality of Mathieu '(Russian). Izv. Vysi. U€ebn.
Zav. Mat. 1960, No. 1 {14), 123—124.

3.9.47 If the function f is defined by

+00 u—1

o) = 2

(ke (x> 1),

n!

then
k
(=) > 0 for B=0,1,2,3, 4.

dx*

This inequality does not hold for 2 > 4.

References

Suag, S. M., and U. C. SHARMA: Some properties of a function of Ramanujan.
J. Univ. Bombay 17, 1—4 (1948).

Boas, R. P.: A series considered by Ramanujan. Arch. Math. (Basel) 11,
350 — 351 (1960).

3.9.48 Let f be a function defined over an interval (a, ). Suppose that
7"’ exists and that it is increasing on (a, b). Then, if x¢€ (¢ + 1,5 — 1),
we have

(1) flx —1) — 2f(x) + Flx + 1) > /" (x).

For instance, we have for x > 1,
(2) (x — 1) log(x — 1) — 2xlogx + (v + 1) log(x + 1)>—ﬂlr—.

Proof. By TAYLOR’s theorem,
1

fla— 1) =1()— 1 () +5 /") — 51",

14 1 (X 1 ey
fla+ 1) =70 + 1) +5 &)+ 0,
where &, 5 are some numbers satisfying

x—1<é<ax<<nyp<<x+ L.
It follows that

flr—1) — 2 + f(x + 1) = /" (1) + 57" () — /" (&),

ref

Since "'’ is a increasing function, we conclude that (1) is true. In-
equality (2) follows from (1) if we take f(x) = x log x. Then x > "' (x)
=—1/x2 is an increasing function on (0,+00).
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3.9.49 Let / and g be real-valued functions defined over (a, b). Suppose
that f and g are positive, continuous and differentiable on (a, b). Further-
more, suppose that /' and ¢’ are positive on (4, b) and that x - f (x)/g' (x)
is an increasing function on (a, b). Then:

1° x> f(x)/g (x) is an increasing function on (a, b), or

2° x> f(x)/g(x) is a decreasing function on (a, b), or

3° there is a number ¢ € (a, b) such that x — f(x)/g (x) is a decreasing
function on (a, ¢) and an increasing function on (c, b).

Remark. This result is given without proof in: N. Bourraxki: Fonctions d’une va-
riable réelle. Paris 1958, Chap. 1, § 2, Exerc. 10.

3.9.50 Let / have a third derivative on (0, 2a) with /7 (f) > 0, let
0<x,<aand p, > Ofork =1, ..., n. Then

Z}"kf("'k) Zf’k”k Zpkf(2“ — g} Zfbk (2a — x)
@ ‘—Z?k_*f( Sty )S by _'-f( Sty )

where all the sums are over k=1, ..., n. If /7(f) > 0 on (0, 24), then
equality occurs above if and only if all x, are equal.

Remark. Inequality (1) is due to N. LEvINsoN and it generalizes the following in-
equality of K. FaN

(]

1 —
kI=I1 Yy - ( x)

ORI

with equality if and only if all ¥, are equal.

e 8

bl
i
ot

0 < x, S%)

M=

1

fi

T. Poroviciu gave a generalization of (1).

References

Levinson, N.: Generalization of an inequality of Ky Fan. J. Math. Anal.
Appl. 8, 133—134 (1964).

Poroviciu, T.: Sur une inégalité de N. Levinson. Mathematica (Cluj) 6 (29),
301 —306 (1964).

3.9.51 Let

1+ ayxy + agx® + ---
1+ byx + bpy? + ==+

where 0 <a, < 1land0< b, <1(#=1,2,...). Then ¢, does not exceed
the n-th FIBoNACCI number.

=1 4 c9x + cpx®2 4 -+,

-

Refevence

SHariro, H. S.: Problem I 1502. Amer. Math, Monthly 69, 922923 (1962).
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3.9.52 Let x> y(x), x> w(x; f) and x — g(x) be continuous functions
of x in [a, b]. Let f have continuous, and w and g have sectionally con-
tinuous derivatives there (derivation always with respect to x). Assume
that

() w' (x;8)) —g(x)w(x;0) =0 for a<x <<t and t<x <D,
lim [w'(t — &;8) —w' (t +&;8)] /() =1,

=07+

f(@) w' (a;t) y(a) = f(B) &' (b; %) y(D).

Then, we have

and

b

M o< M (f Oy () + )1)"?dx)7,

a

where
2oL
M(t) = (f(lf w (% 8) ) + |gx) w(x; ) [F) dx)“ ,
ando + =9y +0=p1+gl=pu?r +ylwithp>1land u> 1.
A particularly interesting case of (1) is when f(x) > 0, g(x) > 0 and
u=1p=¢g=o"2=9y1 Then (1) takes the form

)< M2 [(y (02 £2) + y ()2 g ) i,

where
I\Z(rﬁ)2 = w(t;?) + f(b) w'(b;t) w(b; ) — f(a) w (a; 1) w(a; )
withw' (b; 8 = 258 for 5 — 3.
Reference ‘
BLO((1:19(,5:‘)I D.: A class of inequalities. Proc. Amer. Math. Soc. 8, 844—851

3.9.53 Let F be a nonnegative convex and a nondecreasing function on
(@, + o0) with an asymptote y = x — & {x > 0). Then the following
inequalities hold:

Fx+h<Fx) +h for x>a, h>0;
F(F(2x)) < 2F (x) for x> a.

Reference

Pryce, J. D.: Problem 5266. Amer. Math. Monthly 73, 212—213 (1966).

3.9.54 If /' is an increasing function, then

(1) Flr+1)>Fx+1) = Hx) > f ).
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Proof. By LAGRANGE’s theorem,
fx + 1) = flx) =F(x + 0) (0<6<1).
From this equality and the hypothesis for f' (x), (1) follows.

Application. (1) may written in the form

(2) Hxe + 1) —f(x) > (%) > f(x) — f(x — 1).
Let f(x) :-2—963/2 and write (2) with x successively replaced by
1, ..., ». Summing, we obtain
.E.(( + 172 — 1) >2k1/2>£n3/2_
3 o) 3

Revised from a proof by Z. Por-StojaNoviIC.

3.9.55 Leta << b < c. If fis continuous for x € [a, ¢] and if {' is increasing
for x € (a, ¢), then

(1) (b —a) f(c) + (¢ — b) [(a) = (¢ — a) { (D).

The inequality is reversed if /' is decreasing.
If /' is strictly monotone and a, b, ¢ are all distinct, equality is ex-

cluded.

Proof. If /' is increasing, applying the mean value theorem, we obtain

— f(b , , By —
0210 pig) > 1 (@) =79 =L

c — b—a
and (1) follows.
Other assertions are evident.

1
LExample. Let f(x) = log(1 4+ »). Derivative f/'(x) = 147 is decreasing for x > 0.
Let
a=0, b————:—, ¢ == (x> 0; 0 << g<Tp).

In this case, all conditions for applications of the inequality

(& — a)fle) + (¢ — b) fla) < (e — a) f(])
are satisfied, and we get, for x > 0 and 0 < ¢ < p,

ilo (1+ﬁ)<-§—10 (1—}-5)
p 8 q g °F p/’

q p )

BusH, K. A.: On an application of the mean value theorem. Amer. Math.
Monthly 62, 577— 578 (1955). -

i.e.,

Remark. Incquality (1) is, in fact, the definition of convex functions (see Theorem
1 of 1.4.3}.
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3.9.56 Let f be a real-valued function of a real variable, satisfying the
following conditions:

1° £(0) = 0,
2° f(x) is continuous for x > 0,

3° f(x) has the (» — 1)-th derivative, and x — (—1)""1f*~1(x) is
an increasing function for x > 0.

Then, for x;, > 0 (1 =1, ..., n), we have

(1) =D I (b 2 ) >0,
where 2* is the summation over all the combinations ¢;,...,7, of %
natural numbers 1, ..., 7.

Proof. We shall prove (1) for the case » = 3. Inequality (1) can be proved
analogously for arbitrary 7. Consider the function

F(x,y,2) =1fx) +1(y) + /() — e+
—Jy+2 —flz+x)+ flx—y+2).
We shall prove that F > 0 for «x, y, z > 0. Differentiating F with respect
to x, and then y, we get
Fo=fx)—Fflc+y)—Flr+2+1x+y+2,
Fo=—["&+y+{(x+y+3).

According to 3°, we have F,, > 0. F, is, therefore, increasing with
respect to ¥ and vanishes for y = 0. Therefore, F, > 0. Again, we see
that F is increasing with respect to x, and since it vanishes for x = 0, we
get F > 0, which was to be proved.

Notice that if the n-th derivative exists, condition 3° can be replaced

by (—1)"~1f" (x) >
A number of 1nterest1ng inequalities can be obtained from (1) by
x—}-l
applying it to f(x) = log (x + 1), f(x) = log —11, and hence to the

number-theoretical functions ¢ (%), a,, (%), ¢ (). The results are:
If x,, ..., x, are nonnegative real numbers, then

k-1

kﬁl{ﬂ*(xi Foe o, FNEDTT >0,

with equality if and only if at least one of the numbers x; is zero.

If 2 > 0, and it %, ., %, are nonnegative real numbers, then

+ +x,k 1(_1)k—1
H {H 7?1—“} =1,
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with equality if and only if at least one of the numbers #; is zero.

k—1

T o, a )" =1,
k=1

with equality if and only if ,, ..., a,, are relatively prime.

s k-1
TTUT* (a0} = 1,

with equality if and only if 44, ..., g, are relatively prime.

Forn > 1,
d k-1
g{H*w(ail---a,-k)}‘ R ¥

with equality if and only if a,, ..., a, are relatively prime.
In the above inequalities J7* is defined analogously to Z*,

The above interesting results are due to T. Poroviciu [1].

Remark. Inequality (1) was rediscovered by P. M. Vasi¢ and it appears as one of
his results in [2]. P. M. Vasi¢ succeeded, however, in proving (1) for the case
#n = 3 without the supposition of dlfferentlablhty, which he replaced by the weaker
condition of convexity of order 2.

J. D. KeCk1¢ has communicated to us that inequality (1) holds for a convex
function of order # — 1 (see 1.4.3). In [3], he gave a proof of this statement for
# = 4, indicating how it may be carried further for arbitrary #.

References

1. Poroviciu, T.: On an inequality (Romanian). Gaz. Mat. Bucuresti 51, 81— 85
(1946},

2. Vasi¢, P. M.: Les inégalités pour les fonctions convexes d’ordre #. Mat. Vesnik
5 (20), 327—331 (1968).

3. Kedxi¢, J. D.: Some inequalities for convex functions of order ». Mat. Vesnik
7 (22), 67—173 (1970).

3.9.57 Let f be a twice differentiable function on [0, @), and let it on
that interval satisfy the following differential inequality

(1) af(x) — (R — 1)/ () =9,
where % is a real number not equal to zero. Then
B
2 f(]/xi‘ ot x,’i) S A
n (2
R
f(in‘ + ot xf,) + (n — 1)£(0)

n

for x;< [0,a) (i = 1,...,n) and VAI+ +x € [0, a).
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Furthermore, if f is £ 4 1 times differentiable on [0, a), and if it
satisfies (1), then

k
# A+ +m) Ao S e fly)
(3) 1‘(‘/ - ) 2—--- (M} — M) <

n n

- [R k—1 () .
Va5 ) + s+ 300 (- )
< —

n

‘l—'4‘

where s, = i/x‘1 + o +x, M, = x—1+—1;-j# and «x; € [0, a)
(0=1,...,n), and s, € [0, a).

The above results are due to J. D. Ke¢ki¢ and I. B. Lackovi¢ {11
The same inequalities were first proved by P. M. Vasi¢ [2] who supposed
that f has the (& 4+ 1)-th derivative on [0, 4), that it is convex of order %
(see 1.4) and that for (2) £ (0)="-.. = f*~1(0) = 0, while for (3) that
£(0), ..., f*=1(0) are arbitrary.

Those inequalities of P. M. Vas¥¢ appear as generalizations of certain inequalities
of D, MarkovIC [3].

Further generalizations of inequalities (2) and (3) are also given in [1].

References

1. Kelxié, J. D., and I. B. Lackovié: Generalizations of some inequalities of
P. M. Vasié. Mat. Vesnik 7 (22), 74— 178 (1970).

2. Vasié, P. M.: Sur une inégalité de M. Petrovi¢. Mat. Vesnik 5 (20), 473478
(1968).

3. MarkovI¢, D, : Onan inequality of M. Petrovi¢ (Serbian). Bull. Soc. Math. Phys.
Serbie 11, 45—53 (1959).

3.9.58 Let f be a convex function on [0, a) and let ¥ = (¥, ..., %,) and

p = (py, ..., P,) be two sequences of nonnegative real numbers such that
pp=>lfork=1,...,nIf

ny—1 ny—1 n
Z Pidn == 2 Pp¥ = = 2 p%s,
h=mny k:u,_l
then '
) S lt) <1 (%glpkxk) - ( - g:p) 0)

where x, € [0,a), for k=1,...,n and% 2 prxr€ [0, a).
k=1
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Remark. This result is due to P. M. Vasi¢ [1]. For p,=1(k = 1,..., n) one obtains

an inequality of A. W, MarssaLL, I. OLKIN and F. ProscaanN [2], which includes,
as a special case, the following inequality

1 M R n s—1 Zn‘ $
(2) — a, —a g( ) ( a——a),
”lgllk | 2 k=1[k y
1 n
where azzkg a,, akz{)andszl.

Inequality (2) appears in Statistics (comsult the papers [3] of S. GarTI, {4] 0f
Z. W. BIrNBAUM, and [5] of M. DE NoVELLIS).

References
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5. pE NoveLLis, M.: Some applications and developments of Gatti-Birnbaum in-
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[

3.9.59 A sequence a, (=0, 1,...) is called logarithmically concave if

a,— a, 14, >0 (n=1,2,...).

If the sequences 4, b, are positive and logarithmically concave, then
their convolution

€, = agb, + @b, _; + -+ a,b,

has the same properties.

Reference
LorentZ, G. G.: Problem 4517. Amer. Math. Monthly 61, 205 (1954).

3.9.60 If f(x,,..., x,) is a concave, symmetric and homogeneous func-
tion of the first degree, then

x +...+xn
flrg, ooy ,) < ———""f(1,...,1).

This result is due to A. E. GEL'MAN.
3.9.61 Let x,, (u=1,...,m and v=1,..., %), p and » be positive

m
numbers, with 3'x,, = ¢,. Then
u=1

) > ( ﬁx,:,)P < nl-*( 2)

if r < 1and pr << 1. The converse inequality holds if » > 1 and $» > 1.

24  Mitrinovié, Inequalitios
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MINKOWSKI's inequality results for p = 1/7.

The integral analogue of (1) is given by:

Let f be a positive function almost everywhere, summable in the
rectangle a; < x <a,, b3 <<y < b, such }thatf f(x, v) dx = C(y),
where C{y) € L (b,, b,) is 2 known function. Then 1

as{ by b by j2
f(ff(x, y)"dy) dx < (ay — ﬂ1)1"”(fc(y)’dy)
a; \h by
if < 1 and 7 < 1. The converse inequality holds if » > 1 and pr > 1.

Reference

MikoLAs, M.: Sur un probléme d’extremum et une extension de I'inégalité de
Minkowski, Ann. Univ. Sci. Budapest Eo6tvds, Sect. Math. 1, 101—106
(1958).

3.9.62 Let a,, a,, ... be a2 sequence of nonnegative real numbers not all

+00
equal to zero, andlet >’ k%a? << -+ oo. Then
=1
+0oc 4 ’ +0Q + o0
o (Za) <o (Za)(Zwat).
k=1 k=1 ) \k=1

where 7% is the best possible constant.

The above inequality has the following integral analogue: let f be a
nonnegative real-valued function on [0, -+ o0), such that x+> f(x)? and
x> x%f (x)? are integrable functions on the same interval. Then

+ 00 4 +o0 +c0
(2) (ff(x) dx) < :7'52(f)‘(x)2dx)(fxzj‘(x)2 dx),

where a2 is also the best possible constant.
Without any difficulty, from (1) we can pass to (2), and conversely.
Inequalities (1) and {2) are called CarLsoN’s [1].

Generalizations. We note many extensions of (1} and (2). B. Sz.-Nacy [2]
demonstrated the following inequalities

1 1
+o0 |g  +oo g +00 by [ F00 BsT)ps
ey 2
Sa + 3 (=1 “J < f(Zk”‘I%V") (Z I“klpz)
k=1 k=1 | k=1 k=1
and
1 1
+oc g +00 5 [+ v
1 2 A (PI ”PJ
S, <%f(g(k — ) ) (kzllaktp-) .
=1 = ar
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where a,, a,, ... are real numbers, g =1 + 5 (sz_—l) ,1<<p,<2and
1< py < 2 sk

We assume that the series in question converge.

V. L Levix [3], improving the results of W.B. CaTtox [4] and
R. BELLMAN [51, showed that,if p > 1,¢>1,4> 0, 4 > 0 and if f isa
real-valued nonnegative function on [0, + o0), such that x> x? 1% f(x)?
and x> x771T# f(x)7 are integrable functions on the considered
interval, then

A
+oQ

ff(x) dx < C(}Ooxpf1Al f(x) pdx)P.u:l-qﬂ (fl‘ooxq~1+y f(x)qu)m

0 0

ps/ \gt t+1 ’
(4 —I-M)F(T*s t)
_ 4
bu + gqi’ b+ gl

Constant C is the best possible.
The problem of determining the best possible constant K in a more
general inequality

+ 0 oG a; +o0 a,
J# 11w P dxéK(:fx“‘lf(x) P dx) (Of % |1 () P dx) ,

where the exponents are real numbers subject to certain conditions, was
considered in a number of papers. The results obtained by B. KJELLBERG
(see [6], [7] and [8]) are of special interest. In his papers extensive
literature on that subject can also be found.

Concerning other generalizations, consult [9]--[117.
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3.9.63 Let (a,;) be an m X% matrix of nonnegative terms. Then

3
() w3 Sa,30, 50,2 (3 Fa)
i=1j= =17
with equality if and only if all the row sums are equal, or all the column
sums are equal, or both.
The above inequality is due to F. V. ATKINSON, G. A. WATTERSON
and P. A. P. MoraAN [1]. They also used (1) to obtain

m n ”m " m n 3
(2) Z 2 “ij]bﬂj Z Py Z; @iefs = (21 211 “@j?i%‘) ’
i=1j5=1 = S= i=1j=
where p, > 0, ¢;> 0, Z';b1 2 g, = 1.
i=1
Putting in (2} m = n, a; = aj;, and p; = ¢, an inequality conjectured

by S.P. H. MANDEL and I M HuGHES [2] on genetical grounds is

obtained.
There is an obvious integral analogue of (1). If K (x, ¥) = 0 is inte-
grable on the rectangle 0 <x << a4, 0 < vy < b, then

a babd

3) abffffK(x,t)K(x,y)K(s, y)dxdydsdt?_(fafbK(x,y) dxdy)g.

If a = b and K (%, y) = K (y, x), inequality (3) can be written in the
form

(@ [ [ Kyls,) drdy = (Of“ [Ky) as dy) ,

where K, is the third-order iterate of K in the sense of the theory of
iterated kernels of integral equations.
Inequality (4) suggests a more general result

(5) g1 fafaKn(x, y) dx dy > (fafK(x, y) dx dy)n.
R 0 ¢

This inequality was proved in [1] for all # of the form 273%, and was
conjectured for other positive integral values of ».

J. F. C. KiNneMAN [3] gave a more direct proof of (2) which is based
on the convexity of f(x) = x* for £ > 1.
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A generalization to products of sums of a;;  taken over subsets
of the index set {i, 1, k, ...} was also obtained in [3]. For example,

m #n 14 w1 m 1 m n
222 A3 2 2agrn > 2 “sjtPJ:Z 2 b,
i=1j=1k=1 s=1t=1 s=11t=1 s=1t=1

m n I 4
> ( 22 2 “ijk]bi%"’k)
imij=1k=1

m n I
for ;> 0,4, > 0,7, >0, and X p,= 3/ g, =23 r,= 1.
i=1 i=1 i=1

Noting that the notion of a “partial average” is a particular example
of that of a conditional expectation, and that a conditional expectation is
a special sort of RaponN-NikopYM derivative, J. F. C. KiNcMAN esta-
blished an inequality involving such derivatives, which is a generaliza-
tion of (2). For this generalization consult [4].

Using KiNgMaNX’s method of proof, P. R. BEESACK [d] proved the
somewhat weaker inequality than (b), namely

z a nfflogK(x,y)dxdy
ni1 00
(6) ofﬁfK"(x’ yydxdy > a" " exp e ,

which, however, holds for all # >> 1 and for an arbitrary nonnegative
kernel K. In case K = const > 0, both () and (6) are true with
equality holding, but in general (5) is better than (6).

Using a corresponding result for symmetric matrices with nonnegative
elements due to H. P. MuLHOLLAND and C. A. B. SmitH [6], P. R, BEE-
SACK in [b] showed that the conjecture (5) is true for all # >> 1 and non-
negative symmetric kernels K. More generally it was shown that for such
kernels

(fv(x)gdx)n 1fafv (%) v (x, y) dx dy

0

> (Of Jol v0) K ) d dy)”

holds for arbitrary nonnegative continuous functions v; setting v (x) =1,
(B) is obtained.

In fact, in BEESACK’s paper [B] inequality (6) was formulated in a
more general form. In addition, the same technique was used to obtain a
lower bound for the convolution of # positive functions, which reads:
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If f,, ..., f, are nonnegative LEBESGUE square integrable functions
on [0, ) for all a > 0, then for all # > 2, and ¥ > 0,

n—l

foweonf, (% )Zmexp{(n—l ”“f y*o 2"Zlogf du}

X

where f; * f;(x) denotes the convolution f £ (&) f;(x — ) di.
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3.9.64 Let # and % be continuous and nonnegative functions on [0, 1].
Let ¢ > 0 be a constant. If, for 0 < x <1,

(1) u(x)§c+th(t)u(t) dt,
then, for 0 < x <1,
(2) #(x) < ¢ exp (ka(t) dt) :

This result is due to T. H. GRoNnwarL [1].

Various linear generalizations of (2) have been given. See [2]—[6].

We present below a generalization of the GRONWALL inequality
which is due to S. C. CHU and F. T. METCALF [2], namely:

Let # and f be real continuous functions on [0, 1]. Let K be continuous
and nonnegative on the triangle 0 <y <x < 1. If

u(x)gf(x)—i-fo(x,y)u(y)dy for 0<x<1,

then

x

w@) I+ [Hx ) ) dy for 0<x<1,

0
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where, for 0 <y <x <1,

+00

Hx,y) = 2 K )

i=1

is the resolvent kernel and the K; (+ = 1, 2, ...) are the iterated kernels
of K.

There are other generalizations (as well asapplications) of GRONWALL's
inequality: some nonlinear generalizations are given by D. WILLETT and
J. S. W. WonNG [7]; a slight sharpening of the result of D. C. CaU and
F. T. METCALF as well as some applications to VOLTERRA integral equa-
tions is given by P. R. BEEsack [8].

See also paper [9] of W. W. SCHMAEDEKE and G. R. SELL,
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3.9.65 Consider the homogencous linear differential equation
(1) gl ¥ + i x=0,

whose coefficients are real and continuous functions. Let x be a non-
trivial integral of (1) such that -~

(0 =0 and x()=0 (h>0).
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Applying a general theorem due to C. DE LA VALLEE PoussiN [1] to
(1), we obtain the following inequality

2) | 1< 2mh + —1-kh2,

where 2m = fmax lg(f)| and & = max 1) [

Pu. HARTMAN and A. WINTNER [2] improved inequality (2) and pro-
ved that

1< mh + -5 B2,
The best possible inequality of this type was obtained by Z. OpIAL
[31 who proved that
(3) 2 < dmh + kA2,

where equality can hold only in the case m = 0.
Though the proof of (3) is elementary, it is rather long, and so, follow-
ing Z. OPIAL, we give a proof of the somewhat weaker inequality

(4) n® < 2amh + khE.
Let x be a nontrivial integral of (1) such that x(0) = x (k) = 0. Then
X + g(f) ¥ () + 1) x() = 0.

Multiplying this identity by () and integrating from 0 to A, we get
h

[EAGED dt—l—fg dt—l—ff (5)2 dt = 0.
)
However,
R ’ A
[x'Waydt =) x(8) s — [¥ ()2 dt = — fx (#) dt.
0 0 )
Therefore,

(5) ——fx 2dt+2mf|x (t)[dt—l—kfhx(t)zdtzo,

where equality is possible only when m = 0. Using the inequality {see
2.23.2)

(6) fh()Zdt< fx (#)2 dt,

0

and applying the BUNIAKOWSKI-SCHWARZ inequality, we get

(7) f]x(t)l lx' (¢} dt < (fhx’ (£)% dt - fhx (t)? dz,‘)”2 < -:% fx’ (t)2 dt.
0 0 v 0
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Inequalities (4), (5) and (6) together yield
—fx 2dt+2m~fx 2dt+k—fx (f)2dt > 0,

which implies (4).
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3.9.66 Let p be a real continuous function of the real variable x on [a, b].
If the differential equation

y' +px)y=0
has a nontrivial solution y that vanishes at two points of [a, 4], then,
according to A. M. LYAPUNOV, $ is subject to the inequality

(1) (b —a) [[p(x)] dx > 4.

This inequality is sharp in the sense that the constant 4 cannot be
replaced by a large number.

Z. NEHARI claimed thatin [1] he has proved the following statement:

Let $,, ..., p, be real continuous functions in [a, b]. If the differential
equation

y(n) + P,,(x) y(”“l) 4+ pl(x) Y = 0

has a nontrivial solution y that has » zeros in [a, ], then

(2) 22’“ —a) ”f!}'?k ()] dx > 2",

As we can see from [2], Z. NEHARI himself communicated that the
above inequality is undecided since the argument given in [1] is invalid.

A.M.Fixk and D. F, St. MArRY demonstrated that (2) is correct
for n = 2. In fact, they proved a stronger result for

(3) Y+ gx)y + fx)y=0,
which reads:

Let a and b be successive zeros of a nontrivial solution to (3) where f
and g are integrable functions. Then

(4) (b — a) f/*‘(x) dx—4exp(-— %fblg(x)[dx) > 0



378 3. Particular Inequalities

and, a fortiori,
b

]
(b — a) ff+(x) dx + 2 f]g(x)| dx > 4,
where f+(x) = max(0, f(x)).

Inequality (4) is sharp since it reduces to LyAPuNOV’s inequality (1),
when g(x) = 0, and this is known to be sharp (see, for example, [3]).

H. HocusTADT [4] obtained the following result:

Let p and g be integrable functions in [, &]. If

YW — @y —q)y=0 (=2

has a nontrivial solution y that has at least » zeros in [a, 6], then

b 1/n b
1
((b — a1 g(x)] dx) - ;f |p(x)| dx > 2.

In connection with the more general results about this problem, see
paper [5] of P. HARTMAN which also contains six bibliographical items.

References

1. NeHaARrI, Z.: On an inequality of Lyapunov. In: Studies in Mathematical Analysis
and Related Topics. Stanford 1962, pp. 256 —261.

2. Fink, A, M., and D, F. St, MarY: On an inequality of Nehari. Notices Amer.
Math. Soc. 16, 91 (1969).

3. Macnus, W, and S. WinkLER: Hill’'s Equation. New York 1966.

4. Hocusrapt, H.: On an inequality of Lyapunov. Proc. Amer. Math, Soc. 22,
282 — 284 (1969).

5. HarTMAN, P.: On disconjugacy criteria. Proc. Amer. Math. Soc. (to appear).

3.9.67 Let V be a vector space over the field of real numbers, and let
the operator ||x|| be defined for all x € V, satisfying the following condi-
tions

(1) llx|| is a nonnegative real number,
(2) Hx+ o[+ llx —ylP= 2=+ 2 |y]E.

Then
i+ ylb <« +[[¥]]-

Proof. We first observe that ||{0l| = 0 and ||—x|| = ||x||. Define an inner
product (x, y) by
1
(2, 9) = (|x + y[F~ ]z — ¥[*).
)

We have immediately (x, x) = ||lx]|? and (x, y) = (y, ). By a repeated
use of the relation (2) we obtain (x + 2, y) = (x, ¥) + (2, y). It thenfollows
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that (rx, y) = r(x, v) for all rational numbers ». Hence, for all rational
numbers » we have

O0< (rx +y,7x +y) =r(x, x> + 2r(x, y) + (3, ¥},
which implies the CAUCHY inequality

[ y) < =y ]]-
However,

2+ yIP=@+yx+y) =2+ 20x9 + @9
< #4200 ]+ [ly]?
< BB+ 22yl +iy[P= (=l + [y
] < ]+ ]l

~

1.e.,

Reference

Kwurh, D, E.,, W, G, DorsoN and G. C. MARsHALL ; Problem 5264. Amer. Math.
Monthly 73, 211212 (1966),

3.9.68 If x and f are vectors in a BANACH space and p > 1, then
277 o — P <l o — BT B < 3p [ — B ([oe] + B
Remark. The above result is given in [1] without proof.

Reference

1. Boursaki, N.: Intégration. Paris 1965, Chap. 4, § 6, Exerc. 10, p. 257,

3.9.69 Let the arithmetic and geometric means of the real nonnegative

numbers a4, ..., 4, taken » — 1 at a time be denoted by
“1+"’+“n*“i ay - a, 1/(k—1) .
%= TR T V= (‘a,;*) (C=1,...,17).
Then
Vit Py, .
S (g (=3,4,..).
Reference

CarcsoN, B. C.: Inequality of mixed arithmetic and geometric means. SIAM
Review (to appear).

3.9.70 1If a, > 0, n > 2 and not all the members of the sequence a =

(ay, ..., a,) are equal, the following inequality holds
(1) (n — 2) Zai + n(a’l e an)lm — 2 Z (avia]')uz =0,

=1 1=ij<
- -

with equality if and only if, for some ¢,

a,-==0, G = =4 | =4, =" =4a,.
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Proof. Consider the function

En (a) = (n - 2) Zai + n(al tre an)lm — 2 Z (6"’156';1')1/2
i=1 1<i<j<n
and suppose, without loss of generality, that a; < a, << -+ < a,,.
Suppose now that (1) holds, for some » > 2, i.e., that g,(a) > 0,
andput a; = a,anda; =4 = (ay---a,.)" (E=2,...,n + 1). Then
1 )

g.iil@)=@m—1a + (n+1) a”“ ATl 9y (@, 4)M2.

If a, = 0, then g, ., (a’) = 0. Let now a; > 0. Then

, n—1
gn+1(“) _n - 1 ”+1 » ‘{" 1 n+1 2(n+1) 41/2
2na1/(”+1) 2n T _— 4 AT

Applying the arithmetic-geometric mean inequality we have g, (a")
> 0, with equality if and only if a; = 4, 1e., 4y, = .- = 4,4, and this
case was excluded from our consideration.

Therefore g, (@) = 0, equality holding if and only if a; = 0.

Consider now the difference g, (a) — g,,1(a4’). We have

Eni1 (@) — &,11(a)

niti n+1
—(n — 1)‘ Z’ai ~ 2a}/2(.__22‘a}/2 — nA1f2) —2 3 (aa)

2<i<jza+l
nt+l i
- + Za/ —_ 2a1/2 (2‘11/2 — nA1/2) —n Hdi’ll""
i=2 s
where @ = (dy, ..., @p44). Since a4, < 4, (a5 a,. )" = Aandg,(a) > 0,
according to the hypothesis, and since the term in bracket is = 0, we have
n+1 nt1
8oi1(@ — g, 1 (@) > a, — 242 all® + nd
i=2 i=2
ntl

= S - Ay

=0,

withequality if andonlyifa,= A4 (1 =2,...,n 4 1),ie., 4=+ = a,_,.
This proves inequality (1).

Reference

KoBER, H.: On the arithmetic and geometric means and on Hélder's inequality.
Proc. Amer. Math. Soc. 9, 452 —459 (1958).
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3.9.71 Let f be a real function which on an interval whose length is not
less than 2 satisfies the conditions |f(x)| < 1and |/’ (x)| < 1. Then

(1) |F )] <2,

where the constant 2 is the best possible.

Proof. Without any loss of generality we can suppose that 0 < x < 2,
Then

Fa) = 1(0) = xf () — 522" (ty) for 0<t <x<2,

1@ — 1) =@ —0f @ +5 @ — 2 for 0<x<f{<2,

and, therefore,

F2) — 1(0) = 2f (0) — 5 23" (b)) + 5 (2 — )2 /" (8),

i.e.,

2]f'(x)]§1+1—q—~;—x2+—;-(2—x)2=4——x(2—~x)§4,

or

F) <2

The function f defined by f(x) = %xz — 1 shows that the sign of
equality can actually hold in (1).

The above result is due to E. LaANDAU [1]. It was generalized by
V. G. AvakumMovi¢ and S. Arjanti¢ [2] who proved by geometric
arguments that if fis a real function such that [/ (x)| < 1for 0 <x <1,
then, for 0 < x < 1,

15— 1)+ FO)| <5 — 5 + 22,

and that this bound cannot be improved.
They also proved that the following conditions
/" (x)] <1 for 0<x<1, and [f(0)=7/(1)
imply

Fx) — ) + 1O <5 for 0<x<1.

This bound cannot be improved.

Remark. The above result of E. LANDAU, transcribed for the interval [0, 1], reads:
IH|f"@#)| < 1land |[flx)| < 1/4for 0< v < Lahen | f/(x)| < 1 for 0 < v < 1.

Comment by ]. D. KECKIC. Using the same method of proof as LANDAU’s, the
following result can be proved:
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Let f be a real function which on an interval whose length is not less than a
satisfies the conditions |[f(x)| < 1 and |f" (¥)| < 1. Then

, < 2 a
. rwlsg g
References

1. LanpAv, E.: Einige Ungleichungen fir zweimal dlfferentlerbare Funktionen.
Proc. London Math. Soc. (2) 13, 43—49 (1914).

2. Avakumovié, V. G., and S. ArLyjan&ié: Sur la meilleure limite de la dérivée
d’une fonction assujettie a des conditions supplémentaires. Acad. Serbe Sci.
Publ. Inst. Math. 3, 235— 242 (1950).

3.9.72 If f is a real periodic function with a period 27 and if # and ¢
are positive integers, then
max |9 ()| < 27 (=) max | f#+ 0 1),

Reference

PicoNg, M.: Relazioni fra le derivate delle funzioni periodiche. Boll. Un. Mat.
Ital. 6, 251253 (1927).

3973 Ifp,> 0,4, >0 (i =1,..., %) and if

(1) . ',_21'?4; =__Zl‘]w
then
(2) _;;Pi log p; = __Z;Pi log g;.

Proof. Starting with inequality x logx > x — 1, which holds for x > 0,

we have

EEI g.£3:>}z._.1
q; q; q;

Since ¢; > 0, the last inequality yields

3) p;log P‘>¢>,

Adding inequalities (3) for 2 =1, ..., » and taking (1) into account,
we get inequality (2).

Equality holds in (2) if and only if p, =¢q, i = 1, ..., n).
Remark 1. Inequality (1) appears in the theory of information. See, for example,
[11 and [2].

Remark 2. J. AczEL (see [3]) proved, in connection with a problem of J. PFanzacL,
that

2 .S 22Pfq,)wnh2p*2'q——lp>0q 0 (i=1,...7n>2

=1 i=1 =1
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is equivalent to
f(p) =alogp + b (@ > 0),

if fis a differentiable function.
P. FiscHER [4] proved that all the solutions of inequality

(4) ' Z’p fo)= Yv.fla) (=2

1=1 =1
with the cited conditions, are monotone, while for # >> 3 they are differentiable.

Gvy. MuszéLy (see [5]) determined for # = 2 all the solutions of inequality (4)
which are continuous on (0, 1).

References

1. BriLrouin, L.: Science and Information Theory. New York 1956, pp. 13—14.

2. KirMSER, P. G,: Problem E 1274. Amer. Math. Monthly 64, 432 (1957).

3. Aczgr, J.: Problem 3 from Reports of Meetings. Aequationes Math. 1, 300
(1968).

4. FiscHER, P.: Sur I’ 1negahte Zp S(p) = Z $;f(g;). Aequationes Math. 2, 363
(1969).

5. MuszéLy, Gy.: Uber die stetigen Losungen der Ungleichung pf(p) + (1 — )
X f(1 — p) = pflg) - (1 — p) f{1 — g). Aequationes Math. 2, 362363

(1969).
3.9.74 D.S. MiTRINOVIC [1] proposed the following problems:

Problem 1. Determine those algebraic functions Ag(x), £ =2, 3, ...,
which have the following properties:

log x

7= Ax(%) (x > 0),
Ak(x) ~ x (x — 0--),
xA, (x) ~ x'* (x — + o0),
:4k(x — -;)%%N ap(x — 1)%2 (x — 1),

where g, is independent of x.
J. KARAMATA [2] and D. BLANUSA [ 3] have given the forms of 4,(x),
As(x) and A4(x), namely:

A,y (%) =V%’ Ag(x) = 11;);

e 2 4
74 1604 7 with ¢ = }/x .

A0 =5 —p e —n s

In connection with functions 4, and 4;, see 3.6.15 and 3.6.16.

Problem 2. Find also algebraic functions A,(x) (k = 2, 3, ...) such that,
for x > 0, -

Iog x
X

< A,(x) and A, (x) = A,(x) for 2 < m < mn
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D. Braxu$A [3] indicated, without proof, that

Ay(x) > Ay(0) > A, (%),
forx > 0.

Remavrk. So far no solution has been published to the above problems.

References

1. MitriNovié, D. S.: Problem 5626. Amer. Math. Monthly 75, 911-—912 (1968).

2. KARAMATA, J.: Problem 1. Bull. Soc. Math. Phys. Serbie 1, No. 1, 77—78 (1949).

3. BLaNusSa, D.: Problem 13. Bull. Soc. Math, Phys. Serbiel, No. 3—4, 156—157
(1949).

3.9.75 Let x —~ T, (x) be areal trigonometric polynomial all the roots of

which are real, and let max |7,(x)| = 1.
0<x<2n

In 1940, P. ErDOs [1] conjectured that

[17, ] dr < 4.
0

Remark. 1t seems that this conjecture (E) has neither been proved nor disproved.
W.K.HavMAN on p. 27 of [2] has again in 1967 drawn attention to conjecture (E).
H.Kuuan [3] has recently given two new conjectures from which follows the truth
of (E).

Refevences

1. ErDgs,P.: Note on some elementary properties of polynomials. Bull. Amer.
Math. Soc. 46, 954— 958 (1940).

2. Havman,W.K.: Research Problems in Function Theory. London 1967.

3. Kunn,H.: Uber eine Vermutung von P. Erdos. Arch. Math. (Basel) (to appear).

3.9.76 Iet a, b > 0. If m,n > 1, then
(@ + " — @) + ((@ + b)" — )" > (a + by™,
and if 0 <<m,n < 1 this inequality is reversed.
Tet a,b,c >0, 0 < p,g9,7v<<1, p+qg+r=1, and s = mnt. If
m,n,t> 1, then
((a + b+ ¢)im — astmym 1 ((a + b + c)*i* — boimym
+(@a+ b+ —cY>2(+ b+ ),
while if 0 << m, n, £ << 1, then this inequality is reversed.
Furthermore, for g > 1 and » > 1 we have

H(l—j§p55)+]_li(1—lf[q.-,)>1.

1=1 i=1

where
Pyt =1 0<py<l (i=1,..,7vi7=1..., 4
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Remark. The above results, due to J.C.TurnER, V.CoNnway, M.S. KrLamMkin and
J.BRENNER, generalize the inequality of 3.6.36.

Reference

TURNER, J.C., and V.CoNwAY: Problem 68 1. STAM Review 11, 402— 406 (1969).

3.9.77 For the function f defined by

er [ et2at (x>0
Vem o
J.T.CHU proved in [1] the following result: If f satisfies

1

- (1 _ e—ax’)l/Z § f(x) < 1 (1 . ewbx’)1/2

= ? .

then it is necessary and sufficient that
1
0§a_<_? and b > 2/m.

G.PoLya and J.D.WiLLiams have earlier proved independently that

Flo) <=

S (1 — o2,

Remark 1. The above results can be connected with MILLs’ ratio (see 2.26).

Remark 2. References concerning resuits of G.Pérva and J.D. WiLL1AMS are given
in paper [1].

Reference

1. Cuyu,]J.T.: On bounds for the normal integral. Biometrika 42, 263 —265 (1955).

3.9.78 Let x — f(x) and x> g(x) be nonnegative concave functions
on [0,a] (@ > 0) such that

1/q

@ 1/p @
0 < (ff(x)f’dx) < 400 and (< (fg(x)q dx) < +o0.
0 0

Then:

1“ For p>1 and ¢ > 1,

a
Jflx)x(x)u'x -

1 1 1
(of.f( ) d )W* (J ( }c—l )1/4-\/—'—'21;(1 +p?P (L+g)ea ? 1.
] ¥ R{x}Y dx
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2° For |[p| < 1and [q[ < 1,

- oo ‘(+1>)5'( )
(frora] "[Jeora =S

This resuit, due to D.C. BARNES, is in connection with Theorems 5 and 6 of 2.11.

=
| -

Reference

Barnes, D.C.: Some complements of Holder’s inequality. J. Math. Anal. Appl.
26, 82—87 (1969).
3.9.79 The following inequality
Ax®+ 2Bxy + Cy2 4+ 2Dx 4+ 2Ey + F >0

holds for all real values of x and y if and only if either

4B ABD{ |
1° 4 > 0, >0 | BCE >0,
B 'DEF
or
v 4—q |48 A B A D .
% 1Bc|™” pET" DFI7Y
or
3 A=B=D=0 i
D ,C>&|EE>Q
or

YA=B=C=D=FE=0, F>0.,

3.9.80 Leta =(a,,..., a,)and b =(b,,..., b,) satisfy 0 < g, < - < a
and 0 < 5, < .- < b, with

a;_4 +ai1 b->bi_ +bw+1
H 1

a; for e =2,...,n — 1.

Then

Sab =t (za)”(z"b,z)”z.

i=1 i=1

The inequality is sharp and equality holds in the case a; =#n — 1,
b=1—1(@3=1,...,n).

This result was communicated to us by ). . BARNES,
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66. Bieberbach: Theorie der gewShnlichen Differentialgleichungen. DM 58,50
68. Aumann: Reelle Funktionen. DM 68, —

69. Schmidt: Mathematische Gesetze der Logik I. DM 79, —

71. Meixner/Schéfke: Mathieusche Funktionen und Sphéroidfunktionen mit An-

wendungen auf physikalische und technische Probleme. DM 52,60
73. Hermes: Einf0hrung in die Verbandstheorie. DM 46, —
74. Boerner: Darstellungen von Gruppen, DM 58, —
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122.
123.
124.

125,
126.

Die Grundlehren der mathematischen Wissenschaften

Rado/Reichelderfer: Continuous Transformations in Analysis, with an
Introduction to Algebraic Topology. DM 59,60

Tricomi: Vorlesungen iiber Orthogonalreihen. DM 68, —

Behnke/Sommer: Theorie der analytischen Funktionen einer komplexen Ver-
anderlichen, DM 79,— b

Lorenzen: Einfithrung in die operative Logik und Mathematik. DM 54, —
Pickert: Projektive Ebenen. DM 48,60

Schneider: Einfithrung in die transzendenten Zahlen. DM 24,80

Specht: Gruppentheorie, DM 69,60

Conforto: Abelsche Funktionen und algebraische Geometrie. DM 41,80
Richter: Wahrscheinlichkeitstheorie. DM 68, —

Miller: Grundprobleme der mathematischen Theorie elektromagnetischer
Schwingungen. DM 52,80

Pfluger: Theorie der Riemannschen Flichen. DM 39,20

Oberhettinger: Tabellen zur Fourier-Transformation. DM 39,50

Prachar: Primzahlverteilung. DM 58, —

Hadwiger: Vorlesungen iiber Inhalt, Oberfliche und Isoperimetrie. DM 49,80
Funk: Variationsrechnung und ihre Anwendung in Physik und Technik.
DM 120,—

Maeda: Kontinuierliche Geometrien. DM 39, —

Greub: Linear Algebra. DM 39,20

Saxer: Versicherungsmathematik. 2. Teil. DM 48,60

Cassels: An Introduction to the Geometry of Numbers. DM 69, —
Koppenfels/Stallmann: Praxis der konformen Abbildung. DM 69, —

Rund: The Differential Geometry of Finsler Spaces. DM 59,60

Schiitte: Beweistheorie. DM 48, —

Chung: Markov Chains with Stationary Transition Probabilities, DM 56, —
Rinow: Die innere Geometrie der metrischen Réume. DM 83, —
Scholz/Hasenjaeger: Grundzige der mathematischen Logik. DM 98, —
Ko6the: Topologische lineare Raume I. DM 78, —

Dynkin: Die Grundlagen der Theorie der Markoffschen Prozesse. DM 33,80
Dinghas: Vorlesungen {iber Funktionentheorie. DM 69, —

Lions: Equations différentielles opérationnelles et problémes aux limifes.
DM 64, —

Morgenstern/Szab6: Vorlesungen iiber theoretische Mechanik. DM 69, —
Meschkowski: Hilbertsche Raume mit Kemfunktion. DM 58, —

MacLane: Homology. DM 62, —

Hewitt/Ross: Abstract Harmonic Analysis. Vol.1: Structure of Topological
Groups, Integration Theory, Group Representations. DM 76, —

Hormander: Linear Partial Differential Operators. DM 42, —

O’Meara: Introduction to Quadratic Forms. DM 48, —

Schifke: Einfithrung in die Theorie der speziellen Funktionen der mathe-
matischen Physik. DM 49,40

Harris: The Theory of Branching Processes. DM 36, —

Collatz: Funktionalanalysis und numerische Mathematik, DM 58, —

Dynkin: Markov Processes. DM 96, —

Yosida: Functional Analysis. DM 66, —

Morgenstern: Einfithrung in die Wahrschenlichkeitsrechnung und mathe-
matische Statistik. DM 38, -

It6/McKean: Diffusion Processes and their Sample Paths. DM 58, —
Lehto/Virtanen: Quasikonforme Abbildungen. DM 38, — '
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161.
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167.

e Grundilehren der mathematischen Wissenschaften

Hermes: linumerability, Decidability, Computability. DM 39, —
Braun/IKoccher: Jordan-Algebren. DM 48, —

Nikodym: The Mathematical Apparatus for Quantum Theories. DM 144, —
Morrey: Multiple Integrals in the Calculus of Variations. DM 78, —
Hirzebruch: Topological Methods in Algebraic Geometry. DM 38,—

Kato: Perturbation Theory for Linear Operators. DM 79,20
Haupt/IKtnneth: Geometrische Ordnungen. DM 68, —

Huppert: Endliche Gruppen I. DM 156, —

Handbook for Automatic Computation. Vol.1/Part a: Rutishauser: De-
scription of ArcoL 60. DM 58, —

Greub: Multilinear Algebra. DM 32,—

Handbook for Automatic Computation. Vel.1/Part b: Grau/Hill/Lang-
maack: Translation of ALcoL 60. DM 64, —

Hahn: Stability of Motion, DM 72, —

Mathematische Hilfsmittel des Ingenieurs. Herausgeber: Sauer/Szabé. 1. Teil.
DM 88, — :
Mathematische Hilfsmittel des Ingenieurs. Herausgeber: Sauer/Szabd. 2. Teil.
DM 136, —

Mathematische Hilfsmittel des Ingenieurs. Herausgeber: Sauer/Szabé. 3. Teil.
DM 98, —

Mathematische Hilfsmittel des Ingenieurs. Herausgeber: Sauer/Szabd. 4. Teil.
DM 124,

Schur/Grunsky: Vorlesungen iiber Invariantentheorie. DM 32, —

Weil: Basic Number Theory. DM 48, —

Butzer/Berens: Semi-Groups of Operators and Approximation. DM 56, —
Treves: Locally Convex Spaces and Linear Partial Differential Equations.
DM 36, —

Lamotke: Semisimpliziale algebraische Topologie. DM 48, —
Chandrasekharan: Introduction to Analytic Number Theory. DM 28, —
Sario/Oikawa: Capacity Functions. DM 96, —

Iosifescu/Theodorescu: Random Processes and Learning. DM 68, —

Mandl: Analytical Treatment of One-dimensional Markov Processes. DM 36, —
Hewitt/Ross: Abstract Harmonic Analysis. Vol. 2: Structure and Analysis
for Compact Groups, Analysis on Locally Compact Abelian Groups.
DM 140,—

Federer: Geometric Measure Theory. DM 118, —

Singer: Bases in Banach Spaces I. DM 112,—

Miiller: Foundations of the Mathematical Theory of Electromagnetic Waves.
DM 58, —

van der Waerden: Mathematical Statistics. DM 68, —

Prohorov/Rozanov: Probability Theory. DM 68,—

Kothe: Topological Vector Spaces I. DM 78, —

Agrest/Maksimov: Theory of Incomplete Cylindrical Functions and their
Applications. In preparation

Bhatia/Szegt: Stability Theory of Dynamical Systems. In preparation
Nevanlinna: Analytic Functions. DM 76, —

Stoer/Witzgall: Convexity and Optimization in Finite Dimensions I. DM 54, —
Sariof/Nakai: Classification Theory of Riemgann Surfaces. DM 98, —
Mitrinovié: Analytic Inequalities. DM 88, —

Grothendieck/Dioudonné: Eléments de Géometrie Algébrique. En prépara-
tion

Chandrasckharan: Arithmetical Functions, DM 58, —
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Palamodov: Linear Differential Operators with Constant Coefficients.
DM 988,— '

Rademacher: Topics in Analytic Number Theory. In preparation

Lions: Optimal Control Systems Governed by Partial Differential Equa-
tions. In preparation

Singer: Best Approximation in Normed Iinear Spaces by Elements of
Linear Subspaces. DM 60, —






