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PROBLEMS ALGEBRA

1. Arithmetic and Geometric Progressions

Preliminaries

Let a, d and Sn be, respectively, the nth term, the common
difference and the sum of the first n terms of an arithmetic pro-
gression. Then

and

an=a1+d(n-1) (1)

Sn- (2)2 2

If u,,, q and S are the nth term, the common ratio and the
sum of the first n terms of a geometric progression, then

an = ulgn-1 (3)

and
= unq-ul = u1 (qn- 1)S 4n q-1 q-1 )(

Finally, if S is the sum of an infinite geometric series with
I qI < 1then

S=
luq . (5)

1. Prove that if positive numbers a, b and c form an arithmetic
progression then the numbers

1 I

1 14V ' Y +a
1

Ya+Yb
also form an arithmetic progression.

2. Positive numbers a,, a2, ..., an form an arithmetic progres-
sion. Prove that

I I
I

I _ n-l
Ya1+Ya2 a2+Ya3

+ +Yan-I+Yan
Ya1+Yan

3. Prove that if numbers a az, . , an are different from zero
and form an arithmetic progression then

a,a2 alas aaa` alan
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4. Prove that any sequence of numbers a a2, ... , an satisfying
the condition

I I I I _n-1- - a ..
a1a2

-{
a2a3

-j
asaa

-f -
an-1an alan

for every n > 3 is an arithmetic progression.
5. Prove that for every arithmetic progression a a2, as,

ars we have the equalities
a, - 2a2 -1- a3 = 0,

a,-3a2+3a3-a,=0,
a,-4a2+6a3-4a4-{-a;=0;

and, generally,

a,-CRa2-{ Cna3-... (-l)'-' Cn-lars { (-1)"Cna0
(where n > 2).

Hint. Here and in the problem below it is advisable to apply
the identity Cn =Cn_1+Cn-f which can be readily verified.

6. Given an arithmetic progression a ... , ars, an+ ... prove that
the equalities

of -Cna2 '+.. . + (-l )" Cqa;+1= 0

hold for n > 3.

7. Prove that if the numbers log* x, log. x and logn,x (x 1)
form an arithmetic progression then

1'12 =_ (kn) 1091, m.

8. Find an arithmetic progression if it is known that the ratio
of the sum of the first n terms to the sum of the kn subsequent
terms is independent of n.

9. The numbers x x2r ... , x, form an arithmetic progression.
Find this progression if

x, -l" x2 -l- ... +x,=a, xf -l- x2 -l- . . . -}- xn = b2.

Hint. Here and in the problem below use the equality

12+22 +32-{- ... + n2=n(n+1 )(2n+1)

10. The number sequence 1, 4, 10, 19, ... satisfies the condition
that the differences of two subsequent terms form an arithmetic
progression. Find the nth term and the sum of the first n terms
of this sequence.
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11. Consider the table
1

2, 3, 4
3, 4, 5, 6, 7

4, 5, 6, 7, 8, 9, 10

Prove that the sum of the terms in each row is equal to the
square of an odd number.

12. Given the terms an,+n = A and a,n_n = B of a geometric
progression al, a2, a,, ... , find an and an (A 0 0).

13. Let Sn be the sum of the first n terms of a geometric pro-
gression (S,0, q / 0). Prove that

Sn _ S2n-Sn
Stn-Sn S3n-S2n

14. Knowing the sum S. of the first n terms of a geometric
progression and the sum Sn of the reciprocals of these terms find
the product nn of the first n terms of the progression.

15. Find the sum
1 +2x-i-3x2-j--4x3+... H-(n+

16. Find the sum
1+11+111 ... { 111 ... 1

if the last summand is an n-digit number.
17. Find the sum

nx+(n-1)x2+ ... +2x"-'+ 1x".

18. Find the sum

2 2L } 2 ... + 2" l

19. Prove that the numbers 49, 4489, 444889, ... obtained by
inserting 48 into the middle of the preceding number are squares
of integers.

20. Construct a geometric progression

with Iql < 1 whose every term differs from the sum of all subsequent
terms by a given constant factor k. For what values of k is the
problem solvable?
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21. An infinite number sequence x,, x2, x3, ... , xn, ... (x, 0)
satisfies the condition

(x1 +X21+ ... +xrt_1) (x2 + x3 + ... -+- xn) _
= (x,x2 + x2x3 + ... -r X. _ lxrs) 2

for any n 3. Prove that the numbers x1, x2, ... , x7l, ... form an
infinite geometric progression.

Hint. Use the method of complete induction.
22. Given an arithmetic progression with general term a and

a geometric progression with general term b,,. Prove that a < b
for n > 2 if a, = b1, a2 = b2, a, r a2 and a > 0 for all natural
numbers n.

23. Prove that if the terms of a geometric progression a,,
a2, ... , a,,, .. and of an arithmetic progression b,, b2, ... , b,,, .. .
satisfy the inequalities

a,>0, a2>0, b2-b1>0

then there exists a number a such that the difference
is independent of n.

2. Algebraic Equations and Systems of Equations

Preliminaries

In the problems below the original systems of equations should
be simplified and reduced to equivalent systems whose all solu-
tions either are known or can readily be found. In some cases
it is necessary to introduce redundant equations which are a priori
satisfied by the solutions of the original systems but may have,
in the general case, some extraneous solutions. Then the values
of the unknowns thus obtained must be tested by substituting
them into the original systems.

In some problems one should use Vieta's theorem for the equation
of the third degree

x3+px2--qx+r=0. (1)

The theorem establishes the following relations between the coef-
ficients p, q and r of the equation and its roots x1, x2 and x3:

X, + x2 + x3 = - p, x,x2
1 x2x3 ± x3x1 = q, x1x2x3 = - r. (2)

Formulas (2) are derived by equating the coefficients in the
equal powers of x on both sides of the identity x3 -l- px2 -1- qx -}- r

(x-x1) (x-x2) (x-x3).
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24. Find all real solutions of the system of equations

x3+y3=1,
xzy+2xya+y3=2. J

25. Solve the system of equations

x2+xy+y2=4,
x+xy+y=2.

26. Find the real solutions of the system of equations

x3+y3 = 50,
x3y + xy2 = a3 J

provided a is real and different from zero.
27. Solve the system of equations

xz
y2

Y
x=12,

1 1 1

x+y=s
28. Solve the system of equations

x4 +x2y2 + y4 91

x2-xy+y2=7.
29. Solve the system of equations

x3-y3= 19(x-y),
x3+y3=7(x+y).

30. Find all real solutions of the system of equations
2(x+y)=5xy,

8(x3+y3)=65.
31. Find the real solutions of the system of equations

(x+y)(x2-y2)=9,
,

(x-y) (x2+y2)=5.
32. Find all real solutions of the system of equations

x+y 1,

x4 + y4 = 7.

33. Solve the system of equations
x+y 1,

xb+y6=31.

11
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34. Find the real solutions of the system of equations
x4+y4-x2y2= 13,
x2-y2_-2xy=1,

satisfying the condition xy>0.
35. Solve the system of equations

(x2+1)(y2+1)=10,
(x+y)(xy-1)=3.

Hint. Put xy=v and x+y=u.
36. Solve the system of equations

(x2+y2) x 6,
y

(x2 - y2)

z
= 1.

37. Solve the system of equations
x2 + y2 = axy,

x4+ y4 = bx2

38. Solve the equation
(x+b)2

F
(a +

ab ) x2-b4 0

by factorizing its left member.
39. Solve the equation

x2 48 x 4

3 +x2 101 3
x

40. Solve the system of equations

x yy+
x y I

7y- }x_yb b
41. Find all the solutions of the equation

(x-4.5)4 + (x-5.5)2 = 1.
42. Solve the system of equations

jx-1J-fly-51=1,
y=5-i--lx=-l1*.

* The absolute value of a number x (denoted as l x I) is the non-negative
number determined by the conditions

_ -x for x < 0,
ixl xfor x:_::- 0.
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43. For what real x and y does the equality
5x2+5y2+8xy+2y-2x+2 =0

hold?
44. Find all real values of x and y satisfying the equation

x2+4xcos(xy)+4=0.
45. Find the real 'solutions of the system

x + y + z = 2,
2xy-z2 = 4. J

46. For what value of a does the system
x2+y2 -Z'

x+y+z=a
possess a single real solution? Find this solution.

47. Prove that for every (complex, in the general case) solu-
tion of the system

x2+y2+xy+zy=a,

x4 + y° + x2y2 - Zly2 -2 = b2

the sum x2+y2 is real for any real a and b, a 0.

48. Solve the system of equations
ax+by+cz=a+b+c,
bx+cy+az=a+b+c,
cx+ay+bz=a+b+c,

on condition that a, b and c are real and a + b + c 0.

49. Solve the system of equations
ax+y+z= 1,
x+ay+z =a,
x+y+az=a2.

50. What relationship must, connect the numbers
the system

(l+a,)x+y+z=1,
x+(1-I-a')y-Fz=
x+y+(1+a3)z=1

to be solvable and have a unique solution?

a aa, a9 for
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51. Solve the system of equations
ax+by+cz+dt=p,

-bx+-ay+dz-ct=q,
-cx- dy + az + bt = r,
-dx + cy -bz + at = s,

where the coefficients a, b, c and d satisfy the condition
a8+b2+c2+d2 z# 0.

52. Solve the system of equations
x1+2x8+3x3+4x,+... +nxl,=a1,

nx1-}-x2+ 2x3+ 3x,+...
(n-1)x1+nx2+x3+2x4+ ... +(n-2)x =a,. I......................

2;+3x8+4x3+5x,+...+1x,1=an.
53. Prove that if

x1+x2+x3=0, 1

X2 + xs + x4 = 0,

x90 + xloo + xl = 0,

x100+x1+x2=0, )
then

X1 + x2 = ... = x80 = x100 = 0.

54. Solve the system of equations
x2-{-xy- -xz-x=2,
y2+xy+yz-y= 4,
z2+xz+yz-z=6.

55. Solve the system of equations

x+y-z=7,
x2+y2-z2=37,
x3+y3-z3 = 1.

56. Solve the system of equations

x,yl 2,
X+y
xyz 6

y+z 5

xyz

z+x 2 J
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57. Solve the system of equations

u2+v2+w =2,
v2+t2+u=2,
w2+u2+v=2.

58. Solve the system of equations

x2+xy-1-y2_1,
X2+XZ+z2=4.
y2+yz-{-z2=7. f

59. Find the solutions of the system of equations
XzX3...Xn

X1

X1X3...Xn

X2

al,

=a2,

Xn

if the numbers a1, ..., a and x, ..., xn are positive.
60. Solve the system of equations

(x+y+z)(ax+y+z)=k2,
(x+y+z)(x+ay+z)=12,
(x+y+z) (x+y+az) = m2,

where a, k, I and m are positive numbers and k2 12 m2 > 0.
61. Find the real solutions of the system of equations

x-I-y+z=6,
x2+y2+z2 = 14,

xz+yz=(xy+1)2.

62. Solve the system of equations

x2+xy+xz+yz =a,
y2 + xy + xz + yZZ = b,
z2+xy+xz+yz=c,

is

assuming that abc 0.
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63. Solve the system of equations

x(y+z)=a2
y(z+x)=b2,
z (x+y) =c2

where abc 0.

64. Find the real solution of the system of equations
y3 +z3= 2a (yz + zx + xy),
z3+x3=2b(yz+zx+xy),
x3+ y3 = 2c (yz+ zx + xy)

65. Solve the system of equations

y+2x+2=a(x+y)(z+x),
z+2y+x=b(y+z)(x±y),
x+2z+y=c (z+x) (y+z).

66. Solve the system of equations

x+y-j-z = 9,

x+y+z=1'
xy+xz+yz=27.

67. Solve the system of equations

x+y+z=a,
xy +yz +xz = a2,

xyz = a3.

68. Show that the system of equations
2x+y+z=0,

yz+zx+xy-y2=0,
xy+z2=0

has only the trivial solution x = y = z = 0.
69. Solve the system of equations

X+y+2=a,
x2 + y2+Z2=a2,
x3 +

I y3 -I- Z3 = a3.
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70. Let (x, y, z) be a solution of the system of equations

x+y+z=a,
x2+y2+z2=b2

] 1 1 _ 1

X + y + z c °

Find the sum
xa + y3 + z3°

71. Solve the system of equations

x+y+z =2,
(x+y) (y+z)+(y4-z)(z+x)+(z+x) (x+y) = 1,

x2(y+z)+y2(z+x)+z2(x+y)_-6.

72. Solve the system of equations

x2 + (y - z)2 = a,
y2+(x-z)2= b,
z2+(x-y)2=c.

73. Solve the system of equations
xy+yz+zx=47,

x2 + y2 = z2
9

(z -x) (z - y) = 2.

74. Find all real solutions of the system of equations
2z2X= ]+z2

2x2
y=]+x2

22yZ=
I +y2

75. Find the real solutions of the system of equations

2x2=x1+XI

2x3 = x2 +
2

x2

2xn=xn-1 -f-

2

xn-1

-xn+2x,X
n 1

17
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76. Show that if a, b, c and d are pairwise unequal real num
bers and x, y, z is a solution of the system of equations

1+X++z=O,
a +bx+cy +dz = 0,

a2 -a-- b2x+c2y+d2z = 0,

then the product xyz is positive.
In the equations below, if the index of a radical is even, con-

sider only the values of the unknowns for which the radicand is
non-negative and take only the non-negative value of the root.
When the index is odd the radicand can be any real number (in
this case the sign of the root coincides with the sign of the ra-
dicand).

77. Solve the equation

Va+x)2+4 (a-x)2=5 3a2-x2.

78. Solve the equation

'/(l+x)2-(1-x)2=V1-x2.
79. Solve the equation

y-2+V2y-5+llly+2+3V2y-55=7V2.
80. Solve the equation

1/ x

x+Yz
81. Solve the equation

X'+$+Vx+7
X

yz71

82. Find all real roots of the equation

fx-1+ fx1 1=x
83. Solve the equation

Vx-4a+ 16=2Vx-2a+4-Vx.
For what real values of a is the equation solvable?

84. Solve the system of equations

V-]-- _16y2 - V 1 -16x2 = 2 (x + y),

x2+y2+4xy= 5 .
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85. Solve the system of equations

x-y= 2 (3

86. Solve the system of equations

x_'q _31 y
,/
Y x 2'

x+yx+y=9.
87. Solve the system of equations

x-y
3yt1 +2j x-y y+l+l

,

x+xy+y-7.
88. Find all real solutions of the system

/x±y 12x-f-y_ v x-y
=

x_y

xy = 15.

89. Solve the system of equations

y+2 )/7,-12y-i- I - x2+ 17
3 12

x 2 x 1 _y
831+ = 331 4 2x'

90. Solve the system of equations
x+1/'x2-312 x-31x2-312 _ 17

x-Yx2-y2 x+Yx2.__yz - 4

x(x+y)+V x2+xy+4=52.
91. Solve the system of equations

312 I )/-3y2
2- 2x + 3 = 3x+5,

3x-231=5.

92. Find the real solutions of the system of equations

y} 4 yx2-631+I=x2617

19

x2y-5 _ 2 12 4

49 - y -x2+ 9
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93. Solve the system of equations

(x-y)Vy= 2X

(x+y)Vx=3V y.
94. Solve the system of equations

Vx+y-Vx-y=a,
Vx2+y2+Vx2-y2=a2

95. Solve the system of equations

xV^x-yVy a(Vr-Vy
x2 + xy +y2=b2

3. Algebraic Inequalities

Preliminaries

}

(a > 0).

(a > 0, b > 0).

Here are some inequalities which are used for solving the prob-
lems below.

For any real a and b we have
a2+b2>21abl. (1)

Inequality (1) is a consequence of the obvious inequality (a t b)2> 0.
Relation (1) turns into an equality only if I a I _ I b I .

If ab>0, then dividing both sides of inequality (1) by ab we
obtain

(2)

If u > 0 and v > 0, then, putting u = a2 and v = b2 in (1) we
obtain

2" >Vuv. (3)
2

In inequalities (2) and (3) the sign of equality appears only for
a= b and (u = v).

In addition, let us indicate some properties of the quadratic
trinomial

y=ax2+bx+c (4)

which are used in some problems below.
The representation of trinomial (4) in the form

y-a rx +
b \2- bz-4ac (5)
2a 4a
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implies that if the discriminant of the trinomial satisfl@s thL
condition

D=b2-4ac < 0

(in this case the roots of the trinomial are nonreal), then, for
all x, th? trinomial takes on values of the same sign which
coincides with the sign of the coefficient a in the second power of x.

If D=0 the trinomial vanishes only for x=-2a and retains
its sign for all the other values of x.

Finally, if D > 0 (in this case the trinomial has real distinct
roots x, and x2), it follows from the factorization

y = a (x-xl) (xx2),

that the trinomial attains the values whose sign is opposite to
that of a only for x satisfying the condition

x,<x<x2.
For all the other values of x different from x, and x2 the trino-
mial has the same sign as a.

Thus, a trinomial always retains the sign of the coefficient in x2
except for the case when its roots x, and xE are real and

x,<x<x2.
96. Find all real values of r for which the polynomial

(r2-1)x2+2(r-1)x-{- 1

is positive for all real x.
97. Prove that the expression

3(x' X)-8tx X)-{-10

is non-negative for any real x and y different from zero.
98. For what values of a is the system of inequalities

x2+ax-2 < 2

fulfilled for all x?
99. Prove that for any real numbers a, b, c and d the ine-

quality
a4+b'-{-c4-{-d4> 4abcd

is valid.
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100. Find all the values of a for which the system
x2+y2+2x< 1,

x-y+a=0
has a unique solution. Find the corresponding solutions.

101. Find the pairs of integers x and y satisfying the system
of inequalities

y-Ix2-2xj+2 >0,
y+lx-11 <2.

102. Prove that the inequality

+

I -n-li--2 +... 2 > 2
holds for every integer n > 1.

103. Prove that the inequality

mI{ I+m+2 {-...-}-m+(2m+I)>

is valid for every positive integer in.
104. Show that for any natural n we have

I I I n-I22+32+...+n2 < n

105. Prove that
(n!)2 > n"

for n > 2.
106. Prove that, given three line segments of length a> 0,

b > 0 and c > 0, a triangle with these segments as sidles can be
constructed if and only if pa2-1- qb2 > pgc2 for any numbers p
and q satisfying the condition p-t-q=1.

107. Prove that for any real x, y and z we have the inequality
4x (x + y) (x -- z) (x -f- y - f 2) + y2z2 > 0.

108. Prove that the inequality
x2+2xy+3y2+2x+6y+4> 1

holds for any real x and y.
109. Prove that if 2x+4y= 1, the inequality

x2Ty2>20
is fulfilled.
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110. What conditions must be imposed on the number d > 0
for the inequality

0 < d2+ R2-r2<
2dR \

to be valid for R > r > 0?
111. Prove the inequality

1 1 , 1 9

a+bTc --a+b+c'
where a, b and c are positive.

112. Prove that if a, b and c are numbers of the same sign
and a<b<c, then

a3 (b2-C2) 1 b3 (C2-a2) +c3 (a2-b2) < 0.

113. Prove that if a1, a2, a3, ..., an are positive numbers and
a,a2a3 ... a, = 1, then

(1 -+- a1) (I + a2) (1 + a3) ... (1 + an) > 2n.

114. Prove that if a + b = I then

115. Prove that the polynomial
xe-xb+x2-x+1

is positive for all real x.
116. Prove that if Ix] < I the inequality

(I-x)n+(1 +x)n < 2n

is fulfilled for any integer n,>2.
117. Prove that

Ixa1+ xa +...+xa l< 1 (x2+x2+...+xn=)+2 9 n n\ 1 2

-f-4 +an),

where x1, x2, ..., x and a1, a2, ..., an and a are arbitrary real
numbers and E > 0.

118. For what real values of x is the inequality
1-j/'1-4x2 <3

x
fulfilled?
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119. Prove that for all positive x and y and positive integers
m and n (n > m) we have the inequality

V xm+ym Vx"+ ytY..
120. Prove the inequality

Ia-}-'Ila-;-... -1-Va < l+ 2a+l ,, a>0.
121. Prove the inequality

2- 112+_Y 2+V2-i-...+V 1

2-j1_2+Y2+...+112
4

provided the numerator of the left member of the inequality
contains n radical signs and the denominator contains n-1 radi-
cal signs.

122. Prove that for any real numbers a1, a2, .... , a" and
b1, b2, ... , b". satisfying the relations

a,+a2+ ,..-}-an=1,
b2+b2,+... +b2

the inequality la1b1+a2b2+...+a"b"1 <1 is valid.
123. Prove that if the numbers x1, x2, ... , x" are positive and

satisfy the relation
x1x2 ... x" =1,

then
x1+x2+:..+x">n.

4. Logarithmic and Exponential Equations,
Identities and Inequalities

Preliminaries

The definition of the logarithm of a number N to a base a
states that

aloga N = N. (1)

Here N is any positive number, a is an arbitrary base and
a>0, a --f- 1.

The solution of some problems below is based on the following
formula for converting from logarithms to a base a to the loga-
rithms to a base b:

log,, N = l ga
(2)
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The formula is proved by taking the logarithms to the 'base b
of the both sides of identity (1). In particular, for N=b formu-
la (1) implies

log,, b
1

1.90a
(3)

124. Solve the equation

log,x 2log,, x_log _x to X.
logsa log, a ala i`a

b V

125. Solve the equation
logx 2 log x 2 = log, 2.

16 81

126. Solve the equation

logz(9x-1+7)=2+logo(3x-1+., l).

127. Solve the equation

logsx
(

x)
-}- logs z = 1.

128. Prove that the equation'

logy ( x) log2 x + loge x = 1

has only one root satisfying the inequality x > 1. Find this root.
129. Solve the equation

log., 1/ a
+ logax a log 2x = 0.

loge,, a

130. What conditions must be imposed on the numbers a and
b for the equation

.1 + logo (2 log a-x) log, b = 2
logo x

to have at least one solution? Find all the solutions of this
equation.

131. Solve the equation

61log,, ax { log,, V logo V Q + log, 4z = a.
132. Solve the equation

log(J x+l +l)-3.
log Vx-46

* Here and henceforward the toots are understood as mentioned on page 18.
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133. Solve the equation
1+ log,(P-x) - 2-1ogp_g4

log, (x+9) iogp-v (x+9)

134. Solve the equation

(p> q > 0).

logy- x 1/ log., 5 V5 + logy- 5 V5 = - V6 .
135. Solve the equation

(0.4)109' x+1 _ (6.25)2-109x'.

136. Solve the equation

1 + log,, 410x = (log logn-1) log,, 10.

How many roots has the equation for a given value of n?
137. Solve the equation

logsln x 2 ]ogsin' x a + 1= 0.

138. Solve the system of equations
log2(x+y)-log3(x-y)=1,

x2-y2=2.
139. Solve the system of equations

x0 = yb,

L _ log, x (a b, ab 0).
logy

y logy, y

140. Solve the system of equations

log, x+3109.Y=7,
xy=512,

141. Solve the system of equations
5

yxlog, x=x2

log, y logy (Y- 3x) =1.
142. Solve the system of equations

axbY = ab,

2 log,, x = log 1 y logy-a b.

143. Solve the system of equations
3 (2 log.. x- log 1 yl = 10,

x J
xy=81.
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144. Solve the system of equations

10912 x (iogx2+ logs y) = logs x,

log, xlog,, (x+y)=3log,, x.

145. Solve the system of equations

xlog2ylog1 2=yVy(I-logx2),r
logy, 2 IogV 2 x = 1.

146. Solve the system of equations

loge x + log1 y ± log, z = 2,
logyy+log, z+log, x- 2,
logo z + log,,x+ log,, y=2.

147. Solve the system of equations
Ilogos (y-X) +1ogz y =-2, 1

x2 + y2 = 25. J
148. Solve the equation

4x-3X 2 =
3x+

2 -22X-1-

149. Find the positive roots of the system of equations

xx+Y = yx-Y,

x2y = 1.

150. Solve the system of equations
a2x+a2Y=2b, tj (a > 0).

ax+l' = C

Under what conditions on b and c is the system solvable?
151. Find the positive solutions of the system of equations

xx+Y=y I
yx+y = xsnyn

where n > 0.
152. Solve the system of equations

(3x-F-y)x-Y=9,
x-/324 =18x2 + 12xy + 2y2.
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153. Find the positive roots of the system of equations
xy = yx,
XP = y?,

where pq > 0.

154. Solve the system of equations
Xy =yx,

px=qy,
assuming that x > 0, y > 0, p > 0 and q > 0.

155. Prove that
log,+m a+ logc_b a= 2log, +b a logc_b a,

if a2±b2=c2 and a>O, b>O, c>O.
156. Simplify the expression

(logba-log,, b)2±(log la-logasb)2+...+ (log ,

a

a toga where all the logarithms
are taken to the same base b.

158. Let logo b= A and logq b = B. Compute log, b where c is
the product of n terms of a geometric progression with common
ratio q and the first term a.

159. Prove-that if the relation

12gs log, N- logo
Iog, N logo N- log, N

is fulfilled for a given positive N 1 and three positive numbers
a, b and c, then b is the mean proportional between a and c, and
the relation is fulfilled for any positive N 1.

160. Prove the identity
log,, N logy N -1- logo N log, N -{- log, N log, N = logo N logo N log, N

logab, N

161. -Prove the identity
logo x =1 -- log,, b.

logab X

162. Solve the inequality
log, x+logsx> 1.

T
163. Solve the inequality

xlog,, x+ I > a2x (a > 1).
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164. Solve the inequality
logax+log. (x+1) < log, (2x -i- 6) (a> 1).

165. Solve the inequality
log,,(x2-5x-}-6) <0.

166. Solve the inequality
I I

< lloge x 1og2x-1 '

167. Solve the inequality

x2-iog2X-1ogsx= -1
x>0.

168. For what real x and a is the inequality

valid?
loge x-(-1 ogx 2 + 2 cos a< 0

169. Solve the inequality

log [log, (x2-5)] > 0.

5. Combinatorial Analysis and Newton's Binomial Theorem

Preliminaries

29

The number of permutations of n things taken m at a time is
given by the formula

P(n, m)=n(n-l). ..(n--m+ 1). (1)

The number of permutations of n things taken all at a time is
equal to factorial n:

ni - 1 .2.3... n. (2)

The number of combinations of n elements, m at a time, is de-
fined by the formula

C (n' m)
n(n-1)(n-2) ..(n-rn+1) P(n,m)- 1-2-3...m - m! ' (3)

There is a relation of the form
C(n, m)=C(n, n-m).

For positive integers n and any x and a we have binomial for-
mula

(x+a)"=x"+C(n, 1)ax"-14-C(n, 2)a2x"-2+... +
+C(n, n-2)a"-'2x2--C(n, n--1)a"-lx+a", (4)
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whose general term is equal to
C (n, k) ak xn-A. (5)

Formula (4) implies the equalities
1+C(n, 1)±C(n, 2)+...+C(n, n-2)+C(n, n-1)+1=2"

and
1--C(n, 1)+C(n, 2)-C(n, 3)+...+(-1)"=0.

170. Find m and n knowing that
C(n-1-I, m+l):C(n-{-1, m):C(n+l, m-1)=5:5:3.

171. Find the coefficient in x8 in the binomial expansion of
(1 +x2-x3)0.

172. Find the coefficient in xm in the expansion of the expres-
sion

(1 +x)k+ (I +x)k+1+ ... +(1 +x)n
in powers of x. Consider the cases m < k and m > k.

173. In the expansion, by the binomial formula, of the expres-
sion

xV
x+z')"

the binomial coefficient in the third term is by
44 larger than that in the second term. Find the term not con-
taining x.

174. In the expansion of the expression

0I+x-- 6 10

X

find the term not containing x.

175. Find out for what value of k the (k+ l) th term of the
expansion, by the binomial formula, of the expression

(I + V3)100

is simultaneously greater than the preceding and the subsequent
terms of the expansion?

176. Find the condition under which the expansion of (1 +a)n
in powers of a (where n is an integer and a =#O) contains two
equal consecutive terms. Can this expansion contain three equal
consecutive terms?

177. Find the total number of dissimilar terms obtained after
the expression

x1-1-xe+x3 ` ... -1-xn
has been cubed.
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178. Let p p2, . . ., p,, be different prime numbers and q= p,p2 pn.
Determine the number of the divisors (including I and q) of q.

179. Prove that if each coefficient in the expansion of the exp-

ression O +x)'H-x)" in powers of x is divided by the exponent
of the corresponding power, then the sum of the quotients thus
obtained is equal to

2n+i _1
n+1

180. Prove that

C(n, 1)x(1-x)"-1+2C(n, 2)x2(1-x)"-2+... +
-{- kC (n, k) xk (1-x)n-k + ... -}- nC (n, n) x" = nx,

where n > 0 is an arbitrary integer.
181. In how many ways can a pack of 36 cards be split in two

so that each portion contains two aces?
182. How many five-digit telephone numbers with pairwise dis-

tinct digits can be composed?
183. Given a set of 2n elements. Consider all the possible par-

titions of the set into the pairs of elements on condition that the
partitions solely differing in the order of elements within the
pairs and in the order of the pairs are regarded as coincident.
What is the total number of these partitions?

184. Determine the number of permutations of n elements taken
all at a time in which two given elements a and b are not adja-
cent.

185. Eight prizes are distributed by a lottery. The first parti-
cipant takes 5 tickets from the urn containing 50 tickets. In how
many ways can he extract them so that (1) exactly two tickets
are winning, (2) at least two tickets are winning.

186. m points are taken on one of two given parallel lines and
n points on the other. Join with line segments each of the m
points on the former line to each of the n points on the latter.
What is the number of points of intersection of the segments if
it is known that there are no points in which three or more seg-
ments intersect.

187. n parallel lines in a plane are intersected by a family of
m parallel lines. How many parallelograms are formed in the net-
work thus formed?

188. An alphabet consists of six letters which are coded in
Morse code as
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Ary word was transmitted without spaces between the letters so
that the resultant continuous line of dots and dashes contained
12 characters. In how many ways can that word be read?

6. Problems in Forming Equations

189. In multiplying two numbers one of which exceeds the
other by 10 the pupil reduced, by mistake, the tens digit in the
product by 4. When checking the answer by dividing the product
thus obtained by the smaller of the factors he obtained the quo-
tient 39 and the remainder 22. Determine the factors.

190. Two cyclists simultaneously start out from a point A and
proceed with different but constant speeds to a point B and
then return without stopping. One of them overtakes the other
and meets him on the way back at a point a kilometres from B.
Having reached A he starts for B and again meets the second
cyclist after covering h th the distance between A and B. Find
the distance from A to B.

191. Two cars simultaneously start out from a point and pro-
ceed in the same direction, one of them going at a speed of
50 km/hr and the other at 40 km/hr. In half an hour a third car
starts out from the same point and overtakes the first car 1.5
hours after catching up with the second car. Determine the speed
of the third car.

192. A pedestrian and a cyclist start out from points A and B
towards one another. After they meet the pedestrian continues to
go in the direction from A to B while the cyclist turns and
also goes towards B. The pedestrian reaches B t hours later than
the cyclist. Find the time period between the start and meeting
if the speed of the cyclist is k times that of the pedestrian.

193. Walking without stopping a postman went from a point A
through a point B to a point C. The distance from A to B was
covered with a speed of 3.5 km/hr and from B to C of 4 km/hr.
To,get back from C to A in the same time following the same
route with a constant speed he was to walk 3.75 km per hour.
However, after walking at that speed and reaching B he stopped
for 14 minutes and then, in order to reach A at the appointed
time he had to move from B to A walking 4 km per hour. Find
the distances between A and B and between B and C.

194. The distance from a point A to a point B is 11.5 km.
The road between A and B first goes uphill, then horizontally
and then downhill. A pedestrian went from A to B in 2 hours
and 54 minutes but it took him 3 hours and 6 minutes to get
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back from B to A. His speeds were 3 km/hr uphill, 4 km/hr on
the horizontal part of the road and 5 km/hr downhill. Determine
the length of the horizontal part.

195. In a motorcycle test two motorcyclists simultaneously
start out from A to B and from B to A, each driving at a con-
stant speed. After arriving at their terminal points they turn back
without stopping. They meet at a distance of p km from B and
then, in t hours, at q km from A. Find the distance between
A and B and the speeds of the motorcyclists.

196. An airplane was in flight from A to B in a straight line.
Due to a head wind, after a certain time, it reduced its speed to
v km/hr and therefore was t, minutes late. During a second flight
from A to B the airplane for the same reason reduced its speed
to the same level but this time d km farther from A than in the
first flight and was t2 minutes late. Find the original speed of
the airplane.

197. There are two pieces of an alloy weighing m kg and
n kg with different percentages of copper. A piece of the same
weight is cut from either alloy. Each of the cut-off pieces is alloyed
with the rest of the other piece which results into two new
alloys with the same percentage of copper. Find the weights of
the cut-off pieces.

198. Given two pieces of alloys of silver and copper. One of
them contains p% of copper and the other contains q% of cop-
per. In what ratio are the weights of portions of the alloys if the
new alloy made up of these portions contains r% of copper? For
what relationships between p, q and r is the problem solvable?
What is the greatest weight of the new alloy that can be obtai-
ned if the first piece weighs P grams and the second Q grams?

199. Workers A and B have been working the same number of
days. If A worked one day less and B 7 days less then A would
earn 72 roubles and B 64 roubles 80 kopecks. If, conversely,
A worked 7 days less and B one day less B would earn 32 roub-
les and 40 kopecks more than A. How much did in fact either
worker earn?

200. Two bodies move in a circle in opposite directions, one of
them being in a uniform motion with linear speed v and the
other in a uniformly accelerated motion with linear accelera-
tion a. At the initial moment of time the bodies are at the same
point A, and the velocity of the second one is equal to zero. In
what time does their first meeting take place if the second meet-
ing occurs at the point A?
2-323
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201. A tank was being filled with water from two taps. One of
the taps was first open during one third of the time required for
filling the tank by the other tap alone. Then, conversely, the
second tap was kept open for one third of the time required to
fill the tank by using the first tap alone, after which the tank was
13 full. Compute the time needed to fill the tank by each tap se-
parately if both taps, when open together, fill the tank in 3 hours
and 36 minutes.

202. A cylindrical pipe with a piston is placed vertically into
a tank of water so that there is a column of air h metres high
between the piston and the water (at the atmospheric pressure).
The piston is then elevated b metres above the water level in the
tank. Compute the height of the column of water in the pipe if
it is known that the column of liquid in a water barometer is c
metres high at the atmospheric pressure.

203. A cylindrical pipe with a moving piston is placed verti-
cally into a cup of mercury. The mercury level in the pipe is
12 cm above that in the cup, and the column of air in the pipe
between the mercury and the piston is 29 4 cm high. The piston
is then moved 6 cm downward. What is the resultant height of
the column of mercury if the external air pressure is 760 mm Hg?

204. At a certain moment a watch shows a 2-minutes lag although
it is fast. If it showed a 3-minutes lag at that moment but gained
half a minute more a day than it does it would show true time
one day sooner than it actually does. How many minutes a day
does the watch gain?

205. Two persons deposited equal sums of money in a savings
bank. One of them withdrew his money after m months and received
p roubles, and the other withdrew the money after n months and re-
ceived q roubles. How much money did either person deposit and
what interest does the savings bank pay?

206. In a circle of radius R two points uniformly move in the
same direction. One of them describes one circuit t seconds faster
than the other. The time period between two consecutive meetings
of the points is equal to T. Determine the speeds of the points.

207. A flask contains a solution of sodium chloride. th part
of the solution is poured into a test tube and evaporated until
the percentage of sodium chloride in the test tube is doubled.
The evaporated solution is then poured back into the flask. This
increases the percentage of sodium chloride in the flask by p%.
Determine the original percentage of sodium chloride.
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208. Two identical vessels, each of 30 litres, contain a total of
only 30 litres of alcohol. Water is added to the top of one ves-
sel, the resulting mixture is added to the top of the other vessel
and then 12 litres of the new mixture are poured from the second
vessel into the first. How much alcohol did each vessel contain
originally if after the above procedure the second vessel contains
2 litres of alcohol less than the first?

209. Three travellers A, B and C are crossing a water obstacle
s km wide. A is swimming at a speed of v km/hr, and B and C
are in a motor boat going at vl km/hr. Some time after the start
C decides to swim the rest of the distance, his speed being equal
to that of A. At this moment B decides to pick up A and turns
back. A then takes the motor boat and continues his way with
B. All the three travellers simultaneously arrive at the opposite
bank. How long did the crossing take?

210. A train left a station A for B at 13:00. At 19:00 the
train was brought to a halt by a snow drift. Two hours later the
railway line was cleared and to make up for the lost time the
train proceeded at a speed exceeding the original speed by 20%
and arrived at B only one hour later. The next day a train
going from A to B according to the same timetable was stopped
by a snow drift 150 km farther from A than the former train.
Likewise, after a two-hour halt it went with a 20% increase of
speed but failed to make up for the lost time and arrived at B
1 hour 30 minutes late. Find the distance between A and B.

211. A landing stage B is a kilometres up the river from A.
A motor boat makes trips going from A to B and returning to A
without stopping in T hours. Find the speed of the boat in still
water and the speed of the current if it is known that once, when
returning from B to A, the motor boat had an accident at a dis-
tance of b km from A which delayed it for To hours and reduced
its speed twice so that it went from B to A during the same
time as from A to B.

212. A tank of a volume of 425 m3 was filled with water from
two taps. One of the taps was open 5 hours longer than the
other. If the first tap had been kept open as long as the second
and the second tap as long as the first, then the first tap would
have released one half the amount of water flowed out from the
second. If both taps had been opened simultaneously the tank
would have been filled in 17 hours.

Taking into account all these conditions determine how long the
second tap was open.

213. According to the timetable, a train is to cover the distan-
ce of 20 km between A and B at a constant speed. The train
z*
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covered half the distance at that speed and then stopped for
three minutes; in order to arrive at B on schedule it had to
increase the speed by 10 km/hr on the remaining half of the trip.
Another time the train was delayed for 5 minutes after passing
half the way. At what speed must the train go after the stop in
order to arrive at B on schedule?

214. Two airplanes simultaneously take off from A and B.
Flying towards each other, they meet at a distance of a kilo-
metres from the midpoint of AB. If the first airplane took off b
hours later than the second, they would meet after passing half
the distance from A to B. If, conversely, the second airplane took
of! b hours after the first, they would meet at a point lying at
the quarter of that distance from B. Find the distance between A
and B and the speeds of the airplanes.

215. A motor boat and a raft simultaneously start out downstream
from A. The motor boat covers 96 km, turns back and arrives at
A in 14 hours. Find the speed of the motor boat in still water
and the speed of the current if it is known that the two craft met
at a distance of 24 km from A when the motor boat was returning.

216. Two bodies simultaneously start out in the same direction
from two points 20 metres apart. The one behind is in uniformly
accelerated motion and covers 25 metres during the first second
ands of a metre more in the next second. The other body is in
uniformly decelerated motion and passes 30 metres in the first
second and half a metre less in the next second. How many se-
conds will it take the first body to catch up with the second?

217. A boat moves 10 km downstream and then 6 km upstream.
The river current is I km/hr. Within what limits must the rela-
tive speed of the boat lie for the entire trip to take from 3 to
4 hours?

218. The volumes of three cubic vessels A, B and C are in the
ratio 1:8:27 while the amounts of water in them are in the ratio
1:2-3. After water has been poured from A into B and from B
into C, the water level in the vessels is the same. 128± litres
of water are then poured out from C into B after which a cer-
tain amount is poured from B into A so that the depth of water
in A becomes twice that in B. This results in the amount of wa-
ter in A being by 100 litres less than the original amount. How
much water did each vessel contain originally?

219. Find a four-digit number using the following conditions:
the sum of the squares of the extreme digits equals 13; the sum
of the squares of the middle digits is 85; if 1089 is subtracted
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from the desired number, the result is a number expressed by the
same digits as the sought-for number but written in reverse order.

220. Two points move in a circle whose circumference is 1 metres
at the speeds v and w < v. At what moments of time reckoned
from the start of the first point will successive meetings of the
points occur if they move in the same direction, and the first
point starts t seconds before the second and is a metres behind
the second point at the initial moment (a < 1)?

221. A piece of an alloy of two metals weighs P kg and loses
A kg in weight when immersed in water. A portion of P kg of
one of the metals loses B kg in water and a portion of the same
weight of the other metal loses C kg. Find the weights of the
components of the alloy and test the solvability of the problem
depending on the magnitudes of the quantities P, A, B and C.

222. Log rafts floated downstream from a point A to the mouth
of a river where they were picked up by a towboat and towed
across a lake to a point B 178 days after the departure from A.
How long did it take the towboat to bring the log rafts to B across
the lake if it is known that, alone, the towboat goes from A to
B in 61 hours and from B to A in 79 hours and that in towing
the relative speed- of the towboat is reduced twice?

223. The current of a river between A and B is negligibly small
but between B and C it is rather strong. A boat goes downstream
from A to C in 6 hours and upstream from C to A in 7 hours.
If between A and B the current were the same as between B and C
the whole distance from A to C would be covered in 5.5 hours.
How long would it take to go upstream from C to A in the
latter case?

224. A vessel contains a p% solution of an acid. a litres of the
solution are then poured out and the same quantity of a q% solu-
tion of the acid is added (q < p). After mixing this operation is
repeated k-1 times which results in - a r% solution. Find the
volume of the vessel.

225. A roubles are invested in a savings bank which pays an
interest of p%. At the end of every year the depositor takes out
B roubles. In how many years will the rest be three times the
original sum? Under what conditions is the problem solvable?

226. A forestry has a p% annual growth rate of wood. Every
winter an amount x of wood is obtained. What must x be so that
in it years the amount of wood in the forestry becomes q times
the original amount a?
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227. One of n identical cylindrical vessels is full of alcohol and
the others are half-full with a mixture of water and alcohol, the
concentration of alcohol in each vessel being k th that in the pre-
ceding one. Then the second vessel is filled to the top from the
first one after which the third is filled from the second and so on
to the last vessel. Find the resultant concentration of alcohol in
the last vessel.

228. Consider a quotient of two integers in which the divisor
is less by unity than the square of the dividend. If 2 is added
to the dividend and to the divisor the value of the quotient will
exceed 3 but if 3 is subtracted from the numerator and deno-

minator, the quotient will remain positive but less than io. Find
the quotient.

7. Miscellaneous Problems

Algebraic Transformations

229. Compute the sum

n (n+ f) + (n+ 1) (n+2) } ... +(n+k- I) (n+k)

230, Simplify the expression

(x + a) (x2 + a2) ... (x2" -' + a2"-').

231. Simplify the expression

(x2-ax+a2) (x°-a2x2+a4) ... (x2"-a2n-,x2"-1

+a2").

232. Given two sequences of numbers

a, a2, ..., an,
b1, b2, ... , bn,

prove that

albs + a2b2 + ... + a"b = (a, - a2) S, + (a2-a.,) S2 + ..

S., - I +
where Sk=b,+b2+... +bk.

233. Show that the equality
a2+b2+c2= be }-acH- ab,

where a, b and c are real numbers, implies a = b = c.
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234. Prove that if a3 + b3 + c3 = 3abc then either
a2+b2+c2=bc+ca-] ab or a+b+c=O.

235. Show that if
a,z r atz1

b; -{- b2 + ... + bn =q 2,
a,b,+a2b2+ ... =pq

and pq 0, then a, = kb a2 =- kb2, ... , a = ?,,b where %- y . (All

the quantities are supposed to be real.)
236. It is known that the number sequence al, a2, a3, ... satisfies,

for any n, the relation
a +, - 2a -1- a _ , = 1.

Express a in terms of al, a2 and n.
237. The sequence of numbers a a2, a3, ..., a,, ... satisfies

for n > 2 the relation
a = (a I

where a and 3 (a P) are given numbers. Express a in terms
o f (X, 0, a, and a2.

BEZOUT'S THEOREM. PROPERTIES OF ROOTS
OF POLYNOMIALS

238. The roots x, and x2 of the equation x2-3ax+a2=0 satisfy
the condition xa + x2 = 1.75. Determine a.

239 Given the equation x2 + px +q=0, form a quadratic equation
whose roots are

yl-x2+ x3

2 and y2 1x23'
240. Let x, and x2 be the roots of the equation

ax2+bx+c=0 (acr0).
Without solving the equation express the quantities

1) z +i2 and 2) xi-}-xixz-- x$
X, x2

in terms of the coefficients a, b and c.
241. What conditions must be imposed on the real coefficients

a b a2, b2, a3 and b3 for the expression
(a, + b,x)2 + (a2 + 62x)2 ± (a3 + b3x)2

to be the square of a polynomial of the first degree in x with
real coefficients?
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242. Prove that the roots of the quadratic equation x2 + px+ q = 0
with real coefficients are negative or have a negative real part
if and only if p > 0 and q > 0.
243. Prove that if both roots of the equation

x2-1-pxd-q=0

are positive, then the roots of the equation qy2+ (p-2rq) y +
+ 1 -pr = 0 are positive for all r > 0. Is this assertion true for

r<0?
244, Find all real values of p for which the roots of the equation

(p-3) x2-2px+6p =0
are real and positive.

245, For any positive 1 all the roots of the equation
axe-1-bx+c+%=O

are real and positive. Prove that in this case a= 0 (the coefficients
a, b and c are real).

246, Prove that both roots of the equation x2+x+'I =0 satisfy
the equation

x3m
f

_I_ xan+1 + x3P+2 = 0,

where m, n and p are arbitrary integers,

247. The system of equations
a(x2+y2)+x+y-7 =0'

x-y+X=0
has real solutions for any X. Prove that a=0,
248. Prove that for any real values of a, p and q the equation

1-+ 1 1

x-p x-q a2

has real roots.

249. Prove that the quadratic equation
a2x2 T (b2 +a 2 - C2) x + b2 = O

cannot have real roots if a -{- b > c and la-b < c.
250. It is known that x1, x2 and x3 are the roots of the equation

x3-2x2+x+1 =0.
Form. a . new algebraic equation whose roots are the numbers

y1 = x2x3, y2 = x3x1, y3 = x1x2.
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251. It is known that x1, x2 and x3 are the roots of the equation
x3-x2-1 =0.

Form a new equation whose roots are the numbers
Y1 = x2 + x3, 2 = x3± x1I 73 = x1-+2.

252. Express the constant term c of the cubic equation
x3+ax2+bx+c =0

in terms of the coefficients a and b, knowing that the roots of the
equations form an arithmetic progression.

253. Let it be known that all roots of an equation
x3+px2+gx -r=0

are positive. What additional condition must be imposed on its
coefficients p, q and r so that the line segments of lengths equal
to the roots are the sides of a triangle?

Hint. Consider the expression
(x1 + x2 -x3) (x2 + x3 -x1) (x3 + x1 -x2)

254. The equations

and

x3 + P1x + q1= 0

x3 + P2x + qj 0

(P1 = P2 q1 q2) have a common root. Find this root and also the
other roots of both equations.

255. Find all the values of k for which two equations
kx3-x2-x-(?+ 1) = 0

and

2x2-x-(X+ 1)==0
have a common root. Determine this root.

256. All the roots of the polynomial
P(x)=x3+Px-I-q

with real coefficients P and q (q r 0) are real. Prove that p < 0.
257. Prove that the equation

x3+ax2-b- 0
where a and b (b > 0) are real has one and only one positive root.

258. Find all the real values of a and b for which the equations
x3+ax2+18=0
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x3+bxx-12=0
have two common roots and determine these roots.

259. Prove that

j20+141 2 +320-14V --4.

260. Let a, b and c be pairwise different numbers.
Prove that the expression

a2 (c -b) + b2 (a -c) + c2 (b -a)

is not equal to zero.

261. Factorize the expression

(x+y+z)s-x3-ys-zs.
262. Prove that if three real numbers a, b and c satisfy the

relationship
I I I _ I

a+b+c a+b+c

then two of them are necessarily equal in their absolute values
and have opposite signs.

263. Find out for what complex values of p and q the binomial
x4-1 is divisible by the quadratic trinomial x2±px+q.

264. For what values of a and n is the polynomial x"-ax"-1 +

+ax-l divisible by (x-l)2?
265. The division of the polynomial p (x) by x-a gives the

remainder A, the division by x-b gives the remainder B and the
division by x-c gives the remainder C. Find the remainder poly-
nomial obtained by dividing p (x) by (x-a) (x-b) (x-c) on con-
dition that the numbers a, b and c are pairwise different.

MATHEMATICAL INDUCTION

The following problems are solved by the method of complete
mathematical induction. To prove that an assertion is true for
every natural n it is sufficient to prove that (a) this assertion is
true for n = 1 and (b) if this assertion is true for a natural number
n then it is also true for n+ 1.

266. Prove that

1+3+6+10+...- (n 2l)n+n(n2 1)=n(n+I))(n+2)
6
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267. Prove that
.

12+22+32+... +n2=n(n+ 16(2n-+ -1)

268. Prove that

1 1 1 _ n (n+3)
1X2X3+2X3X4++n(n+1)(n+2) 4(n+ 1)(n+2)

269. Prove De Moivre's formula
(cos(p+isincp)"=cosnq+isinncp.

an - bn270. Prove that for any positive integer n the quantity
r_5

where a= 1+ 2 5 and b= 1- 2 is a positive integer.
271. Prove that if real numbers a, a2, ..., a,,, ... satisfy the

condition - 1 < a; < 0, i =1, 2, ... , then for any n we have the
inequality

(I +a,) (I +a2)...(1 +a,,) > 1 +a, +a2+ ... +a,,.
272. The generalized nth power of an arbitrary number a (de-

noted by is defined for non-negative integers n as follows: if
n=0 then (a),, =I and if n>0 then (a),=a(a-1)...(a-n+ 1).
Prove that for the generalized power of a sum of two numbers we
have the formula

(a + b)n = C° (a)0 (b)n + Cn (a), (b)n-i + . + Cn (a)n (b)0

which generalizes Newton's binomial theorem to this case.

THE GREATEST AND LEAST VALUES

To find the least value of a quadratic trinomial
y==ax2+bx+c (1)

for a> 0 it is represented in the form

b 2 b2- 4ac
= a x +

) (2)y
2a 4a

The first summand on the right-hand side being non-negative for
any x and the second summand being independent of x, the tri-
nomial attains its least value when the first summand vanishes.
Thus, the least value of the trinomial is

b2-4ac (3)
Yo 4.

It is assumed for
x = x0

b (4)=- 2a.
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A similar technique yields the greatest value of a trinomial
y=axe+bx+c for a <0.

273. Two rectilinear railway lines AA' and BB' are mutually
perpendicular and intersect at a point C, the distances AC and
BC being equal to a and b. Two trains whose speeds are, respec-
tively, v, and v2 start simultaneously from the points A and B
toward C. In what time after the departure will the distance bet-
ween the trains be the least? Find this least distance.

274. Two stations A and B are on a rectilinear highway passing
from west to east, B lying 9 km to the east of A. A car starts
from A and moves uniformly eastwards at a speed of 40 km/hr.
A motorcycle simultaneously starts from B in the same direction
and moves with a constant acceleration of 32 km/hr 2 Determine
the greatest distance between the car and motorcycle during the
first two hours of motion.

Hint, It is advisable to plot the graph of the distance between
the car and motorcycle against the time of motion.

275. Find the greatest value of the expression

log2x+ 121og2xlog2 8

when x varies between 1 and 64.

2A. Find the greatest value of the function

y = ax'L -{-b
(a > 0, b > 0).

277. Find the least value of the expression
1-{- x2

1+x
for x>,0,

278. Find the least value of the function

(P(x) =I x-aj+f x-bj+Ix-cI+I x-dI,
where a < b < c < d are fixed real numbers and x takes arbitrary
real values.

Hint. Mark a, b, c, and d on a number scale.

COMPLEX NUMBERS

279. Find all the values of z satisfying the equality
z2+1z1=0

where I z I denotes the modulus of the complex number z.
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280. Find the complex number z satisfying the equalities
z-12 _ 5

z-8i 3

281. Compute the product

and
I

z-4
z-8 = 1.

1 2[1 } CI 2`/1 [l+( 22]
[l+()22]...[1+)].

282. Among the complex numbers z satisfying the condition,
jz-25i I<15,

find the number having the least argument. Make a drawing.
283. Find the condition for a complex number a+bi to be rep-

resentable in the form
I-ixa +bi = I+ix'

where x is a real number?
284. Find the greatest value of the moduli of complex numbers

z satisfying the equation

Iz+ I I=1.
285. Through a point A n rays are drawn which form the angles

2n with each other. From a point B lying on one of the rays at
n
a distanced from A a perpendicular is drawn to the next ray.
Then from the foot of this perpendicular a new perpendicular is
drawn to the neighbouring ray and so on, unlimitedly. Determine
the length L of the broken line thus obtained which sweeps out
an infinity of circuits round the point A. Also investigate the
variation of L as the number n is increased and, in particular, the
case when n approaches infinity.

286. A six-digit number begins with 1. If this digit is carried
from the extreme left decimal place to the extreme right without
changing the order of the other digits the new number thus obtained
is three times the original number. Find the original number.

287. Prove that if a natural number p=abc where a, b and c
are the decimal digits is divisible by 37 then the numbers q=bca
and r=cab are also divisible by 37.

288. Prove that the sum of the cubes of three successive integers

is divisible by 9.
289. Prove that the sum

S=n3+3n2+5n+3
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is divisible by 3 for any positive integer n.
290. 120 identical balls are tightly stacked in the form of a

regular triangular pyramid. How many balls lie at the base of the
pyramid?

291. k smaller boxes are put in a box. Then in each of the
smaller boxes either k still smaller boxes are put or no boxes and
so on. Determine the number of empty boxes if it is known that
there are m filled boxes.



GEOMETRY

A. PLANE GEOMETRY

Preliminaries

Here are some basic relations between the elements of a triangle
with sides a, b and c and the respective opposite angles A, B and C.

1. Law of sines:
a _ b c

sin A ` sin B = sin C - R,

where R is the radius of the circumscribed circle.
2. Law of cosines:

a2=b2-j.-c2-2bccosA.

For computing the area S of a triangle use the following for-
mulas:

S=2ah,,

where a is a side of the triangle and ha is the altitude drawn to
this side;

S =J/p (p-a) (p-b) (p-c) (Heron's formula)

where p=a+2+c

S=
2

absinC;

S = rp,

where r is the radius of the inscribed circle.

1. Computation Problems

292. In a triangle ABC the angle A is twice as large as the
angle B. Given the sides b and c, find a.

293. The legs of a right triangle are equal to b and c. Find the
length of the bisector of the right angle.

294. Given two sides a and b of a triangle, find its third side
if it is known that the medians drawn to the given sides intersect
at a right angle. What are the conditions for the triangle to exist?
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295. The vertex angle of a triangle with lateral sides of lengths
a and b (a <b) is trisected by straight lines whose segments inside
the triangle form the ratio m:n(m<n). Find the lengths of the
segments.

296. Intersect a given triangle ABC by a straight line DE pa-
rallel to BC so that the area of the triangle BDE is of a given
magnitude k2. What relationship between k2 and the area of the
triangle ABC guarantees the solvability of the problem and how
many solutions has the problem?

297. Through a point lying inside a triangle three straight lines
parallel to its sides are drawn. The lines divide the triangle into
six parts three of which are triangles with areas S S2 and S3,
respectively. Find the area of the given triangle.

298. Given the sides b and c of a triangle. Find the third side
x knowing that it is equal to the altitude drawn to it. Under
what condition connecting b and c does the triangle exist?

299. In a triangle ABC the altitudes AA1, BB1 and CC1 are
drawn, and the points A1, B1 and C1 are joined. Determine the
ratio of the area of the triangle A,B1C, to that of the triangle
ABC if the angles of the triangle ABC are given.

300. In a triangle ABC through the point of intersection of the
bisectors of the angles B and C a straight line parallel to BC is
drawn, This line intersects the sides AB and AC at points M and N
respectively Find the relationship between the line segments MN,
BM and CN.

Consider the following cases:
(1) both bisectors divide interior angles of the triangle;
(2) both bisectors divide exterior angles of the triangle;
(3) one of the bisectors cuts an interior angle and the other cuts

an exterior angle.
When do the points M and N coincide?
301. Inside an equilateral triangle ABC an arbitrary point P

is taken from which the perpendiculars PD, PE and PF are dropped
onto BC, CA and AB respectively. Compute

PD-{- PE+ PF
BD-1-CE+AF

302. Find the ratio of the area of a triangle ABC to the area
of a triangle whose sides are equal to the medians of the triangle
ABC.

303. In a triangle with sides a, b and c a semicircle is inscribed
whose diameter lies on the side c, Find the radius of the semi-
circle,
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304. Determine the acute angles of a right triangle knowing that
the ratio of the radius of the circumscribed circle to the radius
of the inscribed circle is 5:2.

305. About a given rectangle circumscribe a new one with given
area m2. For what m is the problem solvable?

306. On the side AB of the rectangle ABCD find a point E from
which the sides AD and DC are seen at equal angles. What rela-
tionship between the sides guarantees the solvability of the problem?

307. Find the area of an isosceles trapezoid with altitude h if
its nonparallel sides are seen from the centre of the circumscribed
circle at angles a.

308. Given the upper and lower bases a and b of a trapezoid.
Find the length of the line segment joining the midpoints of the
diagonals of the trapezoid.

309. Each vertex of a parallelogram is connected with the mid-
points of two opposite sides by straight lines. What portion of the
area of the parallelogram is the area of the figure bounded by
these lines?

310. P, Q, R and S are respectively the midpoints of the sides
AB, BC, CD, and DA of a parallelogram ABCD. Find the area
of the figure bounded by the straight lines AQ, BR, CS and DP
knowing that the area of the parallelogram is equal to a2.

311. Given the chords of two arcs of a circle of radius R, find
the chord of an arc equal to the sum of these arcs or to their
difference.

312. The distance between the centres of two intersecting circles
of radii R and r is equal to d. Find the area of their common
portion.

313. Three circles of radii r, rl and R are pairwise externally
tangent. Find the length of the chord cut off by the third circle
from the internal common tangent of the first two circles.

314. Two circles of radii R and r (R > r) are internally tangent.
Find the radius of the third circle tangent to the two given circles
and to their common diameter.

315. Three equal circles are externally tangent to a circle of
radius r and pairwise tangent to one another. Find the areas of
the three curvilinear triangles formed by these circles.

316. On a line segment of length 2a + 2b and on its parts of
lengths 2a and 2b as diameters semicircles lying on one side of
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the line segment are constructed. Find the radius of the circle
tangent to the three semicircles.

317. Given two parallel straight lines and a point A between
them. Find the sides of a right triangle with vertex of the right
angle at the point A and vertices of the acute angles on the given
parallel lines if it is known that the area of the triangle is of a
given magnitude k2.

318. n equal circles are inscribed in a regular n-gon with side
a so that each circle is tangent to two adjacent sides of the polygon
and to two other circles. Find the area of the star-shaped figure
formed in the centre of the polygon.

319. Through a point C of an arc AB of a circle two arbitrary
straight lines are drawn which intersect the chord AB at points
D and E and the circle at points F and G. What position does
the point C occupy on the arc AB if it is possible to circumscribe
a circle about the quadrilateral DEGF?

320. Circles are inscribed in an acute angle so that every two
neighbouring circles are tangent. Show that the radii of the circles
form a geometric progression. Find the relationship between the
common ratio of the progression and the magnitude of the acute
angle.

321. A light source is located at a point A of a plane P.
A hemispherical mirror of unit radius is placed above the plane
so that its reflecting inner side faces the plane and its axis of
symmetry passes through the point A and is perpendicular to the
plane P. Knowing that the least angle between the rays reflected
by the mirror and the plane P is equal to 15° determine the
distance from the mirror to the plane and the radius of the illu-
minated circle of the plane P.

322. The centres of four circles of radius r are at the vertices
of a square with side a. Find the area S of the common part of
all circles contained inside the square.

323. A trapezoid is divided into four triangles by its diagonals.
Find the area of the trapezoid if the areas of the triangles adjacent
to the bases of the trapezoid are equal to Sl and S2.

324. Express the diagonals of an inscribed quadrilateral of a
circle in terms of its sides. Based on this result, deduce the Ptolemy
theorem which states that the product of the diagonals of a
quadrilateral inscribed in a circle is equal to the sum of the
products of the two pairs of opposite sides.
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2. Construction Problems
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325. Given two circles of different radii with no points in common
and a point A on one of them. Draw a third circle tangent to the
two given circles and passing through the point A. Consider various
possible cases of location of the point A on the circle.

326. Given a circle and a straight line with point A on it.
Construct a new circle tangent to the given line and circle and
passing through the point A. Consider in detail how many so-
lutions the problem has in various particular cases.

327. Given a straight line and a circle with point A on it.
Construct a new circle tangent to the given line and circle and
passing through the point A. Consider in detail how many solu-
tions the problem has in various particular cases.

328. Construct a right triangle, given the hypotenuse c and the
altitude h drawn to it. Determine the lengths of the legs of the
triangle and find the relationship between h and c for which the
problem is solvable.

329. Given the lengths of the sides AB, BC, CD and DA of a
plane quadrilateral. Construct this quadrilateral if it is known
that the diagonal AC bisects the angle A.

330. Reconstruct the triangle from the points at which the extended
bisector, median and altitude drawn from a common vertex intersect
the circumscribed circle.

331. Draw three pairwise tangent circles with centres at the
vertices of a given triangle. Consider the cases when the circles
are externally and internally tangent.

332. Inscribe a triangle ABC in a given circle if the positions
of the vertex A and of the point of intersection of the altitude hR
with the circle and the direction of the altitude hA are known.

333. Intersect a trapezoid by a straight line parallel to its base
so that the segment of this line inside the trapezoid is trisected
by the diagonals.

334. Construct a square, given a vertex and two points lying
on two sides not passing through this vertex or on their extensions.

335. Through a point M lying on the side AC of a triangle ABC
draw a straight line MN cutting from the triangle a part whose
area is 1 that of the whole triangle. How many solutions has the
problem?

336. Make a ruler and compass construction of a rectangle with
given diagonal inscribed in a given triangle.
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337. About a given circle circumscribe a triangle with given
angle and given side opposite this angle. Find the solvability
condition for the problem.

338. Given a straight line CD and two points A and B not
lying on it. Find a point M on the line such that

L AMC = 2 L BMD.

3. Proof Problems

339. Prove that a median of a triangle is less than half-sum of
the sides it lies between and greater than the difference of this
half-sum and half the third side.

340. Prove that in any triangle ABC the distance from the centre
of the circumscribed circle to the side BC is half the distance
between the point of intersection of the altitudes and the vertex A.

341. Prove that the sum of the distances from any point lying
inside an equilateral triangle to the sides of the triangle is a con-
stant independent of the position of the point.

342. Prove that in any triangle a shorter bisector of an interior
angle corresponds to a longer side.

343. Prove that if P, Q and R are respectively the points of
intersection of the sides BC, CA and AB (or their extensions) of
a triangle ABC and a straight line then

PB QC RA
PCQARB 1.

344. In a right triangle ABC the length of the leg AC is three
times that of the leg AB. The leg AC is trisected by points K
and F. Prove that

LAKB+LAFB+LACB=2.

345, Let a, b, c and h be respectively the two legs of a right
triangle, the hypotenuse and the altitude drawn from the vertex
of the right angle to the hypotenuse. Prove that a triangle with
sides h, c+h and a-f- b is right.

346. In an isosceles triangle with base a and congruent side b
the vertex angle is equal to 20°. Prove that a3 + b3 = 3ab2.

347. Prove that an angle of a triangle is acute, right or obtuse
depending on whether the side opposite this angle is less than,
equal to, or greater than the doubled length of the corresponding
median.
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348. In an isosceles triangle ABC the vertex angle B is equal
to 20° and points Q and P are taken respectively on the sides
AB and BC so that L ACQ = 60° and L CAP = 50°. Prove that
L APQ = 80°.

349. Prove that if the sides a, b and c of a triangle are connected
by the relation a2 = b2 -+ be then the angles A and B subtended by
the sides a and b satisfy the equality IA=21B.

350. A triangle AOB is turned in its plane about the vertex 0
by 90°, the new positions of the vertices A and B being, respec-
tively, A, and B,. Prove that in the triangle OAB, the median of
the side AB, is an altitude of the triangle OA,B (analogously, the
median of the side AB in the triangle OA,B is an altitude of
the triangle OAB,).

351. Prove that the sum of the products of the altitudes of an
acute triangle by their segments from the orthocentre to the cor-
responding vertices equals half-sum of the squares of the sides.
Generalize this assertion to the case of an obtuse triangle.

352. Let the lengths a, b and c of the sides of a triangle satisfy
the condition a < b <c and form an arithmetic progression. Prove
that ac=6Rr where R is the radius of the circumscribed circle of
the triangle and r is the radius of the inscribed circle.

353. Prove that the square of the bisector of an angle in a
triangle is equal to the difference of the product of the sides includ-
ing this angle and the product of the segments of the base. What
is the meaning of this equality for the case of an isosceles triangle?

354. In a triangle ABC two equal line segments BD_ CE are
set off in opposite directions on the sides AB and AC. Prove that
the ratio in which the segment DE is divided by the side BC is
the reciprocal of the ratio of the side AB to the side AC.

355. From a vertex of a triangle the median, the bisector of
the interior angle and the altitude are drawn. Prove that the
bisector lies between the median and the altitude.

356. Prove that the straight line which is the reflection of a
median through the concurrent bisector of an interior angle of a
triangle divides the opposite side into parts proportional to the
squares of the adjacent sides.

357. On the sides of a triangle ABC points P, Q and R are
taken so that the three straight lines AP, BQ and CR are con-
current. Prove that

AR.BPCQ=RBPC-QA.
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358. Prove that the radius R of the circumscribed circle of a
triangle and the radius r of the inscribed circle satisfy the relation

12=R2-2Rr
where I is the distance between the centres of these circles.

359. Prove that in any triangle the ratio of the radius of the

inscribed circle to the radius of the circumscribed circle does not
exceed 2 .

360. Prove that for any right triangle we have the inequality
0.4 < h < 0.5 where r is the radius of the inscribed circle and h
is the altitude drawn to the hypotenuse.

361. Prove that for any acute triangle we have the relation
kQ + kb + kc = r + R where k,,, kb and k, are the perpendiculars
drawn from the centre of the circumscribed circle to the corres-
ponding sides and r (R) is the radius of the inscribed (circum-
scribed) circle.

Hint. Express the left-hand and right-hand sides of the required
equality in terms of the sides and the angles of the triangle.

362. The vertices A, B and C of a triangle are connected by
straight lines with points A B, and C1 arbitrarily placed on the
opposite sides (but not at the vertices). Prove that the midpoints
of the segments AA,, BB1 and CC1 do not lie in a common straight
line.

363. Straight lines DE, FK and MN parallel to the sides AB,
AC and BC of a triangle ABC are drawn through an arbitrary
point 0 lying inside the triangle so that the points F and M are
on AB, the points E and K are on BC and the points N and D
on AC. Prove that

AF BE CN
AB+BC+CA 1'

364. A square is inscribed in a triangle so that one of its sides
lies on the longest side of the triangle. Derive the inequality
I/2r < x < 2r where x is the length of the side of the square and
r is the radius of the inscribed circle of the triangle.

365. Prove that the midpoints of the sides of a triangle, the
feet of the altitudes and the midpoints of the segments of the
altitudes from the vertices to the orthocentre are nine points of
a circle. Show that the centre of this circle lies at the midpoint
of the line segment joining the orthocentre of the triangle with
the centre of the circumscribed circle and its radius equals half
the radius of the circumscribed circle.
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366. From the foot of each altitude of a triangle perpendiculars
are dropped on the other two sides. Prove the following asser-
tions: (1) the feet of these perpendiculars are the vertices of a
hexagon whose three sides are parallel to the sides of the triangle;
(2) it is possible to circumscribe a circle about this hexagon.

367. Prove that in a right triangle the sum of the legs is equal
to the sum of the diameters of the inscribed and circumscribed
circles.

368. Prove that in a right triangle the bisector of the right
angle is simultaneously the bisector of the angle between the median
and altitude drawn to the hypotenuse.

369. Two triangles ABC and A1B,C, are symmetric about the
centre of their common inscribed circle of radius r. Prove that the
product of the areas of the triangles ABC, AJB,C, and of the six
other triangles formed by the intersecting sides of the triangles
ABC and A,B1C1 is equal to r1b.

370. Prove that the difference of the sum of the squares of the
distances from an arbitrary point M of a plane to two opposite
vertices of a parallelogram ABCD in the plane and the sum of
the squares of the distances from the same point to the other two
vertices is a constant quantity.

371. On the sides of a triangle ABC equilateral triangles ABC,,
BCA, and CAB, are constructed which do not overlap the triangle
ABC. Prove that the straight lines AA,, BB and CC1 are con-
current.

372. On the sides AB, AC and BC of a triangle ABC as bases
three similar isosceles triangles ABP, ACQ and BCR are construc-
ted, the first two triangles lying outside the given triangle and
the third being on the same side of BC as the triangle ABC. Prove
that either the figure APRQ is a parallelogram or the points A,
P, R, Q are in a straight line.

373. A point 0 of a plane is connected by straight lines with
the vertices of a parallelogram ABCD lying in the plane Prove
that the area of the triangle AOC is equal to the sum or diffe-
rence of the areas of two adjacent triangles each of which is for-
med by two of the straight lines OA, OB, OC and OD and the
corresponding side of the parallelogram. Consider the cases when
the point 0 is inside and outside the parallelogram.

374. In a trapezoid ABCD the sum of the base angles A and D
is equal to 2 . Prove that the line segment connecting the
midpoints of the bases equals half the difference of the bases.
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375. Prove that the sum of the squares of the diagonals of a
trapezoid is equal to the sum of the squares of its sides plus twice
the product of the bases.

376. Prove that the straight line joining the midpoints of the
bases of a trapezoid passes through the point of intersection of
the diagonals.

377. Prove that if the line segment connecting the midpoints
of opposite sides of a quadrilateral equals half-sum of the other
two sides, then the quadrilateral is a trapezoid.

378. Prove that if the diagonals of two quadrilaterals are res-
pectively equal and intersect at equal angles, then these quadri-
laterals have the same area.

379. Prove that at least one of the feet of the perpendiculars
drawn from an arbitrary interior point of a convex polygon to
its sides lies on the side itself but not on its extension.

380. Prove that the bisectors of the interior angles of a paral-
lelogram form a rectangle whose diagonals are equal to the diffe-
rence of two adjacent sides of the parallelogram.

381. Given a parallelogram, prove that the straight lines con-
secutively joining the centres of the squares constructed outside
the parallelogram on its sides also form a square.

382. Prove that if in an arbitrary quadrilateral ABCD the bi-
sectors of the interior angles are drawn, then the four points at
which the bisectors of the angles A and C intersect the bisectors
of the angles B and D lie on a circle.

383. Two tangent lines are drawn to a circle. Prove that the
length of the perpendicular drawn from an arbitrary point of the
circle to the chord joining the points of tangency is the mean
proportional between the lengths of the perpendiculars drawn from
the same point to the tangent lines.

384. Prove that the feet of the perpendiculars dropped from an
arbitrary point of a circle onto the sides of the inscribed triangle
lie in a straight line.

385. Three equal circles intersect in a point. The other point
of intersection of every two of the circles and the centre of the
third circle lie on a straight line. Prove that the three straight
lines thus specified are concurrent.

386. Two circles are internally tangent at a point A, the seg-
ment AB being the diameter of the larger circle. The chord BK
of the larger circle is tangent to the smaller circle at a point C.
Prove that AC is the bisector of the angle A of the triangle ABK.
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387. A circle of radius r is inscribed in a sector of a circle of
radius R. The length of the chord of the sector is equal to 2a.
Prove that

1 1 1

R +a
3'38. Two tangent lines are drawn to a circle. They intersect a

straight line passing through the centre of the circle at points A
and B and form equal angles with it. Prove that the product of
the line segments AC and BD which are cut off from the given
(fixed) tangent lines by any (moving) tangent line is a constant
quantity.

389. Prove that the sum of the squares of the lengths of two
chords of a circle intersecting at a right angle is greater than the
square of the diameter of the circle and the sum of the squares
of the four line segments into which the chords are divided by
the point of intersection is equal to the square of the diameter.

390. Prove that if a chord of a circle is trisected and the end-
points of the chord and the points of division are joined with the
centre of the circle, then the corresponding central angle is divi-
ded into three parts one of which is greater than the other two.

391. Prove that if two intersecting chords are drawn from the
endpoints of a diameter of a circle, then the sum of the products
of each chord by its segment from the endpoint of the diameter
to the point of intersection is a constant quantity.

392. From each of two points of a straight line two tangent
lines are drawn to a circle. Circles of equal radii are inscribed in
the angles thus formed with the vertices at these points. Prove
that the centre line of the circles is parallel to the given line.

393. The diameter of a semicircle is divided into two arbitrary
parts, and on each part as diameter a semicircle lying inside the
given semicircle is constructed. Prove that the area contained be-
tween the three semicircular arcs is equal to the area of a circle
whose diameter is equal to the length of the perpendicular erected
to the diameter of the original semicircle at the point of division.

394. Prove that if two points lie outside a circle and the straight
line passing through them does not intersect the circle, then the
distance between these two points is greater than the difference
between the lengths of the tangent lines drawn from the given
points to the circle and less than their sum. Show that either the
former or the latter inequality is violated if the straight line in-
tersects the circle.

395. Through the midpoint C of an arbitraty chord AB of a
circle two chords KL and MN are drawn, the points K and M
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lying on one side of AB. Prove that QC=CP where Q is the
point of intersection of AB and KN and P is the point of inter-
section of AB and ML.

396. A circle is arbitrarily divided into four parts, and the
midpoints of the arcs thus obtained are connected by line segments.
Show that two of these segments are mutually perpendicular.

397. Prove that for any closed plane polygonal line without
self-intersection there exists a circle whose radius is 4 the peri-
meter of the polygonal line such that none of the points of the
polygonal line lies outside this circle.

398. Can a triangle be equilateral if the distances from its ver-
tices to two given mutually perpendicular straight lines are exp-
ressed by integers?

399. On one side of a straight line at its points A and B two
perpendiculars AA1= a and BB1= b are erected. Prove that for
constant a and b the distance from the point of intersection of
the straight lines AB1 and A1B to the straight line AB is also
constant irrespective of the position of the points A and B.

400. A circle is inscribed in a right angle with point A as ver-
tex, B and C being the points of tangency. Prove that if a tan-
gent line intersecting the sides AB and AC at points M and N
is drawn to this circle, then the sum of the lengths of the seg-
ments MB and NC is greater than

3
(AB + AC) and less than

2 (AB + AC).

401. Prove that if a circle of radius equal to the altitude of an
isosceles triangle rolls upon the base of the triangle, then the length
of the arc cut off from the circle by the congruent sides of the
triangle remains constant. Is this assertion true for a scalene tri-
angle?

402. Prove that the ratio of the diagonals of an inscribed qua-
drilateral of a circle is equal to the ratio of the sums of the pro-
ducts of the sides passing through the endpoints of the diagonals.

403. Prove that the sum of the squares of the distances from a
point on a circle to the vertices of an equilateral inscribed triangle
is a constant independent of the position of the point on the
circle.

404. Prove that if a circle is internally tangent to three sides
of a quadrilateral and intersects the fourth side, then the sum of
the latter and the side opposite to it is greater than the sum of
the other two sides of the quadrilateral.
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405. Prove that if a circle is internally tangent to three sides
of a quadrilateral whose fourth side does not intersect the circle,
then the sum of the fourth side and the side opposite it is less
than the sum of the other two sides of the quadrilateral.

406. Two equal semicircles whose diameters lie in a common
straight line are tangent to each other. Draw a tangent line to
them and inscribe a circle tangent to this line and to the two
semicircles. Then inscribe another circle tangent to the first one
and to the semicircles after which inscribe one more circle tangent
to the second one and to the semicircles and so on, unlimitedly.
Using this construction prove that the sum of the fractions

I
1X2+2X3+3X4+4XI

5+ +n -I)

tends to unity for n- oo, that is

1X2+2X3+... -} n(n+l)+... = 1.

407. An elastic ball of negligible dimensions rests at a point A
at a distance a from the centre of circular billiards of radius R.
To what point B of the cushion must the ball be directed so that
it returns to the point A after being reflected twice from the cu-
shion?

408. A ray of light is issued from a point A lying inside an
angle with reflecting sides. Prove that the number of reflection of
the ray from the sides is always finite. Determine this number if
the angle is equal to a and the initial ray is directed at an angle P
to one of the sides. Under what conditions does the reflected ray
again pass through the point A?

4. Loci of Points

409. Two fixed points A and B and a moving point M are taken
on a circle. On the extension of the line segment AM a segment
MN = MB is laid off outside the circle. Find the locus of points N.

410. Given two parallel straight lines and a point 0 between
them. Through this point an arbitrary secant is drawn which in-
tersects the parallel lines at points A and A'. Find the locus of
the endpoints of the perpendicular of length OA erected to the
secant at the point A'.

411. Find the locus of points for which the sum of their dis-
tances from two given straight lines m and l is equal to the length a
of a given line segment. Consider the cases of intersecting and
parallel lines.
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412. Find the locus of points for which the difference of their
distances from two given straight lines m and l is equal to a line
segment of given length. Consider the cases of parallel and inter-
secting lines.

413. Two line segments AB and CD are taken in the plane.
Find the locus of points M for which the sum of the areas of the
triangles AMB and CMD is equal to a constant a2.

414. Given a circle K and its chord AB. Consider all the in-
scribed triangles of the circle with given chord as base. Find the
locus of orthocentres of these triangles.

415. Inside a given circle a point A not coincident with the
centre is fixed. An arbitrary chord passing through the point A is
taken, and through its endpoints two tangent lines to the circle
intersecting at a point M are drawn. Find the locus of points M.

416. Prove that the locus of points M, for which the ratio of
their distances from two given points A and B equals

q

is a circle with centre on the straight line AB.
Express the diameter of this circle in terms of the length a of

the line segment AB. Also consider the case

n = I.

q

417. Given a line segment AB and a point C on it. Each pair
of equal circles one of which passes through the points A and C
and the other through the points C and B has, besides C, another
common point D. Find the locus of points D.

418. A polygon is deformed in such a way that its sides remain
respectively parallel to given directions whereas all its vertices
but one slide along given straight lines. Find the locus of posi-
tions of that vertex.

419. Given a circle K of radius r and its chord AB whose
length is 2a. Let CD be a moving chord of this circle with length 2b.
Find the locus of points of intersection of the straight lines
AC and BD.

420. Through a point P lying in a given circle and a point Q
belonging to a given straight line an arbitrary circle is drawn
whose second point of intersection with the given circle is R and
the point of intersection with the given straight line is S. Prove
that all the straight lines RS thus specified have a common point
lying on the given circle.
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5. The Greatest and Least Values

421. Given two parallel straight lines and a point A between
them at distances a and b from the lines. The point A is the
vertex of the right angles of the right triangles whose other two
vertices lie on either parallel line. Which of the triangles has the
least area?

422. Given a right triangle with acute angle a. Find the ratio
of the radii of the circumscribed and inscribed circles and deter-
mine the value of a for which this ratio attains its minimum.

423. A right triangle with legs al and bl is cut off from a qu-
adrilateral with sides a and b. How must the quadrilateral of ma-
ximum area with sides parallel to those of the initial quadrilateral
be cut off from the remaining part of the quadrilateral?

424. Two points A and B are taken on a side of an acute
angle. Find a point C on the other side of the angle such that
the angle ACB attains its maximum value. Make a ruler and com-
pass construction of the point C.

425. On a given straight line I find a point for which the diffe-
rence of its distances from two given points A and B lying on
one side of the straight line attains its minimum value, and also
a point such that this difference attains the maximum value.

426. Through a point A inside an angle a straight line is drawn
which cuts off from the angle a triangle with the least area. Prove
that the segment of this line between the sides of the angle is
bisected at the point A.

427. Prove that among all triangles with common vertex angle
cp and given sum a+b of the lengths of the sides including this
angle the isosceles triangle has the least base.

428. Among all triangles with equal bases and the same vertex
angle find the triangle having the greatest perimeter.

429. In a triangle ABC an arbitrary point D is taken on the
base BC or on its extension, and circles are circumscribed about
the triangles ACD and BCD. Prove that the ratio of the radii
of these circles is a constant quantity. Find the position of the
point D for which these radii attain their least values.

430. Cut off two equal circles having the greatest radius from
a given triangle.
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B. SOLID GEOMETRY

Preliminaries

Here is a number of formulas to be used for computing volumes
and surface areas of polyhedrons and solids of revolution, the
notation being as follows: V, volume; Star, lateral surface area;
S, area of base; H, altitude.

Pyramid: V = SH
.

Frustum of a pyramid:
V =

3
(SI } S2 VS1S2 , where S1 and S2 are the areas of the

upper and lower bases.
Right circular cone: V=

3

R, where R is the radius of the
base; Siat = nRl, where l is the slant height.

Right circular cylinder: V= nR2H, where R is the radius of the
base; Stat = 2rtRH.

Frustum of a cone: V =3 (Ri + Ra -'+ - R1R2), where R1 and RE
are the radii of the bases; Stat = n (RI + R2) 1, where l is the slant
height.

Sphere: V=--R; S= 4nR2, where R is the radius of the
sphere.

Spherical sector: V=- ---, where R is the radius of the sphere
3

and h is the altitude of the zone forming the base of the sector.
Spherical segment: V = 3 nh2 (3R -h); Stat = 2nRh, where R is

the radius of the sphere and h is the altitude of the segment.

1. Computation Problems

431. The volume of a regular triangular prism is equal to V
and the angle between the diagonals of two faces drawn from one
vertex is equal to a. Find the side of the base of the prism.

432. From the vertex S of a regular quadrangular pyramid the
perpendicular SB is dropped on the base. From the midpoint 0
of the line segment SB the perpendicular OM of length h is drawn
to a lateral edge and the perpendicular OK of length b is dropped
on a lateral face. Compute the volume of the pyramid.

433. Find the lateral area of a regular n-gonal pyramid of
volume V if the radius of the inscribed circle of its base is equal
to the radius of the circumscribed circle of the parallel section
drawn at a distance h from the base.



PROBLEMS. SOLID GEOMETRY 63

434. A regular pentagonal pyramid SABCDE is intersected by
the plane passing through the vertices A and C of the base and
the midpoints of the lateral edges DS and ES. Find the area of
the section if the length of the side of the base is equal to q and
the length of the lateral edge is equal to b.

435. A regular triangular pyramid is cut by the plane passing
through a vertex of the base and the midpoints of two lateral
edges. Find the ratio of the lateral area of the pyramid to the
area of the base if it is known that the cutting plane is perpen-
dicular to the lateral face opposite that vertex.

436. A pyramid of total surface area S is cut off from a regular
quadrangular prism by a plane passing through a diagonal of the
lower base and a vertex of the upper base. Find the total surface
area of the prism if the vertex angle of the triangle in the section
is equal to a.

437. Compute the volume of a regular triangular pyramid kno-
wing that the face angle at the vertex is equal to a and the ra-
dius of the circumscribed circle of the lateral face is equal to r.

438. A regular quadrangular pyramid with side of its base equal
to a is cut by a plane bisecting its dihedral angle at the base
which is equal to 2a. Find the area of the section.

439. Above the plane ceiling of a hall having the form of a
square with side a a roof is made which is constructed in the
following way: each pair of adjacent vertices of the square forming
the ceiling is joined by straight lines with the midpoint of the
opposite side and on each of the four triangles thus obtained
a pyramid is constructed whose vertex is projected into the mid-
point of the corresponding side of the square. The elevated parts
of the faces of the four pyramids form the roof. Find the volume
of the garret (i.e. the space between the ceiling and the roof)
if the altitude of each pyramid is equal to h.

440. Find the dihedral angle formed by two lateral faces of
a regular triangular pyramid if the dihedral angle formed by its
lateral face and base is equal to a.

441. In a regular triangular pyramid SABC the face angle at
the vertex is equal to a and the shortest distance between a lateral
edge and the opposite side of the base is equal to d. Find the
volume of the pyramid.

442. The base of a pyramid is an isosceles trapezoid in which
the lengths of the bases are equal to a and b (a > b) and the angle
between the diagonals subtended by its lateral side is equal to (P.
Find the volume of the pyramid if its altitude dropped from the
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vertex passes through the point of intersection of the diagonals
of the base and the ratio of the dihedral angles whose edges are
the parallel sides of the base is 2:1.

443. An angle BAC of 60° is taken in a plane P. The distances
from a point S to the vertex A, the side AB and the side AC are
erspectively 25 cm, 7 cm and 20 cm. Find the distance between
the point S and the plane P.

444. A regular hexagonal pyramid with face angle at the vertex
equal to a is intersected by a plane passing at an angle 0 to the
base through its longest diagonal. Find the ratio of the area of
the plane section to the area of the base.

445. All the three face angles of a trihedral angle are acute
and one of them is equal to a. The dihedral angles whose edges
are the sides of this face angle are equal to P and y respectively.
Find the other two face angles.

446. Compute the volume of a regular pyramid of altitude h
knowing that its base is a polygon for which the sum of the inte-
rior angles is equal to me and the ratio of the lateral area of the
pyramid to the area of the base is equal to k.

447. Consider a cube with edge a. Through the endpoints of
each triple of concurrent edges a plane is drawn. Find the volume
of the solid bounded by these planes.

448. A regular hexahedral pyramid is intersected by a plane
parallel to its lateral face and passing through the centre of the
base. Find the ratio of the area of the plane section to the area
of the lateral face.

449. Through each edge of a tetrahedron a plane parallel to the
opposite edge is drawn. Find the ratio of the volume of the pa-
rallelepiped thus formed to the volume of the tetrahedron.

450. On the lateral faces of a regular quadrangular pyramid
as bases regular tetrahedrons are constructed. Find the distance
between the exterior vertices of two adjacent tetrahedrons it the
side of the base of the pyramid is equal to a.

451. Through a point on a diagonal of a cube with edge a
a plane is drawn perpendicularly to this diagonal.

(1) What polygon is obtained in the section of the faces of the
cube by the plane?

(2) Find the lengths of the sides of this polygon depending
on the distance x from the centre of symmetry 0 of the cube to
the cutting plane.

452. Consider the projection of a cube with edge a onto a plane
perpendicular to a diagonal of the cube. What is the ratio of the
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area of this projection to the area of the section of the cube by
the plane passing through the midpoint of the diagonal perpendi-

cularly to it?

453. Given a regular quadrangular pyramid with altitude h and
side of the base a. Through a side of the base of the pyramid and
the midpoint of a lateral edge not intersecting this side the plane
section is drawn. Determine the distance from the vertex of the
pyramid to the cutting plane.

454. Given a regular tetrahedron SABC with edge a. Through
the vertices of the base ABC of the tetrahedron three planes are
drawn each of which passes through the midpoints of two lateral
edges. Find the volume of the portion of the tetrahedron lying
above the three cutting planes.

455. A rhombus with diagonals AC = a and BD = b is the base
of a pyramid SABCD. The lateral edge SA of length q is perpen-
dicular to the base. Through the point A and the midpoint K of
the edge SC a plane parallel to the diagonal BD of the base is
drawn. Determine the area of the plane section thus obtained.

456. In a regular quadrangular prism two parallel plane sections
are drawn. One of them passes through the midpoints of two adja-
cent sides of the base and the midpoint of the axis of the prism
and the other divides the axis in the ratio 1:3. Knowing that the
area of the former section is S, find the area of the latter.

457. A triangular pyramid is cut by a plane into two poly-
hedrons. Find the ratio of volumes of these polyhedrons if it is
known that the cutting plane divides three concurrent lateral ed-
ges of the pyramid so that the ratios of the segments of these edges
adjacent to the common vertex to the remaining parts of the edges
are 1:2, 1:2 and 2:1.

458. Find the volume of a triangular pyramid if the areas of
its faces are So, S Sz and S3, and the dihedral angles adjacent
to the face with area So are equal.

459. In a cube with edge a through the midpoints of two pa-
rallel edges not lying in one face a straight line is drawn, and
the cube is turned about it by 90°. Determine the volume of the
common portion of the initial and turned cubes.

460. Through the vertex of a cone a plane is drawn at an
angle a to the base of the cone. This plane intersects the base
along the chord AB of length a subtending an arc of the base of
the cone with central angle P. Find the volume of the cone.

461. A cone and a cylinder have a common base, and the vertex
of the cone is in the centre of the other base of the cylinder.
3-323
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Find the angle between the axis of the cone and its element if
the ratio of the total surface area of the cylinder to the total

surface area of the cone is 7:4.

462. A cylinder is inscribed in a cone, the altitude of the
cylinder being equal to the radius of the base of the cone. Find
the angle between the axis of the cone and its element if the ratio
of the total surface area of the cylinder to the area of the base
of the cone is 3:2.

463. In a cone with slant height I and element inclined to the
base at an angle a a regular n-gonal prism whose all edges are
congruent is inscribed. Find the total surface area of the prism.

464. The four sides of an isosceles trapezoid are tangent to
a cylinder whose axis is perpendicular to the bases of the trape-
zoid. Find the angle between the plane of the trapezoid and the
axis of the cylinder if the lengths of the bases of the trapezoid

are respectively equal to a and b and the altitude of the trape-
zoid is equal to h.

465. A sphere is inscribed in a right prism whose base is a
right triangle. In this triangle a perpendicular of length h drop-
ped from the vertex of the right angle on the hypotenuse forms
an angle a with a leg of the triangle. Find the volume of the
prism.

466. In a regular n-gonal pyramid with side of the base a and
lateral edge b a sphere is inscribed. Find its radius.

467. A sphere is inscribed in a regular triangular pyramid.
Determine the angle between its lateral edge and the base if the
ratio of the volume of the pyramid to the volume of the sphere
is equal to 27 3

4I
468. About a sphere of radius r a regular n-gonal pyramid

with dihedral angle at the base a is circumscribed. Find the ratio
of the volume of the sphere to that of the pyramid.

469. Find the ratio of the volume of a regular n-gonal pyramid
to the volume of its inscribed sphere, knowing that the circums-
cribed circles of the base and lateral faces of the pyramid are of
the same radius.

470. Find the altitude of a regular quadrangular pyramid if it
is known that the volume of its circumscribed sphere is equal
to V and the perpendicular drawn from the centre of the sphere
to its lateral face forms with the altitude of the pyramid an
angle a
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471. A sphere of radius R is inscribed in a pyramid whose
base is a rhombus with acute angle a. The lateral faces of the
pyramid are inclined to the plane of the base at an angle i.
Find the volume of the pyramid.

472. The congruent bases of two regular n-gonal pyramids
are made coincident. Find the radius of the inscribed sphere of
the polyhedron thus obtained if the sides of the bases of the py-
ramids are equal to a and their altitudes are equal to h and H
respectively.

473. The congruent bases of two regular n-gonal pyramids are
made coincident, the altitudes of the pyramids being different.
Determine these altitudes if the radius of the circumscribed sphere
of the polyhedron thus formed is equal to R and the sides of the
bases of the pyramids are equal to a. What is the relationship
between the values of a and R for which the problem is solvable?

474. An inscribed sphere of a regular n-gonal prism touches
all the faces of the prism. Another sphere is circumscribed about
the prism. Find the ratio of the volume of the latter to that of
the former.

475. A regular tetrahedron is inscribed in a sphere, and another
sphere is inscribed in the tetrahedron. Find the ratio of the sur-

face areas of the spheres.

476. A sphere is inscribed in a regular tetrahedron, and another
regular tetrahedron is inscribed in the sphere. Find the ratio of
the volumes of the tetrahedrons.

477. Given two concentric spheres of radii r and R (R > r).
What relationship connects R and r if it is possible to construct
a regular tetrahedron inside the larger sphere so that the three
vertices of its base lie on the larger sphere and the three lateral
faces are tangent to the smaller sphere?

478. A plane dividing a cube into two parts passes through
two opposite vertices of the cube and the midpoints of the six
edges not containing these vertices. Into each part of the cube
a sphere is placed so that it is tangent to three faces of the cube
and the cutting plane. Find the ratios of the volume of the cube
to the volumes of the spheres.

479. From a point on a sphere of radius R three equal chords
are drawn at an angle a to one another. Find the length of these
chords.

480. In a triangular pyramid SABC the edges SA, SC and SB
are pairwise perpendicular, AB=AB=BC==a and BS= b. Find the
radius of the inscribed sphere of the pyramid.

3*
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481. Find the dihedral angle p formed by the base of a regular
quadrangular pyramid and its lateral face if the radius of the
circumscribed sphere of the pyramid is three times that of the
inscribed sphere.

482. In a sphere of radius R a regular tetrahedron is inscribed,
and all its faces are extended to intersect the sphere. The lines
of intersection of the faces of the tetrahedron with the sphere
cut off from its surface four spherical triangles and several spherical
lunes. Compute the areas of these spherical parts.

483. A sphere is inscribed in a cone. The ratio of the surface

area of the sphere to the area of the base of the cone is 4:3.
Find the vertex angle of the axial section of the cone.

484. A hemisphere is inscribed in a cone so that its great circle
lies in the base of the cone. Determine the vertex angle of the
axial section of the cone if the ratio of the total surface area of
the cone to the surface area of the hemisphere is 18:5.

485. In a sphere of radius R a cone is inscribed whose lateral
area is k times the area of its base. Find the volume of the cone.

486. The ratio of the altitude of a cone to the radius of its
circumscribed sphere is equal to q. Find the ratio of the volumes
of these solids. For what q is the problem solvable?

487. Find the ratio of the volume of a sphere to that of a right
cone circumscribed about the sphere if the total surface of the
cone is n times the surface area of the sphere.

488. Determine the radii of the bases of a frustum of a cone
circumscribed about a sphere of radius R knowing that the ratio
of the total surface area of the frustum to the surface area of the
sphere is equal to m.

489. A sphere of radius r is inscribed in a cone. Find the volume
of the cone knowing that the distance from the vertex of the cone
to the tangent plane to the sphere which is perpendicular to an
element of the cone is equal to d.

490. A sphere of radius R is inscribed in a cone with vertex
angle of its axial section equal to a. Find the volume of the part
of the cone above the sphere.

491. Determine the radii of two intersecting spheres forming
biconvex lense with thickness 2a, total surface area S and dia-
meter 2R.

492. A sphere is inscribed in a cone, the ratio of their volumes
being equal to k. Find the ratio of the volumes of the spherical
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segments cut off from the sphere by the plane passing through
the line of tangency of the sphere and cone.

493. In a sphere S of radius R eight equal spheres of smaller
radius are inscribed so that each of them is tangent to two adja-
cent spheres and all the eight spheres touch the given sphere S
along its great circle. Then in the space between the spheres a
sphere S, is placed which touches all the spheres of smaller radius
and the sphere S. Find the radius p of the sphere S,.

494. In a sphere S of radius R eight equal spheres are inscribed
each of which is tangent to three adjacent spheres and the given
one. Find the radius of the inscribed spheres if their centres are

at the vertices of a cube.

495. In a sphere two equal cones with coinciding axes are in-
scribed whose vertices are at the opposite endpoints of a diameter
of the sphere. Find the ratio of the volume of the common por-
tion of the cones to that of the sphere knowing that the ratio of
the altitude h of each cone to the radius R of the sphere is equal
to k.

496. The areas of two parallel plane sections of a sphere drawn
on one side of its centre are equal to S, and S2, and the distance
between them is d. Find the area of the section parallel to the
two given sections and equidistant from them.

497. Three equal spheres of radius R tangent to one another
lie on a plane P. A right circular cone with its base in P is
externally tangent to the spheres. Find the radius of the base
of the cone if its altitude is equal to qR.

498. Given four equal spheres of radius R each of which
is tangent to the other three. A fifth sphere is externally tangent
to each given sphere, and one more sphere is internally tangent
to them. Find the ratio of the volume V, of the sixth sphere to
the volume V5 of the fifth.

499. Three equal pairwise tangent spheres of radius R lie on
a plane. A fourth sphere is tangent to the plane and to each
given sphere. Find the radius of the fourth sphere.

500. Four equal spheres of radius R lie on a plane. Three of
them are pairwise tangent, and the fourth sphere touches two of
these three. Two equal tangent spheres of smaller radius are placed
above these spheres so that each of them touches three larger
spheres. Find the ratio of the radius of a larger sphere to that
at a smaller.
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2. Proof Problems

501. Given a frustum of a cone with lateral area equal to the
area of a circle whose radius is equal to the slant height of the
frustum. Prove that it is possible to inscribe a sphere in the
frustum.

502. Given a frustum of a cone whose altitude is the mean
proportional between the diameters of the bases. Prove that it is
possible to inscribe a sphere in the given frustum.

503. Prove that the straight lines joining three vertices of a
regular tetrahedron to the midpoint of the altitude dropped from
the fourth vertex are pairwise perpendicular.

504. Let R be the radius of the circumscribed sphere of a re-
gular quadrangular pyramid, and r be the radius of the inscribed
sphere. Prove that

r >j12+l.

Hint. Express R in terms of tan 2 where a is the dihedral
angle between the base of the pyramid and its lateral face.

505. From a point 0 in the base ABC of a triangular pyramid
SABC are drawn the straight lines OA', OB' and OC' respectively
parallel to the edges SA, SB and SC which intersect the faces
SBC, SCA and SAB at points A', B' and C'. Prove that

OA' OB' OC'
SA +SB +SC-1'

506. Consider two triangles ABC and A,B,C, with pairwise
nonparallel sides lying in intersecting planes. The straight lines
joining the corresponding vertices of the triangles intersect in one
point 0. Prove that the extensions of the corresponding sides of
the triangles are pairwise concurrent and the points of intersection
lie in a straight line.

507. Show that the line segments joining the vertices of a trian-
gular pyramid to the centroids of the opposite faces meet in one
point and are divided by this point in the ratio 1:3.

508. Show that the area of any triangular section of an arbit-
rary triangular pyramid does not exceed the area of at least one
of its faces.

509. One of two triangular pyramids with common base is inside
the other. Prove that the sum of the face angles at the vertex of
the interior pyramid is greater than that of the exterior one.
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510. Four spheres with non-coplanar centres are pairwise tangent
to one another. For every two spheres a common tangent plane
is drawn perpendicularly to their centre line. Prove that the six
planes thus constructed have a common point.

511. Prove that if the sums of the lengths of any pair of op-
posite edges of a triangular pyramid are equal, then the vertices
of the pyramid are the centres of four pairwise tangent spheres.

512. What condition on the radii of three pairwise tangent
spheres guarantees the existence of a common tangent plane to
the spheres?

513. Prove that if a point moves inside the base of a regular
pyramid in its plane, then the sum of the distances from this
point to the lateral faces remains constant.

514. Prove that two planes drawn through the endpoints of two
triples of edges of a parallelepiped meeting in the endpoints of
a diagonal of the parallelepiped trisect this diagonal.

515. Show that if a plane drawn through the endpoints of three
edges of a parallelepiped meeting in one vertex cuts off a regular
tetrahedron from the parallelepiped, then the latter can be inter-
sected by a plane so that the section is a regular hexagon.

516. Prove that every plane passing through the midpoints of
two opposite edges of a tetrahedron divides this tetrahedron into
two parts of equal volumes.

517. Prove that if all dihedral angles of a triangular pyramid
are equal, all the edges of the pyramid are also equal.

518. The endpoints of two line segments AB and CD lying in
two parallel planes are the vertices of a triangular pyramid.
Prove that the volume of the pyramid does not change when the
segments are translated in these planes.

519. Prove that a straight line intersecting the two faces of a
dihedral angle forms equal angles with them if and only if the
points of intersection are equidistant from the edge.

520. Consider two line segments AB and CD not lying in one
plane. Let MN be the line segment joining their midpoints. Prove
that

AD+BC > MN
2

where AD, BC and MN designate the lengths of the corresponding
segments.

521. Prove that every face angle of an arbitrary tetrahedral
angle is less than the sum of the other three face angles.
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522. Prove that any convex tetrahedral angle can be intersected

by a plane so that the section is a parallelogram.
523. Prove that if the faces of a triangular pyramid are of the

same area, they are congruent.

3. Loci of Points
524. Find the locus of projections of a point in space on pla-

nes passing through another fixed point.
525. Find the locus of centres of the sections of a sphere by

the planes passing through a given straight line 1. Consider the

cases when the line and the sphere intersect, are tangent or have

no points in common.
526. Find the locus of centres of the sections of a sphere by

the planes passing through a given point C. Consider the cases
when the point is outside the sphere, on its surface or inside it.

527. Find the locus of points from which it is possible to draw
three tangent lines to a given sphere of radius R which are the
edges of a trihedral angle with three right face angles.

528. Find the locus of feet of the perpendiculars dropped from
a given point in space on the straight lines lying in a given plane
and intersecting in one point.

529. Given a plane P and two points A and B not lying in it.
Consider all the possible spheres tangent to the plane P and pas-
sing through A and B. Find the locus of points of tangency.

530. A trihedral angle is intersected by a plane, a triangle ABC
being the section. Find the locus of the centroids of triangles ABC
on condition that

(a) vertices A and B are fixed;
(b) vertex A is fixed.

4. The Greatest and Least Values

531. A cube is intersected by a plane passing through its dia-
gonal. How must this plane be drawn to obtain the section of the
least area?

532. A triangular pyramid is intersected by the planes parallel
to two nonintersecting edges. Find the section having the greatest
area.



TRIGONOMETRY

Preliminaries

Here are some formulas to be used in the suggested problems.
1. Addition and subtraction formulas:

sin(x+y)=sinxcosy+cosxsiny, (1)

sin (x-y) = sin x cos y-cos x sin y, (2)
cos (x+y) =cos xcos y-sinxsiny, (3)

cos (x-y) = cosxcosy+ sin x sin y. (4)

2. Double-angle and triple-angle formulas:
sin 2x =2 sin x cos x, (5)
cos 2x = cost x- sin 2 x, (6)
sin 3x = 3 sin x- 4 sin3 x, (7)
cos 3x = 4 cos3 x -3 cos x. (8)

3. Sum and difference of trigonometric functions:
x+y x-ysinxsiny=2sin

2
cos

2
, (9)

sinx-sin y=2cos-x 2--sin x2yy, (10)

cosx+cosy=2cosx yycos x y, (11)
2 2

cos x- cos y = 2 sin x+2y sin y-x2 . (12)

4. Product formulas:
sin xsin y= 2 [cos(x-y)-cos(x+y)], (13)

cosxCOSY= 2 [cos(x-y)+cos (x +Y)], (14)

sin xcosy= 2 [sin (x -y) + sin (x+y)], (15)

sine x = t - cos 2x
2

(16)

Costx= t+cos2x (17)
2
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5. Expressing sin x, cosx and tan x in terms of tan 2 .

2 tan 2
sin x= , (18)

1 +tanz
2

cos x =
1-tan' 2

(19)
1 +tan2 2

2 tan
x

tan x = Zx
. (20)

1-tan2
2

6. Inverse trigonometric functions.
(a) Principal values of inverse trigonometric functions:

y= are sin x, if x= sin y and <y < 2 , (21)

y = are cosx if x =cosy and 0 < y < n, 7(22)

y=arctanx if x=tany and -2 <y< 2 , ((23)

y = arc cot x if x = cot y and 0 < y < ru. (24)

(b) Multiple-valued functions:

Arc sin x=(-1)"aresinx+.nn, n=0, ±1, t2, ..., (25)

Arc cos x = arc cos x + tin, (26)

Arc tan x = arc tan x -i- an, (27)

Arc cot x = arc cot x + an. (28)

Formulas (25) to (28) determine the general expressions for the
angles corresponding to given values of trigonometric functions.

1. Transforming Expressions Containing
Trigonometric Functions

533. Prove the identity

sin' x+cosex= 1- 3 sin' 2x.

534. Prove the identity
cos"a-,-cost(a-i-(3)-2cosaCost cos (a+S)=sin20.
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535. Prove that

tan x + tan 2x- tan 3x = -tan x tan 2x tan 3x

for all permissible values of x.

536. Prove that the equality

tan 3x = tanx tan (3 -x) tan (3 + x)

\for all permissible values of X.

537. Prove the identity
sin a+sinj3+siny-sin(a-{-(i-]-y)=

=4sina2 Ssinb 2YSinY 2a

538. Prove that

sina+sinl3+siny=4cos cos cos 2

if

a-1-0+T=-n.

539. For a+(3-1-y=:T prove the identity
sin 2na -;-sin 2ni + sin 2ny= ( -I )" i' 4 sin na sin nr sin ny

where n is an integer.

540. Prove that if cos (a + p) = 0 then
sin (a 2P)=sina.

541. Prove that if 3 sin p =sin (2a -{- (3) then

tan(a+P)=2tana
for all permissible values of a and P.

542. Prove that if sin a = A sin (a + then

tan a s`I'
(

for all permissible values of a and P.

543. Prove that if the angles a and 0 satisfy the relation
sin 0 _ n

sin (2a +O) m

then

tans,+
tan a

m+n

(Itn >Ill),

1- tan a tan o
m --n



76 PROBLEMS IN ELEMENTARY MATHEMATICS

544. Prove that if cos x cosy cos z 0, the formula
cos(x+y+z)=

cos x cosy cos z (1 - tan x tan y- tan y tan z - tan z tan x)

holds true.

545. Prove that if a, P, V are the angles of a triangle then

tan-! tan k+ + tan I tan ! + tan 2 tan = 1.

546. Let x+y+z= 2 k. For what integral k is the sum

tan y tan z --tan z tan x+tan x tan y

independent of x, y and z?

547. Find the algebraic relation between the angles a, R and 7 if
tan a + tan P+tan y=tan atan 3 tan?.

548. Rewrite as a product the expression
cot2 2x-tan 2 2x-8 cos 4x cot 4x.

549. Transform into a product the expression

sine a + sin 2 P + sine y + 2 cos a cos f3 cos y- 2.

550. Compute

1 -2 sin70°2 sin 10°

without using tables.

551. Prove that
a 2n I

Cos
5

-COs
5 2

552. Prove that

Cos
2a +Cos 4.n +Cos 6rz _ - 1

7 7 7 2

553. Compute

sin4
n + sin4

3n + sin° 5" + sin4 7n
16 16 16 16

without using tables.

554. Prove that

tan 20° tan 40° tan 80° = 1/'l
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2. Trigonometric Equations and Systems of Equations

A. TRIGONOMETRIC EQUATIONS

555. Solve the equation

sin3xcosx-sinxcos3x= 4 .

556. Solve the equation

1 -tan x _
I + tan x 1 + sin 2x.

557. Solve the equation

I +sinx+cosx+sin2x+cos2x=0.
558. Solve the equation

1+sinx+cos3x=cosx+sin2x+cos2x.
559. Solve the equation

(sin 2x + V_3 cos 2x)2- 5 = cos l - 2.x)

560. Solve the equation
2sin 17x+Y3cos5x+sin 5x=0.

561. Solve the equation
sin2x(tanx+ 1) = 3 sin x (cos x- sin x) + 3.

562. Solve the equation

sin3x+cos3x= 1- 2 sin 2x.

563. Solve the equation
1 1 1 1 1 1

sin' x
_

cost x
_

tang x
_

cot2 x
_

sect
x_csc2x

564. Solve the equation
sine3+COS43=8.

- -3.

565. Solve the equation

2 (sine x+cos4x)=sinexcos2x+sinxcosx.

566. Solve the equation
(1 +k) cosx cos (2x-a) = (1 +k cos 2x) cos (x-a).

567. Solve the equation
sin ax sin bx = sin ex sin dx,

77
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where a, b, c and d are consecutive positive terms of an arithme-
tic progression.

568. Solve the equation

2+cosx=2tan 2 .

569. Solve the equation

cot x-2 sin 2x = 1.

570. Find tan x from the equation
2cosxcos((3-x)=cost.

571. Find cosgp if
sina+sin((p-a)+sin(2(p+a)=sin((p --a)Tsin(2c)-a)

and the angle cp is in the third quadrant.
572. Find cot x from the equation

cost (a +x) +cost (a-x) = a,

where 0 < a < 2. For what a is the problem solvable?

573. Find tan 2 if sina+cosa= 27 and the angle a. lies
between 0° and 45°.
574. Solve the equation

sin2x-12(sinx-cosx)+ 12=0.
575. Solve the equation

sect
x
21 +2cscx=-

2

576. Solve the equation
cot2x=1-1-sinx

1+cosx'

577. Solve the equation

2tan3x-3tan2x=tan22xtan3x.
578. Solve the equation

2 cot 2x-3 cot 3x = tan 2x.

579. Solve the equation

6 tan x + 5 cot 3x = tan 2x.

580. Solve the equation

Slnsx-COSSx= 1 - 1

cosx sin x
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581. Solve the equation

tan (x-4 tanxtan (x+--)4 = 4cos2 x x

tan x -cot
2

582. For what a is the equation
sin2x-sinxcosx-2 cos2x=a

solvable? Find the solutions.

583. Determine all the values of a for which the equation
sin4 x-2 cos2 x + a2 = 0

is solvable. Find the solutions.

584. Solve the equation

cos n x cos 2n 31 cos 4;t x
Tj 5-1

cos 8n
i

cos 1631 x - 32

79

585. Solve. the equation

cos 7x-sin 5x = J/3 (cos 5x-sin 7x).

586. Solve the equation
2-(7+sin2x)sin2x+(7+sin2x)sin4 x=0.

587. Find sin x and cosx if
acosx+bsinx=c.

What condition connecting a, b and c guarantees the solvability
of the problem?

588. Solve the equation

589. Solve

590. Solve

591. Solve

592. Solve

a sin x+b a cos x+b
(a2 2b2).bcosx-l-a b sin x-{-.a

the equation
32 cos' x-cos 6x = 1.

the equation
8 sine x+ 3 cos 2x + 2 cos 4x -}- 1 =0.

the equation
cos 3xcos3x+sin3xsin3x=0.

the equation

sin' x+cose x=32.
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593. Solve the equation

sin10 x + cos" x = 29
cos4 2x.

594. Solve the equation
sin3 x + sin3 2x+ sin3 3x = (sin x + sin 2x+ sin 3x)3.

595. Solve the equation
sinzn x+ COSZn X. 1,

where n is a positive integer.

596. Solve the equation
\

sinl o
+2 1=2 sin(3p-2).

597. Solve the equation

(cos 4x-cos 2x)2 = sin 3x + 5.

598. Solve the equation

(sin x + cos x) j 2 = tan x + cot x.

599. Prove that the equation

(sinx +1/3 cosx) sin 4x=2
has no solutions.

600. Determine the range of the values of the parameter 7, for
which the equation

secx+cscx=k

possesses a root x satisfying the inequality 0 < x < 2 .

B. SYSTEMS OF EQUATIONS

601. Find all solutions of the system of equations

sin(x+y)_=0,
sin (x-y) = 0, }

satisfying the conditions 0 <x < and 0,<y-<_n.
602. Solve the system of equations

sinx-cscx+siny,
cosx=secx+cos Y. J
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603. Solve the system of equations

sin3 x = 2 sin y,

cos3 x = cos Y.

604. Solve the system of equations
tanx+tany= 1, )

cosxcosy=
v72J

605. Solve the system of equations
Isin xsin y= 4y2

tan x tan y

606. Solve the system of equations
x+y=`

,

cos x cos y = a.

For what a is the system solvable?
607. Find all the values of a for which the system of equations

sinxcos2y=aa+ 1,
cos x sin 2y = a

is solvable and solve the system.
608. Solve the system of equations

cos (x -2y) = a cos3 y,
sin(x-2y)=acos3y.

For what values of a is the system solvable?
609. Find cos (x+ y) if x and y satisfy the system of equations

sin x + sin y = a,
cos x + cos y = b

and a2 + b2 0.

610. For what values of a is the system
x-y=a,

2 (cos 2x 4- cos 2y) = 1 + 4 cost (x - y)

solvable? Find the solutions.
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611. Find all the solutions of the system
8 cos xcos y cos (x- y) + 1 = 0,

x+y=a.
For what a do the solutions exist?

612. Solve the system of equations

tanx+tanx=2 sin/(y+4),

tan y+tan y= 2 sin l x- 4 1.

613. Eliminate x and y from the system of equations
asin2x+bcostx=1,
acos2y+b sin' y=1,

a tanx=b tan y,
under the assumption that the system is solvable and a =#b.

614. Express cosa and sin in terms of A and B if
sin a = A sin tan a = B tan

615. Solve the system of equations
tan x =tan' Y,
sinx=cos2y.

616. Solve the system of equations

sinx+siny=sin (x+ y),
Ixl+IYI=1.

617. Solve the system of equations
sin (y-3x) 2 sin 3 x,

cos (y - 3x) = 2 cos9 x.

618. What conditions must be satisfied by the numbers a, b
and c for the system of equations

sinx+siny=2a,
cos x + cos y - 2b,

tanxtany=c
to have at least one solution?

3. Inverse Trigonometric Functions

619. Compute arc cos [sin (--4), .
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620. Compute arc sin Ccos
33 n)

621. Prove that

arc tan 13 + arc tan + arc tan --{- are tan
5 7 8 4

622. Derive the formula

aresinx+arccos x= 2 .

623. Show that for a< 32 the equation

(arc sin x)3 + (arc cos x)2 = a39
has no roots.

624. Prove that

J aresinl/l--x`2 if 0<x<1;arccosx= n-arc sin Vl-.x2 if -1 <x<0.
625. Prove the formulas

arc sin (-x) = -arc sin x and arc cos (-x) = .Tr- arc cos x.

626. Prove that if - 2 -F 2kn < x < 2 + 2krr t hen

arc sin (sin x) = x -2krr.

627. Prove that if 0 < x < I and

a=2 arctan1±z, =aresin1-i
x'

then a+3 =it.
628. Find the relationship between

arc sin cos arc sin x and arc cos sin arc cosx.

4. Trigonometric Inequalities

629. Solve the inequality sin x > cos2 X.

630. For what x is the inequality
4sin2x+3tanx-2sec2x> 0

83

fulfilled?

631. Solve the inequality sin x sin 2x < sin 3x sin 4x if

0<x< -.
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632. Solve the inequality

>01r3 -(sinx+cosx)
.

633. Find all positive values of x not exceeding 2n for which
the inequality

cosx-sinx-cos2x> 0
is satisfied.

634. Solve the inequality tan x > tan x-2
2 tanx+2'

635. Solve the inequality

cos3 x cos 3x-sin3 x sin 3x > 8

636. For 0 < cp < 2 prove the inequality

cot 2 > 1 + cot q.

637. Prove that the inequality

(1-tang X) (1-3 tang x) (1 + tan 2x tan 3x) > 0

hold for all the values of x entering into the domain of defini-
tion of the left-hand side.
638. Prove that the inequality

(cot2 x-1) (3 cot' x- 1) (cot 3x tan 2x- 1) <-1
is valid for all the values of x belonging to the domain of defi-
nition of the left-hand side.

639. Putting tan 0 = n tan cp (n > 0) prove that
_ 2

+ ang (0-(p) <(n 4nl)

640. Prove the inequality

sin x- l 1

>1
2-sin x

s,nx-2+2 3-sinx
For what values of x does it turn into an equality?

641. Prove that if 0 < q) < 2 , the inequality

is fulfilled.

cos sin cp > sin cos cp

642. By the method of complete induction, prove that
tan na > n tan a
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> >sitive integer greater than unity and a is an angle
a,..; the inequality 0 < a < 4(n1)'

643. Let 0 < a, < a2 < ... < a < 2 . Prove that

tan(x, < sina,+...+ sinan <tana,,.
cosal+...+cosa

644. Prove that if A, B and C are the angles of a triangle
then

sin 2 sin : sin
C
< 8 .

645. Prove that if 0 < x < 4 then

cos x
8sin2 x (cos x-sin x) '

5. Miscellaneous Problems

646. Compute sin (2 arc tan 1 -arc tan 12)

647. Prove that if tan a = 7 and sin P =
I

where the angles

a and (3 are in the first quadrant then a + 2P = 45°.

648. Prove that the expression

cosx+cotx
sin x+ tan x

assumes positive values for all permissible values of x.

649. Prove that the equality sin a sin 2a sin 3a = 5 does not
hold for all the values of a.

650. Express sin5x in terms of sinx. With the aid of the for-
mula thus obtained compute sin 36° without using tables.

651. Find the greatest and the least values of the function
cp (x) = sine x + cos6 x.

652. Find the greatest and the least values of the function

y=2sin2x+4cos2x+6sinxcosx.
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653. Find out for what integral values of n the number 3i is
a period * of the function

5Cosnxsin
n
-x.

654. Prove that if the sum

a, cos (a, -i- x) + a2 cos (a2 + x) + ... + a,, cos (a + x)

vanishes for x =O and x =x, kn where k is an integer, then it
is identically equal to zero for all x.

655. Prove that the function cosy x is nonperiodic (i.e. there is
no constant number T =#O such that cos j/x H- T = cosy x for all x).

656. Prove the formula

sinx+sin2x-1- ... +sinnx=
nx (n4 I) x

sin
2

sin
2

sin
x
2

Hint. Use De Moivre's formula
(cosx+isinx)"=cosnx-l-isinnx.

657. Compute the sum
it 2n n7t

Cos
4

cos cos
42 +-+ -{- ... -} 2

Hint. Apply De Moivre's formula.
658. Consider the function

f (x)=Acosxd-Bsinx,
where A and B are constants.

Prove that if a function f (x) vanishes for two values x, and x2
such that

x1-x, kn,

where k an integer, then f (x) is identically equal to zero.

* A function / (x) is said to be periodic if there exists a number T i6 0 such
that the identity /(x+T)-/(x) is fulfilled for all the permissible values of x.
The number T is then called a period of the function.



SOLUTIONS
AND ANSWERS

ALGEBRA

1. Arithmetic and Geometric Progressions

1. By the hypothesis, we have
b-a=c-b--d and c-a=2d.

Denote

and

Al _ 1 1

Y7+Ya Yb+YC

A2= 1 - 1

Ya+Yb 11+Ya .
Let us show that Al=A;. If d=0 then a=b=c and A1_=A2=0. Therefore
we suppose that d 0. Rationalizing the denominators we obtain

_rc-11a Yc2j`b-Yc-YaA1-
2d + d 2d

and

A2-11-b-Ya_
d 2d 2d

Thus, A1= A2 which completes the proof.

2. If the common difference d of the given progression is equal to zero the
validity of the formula is obvious. Therefore we suppose that d ;6 0.

Denote the left-hand side member of the desired equality by S. Rationalizing
the denominators we get

Ya2-Yat+ YTa-Ya2 ...+ 11'a-Yan-1
a2-a1 a3-a2 an-an-t

Since, by the hypothesis, a2-a1=a3-a2= ...=an-an_1=d we obviously
obtain

San- Ya1
d

Now we can write
S_ an-a1 _ (n-1)d n-l

Yars+Yat7d d(Yan+Ya1) a+Yan
which is what we set out to prove.

3. By the hypothesis we have

az-al=a3-a2=,.. =an-an-l=d.
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If d=0 then the desired equality is obvious. Assuming that d - 0 we can write

1 1 1 1 _
a1Q2

-+
a2a3

+ a3a4 + ... -I
an-1 an

1 1 1 1 1 1 1 1

a1 az
d } az a9 J d a3 as d - ... }-

(1//1 _\ 1 1/ 1 _1 1

\ an-2 an-1 d an-1 an

d_

which is what we set r(ut to prove.

1 1 an - al nn`I
d al an / = dalan alan .

4. At n=3 we have 1

-}-
1 = 2 . Whence,

I - I I _ 1

alai a2a3 a1a3 ala2 a1a3 alai a3a2
and consequently a3-a2=a2-a1. Therefore it is sufficient to show that

an-an-1 =a,-l-an-2
for any n>4. Let us write down, in succession, the equality given in the for-
mulation of the problem for the cases n-2, n-I and n:

I 1 _ n-3
1

a2a2
} a2a3 an-2 a1 an-2 ( )

1 1 1 _ n-2
-f- -+ - ... -{

a1 a2 aa3 an-2an-1 al an-1

1 I 1 n-1
aiaz +

a2a3
+ ...+an_1 an = alan

Subtracting termwise equality (2) from (3) and (1) from (2) we get

I _ 1 n-2) an-l -an
an-lan

alan=

alas-lan
and

(2)

(3)

1 1 =(n-2) an-2an-1
an-tan-1 alan-2 alan-lan-2

Reducing the fractions to a common denominator and cancelling we find

al-an-1=(n-2) (an-r-an),
a1-a8_1 =(n-2) (an-2-an-1).

Hence, an-l-an=an_2-an-1 which is the required result.
5. We shall use the method of induction, Note that the equality holds for

n=2 since a2-al=a3-a2 and, consequently, a1-2a2+a3=0. Suppose that
the desired formula is valid for a certain n or, in other words, for any arithme-
tic progression x1, x2, . xn+r the equality

x1-Cnx2+Cnx3 +... +(i) n-l Cn-lxn+(-1)n Cnxn+1 =° (1)

holds. Now passing to n+ l we use the identity
k k k-1

Cn = Cn-1 -(- Cn-1
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which results in

al -Cn+la2 + Cn+l as + ... + (-1)n Cn+1an+ 1 +

(-1)n+1 Cn+lan+2= [al-Cna2+ ... +(-1)n Cna,+1] -- [a2-Cna$+...+(-I)n-1Cn-tan+]. +(-1)n Cna,+2]
By the hypothesis, both expressions in square brackets are equal to zero

because they are of form (1). Therefore, the desired formula is valid for n+1
as well. Thus, the assertion is proved.

6. We carry out the proof by induction. For n=3 it readily follows that
a2-3 (al+d)2+3 (a1+2d)2-(a1+3d)2=0.

Suppose we have already established that for a certain n and any arithmetic
progression x1, x2, ..., xn+1 the identity

Xi-Cnx2 { ... (-I)nCnxn+1=0
holds. Then passing to n+ 1 as in the preceding problem we obtain

al - Cn+1 a2 + Cn+l as + + (- I )n Cn+l an+l +

+(-l)n+1Cn+lan+2=[ai-CnaZ+... I (-1)nCna,+1]-
- [a2 - Cn a2

-{- ... + (-1)n Cn an+2 J = 0,
and thus the required formula has been proved.

It should be noted that for an arithmetic progression al, a2, , an, an+1
the more general formula

ai-Cna2+Cna3-...+(-1)n-1C-1an+ (-1)°Cnan+1=0
holds where k> 1 is an integer.

7. By the well-known property of the terms of an arithmetic progression we
have

2 logm x =log, x+ logk x.

Whence we obtain (see (3), page 25)
2 1

logs m logs n + log., k

and, consequently,

_ logs m log' In
2 log, n+1og., k'

Using formula (2) given on page 24 we deduce
2 = log, m + logk m.

Let us rewrite this equality as
log, n2 =log, in + log, (nl ogr, rn\

Now, raising we obtain n2=mnlog"m or
1

n2=(kn)I09hM
which is what we set out to prove.

8. Let
al + a2 + . + an =C. (1)+an+kn
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Denote the common difference of the progression by d. We are only interested
in the case d ? 0 since for d=0 all terms of the progression are equal and the
equality (1) is automatically fulfilled. Using the formula for the sum of terms
of an arithmetic progression we get from (1) the equality

2
[a1+a1+d(n-1)]=k2 [ai+nd+al+(n-Fkn-I)d]c

from which, after cancelling 2 and rearranging the terms, we find

(2a1- 2alkc - d -[- cdk) + n (d - (.dk2 - 2cdk) = 0.

Since this equality holds for any n we conclude that

2a1-2a1kc-d+cdk=0
and

d-cdk2-2cdk=0.
Cancelling out d 7L- 0 in the second equality we obtain

1C=k(k+2)
The first equalitiy can be represented in the form

(2a1-d)(1-ck)=0.

(2)

By virtue of (2), the second factor is different from zero and hence d = 2a1.
Thus, if d 0 equality (I) can be valid for all n only in the case of the

progression

a, 3a, 5a, ... (a 9 0). (3)

Now it is easy to verify directly that progression (3) in fact satisfies the

condition of the problem. Thus, the sought-for progression is given by (3).
9. Let d be the common difference of the progression. We have

b2=X,2+(xl-[-d)2-F-...+[x,-[-(n-1) d]2=nxi+2x1d(l+2+. .. +(n-1)]-]-
z z z e_ 2 n(n-1)(2n--1) 2+d [1 2 ... { (n-1) ]-nxl { n(n-l)xld [ 6 d

and, besides

a=nx1+2 d.

Eliminating x1 from these equations, after some simple transformations we
obtain

d2 n (n2-1) = b2-a
12 n

Hence,

d= f 1/112 (nb2-a2)
02w-l)

x, is then defined in either case by the formula

x1=n l a-n(2 1)d

Thus, there are two progressions satisfying the conditions of the problem for
n2b2-a2 4 0.
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10. Let the sequence a1, a2, ..., an possess the property that
a2-a1=d, a3-az=2d, ..., an-ars-1=(n-l)d.

Adding together the equalities we find that
n(n-1)

2

Using this formula we get
, 2 .-1)nlSn=al+az--...+an=aln-- r l22 -t- 33+...-- (+ n

2 d.

In Problem 266 it is proved that
1.2 2.3 (n-1)n n(n2-I)2 }- 2 }- ... 2 = 6

Consequently,

91

S. = a1n n(n6 I)
d.

For the problem in question we have d=3, a1=1. Therefore,

an =1+
2

n(n-1) and Sn= 2 n(n2+1).

11. The nth row contains the numbers n, n+ 1, ..., 3n-3, 3n-2 (the
total of 2n- I numbers). The sum of these numbers is equal to

(n+3n-2)(2n-1)
2 = (2n -

I)-.

12. Let q be the common ratio of the progression. Then

am+n =a19m+n-1=A

am-n=atgm n-1=B.

Whence q2"
A=B and, hence, q= ?YB.

Now we have

(2j,,T)fl
am=am-nqn=B B

n-m -m 2
CA\-n 2n 2nan=am+nq-m= A B =A B

13. We have

stn-Sn = atgn+aign+l+ ... +a192n-1= gnSn
and, furthermore,

S3n-S2n =
a1gzn+ alg2n+ 1 + ... +alg3n-1= q'nSn.

It follows that
I _ Sn _ Stn-Sn
9n SaSn S3n-S2n

which is what we set out to prove.
14. We have

n(n-1) n-I n

ns=al a191 q 2 = a1q 2
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Noting that

and
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_Sn = a1 ± atq + ...-+-a19n-1-

a1
qn-I
q-1

ISn= 1 - 1 +... -} I - 1
q

-1 - I yrs.I
a, alq atgn-1 at 1 _1 atgn-1 q-1

we conclude that

q

n-I 2

Snrs =aign-1= (al_

q
2

and thus we obtain

Sn)2.
Sn

15. Denote the sought-for sum by S. Multiplying each item of this sum by
x and subtracting the resulting quantity from Sn we obtain

Sn-XSn=1+X+X,+...+Xn-(n+1)xn+1.

Applying the formula for the sum of a geometric progression to the one ente-
ring into the right-hand side for x ;6 1 we find

(I-x)Sn=11 ex 1-(n+1)xn+'.

Hence,
1-xn+1 (n+1)xn+1

Sn (I-X)2 I-x (x 1).

For x=1 we thus obtain

Sn(n+1)(n+2)
2

16. Let us denote the desired sum by Sn. Transforming the terms of the
sum by using the formula for the sum of terms of a geometric progression we
can write

1+ 10 = 1029-1

I+ 10+100=103-1

9

,1+l0+100+...+10-'= l On - I
9

Since we have 1 = 109 1 the addition of the right-hand sides of the latter
equalities yields

C n+1-
Sn= 9 (10 I IOL+ ...+ IOn-n)= 9 10 9 10-

n
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17. By adding together the elements of the columns we can represent the
required sum in the form

(x-}-X2+x3+... +Xn-2+-xn-1+xn)+

+ (X+X2+X3+ ... +xn-2+Xn-1)+
+(X-I-x2+X3+ . .. +Xn-2)+

+(x+x2)+
+X.

Now summing the terms in the brackets we find that for x I the sought-for
sum is equal to

xxn- I
+

xxn-r-1 +rxn_z-
I +-.-+x x2-l x-1

x-I x-1 x-1 x-l+xx-1n- 2( n- )= x [x+x2+...+xn-n] = x xx I-n x x I nx
-x- 1 x- 1 x-1 (x- 1)2 -1

For x= I this sum is equal to n (n2 1) as the sum of terms of an arithmetic

progression.

18. Let Sn denote the required sum. Then

2Sn=l-+ -
3+5+ 3+...+2_11=I+(2+

2 2 2 2n 2 2 2 2

1

2 5 1 / 2 2n-3 2n-1 2n-1+(2323)+... -I' 12-_1 213_1) - 1-{ _+ Sn -_
1

w hence

2n- 2

Sn=3-2n+3
2

19. The general form of these numbers is
n n-1 n n

44...4 88...89 = 4.11... I . I On + 8.11... I - 1.

n

The number 11...1 can be written in the form of the sum of the terms of a
geometric progression with the common ratio 10

n

I 1 . I= I+ 10+ 102+...+10n-I- lO 9

9

Thus we have

/ \2
4 (10n-1) ion+ 8 (IOn-1)+I= 4 102n+ 4 lOn } 11 =`(\2 ]On +1/1{

20. By the hypothesis, we have I q [ < I and, consequently,

qn=k(qn+l+qn{2-}-...)-kqn+r
1

I - q (1)
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Hence, l-q=kq and thus, if the problem has a solution, we have
Iq= k+1 (2)

It is, however, easily seen that if, conversely, equality (2) implies that I q I < 1,
then the equality (2) implies equality (1), and the corresponding progression
satisfies the condition of the problem. Thus, the problem is solvable for any k
satisfying the inequality k+ I I < 1. The latter holds for k > 0 and k <-2.

21. The proof is carried out by complete induction. Let us first consider a
sequence of three terms x1, x2, xs. Opening brackets in the formula

(x1-}- x2) (xe +xs) _ (xlxz +xaxz )2,
we find that

a z z zx2'I" X1 X3 - 2x1X2x3 = 0,

whence (x2-x1x3)2=0, and, consequently, x1x3=x2. If xl 0 this implies that
the numbers x1, x2, x3 form a geometric progression. Now assume that the sug-
gested assertion is proved for a sequence consisting of k(k>3) terms

X1, X2, .... Xk. (1)

Let q be the common ratio of the progression. Consider a sequence of k+ 1
terms

X1, X2, ..., Xk, Xk+1 (2)

Let us write down the corresponding condition

(xi x2+ ... { xk_1 } zk) (x2-+3 I ... } x } xk+il =
= (x1x2 + x2x3 + ... + xk -1xk + xkxk +1)2 (3)

and put, for brevity, X2+x2+ xk-1=az. Note that a 0 since x1 0.
By the induction hypothesis we have

xz=qx,; x3=qx2; . ; xk=qxk-1 (4)

Therefore equality (3) can be rewritten as

(a2 + xk) (g2a2 + xk+1) _ (qa2 + xkxk+l)2.
Opening the brackets and grouping the terms we see that

(xkq-xk+1)2a2 =0.
Since a A 0, then alongside with (4) we get xk+l=qxk. Hence, the sequence
x1, x2, ..., xk, x1,+1 is a geometric progression with the same common ratio

x2
9 = X1

It follows that a sequence composed of first n terms of the given sequence
is a geometric progression for any natural n. Therefore, the given infinite sequ-
ence is also a geometric progression which is what we set out to prove.

22. Let a1=b1=a. Then, by virtue of the condition a2=b2, we have
a+d=aq, (1)

where d and q are the common difference and ratio of the corresponding prog-
ressions. Note that the condition a > 0 for all n implies that the difference d
must be non-negative. Since, in addition, a1 a2 we conclude that d > 0.

Therefore, formula (1) implies

q=1-I-a > 1.
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Now we have to prove that
a+(n-1)d < aqn-' (2)

for n > 2. Since, by equality (1), d=a(q-1), relation (2) is equivalent to the
inequality

a(n-l)(q-1) < a(qn-1-1).

Dividing both sides by the positive quantity a (q- 1) we obtain
n-I < I+q+...+gn-2.

Since q > 1, this inequality holds true. The problem has thus been solved.

23. By the hypothesis, we have

a1>0, a-=q>0
and b2-b, =d>0,

i
where q is the common ratio of the geometric progression and d the difference
of the arithmetic progression. Taking advantage of the fact that an=a,qn-1
and bn=b1+(n-1) we obtain

logo an-bn=(n-l) (log, q-d)+log,, a1-b1.
For the difference on the left-hand side to be independent of n it is necessary

and sufficient that log,, q-d=O. Solving this equation we find

a=qd. (I)

Consequently, the number a exists and is defined dy formula (I).

2. Algebraic Equations and Systems of Equations
24. Rewrite the system in the form

(x+y)(x2-xy+y2)=l, 1 (1)

y(x+y)2=2, f (2)

and divide the first equation by the second. Discarding the denominator and
then collecting similar terms we obtain

y2-3xy+2x2=0. (3)

Solving quadratic equation (3) in y we get the two roots y=x and y=2x and
thus obtain two new equations. Solving then each of these equations simulta-
neously with equation (2) we find real solutions of the corresponding systems.
There are only two solutions:

x1= ,V y'=2V 4
and

x2 = 3 V3, y2=3 V3.
Each of these pairs of numbers satisfies the original system as well. This

can be verified either by the direct substitution or by analyzing the method by
which the solutions were found.

25. Let us transform the equations of the system to the form
(x+y)2-xy=4,
(x-{-y)+xy=2.

Whence we obtain
(x+y)2+(x+y)=6
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and, hence, either x+y=2 or x+y=-3. Combining either of the latter equa-
tions with the second equation of the original system we arrive at the follow-
ing two systems of equations-

x+y- 2, x+y=-3.
xy_p } {1) xy=5 {2)

System (1) has two solutions

and

xi = 2, yt =0

x2 = 0, yz = 2.
System (2) also has two solutions

3 11 3 i Y11x3=-2+i 1
2 , y3=- 2 2

and

3 111 3 11lx4=-2-i
2 , Y4- 2+i 2

.

It is obvious that each solution of the original system belongs to the set of
solutions of the above system. A simple argument shows that the converse is
also true. By the way, it is still easier to verify it by, a direct substitution.
Thus, the problem has four solutions.

26. Transform the equations of the system to the form

(x+y) [(x+ y)2-3xyl =5a3,
xy(x+y)=a3,

and then put x+y=u and xy=v. Substituting xy(x+y)=a3 into the first
equation we find u3=8a3. Since we are only interested in real solutions, we
have u=2a. From the second equation we now find

a3 Iv=u=2 a2.

Thus, we have arrived at the following system of equations in x annt y:

x+y=2a, xy= 2 a2.

Solving this system we get

and

xi =a 2+12
, yi =a

2-12
2

2

xz=a2-2 12, y2=a2+2
Y2.

These numbers also satisfy the original system and consequently the latter
has two real solutions.

27. Reducing the equations to a common denominator we then transform the
system to the form

(x+y) [(x+y)2-3xy1=12xy,
3 (x+y)=xy

Putting x+y=u, xy=v and substituting xy=v=3(x+y)=3u into the first
equation we see that

u (u2-9u)=36u. (1)
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Note that u # 0 (if otherwise, the second equation would imply xy=0
which contradicts the original equation). Therefore, it follows from equation
(1) that either u= 12 or u=-3.

In the first case (u = 12) we get the system

x--y=12,
xy = 36,

whence x=y=6.
In the second case (u=-3) we have

x+y=-3,
xy=-9.

This system has two solutions

x=2 (+ Y5-I), y= 2 (+ Y5-I)
The three solutions thus found satisfy the original system as well. Thus, the

system has three solutions.
28. Squaring the second equation and subtracting it from the first equation

we obtain
xy (x2+y'2-xy)=21. (1)

Whence, by virtue of the second equation of the system, we derive xy=3.
Substituting y into the second equation of the system, we arrive at the

biquadratic equation

x4-10x2+9=0.
It follows that xi =3, x2=-3, x3=1, x4=-l and therefore the corresponding
values of y are yl=1, Y2=-11 y3=3, y4=-3. A direct verification shows
that all the four pairs of numbers are solutions of the original system. Conse-
quently, the system has four solutions:

xt =3, yj = l; x2 = -3, y2 = -l;
x3=1, y3=3; x4=-1, y4=-3.

29. Transform the system to the form
(x- y)(x2 + y2 + xy - 19) = 0,

(x+y) (x2+y2-xy-7)=0.
The original system is thus reduced to the following four systems of equa.

tions:
x-y=0, x-y O,

x+ y =0,
} IO x2+ y2-xy-7=0, I 2( )

x2+y2+xy-190, x2+y2-f-xy-19=0,
x-y=0, (3) x2+y2-xy-7=0. } (4)

The first system has a single solution x=0, y=0. The second one has two
solutions x=± ]/'7, y=+ y7. The third system also has two solutions

x=+ V T9, y= T 3119. Now taking the fourth system we note that the addi-
tion and subtraction of both equations leads to the equivalent system

xy=6,
x2 + y2 = 13.

This system has four solutions:
x=±2, y= f3 and x= f3, y= ±2.

4-323
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Thus, the system under consideration has nine solutions:

(0, 0), (Y7, (Y19. - Y19), (- Y19, f9),
(2, 3), (-2, -3), (3, 2), (-3, -2).

30. Transforming the system to the form

2(x+y)=5xy,
8(x+ y) [(x+y)2-3xyl =65,

substituting x+y found from the first equation into the second one and put-
ting xy=v we get

250-12V2_13=0.

This equation is obviously satisfied by v= 1. Dividing the left-hand side by
v-1 we arrive at the equation

25v2+13v+13=0.
The latter equation has no real roots. Thus, there is only one possibility: v=1.
Substituting this value into the first equation we obtain the system

xy=1,
5x+y=
2

Hence, xa = 2, y, = 2 and x2 =

2

, y2 = 2.

Both pairs of numbers also satisfy the original equation. Thus, the system
has two and only two real solutions.

31. Adding together the equations and then subtracting the second equation
from the first one we get the equivalent system

(x-y)(x2+y2+xy)=7,
(1)(x-y)xy=2. j

Representing the first equation in the form

(x- y)3+3xy (x-y)=7,
we see that, by virtue of the second equation, (x-y)3=1.

Since we are only interested in real solutions we have x-y=1. Taking this
into account we easily deduce xy = 2.

Solving then the system
xy = 2,

x-y= I,
we find its two solutions

xd = 2, yi = 1; X2=-" Y2 = -2.

It can be readily verified that both pairs of numbers satisfy the original
system. Thus, the system has two real solutions.

32. Transforming the second equation to the form
(x2 + y2)2- 2x2y2 = 7

and putting x2+y2=u, xy=v we rewrite this equation as
u2 - 2v2 = 7.

Squaring the first equation of the system we get another relationship between

u and v:
u+2v=1.
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Eliminating u from the last two equations we obtain
v2-2v-3=0,

whence
t'1=3,

Then the corresponding values of u are
u1 =-5 and u2=3.

Since u=x2+y2 and we are only interested in real solutions of the original
equation, the first pair of the values of u and v should be discarded. The second
pair leads to the system

x2 + y2 = 3,

xy=-1.
This system has four real solutions

(1+Y5 1-j1 i - jf
'

I+If5
2 2 I' (t

2 2

(-I 2 ,

-1 -j151 \-1 2Y5 -1 2Y5
2

It is easy, however, to ver`,ify that the original system is satisfied only by
the first two of them. Thus, tale problem has two real solutions.

33. Raising the first equation to the fifth power and subtracting the second
equation from the result we get, after some simplifications, the equation

xy (x3 + y3) + 2x2y2 + 6 = 0. (1)
From the first equation after it has been cubed it follows that x3+y3= 1-3xy
which makes it possible to transform equation (1) to the form

x2y2-xy-6=0.
Solving the latter equation we obtain

(xy)i =3, (xy)2=-2.
Combining these relations with x+y=1 we find the four pairs of numbers

(2, -1); (-1, 2); (1+i yll , 1-i jrll }
and

(I__iJITT
\ 1 2

1+i rl1 1
2 /

It can be easily checked that they all satisfy the original system of equations.
34. Transform the equations of the given system to the form

(x2-y2)2+x2y2= 13, It
x2-y2+2xy= 1.

Substituting x2-y2 found from the second equation into the first one we get
5 (xy)2 - 4xy - 12 = 0.

It follows that
6

(xy)1=2, (xy)2=- 5
(I)

Since we are only interested in the solutions for which xy : 0, there is only
one possibility, namely

xy=2.

4*
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Substituting y expressed from the latter relation into the second equation we
get

x4+3x2-4=0.
Among all the roots of this equation there are only two real roots x, = I and
x2=-1. By virtue of (2), the corresponding values of y are y, =2 and y2=-2.
Both pairs of the numbers (x, y) satisfy the original system as well. Thus, the
problem has two solutions

x1=1, y1=2 and x2=-1 Y22.
35. Opening the brackets in the equations of the system and putting x+y=u,

xy=v we rewrite the system in the form
u2+v2-2v=9,

UV-U=3. (1)

If now both sides of the second equation are multiplied by 2 and then the cor-

responding sides of the first equation are added to and subtracted from the
obtained result, then system (1) is replaced by the equivalent system

(u+v)"-2 (u+v)= 15,
(u-v)2+2(u-v)=3. } (2)

From the first equation of system (2) we find
(u-l-v)1=5; (u+v)2=- 3.

From the second equation we get
(u-v)1=-3; (u-v)?=1.

Thus, the determination of all solutions of system (2) is reduced to solving the
following four systems:

U v=5,
} (3)

U +v=
5

±
(4))u_u=-3, u v= 1,

u+v=-3, } (5) u+v=-3, (6)

u-v=-3, u-v=1.
The solutions of systems (3), (4), (5) and (6) are, respectively,

u1=1, v,=4;
u2 = 3, v2 = 2;

u3=-3, vs=0;
and

U4=- 1, v4=-2.
To find all the solutions of the original system we now have to solve the fol-
lowing four systems of two equations which only differ in their right-hand sides:

x+y=1, (7) x+y=3, }
(8)xy=4, r xy=2,

x+y3, }
(9)

x+y=- 1, l (10)
xy=0, xy2. j

Solving these equations we find all the solutions of the original system. We
obviously obtain eight solutions:

(I +i
215

2i
Jf 1-5

(2 2 -i 215),

(2, 1), (1, 2), (-3, 0), (0,\-3), (1, -2), (-2, 1).
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36. Note first that according to the meaning of the problem we have x v 0
and y 0 0. Multiplying the left-hand and right-hand sides of the equations we
obtain

x4-y4=6. (t)
Multiplying either equations by xy and adding them together we obtain

x4 - y4 + 2x2y2 = 7xy. (2)

By (1) and (2), we now can write
2x2y2-7xy+ 6= 0,

whence

(xy)r = 2; (xy)a = 1 (3)

Thus, every solution of the original system satisfies equation (1) and one of
the equations (3). We can therefore combine each of the equations (3) with
equation (1) and solve the corresponding systems. But this leads to an equation
of eighth degree and complicates the solution of th_ problem. Therefore we
shall apply another technique. Note that if either equation of the original
system is again multiplied by xy and then the second equation is subtracted
from the first one this results in the equation

x4+ y4 = 5xy, (4)
which is also satisfied by every solution of the original system.

Let us consider the two possibilities:
(1) Let

xy = 2 (5)

in accordance with (3). Then, by (4), we have x4+y4=10. Combining this
equation with (1) and solving the resulting system we find

x4 = 8,
and, hence,

4 4 -xi = 1/8, X2=- V8, xa = i 8,, x4 = - i / 8.
By virtue of (5), the corresponding values of y are

,2, ya = - 2,yi =
8

(2) In the second case we have

3xy= 2.

ya = - i V2, y4 = i V2.

Equation (4) then results in the relation x4+y4= 12. Combining it with

we obtain x4 = 4 7 . I t follows that

(6)

(1)

4 27 4 27 _ 4 27 4427X5= 4, x6=- V 4, X7_i
Y 4' xe - Y 4

and the corresponding values of y are

3 T 3Y5Y 4 , ye V 4 ' Y7=-i VT , Y 844
Thus, every solution of the original system belongs to the set of the eight pairs
of numbers thus found. It is, however, readily seen that all the eight pairs of



102 PROBLEMS IN ELEMENTARY MATHEMATICS

numbers satisfy the original system. Consequently, all the solutions of the system
have been found.

37. Let us rewrite the second equation in the form

(x2 + y2)z - 2x2y2 = bx2 y2.

Substituting the expression x2+y2=axy found from the first equation we obtain
(az-2-b) x2y2=0.

There are two possible cases here:
(1) az-2-b 0. It is easily seen that in this case the system has only one

solution x=0, y-0.
(2) a2-2-b=0. If this condition is satisfied, the second equation is obtai-

ned by squaring both sides of the first equation. Therefore, if any x and y form
a pair of numbers satisfying the first equation, the same pair satisfies the second
equation as well. Consequently, the system has an infinitude of solutions.

38. Let us transform the left-hand side to the form
x+a x+a a x-a x-a x-a b x+a _
x+b x+b b x-b) +x-b x-b a x+b) -0'

Noting that the expressions in the brackets differ by the factor- b we obtain
x+a a x-a x+a b x-a

(x+b b x-b) x+b a x-b) -0'
For a b the latter equality implies

[x2-(a+b) x-abl [x2+(a+b) x-ab] =0,
and thus we find the four roots of the original equation:

(a+b) f (a+b)z+4ab
2

X3= -(a+ b) f }/- a+b)z+4ab
4 2

If a=b the equation is satisfied by any x.
39. Putting 3 -

4 =t we transform the equation to the form

3t2-101+8=0.
Whence we obtain

t1 =2 and tz=
4
3'

Solving then the two quadratic equations for x we find the four roots of the
original equation:

xt=3+Y21, xz=3-j21, x3=6, xa=-2.
40. Let us put

x+y=u
and x-y-v

xy xy

Then the equations of the system can be written as

ui. 1 = 1

U
a+a

(1)
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Solving either equation we find

u1=a, u,= 1a (2)

and

vl=b, v2= (3)

Now we have to solve the four systems of form (1) whose right-hand sides con-
tain all the possible combinations of the values of u and v determined by for-
mulas (2) and (3). Write system (1) in the form

t 1 _
Y +x`u'
I I-=v.
y - x j

(4)

This yields

x 2 (u-v),
(5)

y=2 (u+v).

It follows from formula (5) that for system (4), and, hence, for the original
system to be solvable, the numbers a and b must satisfy, besides ab 0, some
additional conditions implied by the form of the equations of the original system.
Let

lal ? Ibl. (6)

Then, substituting the values u=a, v=b and then u= T' v= into the

right-hand sides of formulas (5) we find two solutions, namely
_ 2 2

and z - 2ab tab
xl yl=a+6+b 2-ba' Y2=a+b

Furthermore, let
(7)

Then substituting the values u=a, v= b and then u= a , v=b into the right-
hand sides of formulas (5) we find two more solutions:

2b 2b 2a 2ax, ab1, ys=ab-I-1 and xg=1-ab' ya°I -{- ab

Thus, if both conditions (6) and (7) are fulfilled the system has four solutions;
if one of the conditions is violated then the system has only two solutions and,
finally, if both conditions are violated (which may happen only in the case
a I = I b I =1) then the system has no solutions at all.

41. As is easily seen, the numbers
x1=4.5 and x2=5.5

satisfy the equation. Therefore, the polynomial (x-4.5)4-}-(x-5.5)4-I is divi-
sible by the product (x-4.5) (x-5.5). To perform the division and reduce the
problem to a quadratic equation it is convenient to represent the above poly-
nomial in the form

[(x-4.5)4- l I+(x-5.5)4.
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Factoring the expression in the square brackets by the formula
a4-1=(ce-1)(a+1)( 2 } 1) {a-I)(a3 a2 [ a } I),

we come to the equation

(x-5.5) {(x-4.5)3+(x-4.5)2+(x--X4.5)+1}+ (x-5.5)4=0.
Now taking the common factor outside the brackets we obtain

(x-5.5) {(x-4.5)3+(x-4.5)2+(x-4.5)+1+ [(x-4.5)-1)3}=

Hence, we have
=(x-5.5)(x-4.5) {2 (x-4.5)2-2 (x-4.5)+4}=0.

10 f
1

117
x1= 5.5, x2 = 4.5, x3.4 =

2

42. From the second equation of the system we conclude that y-5=1 x-10,
and, consequently, y> 5. Therefore the first equation can be rewritten in the
form

y-5=1-I x-11.
Adding this equation to the second one we get

2 (y-5) = 1,

Whence we find
I1

y=

From the second equation we now obtain 1 x-1 I= _ and, hence, x-1=
2

Therefore x1= 2 and x2= 2 The system thus has two solutions

x1= 2 , y1 2 and x2 = 2

43. Grouping the terms we reduce the left-hand side to the form
(2x+y-I)2+(x+2y+ 1)2=0.

Thus we obtain
2x+y-1=0, x+2y+1=0,

whence it follows that
x=1, y=- 1.

Let us demonstrate another method of solution. Arranging the summands in
the left-hand side in the ascending powers of x we get the following quadratic
equation in x:

5x2+(8y-2) x+(5y2+2y+2)=0. (1)
For real values of y this equation has real roots if and only if its discriminant
is non-negative, i. e.

(8y-2)2-4.5 (5y2+2y+2) :0. (2)

Removing the brackets we transform this inequality to the form
-36 (y + l )2 0.

The latter is fulfilled only for y=-1, and then equation (1) implies that x= 1.
44. We transform the equation to the form

[x+2 cos (xy)12+4 [1-cost (xy)]=0.
Both summands being non-negative, we have

x+ 2 .cos (xy) = 0, cost (xy) =1.
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It follows that cos (xy) _ ± I. In the case of the plus sign we have the system
cos (xy) = 1, x+ 2 cos (xy) = 0.

Whence we find x=-2 and y=kn where k=0, +1, ±2, ... .
In the case of the minus sign we have

cos (xy)=-1, x+2cos(xy)=0.

This implies x=2 and y=2 (2m+1) where m=0, +1, +2, ... . Thus, the

equation has two infinite sequences of different real solutions, the value of x in
either sequence being the same.

45. Eliminating z from the system we obtain
2xy-(2-x-y)2=4

or

i. e.
x2- 4x+ 4+y2-4y + 4 = 0,

(x-2)2+(y-2)2=0.
For real numbers x and y the latter equality holds only for x=2 and y=2.

From the first equation of the system we find z=-2. The system thus has
only one real solution:

x=2, y=2, z=-2,
46. First method. Note that from the given x and y the value of z is uni-

quely determined by the first equation in the form

z = x2 + y2 (I)
Substituting this value of z into the second equation we get

x2+x+y2-t-y=a.
The latter equation is equivalent to the equation

1 2 1 2 1

x+ 2 + y) 2 = a+ 2 (2)

If now a+ -T < 0, then equation (2) has no real solutions because real x and y

result in a non-negative number on the left-hand side. But if a+-,- > 0, equa-
tion (2) and, consequently, the whole system, has obviously more than one
solution.

Consequently, a unique real solution exists only if a-{ 2 =0. In this case

equation (2) takes the form
1 z

x+ 2) +(y+
2)z=0

and has the only real solution x=-2 y=- Finding then z from equa-

tion (1) we conclude that the given system has a unique real solution only for

a=-
2

, namely:

1 1 1x=-2, y=-2, z=2.
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Second method. It is easily seen that if the given system has a solution
x = xo, y = yo, z = zo, then it also has another solution x= yo, y = xo, z = zo.
Therefore, for the solution to be unique it is necessary that x= y. Under this
condition the system takes the form

2x2 = z,

2x+z = a.
Eliminating z we obtain the quadratic equation for x:

2x2+2x-a=0.
For this equation also to have a unique real root it is necessary and suf-

ficient that the discriminant of the equation be equal to zero:
D=22-4X2(-a)=4(l+2a)=0.

Hence a= -2 , and the corresponding value of x is equal to 2 . Thus, we
arrive at the former result.

47. Let xo, yo be a solution of the system. By virtue of the first equation
we have

[(xo f yo) - a]2 =xoyo + 21 2 + 2, (1)
xoyo

and, according to the second equation,

22 +2 } V.(Xo2+Y2)2=xoyo-- (2)
X
xoyo

Removing the square brackets on the left-hand side of equality (l) and sub-
tracting equality (2) from it we get

-2a (xo + yo) + a2 = -b2.
Hence, we obtain

2

xo F yo a=
2ab2

Since a and b are real, the assertion has been proved.

48. It is readily seen that the system always has the solution

x=1, y=l, z=1.
It is also obvious that in the case

a=b=c

(1)

(2)

all the three equations take the form x+y+z=3, and the system has an infi-
nitude of solutions.

Let us show that if condition (2) is not fulfilled, i. e. if among a, b, c there
are unequal numbers, then solution (1) is unique.

First adding together all the three equations of the given system we obtain

(a+b+c) (x+y-;-z) =3 (ad-b+c).
Cancelling out a+b-Fc we recieve

x+y+z=3. (3)

Whence, we find z= 3 - x - y. Substituting this expression into the first two

equations of the system we obtain
(a-c)x-f (b-c) y=a-I-b-2c,

(4)(b-a)x+(c-a) y=-2a+b+c. }
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Multiplying the first of these equations by c-a, the second by c-b and adding
them together we get
[- (a-c)2+(b-a) (c-b)l x=(a-I-b-2c) (c-a) +(c-b) (-2a+b+c). (5)

Equation (5) being satisfied by x= 1, the coefficient in x must identically coin-
cide with the right-hand side of the equation for all a, b and c. Opening the
brackets in both expressions we see that they actually coincide and are equal:

-2 [2a2-4ac+2c2-2bc+2b2+2ac-2abJ=-
2

[(a-c)2+(b-c)2+(a-b)21.
Thus, if there are unequal numbers among a, b and c, the equation (5) is satis-
fied only by x= l . From equations (4) it then readily follows that y = 1, and
from relation (3) we see that z=1. Thus, if the condition

(a-c)2+(b-c)2+(a-b)2 0,

holds, the system has the unique solution
x=1, y=1, z=1.

49. Adding together all the equations we get
(a+2) (x+y+z)= 1 +a+a2. (1)

If a # -2, we have

x_L -[- z=y a+2
Combining this equation with each equation of the original system and solving
the systems thus obtained we find, for a ;6 1, the values

l -1- a I (a -[- 1)2X=
-a+2+2, y=a+2 , z= a+2 .

For a=-2 the system is inconsistent because equality (1) is not fulfilled for
any x, y and z. For a=1 the system is indefinite and any three numbers satis-
fying the condition x+y+z=l form its solution.

50. It is easily seen that if among the numbers a1, a2, a3 two numbers are
equal to zero, the system has an infinite number of solutions. Indeed, let, for
instance, a2=0 and a3=0. Putting then x=0 and choosing y and z so that
the equation y+z=1 is satisfied we thus satisfy all the three equations of the
system.

Therefore, when establishing the condition for uniqueness we may suppose
that at least two numbers are different from zero. Let, for example,

a2 ?6 0 and a3 ?: 0. (1)

Subtracting the first equation from the second and the second equation from
the third one we find a1x=a2y=a3z. It follows, by virtue of (1), that

x, z=al X.
at a3

Substituting these expressions into the first equation we get

(2)

x(1+al+al+al I =1.
\\ az a3

(3)

1 +a +a2

This equation is solvable only if the expression in the brackets is different
from zero.

Taking into account (1) we arrive at the condition

D = a1a2+ a2a3+ ala3+ ala2a3 94- 0. (4)
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If this condition is fulfilled, we find from (3) and (2) the values

D
3, y=aa®3

a1 2x=aa2
D

(5)

These three numbers yield a solution of the system, and this solution is unique
according to the method by which it is obtained.

Thus, (4) is a necessary condition for the system to be solvable and have
a unique solution.

It can be readily veryfied that if we assumed another pair of numbers a1,
a3, or al, a2 to be different from zero, an analogous argument would again lead
us to condition (4) and to the same solution (5). Furthermore, since from con-
dition (4) it follows that at least one of the three pairs of the numbers is non-
zero, the above condition is not only necessary but also sufficient.

51. Let us multiply the equations by a, -b, -c and -d, respectively, and
then add them together. We get (a2+b2+c2+d2)x=ap-bq--cr-ds which
implies

ap-bq-cr-dsx- a2+b2+c2+d2

Analogously, we find
bp+aq-dr +cs cp+dq+ar-bs

= a2+ b2+c2+d2 , Z- a2+b2+C3+d2

dp-cq+br+as
a2+b2+c2-f-d2

52. Adding together all equations of the system we find

... 2
(al+a2+... +a.)xl I x2 I +X.=

(l)
n (n+ 1)

Let us denote the right-hand side of this equation by A. Now subtracting the
second equation from the first one we get

By virtue of (1), we can write
A-(a1-a2)xl = n

Generally, xk(l<k<n-1) is obtained by subtracting the (k+l) th equation
from the kth equation. Similarly, we obtain

A-(ak-ak+r)
xk = n

Finally, subtracting the first equation from the last one we get

A-(an-a1)xn = n

The values thus found can be expressed by the general formula

A-(ai-ai+1) (1<n),x;
n

(2)

where is understood as being equal to a1. The direct substitution shows
that the set of numbers (2) in fact satisfies all the equations of the system.
Thus, the given system has a unique solution.
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53. Adding up all the equalities and dividing the result by 3 we obtain
X1+X2+X3-}-...+ xI00=0 (1)

The felt-hand side of the new equality contains a hundred of summands, and
it can be represented in the form

(X1+X2+X3)+(X4+X6+X6)±...-} (Xe7+X98+X99)+X100=0.

But each of the sums in the brackets is equal to zero by virtue of the original
equalities. Therefore, x100=0. Similarly, transposing x100 to the first place and
representing equality (1) in the form

(X100+X1+X2)+(X3+X4+x6) r +(x96+X97+X98)+X99=0
ue find that x99=0. Transferring then x99 to the first placa and regrouping the
:cmmands in triads we conclude that x98=0 an.] so on. Thus,

which is what we set out to prove.
54. Adding together the equalities we get

(x+y+z)2-(x+y+z)- l2 =0. (1)

Putting x+y+z=t we find from equation (1) that
t1=-3, t2= 4 (2)

Substituting the sum y+z=t-x into the first equation of the original
system we get

whence we obtain
x2+x (t-x)-x=2,

x=1211 (3)

Analogously, substituting x+z=t-y into the second equation and x+y =
= t-z into the third equation we receive

(4)

and

6Z=-[-I a (5)

Substituting the two values of t [see (2)] into formulas (3), (4) and (5) we find
the two solutions of the original system:

2 C3' 3' 2
55. We rewrite the system in the form

x+y=7z,
x2+y2 =

37---[-

z2, (1)
x3+y3=1+z3

Squaring the first equation and eliminating x2+y2 by means of the second
equation we find

which implies
(7 + z)2 = 37 + z2 + 2xy,

xy=6-]-7z
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Further, we obtain
(7 ± x)3 = x3 + y3 + 3xy (x + y),

that is
x3+y3=(7+z)3-3 (6+7z) (7+z)=z3- 18z +217. (2)

Comparing (2) with the last equation of system (1) we find that z = 12. But
then we have

x±y= 19,
xy=90.

Solving this system of two equations we receive
x1=9, y1=10, Z,=-12, and x2=10, Y2=91 Z2=12.

It is readily verified by substitution that these two sets of numbers satisfy
the original system as well. Thus, the original system has two solutio-is.

56. Dividing the first equation by the second one and by the third we obtain

y+z 5 z+x 4

x+y = 3 ' x+y- 3
Multiplying both equations by x+y we find

5x+2y-3z-0,
x+4y-3z=0.}

These equations imply that y=2x and z=3x. Substituting the latter expressions
into the first equation of the original system we see that x2=I. Finally, we get

xj=l, yi=2, za=3 and xz=-1, y2=-2, z2=-3.
The direct verification shows that both solutions satisfy the original system as well.

57. Noting that the difference of every two equations of the system can be
factorized, we form the differences between the first and second equations and
between the first and third ones. Combining (<ie two equations thus obtained
with the third equation of the original system w, arrive at the following system.-

(U-W) (u±w-1)=0, '
}(v-w) (v+w-1)=O

'w2+u2+v=2.
(1)

It is obvious that any solution of the original system satisfies system (I).
Since, conversely all equations of the original system can be obtained by
addition and subtraction of the equations of system (1), any solution of system
(1) is a solution of the original system, and, hence, these two systems are equivalent.

System (1) can be decomposed into the following four systems:

u-W=0,
v-w=0, (2)

u-w=0'
o+tv-1 = 0, (3)

cw2+u2+v=2, w2+u2+v=2,
u+w-l =0, ,u+w-1=0

v-w=0, (4) 1=0,V-4-w- (5))
w2+u2+v=2, w2+u2+v=2,

It apparently follows that all the solutions of the above four systems and
only they are the solutions of the original system. Each of the four systems is
readily reduced to a quadratic equation and has two solutions. Below, omitting
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the calculations, we give the corresponding solutions (u, v, w). The solutions
of system (2):

(-1-{ 17 -l+Y177 -I+V
4 4 4

C-1-Vi7 -1-if 7 -1-y 17
4 4 4

The solutions of system (3):

(1, 0, 1). 1' 2'-2
The solutions of system (4):

(0, 1, 1);

The solutions of system (5):

(1,, 1, 0);

C 2 , __2_T'

1 1 3_2' _2'
2

Thus the original system has the total of eight solutions.

58. Subtracting the first equation from the second we get z2-y2+x(z-y)=3
whence we find (z-y)(x+y+z)=3. Subtracting the second equation from the
third we similarly find

(y-x) (x+y+z)=3.
From the two latter equations it follows that

z-y=y-x. (I)
Now we rewrite the original system in the form

(x- y)2 =1-3xy,
(x-z)2 = 4-3xz, (2)

(y-z)2=7-3yz.

From (1) we conclude that the right-hand sides of the first and third equations
of system (2) are equal, i. e. I-3xy=7-3yz, whence it follows that

2z-x=-. (3)

y

According to (1) we have
z+x=2y, (4)

and therefore, solving (3) and (4) as simultaneous equations we find

x=y- I '
z=y+y .

Substituting the expression of x thus obtained into the first equation of the ori-

ginal system we obtain
3y4-4y2+ 1 =0,

which implies

YI,2=+11 Y3,4=+
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As a result, we find the following four sets of numbers:

(0, 1, 2), (0, -1, -2)1
2 1 4

Y3 , Y3 ' Y3
2 1 4

C Y3' Y3' Y3
The corresponding verification shows that they all satisfy the original system.

59. Multiplying the left-hand and right-hand sides of the equations we get
(xlx2...xn)n-2 = ala2...a.,

whence
11-2

x1x2 ... X, = ar a2 ... a,.

Let us rewrite the kth equation of the system in the form
2akxk = xrx2.. xn.

It follows, by virtue of (1), that

n-2
xk

ala2...a. (k = 1, 2, .. , n).

al?

(1)

The substitution into the original system indicates that this set of numbers sa-
tisfies it. Thus, the problem has a unique solution.

60. First note that for a= 1 the system takes the form

(x+ y+z)2 = k2,
(x+y+z)2 = 12,
(7t+y-i- z)2 = m2.

The latter system is solvable only if the additional condition
k2=12=m2 (1)

holds. In this case we obviously obtain an infinite number of solutions. In what
follows we may thus suppose that

1.

Adding together all equations of the system and putting, for brevity,
x+Y+Z=t

we get

(2)

V (a+ 2)=0+12+M2.

By the hypothesis, the right-hand side is positive and therefore for a=-2 the
system has no solutions at all. For

a #-2 (3)

we find

k2 + 12 -+- m2t = 4j- 2± afi
- ( )
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Now, transforming the equations of the system to the form

t2+t (a-1)x=k2,
t' +t (a- 1)y=12

t2+t (a-1)z=m2,
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and solving them we determine, according to (4), two sets of values of x and y:

a+2 k2(a+l)-12-m2x_
- k2+12+m2 (a+2) (a-1)

y- a-{-2 12 (a+1)-k2-m2
k2+12-+2 (a+2) (a-1)

-h
a+2 rn2(a+1)-k2-12

k2 f-12+m2 (a+2) (a-1)
Finally, we check by substitution that both triplets of numbers satisfy the ori-
ginal system. Thus, in the general case when a - 1 and a -2 the system has
two different solutions.

61. Squaring the first equation and subtracting the second equation from the
resulting relation we find

xy+yz+zx=11.
The third equation then implies that

(xy)2 + 3xy-10=0-
Solving this equation we get

(xy)1=2, (xy)2=-5.
Now there can be two possibilities here:

(1) Let

(1)

(2)

xy=2 (3)

Eliminating x-(-y from the first and third equations of the original system we
arrive at the following equation in z:

z2-6z+9=0.
Hence, 2(1)=3.
The first equation of the original system then gives

x+y=3.
Combining this equation with equation (3) and solving them we get

xlM =1 yil2,
x211=2

y21'=1.
(2) Now, in conformity with (2), we suppose that

xy = -5.
From the first and third equations we then obtain

z2-6z+16=0.

(4)

This equation has no real roots and, consequently, we may not consider the
case (4).

Thus, the set of possible solutions (x, y, z) consists of
(1, 2, 3) and (2, 1, 3).
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Substituting these values into the original system we check that both triplets
satisfy it. Thus, all real solutions of the system have been found.

62. One can easily note that the left-hand sides of the equations can be facto-
rized which brings the system to the form

(x+y) (x+z)= a, 1
(x+y)(y+z)=b, ( (1)

(x+ z) (y+z)=c )
Let us put, for brevity,

x+y=u, x+z=v. y+z=ray.
Then we can write

uv=a,
uw = b,

ow=c.

Multiplying all the equations we find
(uvw)2 = abc,

whence

avw=+Vatic..

(2)

(3)

Now all the solutions of system (2) are found without difficulty. First taking
the plus sign in formula (3) and then the minus sign we conclude that system (2)
has two solutions, namely

rabc Vatic Vatic
u1= vi = Wl = (4)c b a

dan

- Vatic
u = - V=v

- Vatic=W 5)2 c b2 a2 (

Now we have only to solve the two systems of equations obtained after the va-
lues (4) and (5) have been substituted into the right-hand sides of the equations

x+y=u,

x--z=v, l (6)

y+z=W. f
Adding together equations (6) we get x+y+z= u+2+W . Whence, by vir

tue of (6), it readily follows that

x_ u-f-v-w _ u-v-j-rv z_ -u+v-I-W
2 y 2 2

(7)

Thus, the original system has only two solutions which are determined by for-
mulas (7) after the values (4) and (5) have been substituted into them.

63. Adding together all the equations we find

a2 + b2 + c2 (1)xy+xz I yz= 2



SOLUTIONS AND ANSWERS ALGEBRA

By virtue of the equations of the system we now easily obtain

xy =

xz =

yz =

a2+b2-c2
2

2-b2+,2a

= a,

2 =P1

- a2+b2+c2
2

=Y.
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(2)

For brevity we have denoted the obtained fractions by a, 0 and y. It should
also be noted that if the original system is solvable, all the three numbers
a. S and y are different from zero. Indeed, let, for instance, a=0. Then
Py=xyz2 =0. Adding the first equation of system (2) to the second and third
ones wd get

a2 = P, V = Y

which implies a2b2=0 and thus, according to the conditions of the problem,
we arrive at a contradiction. Hence, a4y 56 0. System (2) therefore coincides
with system (2) of the preceding problem. Consequently, it has two solutions

xl =

and

yi --

Y2 = (4)

It can be readily verified that the same two sets of numbers satisfy the origi-
nal system as well. Thus, all the solutions of the system are given by formu-
las (3) and (4).

64. Let us put
xy+XZ+yz=t3 (1)

Then the system is written in the form
y3+z3 =2at3, 1
z3+x3 =2bt3, (2)

X3 +y3 = 2c13. J

Adding together all equations of this system we find that
X3 + y3 + Z3 = (a + b + c) P. (3)

Subtracting in succession the equations of system (2) from the latter equation
we obtain

x3=(b+c-a) P, y3=(c-(-a-b)t3, z3=(a+b-c)13,
whence we find

x-= 3V y= z= 3Va-i- b-c t . (4)

Substituting these expressions into
Vequation

(1) we conclude that either E=0 or

t2=3 (b+c-a) (c+a-b) + V (b+c-a) (a+b-c) +
+ 3l(c-f-a-b) (a-l-b-c) .

Substituting these values of t into formulas (4) we find two solutions of the
original system.

YaFY Z= I1 (3)

! a
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65. Put
x+y=u. x+z=v, y+z=w.

Then the system is rewritten in the form
u-i-v =auv,

(1)u+w=buw,
v+w=cuw. I

Obviously, system (1) has the following solution:
U=0' V=0' W=0. (2)

Note furthermore, that if u=0 then the first equation (1) implies v=0 and
the third equation implies w=0. Therefore we shall only limit ourselves to the
cases when

From system (1) we find
uvrv PE 0.

W +u=c
This system has the same form as system (6) in Problem 62. Applying the

same method we obtain
I a+b-c
u 2
1 a-b-F-c
u = 2 (3)
1 -a+b+c

Hence, system (1) can have a solution other than solution (2) only if the addi-
tional condition

a+b-c=a? 0, a-b+c=p 0 0, (4)

-a+b+c=y 94- 0
holds. If condition (4) Is fulfilled, we obtain from formulas (3) the expressions

2 2?u= v=
-

, w=

Y

, (5)a
To compete the solution we have to solve the following two systems:

x+y= 2

x+ y 0 1

x+z=0, ( (6) x+z=
y+z =0, J y+z= Y .

(7)

System (7) appears only if condition (4) is fulfilled. Either system has exactly
qne solution. Namely, the solution of system (6) is

x=0, y=0, z=0,
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and system (7) has the solution
I 1 1 I 1 1

lo;

Thus, the original system has only a zero solution x=y=z=0, and if the
additional condition (4) is fulfilled, there appears one more solution determined
by formulas (8) and (4).

66. The form of the second equation of the system indicates that x #1 0,
y 0 and z ;6 0. Reducing the fractions on the left-hand side of the second
equation to a common denominator we get, by virue of the third equation, the
relation

xyz = 27. (1)

Multiplying then the third equation by z and taking into account (1), we
can write

27 + (x + y) z2 = 27z.

Substituting the expression x+y= 9-z found from the first equation of the
system into the latter equation we obtain

z3-9z2+27z-27 =0,
i e. (z-3)3=0. Therefore z=3. Substituting this value both in the first equa-
tion and in (1) we find that x=3 and y=3. This result is, by the way,
quite obvious since all the unknowns are involved symmetrically into the equa-
tions of the system. Thus, if th° system is solvable, the only solution is the
triplet of numbers x=3, y=3, z=3. The direct substitution into the original
system confirms that this set of numbers is in fact a solution. Thus, the system
is solvable and has the unique solution

x=3, y=3, z=3.
67. Substituting the quantity x+y found from the first equation into the

second one we get
xy+z (a-z)=a2.

Expressing xy from this equation and substituting it into the third equation
we obtain

z3-az2+a2z-aa=0.
The left-hand side of the latter equation is readily factorized:

(z-a) (z-al) (z+ai)=0.
It follows that

z1 =a, Z2 = at, Z3 - - ai.

Substituting z=a into the first and second equations we arrive at the system
x+y=0, xy=a2

whose solution is x- +ia, y= T- ia. It is readily verified that both triplets
of numbers (x, y, z) of the form

(ia, -ia, a) and (-ia, ia, a)
satisfy the original system. Analogously, we find two more pairs of solutions
corresponding to the values z2 and z3:

(a, - la, ia), (- ia, a, ia) and ((a, a, - ia), (a, (a, - ia).
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Thus, the system is satisfied by the above six solutions, and there are no
other solutions.

This result can be achieved in a shorter way if we use a relationship between
the system under consideration and the roots of the cubic equation

t3 - at2 + a2t - a3 = 0. (1)

Namely, according to Vieta's formulas [see (2), page 101 the three roots

tl = a, tz = ia, t3 = - is

of equation (1) (taken in any order) form a solution of the system in question.
Thus, we have already obtained six (i.e. 31) solutions. Let us show that the
system has no other solutions. Indeed, let (x5, yr, z1) be a solution of the
system. Consider the cubic equation

(t -x1) (t - ya) (t -zi) = 0 (2)

whose roots are the numbers xl, yl and zt. Removing the brackets in equa
tion (2) and using the equalities

xr + yI + zi = a,

x1yl + yizi + xlz, =a2,

xiyrzi = a3,

we reveal that equations (2) and (1) coincide. Consequently, x5, yr and z, are
the mots of equation (1) which is what we set out to prove. The same argu-
ment can be used in solving the preceding problem.

68. Substituting x found from the first equation into the second one we get

3y'+z2=0. (1)

By virtue of the third equation, it follows that
3y2 - xy = 0. (2)

Therefore, we have either y=0 or x=3y.
In the case y= 0 we see that according to (1) we have z = 0. By virtue of

the first equation of the given system we also conclude that x=0.
In the case y= -2z we substitute x expressed by the equality x = 3y into

the second equation of the system and thus obtain

2y2+4yz=-0. (3)

If now y=0, we arrive at the former case, and if y=-2z, then condition (I)
implies that z=0, and, consequently, y=0 and x=0. The assertion has thus
been proved.

69. From the identity

(x+y+z)2=x2+y2+z2+2 (xy+xz+yz), (1)

by virtue of the first and second equations of the system, we get

xy+xz+yz=0. (2)

Now let us consider the identity obtained by cubing the trinomial x-{-y+z:

(x+Y4 z)3=x3-1-y34-z3+3x2y+3x22+3xy2+6xyz+3xz2 -+-3y2z+3yz'-. (3)

Its right-hand side can be represented in the form
x3+y3+ z3+3x (xy+Xz+yz)+3y (xy+yz+xz)+3z2 (x+y).
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Consequently, identity (3), by virtue of the equations of the system and equa-
lity (2), implies that

3z2 (x+ y) = 0. (4)

There can be the following two cases here:
(1) If z=O, then, according to (2), we have xy=O. Taking Into account the

first equation of the system, we get the two sets of values
xi = a, y> =0, z1 =0 (5)

and

x2 = O, J2 = a, z2 = 0. (6)

It can be easily seen that formulas (5) and (6) determine two solutions of the
original system.

(2) If x + y = O, then from the condition (2) we again get xy = O, and, hence,
x=0 and y=0. From the first equation of the system it then follows that
z=a, and we thus arrive at another solution of the original system:

x3 = 0, Y3=01 z3 = a. (7)

Thus, if a ;6 0 the system has three different solutions, and if a=0 it possesses
only a zero solution.

70. Let us consider the identity
(x+y+Z)3=x3+y3+z3+3x2y+3x2z+3xy2+6xyz-f 3xz2+3y2z+3yz2. (1)

Transform its right-hand member as follows:
x3 + y3+z3+3x (xy+xz+yz)+3y (xy+xz+ yz)+3z (xy+xz+ yz)-3xyz.

It follows that identity (1) can be rewritten as
(x-i-y+z)a=x3+y3+z3+3(x±y-I-z) (xy+xz+yz)-3xyz. (2)

From relation (2) it is seen that for determining the sum x3+y3+z3 it is
sufficient to express xy+xz+yz and xyz from the original system.

Squaring the first equation and subtracting the second one from the result
we get

xy+xz+yz=
2

(a2-b2). (3)

Let us rewrite the third equation in the form
xyz=c(xy+xz+yz). (4)

Now taking into consideration (3) and (4) we finally find from (2) the expression

x3+ya+z3=a3-
2

3 3 3a(a2-b2)+ 2 c(a2-b2)=a3 2 (a2-b2)(c--a).

71. Removing the brackets we rewrite the second equation in the form
x2+ y2+z2+3xy+3xz+3yz- 1,

which implies
(x+y+z)2 -{-xy+xz+ yz = I.

Now using the first equation of the system we derive
xy+xz+ yz =-3. (1)

The third equation of the system can be represented in the form
x (xy+xz) +y (yz+xy) -f- z (xz + yz) _ -6
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and therefore, taking into account (1), we obtain

which implies

1. e,

x (3+yz)+y (3+xz)+z (3+xy) =6.

x+y+z+xyz=2,

xyz=0.
We thus arrive at the following system:

x+y+Z-2,
xy+xz+yz=-3, (2)

xyz = 0.

From the last equation of this system it follows that at least one of the
unknowns is equal to zero, Let x=0, then

y+z=2, yz=-3,
whence either y=3, z=-1 or y=-1, z=3. The cases y=0 and z=0 are
treated analogously. Thus, we get the following six solutions (x, y, z) of
system (2):

(0 3, - 1); (-1, 0, 3); (0, -1, 3);

(3, -1, 0); (3, 0, -1); (-1, 3, 0).

It is readily checked that all these solutions satisfy the original system as well.
Thus, the problem has six solutions.

72. Removing the brackets in all the equations we note that if the third
equation is subtracted from the sum of the first two, then the following equation
is obtained:

(x-y+z)2=a-b+c. (1)

Similarly, we deduce
(x+y-z)2=a+b-c (2)

and

(y+z-x)2=b+c-a. (3)

It can be easily shown that, conversely, the original system is a consequence
of the system of equations (1), (2) and (3). Indeed, adding, for example,
equations (2) and (3), we obtain the second equation of the original system and
so on. Thus, the original system is equivalent to that obtained. Therefore, it is
sufficient to find all solutions of the system of equations (1), (2) and (3).

Let us put, for brevity,

)lb+c-a= a1. JIa-b+c=b1. _a+&-c= c1.
Then the system of equations (1), (2), (3) is equivalent to the following eight
linear systems

x-y+z=+b1,
x+y-Z=+c1,

-x+y+z=±a1
(4)

Taking the plus sign on the right-hand sides of all equations we easily find
the following unique solution of the corresponding system:

x=b1

2
c1 . Y=at 2 c1 b1 +a1Z= 2
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Considering all the possible combinations of signs of the right-hand members,
we find another seven solutions:

1-b1+cl a1+cl -br+a,) b,-c1 a1-c1 br+al
2 _2' 2 C 2 ' 2 ' 2

Cb,+ci -al+cl b1-all C-bl-c1 ar-c1D -bl+a1
2 2 2 f 2 2 2 J

C-b1+c1 -a,+cl -b1-all. (b1-c1 -a1-c1 b, -ai
2 2 2 l 2

l
2 2

C-b1-c1 -a1-c1 -b1-a,)
2 2 2

The eight solutions thus found obviously represent all the possible solutions of
the system.

73. Rewrite the third equation of the system in the form

z2+xy-Z (x±y) =2 (1)

Substituting z2 found from the second equation and z (x+ y) expressed from the
first one into (1) we get

x2+y2+xy-47+xy=2, or (x+y)2=49.

Whence we derive
x-}- y= ±7. (2)

Multiplying both sides of the first equation by 2 and adding the second equation
to it we obtain

(x±y)2+2z (x+y)=94+22. (3)

There are two possible, cases here:
(1) If in formula (2) the plus sign is chosen, then substituting x+ y expres-

sed from the equation x+y=7 into (3) we get z2-14z+45=0. Denoting the
roots of the latter equation by zil) and z we find zll =9 and z'2')=5. For
z=9 it follows from equation (1) that xy=-16. Combining this equation with
x+ y=7 and solving them we find

cn 7+ Y113 cu 7- Y113
X1 = 2 y1 = 2

and

xa> =7- Y113 21,=7+ V1133
2

y
2

Finally, if z=5, then from (1) we determine xy= 12. Solving the system

xy 12,

x+y=7,

we obtain x31)=4, ys1,=3 and Al)=3, yal1=4.
(2) In the case x+y=-7 we similarly obtain the equation z2+14z+45=0.

Its roots are zit,=-9 and zs =-5. Solving then in succession the two systems
of equations of form

xy=-16, (4)

x+y=-7.
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xy=12,
x{-y=-7, }

we find from system (4) the roots

X1 -7 - YT-i3
i 2

and

2 - 2

y(2) = -7+ 1113
2

(2)--7+ 1113 (2) -7- V113=

and from system (5) the roots
x(2)s = -4.

and

292

Y3 =-3

(5)

x?=-3, y4)=-4.

Our argument implies that only the following eight triplets of numbers
x, y, z) can represent the solutions of the original system:

C7+ I 1 33 7-
2

1 33
9

`

) . (7-

2

113 7+ 113
9/JJ

/J

11 13 -7 + 11 33
(4, 3, 5); (3. 4, 5);

7-
2 2

, -9 ;

C-7 1113 -7- 1113
2 2

.9)
; (-4, -3, -5); (-3, -4, -5).

Substituting these values into the system we check that they all are in fact
solutions.

74. Let (x, y, z) be a real solution of the system. Consider the first equation
of the system. By equality (1) on page 20, we have

2z
1 -E- z2

The first equation then implies that
xEz. (1)

Similarly, from the second and third equations of the system we obtain

y<x (2)
and

z - y. (3)

The system of inequalities (1)-(3) is satisfied only if
x=y=z. (4)

Substituting z=x into the first equation we find
xi = 0, x2 = 1.

From (4) we finally conclude that the system has two real solutions, namely
(0, 0, 0) and (I, I, 1).

75. Let xj, x2, ., x be a real solution of the system. The numbers xk
(k= I, ..., n) are obviously of the same sign. For definiteness, let us suppose
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that they all are positive. Xk > 0 (if otherwise, we can change the signs in all
equations of the system). Let us show that

xk 1/ 2 (k = 1, 2, ..., n). (1)

Indeed, by inequality (1) on page 20, we have

1/ 2

Xk+Xk
2 /

Xk
Xk=2

whence it follows, by virtue of the equation of the system, that inequality (1)
is fulfilled.

Now adding together all the equations of the system we obtain

xi+x2+...+x,,=2+2+...+?. (2)
X1 X2 Xn

According to condition (1) equality (2) is only possible if all the unknowns are
equal to 1/'2. It can be easily verified that the numbers x1 =x2 = ... =X11= Y 2
satisfy the original system and therefore it has a positive solution which is
unique. Changing the signs of the values of the unknowns we get another real
solution

x1=x2=... =Xn=-Y2.
Thus, the system has only two real solutions.

76. Let x, y, z be a solution of the system. Expressing x from the first
equality and substituting it into the second and third ones we obtain

(a-b)+(c-b) y+(d-b) z=0,
(a2-b2)+(c2-b2) y+(d2-b2) z=0.

Whence we find, after some simple transformations, the expressions
(a-b) (a-d) (a-b) (a-c)

Y
(c-b) (c-d) ' z (d-b) (d-c)'

Substituting these values of y and z into the first equality we obtain

(b-c) (b-d)
Consequently, we can write the inequality

xyz=(a-b)2 (a-c)2 (a-d)2 > 0.
(b-c)2 (c-d)2 (d-b)2

77. If a t 0, then x= a is not a root of the equation. Dividing both sides

of the equation by 3V (al-X)2 we replace it by the equivalent equation

Y Y

la±x)2+4-5

Y a+x
3

Putting 1= a±x we find t1=4, 12=1. It follows that xi=63 a and x1=0.
If a=0, the original equation has only one root x= O.

78. By substitution we verify that x= 1 is not a root. Therefore, after both
sides have been divided by '/(l -x)2 the equation turns into the equivalent
equation

(a-c) (a-d)

(1±x)2-I_
Y 1-X
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± XDenoting by t we get the equation t2-1 =t, i.e. 0-1-1 -0.

Whence we find tt = 1 + z
IT and t2= 1-lY Since the second value is ne-

gative, then if m is even, the value t2 should be discarded according to our
convention concerning the roots of equations. Thus, for even m we have

l+x l+Y5V1-x -2' l-x ' 2 J
and, consequently,

('2 )'-I
2

X-
2

If m is odd, the equation has the roots, namely

)M-
fY51I

2

(I f 1m+1
l 2 l

79. Making the substitution 2 =t>0 we obtain
1`t2+21+ 1 4 jy12+6t+9= 14.

This implies t+1+f+3=14 and t=5. Solving the equation
j/-2y-5 = 5,

we find y=15.
80. Multiplying both sides of the equation by V x-} x we get

x- j/ = 2 y X. (1)

Since x > 0 (for x=0 the right-hand side of the original equation makes no
sense), equation (1) is equivalent to the equation

21 x-1=2Yx-l.
Squaring both sides of the latter equation we see that it has the unique root
x =T-25 which also satisfies the original equation.

81. Multiplying both sides of the equation by 1fx+11 and putting x2+
+8x=t we arrive at the equation

Yt+Yt+7=7.
This equation has a unique root: t=9. Solving then the equation x2+8x-9=0
we find x1=-9 and x2-1. The original equation, by virtue of the convention
concerning the values of roots, is only satisfied by x= 1.

82. Cubing both sides of the equation we obtain

x-1+3 V(x-1)2 x+1+3 x-1 (x } 1)2+x+1 =2x3.



SOLUTIONS AND ANSWERS. ALGEBRA 125

Whence we find
2x+3V Vx-1{ 3 Vx{ l2x3. (1)

On the basis of the original equation we thus can write

2x+3 Vx2- 1 x V 2= 2x3. (2)

After some simple transformations we deduce

x V;2 1 [3 V2-2 V
Thus we find all the numbers which can serve as the roots of the original
equation. Indeed, we obviously have

x1=0, x2=I, x3=-I.
Solving then the equation

3 V2=2 V(x2 - 1)3,

we find

27=4 (x2-1)2, (x2-1)2= 47 , x2= 1 f 3 2

Since we are only interested in real roots, it follows that

x2=1+3 r3
2

Consequently, x4=I//_1+ 2 3 , x6

It is readily checked by substitution that x1, x2 and x3 are roots of the
original equation. But the direct substitution of the values x4 and x5 involves
some difficulties. We proceed therefore as follows. Let us put

a= Y x4-1, b= 3x4-)-
I

and
3

C= V 2x4,

and show that

a+b=ca (3)

Since x4 satisfies equation (2), we have
as + 3abc 4- b3 = c3, (4)

and thus we must show that (4) implies (3). Note that if a±b is substituted
for c into (4) this results in an identity. Consequently, according to Bezout's
theorem, the expression c3-3abc-a3-b3 regarded as a polynomial in c is
divisible by the binomial c-(a+b) Performing the division we get

c3-3abc-a3-b3 =fc-(a+b)1 {c2+c (a+b)+a2-ab+b2}. (5)

By (4), the left-hand side of (5) is equal to zero. It is however readily seen
that a > 0, b > 0, c > 0, which implies that the expression in the braces is
positive. Thus, equality (3) has been proved. We then similarly prove that xr,
is also a root of the original equation.

83. Transposing jIx to the left-hand side and squaring both members of
the equation we get

k. Vx- a+16=x-2a.
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Squaring then both sides of the resulting equation we find that x= 4 is the

only root of the equation. Substituting it into the equation we obtaih

}fall- l6a+64-2 ra2-8a-}- 19- Ya2,
which implies, since the radicals are positive, the relation

Ia-81=21 a-41-1 a1. (1)

For a-8 equality (1) is fulfilled. Consequently, for a :8 the original equation
z

has a root x= 4 . For 4<a < 8 condition (1) is not fulfilled because

8-a ¢ 2 (a-4)-a.
For 0-a < 4 condition (1) takes the form

8-a=2 (4-a)-a
and is only fulfilled for a =O. Finally, for a < 0 condition (1) turns into the
identity 8-a=2(4-a)+a. Hence, for a:8 and a<0 the equation has the
only root

a2

X=-17-

For 0 < a < 8 there are no roots at all.

84. Squaring both members of the first equation and substituting the expres-
sion of x2+ y2 found from the second equation into the resulting equation we
obtain

36xy-1= + 64xy + 256 (xy)2.

Again squaring both members of the equation we arrive at a quadratic equa.
tion with respect to t=xy:

65012-85t+2=0.

Solving this equation we find t1=10 and t2=s5' Now consider the following
two systems of equations:

x2 + y2 + 4xy = 5

I

(1)

xy=i0, ) xy=
65'

(2)

Obviously, all the solutions of the original system are solutions of these

systems.
Solving system (1) we find

(x+y)2=b-2xy=b -5=0.

x2+y2+4xy=

2

Consequently, x+y=0, and thus we get two solutions of system (I):

t t t tx1_y10
, yr=- j/-10

; x2=- y10 I y2=17'10 '
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Transforming the first equation of system (2) to the form (x+y)2=65 we reduce

the system to the following two systems:
3 3

x+Y y65 X-J-y=- 1- '2 (2') 21 65

xy85, ) xy=65

System (2') has two solutions, namely
2 1

and
1 2

X3

_
V65

y3 = y65
x4 =

V=65
ya =

System (2") also has two solutions:
2 1 1 2

xa = - ya = -
Y65'

and x6=- Y6Y65 ' V65
As is readily verified, the original system is only satisfied by the first, second,
third and sixth sets of numbers. Thus, the system has exactly four solutions.

85. Putting

V3x=u,
V Y=v

we can rewrite the given system in the form

u3-v3
2

(u2v-uv2),

u-v=3.
The first equation is transformed to the form

(u- 0)2+3uv=
2

uv,

whence we find
UV= 18.

Combining the latter equation with the second equation of the system and
solving them we find u1=6, v1=3 and u2=-3, v2=-6. Returning to the
original system we get its two solutions:

x,=216, yl=27 and x2=-27, y2=-216.

86. Making the substitution Vy we transform the first equation

to the form
212-31-2=0.

It follows that t=2 (the second root - is discarded j. Solving the system

Y
2, 1

x+xy+y=9, f
we find its two solutions

9z = 4, 1 and x2=-9,1- y1= y2 =-
4

,
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which are also solutions of the original system. Thus, the original system has
two solutions.

87. Let us put
y+1 =t > 0.x-y

Then the first equation takes the form
t2-3t+2=0,

whence we find t, = 1 and t2=2.
Consider now the following two systems of equations:

y+l 1, +l 2, l
Y x-y ( (1) x-y

x+xy+y=7, f x+xy+y=7 1
System (1) possesses two solutions:

(-5, -3); (3, 1).

System (2) also has two solutions:
/Yl -5J f - 10-1, Y51

.

Hence, theoriginal system has four solutions. /

88. Taking into account that

1x+y- xz - z
x-YIx-yI

and multiplying the first equation by x-y we obtain

(2)

x2 -y2-Yx2-.y2-12=0 for x-y > 0
and

x2-y2+ Vx2-y2-12=0 for x-y < 0.
Whence

(f Yz2-ya)1=4, (f
Thus, we now must consider the two systems of equations

x2-y2=16, x2-y2=9,
xy = 15, f xy = 15. }

System (1) has two real solutions:
x1=5, y1=3 and x2=-5, y2=-3.

System (2) also has two real solutions:

9+ j-981 981-9
xs = 2 Y., = 2

and

(2)

9+x981 , / x981-9
2 e -2
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2x
which

y

It can be, however, easily checked that the original system is satisfied only by
two of these pairs of numbers, namely by

(5 3);
(-i1r T_9)

2 2

Thus, the original system has two real solutions.
89. Put

Yx2-12y+1 =t.
Then the first equation can be written in the form

t2-8t+16=0.
It follows that t1. 2=4, and thus we obtain

x2-12y=15.

Noting that y -A 0, we multiply the second equation by
to the form

This implies

129

(1)

transforms it

2yj2-2 (2y x
j/

I 1 } 3y -}-I 1-} F ) =0.

FY
-0. (2)1+3y

Raising to the second power we arrive at the equation
/3( yl2-16(y)-12=0,

wherefrom we find

Cy/1
6, \y/2- 3

It is obvious that the second value does not satisfy equation (2) and therefore
we confine ourselves to the system

x2-12y=15,

X=6.
y

This system has two solutions (5,

6)
and (-3, - 2

/
which, as is readily

seen, satisfy the original system` as well.

90. Rationalizing the denominators of the first equation, we obtain
4x2-2y2 17

y2 =
T*

Whence we find

( y)1 4

In the second equation we put

and

1/x2+xy+4=t,
(1)

5-323
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and rewrite it in the form
t2+t-56=0.

Hence, we obtain ti = 7 and 12=-8. Since in (1) we have t 0, the second
root must be discarded. As a result, we arrive at the following two systems
of equations:

5
X = 4 y,

(2)

x2+xy-45=0
and

5

(3)

x2+xy-45=0.

The solutions of system (2) are (5, 4) and (-5, -4). The solutions of (3) are
(15, -12) and (-15, 12). These four solutions satisfy the original system as well.

91. Expressing x from the second equation and substituting it into the first
one we obtain

a 2
4 1 2 2y+5

y 3y y 3 3 3
+5.

Putting here 1y
3y-1 we arrive at the equation

12+31-18=0.
Whence we find

1o = 3, 12 = -6.

Since, by the hypothesis, t is non-negative, we have only one equation

9y2-4y-28=0.
Combining this equation with the second equation of the original system, we
find their two solutions

x,=3, y1=2 and 17 14
x2=27, Y2=-V-

92. Let us put

yx2-6y+I =t _-0.
Then the first equation is written in the form

t2-8t+ 16=0.

Whence we obtain t = 4, and thus

x2-6y-15=0. (1)

If now we put x2y = u in the second equation and take into account (1), we get
the equ, tion

9u2 - 241u - 13 230 = 0,

from which tae obtain ul'=54 and u2=-245
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We thus arrive at the two systems of equations
x2-6y-15=0,X2-6y-

x2y = 04 ,

(2) x2 245

j

(3)
y 9

Eliminating x2 from system (2), we obtain the equation
2y2+5y-18=0,

whose roots are y1=2 and y2=-4 2 . The second root must be discarded be-
cause, by virtue of the equation x2y=54, it leads to nonreal values of x. Hence,
system (2) has two real solutions:

System (3) is reduced to the equation

54y2 +135y + 245 = 0,

which has no real solutions. Thus, the original system has two real solutions.
93. Put

=u>0, Y y=v>0. (1)

Then the system is rewritten in the following way.
u

(u2 ` v2) v = 2

(u2 + v2) u = 3v. 1
System (2) has an obvious solution, namely

u=0, v=0.

(2)

(3)

Therefore, in what follows we suppose that u ? 0, and hence (by virtue of the
equations) we also have v 0. Multiplying the right-hand and left-hand sides
of equations (2) we obtain

u9-v°= 32' (4)

Multiply then the first equation of system (2) by v, the second by u and adding
them together we obtain the following equation:

u4-0 -}-2u2v2= 2 uv.

By virtue of (4), we have

Whence we find
4(uv)2-7uv+3=0. (5)

3
(UV)1 = 1, (UV)2 =

4

Now consider the two systems of equations

UV= 11 1 (6) uu=
(7)

(u2+u2)u=3v,
))

It is obvious that any solution of system (2) other than (3) is among the solu-
tions of these systems.

5*
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Multiplying the second equation of system (6) by u we find, by virtue of
the first equation, that u4=2. Whence, taking into account (1), we get

u4/2, '= V28
.

Analogously, we also find the solution of system (7) satisfying the condition (1):

u= 2 , v= 2 .

It is easy to check that both solutions also satisfy system (2). Thus,
system has three solutions:

(0, 0), (v 2,
22 (3 4

3
, 43 )

the original

94. Squaring both members of the first equation we obtain
a

Yxy-ya=x- c. (1)

By virtue of the second equation, we have
3a2Yx2 } y2 = 2 - x. (2)

Now squaring both sides of the second equation of the original system we receive

P-+-Y, Yxa-y2=
a4

2
-x2.

Whence, by virtue of (1) and (2), we findl
(302_X)2 -x2= Cx-

2 1

Removing the brackets we obtain x= 8 a2. After this we easily get from equa-
tion (1) the two values of y '`yr=aa

8

yz=-az
Y 8

T
The verification by substitution shows however that the original system has only

\
one solution (-a-5a2,

al
r3

V 8 ) .

95. Let us put

Yx=u:0 and Yy=v>0. (1)

This reduces the system to the form
u3-v3=a(u-v),
u4 + uzv2 + v4 = b2

(2)

It appears obvious that the latter system falls into two systems of the form

u--e=0, 1 u2+uv+v2=a,
u4+u2v2+v4=b2, j

(2') and u4+u2v2+v4=b2. (2")

Solving system (2') we find 3u4=b whence, taking into consideration (1), we get

u-YG 1, 27

27 V 3

r -F 14/27
V 3 (3)
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Passing to system (2"), we transform both equations in the following way:
u2'+ v2 = a- uv, (u2+ v2)2 = bz+ u2v2

This yields the values of uv and u2+v2:
a2 - b2

UV=
2a '

a2+b3
u2+p2-

2a J

(4)

It can easily be shown that the system of equations (4) is equivalent to system (2").
From equations (4) we receive

(a
+

v)2 _3a2-b2
2a

(u -v)2 601-al=
2a

(5)

It should be noted that, by virtue of (1), the right-hand member of the first
equation of system (4) must be non-negative; the right-hand member of the second
equation of system (5) must also be non-negative. Thus, we must impose the
condition

a2 : b2 (6)

because, if otherwise, system (5), and, hence, system (2") have no solutions
satisfying condition (1).

Solving system (5) we get

_ 3a2-b2 31 -a2U0 2a , -v= f
Y 2a

Finally we obtain
'3a2_b21 ( 3b2- a2y

2 2a 2a

_ 1 3a'2-62 3b2-a2
v 2 2a 2a

As is easily seen, by virtue of condition (6), both pairs of values (u, v) are

non-negative. Indeed, we have and therefore 3a2-b2:3b2-a2.
Thus, if the additional condition (6) is fulfilled, the original system has three

solutions, namely
b b

Xi = Yi =
Y3

1 3a2 - 62-62 3bz-a2 a

X2

_
-i ( Y 2a + Y 2a
I 3a2-b2 3b7-a2

Y2 =
(//'j-a-2

2a V 2a ) '
1 3a2-bz `362-al

2

Xy - 4 ( V 2a
_

V 2a

y3=-4 ( Y 3a 2a bt + 3b22a ay )2
If condition (6) is violated, then only the first solution remains valid.
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3. Algebraic Inequalities

96. For the quadratic trinomial
ax2+bx+c (a 36 0)

to be positive for all x it is necessary and sufficient that a > 0 and the discri-
minant D of the trinomial be negative. In our case we have

a=r2-1 > 0 (1)
and

D=4 (r- 1)2-4 (r2- 1)=-8 (r- 1) < 0. (2)

Inequalities (1) and (2) are fulfilled simultaneously for r > 1. It should also
be noted that for r = I the polynomial under consideration is identically equal to 1.

Thus, all the sought-for values of r are determined by the inequality
r>l.

97. If we put
x y--
Y +X u

and take into account that xl +j2 =u2-2, the given expression is readily

transformed to the form
y x

3u2-8u+4. (I)

If x and y are of opposite signs, then u < 0 and trinomial (1) is positive. If x
and y are of the same sign, it is easily seen that u:_::-2.

The roots of quadratic trinomial (1) being equal to 3 and 2, the trinomial
is non-negative for u .2. Thus, the trinomial is non-negative both for a < 0 and
u-_:-2, and, consequently, the original expression is non-negative for all real
nonzero values of x and y.

98. Note that x2-x+1 > 0 for all values of x because the discriminant
of the quadratic trinomial is equal to -3 < 0 and the coefficient in x2 is posi-
tive. Therefore it is permissible to multiply both inequalities by the denomi-
nator. This results in

-3x2+3x-3 < x2--ax-2,
x2+ax-2 < 2x2-2x+2,

that is
4x2+(a-3) x+ I > 0,
x2-(a+2)x+4 > 0.

The first inequality is fulfilled for all x if and only if the discriminant of the
quadratic trinomial is negative, i. e. if (a-3)2- 16 < 0. Similarly, the second
inequality is fulfilled if and only if

(a+2)2-16 < 0.
Now combining the two inequalities (a-3)2-16 < 0 and (a+2)5-16 < 0 and
solving them as a system with respect to a we get

-4<a-3<4, -1<a<7
and

-4<a-f-2<4, -6<a<2.
Hence, we finally obtain -1 < a < 2.
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99. By virtue of inequality (I) on page 20, we have

a4 + b4 2a2b2,

0 + d4 2c2d2.

Adding together these inequalities, we obtain
a4+b4+c4+d4 2 (a2b2+c2d2). (1)

According to inequality (3) on page 20, after putting u-a2&2 and v=c2d2, we
receive

a2b2 + c2d2 : 2 JIa2b2c2d2. (2)

We always have (the sign > appears if abcd < 0), and there-
fore comparing (1) and (2) we arrive at the required proof.

100. The given system is equivalent to the system
x2+(x+a)2+2x- 1, y=x+a.

The inequality
2x2+2(a+1)x+a2-1<0

has a unique solution with respect to x if and only if the discriminant of the
trinomial is equal to zero:

(a+1)2-2 (a2- 1)=0,

a2-2a-3 =0.
Solving the latter equation we find

al = 3, a2 = -l.
Finally, we consider the two possible cases:

(I) If a=3, then z2+4x+4=0 and x=-2, y=1.
(2) If a=-l, then x2=0 and x=0, y=-1.
101. Rewrite the given system of inequalities in the following way:

1

y+ 2
> 1x2-2x!,

y<2-1x-11.
Since we always have jx2-2xJ>0 and -Ix-l 1>0, we can write

-2 < y < 2.

The only integers y satisfying this inequality are 0 and 1. Consequently, the
given system of inequalities considered for integral x and y can be consistent
only for the values y=0 and y=]. Let us consider both cases.

Case 1. If y=(), the system of inequalities takes the form

x2-2xI< 2 , Ix-l!<2.
The second of these inequalities is satisfied only by the integral numbers 0, 1 and 2.
It can easily be checked by substitution that 0 and 2 satisfy the first inequality
as well, but it is not satisfied by 1. Thus, for the case y=O two solutions are
found, namely

x1=0, yl=.O and x2=2, ya=0.
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Case 2. If y= 1, the original system of inequalities reduces to

!x2-2x]< 2, Ix-1I<1.

The second inequality is satisfied by the only integral numberx=l which also
satisfies the first inequality. Hence, in this case we have one more solution of
the problem: X3=11 y3 =1. Thus, the system of inequalities is satisfied by three
pairs of integers.

102. There are n summands on the left-hand side of the inequality, the first
n-1 summands being greater than the last one. Therefore,

n+l+n+2+"'-}

n
nn

103. Let Sm denote the left member of the inequality to be proved. Then,
as is easily seen,

1 1 1 ISm+1-Sm=3m+4+3m+3+3m-}2 m+l'
Reducing the fractions to a common denominator we find

Sm+3-S. =(3m-f-2) (3m+3) (3m+4) >0.

Thus, Smt1 > S,,,. We have

and, consequently,

1 1 1S1=2' 3+4 >1,

2

Sm>Sm-1> ... > S2 > S1 > 1,
i.e. Sm > I which is what we set out to prove.

104. Write the following obvious inequalities:
1 1 1 1

22<12= --2'
1 1 _ 1 1

32 <2.3-2

1 1 1 _ i

n2 < (n-1)n
_
-n-1 n

Adding them termwise we get

22 J 3z --... JRa<1-nnn1
which is the required result.

105. Rewrite both sides of the given inequality in the following way:
(nl)2=(1 n)l2(n-1){...{k (n-k+1)J...(n l)

arld

a factors

a Iactorr
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Let us prove that
(n-k+ 1) k in (1)

for n r k ' 1, Indeed, we have
nk-k2+k-n=k (n-k)-(n-k) =(n-k) (k-I 0. (2)

Thus, we have proved that

(n!)2 _:> nn. (3)-

Let us note that if a number k is greater than unity and less than n, formula (1),
as it follows from (2), assumes the form of a strict inequality which obviously
leads to a strict inequality in formula (3) as well. For n > 2 there exists such k.-
Hence, in this case we have the strict inequality (n!)2 > nn.

106. It can easily be checked that for constructing a triangle with sides a,b
and c it is necessary and sufficient that the numbers a, b, c satisfy the three
inequalities

a+b-c > 0,
a+c-b > 0, (I )

b+c-a > 0.
Let us prove that this system of simultaneous inequalities is equivalent to the
condition set in the problem. Let us put

K Tpat + qb2 - pgc2
Since q -1-p, this expression can be rewritten in the form

K == pat + (l - p) b2 - p (l - p) c2 = c2 p2 -}- (a2 -b2 -c2) p + b2,
where a, b and c are constants, and p may assume arbitrary values.

Thus, K is a quadratic trinomial in p. In the general case the trinomial K
can take on values of different sign depending on p. The inequality indicated in
the problem is equivalent to the condition that K > 0 for all p. As is known,
for this to be so, it is necessary and sufficient that the discriminant

D = (a2 - b2 - c2)2 - 4b2c2

of the trinomial be negative (here we take into consideration that the coefficient
in p2 i$ equal to c2 > 0).

The diseriminant can be represented in the following form:
D=(a%-b2_C2)2---4b2c2=(a2-b2-c2--2bc) (a2-b2-c2+2bc)

=[a2-(b±c)2] [a2-(b-c)2]=(a+b+c) (a-b-c) (a+b-c) (a-b+c)=
_- (a+b+c) (a+b-c) (b+c-a) (c+a-b).

If a triangle can be constructed, inequalities (I) are fulfilled, and, hence,
D < 0. Thus, we have proved that the existence of such a triangle implies the
inequality D < 0.

Conversely, if D < 0 then
(a+b-c) (b+c-a) (c+a-b) > 0. (2)

Let us show that (2) implies inequalities (1). Indeed, suppose that only one ex-
pression in the brackets on the left-hand side of (2) is positive and the other
two are negative. For instance, let a+b-c < 0 and b+c-a < 0. Adding to-
gether these inequalities we get 2b < 0 which is impossible. Thus, we have also
proved that the condition D < 0 implies the existence of a triangle with given
sides a, b and c.

. 107, Tragsform thg left member of the inequality in the following way:

4(x-f y)(x+z)X(x+y+z)+y2z2=4(C2+Xy+XZ+yz)(x2+Xy+XZ)+y2z2=
=4 (X2.-[_.xy+xz)2+4yz (x2+xy+xz)+y2z2"= [2 (X2+xy+xz)+yz]2.
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The obtained expression is non-negative for any real x, y and z which is what
we set out to prove.

108. Denoting the left member of the inequality by z we transform z in the
following way:

z=x2-1-2xy+3y2+2x+6y+4=(x+y+ l)2-f-2 (y+ 1)2+ 1.
For real x and y the first two summands are non-negative, and, consequently, z > 1.

109. Since x= 1 24y, the inequality to be proved is equivalent to the ine-
quality

(14Y)sl+y2
20

which is readily transformed to the equivalent form
l00y2-40y-{-4=(l0y-2)2 _:-0,

the latter inequality being automatically fulfilled.
110. Since d > 0 and R : r > 0, we have

d2+R2-r2 > 0 and 2dR > 0.
Consequently, the given inequality is equivalent to the inequality

d2+R2-r2 < 2dR.
Reducing it to the form (d-R)2 <r2, we get I d-R I S r,i. e. -r <-d-R <r.
Hence,

R-r<d<R+r.
Ill. Multiplying both members of the desired inequality by a+b+c, weget

an equivalent inequality whose left member is equal to

(a { b) c)Ca+a-I a}=3+(b (c +b )+(Q- a

9+( I/'b y ) 2 ( Y c Y b >2+(Y a c
)2>9.

112. Note that the given expression turns into zero for b = c,c = a and a = b.
Therefore, according to Bezout's theorem, it is divisible by the differences a-b,
a-c and b-c. Arranging the summands in descending powers of the letter a
and performing the division by a-b, we receive
a3 (b2-c2)-I-a2 (c3-b3)+b3c2-c3b2=(a-b) 10(b2-0)+=2 (c-b)+bc2 (c-b)).
Taking the factor (b-c) outside the square brackets and dividing the remaining
polynomial by a-c, we obtain

a3 (b2-c2)+ba (c2-a2)+c3 (a2-b2)=-(b-a) (c-b) (c-a) [ac+bc+abl.
Since, by the hypothesis, a < b < c and a, b and c are of the same sign, the
expression on the right-hand side is negative.

113. We have

whence
1-2 Y ak+ak=(1-Yak)2_0,

I+ak 2 Y -ah .

Writing these inequalities for k= 1, 2, ... and multiplying them termwise we
receive

(1+al)(l-I-a2) ... 2n )f ata2 ... an=2':.
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114. It is sufficient to consider the case when a and b are of the same sign
(i.e. positive), since otherwise one of the numbers is greater than unity and the
inequality becomes obvious. We have

a2 + b2 = (a + b)2 - 2ab = l -tab,
a4 + b4 = (I - 2ab)' - 2a2bz.

But if a+b=1, then 0<ab< 4 , since

b 2 1ab6(a+

2 4

(see formula (3) on page 20).
Consequently,

a4+b4l-2.
4

-2.6
8

115. Consider the following three cases:
(1) x<0; then x8-x5-+2-x+1 > 0 because the first four summands are

non-negative.
(2) 0 < x < 1; transform the polynomial to the form

xe-)-(xa-x5)+(I-x)=x8+x2 (1-x3)+(I-x).
Here all the summands are obviously positive and, consequently, the polynomial
is greater than zero.

(3) 1; write the polynomial in the form
x5 (x8- 1) + x (x- 1) + 1.

The first two summands being non-negative, we also have in this case
x8-x5+x2-x+ 1 > 0.

116. We have

(1-}-x)n-i-(l-x)n=2(1-}-Cnx2+C,°1x4-}-...), (1)

the last term of the sum in the brackets being equal to xn for even is and to
nxn-, for odd n. By the hypothesis, we have - I < x < 1, whence it follows
that Cnkx2k < C;k for all integral k. Therefore,

(I+x)n+(I-x)n < An,
where An is the value of polynomial (1) for x=± 1, i.e. An=2n.

117. The inequality to be proved is equivalent to the inequality

ea(ai+as+...+a,2,)+4(x1-I-xs-}-... -F-xn)+4e(xlat+xaaaf...+x,,aa) 0,

which holds true because the left-hand side is equal to
(eat + 2x1)2-f-(Ea2 ± 2x2)2+ ... +(Ean + 2x.)2.

118. The radicand must and therefore

;x' - . (1)

For nonzero values. of x satisfying condition (1) we have IfI-4x2 < 1. There-

fore, if - 2 -<x < 0, the inequality indicated in the problem is fulfilled, because
its left-hand side is negative.
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But; if 0 < xI 2 , then rationalizing the numerator of the left-hand side we
obtain

I - Y I -4x2 4x2 _ 4x

x (l+Yl-4x'2)x 1+Y1-4x2
It is readily seen that the numerator of the fraction on the right-hand side does

not exceed 2 for 0 < x< -f , and the denominator is not less than unity. The-
refore,

1-Y1-4x2[2 <3.
x

Thus, the inequality in question is true for the values x 0 satisfying condi-
tion ( 1 ) . For x=0 and x > 2 the left member of the inequality makes no
sense.

119. For definiteness, let x> y. Then putting
lent inequality,

y = a S l we get an equiva-
x

1/1-I-an. (1)

Raising both members of (I) to the power mn we obtain the inequality
(1+amp>-(I+an)m.

It is easily seen that this inequality holds true because 0 c a < 1 and n : m.

120. Put

xn=Y a+Va+...+ra. (1)

n radicals

It is obvious that xn=Ya+xn_r (n=2, 3, ...), and, consequently, xn =
a+xn_1. Furthermore, let us note that xn > x,_, because when passing from

n-1 to n the radical Ya is replaced by a greater numberVa+Ya.
For this reason we have xn < a+xn and, consequently, the quantities we arf
interested in satisfy the inequality

x2-x-a < 0. (2

The roots of the trinomial on the left-hand side are equal to

x111-1-j 21+4a x(2) =1+
2

+4a

The numbers x, satisfying inequality (2), the 'relation x(1) < xn < xM 4s fulfilled
(see page 21). Hence,

1 + Y1 +4a

which completes the proof. For n= 1 we have x, = r -a and the inequality (3)
becomes obvious.

121. Let us denote the expression containing k radical signs by x1:

1/2±V2+...+ 2+ Y2 =xk.
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Note that xk < 2. Indeed, let us replace 2 in the radical j by 4. Then all
the roots are extracted and the left member becomes equal to 2. This means
that xk < 2. Hence, in particular, it follows that both the numerator and deno-
minator on the left-hand side of the original inequality are different from zero.

Using then the fact that
xn= 11-2 + -rs- I

we transform the left-hand side of the original inequality in the following way:

2- xn-1+2 Yxn-1+2-2 1 _ I

2-x,,-, (Xn-1+2)-4 yxn-1+2+2

xn < 2, we havex II-2 > 4 which is what we set out to prove.
n

122. As is known, for any real numbers a and b the following inequality holds
true:

I a b I
S a2

2
b2 (see formula (1), page 20).

Taking advantage of the fact that the absolute value of a sum does not ex-
ceed the sum of the absolute values of the summands we get

IanonIC

6 ai+bi +a2+bz+...+an+bn
2 2 2

a2i
+as+...+an+b2i +b+...+bn 1+I

2 6 2 -1,
which completes the proof.

123. If n=1, then x1=1 and, hence, x1:1, the assertion being Ilie, efore
true. Suppose it is true for all m such that ISm<n-1; let us prove that
then it holds for m=n. If all the numbers x1, x2, ..., xn are equal to unity,
the assertion is obviously true. If at least one of these numbers is greater than
unity, then, by virtue of the equality xlxz ... xn=1, there must be a number
among x1, x2, ..., xn which is less than unity. Let the numeration of x1, x2, ..., xn
be such that xn > 1, xn_1 < 1. The induction hypothesis and the condition

x1X2 ... xn-2 (xn-lxn)= 1
imply

n-I,

Xl+X2+ ... +Xn-2+xn-1Xn+ I Wi n.

We have (xn-1) (1-xn_1) > 0 and therefore

Xn+Xn-l-Xnxn-1-1 > 0.
Consequently

Xn-1+xn > xn-lxn +1.
Thus,

x1+X2+...+Xn_1+Xn > X1+X2--...+Xn-2+xn-1xn+l -:-tl,
and the assertion has been proved.
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4. Logarithmic and Exponential Equations,
Identities and Inequalities

124. As is seen from the equation, it only makes sense for a > 0, a ;1_4 1 and
b > 0, b 6 1. For solving the equation let us make use of the formula for change
of base of logarithms

logy a= g, a
log, bgc

(see formula (2) on page 24). Here c is an arbitrary base (c > 0, c 1). The
choice of the base c is inessential here because we only want to reduce all
logarithms to one base. We may, for instance, take a as a common base, since
a > 0 and a -A I. Then the equation takes the form

Q logo x,,log,

2
logo 2-2 109a x logo 6 = lologa x

a ge

which yields after some simplifications the new equation

(logo 2 + 2 logo b) logo x = 31oga X.

Hence, there are two solutions, one being
Iogax=0, i.e. x= 1,

and the other being

logo x = 3 (logo 2 } 2 toga b) = 3 logo 2b2 =logo 3V2b, ,

1.e.

x= V2b.
125. Let us pass to logarithms to the base 2; using formula (2) on page 24

we get
I 1 _ l

1092 X
.
loge x-4-1og2 x-6'

The latter equation is equivalent to the equation

logs x-5 loge x+6=0.
Hence we have

(loge x)1= 2, x1= 4
and

(log, x)2 = 3, x2 = 8.

126. Raising we obtain
9x_1+7 =4(3x-1+1).

Whence we find
(3X -1)2-4 (3x-L)+3 =0.

Coisequently,
(3x-1)1=3, x1=2 and (3x-1)2-1, x2=1.

127. Let us pass to logarithms to the base 3. By formula (2) on page 24
we have

1- log3 x+1083 2X=
1.

1+log3x
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This results in

and, hence,

(1- log3 x) [ 1- (I+ logs x)21= 0

(log3 x)1 = 1, xl = 3;
(log3 x)2 = 0. x2 =1;

(1og3 x)3 = -2, x3 = 9

128. Let us pass in the given equation to logarithms to the base 2. By for-
mula (2) on page 24, we obtain

1-1092X 1092 x -}- loge X= 1.1--log2x

Multiplying both members of the equation by the denominator, transposing all
the terms to the left-hand side and factorizing we get

(loge x-1) (1092x+ 2 logs x 1 loge x+ 2 loge x-[-1) = 0.

For x > I the second factor is obviously positive and does not vanish. Equating
the first factor to zero we find that for x > 1 the original equation is solvable
and has only one root x=2.

129. Let us change the logarithms to bring them to the base a (here a > 0
and a 1 because if otherwise the expression log 12x makes no sense). By

a

virtue of formula (2) on page 24, we get

logo 2x + logo 2x =0.
logo a2Yx logoa logaax

This enables us to consider the following possible cases:

(1) loga2x=0 and we obtain x= 2 which does not satisfy the original

equation (the logarithm of a number a ;6 0 to the base 1 does not exist);
(2) logo ax=logo (a2 Yx) which yields x=a2.
Answer: x = a2.

130. Applying the equality logxb=logbx we transform the original equation
to the equivalent equation

logo [x (2 log a -x)] = 2.
Whence, after raising, we obtain

Solving this equation we find

xl 2=log a ± Ylog2 a-b2.

For a _:- lob and log a #

2

(b2 + 1) both roots are positive and unequal to unity

and, as is readily verified, satisfy the original equation. For loga=
2

(b2 + 1)

we must only take the root x1=b2. For a < 10b the equation has no roots.
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131. Passing in the equation to logarithms to the base a we transform it to
the form

logo 4ax 1 + oga x + logo a 1 logo x)=a.

After some transformations we get

(lol,x+1)a (logaX_')2
4'loga x + 4 logo x - a.

Taking into consideration that the square roots are understood here in the
arithmetic sense we see that the given equation can be rewritten in the folio,
wing way:

logox+I I-f-I1ogax--1 I=2a )/"logax. (1)

Now consider the following two cases:
(1) Suppose that

loga x > 1. (2)

Then equation (1) takes the form
log.x=a j`logax

whence we obtain
x1=aa2.

It can be easily seen that condition (2) is then satisfied only if a > 1.
(2) Suppose that

0<log, x<l. (3)

Then equation (1) turns into

2=2a jllog,' x,
Hence,

I

.x2 = aa2

It should be noted that condition (3) is only fulfilled if a 1. Since we a priori
have a . I (otherwise the original equation makes no sense), the second root
x2 exists only if a > 1.

We have considered all the possibilities because it is obvious that the values
of x for which logax<O cannot satisfy equation (1). Thus, for a > I the

I

equation under consideration has two roots, namely xl Taa2 and x2 =aa2. For
0 < a < I the equation has no roots.

132. We have
log (y-x+ I + 1) = log (x-40).

Putting j/x-I- l =t and raising we get the equation
t2-t-42=0,

whose roots are t1=7 and t2=-6. Since 0, the root t2 is discar-
ded. The value of x corresponding to the root tl is equal to 48. By substitution
we check that it satisfies the original equation. Thus, the equation has the
unique root x = 48.

133. Passing over in the equation to logarithms to the base a we get
1 lobo (P--x)_ 2 logo (P-q)- logo 4
+logo (x+q) logo (x+q)
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After performing some simplifications and taking antilogarithms we arrive at
the quadratic equation

(x+q) (p-x)= 4 (p-q)'-
The roots of this equation are

xl = (p-q)-}-Ypq xz4 '(p--q)- Vpq
It is easy to verify that both roots satisfy the inequality

p>x1,2>-q,
and, consequently, the original equation as well.

134. After some simple transformations based on the formula for change of
base of logarithms we reduce the given equation to the form

log,' x
3 --logyx3 =-j15.

Putting log,, x=t we obtain, after performing some simplifications and squa-
ring both sides of the equation, the new equation

12+t-2=0.
Its roots are t1=-2 and t2= 1. The first root yields the value x=-b- which,

as is readily seen, satisfies the original equation. The second root gives the

value x= Y5 which does not satisfy the original equation.

2

135. Using the fact that 0.4=. 5 and 6.25= (2
/

we reduce the original
equation to the form

/
2

\ log= x+ I 2

/

\ 2 (log x° - 2)

5

Equating the exponents we /plpass to the equation
loge x-6 log x -{- 5 = 0.

After solving it we find
(logx)1=1, x1=10 and (logx)2=b, x2=106.

136. Passing over to logarithms to the base 10 we obtain

log
14-x\

1 { fogy =(log log n-1)
log x

After simple transformations this leads to the equation

tog x .
4-x

log 109n

Taking antilogarithms we obtain
x2-4x+logn=0,

whence
x12=2± 3I4..-logn.

A simple argument now leads to the following final results;
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(a) If 0 < n < 104 and n # 103, the equation has two different roots, namely

xr=2 + J14-loge and x,=2- if4-loge.
(b) if n = 103, there is only one root x = 3 (x = 1 should he discarded), for

n=104 we also get one root x=2.
(c) If n > 104 there are no roots.
137. Passing to logarithms to the base 2 we obtain the equation

I loge a
log, sin x 2 log, sin x+1 =0.

Hence,

log2sin x=-1og2a
2

The quantity on the left-hand side being strictly positive (sin x 1 because
otherwise the symbol logsln x 2 makes no sense), we have loge a < 0 and, con-
sequently, for a > I the equation has no solutions at all. Supposing that
0 < a < I we obtain

loge sin x= f 1092 a

2

The plus sign in front of the radical must be discarded because loge sin x < 0.
Thus we have

log= a

sin x=2 2

and

_ log, a

x=(-1)karesin2 2 +nk (k=0, ± 1, ...).
It can easily be seen that all this infinite sequence of values of x satisfies the

original equation.
138. From the second equation we find

x+y=2x_y

Substituting this expression for x+y into the first equation we obtain
1-1og2 (x-y) -1og3 (x-y) =1,

that is

(1)

loge (x- y) + 1093 (x-y) = 0.
Passing to logarithms to the base 3 we transform the last equation to the form

(log23+ 1) log, (x-y)= 0.
Since log23+ 1 7 0, it follows that 1093 (x-y) =0 and x-y = I. Combining

this with equation (1) we obtain the system

x+y =2,
X--y= 1. }

Solving it we get
3 1x=2 , Y=T-
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Finally, we verify by substitution that the above pair of numbers is the solu-
tion of the original system.

139. Taking logarithms of the both sides of the first equation to the base
c we obtain

a log, x =b log, y. (1)

From the second equation we find

logy x-logy y=llogoge1 x

Y
.

Substituting log, y expressed from equation (1) into the latter equation we get

a b i- b blog, x- b log, x=
a

, or log, x = a ,

Now, raising, we obtain
b-a b bl

X b c a , or x=ca (b a)

From the first equation of the system we now find
a b

y =x b -Cb-a
140. Using the logarithmic identity aloga b=b we write the system in the

form
logs x+y = 7, (I)

xy=512.
Taking antilogarithms in the first equation we get

x (2) into the second equation of system (1)
we get the equation 512+y2-7y= 1 whose roots are

y1=4 and y2=3.
Finally, we arrive at the two solutions

x1=125, y1=4 and x2=625, y2=3.
141. Taking logarithms of both sides of the first equation to the base y we

get a quadratic equation with respect to logyx of the form

2 logy x-5 loggx+2=0,
whose roots are

If logyx=2, we have

log,, x = 2, logy x= 2

x = y2. (I)

By virtue of the identity logo b logy a , we get from the second equation the

relation logy(y-3x)=logy4, whence we find
y-3x=4. (2)

Equations (2) and (1) imply a quadratic equation for y of the form
3y2-y+4=0.
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This equation has no real solutions. If logy x= 2 , we have x= )/'Y and

y=x2. In this case, by virtue of (2), we get the equation
x2-3x-4=0.

Answer: x=4, y=16.
142. Taking logarithms to the base a in the first equation we find

x+ylogab= I+1ogab. (l)
In the second equation we pass over to logarithms to the base a. Then we
obtain

2log,, x
12go=-lob llogab =-2 log. y,

ga ga jya

which yields x= 1 . Substituting Y=
I into (1) we get the equation

y x

having the roots

x2-x(1±1oga b)+logo b=0,

x1=logab and x2=1.
The final answer is

xi = logo b, yi = logo a; x2 = 1, y2 = 1.

143. In the first equation we pass over to logarithms to the base x. Then
the equation takes the form

l3 (logx y+/ =10.

logx y
Putting here logs y=t we get the equation

3t2- 101+3=0,

having the roots tl = 3 and t,= 3 . In the first case logy=3, y = x3 and, by

virtue of the second equation of the original system, we obtain x4=81. Since
x > 0 and y > 0, here we have only one solution:

x, = 3, yr = 27.

Putting then log, y= 3 we find one more solution

x2 = 27, y2 = 3.

144. Let us pass in both equations of the system to logarithms to the b@se 2.
This results in the following system:

1092 x (1og2
x+ loge y) = 1092X,log, 12

(1)to
x . loge (x+y)=3log2 x

gz
10923 log, 3 j

Since x-74-1 (if otherwise, the left member of the first equation of the original
system makes no sense), we have loge x 6 0, and system (1) can thus be rewrit-
ten in the following way:

loge x+ loge y =1092 12,

loge (x+y)=3.
Taking antilogarithms we get

xy=12, x+y=8,
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whence it follows that

xi = 6, y,=2 and x2=2, y2 = 6.

145. Converting the logarithms in each of the given equations to the base 2
we get

xlog2y°y YH(1---log2x),
21og2x=3log2y.

From the second equation of system (1) we find x2=y3, whence
3

x=y2
Using (2), we find from the first equation y= 4. Hence,

3 2

x=25 , y=25

(1)

(2)

146. Let us transform the system by passing to logarithms to the base 2 in
the first equation, to the base 3 in the second and to the base 4 in the third.
We obtain

1 t
1092X+ 1092 Y+ 2

1092 z =1092 4,

logs y+ 2 logs z+ 2 logs x=logs 9,

b94 z+ 2 logo x+ 2 logo y =1og4 16. I

Taking antilol tithms we come to the system I
x ifyz=4,

y Xz=9,
z jlxy =16.

Multiplying the equations of system (1) termwise we find
(xyz)2 = 242.

Since x > 0, y > 0, z > 0, we thus have
xyz = 24.

Squaring the first equation of system (1) and using (2) we gat
_162x`24=_3

27 32

(1)

(2)

Analogously, we find y=
8

and z= 3 . The verification by substitution
confirms that the three numbers thus found form a solution,

147. Passing over to logarithms to the base 2 in the first equation and then
raising we get

y2 -xy = 4. (1)

Equation (1) and the second equation of the original system form the system
x2 + y2 25 Ij 2
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This system has two solutions satisfying the conditions y > x. y > 0, namely:

xl=-
7 yi= 1 and x2=3, y2=4.
2 -17=2

148. Dividing both members of the equation by 4x we find

)1 .
I 4 J'3-2.

This yields

and, hence,

3

(4)x-3
8 -(4

2

3X=-T.

149. Substituting y expressed from the second equation Into the first we
obtain

2x+ a x-2x+X
X z

It follows that either x= I or

and, consequently,

Answer:

X+1 =- 2x-)-x

x=3
3

x1=yi =1, x2=3 1

, y2=3/9.

150. Putting ax=u and oY=v we represent the system in the form
u2+v2= 2b,

uv=c.
These two equations imply

(u+v)2=2(b-I-c) and (u-v)2=2(b-c).
Since the sought-for values of u and v must be positive, the first equation is
reduced to the equation

u+v=)/2 (b+c). (1)

The second equation indicates that for the system to be solvable, it is neces-
sary to require, besides the posi.tivity of the numbers band c, that the inequality

bc (2)

should be fulfilled. We also have

u-v= ±Y2 (b-c) (3)
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and therefore, solving the system of equations (l) and (3), we find, taking the
plus sign, the values

2 (Yb cu1=
2

V1
2

In the second case we get

- Y6-c),u2 = 22 (Yb+ c

v2= 22 (Yb+c- Yb-c).

We have found two solutions of system (1), and if condition (2) is fulfilled all
the values of the unknowns are obviously positive. The two corresponding so-
lutions of the original system have the form

x1= loga u1, y1= logo v1; x2 =logo u2, y2 =logo U2-

We now can assert that for the system to be solvable it is necessary and suf-
ficient that b > 0, c > 0 and If these conditions hold the system has two
solutions.

151. Multiplying the equations we get
(xy)x + y = (xy)2".

Since x and y are positive, it follows that either xy=I of xy # 1, and then
x+y=2n. (I)

Let us first consider the second case. The first equation of the original

system then takes the form x2n = y", whence we obtain

y = x2. (2)

Substituting y=x2 into equation (1) we receive
x2+x-2n=0.

This equation has only one positive root

Y' nT I - I
x1

2

Using (2) we find the corresp onding value of y:

y1=4 Y9n--h1-1)2

(3)

(4)

In the second case when xy= I we have y z , and the first equation of the

original system takes the form
I- +x

xx =x-n.
Since x and n are positive this equality is only possible if x= 1. Thus, we
have found one more solution: x2=1, y2=1.
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152. We transform the system in the form
(3x+y)X-9=9,
x V324s2(3z+y)2. J

From the second equation we find
324=2x-9 (3x+y)2(x-y)

and, consequently, by virtue of the first equation, we have
324= 2x-9.81

which results in 22=2X-Y, i.e.
x-y=2. (1)

Combining equation (1) with the first equation of the original system we
arrive at the two systems

x--y=2, x..-y-_2.
3x+y=3 } (2) 3x+y=-3. (3)

5 3
The solution of system (2) is xt , yl - --T . The solution of system (3)

is x2=- f , y2=- 9 . The substitution in the original system confirms that

both pairs of numbers satisfy it.

153. Put 9 =a. If a=1, i.e. p=q, the system is satisfied by any pair
P

of equal positive numbers. Let us, therefore, suppose that a ;6 1. From the
second equation we get x=y°`. Taking logarithms of both sides of the first
equation and using the above equality we obtain ty logy ((x-yti-1)=0. We
have y > 0 and therefore either logy=0 or a=y' In the first case we ob-

a 1

tain x1= 1, yl= 1 and in the second case y, - txa II. Both pairs of
numbers satisfy the original system as well.

154. Taking logarithms of both equations we get the system
ylogx=x logy, (1)
x logp=y log q.

which determines the ratio
x _log q =a. Consequently,
y log p

x=ay. (2)

If p= q, the system has an infinite number of solutions of the form x=y=a
where a > 0 is an arbitrary number. If p q, then, substituting x determined
from formula (2) into the first equation of system (1) we find

a 1

x=aa-I, y=as-I.
Consequently, if p q the system has a unique solution.

155. Taking logarithms of both members of the equality a9=c2-bs we get
2= Toga (c-b)+toga (c+b).

Whence we obtain
2= + flgf,

I

+O qIOgF .y a a
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and, hence,
logo+b a+logc=b a=2 logctb a.

156. Using the formula logs m-
tog dl

I

n we obtain

logb2k a= 2k logy a and loga2k b = 1ogab,
2

h z

Z) logo2-k a-loga2k b)2'=E (2k logy a-k logo bl =
kc() k=0 \ 2

n n n

=logyaj4k-}-logabY. 4Y2=

k=0 k-0 k=0
1 n+1

4n}1-1 2 4
- 1

= 4'--logo a+ logab=2(n+1)=

4--1
=3 (4n}1-1) slogub-2(n+1)=

(4n+1-1)logba+
n

)-2(n+ 1).
4 logy a

logo logo a

157. a logo a = (a log. b) logo logo a. blogs logo logo a.

158. We have
n(n-1)

=anq 2

Using the formula for changing the base of logarithms we_ obtain

logy 6= 1 g =
n+n (n AI)

ioga 9
2

But we have

and therefore

logo q =logy q _ logo b_ A_
'logo a logy b= Y'

log, b,;--
2AB

2n -fin (n-1)

159. Taking advantage of the equality logs b = logo a we transform the gi-

ven formula as follows:
] I b

169N c logya IogN b 1ogA' a logN
logs a

_
1 1 c logs a

logs b 1ogN c 1ogA b

n
The symbol Iak denotes the sum ao+al-1-a2+...+as.

k=0
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This implies

logs g og.+V b , (1)

because the factor `va is different from zero. Taking antilogarithms- in equa.
109N

b c

a

_b.
(2)

Thus, b is the mean proportional between a and c. Taking then logarithms of
both sides of equality (2) to an arbitrary base N and carrying out the transfor-
mations in reverse order we complete the proof of the assertion.

160. It should be supposed that N I because, if otherwise, the fraction
on the right-hand side becomes indeterminate. Dividing the identity to be pro-
ved by loge N logy N loge N we replace it by the equivalent relation

I 1 1 _ 1

log. N+ logo N+ loge N log.b, N
Passing here to logarithms to the base N we get

l og,v a + logs b + logs c = logs abc.

The last identity being obviously valid, the problem has thus been solved.

161. We have
log, xIogzabI+Iogxb

1 to blogeyxlogxa logza- + ga
which is what we set out to prove.

162. Using the logarithmic identity logy a = dog` a we transform the left
g,

member of the given inequality in the following way:

log I x+log3x= log3 i +log3x=log,x log t 3+1 _
2 log,

2
( 2 ) -
=1og3 x log 1

3 l0 3 x -- log,, x

2 2
_

1093 1
log 32°

22
Then the given inequality takes the form

llog,2
>

l
1.

gs
2

We have 2 > I and
3 > 1, and, by property of logarithms, log 3 2 > 0. Con-

2

sequently, the foregoing inequality is equivalent to the inequality

1og3x<-log3 2.
2

Hence, noting that x > 0 according to the meaning of the problem, we finally
obtain

-log 3 2

0<x<3 2
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163. Since x > 0, the given inequality is equivalent to the inequality

xtogax > a2.
But a > 1, and therefore taking logarithms of both sides of the last inequality
to the base a we get the equivalent inequality

logax>2.
From this we deduce the final result:

either logs x > 1/7, and, consequently, x > aV-2

or logs x < - Y2 , and then 0 < x < a-v2 .
164. By the meaning of the problem we have x > 0 and therefore the given

inequality is equivalent to the inequality
loga x (x+ 1) < logo (2x+6).

Since a > 1, it follows that x (x+ 1) < 2x+6, that is
x2-x-6 < 0.

Solving this quadratic inequality for x > 0 we get
0<x<3.

165. The inequality to be established is equivalent to
0 < x2-5x+6 < 1.

Since x2-5x+6=(x-2) (x-3), the inequality 0 < x2-5x+6 holds true for
x<2

and for
x > 3.

Solving then the inequality x2-5x+6 < 1, we find that it is satisfied for

5 - Y5 < x < 5 -I- Y5
2 2

Since r5-> 2, we have 5 2 < 2 and, consequently, 5+2Y5 > 3. The-

refore, the original inequality holds true for

5

2
5 <x<2 and 3<x<2

166. Reducing the fractions on the left-hand side to a common denomina-
tor, we find

and, hence,

-l
log2x(log2x-1) < I

I + loge x (Iog2 x-1)
> 0.logz x (loge x-1)

The numerator of the last expression is positive [indeed we have I + logx-

- loge x= 1092 X_ 2 / + 9 , the inequality is reduced to the relation

loge x (loge x-1) > 0,
which is fulfilled for x > 2 and 0 < x < 1.
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167. According to the meaning of the problem, we have x > 0 and, bence,
the given inequality is equivalent to the inequality

x3-Iog,2x-flog,x>
1.

Taking logarithrps of both sides of this inequality to the base 2 and putting
y= loge x, we get an equivalent inequality of the form

y (3-y' -2y) > 0,
which, after the quadratic trinomial has been factorized, can be written in the
form

y (l - y) (3 +y) > 0.
The latter inequality is fulfilled if and only if either all the three factors

are positive or one of them is positive and the other two are negative. Accor-
dingly, in the first case, i. e. when

y>0, 1-y>0, 3+y>0,
we obtain 0 < y < I and, hence,

I <x<2. (1)

The second case reduces to three subcases among which only one leads to
a consistent system of inequalities. Namely, when

y<0, 1-y>0, 3±y<0.
We receive y < -3 and, hence,

0<x< 8 .

Thus, the original inequality holds if and only if either

0<x< 1
or

(2)

I <x<2.
168. Putting 1og2 x= y and noting that logx 2= 1 1 we rewrite the

log., x y
given inequality in the form

y-F y +2 cos x' 0. (1)

The numbers z = y-} y and y have the same sign, and z 1:-:- 2 for all y (see

(2), page 20). Therefore, if z > 0, then the inequality z-2cos. a is fulfilled
only if z=2 (i.e., y=1) and cos a=--1 or, in other words, if in the original
inequality x=2 and a=(2k+1)2r(k=0, ±1, ±2, ...). For these values the
sign of equality appears.

But if z < 0, i.e. y < 0, then z<-2, and inequality (1) is fulfilled for all
a, whence it fol ows that the original inequality holds for 0 < x < 1 and all
real values of a besides the values found above.

169. The original inequality is equivalent to the relation
0 < 1094 (x2-5) < 1,

whence we find that t <x2-5< 4 or 6<x2<9 or Y6<Ixi <3.
Answer: r6 < x< 3 and -3<x<-r_6.
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5. Combinatorial Analysis and Newton's Binomial Theorem
170. Taking the ratios of the first term of the proportion to the second and

of the second to the third and reducing the fractions to their lowest terms
we obtain

(n+ 1)1 (n+ 1)! n-m+1
(m+1)! (n-m)! m! (n-m+1)! m+1

and

(n+1)! (n+l)! n-m+2
m! (n-m+1)! (m-1)!(n-m+2)! m

The conditions of the problem thus lead to the two equations

n-m+ l -1 and
n-m+2 _ 5

m+l m - T,
Solving them as system of simultaneous equations we find m=3 and n=6.

171. We have
I(I L I x2-x9)9= I +C9 (x2-x3)+Cs (x2-x9)2+C9 (x2-x3)9+

+ Ce (x2-x9)4+C9 (x2-X3)5+... + (x2-X3)9.

It is readily seen that xe enters only into the fourth and fifth terms on the
right-hand side. Using this fact we easily find the coefficient in xe which is equal
to 3C9-l- C$.

172. The summands of the given sum form a progression with common ratio
I -f-x. Therefore,

(1+x)k+(I+X)k+1+...
+(I+x)n=(1+x)n+X (1 +X)k (1)

Writing the sum in the form of a polynomial
a0 + a5x + ... + Rnyxm + ... + anXn ,

and removing brackets in the right-hand member of equality (1) we see that if
rri < k, then

and if m k, then

m+1 m+1
am = Cn+1 - Ck ,

am=Cnm+

t11

173. From the conditions of the problem it follows that

Cn+44, or
n (n21)-n+44.

Solving this equation for n we find n = It.
The general term of the expansion of the expression

( lu
\x iT x+x4 J

by the binomial formula can be written in the form
3

m 2
(11-m)-4m

C11X
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By the hypothesis we have 2 (1I-m)-4m=0 which yields m=3. Hence, the

sought-for term is equal to Ch.

174. Putting x-{ z =u we can write

(1+x+-.)'°(l
where

uk= lx+6)k=xk+CkXk-26+...+Ckxk-2s6s+... -f- sk (1)
/ x

For every summand in expression (1) which does not contain x we have the
condition k-2s=0. Consequently, this summand is equal to Collecting
all these terms we conclude that a summand not containing x in the original
expression is equal to

I+Cio C2.6+C10 C4.62 } C,6, Ceo +CS'

175. After simplifications the inequalities Tk+1 > Tk and Tk+1 > Tk+2 take
the form

Y3 I 1 3
k > 101-k' 100-k > k+1

Solving each of them with respect to k, we get

101 V3 100r3-1
r-3+I

> k > y 3+I (1)

Both the left and right members of inequality (1) are not integers, the diffe-
rence between them being equal to unity. Therefore there exists only one inte-
ger k satisfying inequality (1). Noting that 1.72 < f1 3 < 1.73 we establish, by
direct computation, that

64.64>k>63.135.
Hence, k=64.

176. The general term Tk+1 of the expansion is equal to C,k,ak. If Tk=Tk+1
then C _Iak-1=Cnak, that is

n! ak-1 n!ak
(k-])I (n-k+1)!

_
-kl (n-k)! '

whence we obtain k=
n+J

. We have thus established the required condition:
1+-

a

the number 1 a must be the divisor for the number n+ 1.
Furthermore, the relation Tk=Tk+i=Tkt2 is equivalent to the equalities

I _ a a2

(n-k+1)(n-k)
k(n-k)_

k(k+1)
that is

k
a,

k+I
a.

From the latter relations we obtain the equality n+ 1 =0 which is impossible.
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177. The expansion will contain n terms of the form x4 (i = 1, 2, ..., n),
n (n- l ) terms of the form $x1 ( i , j = 1 , 2, ... n, i j6 j) and, finally, C, terms
of the form xixJxk where i, j and k are different numbers. Thus, the number of
different dissimilar terms is equal to

n+n (n-1)+n (n-1) (n-2)n (n+ 1) (n+2)
6 6

178. The divisors of the number q are obviously the numbers pl, p2. pk
and all their possible products. The number of these divisors is equal to

C2-f- Ck+... +Ck=2k.
The fact that all the divisors are different and that there are no other divisors
is implied by the uniqueness of the representation of an integer as a product of
prime numbers.

179. The equality to be proved has the form
Cnt Cn Ckn CV t I 2n+i - I
2

} 3 -}- ... +k+ll } ... -}- n + n + 1 - n + 1
and is equivalent to the equality
I+(n+1)+n+ 1 Cn+n- I Cn+... { C."+... } n+l Cn-'+ I=2n+to

2 3 k+1 n

Since

n+l kn+l n! _ (n+i)! k+r
k+l Cn k+l kl (n-k)I (k+ l)!(n-k)! -Cn+t,

the left-hand side of the last equality is equal to

I+Cn+t-f-Cn+i+...+Cn+i+...--Cn+i-f-I =(I+1)n+i=on+i
which is what we set out to prove.

180. The general term on the left-hand side of the equality can be transfor-
med in the following way:

kCR xk (1-x)n-k =k
k! (n! k)!

Xk (1-x)n-k =

-nx (a-1)!
xk-1(I_X)n-t-(k-1) =nxC,k,_i(k- l)! (n-k)l

xk-t(1-x)n°t-(k-u

Therefore the left member of the equality can be written in the form

nX [Co_1(1-x)n-r+C,t,_tx(1-X)n+...+Cn-ixn-11 =
=nx (x+ 1-x1n-t=nx.

181. Any splitting of the pack indicated in the statement of the problem is
equivalent to selecting 16 cards out of the 32 cards that are not aces and two
aces out of the four aces. The first selection can be accomplished in C32 ways,
and the second in C21 ways. Since every selection of the above 16 cards can be
combined with any selection of two aces, the total number of ways in which the
pack can be split is equal to C32C;.

182. The sought-for number is equal to the number of permutations of 10
digits taken 5 at a time, i.e. to 10x9x8x7x6=30,240.

183. Imagine that we have an ordered set of n "boxes" which can be filled
by pairs of elements. Let us form the partitions and fill, in succession, the boxes
by the pairs of elements.
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A pair put into the first box can be selected in C2n ways. After the first pair

has been selected, we can select the second pair in C2n_2 ways, then the third

in Cin_r ways and so on. Finally, we obtain a set of C2nC2n_2C2n_4 ... C2
partitions which, however, includes all the partitions differing in the order of

the pairs. Consequently, the number of the partitions we are interested in is
equal to

CznCin_1...Cz _ 2n (2n-1) (2n-2) (2n-3) ... 2.1
rr!

-
2n n!

=(2n-1) (2n-3) ... 3.1
The same result can be obtained by another way of reasoning. Let km

(m= 1, 2, .. .) be the number of partitions of the desired type when the number
of elements equals 2m. Consider 2n elements. Since the order of the pairs is
inessential a pair containing the first element can be regarded as the first pair.
The pairs containing the first element can be formed in 2n-I ways. After a
first pair has been selected, the rest of 2(n-1) elements can be partitioned
into pairs in kn_1 ways. Therefore, kn=(2n-1)kn_1. With the aid of this
relation we easily find

kn=(2n-1) (2n-3) ... 5.3.1.
184. Out of the total number n!_ of permutations we have to subtract the

number of those in which the elements a and b are adjacent. To form a per-
mutation in which the elements a and b are adjacent we can take one of the
permutations [whose number is (n-2)!] containing the remaining n-2 elements
and add the two elements a and b to it so that they are adjacent. This can be
obviously done in 2 (n-1) ways (the factor 2 appears here because a and b can
be interchanged). Thus, the number of permutations in which a and b are adjacent
is equal to 2 (n-2)! (n-1), and the number we are interested in is equal to

n!-2 (n- I )l =(n-1)l (n-2).
185. If among these 5 tickets there are exactly two winning tickets, then the

remaining three are non-winning. Out of eight winning tickets, one can select
two in C8 ways, and out of 50-8=42 non-winning tickets, three tickets can
be chosen in C92 ways. Each way of selecting two winning tickets can be com-
bined with any choice of three non-winning tickets. Therefore, the total number
of ways is equal to

CZ C9
8x742X41x40-326,240.

6 42 1x2 1x2x3
The number of ways of selecting five tickets so that at least two of them

are winning is equal to the sum of the number of ways in which exactly two,
exactly three, exactly four and exactly five winning tickets are extracted. Hence,
the desired number is equal to

c8c22 [ CeCa2--C8Ca2-}-Ce-18X7X4x2x30+1X2
Ix2X3

8x7x6 42X41 8X7x6x5 42 8x7X6x5x4+l x2x3 X 1X2 +l x2x3x4 X 1 + 1 x2X3x4x5
= 326,240 + 48,216+2,940 + 56 = 377,452.

186. First solution. For convenience, let us think of the parallel lines as lying
one above the other. Suppose that there are n points on the upper line, and m
points on the lower one (Fig. 1). Let us break up the set of all joinin line
segments into the pencils of lines with fixed points on the lower line as vertices.
(In Fig. I we see such a pencil of segments joining a point A with all the points
on the upper line.) Evidently, the number of these pencils is equal to m, and
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that the number of points of intersection of the segments belonging to two arbit-
rary pencils is the same for any pair of pencils. If we denote this number by
k, then the total number of points of intersection of all the segments is equal
to the product of k by the number of combinations of the m pencils two at a
time, i. e. to

2 m(m-1)kCm=k 2

To compute the number k let us group all the segments joining the n points
on the upper line to two points A and B on the lower line into the pairs of
segments joining a fixed point on the upper line (for instance, C) to the points
A and B. The number of these pairs is equal to n, and there exists exactly one
point of intersection of the segments belonging to two pairs (for instance, such-
is the point of intersection of the diagonals of n pointsthe trapezoid ABCD). Therefore,

2 n(n-1)
kn=C n= 2

Consequently, the total number of points of
intersection of all the segments joining n points
on the upper line to m points on the lower
line is equal to

n(n-1)m(m-l)
2 2

, paints
FIG. I

Second solution. Each point of intersection of the segments can be obtained
by selecting two points on the first line (which can be performed in C,2 ways)
and two points on the second line (which can be performed in Cn ways). Com-
bining all the possible pairs of points we get the total of

Cm
C2_m(m-1)n(n-1)

4

points of intersection.

187. Each parallelogram is specified by choosing two straight lines of the
first family (which can be performed in Cn ways) and two lines of the second
family (which can be performed in Cm ways). Thus, the total number of the
parallelograms is equal to

22 n(n-1)m(m-1)
CnC5- 4

188. Since in the given alphabet every separate character (a dot or a dash)
and every pair of the characters denote a letter, the number of ways in which
a continuous line consisting of x characters can be read is independent of the
particular form of the line and is equal to the total number of all possible
partitions of the characters forming the line into the groups of one or two adjacent
characters. Let us denote this number by p,,.

Let us now divide all the possible ways of reading the given line consisting
of n characters- into two sets.

Let the first set comprise the ways in which only the first character of the
line is read as a separate letter. The number of ways belonging to the first set
is equal to the number of ways in which the rest of the line consisting of n-I
characters (remaining after the first character is discarded) can be read, that is
to. Pn-t

Let the second set comprise the ways in which the first two characters of the
line are read as one letter. The number of ways belonging to the second set -ie

6 -323
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equal to the number of ways in which the chain consisting of n-2 characters
(remaining after the first two characters are discarded) can be read, that is
to pn-2.

Since every way of reading the given line belongs either to the first or to the
second set, the total number of ways is equal to the sum of ways belonging to
the first and second sets, i. e.

Pn=Pn-i+Pn-2 (1)

This equality is a recurrent formula by which one can compute, in succession,
Pr. p2...., pn for any n provided pl and p2 are known. But in the given problem
p1= 1 (for a line consisting of one character there is only one way belonging to the
first set) and P2=2 (for a line consisting of two characters there are two ways
of reading one of which belongs to the first set and the other to the second set).

Using formula (1), we find, in succession,

P3=P2+Pi=2+1=3,
P4=Ps+P2=3+2=5,
Ps=P4+Pa=5+3=8

and so on. Finally, we get
Pit = 233.

6. Problems in Forming Equations
189. Let x be the smaller of the factors. Then the statement of the problem

directly implies that

that is
x (x+ 10)-40=39x+22,

x2-29x-62=0,
whence xr=31, x2=-2. Discarding the negative root we find the sought-for
factors which are 31 and 41.

190. Before the first meeting the first cyclist covered s+a km and the second
one s-a km where s is the distance between A and B. Consequently, before the
second meeting they covered 2s-} k s and 2s-Is s km, respectively.

But if two bodies move with constant speeds, the ratio of the speeds is equal
to the ratio of the distances covered by the bodies, provided the times taken
are equal. Therefore, for finding s we have the equation

1

s+a-2) k

s-a 2_ 1
T

Hence t = 2ak km.
191. If two bodies move with constant speeds, then, for the same path, the

ratio of their speeds is the reciprocal of the ratio of the times taken. Let v be

the speed of the third car, and t the time of motion of the second car by the

moment it was overtaken by the third car. Therefore we have
40 t-05 50 t+l
V t

and
V7 - +1 - 5

Dividing termwise the first equation by the second, we find t= 3 hours and

then determine v=60 km/hr.
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192. Let the time period between the start and the meeting be x hours. The
distance between the point of meeting and the point B took the cyclist x hours
and the pedestrian x--t hours. Since, for equal distances, the times of motion
are inversely proportional to the speeds, we can write

x+t -k,x

whence we find

x= t
k-1

193. Let x be the distance between A and B, and y be the distance between
B and C. Then, taking into account that the time of motion is the same in all
the cases mentioned in the statement of the problem, we obtain the system of
equations

Solving this system we
be the length of

the uphill portion. Then we can form the following system of equations:
z 11.5-(x+y)=2T9-0,

3+4+ 5

11.5-(x+y) x y _ 1

3 +4+5-310
Adding together the equations, we find x=4.

195. Let us denote the distance between the points A and B by 1, and the
speeds of the motorcyclists by yr and v2. During the time period t the first
motorcyclist covered the distance p+1-q, and the second the distance q+1-p.
Therefore,

UI =

V =2
1

(1)

On the other hand, the ratio of the speeds is equal to the ratio of the paths

covered before the first meeting, i. e.
vI 1-P
v2 P

Substituting ul and u2 expressed by (1) into the latter relation we get an
equation for determining 1. Solving it, we find 1=3p-q. Substituting this value
of 1 into formulas (1) we obtain

4p-2q 2p
vr= t v2=

t

196. The difference between the delay times of the airplane in the first and
second flights which is equal to 116012 hours is due to the fact that the distance
of d km was covered by the aircraft at different speeds, namely, during the first

+-E=X+Y

x+y-14 x+y

+ 4375 603.75
find x= 14 km and y= 16 km.

194. Let x denote the length of the horizontal path, and y

6*
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flight the speed was v km/hr and during the second flight w km/hr (the speeds
on the other parts of the flight were equal). Thus, we get the equation

ft-t,_ dd
60 v

_
w'

wherefrom we find that the initial speed of the airplane is equal to

60vd km
w

_
60d}t hr(EZ-tl) '

197. Let us denote the weight of each cut-off piece by x. Suppose that the
first piece contained 100a % of copper, and the second 100b % of copper. Then the
weight of copper contained in the first piece after its remainder has been alloyed
with the cut-off piece of the other alloy is equal to a (m- x)+bx, and the
amount of copper in the second piece after its remainder has been alloyed with
the cut-off piece of the first alloy is equal to b(n-x)+ax. By the hypothesis,
we have

b(n-x)+ax
m n

Solving this equation and taking into account that a b we obtain

mnx=m+n'
198. Let the ratio of the weights of the alloyed pieces be a:(i. Then

aP oq
100+ 100 r

a 0

_
100°

It follows that
a: _ (r - q):(p - r).

The problem is solvable if either p > r > q or p < r < q.
To find the maximum weight of the new alloy let us consider the ratios
P Q

and(r-qf f p-rf
if P = Q , then the maximum weight is equal to

I r-9 I f p-r l
P-1 Q=pqqP=pq Q.r-q P-r

If jr q f < P Q r f , the maximum weight is equal to

p+--r p=Pq P.r-q r -q

If, finally, f ,r-9 f > l p rf , then the maximum weight is

r-9 P-9Q+p-rQ p-r Q.

199. Suppose that each worker worked for t days and A earned x roubles
while B earned y roubles. From the conditions of the problem deduce the fot.
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lowing system of equations:

(t-1) 72,

(t-7) =64 8, (1)

(t-l)
t

-(1-7) t =32.4.

From the first two equations we find
i-1_72 t-7 64 8

i -xx' t y
Finally, the last equation yields

that is

72 £ - 64.8 x
= 32.4,

x y

20(X
)2-9(X1-18=0.

From the latter equation we find y=5 x (the negative root is discarded) Now,

dividing the second equation of system (1) by the first one and replacing
I by its value b we find

6 t-764.8 t-7 3
5 't-1

_
72 ' t-l 4'

whence we obtain t=25. Consequently,
x=75 roubles, y=90 roubles.

200. Let fl be the time elapsed before the first meeting, t2 be the time
elapsed before the second meeting and R be the radius of the circle. During
the time tl the first body covered the distance vt] and the second the distan-

ce a2i
. The sum of these distances is equal to the circumference of the circle,

that is
2

vtl+ 2r =2nR (1)

During the time to each body covered the same distance equal to the circum-
ference of the circle, and hence we have

s
vt2 = 2nR and 2$ = 2atR.

2

. Substituting this valueEliminating t2 from these relations we find R = ad
of R into (I) we arrive at a quadratic equation in tl of the form

ad
f vt1 T

2=O.2 a
Solving this equation and discarding the negative root (according to the meaning
of the problem, we must have tl > 0) we finally receive

a
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201. Let us denote by q1 and q2 the capacities of the taps measured in 1/min
and by v the volume of the tank. The times of filling the tank by each tap
alone are, respectively,

V Vt1 =
4t

and 12 =
92

The first condition of the problem leads to the equation

9t'
3

t2-f-g2.3 t1 18 v.

(1)

Using equalities (1) we get the quadratic equation
91 2 13L _0
q2 6 q2

whose solutions are Q1= 3 and Q1= 2 The second condition of the problem
implies that

q2 g2

v= (3.60+36) (g1+g2) =216 (q1 +q2)
From (1) we find the sought-for quantities-

216 (q, + q2)
= 540 min (9 hours),

q1
12=216 (g1+g2)=360

min (6 hours).
q2

There is a second solution, namely
11 =360 min, t2 = 540 min.

202. Let y be the specific weight of water and s be the cross-section area
of the pipe. Atmospheric pressure pa is determined by the formula

Pa =Tc
If p1 is the pressure under the piston when it is elevated, then, by Boyle and
Mariott's law, for the column of air between the piston and the water level we

FIG. 2 FIG. 3

have p1 (b-x) s=pahs (see Fig. 2). The equilibrium equation for the column of
water is of the form pa-p1=yx. This leads to the equation

hec--=xb-x
(after y has been cancelled out). i. e. to the quadratic equation

x2-(b+c) x+(b-h) c=0.
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Solving the equation we find

x=
2

[(b+c)-Y(b-c)2+4hc].

203. Let p1 and p2 be the air pressures under the piston in positions I and II,
respectively (Fig. 3), and y be the specific weight of mercury. The equilibfiium
equation for the columns of mercury 12 cm and x cm high are, respectively,

76y-p1=12y, l
76y-P2=xy f (1)

Boyle and Mariott's law applied to the column of air below the piston yields
the equation

pr .29

4

=P2 (36-x).

Substituting the expressions of pl and p2 found from (1) into this equation, we
obtain the following quadratic equation in x:

29 4 X 64=(76-x) (36-x),

that is
x2-112x+832=0.

Solving the last equation we find x=56+ j3136-832=56 ± Y2304=56+48,
and hence x=8 cm.

204. Let the watch gain x minutes a day. Then it will show true time in
2 days. If it were 3 minutes slow at that moment but gained x+ 2 minutes

more a day, it would show true time in 3 1 days, Hence,
x+

2

j
x+I

1 x'
2

whence

x2+
2

x-1=0.
Solving this equation, we find x=0.5.

205. If x is the original sum of money each person deposited and y is the
interest paid by the savings bank, then

y
-M=p,

y n _x+x
100

x+x 100 12-q'
Multiplying the first equation by n and the second by in, and subtracting the
latter equation from the former, we find

X=pn-qm

n-m
Now taking the original system and subtracting the second equation from the
lrst one we get

x
1200("1-n)=P-q.
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whence we obtain
1200 (p-q)

206. Let vl and v2 be the speeds of the points, and V1 > u2. The first
condition of the problem is expensed by the equation

2nR22aR
V2 V1

The second condition means that the distance covered by the point moving in
the circle at a higher speed during the time T Is by 2nR longer than that
covered by the other point. Thus, we get another equation

Tv1- Tv2 = 2nR.

From.the latter equation we find
2ARV2 = v1 - T

Substituting this expression for v2 into the first equation we get a quadratic
equation for v1:

2 2nR 22R 2rvl- T vr- T t
=0.

Solving it we find

and then determine

ul
T

v2 =T C 1 -f- 4t -1J.

207. Let v be the volume of the solution in the flask and x be the percen-

tage of sodium chloride contained in the solution.

The volume n of the solution is poured into the test tube and evaporate4

until the percentage of sodium chloride in the test tube is doubled. Since the
amount of sodium chloride remains unchanged, the volume of the solution in
the test tube becomes half as much, and hence the weight of the evaporated
Water is equal to Vin.

After the evaporated solution is poured back into the flask, the amount of

sodium chloride in the flask becomes the same as before, i. e. v 100 , and the

volume of the. solution is reduced by 2n . Thus, we obtain the equation

,x
100 x l P
v - 100v-r

wherefrom we find
x=t2n-ltd
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208. Let the first vessel contain x litres of alcohol, then the second vessel
contains 30-x litres. After water has been added to the first vessel, one litre

of the obtained mixture contains x litres of alcohol and I- Y-0 litres of water.
After the resulting mixture is added from the first vessel to the second vessel

the latter contains 30-x+ X x litres of alcohol and (1 -30} x litres of water.

One litre of the new mixture contains
\\\\\ //

z1 - + litres of alcohol.

After 12 litres of the new mixture is poured out from the second vessel into
the first, the first vessel contains

12 1- 30+ (3b)
J

+ (30-x) litres of alcohol
3-6

and the second contains J

a
18 1-0 } (30

1

litres of alcohol.

By the hypothesis,

18
- x

x
TO } 12

x x z xa
[1 1' (30 1 30+ 3-6 +x-

whence we get the equation

This equation has the roots
x2-30x+200=0.

x1=20 and x,=10.
Hence, the first vessel originally contained either 20 litres of alcohol (and then
the second contained 101) or 10 litres (and then the second vessel contained 21}1).

209. Let x be the distance between the bank the travellers started from and
the place where C left the motor boat. Note that A caught the boat at the
same distance from the opposite bank. Indeed, the only distinction between the
ways in which A and C crossed the water obstacle is that C started out'fn the
motor boat and then swam and A first swam and then took the motor boat.
Since they swam at an equal speed v (v A v1) and the crossing took them equal
times, the above distances should be equal.

Taking this note into consideration, we easily set up the equation
x+s-2 (s-x) s-x

V1 V
its left member expressing the time of motion of the boat from the start to'the
point where it meets A and its right member being equal to the time of motion
of A from the start to that point.

The above equation yields

xas (y ,i vl)
3v + vl

Therefore the duration of the crossing is equal to

,-,+ x s v:+-3ur7=
V

v,;v7
3v+,,, .
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Note. The problem can also be solved without using the equality of the
above mentioned distances. But then we have to introduce some new unknowns,
and the solution becomes more complicated.

210. Let the sought-for distance be s km and the speed of the train be
v km/hr. During 6 hours preceding the halt caused by the snow drift the first

5 (s-6v)
tt disrain covered 6v km and the remaining ance of (s-6v) km took it

6v

hours because the speed of the train on that part of the trip was equal to 5 v.

The entire trip (including the two-hour wait) lasted 8+5 (s6v 60)
hours which

exceeds by one hour the interval of v hours indicated by the time-table. Thus,
we obtain the equation

8+5 (s-6v ) _ I
S

.
6v v

Reasoning analogously, we set up another equation concerning the second train:

s 3 150 5(s-6v-150)v+2_8+
v 6v -

From this system of equations we find s=600 km.
211. Denoting the speed of the motor boat in still water by v and the speed

of the current by w we get the following system of two equations:
a + a _Tv+w v-w

a a-b 2b =T+a+b

vW -Toy v+W V+Wo v+W.

Solving this system with respect to the unknowns I and and takingv+W v-tv
their reciprocals we find

v+w=Ta+b and (a+b+bToa.
0

It then follows that

1_ 1 r 2a+b a(2a+b)a-
2 T-To +T (a+b)+Toal

and
1 2a+b a(2a+b)

ra
2 [T-To T (a+b) +ToaJ

212. Let x be the time period during which the second tap was kept open
and v (w) be the capacity of the first (second) tap measured in ms/hr. We have

v (x+5)+wx=425,
2vx=ra (x+5),

(v+w) 17=425.

From the second and third equations we get

z+5 __ 50xv=253x+5'
u' 3x+5
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Substituting these expressions into the first equation we find
3x2-41x-60=0,

whence x= 15 hours (the negative root is discarded).

213. Let the sought-for speed of the train be v km/hr and the scheduled

speed be v1 km/hr. The first half of the way took the train 10 hours and the
v1

second half of the way together with the halt took it 10 0-}-2 hours in the. hours in the

1

v1-rI
first trip and 0-} 12 hours in the second trip. But both times the train arrived
at B on schedule and therefore

10 10 1 10 10 1

v v1 -+10+T0

_
' a1 v + 12

From the first equation we can find v1. We have
1 _ 1 _ 1 100 1

10
vi v1+10 -20' v1(v,+10) 20

that is
V12 4-10v1- 2000 = 0,

and the latter equation has the only one positive root v1 = 40.

From the second equation we find that v=60 km/hr.
214. Let the distance AB be equal to s km, and the speeds of the first and

second airplanes be respectively equal to v1 and v2. Then, by the conditions
of the problem, we have the following system of three equations:

s a s a

+
I

2v1 vl 2a2

_
02

'

s

Let us put

2v2 - 2v1 'b,

3s s
4v1

-6=
4v2

.

S s

2vT
-x,

2v2

From the second and third equations we find x= 2 b and y= -!b, b, and the

first equation yields a (8a -} ;=b. But u2 = x = 3 , and now we readily
\ v1 V2 / vl Y 5

find that v1- , v2=5b and s=8a.

215. Let u be the speed of the motor boat in still water and v be the speed
of the current. Then we have the following system:

96 + 96 -14,u-V
24 _ 96 72
V u+v+u-v
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To solve it let us put u =z. Multiplying both members of the second
equation by v we find

24=z+1+ z721 .

Reducing the terms of this equation to a common denominator and discarding
it we obtain the quadratic equation

24z2 - 1682 = 0,

whose roots are z=0 and z =7. Since z 0, we must take z=7. Hence, u= 7v.
Substituting u=7u into the first equation of the system we derive

96 96

8v + 6v =
14,

whence we find
v=2 km/hr, u=14 km/hr. -

218. The distance covered by a body moving with constant acceleration a
during t sec is determined-by the formula -

at2
s=riot --

2
.

To find vo and a for each body we must substitute the given numerical data
into this formula.

(1) For the first body we have

25=vo+ 2 for t-1
and

50 3 =2vo+2a for

a
whence a= 3 , vo=25- 6 and s1=24 6 f+ 6

(2) For the second body we have

30=vo+ 2 for t=l

and

59 2 =2vo+2a for t=2,

whence a=_4.. o=30+- 4 and S2=301t--L
4

.

For the moment when the first body catches up with the second we have
s1=s2+20 which results in a quadratic equation for determining t of the forth

t2 - 13t - 48 = 0.
Solving 'it we find t-16, the negative root being discarded..

217. Let v denote the relative speed of the boat. Then the time of motion
of the boat is equal to --

_ 10 6
t v+l+v-1'
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By the hypothesis, we have

3< v10 v61 <4. (1)

It is necessary that v > 1, since otherwise the boat cannot move upstream.
Let us pass from the system of inequalities (1) to an equivalent system of ine-
qualities of the form

3(v2-1)<16v-4S4(v2-- 1).
Thus, the two inequalities

and

3v2-16v+I _< 0

0.

must hold simultaneously. The first inequality is satisfied if

8-161 8+161
3

< v-
3

The second inequality is satisfied if v < 0 or v > 4. But since v > 1, we fioally
obtain

4< 8+ 161
3

218. Let x be the volume of water in the vessel A before pouring the water
from A into B. Then the original volume of water in the vessels B and C is
equal to 2x and 3xrespectively, and the total volume is equal to x+2x+3x=6x.

After the water has been poured from A into B and from B into C for the
first time, the water level in all three vessels becomes the same, and therefore
the volumes of water in them are in the ratio equal to that of the areas of the
bases which is 1:4:9. Therefore, after the first pouring the volumes of water in
the vessels A, B and C are respectively equal to

6x 3 6x 12
1 ' 1.+4.+9=

7
x' 4' 11.+4-+9=7x

and

6x 27
9 1 +4+9= 7

After the second pouring from C into B these volumes assume the values
3 12

7

x, x+128 4 and 27x-128 4

respectively. After the third pouring from B into A the volume of water in A
becomes equal to x-100, and in B equal to

2
(x- 100).

Adding together the volumes of water in all the vessels we obtain the fol-
lowing linear equation with respect to x:

(x-100)+2(x-100)+77x-128 7 =6x,.

Solving this equation we find
x=500.
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Thus we find the original amount of water in each vessel:
A contains 500 litres,
B contains 1000 litres,

C contains 1500 litres.

219. Let the desired number have the form xyzt where the letters x, y, z
and t denote the digits in the corresponding decimal places. By the conditions
of the problem, we obtain the following system of equations:

x2-+2= 13,
y2+z2=85, (1)

xyzt - 1089 = tzyx.

The rules of subtraction of decimal numbers imply that in the third equa-
ti on of the above system t is equal either to 9 or to

(10+1)-9 =X,
I. e.

x = t +1. (2)

But from the first equation of system (1) it follows that t < 4 and therefore (2)
takes place. Then from the first equation of system (1) we get the equation for
determining t:

whence we find
(t+ 1)2+12 = 13,

t=2.
From (2) it then follows that x=3, and the third equation of system (1) takes
the form

3yz2 - 1089 = 2zy3. (3)

Now let us note that z < 9 because if z=9, then (3) implies that y=0 and
therefore the second equation of system (1) is not fulfilled. From (3) we find

(z-1+ 10)-8=y,
i. e.

z=y-1. (4)

Finally, from the second equation of system (1) and from (4) we determine
z=6, y=7, Thus, the sought-for number is 3762.

220. Let us begin with finding the distance x between the start of motion
and the first meeting. The equation for the times of motion of both points has
the form

a+x-t _x
V rw

whence
x=(a-vt) w

V _W

The time from the start of motion to the first meeting is equal to

a+xt1=
0
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Substituting the above value of x into this expression we get

_a-witl
L-rW

Let T be the time interval between two successive meetings. Then

which results in

T= 1

U-rW

The successive meetings will thus occur at the moments of time il, tr+T,
tl+2T, .... The moment of the nth meeting is

a-wt +I(n-1)to_
o-w

221. Let y, be the specific weight of the first component of the alloy, y2 be
the specific weight of the second component and y be that of water. Suppose
that the weight of the first component is x. According to the Archimedes prin-
ciple, when immersed in water, the alloy loses in its weight a portion of

x P-x
Yi + Y2

Analogously, for the components the losses in weight are equal to

P y and P Y.
Ti Y2

These losses are given: they are equal to B and C respectively. Consequently,
we have

Y _-B Y _C
Ti P ' Y2 P .

Thus, the loss of weight of the alloy is

P (P-x).A= x { P

Hence,

X== B-C
For the problem to be solvable it is necessary that B # C. Furthermore, the

fact that P is a number lying between 0 and 1 implies the inequality

It follows that either B > A > C or C > A > B. Therefore, for the problem to
be solvable it is necessary and sufficient that the number A lie between the
numbers B and C.

222. Let us denote the distance from the point A to the mouth of the river
by s, the distance between the mouth of the river and the point B across the
lake by s1, the speed of the towboat (without towing) by v and the speed of

the current by v j. It is necessary to determine the quantity 2s' = x.
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The conditions of the problem enable us to set up the three equations
s x sl,

l
v -vl 2

S x

S +x=411. I
al l

From the first equation we obtain
y+vl 2

s 122-x'
from the second equation we find

v-v1 2

s -158-x
and from the third equation we get

v1

s 411-x'

(1)

(2)

(3)

Subtracting equality (2) from equality (1) and using equality (3) we obtain the
following equation in x:

1 1 1

1 2 2- x1 5
8-=4 11-x'

that is

Solving this equation we find

70
+ 2

,
1U-vl

x2-244x+4480=0.

xl = 20, x2 = 224.

It is obvious that the value x2=224 should be discarded because the left member
of equation (1) cannot be negative.

223. Let the distance AB be denoted by s, the distance BC by sl, the speed
of the boat by v and the speed of the current by vl (s and s1 are supposed to
be expressed in the same units of length and v and v, in those units per hour).

For the motion of the boat from A to C downstream we have

s --L'-
V

{ u+v1-6.

For the boat going upstream from C to A we have

(1)

v slv -}- s =7. (2)
1

If between A and B the current is the same as between B and C, then the trip
from A to C takes

s+st =.5.5 hours. (3)
V +vl

Now we have to determine the ratio s-} St
v-V1
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Reducing equations (1), (2) and (3) to a common denominator and multip-
lying both members of equation (3) by v ;& 0, we get the system

(s+sl) v=6v (v+vt)-svl,
(s+si) v=7v (v-v1)+sv1, (4)

(S+s1) v=5.5 (v+v1) v.

Adding together the first two equations and using the third one we obtain

2 (s+ s1) v=v (13v-v1) = flu (v+v1),

whence we find v=6v1. But from the third equation of system (4) we have
s+s'=7X5.5. Consequently,
v1

s-)-s1 s+s'= =7.7 hours.
u-v1 5v,

224. Let v be the volume of the vessel, a1 be the percentage of the acid in
it after the first. mixing, a2 the percentage of the acid after the second mixing
and so on. We have'

(v--a) P-f-aq
v

=a1,
(v-a) a +aq =a-

v
. .

(v-a)ak-2+aq
akv

(v-a) ak-i +aq=,.
V

Multiplying the sth equality by
(v

a

a k-s
(s=1, 2 ..., r) and adding to-

geiher the results we obtain `

/ \ laVq

whence it follows that

Consequently,

Answers

( v ) P+a q v-a

v-a)k
v-a k a C u

k /-j 7--q

P-q

-1
V

a k

C1 - u) (P-q)=r-q.

a

=r, -
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225. At the end of the first year the deposit increased by A00 roubles and

the depositor took out B roubles. Therefore, at the beginning of the second year
the deposit was equal (in roubles) to

Pl A (1+100)-B.

At the end of the second year the deposit was equal to

lPa - Pa (1+100)-B=A (1+100)2-BI 1+(100 1-I)J

and at the end of the third year it was

Ps=Ak9-B (1+k+k3)
where

k = I +
100'

Obviously, at the end of the nth year the deposited sum became equal to
Pn = Akn-B (l +k+k2+ ... +kn-1),

_ Ap-1008 p n 100B

Pn P 1+100) + P .

To solve the problem we must find n such that P,,:_::-3A. Then

n log (3Ap- 100B)-log (Ap- 100B) (1)

log(1+ P 100)

The meaning of the problem indicates that the deposited sum must increase,
and therefore

Ap > 100B.

Furthermore, we have p > 0, A > 0 and B > 0 and hence the expression on the
right-hand side of inequality (1) makes sense.

226. The amount of wood in the forestry at the end of the first year is
equal to

a (1+100) -x=ai.

at the end of the second to

al (1- too)-zas.

at the end of the third year to

a,. (1+100)zas
and so on. Lastly, at the end of the nth year the amount of wood is equal to

an-i (1+100)-x=an=aq.
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Now we can find x. Putting, for brevity, 1+ 11 = k, we get from the last
equation the expression x=kan_t-aq. Expressing an-1 from the foregoing
equation we obtain

x= k (kan-2-x)-aq =k2an_2-kx-aq.
But

an-2=kan-s--x.

Hence,
x=ksan-s-k2x-kx-aq.

Proceeding in the same way, we finally express a2 in terms of a1 and obtain
the following equation with respect to x:

x=kna-x (kn-t +kn-2+ ... +k)-aq.
It follows that

n-9 (1+ P /n-q px=akn-1 (k-1)=a 1

100
n1 100'

+100)
227. Before pouring the concentration qj (i=1, 2, ..., n) of alcohol was

q1=1 in the first vessel,

I in the second vessel,qz k

9n in the nth vessel.kn-1-1

After all the manipulations the concentrations became respectively equal to
Pt, P2. pn. Then pi = 1, and pi for i > 1 is determined from the equation

v v
qi 2+Pi-I 2 =qi+P;-t

(i 2,

We obtain this equation by dividing the amount
v v

qi 2+ pi -I 2

of alcohol contained in the ith vessel after it has been filled from the ((- 1)th

vessel, by the volume v of the vessel.
Thus,

P2_g2+P1 Ps_g3+P2 Pn=gn+Pn-I
2 2 2

Hence,

q,, +gn-i+Pn-t
qn+Pn-t= 2 qn qn-t

--
I

Pn= 2 2 =2+ 22 2Pn-z=

qn qn-t -L I qn-z+Pn-s gn gn-1 qn-z Pn-s-2}22 ,22 2 2}2-}2}2=...
I 1 1 1

...= 1 22 t1 }-...--22'y } 2ft1=2kn-1+22kn-2+... 2-1k } 2n1
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For k -A 2 the last sum is equal to

1 1

1 kn-11
_2"-1

1 _ 2"-1-kR-1 1

' 'pra=2k ---F -I +2R-1-(2k)n-1 (2-k)+21,
k - 2

For k=2 it equals
n-I I n-I 2 n+1

Pn= 2n +2_,= 2n +2n- 2-

228w The quotient is expressed by the fraction of the form p2P
1 where P is

a positive integer. The conditions of the problem are written in the form of the
inequalities

p+2 > 1 and 0< p-3 < 1.
p2,+ 1 3 p2-4 10

We now transform the first inequality to the form
3(p+2) > p2+ 1, that is 0 > p2-3p-5.

Solving the quadratic equation p2-3p-5=0 we obtain

3±J129
Pl,z = 2

From the inequality 0 > p2-3p-5 we get P2 < p <p1. But P2<0 and p > 0,
therefore

1/ 90<p<P1=3
22

It is readily seen that p, lies between 4 and 4.5. Consequently, it follows
from the latter inequality that p as integer can assume only one of the four
values p= 1, 2, 3, 4. Substituting these values into the second inequality

0 < p-3 < Ip2-4 10'

p - 4
we find that p ;& 1, p 2 and p,96 3. Thus, p=4, pe

1 15'

7. Miscellaneous Problems
229. We have

n (n+1) +(n+ 1) (n+2) +...+(n+k-1) (n+k)
1 1 1 1

n n-{-1 +(n+1 n+2 .+
+ n n k`n (n+k)

230. Let first x a. Multiplying and dividing the product In question by
x -a and applying, in succession, the formula for the difference of the squares
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of two numbers we obtain

(x-a) (x+a) (xl+a2) (x4+a4)...(x2n-1 +a2n-1)
x-a

(x'-a2) (x2+a2) (x4+a1)...(x2n-1
+a2n-1)

x-a
(x4-a4) (x4-+4)..

(x2n-,+a2n ,)

x-a
(X3 - Q8). (X 2n-1 +a 2nX-a

Let now x=a. Then the product is equal to

181

x2n - a2n

x-a

24-1
_2na2n-1.

231. Multiply and divide the given expression by the product

(x+ a) (x2+a2) (x4-+4)... (x2n-1+a2n71),

which is different from zero for all real x -a. It is readily seen that the
result can be written as follows:

(x2+a3)(xe+a°)(x12+a12)...(X3
2n_,+a3 2n-1)

(x+a)(x2+a2)(x4+a4)...(x2n..

The numerator and denominator of this fraction are products similar to that in
the foregoing problem. Therefore, multiplying the numerator and denominator
by the product (x-a) (x3-a3) we transform the expression to the form

x3.2,-a3-2n x-a x2n+1 +a2nX2n+a2n+,

x -a3- x2,=22"= x2 ax { a2

This method is inapplicable for x= ± a. But in these cases a simple compu-
tation shows that for x=-a the product is equal to 3nal (21-0 and for x=a
it is equal to a2 (2n- i).

232. It is obvious that

Sk--Sk-1=bk (k=2, 3, 4, ..., n) (1)
and

S1= b1. .(2)

Substituting the values of b1, b2, ..., b obtained from (1) and (2) into the sum
alb, -a26z+...+anbn,

we get

a1b1+a,b2+...+anbn=alSl+a2(S2-Sl)+aa(Sa-S2)+
+ ... +a, (Sn-Sn-1) =S1 (al-a2)+S2 (a2-aa)+ +

+Sn-1 (an-l-an)+anSn
233. Multiply both members of the equality by 2 and transpose its right

member to the left. After simple transformations we get
2(a''4+b2+c2-ab-ac-bc)=a2-2ab+b2+a2--2ac+ -

+c2+b2-2bc+c2 = (a-b)2 -{- (a-c)2+ (b-c)2 = 0.
Since a, b and c are real, the latter relation is only possible if a=b=c.
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234. Let us multiply a2+b2+c2-be-ca-ab by a+b+c. Carrying out
simple computations we find that the product is equal to a3-}-b3+c3-3abc,
that is, according to the condition of the problem, it is equal to zero. Hence,
the assertion stated in the problem is true.

235. Since p ;6 0 and q F 0 we can write

2

CP)2+CPP\

\q/2+(q)2+...+ 9 )2=1.

a1 b1 a2 b2 an bn

p q+p q+...+p

Adding the first two of these equalities termwise and subtracting the doubled
third equality we find

n
2= oa b2 .1 1 2 2 2 bP- b

q
q + P-q }...-

P 9

Taking into account that all the quantities involved are real we conclude that

a1 b1
b2 =0, ,

an-bn-0,
P q P q P q

which immediately implies the assertion of the problem.
236. Put pn=an-an_1. Then the statement of the problem implies the

formula pn=pn-1-{-1, showing that the numbers pn form an arithmetic prog-
ression with unity as common difference. Therefore, pn=p2+n-2. Now we find

an=(an-an-1)-I-(an-t-an-2)-f-... +(a2-al)+a1=
=Pn-FPn-1+...+P2+al=(n-1)P2+(n-2)-}-(n-3)+

+... - l+a1=(n-l)(a2-al)+a1+ (n-2) (n- 1)

and, finally,

an =(n- 1) a2-(n -2) a1+(n-2)2 (n- 1) .

237. First solution. The given relation can be written In the two forms
an-aan-i = Y (an-1 -aan-2)

and

an-Nan-1=a (an-1--pan-2)
Putting an-aan-l=un and an-pp (lan_1=vn we find that

un=Nun-1, Vn=aon-1,
whence it follows that

or

un=Yn-2u2, on=an-2v2,

an-aan-l=Rn-2 (a2-aal),
an - Pan-1 = an-2 (a2- Paj )

Eliminating an-1 from these relations we finally obtain
p n-l-an-

a a Pn-2-an-2
an- = P-a 2

-a --a a al.
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Second solution. Making n in the original relation take on consecutive values
3, 4, ... we find

2

a3=(a+ P)az-a0a1=
2a- SP

a2-aO
_

a-S al
and

2 3 2 2

a4=(a+P)a$--aN2=(a+0) a-P a2-ap ay-(i al-
R- aR a - N 3 a2 - aP

a2
- _2 ai.

F' a-S a-P a-
The general formula

a
-an-1-pn-1

a2-ao
an-2-on-2

an= a-0 a-p 1

can now be easily proved by induction. 1'

238. We have xl -)-x2 = 3a, xlx2 = a2. Therefore

X = (x1 +x2)2-2xlx2 =7a2 =X2+whence

a2- 4 . Hence, there are two possible values of a,

a2=-
239. We find

namely a1=

2

and

y1=(x1+x2)2-2x1x2=p2-2q,
y2 = (xt +x2)3 - 3 (XI + xz) xlx2 = - p3 + 3pq.

The coefficients of the quadratic equation y2+ry+s=O with roots yl and y2
are respectivgly equal to

r=- (g1 +Y2) =p3-p2-3pq+2q
and

s = y1y2 = (p2 - 2q) (- p3 -f- 3pq)

240. We have xl+'x2=- a and xlx2= a . With the aid of these for-

mulas we find
1 1 (x1+x2)2-2xix2 b2 - 2ac

x1 A 4 xz z

and

X2x41 +X1 f xQ=( f az 2 Q )2-(a
Y.

241. Let
(a1 161x)2 + (a2

bzx)a
(a3 63x)2 = (A Bx)2,

for all x where B 0 0. Putting x=- 4 we get

Cal-bl B 12 B )2-0.

All the quantities involved being real, we thus have the three equalities

a1 = ?b1, a2 = 1 b2, a3 = kb3,

(I)

(2)
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where 7 = B . Besides, the condition

bl+ba+ba 00 (3)

should hold because, if otherwise, all the three numbers b1, b2 and b3 were
equal to zero, and then the left member of (1) were independent of x.

Let now, conversely, conditions (2) and (3) be fulfilled. Then

(a1 + b1x)2 + (a2 + b3x)2 + (a3 + b3x)2 =

=bi (X+x)2+bs (A+x)2'f b3 (X-+'-x)2=

f box )2,_ (a V bi ba b, +V J+e
and, consequently, the sum indicated in the problem is a square of a polyno-
mial of the first degree. Thus, conditions (2) and (3) are necessary and sufficient.

242. Let us denote the roots of the equation by x1 and x2. Then xi+x2=- p
and x1x2=q.

If x1 and x2 are negative then, obviously, p > 0 and q > Q. But if
x1=a-1-iP where a < 0 and P 0, then x2=a-1p, and we see that

P=-xl-x2=-2a > 0
and

q xlx2 U,2 ` 02 > 0.
Conversely, let it be known that p > 0 and q > 0. Then, if x1 and x2 are real,

from the equality xlx2=q it follows that x1 and x2 are of the same sign, and
the equality x1+x2=- p implies that the roots are negative. But if x1=a+iP,
x2=a-i3 and P 96 0, then xl+x2=- p=2a, and, consequently, a is negative.

243. The roots of the equation x2±px+q=0 being positive, the discrimi-
nant D of the equation satisfies the condition

0, (1)
and the coefficients p and q satisfy the inequalities

p=-xl-xy<0 (2)
and

q=xjx2 > 0. (3)

Let yl and y2 be the roots of the equation

qy2 + (p- 2rq) y + 1- pr _ 0. (4)

The discriminant of this equation is equal to
Dx = 4r3g2 + p2 - 4q

and, by virtue of (1), it is non-negative for all r. yl and y2 are
real for all r. Taking into account (2) and (3), and applying Yleta's theorem we
get, for r : 0, the inequality

y1y2
-pr

=
q

> 0, (5)

and, hence, yl and y2 are of the same sign. Furthermore, we have
2r

YI+Y2 =- q

and, hence, yr and y2 are positive for 0 which is what we set out to prove.
It is obvious that the assertion remains true if we require that the irtequa

lities
1-pr > 0 and p-2rq < 0.
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hold simultaneously, that is
Ir>
P

(7)

and

r> 2q (8)

Thus, for negative r satisfying conditions (7) and (8) the roots y1 and y2 are
positive. If these conditions are not observed, one (or both) roots of equation (4)
is nonpositive.

244. Let us first suppose that p # 3. For the roots of a quadratic equation
with real coefficients to be real it is necessary and sufficient that the discrimi
nant b of this equation be non-negative. We have

D=4p2-24p (p-3)=4p (18-5p)
and therefore the condition D a 0 holds for

o p < 3.6, (1)

The real roots x1 and x2 are positive if and only if their sum and product are
positive, i. e.

'X1 -+-x9 p > 0, x1x26 > 0.p-3 (2)

The system of inequalities (1), (2) is satisfied for
3 < p 3.6.

It should also be noted that for p=3 the equation under consideration has
the unique root x=3 > 0. Therefore, all the sought-for values are determined
by the condition

3<p<3.6.
245. We shall prove the assertion by contradiction. Let us suppose that

a 0. Then' for the roots x1 and xz we have

b ± If b2 -4a (c+))
x1,z- 24

Now there are two possible cases here:
(1) Let a > 0. Then 7, is chosen so that the inequality

X> b2

4a - C

is fulfilled. In this case we obviously have b2-4a (c+%) < U and, hence, the
given equation has nonreal roots.

(2) Let a < 0. Then if ? >-c, we have

-b+Yb2-4a(c+?,) > 0,

and, hence, the root -b-{
Yb2a

4a (c is negative. Thus, both assump-

tions lead to a contradiction, The assertion has thus been proved.
246. The roots x1, 2 -of the equation x2.4-x+ 1=0 satisfy the equation

as weU_ Therefore, X , 1 whielf implies the assertion
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247, Substituting y expressed from the second equation into the first we get
the equation

2ax2+2(aA,+l)x+aX2=0, (1)

which, by the hypothesis, has real roots for all values of T,. Let us show that
then a=0. Suppose the contrary. Then for the discriminant D of the quadratic
equation (l) the following inequality

D=4(a? -x-1)2-8a2R2>0 (2)

holds for all X. However, the left member of Inequality (2) has the form
-4a2X2+8? + 1

and is negative for all sufficiently large absolute values of X. For instance, if

%=10 , the left member of equation (1) is equal to -321. Thus we arrive at a
a

contradiction.
248. The equation in question takes the form

x2-(p+q+2a2) x+pq+(p+q) a2=0
after reducing the fractions to a common denominator and discarding it. Com-
puting the discriminant D of this quadratic equation we get

D=(p+q+2a2)1-4 [pq+(p-i-q) all =(p-q)2+4a°.
Since D>0 for all real a, p and q, the quadratic equation has real roots, and
hence the same is true for the original equation.

249. Consider the discriminant of the given quadratic equation:

D = (b2 +a2 -c2)2 - 4a2b2 = (b2 +a2-c2 - tab) (b2 +a2 - c2+ 2ab) =
=[(a-b)2-c2] [(a+b)2-c21.

Since a+b > c and I a-b l < c, we have (a+b)2 > c2 and (a-b)2 < c2. Conse-
quently, D < 0.

250. By Vieta's formulas (see page 10) we have

x1+x2+x3=2, x1x2-I-x2x3-J-x3x1= I, x1x2x9=- 1.
Using these equalities we obtain

yi+y2+ya=xix2-f-xzxs+xsxi = I,
Yty2+yzYs+f1 Yi =xlx2x3 (x1 +xz+xa) =- 2,

yly2y3 = (xrx2xa)2 = 1.

Consequently, the new equation is
y3-y2-2y-1=0.

251. On the basis of Vieta's formulas, we have
x1+x2+x3=1.

xlx2 -f -xzxs + xsxI = 0,
xix2x3 = 1.

By virtue of these equalities, we write

yi+yz+ys=2 (xi+x2+x3)=2.
Since y1=1-x1 and y2=1-x1, y3 =1-x3, we have
YJY2+YZY3+y3yl=(1-x1)0-x2) -(1-x2)(1-xa)+

+(l-xs) (l-xi)=3-2 (xl+x2+xa)+x1x2+xzxs+x1xa=1,
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and, finally,
YIY2y3=(1 -x1) (1-x2) (1-x3)=-l.

The new equation, therefore, has the form
y3-2y2-l-y+1=0.

252. Let
x1=p-d, x2=P, xs=p+ d.

Then xl+x2+x3=3p. On the other hand, by Vieta's formulas, we have x1 +
+x2+x3=-a whence we find 3p=-a and, hence,

ax2=P=-
3

Substituting this root into the equation we obtain

C- a )'+a (- 3 )2+b (_ 3 )+c=0.

which yields

c = - 27 as -F

3

ab.

253. Let x1 > 0, x2 > 0 and x3 > 0 be the roots of the given equation. Fol-
lowing the hint, we consider the expression

(xl+x2-x3) (x2+x3-x1) (x3+x1-x2). (1)

For the triangle with line segments of the lengths x1, x2, x3 as sides to exist,

it is necessary and sufficient as was proved in the solution of Problem 106 that

the condition
(X1+x2-X3)(x2+x3-x1)(X3+X1-xs) > 0 (2)

be fulfilled.

To obtain the condition required in the problem let us express the left

member of (2) in terms of p, q and r. For this purpose we make use of the
relations

X1 +X2+X3 =-P, xix2-f- xlx3-f- x2x3=q,

x1x2x3 = -r

connecting the roots and coefficients of the equation. Condition (2) is now writ-
ten in the form

(-p-2x3) (-p-2x1) (-p-2x2) > 0;
whence it follows that

-Ps-2p2 (x1+x2+x3)-4p (x1x2+x1x3+x2X3)-8x1x2xS > 0

and, hence,

p3-4pq±8r > 0.
254. Let x0 be a common root of the equations. Substituting x0 into both

equations and subtracting one equation from the other we find

xo=q2-ql 00.

P1-P2
Let x2+ax+b be the quotient obtained by dividing the trinomial x3--p,x+g1
by x-xo. Then

x3-I-p1x-4-q1=(x-xo) (x2+ax+b).
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Equating the coefficients in x2 and the constant terms in this identity we find
a=xa and b=-9 , whence it follows that the other two roots of the first

xo
equation are determined by the formula

-xo f xo + 4q1

(1) xoX2.3 = 2

and of the second equation by the formula

-xo ±
Y

X2 + 4q2
t2 xnX23= 2

255. It can easily be verified that for 7v=0 the equations have no roots in
common. Let x0 be a common root of the equations for some 7v 0. Then we
can write

7x0-xo-x0-(? } 1)= 0, 1
J} (1)

Multiplying the second equality by x0 and subtracting it from the first we find

xo = 1. (2)

Thus, if there is a common root, then it is connected with 7v by formula (2).
It can now be readily verified that the fraction I in fact satisfies both equa-

tions (it is obviously sufficient to establish this fact only for the second equa-
tion). Thus, both equations (1) have a common root for all 7v 0, the root
being determined by formula (2).

256. First solution. Let x1, x2 and x3 be the roots of the polynomial P (x).
According to Vieta's theorem, we have

x1+x2 +x3 -0, xrx2+xrxa+x2x3= P,
whence it readily follows that

xl-{-x2+xe+ 2p^ 0.
Since x1, x2 and x3 are real and different from zero (because q j6 0), we have
xi {x2+4 > 0 and, hence, p < 0.

Second solution. It is apparent that among the three roots of the polynomial
P (x) there are two unequal ones. Indeed, if otherwise, we must have P (x)

(x-xn)3 which is obviously not the case.
Now let x1 and x2 be two unequal roots of the polynomial, and let x1 < x2.

Suppose the contrary, that is p _0. Then x1 < x2 and px1 c px2. Then it fol-
lows that

P (x1) °xi+Px1+9 < x2) Px2 q=0,
because P (x2) =0. We arrive at a conclusion that P (x1) < 0 which contradicts
the fact that x1 is a root of P (x). Consequently, p < 0

257. Let x1, x2 and x3 be the roots of the given equation. By virtue of
Vieta's formulas, we have

xlx2 1 x1x3+x2x3=0, (1)
x5x2x3 = b > 0. (2)
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Let us first suppose that all the three toots are real. Then from condition (2)

it follows that at least one of them is positive. If in this case we suppose that

two roots are positive, then formula (2) implies that the third root is also po-
sitive, which contradicts condition (1). Thus, if all the roots are real, the prob-
lem has been solved.

Let now xi be a nonreal root of the equation, then, as is known, the equa-
tion also has the conjugate complex root x2 x'1. Since in this case x1x2 =x1x1 > 0,
we conclude from equality (2) that

=
b >0x .

3 x1x1

The assertion has thus been completely proved.
258. Let a, P and yl be the roots of the first equation and a, and y2 the

roots of the second. By virtue of Vieta's formulas, we have

a-I-P-1-yl=-a, (1)
aj3y1=-18, (2)

a-- P -y20, (3)

(4)
Now we obtain

71-T2=--a (5)

from equations (1) and (3) and

Atz 3 (6)

72 2

from equations (2) and (4). Solving (5) and (6) as simultaneous equations we
find

y1=-3a, y2=-2a. (7)

Thus, if for some a and b the equations have two common roots, their third
roots are determined by formula (7). Substituting y1=-3a into the first equa-
tion and y2=-2a into the second we obtain

-18a3+ 18=0
and

-8a3-2ab+12=0.
Solving these equations we see that there can be only one pair of real values
satisfying the condition of the problem, namely

a= 1, b- 2. (8)

Substituting these values Into the equations we readily find

x3+x2+ 18=(x-{-3) (x2-2x+6)
and

x3+2x+ 12=(x-1-2) (x2-2x-6).
Consequently, for the above values of a and b the equations have in fact two
common roots. These roots are determined by the formula

x1,2=-1 ± Y-5.
259. Let us denote the left-hand side of the equality by A. We have

As=20+14 Y2+3/(20+1432)2 V20-1432+
+3V20+14Y2 V(20-1432)2-}-20-1432=

=40+3V400-2x 142 A =40+6A.
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Thus, the left-hand side of the equality to be proved satisfies the cubic equation
x3-6x-40=0, (1)

It can be easily checked that equation (1) is satisfied by x=4. Dividing the
left-hand side of equation (1) by x-4 we get the equation for finding the other
two roots

x2+4x+10=0.
This equation has nonreal roots because its discriminant is negative: D=-24 < 0.
Thus, equation (1) has only one real root x=4, and since A is a priori a real
number, we have A=4 which is what we set out to prove.

240. As is easily seen, the expression in question vanishes if any two of the
numbers a, b and c are equal. Then, by Bezout's theorem, it is divisible by
each of the differences

(b-c), (c-a) and (a-b).
Therefore it seems n,itural to suppose that the given expression is the product
of these factors. Indeed, we have
a2 (c-b)+b2 (a-c)+c2 (b-a)=azc-alb+b2a-b2c+c2b-c2a=

=a2 (c-b)-a (c2-b2)+bc (c-b)= (c-b) [a2-ac-ab+bc] =
=(c-b) [a(a-c)-b(a-c)]=(c-b) (b-a) (c-a) (1)

and thus the assumption turns out to be true. Since a, b and c are pairwise
different, the assertion has been proved.

261. Note that for x = -y the given expression turns into zero. Consequ-
ently, by Bezout's theorem, it is divisible by x+y. To perform the division
let us represent x+y+z in the form of a sum of two summands: (x+ y) and z.
Cubing the sum, we get

[(x+y)+Z713-x3-y3-Z3=
=(x+y)3+3 (x+y)2 z+3 (x+y) z2-x3-y3=

=3(x+y) [z2+z (x+y)+xyl
The quadratic trinomial with respect to z in the square brackets on the right-
hand side is readily factorized because its roots are obviously -x and -y.
Hence, we obtain

(x+y+z)3-x3-y3-z3=3 (x+y) (z+x) (z+y).
262. Multiplying both members of the given equality by abc (a+b+c) we

transform it to the form
(ab+bc+ac) (a+b+c)-abc=0.

Removing the brackets we get
a2b + 2abc + a2c + ab2 +b2c+ bc2 + ac2 = 0.

The left member of this equality is readily factorized:

a2 (b+c)+ab (c+b)+ac(b+c)+bc (b+c)=
=(b+c) (a2+ab+ac+bc)=(b+c) (a+b) (a+c)

Since the last product is equal to zero, we conclude that at least one of the
factors is equal to zero which implies the desired assertion.

263. Let a and 0 be the roots of the quadratic trinomial x2-f. px+q. If the
binomial x4-1 is divisible by this trinomial, then a and S are the roots of
the binomial as well. It is easily seen, that the converse is also true: if a and
are the roots of the binomial x4-1, then it is divisible by x2+px+q*.

* If, in this argument, a=p, the number a must be a multiple root of the
dividend as well.
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The binomial x4-I has the roots 1, -1, i and -i and therefore we can
write the factorization

(x4-I)=(x-l)(x-I-1)(x-i)(x-l--i). (1)

What was said above implies that the trinomials we are interested in may
only be products of two of the factors on the right-hand side of (1).

Forming all possible permutations we find C4=6 trinomials:
(x- 1)(x+l)=x2-1,
(x-1) (x-i)=x2-(1 + i) x+i,
(x- 1) (x-}-i)=x2-(1-i)x-i,
(x--1)(x-i)=x2-4-(1-i)x-f,
(x+l)(x+i) =x2+(1+i)x+i,
(x-i) (x+l)=X2-}-1.

These obviously are all the sought-for trinomials.
264. Representing the given polynomial in the form xn-l-ax(xn-2-I)

we divide it by the difference (x-1) using the formula
xk+l-1
x-1

I+X+...+Xk. (1) *

Performing the division we see that the quotient is the polynomial
xn-,+Xn-2+ ... +x+ 1-ax (xn-s+xn-4+ . . . +x+ 1).

For the latter polynomial to be divisible by x-l, it is necessary and sufficient
that (according to Bezout's theorem) the following equality be fulfilled:

n-a(n-2)=0.
Therefore, the polynomial given in the problem is divisible by (x-1)2 for any
natural n > 2 and a= n 2

265. The conditions of the problem imply that
p (a) = A,
p (b) =B, (I)
P (c) = C.

Dividing the polynomial p (x) by (x-a) (x-b) (x-c) we represent It in the
form

p (x) _ (x-a) (x-b) (x-c) q (x) -}- r (x). (2)

It is obvious that r(x) is a polynomial of degree not higher than the second.
Writing it in the form

r(x)=1x2+mx+n, (3)

we substitute, in succession, the values x=a, x=b and x=c into identity (2).
By virtue of equality (1), we arrive at the following system of equations for
defining the coefficients 1, m and n of polynomial (3):

1a2+ma+n=A,
1b2+mb+n =B, (4)

1c2+me+n=C.

* Formula (1) can be easily verified by division but it should be noted
that it simply coincides with the formula for the sum of k terms of a geometric
progression with common ratio x.
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Solving this system we find
(A-B) (b-c)-(B-C) (a-b)

(a-b) (b-c) (a-c)
m= (A-B)Lb2-c2)-(B-C)(a2---b2)

h(a-b) ( -c) (c-a)
a2 (Bc-Cb)+a (Cb2-Bc2)+A (Bc2-Cbz)

(a-b) (b-c) (c-a)
Note. For x =a, x=b and x=c the sought-for polynomial r(x) takes on the

values A, B and C, respectively. It can easily be verified that the polynomial
(of degree not higher than the second) given below is one possessing this pro-
perty:

A (x-b) (x-c+B (x-a)(x-c C (x-a)(x-b)
(5)(a-b) (a-c) (b-a) (b-c)+ (c-a) (c--b)'

System (4) having only one solution, there exists only one polynomial possessing
the above property. Consequently, r(x) coincides with polynomial (5).

266. The formula is obviously true for n=1. Let us suppose that it is true
for a certain n and prove that then it is true for n+I as well. Denoting the
sum standing on the left-hand side of the formula to be proved by Sn, we can
write

Sn+1-Sn (n+l)(n-f-2)=(n+1)(n+2)(n+3)
2 6

(n+ 1) [(n+1)+11 j(n+l)+2]
6

Thus, it follows by induction that the formula is valid for any natural n.
267. Let Sn be the sum on the left-hand side of the formula. For n = I both

sides of the formula coincide. Let us show that if the formula holds for some n,
then it is also true for n+1. We have

Sn+1=Sn+(n+1)2=n(n+1))(2n+1)+(n+1)2=

(n+l)(2n2+7n+6) =(n+l)[2n (n+2)+3(n+2)]
6 6

(n+ 1)((n + 1)+ 1112 (n+ 1)+ 11

6

Consequently, the formula holds for any natural n.

268. The validity of the assertion is readily established for n= I. Suppose
that the formula be true for some n 1. Let Sn be the sum on the left-hand
side of the formula. We have

- 1 n (n-F-3) 1Sn+1-Sn+(n+l) (n+2)(n+3)4 (n+ 1)(n+2) (n+l) (n+2)(n+3)
It follows that

Sn+1=
n3+6n2+9n+4 - (n+1)(n2+5n+4)

4 (n+l) (n+2) (n+3) 4 (n-{-- 1) (n+2) (n+3)
(n+l)-f(n+t)4-31

4 [(n+I)+I[((n+1) + 21
Hence, the formula is true for any natural n.
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269. The formula is obviously true for n=1. Suppose that it is true for
some n 1, i. e.

(cos cp+ i sin (p)n = cos n(p+ i sin n(p. (1)

To prove that the formula holds for n+1 let us multiply both members of (I)
byy cos cp+i sin p. According to the rule for multiplying complex numbers we
obtain
(cos cp+i sin (p)n } 1= (cos ncp + i sin n(p) (cos p+i sin (p) -

=(cos ncp cos cp-sin n(p sln (p)+i (cos np sin rp+sin np cos cp)
=cos (n+1)q>+isin(n+1)(p.

Consequently, the formula is true for any natural n.

270. Apparently, a+b= 1 and ab=-1. Using this, we can write

a a a 6
=an+1-abn+anb-bn+1an+1_bn+1 Jan-l-bn-1

that is an=an+1-an-1 which implies
an+1 =an+an-1

It follows that if for some n the numbers an_1 and an are positive integers,
then an+1 is also a positive integer. Consequently, by induction, an+2. an+s
etc. are also positive integers. But we have a1=1 and a2=1, and hence all an
are positive integers for n > 2.

271. For n= 1 the inequality is true. Let us suppose that it is true for

some n. Multiplying both members by 1 -f an+1 > 0 we find
(1+a1)(I+a2) ... (1-{-an)(I-1-an+l)-_(I+a1+az-f-...-f-a,,)(I+a.+1)

= 1+a1+az+ .. . +an+an+l+aan+l+a2an+1+ . . +anan+l.
We have anan+l+anan+l+ +anan+, > 0 and therefore the inequality is true
for n+1 as well.

272. Let us first of all verify that the formula holds for n=1. Indeed,
for n =I it takes the form

(a+b)1=Ci (a)o (b)1+Ci (a)1 (b)0. (1)

If now we use the definition for the generalized nth power of a number, It
becomes evident that both members of formula (1) are equal to a+b and,
consequently, the equality is in fact true.

Now suppose that the formula is true for some n and prove that it is then
true for n+1 as well. The definition of the generalized nth power implies that

(a+b)n+1=(a+b)n (a+b-n)= [Con(a)o (b)n+Cn (a)1 (b)n-1+ ...
+Cn (a)k (b)n-k+ ... +Cn (a)n (b)0] (a+b-n).

Removing the square brackets, we transform each of the n+ 1 summands accord-
ing to the formula

Cn(a)k (b)n-k (a-+- b-n) = Cn (a)A, (b)n - k +(a-k)+(b - n+k)) _
= Cn (a)k (a-k) (b)n-k+Cn (a)k (b)n-k (b-n+k) =

Cn (a)k+I (b)n-k+Cn (a)k (b)n-k+1 (k=0,1, ..., n).
This results in

(a+b)n+1=Cn (a)1 (b)n+Cno (a)0 (b)n+1+Cn (a)2 (b)n-1 +

-+-C. (a)1 (b)n+ ... +Cn (a)k+1 (b)n-k+
1 Cn (a)k (b)n-k 1-1+... +Cn (a).+1(b)o+Cn (a)n (b)1.

7 -323



194 PROBLEMS IN ELEMENTARY MATHEMATICS

Collecting like terms, we obtain

(a+b)n+1=Cn (a)o (b)n+1+(Ca' +Cn) (a)1 (b)n+
+ (Cn + Cn) (a)z (b)n + ... + (Cn +- Cn+1) (a)k+ (b)n - k 4- ... +

+ (Cn 1+Cn) (a)n (b)1-(-CuC(a)n+1 (b)o
Furthermore, using then the fact that

Cnn - CR+1= 1. Cn = Cn+i = 1.
and the identity

Cn
)-Cn+1=Cn+i,

which is easily verified, we obtain

(a+ b)n+ 1 = Cn+1 (a)n (b)n+1 + Cn+1 (a)1(b)n +
+Gn+1 (a)2(b)._,+ ... Cn+i (a)k+i (b)n -k I

...
Cn+1 (a)n (b)1 +Cn+i (a)n+1 (b)o.

Hence, we have proved that if the given formula is true for some n, then it is
true for n+ l as well. But it holds for n= f, and consequently, we conclude, by
induction, that it holds for all natural n.

273. Let r(t) be the distance between the trains at the moment t. Then

r2 (t)=(a-vit)2 f (b-vzt)2 = (1.1 +o2) t2-2 (avl +bv2) t +a2+b2.

Note that if r2(t) attains its least value for t = to, then r(t) also attains the

least value for t = to, the converse also being true. The problem is thus reduced

av1 + bv2
to =

i v+ va

Now using formula (3) we find the least distance bet-
ween the trains:

4 (a2+b2) (vi+v2)
r (to)

-4 (av1 F bv2)2

4 (vi-f-v22)

FIG. 4

to finding the least value of the quadratic trinomial
r2 (t).

According to formula (4), page 43, the least value
of r2 (t) (and, hence, of r (t)) is attained at the mo-
men t

av2 - bv,

z z
274. At the moment t the car is at a distance of

401 km from the point A, and the motorcycle at a
distance of 2 12+9 km from that point. Consequently,

the distance between them is equal to the absolute
value of the expression 1612+9-401. Denoting this
distance by y(t), we can plot the graph of the

quadratic trinomial y(t) (See Fig. 4). The graph is a parabola intersecting the
t-axis at the points t1= 4 and t2=2 4 . The graph clearly shows that if

0<-t<2, the greatest in its absolute value ordinate y corresponds to the vertex
of the parabola. The latter lies on the axis of symmetry which intersects the
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t-axis at the point

tl+t2 5
2 -4

Thus, the distance attains its greatest value in an hour and a quarter after the
start of the motion and is equal to 16 km.

275. Denote the expression in question by y and transform it in the follo-
wing way:

y= loge x+ 12 log; x (loge 8- loge x) = loge x (loge x- 12 loge x± 36) _
=1og2 x (6- loge x)2.

Let us put loge x = z, then 0z6. The problem is thus reduced to finding
the greatest value of the variable

y = z2 (6 - z)2.

It is sufficient to find the greatest value of z (6-z) for 0 c z S 6 because
the greater a positive number, the greater its square. The quadratic trinomial
z(6-z)=-(z-3)2+9 attains its greatest value for z=3. Thus, the sought-for
greatest value is attained for z=3 and is equal to 81.

276. First solution. It is obviously sufficient to consider only positive values

of x. According to the well-known inequality (3), page 20, we have
axe-{-b< ax2b=x Yab.

2

Consequently, for all x > 0,

x x I

Y ax2+b 2xj a -2Yab

(1)

(2)

Relation (1) turns into an equality when axz=b, and consequently for

x0 = Vb we have
a

I

By virtue of (2), this is just the greatest value of the function.

Second solution. Solving the equation

_ x

for x we obtain
_ I ± Y I - 4aby'2X= lay

Formula (5) implies that the inequality must
real x. Hence

I

Y
c

2 Yab

Function (4) attains the value yo = tabfor a real value
2 Y-

(3)

(4)

(5)

be fulfilled for all

(6)

of x=x0 (from (5)

we find that x0=

a

VT_)' and therefore, by virtue of (6), this value is the
greatest.

7*
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277. Performing some simple transformations we get
xz++I

-x-1 +x 1 --2+ x+l +x
+

I] '
By virtue of inequality (3), page 20, we have

x + I + +I2 ( x +

and the sign of equality in (1) only appears if

I+x=_
-2-x'11,

i.e. for xa=j12-1.

Thus, for all x0 > 0 we have
'- I

(1)

X+1 -2+2 Y2, (2)

and the sign of equality in the latter formula takes place for

x = V2_- I.
278. Let us take a number scale and mark on it the points A, B, C and D

corresponding to the numbers a, b, c and d. Let Al denote a point with variable
abscissa x (Fig. 5). There can be the following five cases here:

H A 8 C D

x a b c d

FIG. 5

(1) If x<a, then we have
W (x)=MA+MB+ MC+MD=AB+2MB+2BC+CD,

which clearly shows that 'p (x) attains the least value when the point Al coin-
cides with the point A and that this value is equal to

3AB+2BC+CD.
(2) If acxcb, then

'p (x) = AM+MB+MC+MD=AB+2MB+2BC+CD.
In this case the least value is attained by the function p(x) when the point M
coincides with the point B, this value being equal to

AB+2BC±CD.
(3) if bcxcc, then for these values of x the function ry(x) is constant and

is equal to
AB+2BC+CD.

(4) If c c x < d, then the least value of the function T (x) is attained at the

point x,--c, and it is also equal to
AB+2BC+CD.

(5) If x d, then the least value of the function -q) (x) to equal to

AB-l-2BC+3CD.
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Comparing the results thus obtained we see that the least value of the func-
tion p(x) is equal to AB+2BC+CD, that is to

b-a+2 (c-b)+d-c=d± c-b-a.
This value the function cp (x) takes on provided

b'x<c.
279. Let r be the modulus and qp the argument of the complex number

z (r > 0, 0<(p < 2n). Then z- r (cos q)+ i sin (p) and the given equation takes
the form

r2 (cos 2g) +i sin 2(p)+r=0.

It follows that either r-0 and z=zA-0 or -rcos2cp+I+irsin2rp=0, and,
consequently,

sin 2qp = 0,

rcos2cp+1=0. }
The first equation is satisfied by the values qp=0, 2 , 31, 2n, and since by

virtue of the second equation we have cos 2q) < 0, only the values (p=- and

=q)l32
must be taken. In both cases we find from the second equation the'value

r=1, which yields two more solutions:

z2= 1 cos 2+i sin 2) =f, Z3= 1 (cos 32 +i sin 2n) =-i.

280. Let us represent z in the form z=x+iy Then the equation Iz 4

z-8
takes the form

(x- 4)2 -{- y2 _ (x - 8)2 -f - y2.

It follows that x=6 and, hence, z=6+ty. Substitute this value into the equa-

tion zg?= 3 . Then after simplification the equation takes the form

y3-25y+136=0.
This yields

25 + }1625--4 X 136 25 + V625-544 25 ±9---22 - 2
i.e. yl = 17 and y2=8.

Answer: z1. 6+17i; z2=6+81.

281. For brevity, put L_=2. The product

(1+z)(I+z2)(I+z22) ... + z2")

has the same form as the product in Problem 230. Let us denote this product
by P.

Proceeding as in Problem 230, we find

P=
1-z
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Now we must substitute LL-' for z into the above formula. We have

1 _ 1 2 _ 2(1-f-i) _
1-z

_
1-1-}-i 1-i t1-i.)(1+i) -1+i.

Furthermore, we find
2

sn+l
f ( 2(( 1 i l

(1)I-.2"+1 I- 2/ L\12t) J

n l-(2)2n

Note that for n> 2 we have iln = (i4)2" _ 2 =1. Hence, by virtue of (1), for

we have l-z2n+1=1-2Zn and P=(l+i)(i-2I )'
For n =1 we obtain

\\

l_-z2n+1=I- i 2 52) -4'
Answer:

P=(1+i) 4 .

282. As is known, the addition and subtraction of complex numbers can be
performed geometrically according to the well-known parallelogram law. Therefore

the modulus of a difference of two com-
plex numbers lz'-z" j is equal to the
distance between the corresponding points
of the complex z-plane. Consequently, the
condition I z-25i l< 15 is satisfied by
the points of the complex plane lying
inside and on the circumference of the
circle of radius 15 with centre at the
point z,=25i (Fig. 6). As is seen from
the figure, the number with the least argu-
ment is represented by the point z1 which
is the point of tangency of the tangent
line drawn from the point 0 to that
circle. From the right triangle 0ziz0 we
find x1=12 and y1=16. The sought-for
number is z1= 12+16i.

283. Let us prove that for a complex
number a+bi to be representable in the
form

FIG. 6 a-{-bi_I -ix (1)
1 + ix

it is necessary and sufficient that ja+bi j =1 and a+bi -1.
Necessity. Let equality (1) be fulfilled. Then

a+bl 1- I I+ixl
=1,

since I1-ix =j1+ixj=Y1-}-xt. Furthermore,
1 - ix

1+ix74 -1'
because, if otherwise, we have I-ix=-l-ix, i.e. 2=0.
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Sufficiency. Let I a -{-biI=I and -l. Put arg(a+bi)=a where
-a < a < n. Note that a it by virtue of the condition a+bi -1. Now
we have

a+ bi - I a+bi I (cos a+i sin a) = cos a+i sin a. (2)
But

1- tang 2 2 tan 2
coca= sina=

1 + tan- l + tang 2

Substituting these expressions into the right-hand side of formula (2) we get

Cl+itan
2\

1+itan
2 1-ix

C l + i tan 211 1-1 tan I 1-itan 2 I+ix

where x=- tan 2 .

284. Let z = r (cos q + I sin (p). Then

z2+ 1 = j/(r2 cos 2(p+ 1)2 + (r2 sin 2p)2 = j/r4+2r cos 2(p + 1,

I+
I

I

Iz2+lI
+ z r

and
r4+r2 (2 cos 2q)-I)+ I =O.

Put r2=t. The modulus I z I takes on the greatest value when t attains its
greatest value. We have

t- I-2cos2q)+ j`(1-2 cos2(p)2-4
2

Since we are interested in the greatest value of f, we take the plus sign in front
of the radical It is readily seen that the greatest value of I is attained wfle}n
cos 2q) i. e. for q,= 2 +kn. This greatest

value is equal to 3+ 2 5 . Hence, the greatest

value of I z I is equal to
V

3+ V5 1 {

2 2

285. The angle between two neighbouring rays is
equal to

2n
. Let dl, d2r ... be the distances from

A and the feet of the perpendiculars which are
dropped, in succession, on the rays intersecting --c

at the point A/(Fig. 7). We obviously have

dk=d (cos2")k (k=1, 2, ...). FIG. 7n/
The length of the k-th perpendicular is

L,t=dt_3 sin _=d sin- (cos -lk i
n n n//
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The total length of the polygonal line consisting of in segments is equal to

dsin2n Ll+cos2n +(cos2n
)2+...+(cos2n,m 11

The length L of the whole polygonal line which sweeps out an infinite number
of circuits is obtained when in is made to tend to infinity and is expressed as
the sum of terms of the geometric progression with common ratio q = cos 2n

(I q I < 1) and first term d sin nn:

. 2rrsin-
L=d n2n=dcot n .

1-cos-
n

When n is Increased the length L also increases and approaches infinity as n
tends to infinity.

286. First solution. Let labcde be the desired number (where the letters a,
b, c, d and e denote the digits in the corresponding decimal places). Obviously,
e=7, since labcdeX3=abcde 1. After 7 has been multiplied by 3, the digit 2 is
carried to the next (to the left) decimal place and therefore the product dX3
has 5 in the unit's place.

Hence, d=5. We thus have Iabc57X3=abc57l. By a similar argument, we
And that c=8, b=2 and, finally, a=4. The sought-for number Is 142857.

Second solution. Let again labcde be the number in question. Put abcde=x,
then the number is equal to 104+x. By the hypothesis, we have

(104+x)3= 10x+1,
and hence x=42857. Consequently, the required number Is 142 857.

287. p being divisible by $7,'-we can write
p= 100a+ 10b+c=37k,

4 k His an integer. It then becomes evident that
=100b+10c+a=l0p-999a=370k-37X27a.

Cop uently, q is also divisible by 37.
` lar reasoning is also applicable to the number r.

2 e ve A=n3+(n+1)3+(n+2)3=3n3+9n2+15n+9. It is obvi-
u ly uufRci tshow that B=3n3-J 15n=3n(n2+5) is divisible by 9. If
1_`L whernnkTS . integer,-then B is divisible by 9. For n=3k+l we have
n? b 9k2 k6 abd for n=3k 1 2 we have n2+5=9k2+ 12k+9. In both
cases nr+ isdivisible by 3. Hence, B is, divisible by 9 in all cases.
®-M: irst solution. The sum S. can be represented in the following form:

n3+3 (n2+2n+ 1)-n = (n- I) n (n+ 1)±3 (n+ 1)2.
The firs summand is divisible by 3 because it is the product of three conse-
cuti , integers, one of them necessarily being a multiple of three. Hence, S;1
is also divisible by 3.

Second solution. We shall prove the assertion by induction. For n=1 the
number S1= 12 is divisible by 3.

Suppose that for some n the sum S is divisible by 3. We then have-
S,,+, = (a+L.)3+3(n+l)2+5 (n+1)+3=S,, 3(n2+3n+3).

Consequently, is alko divisible by 3.
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290. At the base of the pyramid the balls are put In t, a form of an equi-
lateral triangle. Let the side of this triangle contain nr balls. Then, at the
base of the pyramid there are n= (A:t.)rj+(n,"2),..2+P+2+ I`n (n 1)

2
balls. The second layer of the pyramid contains (n-1)-J ;(n-2)±.. .+ 3+
+2+1= (n 21) n balls. The third layer contains (n-22(n-1 balls and
so on. The topmost layer contains only one ball. The total number of balls in
the pyramid is equal to 120. Hence,

120=n (n-{-1 (n-1) n (n-2) (n - I) 3X4 2x3+1 X2
2 { 2 } 2 t ... + 2 { 22

-The right-hand side of the equality is equal to
n (n+ lfi (n -f-2)

(see Problem 266,

page 192); hence, for defining n we get the equation -

n (n+ l) (n+2)=720. (1)

This equation has an obvious solution n=8. To find the other solutions we
transpose 720 to the left-hand side and divide the polynomial thus obtained
by n-8. The quotient Is equal to n2+Iln+90. Since the roots of this latter
polynomial are nonreal, equation (1) has no other integral solutions except

n=8: Thus, the base layer consists of n(n21=36 balls.

291. The number of filled boxes being equal to m, we conclude that the
number of the inserted boxes is equal to ink. It follows that the total number
of the boxes (including the first box) is equal to rnk+ 1. Hence, the number
of empty boxes is equal to mk+l-m=m(k-I)+I



GEOMETRY

A. PLANE GEOMETRY

1. Computation Problems
292. Draw the bisector of the angle A (see Fig. 8). It intersects the side BC

at a point D and divides it into parts proportio(ial to b and c. Note then that
B

FIG. 8

A ACD is similar to 0 ABC since they have a common angle C, and the angle
CAD is equal to the angle B. Hence,

AC_BC b _ a
CD - AC ' L e. ab/(b+c) - 6

Consequently,

a == Yb1 +bc.

293. Let AD be the bisector of the right angle A in A ABC,
(Fig. 9). Since

/ DAE-'r we have AE=DE

where x=AD is

Hence,

ED_CE
AB- CA'

FIG 9

x
4' V2

the sought-for length. We obviously have

x b-Y2 __ Y2
c b

and DE 1 AC

x_ be if 2
b+c

294. In the triangle ABC (Fig. 10) the medians AD and BE Intersect at
a point 0, AC=b and BC=a. Let us find AB=c.

Let OD=x and OE=y. Taking advantage of the property of medians we
find from the triangles AOB, BOD and AOE that

4x2+y2=

4
, 4x2+4y2=c2, 4x2+16y2=a2.

x
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Eliminating x and y we obtain
a

a2 -- b2
c

5

The conditions for existence of a triangle with sides a, b and c take the
form

5 (a+b)2 > a'+b2 5 (a-b)2 < a2 b2.

The first inequality is obviously fulfilled for any a and b, and the second
one is transformed into the following relation:

a2 - 2 ab + 0 < 0.

Solving this inequality with respect to
b

we finally obtain

a < 2.2 <
b

FIG. 10 FIG. 11

295. Let L A C D L I C E E C B and CE=x, CD= y (Fig. 11). For
the area of the triangle ABC we can write the following three expressions:

SACD+SDCa = 2 by sin c

2

ay sin 2a,

SACE+SECB=
I bx sin 2a-} I ax sin a'T 7

and

SACD+SDCE+SEC8= 2 by sin a+ 2 xy sin a-}
I

ax sin a.

Equating the left members of these equalities and taking into consideration
the condition of the problem we arrive at a system of three equations of the
form

2acos a=x+a x-,
y

2bcosa=y+b X ,

x in
y n

Solving the system we obtain

x- (n2-m2) ab _ (n2-m2) ab
n (bm-an) ' y m (bm-an)
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296. Let S be the area of the given triangle ABC (Fig. 12), and put AB -x.
Then the area of Q ADE is equal to x2S, and that of Q ABE to xS. By the
hypothesis, we get the equation

Solving this equation we find
xS-x2S = 0.

z
I f I-

2

4S

The problem is solvable If S:_-4k2. It has two or one solution depending
on whether S > 4k2 or S = 4k2, respectively.

FIG. 12 FIG, 13

2$7. Let S be the area of the given triangle ABC. The constructed triangles
with areas Si, S2 and S3 are similar to Q ABC (Fig. 13). Therefore, their areas
are in the ratio of the squares of the corresponding sides, whence

`S1 AD :ST= S3 _DE
AC' S AC' Y S -AC'

Adding these equalities termwise we find:

S=(Y Sr+YS2+ 1S )2.
298. Denote by x the third side of the triangle which is equal to the alti-

tude drawn to it. Using two expressions for the area of the given triangle, we
get the equation

1 2- Vl-b+c+x cd-x-b x ,-b-c b-{-c-x
2 x- 2 2 2 2

Solving it, we find:

X2=-5- (b2+c2 ± 2 V'3b3c2-b'-c4).

The necessary condition for solvability of the problem is
3b3c2 > b°+c4.

(1)

(2)

If it is fulfilled, then both values of x2 in (1) are positive. It can easily be
verified that if (2) is fulfilled, the inequalities b+c > x> I b-c j are also ful-
filled, the sign of equality appearing only in the case when x=0 The latter
takes place if in (1) we take a minus in front of the radical for b=c. Hence,
if b=c, the problem has a unique solution, namely

x= 2 b.
j`5
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For b ; e the triangle exists only if inequality (2) is fulfilled. Solving it with

respect to we find that if is equivalent to the two inequalities

2 < b- I+ 5
(3)

1+ 5

Consequently, for b c there exist two triangles if both inequalities (3) are
fulfilled with sign <, and only one triangle if at least one of the relations (3)
turns in an equality.

B

B,

FIG. 14 FIG. 15

299. First suppose that A ABC is acute (Fig. 14). Then

SABC-SA,B,C,=SB,AC,+SC,BA,+SA,CB,. (l )
We have

SB,AC,-2

AC sin A A A

cost SABC COs'- C.

Substituting these expressions into (1), after some simple transformations we
obtain

SA,B,C,

SABC
= 1 - cos'- A - cos' B - cos' C. (2)

If , ABC is obtuse (Fig. 15), then, instead of (1), we have

SABC+SA,B,C, = SB,AC,+SC,BA,+SA,CB&

and, accordingly, instead of (2),

SA,B, C.

SABC
=cost A +cos2 B+ cost C-1. (3)

Finally, if Q ABC is right, then SA,B,C,=O which, as is readily seen, also
follows from formulas (2) or (3).

300. (1) Let BO and CO be the bisectors of the interior angles of , ABC
(Fig. 16). As is readily seen, the triangles BOM and CON are isosceles. Hence,
MN = BM +CN.

(2) The relationship MN=BM+CN also holds in the case of the bisectors
of exterior angles.
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(3) If one of the bisectors divides an interior angle and the other an exte-
rior angle (Fig. 17), then from the interior triangles BMO and CNO we find
that MN=CN-BM when CN > BM, and MN=BM-CN when CN < BM.
Thus, in this case

MN = I CN-BM 1.

The points M and N coincide only in the case (3) if Q ABC is isosceles
(AB = AC).

FIG. 16 FIG. 17

301. Draw through the paint P three straight lines parallel to the sides of
the triangle (Fig. 18). The three triangles thus formed (they are shaded in the
figure) are also equilateral, and the sum of their sides is equal to the side AB=a

B

.r

FIG. 18

of the triangle ABC. Consequently, the sum of their altitudes is equal to the
altitude of Q ABC and hence

PD+PE+PF=a
2

The sum BD+CE+AF is equal to the sum of the sides of the shaded
triangles added to the sum of the halves of these sides and thus,

BD-FCE+AF=
2

a.

Consequently,
PD+PE+PF_ I

BD+CE+Ah - j7

302. Let 0 be the point of intersection of the medians in Q ABC (Fig. 19).
On the extension of the median BE lay off ED=OE. By the property of me-
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dians the sides of A CDO are

3

the corresponding sides of the triangle formed

by the medians. Denoting the area of the latter triangle by S1, we have
9S,=-T SCDO

On the other hand, A CDO is made up of two, and A ABC of six triangles
whose areas are equal to that of A CEO. Therefore, SCDO=

3
SARC. Consequ.

ently,
S, 3

SARC 4

303. Let ABC be the given triangle (Fig. 20). The area of A COB is equal
to 2 ar, and the area of A COA to

I
br. Adding these quantities and expres-

sing the area of A ABC by Heron's formula, we obtain
2r=a-(-b Yp(p-a)(p-b)(p-c),

where p=
2

(a+b+c).

FIG. 20 FIG. 21

304. Let R be the radius of the circumscribed circle and r the radius of the
inscribed one. Then (Fig. 21) AB=2R, and also

AB=rcot
2

+rcot .

Hence

cot 2 -}-cot

2

=2R-5.

Furthermore, 2 2 and cot (z ',- (2 V=I, i. e.

cot 2 cot R - 1

Cot Cot 2.
whence

=6.cot 2 cot
2
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Consequently, cot

2
and cot 2 are equal to the roots of the quadratic equation

xa-5x+6. 0.
Finally we obtain

a=2 arc tan 2 , 0=2arctan
3

.

305. Let us denote by a and b the sides of the given rectangle and by q the
angle between the sides of the circumscribed and the given rectangles (Fig. 22).

Then the sides of the circumscribed rectangle are equal to
a cosp+bsinrp and asin(p+bcosp.

By the hypothesis, we have
(a cos p+b sin (p) (a sin p+b cos (p) =ma,

whence we find

sin 2(p =
2 (m?-ab)

a - b

The condition for solvability of the problem is of the form 0<sin2rp<1
which is equivalent to the following two inequalities:

JIab.m._ a-{-b
y2.

306. If L AED= L DEC (Fig. 23), then also L CDE= L DEC which im-
plies CE=CD. Consequently, E is the point of intersection of the side AB with

P

A f

FIG. 22 FIG. 23

the circle of radius CD with centre at C. The problem is solvable if AB_ BC,
and it has two solutions when AB > BC, and only one when AB=BC. (The
point El in Fig. 23 corresponds to the second solution).

307. Consider one of the nonparallel sides. It is seen from the opposite vertex

lying on the lower base at an angle 2 (Fig 24), and the midline is equal to

the line segment joining this vertex to the foot of the altitude drawn from the
opposite vertex, i. e. to h cot 2 . Hence, the area of the trapezoid is

a
S= h'2 cot
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308. The midpoints of the diagonals E and F of the trapezoid lie on its
midline MN (Fig. 25). But ME=FN 2 , and consequently

EF=b 2 a-a= b a2 .

309. The parallelogram is made up of eight triangles of area equal to that
of the triangle AOE. The figure (an octagon) obtained by the construction is made

FIG. 24
b

FIG. 25

up of eight triangles whose areas are equal to that of a POQ (Fig. 26): Since
OP= 3 OA (by the property of the medians in A DAE), and OQ= OE, we

have
1

SPOQ = 6 SAOE-

Hence, the sought-for ratio is equal to 6 .

FIG. 27

310. It is obvious that KLMN is a parallelogram (Fig. 27), and KL= 5 AQ.

Consequently,
2

SKL MN = SA QCS - 5 2 a-
5

a2.

311. To the two given chords of length 2a and 2b there correspond central
angles 2a and 2A where

sin a= , sin P= b
.
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An are equal to 2 (a f f) is subtended by the chord 2c where

c= RI sin (a ±P)I=I
R

YR2-b''f R /R2-a2

312. The sought-for area is equal to the sum of the areas of two sectors with
central angles 2a and 20 (Fig. 28) minus twice the area of the triangle with
sides R, r, d:

S=R'a+r29-Rd sin a.

FIG. 28

the angles a and P we have two equations
Rsina=rsint

R cosa+r cos fl=d.
Solving them we find:

Hence,

d' -4- R--r2cos a= 2Rd

d2+r'-R2
cos S = 2rd °

S = R2 arc cos d2 Rd r2 +r2 arc cos d2+2rd
R2

2Rd

-Rd V,_ (d2+R2-r2\2.
2Rd /I

313. Let K be the point of tangency of two circles having radii r and r1,
and P be the foot of the perpendicular dropped from the centre 02 of the third
circle on 001 (Fig. 29). Putting KP=x, we can write

AB=2 iR2-x2. (I)
The quantity x is determined from the equation

(R + r)2 - (r + x)' = (R + rl )2 - (r1- x)2

and is equal to r+ri R. Substituting this value in (1) we obtain

AB = 4 Yrrl R.r+rt
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314. Let 01 and 02 be, respectively, the centres of the circles of radii R and
r and 03 be the centre of the third circle. Denote by x the radius of the third
circle and by P the point of tangency of this circle and the diameter 0102
(see Fig. 30). Applying the Pythagorean theorem to the triangles 0203P and
0103P we obtain the equality

z
0203 = 03P2 + (0201 L

-I 0103-o3p2
Substituting the values 0203=r±x, 03P =x, 0201 =R-r and 0103=R-x

into this equality we obtain an equation with x as unknown:

(r+x)2=x2+(R-r+ Y(R-x)2 -x2)2.
Solving this equation we find

x=4Rr R-r
(R -L r)2 '

FIG. 30 FIG. 31

315. Let 01, 02 and 03 be the centres of the three equal circles and 0 be
the centre of the circle of radius r (Fig. 31). Let us denote by SO0020, the area
of L 010203 and by SAO,B the area of the sector A02B. Then the sought-for
area is equal to

I
S= 3 (So,0z0,-3SAo2u-Trr .

If R is the common radius of the three circles, then

R=
23

(R+r),
whence we obtain

R2 Y3 r=(3+2Y3)r.
Then we find

S010303= 2 2RRIf 3=Y3R2=3(12+7 r3) r&

and

SAO.B= nR2= (7+4 Y 3) r2.

(1)

Finally, using formula (1) we obtain

-5=[12f7V3_(23+2Y31n1 r2.
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316. Let 09D .L 0,02 (see Fig. 32). We have

+0,02-20,0.0,D=0,02+ 002---2O0,. D0,,002_0,023 3 (1)

where 0,09=a+,, 0202=b+ r, and 0¢ (a+b)-b=a.
Putting OAD=x we rewrite the second equality (I) in the Wit!

(a+r)'+b'-2bx=(b+r)2+a2-2a (a+b-x),
whence we find

a-bx=a { Q+br.

The first equality (1) now takes the form of an equation in one unknown rl

(a+b-r)2=(a+r)'-+b=-2b (a+r).
Solving this equation we finally obtain

ab (a+ b)
a2+ab l-b,

317. Let us denote by a and b the distances between the given point A an b
the given straight lines 1, and 12, respectively, and by x and y the lengths of the legs

of the sought-for triangle (Fig. 33). Noting that sin y,
b =cosy we obtain
y

two equations

a2 -}-b-1 and
I

k2.
x2 y-

2xy=

Transforming these equations we arrive at the system
xy = 2k2,

62x2+a2y2=40

Solving it, we receive

x I Yk2+ab ± Yk2-ab1,= b

y=
a

I r r2 +ab T j/'k2 -ab

The problem is solvable for k2 ab, and has two solutions for k2 > ab and one
solution for k2 = ab.

318. Joining the centres of the circles we obtain a polygon similar to the
given one The centre of the polygon thus constructed coincides with the centre
of the given one, and its sides are respectively parallel to the sides of the given

polygon (Fig. 34).
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Let r be the common radius of the circles under consideration. Then the side
of the newly constructed polygon is equal to 2r, and its area is

a=nr--cot n-.
n

Furthermore, let P_a ( 2) be the interior angle of the polygon. For the de-
sired area S of the star-shaped figure we obtain the expression

S=v-- n 2 ft nr2cot
n

-n 2z

P.

FIG. 35

It is obvious (see Fig 34) that

a rr

2
--r=r tan n

whence we obtain r= a and, consequently,
2 (1 + tan )

a, ncot n -(n--2) 2
/ a4 CI+tannl

FIG. 36

319. From Fig. 35 we have

L CGF= 2 (FA+AC) and L CDB= 2 (FA-ABC).

The figure DEGF is an inscribed quadrilateral if and only if L CGF= L CDB,
i.e. if AC=BC.

320. Let 0 be the vertex of the acute angle a, and 0k the centre of the kth
circle (Fig. 36). Then

rk=00ksin 2 , rk+r=(00k-rk-rk+r) sin 2
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and

Hence,
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a ark+r=rk-rk sin
2

-rk+1 sin 2 .

a
rk+l I - sin -

2rk =
1+sin

a

2
i. e. the radii of the circles form a geometric progression with common ratio

1-sin 2a

I Fsin
a
2

321. Let the least angle between the reflected rays and the plane P be equal
to a (Fig. 37). Such an angle is formed by the ray passing through the edge C
of the mirror after one reflection from the point B. By the hypothesis, we have

FIG. 37

CF 11 DA, and hence, L OCB = L OBC =a. From the reflection at the
point B it follows that L OBF=a. Therefore, for the triangle OBF we have

L BOF=2a, L OFB= 180°-2a-a= 180°-3a.
Let us dent-to by h the distance between the mirror and the plane, and by r
the radius /'D of the illuminated circle. Since the radius of the mirror is equal
to 1, we have

h =tan a (1).r-1

Applying the law of sines to the triangle OBF we find
sin c

OF .-
sin 3a'

By similarity of the triangles CBF and DBA, their altitudes are proportional
to the sides, and thus

ADh1 sin 2a
FC

_
sin 2a

that is

r h+ sin 2a (2)
1+ sin a sin 2a

sin 3a
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Solving together (1) and (2) as simultaneous equations we find
2 cos 2ar_

2cos2a-1

Substituting the given value a=15° into the latter formula we

r- } 3 -3+ V
Ys-1 2

Furthermore, we have
I

tan a=l sin
2a 2 = 1

=2- r T,
l o j13 2+Y32

obtain

215

and therefore relation (1) yields

322. We must consider all the different possible cases depending on the

value of the ratio r
a

P

a

FIG. 39

(1) Let a > Y 2. The circles do not intersect the square and S=a2.

(2) Let , a < Y 2 . As is obvious, in this case S-a'-8a where a
is the area of the shaded curvilinear triangle (Fig. 38). We have

a=2aY2x-2i-p,

where cp=arc sins . To find x we note that

xY2+Vr= a2=a
which implies

a-Yrz-a''X=
Y2
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Hence,

I r.

<(3) Let < . Here S = 8a where a is the area of the shaded25Y-
curvilinear triangle (Fig. 39). We have

l 1 ao= 2 r
2

x,

where

Noting that

p=ar sin
x
r

r2 -(a)2 T Y2'
we find

314r 4-7--P -a
2 )12 .

Consequently,

a=L r' arc sin
y4r'-a2-a a(jI4r'-az-a)

Z 2jl-lr 8

Y2(4) Let a < i The required area is equal to zero.

FIG. 40

323. We have (see Fig. 40)

S =
Furthermore,

S9_ S,_ AO

S2^S4- OC'

whence S3S4 = SIS2. But we obviously have

S3+S1 -S4+S1,
which implies S3=S4 and S3=S4= j`S,S2.

Hence, from (1) we obtain

S=SI+S2+2 yS'Sz=(YSt+Ys;)2.

a--a a- r -a2- ( Y )- rIaresina-r -°2

r y2

(1)
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324. Let us denote by a, b, c and d the lengths of the sides and by m and n
the lengths of the diagonals of the quadrilateral (Fig. 41). By the law of cosines
we have

and

which yield

n2=a2+d2-2adcosgr

0 = b2 +ce + 2bc cos If,,

(bc+ad) n2 = (a2+d2) be+(b22+c2) ad = (ab+cd) (ac+bd).
Hence ,

n2 bb+ad (ac+bd).

Analogously, we find
m2 Jad-l-bc(ac-)-bd).

ab+cd

Multiplying these equalities we obtain Ptolemy's theorem:
mn=ac+bd.

2. Construction Problems
325. Let 01 and 02 be the centres of the given circles. Draw the straight

line 0,A, and another straight line parallel to 01A passing through the centre
02 of the second circle. This line intersects the second circle at points M arid A'

FIG. 41 FIG. 42

(pig. 42). The straight line MA intersects the second circle at a point P,. The
straight line 02P intersects 01A at a point C1. The similarity of the triangles
M02P1 and AC1A1 implies

C1A =C1P1
Hence, the circle of radius C1A with centre at C, is the required one. A second
solution is obtained with the aid of the point N in just the same way as the
first solution with the aid of the point M. If one of the straight lines MA or NA
is tangent to the second circle, then only one solution remains while the second
solution yields this tangent line (which can be interpreted as a circle with
centre lying at infinity). The latter case takes place if and only if the point A
coincides with the point of tangency of one of the four common tangents to the
given circles.

328, Let 0 be the centre of the given circle, and AB the given line (Fig 43).
The problem is solved by analogy with the preceding one, In the general case
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it has two solutions. There are three singular cases here: (1) The given line
intersects the circle, and the given point A coincides with one of the points of
intersection. Then there are no solutions. (2) The given line is tangent to the
circle, and the point A does not coincide with the point o1 tangency. In this
case there is one solution. (3) The given line is tangent to the circle, and the
point A coincides with the point of tangency. In this case there is an infinitude
of solutions.

FIG. 43 FIG. 44

327. Through the centre 0 of the given circle draw a straight line perpen-
dicular to the given line I and intersecting the circle at points M and N
(Fig. 44). The straight line MA Intersects I at a point P1. C1 is the point of
intersection of the perpendicular erected to I at the point P1 with the straight
line OA. The similarity of the triangles AOM and AC1P1 implies that C,A =C1P1.
Consequently, the circle of radius C1A with centre at C1 is- the required one.
Another solution is obtained with the aid of the point N in just the same way
as the first solution with the aid of the point M. If the straight line I does
not pass through one of the points A, M and N, and the point A does not
coincide with M or N, the problem always has two solutions.

Suppose that A does not coincide with M or N. If I passes through M or N,
the problem has one solution (the second circle coincides with the given one).
But if I passes through A, the problem has no solutions.

Let A coincide with M; if I does not pass through M or N, the problem
has one solution (the second degenerates into a straight line coinciding with 1).
If I passes through N the given circle is the solution, and if I passes through M,
the problem has an infinite number of solutions.

328. On the given hypotenuse AB=c as on diameter construct a circle with
centre at the point 0 (Fig. 45). Draw OEI AB and lay oft OF=h on OE. The
straight line parallel to AB and passing through F intersects the circle at the
sought-for point C. The problem is solvable if h< 2 . The lengths of the legs a
and b are found from the system of equations

a2+b2=c2,
ab=hc.

Solving this system we obtain

a= 2 (JIc2 j 2hc-F- 11c2-2hc), b= 2 (yrc2+2hc-

329. Let us take the line segment AB, and on its extension lay off a seg-
ment AE = AD in the direction from A to B (Fig. 46). Construct Q BCE on BE
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as base with sides BC and EC=CD. On AC as base construct p ACD with
sides AD and CD. The quadrilateral ABCD is the required one because it has
the given sides and L DAC= L CAE (the triangles ACD and ACE are cong-
ruent by construction).

FIG. 45 FIG. 46

330. Let H, S and M be, respectively, the points of intersection of the
altitude, bisector and median with the circumscribed circle K whose centre is
at the point 0 (Fig. 47). Draw the straight line SO, and through H another
straight line parallel to SO whose second point of intersection with K is the
point A. Draw the straight line AM intersecting SO at a point P. Through the
point P draw a straight line perpendicular to SO which intersects the circle at
points B and C. The triangle ABC is the required one, since AH _1._ BC,
BS=SC and BP=PC. The problem is solvable if and only if H, S and M do
not lie in a straight line, the tangent line to K at the point H is not parallel
to SO and the points H and M lie on opposite sides from the straight line SO
but not on a diameter of the circle K.

FIG. 47 FIG. 48

331. A. Exterior tangency. From the point 0 of intersection of the bisectors
of the interior angles of the triangle ABC drop the perpendiculars OM, ON
and OP on the sides of the triangle (Fig. 48). Then AP=AN, BP=BM and
CM=CN. Consequently, the circles of radii AP, BM and CN with centres at
A, B and C are tangent to one another at the points P, M, N.

B. Interior tangency. From the point 0 of intersection of the bisector of
angle C and bisectors of the exterior angles A and B draw the perpendiculars
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OM, ON and OP to the sides of the triangle ABC or to their extensions
(Fig. 49). Then

AP-AN, BP-BM, . CM=CN.

Consequently, the circles of radii AP, BM and CN with centres at A, B and C
are tangent to one another at the points P, M, N.

Taking the bisectors of the interior angle A and exterior angles B and C,
or the interior angle B and exterior angles A and C, we obtain two more
solutions.

FIG. 49

Bf

FIG. 50

332. The solution is based on the following property: if the altitudes hA
and hp of the inscribed triangle ABC intersect the circle at points Al and B1,
then the vertex C bisects the arc A,BI (Fig. 50). This is implied by the equa-
lity of L A1AC and L BIBC, each of which is equal to 2 ACB.

Construction. Through ' A draw a straight line in the given direction to
intersect the circle at a point At. Let Bl be the point of intersection of the
altitude hR and the circle. Find the midpoint C of the are A1B1 and draw AC.
Then draw B1B 1 AC. The ti iangle ABC is the sought-for.

Taking the midpoint C' of the second of the two arcs A1B1,. we obtain ano-
ther solution, namely the triangle AB'C'.

FIG. 51

333. Join the midpoint E of the base AB to the vertex C and find the
point Q of intersection of the straight lines EC and AD (Fig, 51). The straight
line PQMN parallel to AB is the required one. Indeed,

PQ TAE

which results in PQ =QM. Furthermore.
MN PQ
CD
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whence MN -PQ. A second solution is obtained with the aid of the midpoint
E' of the base CD like the first solution with the aid of E.

334. Let B be the given vertex and E, F the given points (Fig. 52). Sup-
pose that the square ABCD has heert constructed, The vertex D must lie on
the circle constructed on EF as on diameter, Let BD intersect this circle at a
point K. Then A= KF since / ADB .: 4 BDC.

Construction. On EF as on diameter construct a circle and at its centre
erect a perpendicular to EF to intersect the circle at pints K and K'. Join B
to K and extend BK to intersect the circle at a point D. Draw the straight
lines DE and DF and through the point B the straight lines BA arid BC per-
pendicular to them. ABCD is the required square. Using the point K' we
obtain another solution. The problern always has two solutions except the case
when the point B lies on the circle with diameter FF. In this latter case the
problem has no solutions if the point B does not coincide with one of the
points K and K'

FIG. 52 FIG. 53

335. First solution. Draw AD 11 MB to intersect the extension of BC at a
point D (Fig. 53). On the line segment CD find a point N such that

CDN=k.
C

The straight line MN is the desired one since the area SAR,41 is equal to
thb area "SbRM and hence SARC =SDh1C, and by construction we have.
SDMC "' kSNMC

Second solution is obtained by using a point N1 such that

CD
N1D=k.

This yields
S.4R^ k.
A RNA hi hi

Taking into consideration the possibility of an analogous construction based
on the vertex C (instead of A), we can easily verify that for k # 2 the problem
always has two solutions and for k=2 only one.

336. To make the construction it is sufficient to determine the altitude
h=l(L of the rectangle.
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Let KLMN be the required rectangle, and RN lie on AC (Fig. 54). If the
vertex B is made to move in a straight line parallel to the base AC while the
altitude h remains unchanged, the lengths of the base and of the diagonals of
the rectangle also remain unchanged (because LM and AC are in the ratio of
BH-h to BH). Consequently, for determining h the given triangle ABC can be
replaced by any other triangle having the same base AC and the same alti-

tude BH. It is most convenient to take a triangle
with right base angle. Hence, we perform the fol-
lowing construction. Through B draw a straight

i line parallel to AC, and through C a straight
line perpendicular to AC. Using a compass

` with opening equal to the length d of the given
-d diagonal, lay off on the hypotenuse AB1 a

line seggment AL1 from the vertex of the right

a
r

H x
angle C. Through the point L1 draw a straight
line parallel to AC; the points L and M at which

FIG. 54 it intersects the sides AB and BC are the ver-
tices of the required rectangle. Depending on

whether the altitude of the triangle AB1C drawn from C is less than, equal to
or greater than the given value of d, the problem has two, one or no solutions.

337. Inscribe the given circle in the given angle. Lay off on the sides of the
angle line segments AC=BD of length equal to that of the given side of the triangle
from the points of tangency A and B in the direction from the vertex S (Fig. 55).

Inscribe in the given angle another circle so that it is tangent to the sides

of the angle at points C and D. Draw a common tangent EF to the constructed
circles. We shall prove that L SEF thus obtained is the required triangle. For

FIG. 55 FIG. 56

this purpose it is sufficient to prove that AC=FE. It is easily seen that the
perimeter of the triangle SEF is equal to 2SC. On the other hand, it is obviously
equal to 2(SA+EL+LF). Thus, we have

SC=SA+EL±LF, SA+AC=SA+EF, i.e. AC=EF,
which is what we set out to prove.

It is clear, that the problem has two solutions if the circles do not intersect,
and only one if they are tangent. The problem has no solution if the circles
intersect. Let a be the given angle, r and R the radii of the circles and a the
given side of the triangle. The distance between the centres of the circles is

equal to
as

. For the problem to be solvable it is necessary that
COS

2

R + r >
a

a
cos

2
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But we have

and, consequently, there

that is

aR-r+a tan
2

must be

2r+atan 2
as

cos
2

2r 1-sin 2
a a

cos 2
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338. Describe a circle with centre at the point B tangent to the straight
line CD (Fig. 56). From the point A (if A and B lie on different sides from CD)
or from the point A' which is the reflection of A through CD (if A and B are
on one side of CD) draw the tangent line AK or A'K to the constructed circle.
The point M of intersection of AK (or A'K) and CD is the sought-for point.
Indeed, we have

L AMC= L KMD=2 L BMD.

3. Proof Problems
339. Let BO be a median in the triangle ABC. Construct the parallelogram

ABCD (Fig. 57). From the triangle BCD we have 2B0 < BC-f-CD, and since
CD=AB, we can write

BO < AB+BC
2

B

c

FIG. 57

From A AOB and p BOC we have

B0 2C > AB

FIG. 58

and

BO -} ZC > BC.
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Adding together these inequalities we obtain

BO > AB+BCAC
2 2

340. Let D be the point of intersection of the altitudes (the orthocentre),
0 be the centre of the circumscribed circle, E and F the midpoints of the sides BC
and AC (Fig. 58). The triangles ADB and EOF are similar because L ABD =
_ OFE and L BAD= L 0EF (as angles with parallel sides). Hence,

OE EF _ 1

AD-AB- 2
341. See the solution of Problem 301.

342. Let a, b and c be the lengths of the sides of the triangle opposite the
angles A, 8 and C, respectively. We shall prove that the length 1A of the bisector
of the angle A is expressed by the formula

2bc cos A 2 cos
A

1A= b+c = 1 I (I )

T + c

Indeed, the area of the triangle ABC is

SABC =

2

be sin A =

2
CIA sin

2
-f 2 b1A sin 2 ,

which results in formula (1). Similarly, for the bisector 1B of the angle B we
obtain the formula

2 cos
B

IB = 1 I '

a c

(2)

Let a > b; then L A > Z B, and since we have 0 <
2

< and 0 < B < 2

this implies cos

2
< cos B. Thus, the numerator of fraction (1) is less than

that of fraction (2). Furthermore, the denominator b-}

s

of fraction (1) is

greater than the denominator a + c of fraction (2) because I > Q . Consequently,

1A < 1B. -

343. Let L CPQ=a and L PQC=s (Fig, 59). By the law of sines we have

RB BP PC CQ AQ AR
sing-Tin (cc+s)' sinsnna' _sin ((a-}- )-sins'

Multiplying these equalities termwise we obtain

RBPCQA=PBQCRA.
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344. Let L AKB=a, L AFB=0 and L ACB=y (Fig. 60). We haves-- T,

and since tan fi= 2 , tan y= 3 we can write -

2+3 _tan($+V)=
1

1 -1.
1 .2 3

It follows that P-f-y= 4 and (7--0+y= +4
2
71

'
B

FIG. 59 FIG. 60

345. We shall use the converse of the Pythagorean theorem: if the sum of
the squares of two sides of a triangle is equal to the square of the third side
this triangle is right.

In our case the relationship

(a f bYF h''=(c+h)2
is fulfilled because it is equivalent to the obvious equality ab=ch.

346. First solution. Draw AB' so that L EAC=2B° and BD± AE tFig. 61).
Since Q CAE is similar to & ABC, we have

CI' aa_
b

which yields CE= . and BE=b- ,

On the other hand, L BAD=60° and therefore

BD=Y-b, AD= 2 .

But AE=a and hence ED= -a. It follows that

2b_4BE= 212+ 3 bl

OOnsequentlyy

b- _ (b -a) t b2.

8 -323
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Squaring both members and simplifying the obtained equality, we find that
this relationship is equivalent to the one to be proved.

Second solution. We have a=2b sin 100, and therefore the relationship to be
proved is equivalent to

that is

1+8 sins 10°=6 sin 10°,

sin 30°=3 sin 10°-4 sins 10°.

The latter equality holds by virtue of the general formula
sin 3a=3 sin a-4 sin3 a.

FIG. 62

347. In any triangle, the greater angle is opposite the greater side. There-

fore, if
AC < 2BM,

in AABC (Fig. 62) which is equivalent to the two inequalities
AM<BM, MC<BM,

then

ABM < L BAM, L MBC < L BCM.
Adding these inequalities we obtain

LABC<LBAM+LBCM=n:-LABC,

whence 2 L ABC < a or L ABC < 2 .
The cases AC>2BM are considered analogously.

348. First solution. Let QQ' 11 AC and N be the point of intersection of AQ'
and QC (Fig. 63). The angles whose values are implied by the conditions of
the problem are indicated in the figure by continuous arcs.

Let us show that

QP I AQ'. (1)

Indeed, we have NC=AC; but AC=PC since ACP is an isosceles triangle.
Therefore, NC=PC and, consequently, NCP is also an isosceles triangle and
hence

L CNP=L NPC=80°.



SOLUTIONS AND ANSWERS. PLANE GEOMETRY 227

Now it readily follows that/ Q'NP= 180°-60°-80°=40°, and since L NQ'P =
=40°, the triangles QQ'P and QNP are congruent which implies (1). Now it
is clear that L Q'PQ=50° and, consequently, L QPA-180°-50°-50°=80°

Second solution (see Fig. 64). It is easily seen that the angle P is equal to
80° if and only if AABP is similar to A PCQ (the angles whose values are
directly implied by the conditions of the problem are indicated in the figure

B

FIG. 63 FIG. 64

by continuous arcs). Let us prove that these triangles are in fact similar. The
angles ABP and PCQ being equal, it is sufficient to establish the relation

AB PB (I)
cQ- CP

Put AB=I; then from the isosceles triangle CQB we find

CQ= 1
2 cos 20° '

On the other hand, since PC=AC, we have
PC=21 sin 100, and, besides, BP=1-21 sin 10°.

Substituting these expressions into (1) we get the equivalent equality

4 sin 10°cos 20°= 1-2 sin 10°. (2)

The validity of (2) is readily revealed by noting that

sin (10°+20°)+sin (10°-20°) 1 1

sin 10°cos 20°=
2

-
4 2 sin 10'.

8*
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349. Let A ABC be given (Fig. 65). Lsy off AD=t on the tt
the side AC. From the equality a =bs+bc it follows that

a b+c
b a '

which means that the triangles CAB and CBD are similar, aid L A = L CBD.
Furthermore, L B= L BDA L DBA. Consequently, L A B+ L DBA =
=2L B.

FIG. 65

350. Let OC be a median in AOABI. Let a point D lie on the extension
of OC so that OC=CD (see Fig. 66). We shall show that AAOD=A0A1B.
Indeed, AO=0A1 by construction. Furthermore, sine AOB1D is a parallelogram,
we have AD=0191=0B. Lastly, L OAD=L A1O because the sides of these
angles are mutually perpendicular: AO l0A1 and OBI OB by construction,
and AD ij OBI. Consequently, A AOD= A OA, B, knd two sides of one of them
are respectively perpendicular to two sides of the other. Therefore their third
sides are also perpendicular, i. e. OD L A1B.

A

FIG. 66 FIG. 67

351. Let ABC be an acute triangle, and AD, BE and CF be its altitudes
which intersect at a point 0 (Fig. 67). Each of the quadrilaterals BDOF, CEOD
and AFOE is inscribed in a circle. According to the theorem on the product of
a secant of a eircle by its outer portion, we have

'BE-B0-BC-BD-BA-BF,

Adding together these equalities we obtain
2(AD-AO+BE

BA BF+ CB CD- AB (AF+ BF)+ BC (BD+CD)+CA (CE+ AE) =
=(AB)a+(BC)2+(CA)2,
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which is what we set out to prove. In the case of an obtuse triangle the product
corresponding to the obtuse angle should be taken with the minus sign.

352. By the hypothesis, b-a=c-b, i.e. a+c=2b. To compute the product
Rr let us use the formulas expressing the area S of a triangle in terms of the
radii of its circumscribed or inscribed circle and its side. As is known, S= be

sin A, and according to the law of sines we have sin A=2R which implies

On the other hand, S=rp, where p=a+2+c. Equating both expressions we
obtain

rR=4p. (1)

Under the conditions of the problem we have

P= b.a+2+c= 2

Substituting this value in (1) we obtain
6rR = ac.

353. Let z be the length of the bisector, and m and n the lengths of the
line segments into which the base of the triangle is divided by the bisector

FIG. 68

(Fig. 68). By the law of cosines we have

a2=z2+m2-2mz cos a
and

b2 = z2 + n2 + 2nz cos a.

Multiplying the first equality by n and the second one by in, and adding them,
we obtain

na2 +mb2-(m+n) (z2+mn). 0)
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By virtue of the relation a = b , we have
n

na2+mb2=na mb no =ab(m+n).

Substituting this expression into (1) we obtain the required equation ab=z2+rnn.
If a=b and m=n, the equality thus proved expresses the Pythagorean

theorem: a2=z2+m2.
354. By the hypothesis, BD=EC (Fig. 69). If M is the point of intersection

of BC and DE, then for the triangles BDM and ECM we obtain
BD _ DM EC ME

sin (p- sin B' sin cp- sin C'
whence it follows that

But in Q ABC we have

Consequently,

DM_ sin B
ME- sin C

sin BAC_
ABC A B

DM AC
ME

_
AB

355. Let BD, BE and BF be, respectively, an altitude, bisector and median
in Q ABC. Suppose that AB < BC. Then

LA>LC, LCBD>LABD,
which implies

L CBD > 2 (L ABD+ L CBD) = 2 L B,

i. e. L CBD > L CBE. Consequently, the bisector BE passes inside L CBD,
and the point E lies between D and C.

Furthermore, we have ECAE_
BC
AB < I and AE < EC whence

AE < 2 (AE+EC) = 2 C,

i. e. AE < AF. Hence, the point F lies between E and C. Thus, the point E
lies between D and F which is what we set out to prove.

356. Consider a triangle ABC. Let BD be a bisector, BM a median and BN
the straight line which is the reflection of BM through BD (Fig. 70). If SABN
and SMBC are the areas of the corresponding triangles, then

2SABN= xhB = nc sin L ABN
and

2SMBC= x+ y hB=ma sin L MEG,

where ha is the altitude dropped from the vertex B onto AC. Since L ABN =
= L MBC, this implies

x=x+y nc
(1)

2 ma



SOLUTIONS AND ANSWERS. PLANE GEOMETRY 231

Similarly,

and

2S,NBC = yhB = na sin L NBC

2SAB,yt = x

2
y hB = me sin L ABM.

Since L NBC= L ABM, it follows that

x+ y no
y 2 mc'

Dividing (1) by (2) termwise we obtain the required proportion

x C2

(2)

y = a2 .

357. The straight lines AP, BQ and CR divide the triangle ABC into six
triangles: L AOR, A ROB, L BOP, Q POC, & COQ and Q QOA (Fig. 71)

A

FIG. 70 FIG. 71

Applying the law of sines to them we obtain

AR AO AO AQ
sin cp sin y' sin o sin P'
BO BR BP BO
siy sin -(T+ V) ' sin vsin a'

CQ CO CO CP

sin (p+'1) sin sina sin p'
Multiplying all these equalities termwise we find

358. Let K and 0 be, respectively, the centres of the circumscribed and

inscribed circles of the triangle ABC, and D the midpoint of the arc AC (see
Fig. 72). Each of the angles OAD and AOD is equal to half the sum of the
vertex angles at A and B of the triangle ABC. It follows that OD=AD.

By the theorem on chords intersecting inside a circle, we have
MO-ON=BO-OD.

Furthermore, if OE I AB and FD is a diameter, the triangles BOE and FDA
are similar and therefore BO:OE=FD:AD which implies
i. e. BO.OD = OE FD because AD = OD. Hence,

M0.ON=OEFD.
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Substituting MO=R+1, ON-R-l, OE=r and FD=2R in the above
equality we arrive at the required result

R2-12=2Rr.
359. First solution. Let ABC be the given triangle, K, the inscribed circle

of radius r and K2 the circumscribed circle of radius R. Let us construct an
auxiliary triangle A1B1C1 so that its sides are parallel to the sides of A ABC
and pass through its vertices (Fig. 73). Draw tangent lines to the circle K2
parallel to the sides of A A1B1C1, applying the following rule: the tangent line
A2B2 parallel to the side A1B1 is tangent to K2 at a point belonging to the
same arc AB on which the vertex C lies and so on. The segments of these
tangents form a triangle AsB.ZC$-

FIG. 72 FIG. 73

Then, A A1B1C1 lies inside A A2B2C2, and the two triangles are similar.
Therefore the radius R' of the inscribed circle of A A1B1C1 is not greater than
the radius R of the inscribed circle K2 of A A2B2C2, i. e. R' < R. On the other
hand, the radii of the inscribed circles of the similar triangles A1B1C1 and ABC

are in the ratio of the corresponding sides of these triangles, i. e. A1B 1 = 2.

Thus, R'=2r. Comparing this equality with the inequality R' - R we finally
obtain

2r < R.

Second solution Let r and R be the radii of the inscribed and circumscribed
circles, S be the area of the given triangle and p=a-1 b+c where a, b and c
are the sides. Then

r _ S i ab sin C 2R sin A sin B sin C
R pR 2 pR

_R
(sin A -}- sin B + sin C) '

But

sinA+sinB+sinC=2sinA 2BcosA _.+2sinA 2BcosA 2B_

=4sin A

2
8 cos

2

cos 8= 4 cos

2

cos
B

cos2,

and, consequently,
r 4 sin

2

sin
A sin 2.
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The problem is thus reduced to proving the inequality

sin 2 sin B sin 2
1S

(see Problem 644).
Third solution. From the formula 12=R2-2Rr proved in the foregoing

problem it follows that R2-2Rr } 0 whence we obtain R;;--2r.
360. Let a and b be the lengths of the legs and c the length of the hypote-

nuse. Comparing two expressions for the area of a triangle, we get

S= 2 (a-J-b+c) r= 2 hc,

which implies
r c

(1)

Since a+b > c we have

h a+b+C'

T < c+c=0.5.

Furthermore, by virtue of the relationship c2= a2+b2, the inequality b2+b2}2ab
is equivalent to the inequality 2c2 (a-4-b)2, i.e. a+b c cJ1 2. Therefore,

r> C = I =r_2- I > 0.4.
h cy2+c 112+1

361. Let A, B and C be the angles of an acute triangle, and a, b and c be
the sides opposite them. Put P=a+b+c. The required relationship follows
from the equalities

aka+bkb+ckc=Pr, (1)

and

(b+c)ka+(c-f-a)kb+(a+b)kc=PR (2)

because, adding them together, we obtain

ka+kb±kc=r+R
Equality (1) holds because its left and right members are equal to the doubled
area of the triangle. To prove (2) let us note that

ka=R cos A, kb - RcosB, kc=R cos C, (3)

and that
b cos C-{- c cos B = a,

c cos A + a cos C = b,

a cos B + b cos A = c,

whence, by termwise addition, we obtain the equality
(b -}- c) cos A -}- (c+ a) cos B -- (a + b) cos C = P.

Multiplying the latter relation by R and making use of (3) we obtain the result
coinciding with (2).

362. Let A2B2, B2C2 and CZA2 be the midlines in Q ABC and A3, B3 and C3
the midpoints of the segments AA1, BB1, CC1 (Fig. 74). The points A3, Bs and
C3 are on the midlines of Q ABC but not at their endpoints because, if other-
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wise, at least one of the points At, B3 and CI coincides with a vertex of A ABC.
Since any straight line not passing through the vertices of the triangle A3B2C2
does not intersect all its sides simultaneously, the points A3, B3 and C3 are not
in a straight line.

8

FIG. 74

363. If hl is the altitude of A DON, hB the altitude of A ABC, and SAOC
and SABC are the areas of the corresponding triangles, then (see Fig. 75) we
have

SAOC_hl_ODAF
SABC hB-AB

and, similarly,
SAOB_BE ScnRCN

BC BC
SABC=CA

TA--
Adding together these equalities we obtain

AF BE CN_SAOC+SBOC+SAOB_SABC`1
TB- + BC+CA SABC SABC

364. (1) Consider the inscribed circle K' of the square. Let its radius be r'.

Draw the tangent lines A'B' 11 AB and B'C' 11 BC to the circle K' (Fig. 76).
8

B.

q"`------- --------------'. C'

FIG. 77

It Is clear that , A'B'C' lies inside A ABC, and therefore A'C' < AC. Since
the triangles A'B'C' and ABC are similar, we have r = AC < I which imp-
lies x = 2r' < 2r.

(2) Consider the circumscribed circle K" of the square. Let its radius be r".
Draw the tangent lines A"B" 11 AB, B"C" 11 BC and A"C" 11 AC to the circle K"
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(Fig. 77). As is clear, A ABC lies inside A A'B'C', and therefore A"C" > AC.
Since A A"B"C" is similar to ABC we have r"=A-C" > 1, whence It follows

that
r AC

x = Y2r" > r2r.
365. Let the point M be the point of intersection of the altitudes AA1,

BB1 and CC1 in A ABC, P be the centre of the circumscribed circle of radius
R, C2, A2 and B2 the midpoints of the sides AB, BC and AC, OM=OP,
ON±AC and A3, B3 and C3 the midpoints of AM, BM and CM (Fig. 78). Let

B

B, B Br A 4 B, P

FIG. 78 FIG. 79

us prove that the point 0 is equidistant from A;, B; and C; where i=1, 2, 3.
Since ON is the midline of the trapezoid MB1B2P, we have OB1=0B2. From
the similarity of the triangles AMB and PA2B2 we conclude that BM=2PB2,
and therefore B3M=PB2. From the parallelogram MB3PB2 we have OB3=0B2.
But for OB3 as midline of the triangle PMB we have

OB3=
2

BP=
2

and, hence,

083 = 082 = 0B1= R
2

We then prove in just the same way that

OA1=OA2=OA3=OC1=OC2=OC3_ R

366. In A ABC let AA1, BB1 and CC1 be the altitudes whose point of in-
tersection is 0, C1M 11 BINIBC, A1P 11 C1Q1,AC and B1R 11 AISLAB (Fig. 79).

(1) Let us prove that SM 11 AC. The triangles BATA and BC1C are similar
as right triangles with a common acute angle ABC. Therefore,

BA1 BA
BC1 - BC

Hence, A AIBC1 is similar to A ABC and BA1C1= L BAC. In A AIBC1
the line segments A1S and C1M are altitudes. Therefore, repeating the above
argument we can assert that L BSM = L BAICI. Consequently, L BSM L BAC
and SM 11 AC. We then similarly prove that PN 11 AB and RQ 11 BC.

(2) To prove that the vertices of the hexagon MNPQRS lie in a circle it is
sufficient to show that any four consecutive vertices of the hexagon are in a
circle. This follows from the fact that through three points not in a straight
line it is possible to draw only one circle. The sets of four consecutive vertices
of the hexagon can be classified into the following two types: those in which
the intermediate points are on different sides of 6 ABC (i.e. RSMN, MNPQ
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and PQRS) and those in which the intermediate points are on one side of A ABC
(i.e. NPQR, QRSM and SMNP).

Consider the quadruples RSMN and NPQR (which belong to different types).
From the obvicus proportion

BC1 _ BO BA,
BR -BB1 BN

it follows that NR I{ A,C,. Therefore,
L MNR T 4 BA,C, = L BAG =BSM,

which means that LMNR+MSR=n and, consequent) the points R. S.
M and N lie in one circle. Furthermore, L PNR+L P( R=n-(L PNC+
+ L BNR) +rr-L AQR=2n-(L ABC+ L BAC+ L ACB)=n, whence it
follows that the points N, P, Q and R also lie in a circle. The proof for the
rest of the quadruples is carried out in a similar way.

367. Let A,, B, and C1 be the points of tangency of the inscribed circle
and the sides of A ABC, and D the centre of the inscribed circle (Fig. 80).
The segments of the tangent lines drawn from one point to a circle being equal,
we have

Furthermore,

Consequently,

C'A,=CBI, BA,=BC1, AB,=AC1.

DB,=CAI, B1C=AID.

AC 4-BC=CA1+A,B+CB,+B1A=B,D+A1D+BC,+AC,=2r+2R,
where r and R are the radii of the inscribed and circumscribed circles.

C

FIG. 80 FIG. 81

368. Let in A ABC the angle ABC be right, BD be the altitude, BE the
bisector and BF the median (Fig. 81). Since BF=FC, we have L CBF L ACB.
But

L ABD= 2 - L BAD= L ACB.

Hence, L ABD = L CBF and L DBE= L ABE - L ABD = L CBE- L CBF =
=L FBE, which is what we set out to prove.

369. The symmetry of ABC and A,B,C1 about the centre 0 of the inscribed
circle implies that the corresponding points of A ABC and A A1B5C1 lie on a
straight line passing through 0 and are equidistant from this point (Fig. 82).
In particular, OC=0C1i OB=QB1 and BCB1C1 is a parallelogram; hence,
BC=B1C1. Analogously, AC=A1C1, AB=A1B1 and A ABC=A A1B,C1. Con-
sidering the parallelograms ABA,B1, BDB,D,, ACA}C1 and ECE1C1 we conclude
that AD=A1D1, AE=A1E1, and, since I A=l A1, we see that A ADE=
=AA1D1E1. Similarly, A B,EK1= A BE11( and A DC1K = A D,CK,.

Let us denote by S the area of A ABC, by S1 the area of A ADE, by S,
the area of ADC1K, by Se the area of A KBEs. Put AB=c, BC=a and AC=b,
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and let hA, h,7 and hc be the altitudes drawn froiTi the vertices A, B and C,
respectively. hen we have

S-Pr- A bh2 c2

Let AM (AN) be the altitude in A ADE (in A ABC). Then
DE-AM

S1 2

The similarity of the triangles ABC and ADE implies that

DET a(hA-2r)

hA

Hence,
22 r

- 2r)a (hA.S

p -2ra
1\ a r2 (p -a)"=-l

2hA
2hA S .

Analogously,
r2 (p-c)2 r2 (p-b)2

S Sz= S . S= S

Using Heron's formula we obtain
S2S1SZS2 r12 (p-a)4 (p-b)4 (p-c)4 S2=r12 P4=r18

3 so

qr A

FIG. 82 FIG. 83

370. From Fig. 83 we see that
MA2-M02+A02-2M0 AO cos a

and
MC2 =M02+ CD2 + 2MO CO cos a.

We have AO=CO, and therefore adding these equalities we get
MA2+MC2=2M02+2A02. (1)

Similarly,
MB 2 + MD2 = 2MO2+2BO2.

Consequently, the difference
(MA2+ MC2) _(MB2+MD2) = 2 (A02-BO5)

is independent of the position of point M.
371. Let 0 be the point of intersection of the straight lines AA, and CC1

(see Fig. 84). The problem reduces to proving that
LAOB-f AQB1=180°. (1)
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Note that Q C1BC=Q ABA, because C,B=AB, BC=BA1 and L C5BC=60°+
+ L ABC- L ABA,. Therefore L OC1B= L OAB, and OAC1B is an inscribed
quadrilateral of a circle. Hence, L AOB= 120°. We then analogously show that
BOC= 120°. But this implies that L AOC= 120°, and it follows that AOCB1
is an inscribed quadrilateral of a circle. Hence it follows that L AOB,= L ACB1=
=60°. Therefore equality (1) holds.

Bf

FIG. 84

372. From Fig. 85 we have

0

FIG. 85

PBR=L ABC
and

PB_BR
AB-BC

Therefore A PBR is similar to Q ABC and, analogously, Q QRC is similar
to ® ABC. Hence we obtain

APR=L APB-L BPR=L APB-1 BAC,
and thus,

L APR+L PAQ=L APB+2 L PAB=n,
that is PR II AQ. We similarly prove that QR 11 AP.

373. Let hB, hc and hD be respectively, the distances from the vertices B
C and D of the parallelogram to the straight line AO (Fig. 86). Then the fol-

lowing property takes place: the greatest of the
three distances is equal to the sum of the other
two. For instance, if AO intersects the side BC
(as in Fig. 86), then, drawing BE II AO and
CE±AO we coriclude, by the congruence of
the triangles BEC and AD'D, that

hD = hB + hc.
Analogously, if AO intersects the side CD, then
hB=hc+hD and if AO does not intersect the
sides BC and CD, then hc=hB+hD. From this

D property, for the case shown in Fig. 86, we
FIG. 86 immediately receive the equality of the areas of

the triangles:

SAOC = SAOD - SAOB
Generally, it is obvious, that we can write the formula

SAOC = I SAOD ± SAOB
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where the plus sign is taken if the points B and D lie on one side of AO and
the minus sign if these points are on opposite sides of the line.

The same argument can be repeated for the straight line CO which leads tothe formula
SAOC= I SCOD ± SCOB 1,

where the rule of choosing the sign is obtained from the above by replacing the
straight fine AO by CO.

N

f " E F

FIG. 87 FIG. 88

374. Extend the sides AB and CD of the trapezoid ABCD to obtain the
triangle AMB and join M with the midpoint F of the base AD (Fig. 87). Then

ME=B2 ,
MF=AD.

Consequently,

EF=AD-BC

2

375. Let ABCD be the given trapezoid with bases AD and BC and let BEIADCF_AD (Fig. 88). We have
AC2 - AF2 = CD2 - FD2,
BD2-ED2 =AB2- AE2.

Adding these equalities we get
AC2+BD2=AB2+CD2-{-AF2-FD2+ED2_AE2

=AB2+CD2+AD(AF-FD+ED-AE) =
B'C.

376. Let ABCD be the given trapezoid with parallel sides AD and BC, E
being the midpoint of BC and F the midpoint of AD. Denote by 0 the point

------------

FIG. 90
of intersection of the diagonals (Fig. 89). The triangles AOF and COE are si-
milar (this is implied by the similarity of the triangles AOD and COB). There-
fore L AOF= [ COE, i.e. EOF is a straight line.

377. Let ABCD be the given quadrilateral, M and N being the midpoints
of the sides AB and CD, respectively (see Fig. 90). Turn the quadrilateral
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AMND through 180° in its plane about the vertex N. Then the vertex D
coincides with C and the vertices Al and A occupy the positions M' and A',
respectively. Furthermore, the points M, N and M' lie In a straight line and,
besides, M'A' 11 MB and M'A'=MB. Therefore MBA'M' is a parallelogram,
and A'B=M'M=2MN. By the hypothesis we have BC+AD=2MN, and
therefore BC+CA'=A'B. Consequently, the point C lies on the line segment
A'B because, if otherwise, BC+CA' > A'B in the , BCA'. It follows that
BC II MN II AD, i.e. ABCD is a trapezoid.

378. Let us express the area of a quadrilateral in terms of the diagonals
and the angle between them. Let 0 be the point of intersection of the diago-
nals of a quadrilateral ABCD shown in Fig. 91, and L BOA -cc. Then

SARCD =SAOB+SCOD+SAOD+SBOC =

a+2
I I

=2 BD.AC.sina.

This formula irttplies validity 6t the assertion to be proved.

8

FIG. 91 FIG. 92

379, Let M be an interior point of a convex polygon, and AB its side
whose distance from Al is the least. We shall prove that the foot P of the
perpendicular drawn from M to AB lies on AB but not on its extension
(Fig. 92). Indeed, if P has On the extension of AB, then MP intersects a side
I of the polygon at .a point Q, and, since the polygon is convex, MQ < MP.
But the distance DM from M to 1 is less than MQ , and, eonsequetf'tly, less
than MP which contradicts the choice of the side AB.

380. Let AAt, BBI, CC1 and DDI be the bisectors of the interior aides of
a parallelogram ABCD, and let PQ/ S he the quadrilateral formed by their
intersection (Fig. 93). Obviously, BB1 II DDI and AA1 II CC1. Furthermore,

APB=n-(L BAP+ L ABP)=.n - 2 (L BAD+ L ABC)-n -2 n=-T' n,

which .means that PQRS is A rectangle. The triangles BAB1 and CDC, ar"
isosceles because the bisectors of their vertex angles are perpendicular to their
bases. Therefore BP = PBI and D1R -RD, and hence PR II AD. Thus, PRDB1
is a parallelogram, and we have

PR=BID=AD-AB1= AD-AB,
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381. Let 01, 02, 03 and, 04 be the Centres of the squares constructed on the
Sides of a parallelogram ABCD (Fig. 94) We have A 01BO2 A 03C02 since
O1B=O3C, B02=CO2 and L 01802= MBN- 2 = L DCB+ 2 =L 03C03.
Hence, 0102 = 0302 and 000=
= L 0102B + L BOIC - L 0302C =
=LB02C=2

FIG. 94

We similarly prove that 0203=0304=0401 and

00 000 000 '%L 23o4=L a4r=L 4122
Consequently, 010,0304 is a square.

382. Let AP, BQ, CR and 08 be the bisectors of the interior angles of the
quadrilateral ABCD (Fig. 95). Let A, B, C and D be the magnitudes of these
angles. Then

L ASD-n-2 A-2 D,

L BQC=n- B- 2 C.

FIG. 95

C

FIG. 96

Adding together these equalities we obtain

ASD+L BQC=2n-
2

(A+B+C+D)=2n- 2 21s=n.
Hence, the points P, Q, R and S lie in a circle.
383. Let A and B be the points of tangency, M an arbitrary point of the

circle, and MN J AB, MD J AC, ME 1 BC (see Fig. 96). Let us prove that
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the triangles DMN and NME are similar. To this end we note that about the
quadrilaterals ADMN and NMEB it is possible to circumscribe circles because

LMNA+LADM= 2=
an d

LMEB+LBNM-2+2=n.

Therefore, L MND= L MAD and L MEN= L MBN. But L MAD =
= L MBN, because each of these angles is measured by half the arc AM.
Thus, L MND= L MEN. We similarly establish the equality L NDM= L ENM.

The similarity of the triangles DMN and NME implies the required rela-
tionship

DM_MN
MN' ME '

384. Let ABC be an inscribed triangle of a circle. Denote by D an arbitrary
point of the circle, and by L, M and N the feet of the perpendiculars
(Fig. 97). Join the point M to N and the point N to L. We shall prove that
the angles ANM and LNC are equal.

First note that
L ANM = L ADM, (1)

because about the quadrilateral MAND it is possible to circumscribe a circle.
By the same reason,

On the other hand, we have

L LNC = L LDC. (2)

L ADC= L MDL. (3)

Indeed, L ADC+ L B= 180° because the sum of these angles can be thought
of as an angle inscribed in the circle subtended by the whole circumference of
the circle. At the same time L MDL+L B=180° because about the quadrila-
teral MBLD it is possible to circumscribe a circle. Consequently, equality (3)
holds true. As is clear from the figure, in this case we have

L LDC = L ADM,

and then (I)and(2)imply the validity of the required equality L ANM= L LNC.

D

FIG. 97 FIG. 98

385. Let us prove that every two of the three line segments 01A1, O.A. and
03A3 shown in Fig. 98 intersect at their midpoints. This will imply that all
the three line segments intersect in one point. For example, we shall prove
that the line segments 01A1 and 02A2 are bisected by the point B of their
intersection. Since the circles are equal, we conclude that 02A1030 and
O1A2030 are rhombuses. It follows that the line segments OZAI, 003 and 01A2
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are parallel and equal. Therefore, 01A2A102 is a parallelogram and its diago-
nals 01A, and 02A2 are bisected at the point of intersection.

386. Let 0 be the centre of the smaller circle (Fig. 99). Then AK II OC
since AK L BK, and 0C I BK. Furthermore, OA=OC. Hence,

L KAC= L ACO= L CAO.

FIG. 9S

387. As is clear from Fig. 100,
R-r _R

r a'
which is equivalent to the equality

1 1 . 1

FIG. 100

r R ' a'
388. There are three possible cases here. They are shown in Fig. 101,

a, b and c. In the first case the fixed tangents are parallel, L COD=a+(3=
and therefore i.e. where r is radius of the circle.
In the second and third cases, using the notation indicated in the figure, we

find that c+ p ± y= 2 , i.e. a ± y= 2 whence it follows that p AOC is

similar to p BDO and therefore
AC_OB
A0 -BD

Consequently,

389. Let Al be the point of intersection of mutually perpendicular chords
AB and CD (Fig. 102). Draw AK 11 CD, then BK is a diameter, AK < CD and

BK2=AB2+AK2 < AB2+CD2.

Furthermore, KD= AC and hence
KB2 = BD2± KD2 = BM2 + DM2+ AM2+CM2.

390. Let AC=CD=DB (Fig. 103). Draw OE I AB. Then OE is an altitu-
de and OC is a median in s AOD. The bisector of L AOD lying between the
median and altitude (see Problem 355), we have

L AOC < L COD.
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391. Let AB be a diameter of a circle and E the point of intersection of
its chords AD and SC (Fig. 104). We have

AE-AD=AE2+AE ED=AC2+EC2+AE.ED.

FIG. 101

By the property of intersecting chords, we can write
AE-ED=BE-EC.

FIG. 102 FIG. 103

Therefore

AE AD=AC2+EC2+BE EC=AC2+ECBC=AC2+(BC-BE)BC=
=AC3+BC2-BEBC
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and thus, finally,

A and B be the given points, 0 be the centre of the given circle,

R its radius and r the common radius of the inscribed circles with centres at

FIG. 105

01 and 02 (Fig. j05). Then
R_OA_OB
r -OlA -028

Taking the proportion derived from the above by inversion and addition we
obtain

OA_OB
Q0i - 002 .

Consequently, 0102 11 AB.

393. Let r1 and r2 be the radii of the semicircles inscribed in a given se-
micircle of radius R shown in Fig. 106. Since R = ri + r2, the shaded area is
expressed as

S nR2-
2

4ri,,- 2 nra= 2 n I(ri + r2)2-ri- r2J =nrir2.
But

and, consequently,

h2 = 2r1.2r2 = 4r1r2

S=4 nh2.

FIG. 106 FIG. 107

394. If the straight line joining the points A and B (Fig. 107) does not
intersect the given circle, then the tangent lines AC and BD can bG drawn so
that the point M of their intersection lies on the line segments AC and BD.
In / AMB we have

AM+BM > AB > I AM-BM I,
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and, since
AC > AM, BD > BM, MC = MD,

we obtain
AC+ BD > AB > I AC-BD .

If the straight line AB does intersect the circle, then there are two possible
cases, namely: (a) the chord cut off by the circle on the straight line AB lies
on the line segment AB; (b) the chord is not on AB.

In the case (a) shown in Fig. 108 we have

AB > AE+BF > AC+BD,
because the hypotenuses AE and BF in the right triangles AEC and BFD are
greater than the legs AC and BD.

A

FIG. 108 FIG. 109

In the case (b) the line segment AB lies inside the angle CAC' (Fig. 109).
Draw through B a circle concentric with the given one. Let it intersect AC
and AC' at points E and E'. Then EC=BD and AE > AB. Hence,

AB < AE=AC-EC=AC-BD.
395. Let us introduce the following notation (see Fig. 110):
L PCM= QCN=a, L NML= L NKL=Y, L LCP=L QCK=§,

QC=x, PC=y, AC=CB=a.

FIG. 110
54

FIG. 111

By the theorem on intersecting chords of a circle, we have

Applying the law of sines to the triangles NQC and QCK we get

NQ- xsina QK-xsin

sin sin y
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Hence,

NQ QK= x2 sin a sin +
2 2

=a --x
sin T sin (a+ P+T) I

which results in
a2 sin T sin (a + S + T)

x2 = sinasin§+sinTsin(a-} p+y)
We similarly find

2
a2sinysin (a+P+T)

Thus, x=y.
y sin a sin S+sin y sin (a+S+y)

396. Let B1, B2, B. and B. be the midpoints of the arcs AIA2, A2A3i
A3A4 and A4A1 (Fig. 111). Let a; be the central angle corresponding to the
arc A1B; (I= 1, 2, 3, 4). Denote by q) the angle formed by the line segments
B1B3 and B2B4. Then

But we have

a2+a2H-a3+ a4
2

2a, + 2a2 + gas + 2a4 = 2n,

and therefore
n

rP 2'
397. Consider a closed polygonal line without self-intersection and take two

points A and B on it in such a way that the perimeter is divided into two
equal parts. Let 0 be the midpoint of the line segment AB. Draw a circle of
radius

4

with centre at 0 where p is the perimeter of the whole polygonal line.

B

If

FIG. 113

We shall prove that this circle is a required one. Indeed, if otherwise, then
there exists a point M belonging to the polygonal line and lying outside this
circle. The length of the portion of the polygonal line containing the point M
is not less than AM+BM and hence, AM+BM' 2 . But at the same time
AM+BM,2MO. Indeed, from the parallelogram AMBD (Fig. 112) we have

DM-2M0 < BM+BD=AM-l- BM.

Since MO > 4 , it follows from the inequality AM+BM:2M0 that AM +

+ BM > 2 . Thus we arrive at a contradiction.
398. Through the vertex A of a given Q ABC draw a straight line AD parallel

to one of the given straight lines x and y and not intersecting the triangle.
Drop the perpendiculars BP and CQ to AD from the points B and C (Fig. 113).
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Suppose that the distances from the vertices of the triangle ABC to the straight
lines x and y are expressed by integers. Then the lengths of the line segments
AP, AQ, BP and CQ are also expressed by integers. It follows that

tan L BAP=App and tan L

are rational numbers, and, hence, the number
BP CQ

tan L BAC- tan L BAP-tan CCAQ = AP AQ
1+tan L BAPtan CAQ BP CQ

1+ APAQ

is also rational. Therefore, it is impossible that L BAC=60° because tan 60°' y3
is an irrational number. Consequently ABC is not an equilateral triangle.

399. Let the straight lines A1B and AB1 intersect at a point 0, and OD I AB
(Fig. 114). Since Q AB.41 is similar to Q DBO, and Q HAS, to [1 DA we
have

OD_BD OD AD
a AB' b

_
AB'

which yields

Hence, the distance

OD= ab

a+b

is independent of the positions of the points A and B (provided the distances
a and b remain unchanged).

a

b

D

FIG. 114 FIG. 115

400. If K is the point of tangency of the line segment MN with the circle
(Fig. 115), then BM=MK and KN=NC and consequently

MN=BM+CN. (1)

But MN < AM + AN. Therefore
2MN < BM+AM+CN+AN=AB+AC,

whence it follows that

OD
1 1 _AD+BD_1.(a +T

AB

MN < AB±AC
2

On the other hand, MN > AN and MN > AM because MN is the hypotenuse
in the triangle AMN. Therefore, 2MN > AN+ AM and, by virtue of (1),
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3MN > AN+NC+AM+MB=AB+AC. Hence,

MN > AB+AC
3

401. Let ,4 &C be the given triangle (see Fig. 116), AB = BC, BO II AC and
0 be the centre of a circle tangent to AC. Denote by D and E the points of
intersection of this circle with AB and .BC. Extend AB to intersect the circle
a second time at a point F. Let us prove that FE I BO. Note that L OBF =
= L OBE, since these angles are equal to the base angles A and C in the
triangle ABC. Furthermore, BF=BE. Indeed, if BF > BE, then laying off on
BF the line segment BE'=BE we obtain the congruent triangles OBE and
OBE', and OE'=OE which is impossible because the p.oint B' lies inside the

B

FIG. 116 FIG. 117

circle of radius OE. It is similarly proved that the inequality BF < BE is also
impossible. Hence, BO is the bisector of the vertex angle in the isosceles triangle
FBE and therefore it is the altitude to its base which implies that FE I_ BO.
Therefore, L DF.[; 2 /_ ABC is in4epiolloat of the position of t11G pout 0
bn the straight line 80. Consequently, the magnitude of the arc DE subtending
the inscribed angle DFE (whose measure is half the arc DE) remains constant
as the circle rolls upon AC.

402. Using the notation introduced in the solution of Problem 324 we find

nz be+ad (ac { bd), mz -^. {ac bd),

i)ividing these inequalities termwise we get

n ab+cd

403. Let ABC be an equilateral triangle with side a. Denote by rr, r2 and r3
the distances from a point 114 on the circumscribed circle to the vertices of the
triangle (Fig. 117). Note first that for the position of the point M indicated in
Fig. 117 we have . -

r1= rz-f- r3.

Indeed, laying off DM=r2 we obtain an equilateral triangle BMD and hence
it follows that L ABD= / CBM which implies that Q ABD=/ CBM, and
AD=rs. Now, applying the law of cosines to Q BMC we obtain

a2= r$+rs-2r,rs eos 120° = ri+rs + rzrs
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Consequently,

ri +ra +rs = (r2 + r3)2+ra + re = 2 ( ra+ rs+ rzrs) = 2a2.

404. Let the side AB of a quadrilateral ABCD intersect a circle, and the
sides BC, CD and DA be tangent to it at points E, F and G (Fig. 118). Since
CE=CF and DF=DG, the inequality

AB+CD > BC+DA
is equivalent to the inequality

AE > BE+AG,

which was proved in Problem 394.
D G A

FIG. 118 FIG. 119

405. Let the side AD of a quadrilateral ABCD not intersect a circle, and
the sides BC, CD and BA be tangent to it at points F, E, G (Fig. 119). The
inequality

AD+CB < DC+BA
is equivalent to the inequality

AD < DE+AG,
which was proved in Problem 394.

406. Let R be the radius of the given semicircles. If rl, r2, .... r are the
radii of the inscribed circles and dr, d2, ..., d,,, are their diameters (Fig. 120),

then it is clear that the sum dl+d2+...+d, tends to R when n increases
unlimitedly, i. e.

dl+d2+...+do+ ... =R. (1)
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Besides, we have

and

(R+rj)2=R2+(R-rl)2, 2r1=d1=1R2

(R+r2)2=R2+(R-dl-r2)2, 2r2=d2=2X3.

Let dn=n(n+I)' Let us prove that

Rdo+1=(n+1)(n+2) .

We have

But
(2)

dl+d2+...+do=R(I' 2+2X3+...+ (n' ) =nl)
/ 1 1 1 1 1=R I-

Substituting this expression into (2) we find

do+1= 2rn+1=
R

(n+l)(n+2).

Putting R=1 in equality (1) we get

1X2+2X3+... n(n+1) { ...=1.

407. Let 0 be the centre of the billiards. Denote by B the first point of
reflection and by C the second point of reflection. Let us prove that if
L ABC 94- 0, then A ABC is isosceles (Fig. 121). Indeed, A BOC is isosceles
and, hence, L OBC= L OCB. According to the
law of reflection, the angle of incidence is equal to
the angle of reflection and therefore L OBC= L OBA
and L OCB = L OCA. Consequently, I ABC=
= L ACB. It follows that the centre 0 lies on the
altitude AD drawn to the side BC. The position of
the point B to which the ball should be directed
so that it passes through the point A after it has
been reflected at B and C, can be specified by the
magnitude of the angle L BOD=a. We have B

OD = R cos a, BD = R sin a,
- -BA- BD BD

n cos 2acos2(2-a) FIG. 121

Since BO is the bisector of the angle B in A ABD, it follows that
BD_OD
BA-BA

This implies

-cos 2a= R cos a
a
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whence we obtain the equation

cost a+2acos a -- 2 = 0.

Finding cos a from this equation we obtain

z 1

cos a= - 4a+
Y (4a) +

2

.

The second root is discarded since, by virtue of the inequality R > e, it gives
a value of cos a less than -1.

If now we suppose that L ABC=0, then a second solution of the problem
appears in which the points B and C are the two extremities of the diameter
passing through the point A.

408. Let S be the vertex of the given angle a, Al the first point of reflection

of the ray, SB1 the side of the angle on which the point Al lies, and SBa its
other side. We shall denote the consecutive points of reflection of the ray from

the sides of the angle by A2, As,A s,... , the path of the ray inside the angle

being the polygonal line AA,A2A3... (Fig. 122).

B',
I BeA

Let us construct, in succession, the angles BiSB1, B5SB3, ., equal to the
angle a=L BQSB1 setting them, off in the ditectioh of rotation from SBa to
SBr. Lay off the line segment SAl1=SAm, m=2, 3, 4, ... (the points Ai and
A'1 are coincident) on the side SBm. We shall pprove that the points A1, A$, ...
lie on a straight line 1. To this end, it is sufikient to prove that every three
consecutive points Am, A,,,+1 and (here we put m=0, 1, 2, . ..) are in a
straight line. For this purpose, we note that Q A,,,SA,+1=Gs AmSAm+1, which
implies

L AmAm+1S= L AmAm+1S.

Analogously, , Am+1SA,,,+z=A Am+1SA,,,+2, and, consequently,

Z. SAm+1A, +8C L SAM+1Am+z
But, according to the law of reflection, the angle of incidence is equal to the

angle of reflection, and hence

L SAm+1Am+z= L AmAm+1B
Therefore,

L AmAm+1S+ L SAm+1Am 12=/ AmAm+1S+ L AmAm+1B=n.
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We see that the path of the ray, that is the polygonal line AA1Aj ..., is
thus developed on the straight line 1. Since this straight line can intersect
only a finite number of sides SBm, we conclude that the number of reflections
of the ray is finite.

It is clear thdt If SB is the last of the sides Intersected by 1, then na <
and (A+1) a> P. Thus, the number of reflections is equal to an integer n such
that the inequalities

n< E,--n+1
are satisfied.

To find out the conditions for the ray returning to the point A after it has
been reflected several times let us construct a sequence of points C1, C, .

so that the point C1 is the reflection of the point A through SB1, the point
Cq is the reflection of the point C1 through SB2, etc. (generally, the point C.
is the reflection of the point Cm.t through SB ). It Is clear that the condition
that the tay again passes through the point A is equivalent to the condition
that the Straight line I passes through one of the points C. (m = 1, 2, ...).

To formulate this condition analytically, let us introduce the angle
y= L ASA0 and censider the following two possible cases:

(a) if Ck is the point through which the straight line I passes, then k is an
even number;

(b) the point Ck corresponds to an odd number k.
In the case (a) (which is shown in trig. 122 for k=6) we have L ASCk

ka. , ASCk is isosceles and therefore

LSACk=2-2

On the other hand,

which yields

In the case (b) we have

LSACk is equal to y+tc-fl, and consequently

a ka

k_2(3-2y-n
a

253

(1)

L ASCk=(k+1)a-2y

and, as above, we come to the relationship

n - (k-1)a-2=2 a Y+-P.
whence

k+ I (2)

Reversing the argument we can easily show that if one of the relationships
(1) or (2) is fulfilled for an integer k, the straight line I passes through the
point. Ck. Consequently, the ray passes through the point A once again if and
only if one of the numbers (1) or (2) is an even integer.
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4. Loci of Points
409. The required locus of points consists of two circular arcs: the arc BE

with centre at the midpoint C of the arc AB of the given circle and the arc BF
with centre at the midpoint of the second arc AB of the circle, EAF being the

tangent line to the given circle at the point A (Fig.
123).

Proof. Let N be a point of the sought-for locus
obtained with the aid of a point M on the lower arc
AB. By the construction, the triangle NMB is isosce-
les, and thus

LBNA=2 LBMA=2 LBCA.

FIG. 123

Consequently, the point N lies on the circle with
centre at C passing through the points A and B. Fur-
thermore, the point N must be inside L BAE, i.e. it
lies on the arc BE of the circle with centre at the
point C. Conversely, if N lies on this arc, then

BNA=2LBCA=2 LBMA,

whence it follows that L BNA= L NBM and Q NMB is isosceles. Hence, the
point N is obtained by the above construction. When the point M is on the
upper arc AB, the proof is carried out in an analogous way.

410. The desired locus of points consists of two straight lines I and k sym-
metric with respect to the perpendicular BB' to the given parallel lines drawn
through the point 0. The straight line I passes through the point C perpendi-
cularly to OC, and B'C=OB (Fig. 124).

FIG. 124

Proof. Let M and N be two points constructed with the aid of a secant AA'.
We shall only carry out the proof for the point M (for N it is quite analogous).
Let MP I B'C then the angles OAB and A'

MP
are equal as angles with per-

pendicular sides. Therefore, the right triangles OAB and A'MP with equal
hypotenuses OA and A'M are congruent. Hence, A'P=OB=B'C. It follows
that if E is the midpoint of OM, then the points M, A', C and 0 lie in
a circle with centre at E and, consequently, MC 1 OC, i.e. the point M lies
on the straight line 1. Conversely, if M is a point on the straight land the angle MA'O
is right, then A'P=B'C=OB which implies the congruence of the triangles
OAB and A'MP, and, finally, the equality OA=A'M. Consequently, the
point M is obtained by the above construction.
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411. In the case of intersecting straight lines the required locus of points
consists of four line segments forming a rectangle ABCD whose two vertices
are on the given straight lines I and m and the other two vertices are at the
given distance a from them (Fig. 125).

Proof. Let M be a point such that MK L 1, ML 1 m and MK + ML = a
where a is the length of the given line segment. Through M draw a straight
line AB so that OA =08 and MN 11 OB. Let I
AP L OB and Q be the point of intersection of
AP and MN. The equality AN=MN shows
that MK = A Q and, hence,

AP=AQ+QP=MK+ML=a.
Consequently, the point A is a vertex of

the above rectangle. The same is true for the
point B, and hence the point M lies on a side
of this rectangle. Conversely, if M lies on a

FIG. 125

side of this rectangle, then reversing the argument we see that
MK+ML=AP=a.

If the given straight lines I and m are parallel and the distance between
them is equal to h, then the desired locus of points exists only if a : h and
is a pair of straight lines parallel to the given ones for a > h or the whole
strip contained between I and m for a=h.

412. In the case of intersecting straight lines the required locus consists of
eight half-lines which are the extensions of the sides of the rectangle ABCD
indicated in the solution of Problem 411 (Fig. 126). The proof is then analo-
gous to the one given there.

If the given lines I and in are parallel and the distance between them is
equal to h, then the sought-for locus exists only if a<h and is a pair of
straight lines parallel to the given ones for a < h or the portion of the plane
which is the exterior of the strip contained between I and m for a=h.

FIG. 126 FIG. 127

413. If the line segment AB lies on 1, and CD on m, then the desired locus
of points consists of four line segments forming a parallelogram PQRS in
which I and in are the diagonals and the positions of the vertices P and Q is
determined by the relation

hpCD=a2, hQAB=a2, (1)

where hp and hQ are the distances from the points P and Q to the straight
lines m and I (Fig. 127).

Proof. Note that for fixed I and in the required locus of points is completely
specified by the lengths of the given line segments AB and CD and the con-
stant a and is independent of the position of these line segments on the straight
lines I and in. Indeed, if this position is varied, the areas of the triangles AMB
and CMD remain constant. Therefore it is sufficient to consider the particular
case when the line segments AB and CD have a common endpoint coincident
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with the point of intersection of the straight lines f and m. In this case the
segments AB and CD are two sides of a triangle whose third side lies in one
of the four angles formed by the intersecting lines I and m. For example, in
Fig. 127 the endpoints A and C are made to coincide, BD being the third side.

Let M be a point of the required locus lying inside the angle BAD. Then
the area of A BMD is equal to

SBMD= I SAMB+SCMD-SABD I = J a2-SABD
It follows that the distance between the point M and the straight line BD

is independent of its position on the straight line PQ 11 BD. For the points P
and Q relationships (1) are fulfilled.

Conversely, let M be a point on the straight line PQ with the points P
and Q constructed according to (1). From the relation

a2AP SAPD a2 CQ SCQB _
AB SABD SABD' SCDR SABD

it follows that
AP CQ
AB-CD'

i.e. PQ 11 BD. Therefore

SAMB+ SCMD = SABD+ SBMD'^ SABD+ SBPD z SAPO - a2,

Consequently, the point M belongs to the required locus. The other sides
of the parallelogram PQRS are obtained analogously by making the other end-
points of the line segments coincide, namely QR is obtained when B coincides
with C, RS when B coincides with D and SP when A coincides with D.

4114. The required locus is a circle which is the

UU

A

FIG. 128

reflection of the given circle K through the given
chord AB (Fig. 128).

Proof. Construct a chord AD 1 AB in the circle K.
Let A ABC be inscribed in K, and M be the point of
intersection of its altitudes (i.e. its orthocentre). As
Is easily seen, AMCD is a parallelogram because DA
and CM are parallel as perpendiculars to AB, and DC
and AM are parallel as perpendiculars to 9C (DC 1 BC
because BD is a diameter in K). Therefore, the point
M lies on the circle K' obtained from K by shifting
the latter by the distance AD in the direction of the
chord DA. It is clear that K' is the reflection of K
through AB. Conversely, let M be a, point on K',
and MC 1 AB. Since MC=AD, the figure AMCD
is a parallelogram, and therefore AM t1 DC- But
DC 1 BC because ABCD is inscribed in K and the
angle BAD is right. Therefore AM J. BC, and M is the
point of intersection of the altitudes in A ABC.
Consequently, M belongs to the required locus.

415. Let 0 be the centre and R the radius of the given circle (Fig, 129),
The required locus of points is a straight line I perpendicplar to the straight

line OA and intersecting it at a point B such that

OB=0 (1)

Proof. Through the point M draw a straight line 110A to intersect the
straight line OA at the point B. Let C be the point of intersection of the line



SOLUTIONS AND ANSWERS. PLANE GEOMETRY 257

segment OM and the chord KL. The similarity of the triangles OAC and 0MB
implies that

whence

OB 0M
OC`OA'

OB=OM-0C (2)

OA

By the construction, KC is an altitude in the right triangle OKM, and hence

Substituting this expression in (2) we obtain the equality (I).
Conversely, let M be a point on the straight line I perpendicular to OA and

such that OB is determined by equality (1). Draw the tangent line MK and
Z

FIG. 129 FIG. 130

KG I OM. Let KC intersect the straight line OA at a point A'. Then, repeating the
first part of the proof, we conclude that OB is determined by formula (1)
with OA replaced by ON. Hence, OA'=OA, that is the point A' coincides
with A, and this means that the point M belongs to the sought-for locus.

416. Let
AM P

1.-q > .

Draw the bisectors MP and MQ of the two adjacent angles with vertex M
and sides MA and MB (Fig. 130). Then, by the property of bisectors, we have

BP q and BQ= q . (1)

I t follows that the position of the points P and Q is independent of the posi-
tion of the point M. Besides, L PMQ = 2 and therefore the point M lies on
the circle K with diameter PQ. Conversely, let the points P and Q be con-
structed according to (1), and K be a circle with diameter PQ. If a point M
lies on this circle, then L PMQ = 2 . Through the point B draw RS 11 AM, then

AM AQ p AM AP _ p (2)

BR
_

BQ
-

q' BBS S

_
BPq'

whence BR=BS and hence BM is a median in Q RMS. Since L RMS is
right, we have BM =BR, and, by virtue of (2),

AM_p
BM q'

Therefore, the point M belongs to the locus in question.

9 -323
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To express the diameter PQ in terms of the length a of the line segment AB
we find from the relations

PB=AB-AP=a-p PB
q

and

the expressions

and, hence,
p+q p-q

PQ=p 2a

q

q p
If p = q, the required locus is obviously the perpendicular to the line seg-

ment AB drawn through its midpoint.
417. The sought-for locus of points is the perpendicular to the line seg-

ment AB drawn through its midpoint E with the point E deleted.
Proof. The triangle ADB is isosceles since L CAD= L CBD because these

angles are subtended on equal arcs CD of two congruent circles (Fig. 131). There-
fore, the point D ties on the perpendicular to the line segment AB drawn
through its midpoint E, and vice versa, if we take an arbitrary point D on
this perpendicular which does not coincide with the point E, then the circles
passing through the points A, C and D and through B, C and D are congruent.
Indeed, for instance, this can be deduced from the equalities

CD CD _R,=2sina _
-2sin _R2,

where a=/ BAD and 0=/ CBD.

FIG. 131
11

FIG. 132

418. The required locus of points is the straight line drawn through two
different positions of the last vertex.

Proof. Let, for example, A1B1C1D1E1 and A2B2C2D2E2 be two different con-
figurations of the deformed polygon, the vertices A, B, C and D sliding,
respectively, along straight lines 'A, 1R, 1c and 1D (Fig. 132). Consider the
straight line l passing through the positions El and E2 of the last vertex. Let
now the vertex on the line 1A occupy the position A, and on 1D the correspon-
ding position D. The side parallel to A2E2 intersects I at a point E', and the
side parallel to D2E2 at a point E".

BQ =AQ-AB=

q

BQ-a

PB =a q and BQ=a 4
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By the construction, we have
E'E2 AA2 BB2 CC2 _ DD2 _ E"E2

1A1
_

BZBI - CZC, -DZD1- E2E1 'E2E1 A

which shows that E'E2 = E"E2,

i.e. the points E' and E" coincide. This means that the last vertex E lies on
the line 1 at the point E' coincident with E".

The converse is obvious because the configuration of the deformed polygon
can be reconstructed beginning with any point E on 1.

419. The required locus is a circle passing through the endpoints of the
chord AB and a point Al, obtained by the indicated construction.

Proof. Let us introduce the necessary notation. There is one and only one posi-

tion C1D, of the chord CD parallel to AB and such that on the given circle K
it is possible to choose a direction v of
describing K such that when the chord
CD moves in this direction starting
from the position C D, the endpoints of
the chords AB and CD coincide, in suc-
cession, at the points A, B, C1 and D1
(such a direction v may only become
indeterminate when AC and BD are paral-

y
FIG. 133 FIG. 134

lei). Let us denote by a the are AB of the given circle K to which the points
C1 and D1 belong, and by P the other arc AB. Let y be the arc C1D, which
does not contain the points A and B. Furthermore, let All be the point of
intersection of the straight lines AC, and BD1. The point All lies inside K.
Consider the circumscribed circle K1 of A ABM1 (Fig. 133). We shall prove
that for any position of the chord CD other than C1D, the point of intersec-
tion of AC and BD remains on K,.

As long as both points C and D lie on the arc a, the point Al is inside K,
and then

[ AMB= 2 ( Y) (1)

But if at least one of these points is on the arc P, the point M lies outside K.
and then

[ AMB =
2

(a-y). (2)

In the former case M lies on the arc AM1B of the circle K, because according
to (1), the angle AMB is independent of the position of CD, and, hence, is
equal to [ AM1B. In the latter case, since the sum of the right-hand mem-
bers of (1) and (2) is equal to 2 (a+ P)= 2 . 2n=7r, the point M is on the
arc AB of the circle K1 lying outside K.

9*
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It is obvious that the converse is also true, i.e. any point M of the circle
K1 can be obtained by the above construction for an appropriate choice of the
position of the chord CD.

420. Let us designate the given circle by 0 and the given straight line by L
(Fig. 134). Denote by M the second point of intersection of PQ and 0. Take
any circle 0, passing through the points P and Q and intersecting the circle
0 for the second time at a point R and the straignt line L at a point S. Let
N be the second point of intersection of the line RS with the circle 0.

We shall prove that MN 11 L. To this end, let us take advantage of the
following well-known theorem proved in plane geometry: given a circle and
a point A, then for any straight line passing through A and intersecting this
circle at points A, and Al the product of the line segments AA, and AA. is
a constant independent of the choice of the straight line.

Denote by A the point of the intersection of the straight lines PQ and RS.
We first apply the above theorem to the circle 0, the point A and the straight
lines AP and AR. Since AP intersects the circle 0 for the second time at the
point M, and AR at the point N, we have

AM-AP=AN-AR. (1)

Now we apply this theorem to the circle 01, the point A and the same
straight lines. Since AP intersects 01 for the second time at the point Q, and
AR at the point S, we can write

AQ AP = AS AR. (2)

From (1) and (2) we derive the equality
AM_AQ- (3)
AN AS

Equality (3), by virtue of the converse of the theorem on proportionality of
line segments cut off by parallel straight lines on the sides of an angle, implies
that MN 11 QS which is what we set out to prove.

Thus, for any circle of the type 0 , the point N can be specified as the
second point of intersection of the straight line passing through M and parallel
to L with the circle 0. This construction uniquely determines the point N
irrespective of the choice of the circle 01. Consequently, all the possible straight
lines RS obtained for various circles 0, intersect the circle 0 at the point N.

The singular cases in which (1) and (2) do not imply (3), namely, when the
points R and P or Q and S coincide, or when PQ 11 RS, may be considered as
limiting cases. For these cases the validity of the above argument can be
established on the basis of the continuity properties.

5. The Greatest and Least Values
421. If A is the vertex of the right angle in Q ABC, and C and B lie on

the given parallel lines 11 and 12 (Fig. 135), then

ABA a , AC= b

sing cosql

Hence, the area of the triangle ABC is equal to

SAC = 2 AB AC = sin
It follows that SABC attains the least value (equal to ab) for (p= 4 .
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422. If R and r are the radii of the circumscribed and inscribed
(Fig. 136), then

2R=r cot 4-2).
C p 1,

B f
FIG. 135

Noting that

FIG. 136

a /n- a\ a
cos sincos sin(-L- 24

2
2 J

cot
a

cot
n a

4 - \ a n /2 C
a1 ) sin sin

_2 7C4

2 sin 4

we obtain

2

261

circles

cos(a-4)-cos
4

Y2 cos a-41-1

R 1

r Y2 cos a-4/-1
The ratio R attains the least value when cos ( a- 4) 1, i.e. when Cc= 4

because we consider the interval 0 < a <
n

. In this case
R 1 =

=Y2 +1.
2 r Y2 -

423. Let a right triangle with vertex C and legs a1 and b1 be cut off from
a rectangle ABCD with sides a and b. Consider the pentagon ABEFD thus
obtained (Fig. 137). It is clear, that one of the N
vertices (say C1) of the sought-for rectangle
AB1C1D1 must lie on the line segment EF. The
problem is thus reduced to finding the position
of this vertex.

To find the point C1 extend the sides AB a
and AD of the rectangle to intersect the exten-
sion of the line segment EF. This results in a

z ` cM
triangle AMN. Let A, n, N

AM - AN-m n

and

h
, - FIG. 137

B1C1= AD, =x.
The similarity of the triangles AMN and D1C1N implies that

C1 D1 n-x
in n
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whence we find
MCID, =

Hence, for the area S of the rectangle AB1C1D1 which is equal to AD,-CID,
we get the expression

M
n

Transforming this expression to the form

\

S =
n

[ 4-
\ 2

-x121 , (1)

we conclude that the greatest value of S is attained when 2 -x=0, i.e. for

= 2 . Let Co be the position of the vertex C1 corresponding to x= 2x .

Noting that expression (1) for S decreases when 12 -xl increases, i.e. when

the point C1 moves from the point C to the vertex M or F, we find that
there are three possible cases here, namely:

(1) The point Co lies on the line segment EF; then the vertex C1 of the
required rectangle coincides with Co.

(2) The point Co lies on the line segment ME; then C, must coincide with E.
(3) The point Co lies on the line segment FN; then C1 must coincide with F.
We now must establish a criterion for distinguishing between these cases

with the aid of the magnitudes of the quantities a, a1, b and b1 given in the
formulation of the problem.

Let us first find the quantity n. The similarity of the triangles ECF and
NDF implies that

n-b bl

whence we find

a-a1 al

n=b-1 a' _(a-al). (2)

Now note that the point Co is within the line segment EF if the inequalities
b-b1<x<b

are fulfilled.

Substituting x= 2 with the known value of n into the above we obtain

b-b5 < 2 + 2a (a-al) < b.
1

The latter inequalities are readily transformed to the form

--I <
a
-b < (3)

a1 bl

If the inequality -1 < a - b is violated, the point Co falls on the line seg-
a1 b1

ment ME, and if the inequality a - b-' < 1 does not hold, Co falls on FN.al bl
Thus, we arrive at the following final results: if for given a, b, a1 and b1

both inequalities (3) are fulfilled, then the vertex C1 of the rectangle of the
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greatest area lies within the line segment EF, and the side x of this rectangle
is computed by the formula

_ b b
x 2 2a (a-ai)'

1

if the left inequality in (3) does not hold true, the vertex C1 coincides with
the point E, and if the right inequality is not fulfilled, then C1 coincides with F.

424. Draw a circle passing through the points A and B and tangent to the
other side of the angle (Fig. 138). The point of tangency is then the required
point, since for any point C' on that side the angle AC'B is measured by half
the difference between the arcs AB and A1B1, whereas L ACB is measured by
half the arc AB.

Furthermore, we have Consequently, the problem is reduced
to the well-known construction of the geometric mean of the lengths of two
given line segments (OA and OB).

FIG. 138 FIG. 139

425. Consider the following three possible configurations of the line segment
AB and the straight line 1.

(a) AB 111. For any point M of the straight line I we have I AM-BM I > 0,
and there exists a point Mo for which I AM,-BM0 1=0. This point is the
foot of the perpendicular dropped from the midpoint of AB onto 1. There is no
point M for which the quantity J AM-BM J attains the greatest value. This
is implied by the inequality I AM-BM I< AB in which the sign of equality
only appears when A, B and M lie in a straight line

(b) AB I I. Since I AM-BM I < AB, the quantity I AM - BM I for the
point of intersection of the straight lines I and AB takes on the greatest value
equal to the length of AB. There is no point M for which the quantity

AM-BM I attains the least value.
(c) The straight line AB is neither parallel nor perpendicular to 1. It is

clear that I AM-BM I attains the least value if M is the point of intersec-
tion of I and the perpendicular to the line segment AB erected at its midpoint.
The greatest value is attained by I AM-BM I when the point M is the point
of intersection of AB with 1.

426. Let MN be a position of the secant, AP If ON and AQ 11 OM (Fig. 139)
Let us introduce the following notation:

x=the area of Q APM,
y = the area of p A QN,
a =the area of Q APQ,
S =the area of p OMN,
a= AM,
b= AN.

We have:
S=2a+x+y.
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It is clear that

Consequently,

x _ a y b

a b a a

S-a[2} a/ --4a+ a (aabb)2.

The least value S=4a is attained for a=b which is what we set out to
prove.

427. Let a+b=q (Fig. 140). By the law of cosines, we have
c2 = a2 + b2 - tab cos p = a2 + (q - a)2 - 2a (q - a) cos cp =

=g2+2a2 (l+cos p)-2aq (l+cos p)=
2 l -cos (P q 2

q 2
+2(1---coscp) a-2 .

Since q and T remain unchanged, the least value c is attained for a= 2 =

a+b
= 2 i.e. for a = b.

FIG. 140 FIG. 141

428. First solution. Consider A ABC with base AC and designate by a, b and c
the lengths of the sides opposite the angles A, B and C, respectively; put
a+b+c=p

From the relations
a _ c _ b

sin A sin (A+ B) sin B

we find
b

sin A-} B
sin B sin B B 2 )sin2

Since b > 0 and sin B > 0, the quantity p attains the greatest value when

A -{ 2 = 2 . In this case A = C and A ABC is isosceles.
Second solution. On the given line segment AB as chord construct a segment

of a circle so that the chord AB subtends an angle of the given magnitude cp
inscribed in that circle (Fig. 141). Consider the isosceles triangle ADB and
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a scalene triangle ACB inscribed in the segment of the circle. Draw the circle
of radius AD=DB with centre at the point D, extend AC to intersect this
circle at a point M and join M to D and B. We obtain

AD+DB=AD+DM > AM=AC+CM.

But in Q BCM we have
L CBM = L ACB- L CMB = L CMB,

because the angle ACB is equal to the angle ADB and is measured by the arc AB,
and LAMB is measured by half the arc AB. Hence, CM=CB and AD+DB >
> AC+CB.

429. Let us designate the radii of the circumscribed circles of the triangles
ACD and BCD by Rl and R2, respectively. Put L ADC=q>, AC=b and BC=a
(Fig. 142). Then we have

2R1^sin(p

and

a _ a
2R2 = sin (n-p) sin c

and hence R2 = a .The radii RI and R2 attain the least values when - 2 ;
in this case D is the foot of the altitude CD.

FIG. 142

430. Each of the cut-off circles must be tangent to two sides of Q ABC
(see Fig. 143). Furthermore, the circles must be tangent to each other. Indeed,
if otherwise, the radius can be increased. Therefore, the centres of the circles
lie on two bisectors of interior angles, for example, OA and CO inhere 0 is the
centre of the inscribed circle of Q ABC. If r is the radius of the inscribed circle
of Q ABC and p the radius of the cut-off circles, then from Q AOC we have

r-p_ r
2p -b °

whence we find

pb -1- 2r
r 6+2r b+ 2r

This formula shows that p assumes the greatest value when the longest side is
taken as b.
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B. SOLID GEOMETRY

1. Computation Problems

431. Let a be the side of the base, d the length of the diagonals of the
lateral faces of the prism and I the lateral edge (Fig. 144). We have

V=aa

4
3 1.

From Q A1BC1 we obtain that

2

la_ d sin 2 . Therefore,

and, consequently,

It follows that

l j1dl az
u 1-4 sine

2-sin
a 22

V =
0

' 11-4 sine

2
.

8 sin

Y
a=

Y 2

432. Let H be the altitude of the pyramid, and a the length of the side of

the base.

8

FIG. 144 FIG. 145

The similarity of the triangles OMS and ABS (Fig. 145) implies that

h 4
H2-ha

H

8V sin

a3-12 sine

(1)
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Analogously, from the triangles 0KS and CBS we obtain

b
J4H2_b2

(2)a H
2

Dividing equality (1) by (2) termwise we obtain

H2-4h2 _ h

H2-4b' - b If 2
whence

Substituting this expression into (1) we easily find

a2 = 8b2h2 h2-b2.

Finally, for the volume V we receive the expression

16 bshs

3 (h2-b2) Y2b2- h2
433. Let H be the altitude of the pyramid, x the slant height, R the radius

of the inscribed circle of the base, r the radius of the circumscribed circle of the
base and a the side of the base. From the simila-
rity of the triangles CA1Bt and CAB (Fig. 146) we get

14A R-
AtH =r

whence n

hr

H= 2bh

Y262-h2
.

But from Q ADB we have r= Rn , and the-
cos -

n
refore

H= h

7t
1 - cos -

n

---R

FIG. 146

Furthermore, for the area of the base and for the volume we have the formulas

Sbase = n

2

r= sin 2n and V =

r2 = 6V
2n

Ha sin
(2
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Substituting in the latter relation the above expression for H, we find

r=

6V(I-cos n
/\\ n/

nh sin 2n
n

Since x= ifRz+Ha and a -r sin n , the lateral surface area is equal to

n xa=nr sin n yR2+H2,

and, finally,

6Vr1-cos
2 /

3V(1-cos n ha
Stat=nsin \ / \ /

sI
n V nhsfn2n nhtan n (i_cos-!) J

434. Let M and N be the midpoints of the edges ES and QS (Fig. 147).
It is easily seen that AMNC is a trapezoid because MN 11 ED and ED 11 AC.
It is also obvious that

MN=
2

q.

FIG. 148

Using formula (1) for the square of a median of a triangle
solution of Problem 370, we find

CN= rb"- 2qz

2

derived in the

Furthermore,

KC=A2 =g sin In



SOLUTIONS AND ANSWERS. SOLID G90METRY 269

because L ABK =10 If KL is the line segment joining the midpoints of the
bases of the trapezoid/ACNM, then

KL- b2 42g2-I gsin iO- 4 12-

b2 42g2g2 (y +1_ 4)2
V Tbl_

3qe

\(we have used here the equality sin iO= + l I . Thus, the sought-for area is

Ssec = 2 (MN+ AC) KL= 6 (2+ YT) 14b2 + 3q2.

435. Let E and F be the midpoints of the lateral edges of the regular tri-
angular pyramid SABC shown in Fig. 148, and D the midpoint of the line seg-
ment EF. Since the cutting plane is perpendicular to the face CSA, the angle SDB
is right. Extend SD to intersect the straight line AC at a point M and consider
the triangle MBS. It is obvious that the point D bisects the line segment SM.
Besides, BD 1 MS and therefore MBS is an isosceles triangle in which SB = MB.
Let the side of the base of the pyramid be equal to a. Then

SB=MB=a y3

2

The slant height is given by the expression

SM = YSC2-CM2=a V 2
2

Tee-efole,

and since the area of the base is

we have

3a2

4
Jf_T

Stat=

base ..S
a2 Y3

Slat

Sbase

436. Let a be the length of the side of the square which is the base of the
prism, I the length of the lateral edge of the prism and d the diagonal of the
lateral face (Fig. 149). Let SSev denote the area of the section. It is easily seen
that the total surface area of the prism is equal to 4 (S-Ssec); therefore it is
sufficient to determine Ssec. We have

Ssec --d sin a, a=dJ/_2sin 2
and

I=Yd2-a2=d
Y

1-2sin2 =d cosa.

Furthermore,
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S=Ssec+
2a+2

2-da (si a+sina 2+V 2 sin 2 j/'cos a
and consequently

d2= 2S

sin a+2 sina 2 + 2 Y__2 sin 11cos a

Thus, we receive
S sin a

Ssec =
sin a+2sina 2+2ir2sin 2 rcosa

Finally, after some simplifications we find that the total surface area of the
prism is

sin 2 + j12 cos a
Stotal=4 (S-Ssec)=4S a (z

cos

2
+sin -y+ jf2 cosa

FIG. 149 FIG. 150

437. By the well-known lemma by means of which the law of sines is de.
duced, the side of the base of the pyramid is equal to a= 2r sin a. For the
lateral edge (see Fig. 150) we have

1
a la =2r cos 2 .

sin
2

Therefore, the altitude of the pyramid is

a
h=

V
la- Ca 3 3)

a

=2r
I/

cosy 2 - si a

and, hence, the volume of the pyramid is

V= 3 h as

4
3= 3 r3 sinaa V 3cos2 2 -sins a.

438. Let ABC'D' be the indicated section of the given pyramid OABCD.
Draw an auxiliary plane OPN through the vertex of the pyramid and the mid-
points of its edges AB and CD (Fig. 151).
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It is readily seen that the plane OPN is perpendicular to AB and CD, and
the line segments OP and ON are equal.

Applying the law of sines to the triangle OPM we find
OM sin a
OP

_
Tin 3(x'

Since D'C' 11 DC, we have
D'C'=DCOM_a sina

ON sin 3a'

Now applying the law of sines to the triangle PMN we obtain

PM sin 2a
TN

_sin
(a-3a)'

which yields

PM=a sin 2a
sin 3a

Thus we obtain the required area of the section ABC'D':

1 sina sin 2a-_ sin' 2% cos aS= 2 (AB -} D'C') PM = 2 (a +a sin 3a a sin
3aa2

sine 3a

FIG. 151 FIG. 152

439. We shall use the notation indicated in Fig. 152. Consider one eighth
of the garret OSBMN which consists of two pyramids. One of these pyramids
with the base SBM and vertex 0 has the volume

2

V1= 3 SO Ssant = 48

The volume of the other pyramid with the base BMN and vertex 0 is
a2h

V2- 24 .
Thus, the volume V of the garret is given by the formula

V=8(VI+V2)=a2
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440. Let BM and CM be the perpendiculars dropped from the vertices
B and C of the base (see Fig. 153) onto the lateral edge SA. The angle BMC
formed by them is the required one. Designate it by P. Obviously, we have

sin 2 =BK
. (1)

Let a be the side of the base of the pyramid. Then

SK=6co a
and

V a

SB (bc sa) +(2
a

) 2 6cosa

From the isosceles triangle ASB we easily find its altitude BM:

BM=

Thus, by virtue of (1),

and, hence,

we obtain

a
i 1+3cos2a

sin 2-Y'1+3cos2a2

P=2 are sin yl+3costa
2

8

FIG. 153 FIG. 154

441. Draw a plane through the edge SA and the point N which is the foot
of the perpendicular AN to the line segments BC (Fig. 154). Let NM be the
altitude of the triangle ASN The line segment NM is perpendicular to AS and
BC and is obviously equal to d. Let a denote the side of the base of the py-
ramid. Then

SA= a
2 sin 2
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and the altitude of the pyramid is

SO= SAT-AO'= a
a 9-12sin2 2

6 sin
2

Since AN.SO=AS.d, we have

a=

Finally, we obtain

6d

Y-3 9- sins 2

V =
3

as 4 SO= d3

3 (3-4 sins
2

sin2
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442. Let AD=a and BC=b (Fig. 155). Draw the line segment EF joining
the midpoints of the bases of the trapezoid. It is obvious that the dihedral
angle with edge AD is less than the dihedral
angle with edge BC. Let LSEO=a; then
L SFO=2a. We have

SO=OF-tan

2
tan

a
tan ,

a tan
tan

a=
V11,

a-2b *.
a

Furthermore, we obtain

FIG. 155

a= 2 tan 2
a alb

and

Sbase=alb (OE+OF)= (a 2
b )s tan 2

Finally, the volume of the pyramid is l
s

V =(a246)
tans 2 lIa(a-2b).

443. Let SL L AB, SK 1 AC and SM be the perpendicular to the plane P
(Fig. 156). By the hypothesis, SA=25 cm, SL=7 cm and SK=20 cm. Applying
the Pythagorean theorem, we easily find that AK=15 cm and AL=24 cm.
Extend the line segment KM to intersect the side AB at a point Q. It is
readily seen that L AQK=30', and hence AQ=30 cm. Therefore, LQ=6 cm,
and

LM=6tan30'=2 j13 cm.

* This result shows that for a r 26 the problem has no solution.
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From the right triangle SML we now find that

SM = J/72-(2 J13)2= )IT cm.
444. Let S be the vertex of the pyramid. SO the altitude and BN=NC

(Fig. 157). Designate the side of the base of the pyramid by a. Let us intro-
S

A

FIG. 157

duce the auxiliary parameter SN =X. The similarity of the triangles implies
that

From A MKO we obtain

EF=A, KM=a VT
X.

OM=cosP 2 os

The section area is equal to

(AD+EF)OM=2 (2a+Aa)
cc spa

The area of the base, as the area of a regular hexagon with side a, is equal to

6. a2

4
3

. Thus, the sought-for ratio of the areas is equal to

1 7v -{-2). (2)
6,cos P

Consequently, the problem is now reduced to finding X. For this purpose,
put [ SNO=(p. Then, by the law of sines, we obtain from Q SOM the
expression

sin l 2 -
cosSM=SO sin+y) =SOsin+q)'

Since q, we can write
SM cos P sin q

(3)SN - sin (fi+q) 1±tan cot p
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Finally, we proceed to find cot q. To this end, note that

SN=2 cot 2 ON =a 23

S0- y-SN2ON2=
2

cot2 -3
and, hence,

ON
cot (P= SO -

cots 2 -3

Substituting this value into formula (3), we obtain

7v=
Vcot2 2 -3

275

ot2 2 - 3 j/ 3 tancV
445. From a point S other than the vertex C of the trihedral angle (see

Fig. 158) and lying on the edge of the trihedral angle which is not a side of
the face angle a, drop the perpendiculars SB
and SD onto the sides of this face angle
Also draw the perpendicular SA to the cor-
responding face. Denote the sought-for ang-
les by P, and -fl, that is

L SCB = yl, L SCD = F'1.

Let then L ABC=a' and L ACD = a".
Putting CA=a, we find from the right
triangles CBA, SBA and SBC the expression

e
tan y, =

CB a -cosy coca'-sec y tan a'.
FIG. 158

We similarly obtain

s

tan 01 =sec p tan a".

The problem is thus reduced to finding tang' and tang". We have
Computing the line segment SA by two different methods, we find

SA = a sin a' tan y
and

SA =a sin a" tan P.

It follows that sin a' = sin a" tan 0 cot y and, hence,

sin a'= sin (a- m') ttanan =(sin a cos a'-cos a') tan 0 cot V.

Dividing both members of the last equality by cos a', we get

tan m'= sin a tan P cot y
I+cosatanPcoty

Interchanging P and y we find

tan a"= sin a tan ycot P
I+cosatan ycot
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We thus finally obtain
sin a tan (3 csc ytan y, =1 + cos a tan P cot y

and

tans1= sin a tanycsc0
2+ cos a tan y cot S °

446. The sum of the interior angles in the regular polygon being equal to 1rn,
the number of its sides is equal to n+2. Let PQ be the altitude of the pyramid

a

FIG. 160

(Fig. 159). Consider a lateral face of the pyramid, say Q QAB, and its projgction
onto the base, i. e. A PAB. The conditions of the problem imply that

SQPAB I

SQQAB T
The areas of the given triangles being in the ratio of their altitudes dropped

onto the common base AB, for the cosine of the dihedral angle with edge AB
we have

PR Icos T= QR=k,

whence it follows that the apothem of the base of the pyramid is equal to

d=hcotcp=h I

We then find the side of the base:

a= 2h tan
>ti

Yka-1 n-}-2

Since the area of the base is determined by the formula

S= 2 (n+2) ad,

we see that the volume of the pyramid is

tanV= Sh =

3

(nka 2) 1

3

3 n 2.

f
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447. The solid in question is an octahedron whose vertices are the centres
of symmetry of the faces of the cube (Fig. 160) The volume of the octahedron
is twice the volume of the regular quadrangular pyramid EABCD with altitude
2 , the area of the base ABCD being equal to

2

a2. Hence, the required vo-
lume is equal to

sI a I2X3X2X2a=6.
448. It is obvious that the section is the isosceles trapezoid ABCD (see

Fig. 161). Let P be the midpoint of the side EF of the base of the pyramid.
Consider L SPR containing the altitude SO of the pyramid. The line segment
KO is apparently the altitude of the trapezoid ABCD. Since KO 11 SR, we have

1(0 2 h where h is the slant height of the pyramid. It is also obvious that
A B = 2a where a is the length of the side of the base of the pyramid. We also
have DC= EF = 2 a and therefore,

1 a h 5ah 5 1Str=
2

2a-{
2

. 2- 8= C
2

ah)

and, hence, the sought-for ratio is equal to 5

S

A R B

FIG. 161 FIG. 162

449. Let A1BC1D be the given tetrahedron, ABCDA1B1C1D1 the parallelepiped
obtained by the indicated construction (see Fig. 162). It is readily seen that the
edges of the tetrahedron are the diagonals of the lateral faces of the parallele-
piped. The tetrahedron can be obtained by cutting off and removing from the
parallelepiped the four congruent pyramids ABDA1, BDCC1, A1B1C1B and

A1DICID. The volume of each pyramid being equal to 6 of the volume of
the parallelepiped, the ratio of the volume of the parallelepiped to that of the
tetrahedron is equal to

VP VP
=3.
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450. One can easily see that the vertices of the tetrahedrons not lying on
the faces of the pyramid are the vertices of a square. To determine the length
of the side of the square, draw, through the vertex S of the pyramid and one
of those vertices, say A, of the tetrahedrons, a plane perpendicular to the base
of the quadrangular pyramid (Fig. 163). This plane also passes through the
foot 0 of the altitude of the pyramid, the foot Q of the altitude of the tetra-
hedron and the midpoint M of the edge KL. Drop the perpendicular AB onto
the base of the pyramid and consider the quadrilateral SOBA. Its side OB
is half the diagonal of the above square and is to be determined. However,
it is easy to reveal that SOBA is a rectangle. Indeed, putting L OMS=a and
L ASM = 0, we find

1

2a rd,
Coso:= --=S = 3

j73

and

2
a

QS 33 a _ Y3
cos = SA - a 3

Therefore SA and OB are parallel and, hence,

OB = SA = a.

Thus, the sought-for distance is equal to a r-2.

C

N

FIG. 163 FIG. 164

451. Suppose that the cutting plane passes through a point of the diagonal
HP of the given cube (Fig. 164). Let us first consider the sections which inter-
sect the diagonal at points belonging to the line segment OP. Take the plane
section QRS passing through three vertices of the cube. It obviously is one of
the indicated sections. This section is an equilateral triangle with side a y2.
We can easily compute the distance from the centre of the cube to the chosen

section which turns out to be equal to a

6
3 . It is obvious, that for

a

6
3 the sections are equilateral triangles. The sides of these triangles
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being in the ratio of their distances from the point P, we can write
MN 0P-x
QR OP- a y3

6 _

Now, taking into account that QR=a Y2 and OP= a 2 3 , we find

MN= 2 Y2 a-xY6. (1)

But if a

6
11-3 > x 0, then the section is a hexagon of the type ABCDEF.

The sides AB, FE and CD of the hexagon are, respectively, parallel to the
sides QR, QS and RS of the equilateral triangle QRS. Therefore, when exten-
ded, these sides intersect and form angles of 60°. Furthermore, taking into
account that AF 11 CD and so on, we arrive at a conclusion that each angle of
the hexagon is equal to 120°. It is also readily seen that AB=CD=EF and
BC=DE=AF (it should be noted that the sides of the hexagon cut off isosceles
triangles from the faces of the cube).

L

FIG. 166

To find the lengths of the sides of the hexagon let us extend its side AB
to intersect the extension of the edges PQ and PR at points MI and N1. It is
apparent that the length of the line, segment MINI can be computed by for-
mula (1). Knowing MINI, we find the line segment BNI:

BNI=\ 22 MINI-a) Y2=2 Y2-xY6.
It follows that

AB=MINI-2BNI=2 Y2+xY6. (2)

The side BC can be determined in a similar way but it is clear that BC=BN1,
and, hence,

BC= 2 y2-x /--6.
(3)

Note, that the section obtained by the cutting plane it passing through the
point 0 is a regular hexagon (consider formulas (2) and (3) for x=0). The ver-
tices of this hexagon are at the midpoints of the edges of the cube (Fig. 165).
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It is obvious that if one of the two parts into which the cube is cut by the
plane n is turned about the diagonal OP through an angle 60°, the hexagon
goes into itself, and we thus obtain two polyhedrons symmetric with respect to
the plane a. Consequently, the section intersecting the diagonal at a point of
the line segment HO whose distance from the point 0 is x can be obtained
from one of the sections that have been already considered by turning through 60°.

452. The projection is a regular hexagon with side a

3
6 . To verify this

assertion it is convenient to consider the projections of all the plane sections of
the cube investigated in Problem 451 (see Fig. 164). All these sections, when
projected, do not change their sizes, and thus we obtain the figure shown in
Fig. 166.

Knowing that the side of the triangle RQS is equal to a Jr 2, we find from
the triangle GOS the relation

Gs . Y3-a112
2 2

which yields GS= a 36
The side of the regular hexagon A1BIC1D1E1Fi

(see Fig. 165) being equal to a

2
2 , the sought-for ratio of the areas is equal to

" ' _ 22z
3

453. Let AEFD be the isosceles trapezoid obtained in the section, and G
and H be the midpoints of its bases (see Fig. 167). Drop the perpendicular HK

HK=2 , KN=4 and GK=4`. (1)

Now we shall determine the lengths of the
line segments QO and QS. We have

QO GO

FIG. 167 HK

and therefore, taking into account (1), we obtain

Q0=2
h

2 3a-3'
It follows that

from the point H onto the base of pyramid.
Since H is the midpoint of SN, we have

QS=3h and i -T
(2)

Draw the perpendicular SM from the point S to GH. Then the similarity of
the triangles SMQ and GOQ implies that

SM GO

QS GQ
and, consequently, the sought-for distance is

SM-QS . GO 2ah
GQ Y9a'

-1- 44z
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454. The solid in question is made up of two pyramids with common base
KMN (Fig. 168). We can easily find the altitude OR of the lower pyramid by
dropping the perpendicular PD from the midpoint P of the side KN onto the
base of the pyramid. The point D bisects the line segment QL. Taking advan-
tage of this fact, we obtain, from QAPD, the relation

PD DA 5

RQ-QA-4'
whence we find RQ= 5 PD and, hence,

OR=5 PD= I5 2 aI/
3

a 06

Here we have taken advantage of the fact that in a regular tetrahedron

with edge a the altitude is equal to a 3 . The required volume is V. a380 2

S

C

FIG. 168
B

FIG. 169

455. Let AMKN be the quadrilateral obtained in the section, and Q be the
point of intersection of its diagonals (see Fig. 169). Considering Q SAC, we
readily note that Q lies in the point of intersection of the medians of this
triangle. Therefore,

MN_SQ_2
BD-SO-3'

and, hence, MN= 3 b. Furthermore, from the right triangle SAC we find

AK= 2 SC= ga+az.

Since AK I MN, we have S..C 2 AK MN= 6 V7-4.2.
456. Let NQN1Q1 and LML1M1 be the parallel sections of the prism

(Fig. 170), a the length of the diagonal AC of the base and H the length of
the line segment KKI. Then the area of the first section is

S= 2 (a+-2-)= 4 Ha.

The area of the other section is

S1= 2 PT (A2C2+LM)+ 2 P,T (AzC2+L1M,).
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But we have
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A2C2=a, LM= 4-, L1M1=

4

a, PT= 4 H and P,T =

4

H,

which is obviously implied by the similarity of the corresponding triangles.
Therefore we obtain

S'=1IaH

and, hence,

S'-2 S.1

Note. This problem can also be solved in a simple way if we take into
consideration the formula

Spr = S COS [p, (I )

where S is the area of a polygon in a plane P, Spr is the area of the projection
of this polygon on a plane Q and rp the angle between the planes P and Q.

According to formula (1), the areas
A 0 H C, of the parallel sections in the problem

are in the ratio of the areas of their
projections. Therefore, the problem is re-

1 1 c, duced to finding the areas of two pla-
ne figures shown in Fig. 171, namely

N

FIG. 170 FIG. 171

L,Al jCMLA and NiQ'CQNA (the primed letters denote the projections of
corresponding points onto the base of the prism).

457. Consider the pyramid KAEF shown in Fig. 172 which is one of
polyhedrons. We suppose that

AE AF I

EB
_

FC
_

2

Therefore,

4E_AF_ 1
AB-AC- 3

the

the

and, hence,

Sp AEF SQ ABC' (1
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Now, let KM and SN be the altitudes of the pyramids KAEF and SABC. Asis seen,
KM_AK_2
SN-AS-3'

Therefore, KM= 3 SN and, taking into account (I), we obtain
2

VKAEF=27VSABC

The sought-for ratio is equal to
25

FIG. 172
8 A

FIG. 173

458. Let the face of area So be the base ABC of the given pyramid ABCD,
DO the altitude of the pyramid, and DA1, DB1 and DC1 the altitudes of the
lateral faces (Fig. 173).

The line segments OC1, OAI and OB1 being, respectively, the projections
of DC1, DA1 and DBI onto the base ABC, we have OC11 AB, O,4 J_ BC and
OB1I AC, and therefore L DC1O, L DA1O and L DBIO are the plane angles
of the corresponding dihedral angles and, by the hypothesis, are equal. It follows
that the triangles DOC1, DOA1 and DOB1 are congruent. To facilitate the com-
putation, let us introduce the following notation:

DO=H, DC1=DA1=DB1=h,
OC1=OA1=OBl=r,

SI+ S2+ S3 = S.
It is obvious that r is the radius of the inscribed circle of L ABC. The

volume of the pyramid ABCD is

V= 3 SoH.

From the right triangle DOCI we obtain

(1)

H= 1/_h2:- r2.

Thus, the problem is reduced to finding hand r. From the formulas S1= BCh,

S2= 2 ACh and S3= ABh we find the expressions for the sides of the tri-
angle ABC:

BC=2h1, AC=2h2.
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Hence, we have

Furthermore,
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p=
2

(AB+BC+AC)= h3+ hi h' = h .

p-A8= h -2h' S h-2S3

S-2S1
Pp-BC= h -AC= h

and, hence by Heron's formula, we obtain
S S-'2S S-2S S-2SSo=P (p-AB) (p-BC) (p-AC) = h - h 1 - h 2

h
3-

S (S-2S1) (S-2S2)
h4

Consequently,

h
S(S-2S,)(S-2S2)(S-2Ss)

(3)
Yso

The radius r of the inscribed circle is found from the formula expressing the
area So of the triangle ABC in terms of this radius and p=

2

(AB+BC+AC):

SSo=pr= h r,

which yields

r=h So

Substituting this value into formula (2) we obtain

jS2- So.H= h2-ho Si = h

Now substituting the value of h determined by formula (3) into the expres-
sion of H and then the result thus obtained into formula (1), we finally receive

V- 3 V 0 S' -Sod
Y

(S-2S1) (S S2S2) (S-2Ss)
Y a

459. Cut the cube into two congruent parts by the plane perpendicular to
the axis of revolution and turn the polyhedron thus obtained through 90°. The
resulting geometric configuration is shown in Fig. 174.

The common portion is made up of the rectangular parallelepiped
ABCDD1A1B1C1 and the regular pyramid SABCD, The altitude of the paralle-
lepiped is found from QBB1T:

h=B1T=a 22

2

The altitude of the pyramid is

H. a 2 2 -h= 2
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The area of the common base is equal to a2.
Thus, the sought-for volume of the common portion is

V= 2 a2
a 2 - a a2

-2-E ( 2 2)+
isthat

FIG. 174 FIG. 175
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460. Let S be the vertex of the cone, SO=h the altitude of the cone.
ASB the triangle obtained in the section, C the midpoint of the chord AB
and AO=r (Fig. 175). Noting that L AOC=i , we find

CO 2 cot L
, h-CO tan a= 2 tan a cot 2 ,

Therefore the volume of the cone is

r=
a

2 sin 2

1 tan a cos
0

V nr2h
24

sins
2

461. Let a be the required angle, I the length of the generator of the cy-
linder, 11 the slant height of the cone, r the radius of the common base of
the cone and cylinder (Fig. 176). By the hypothesis, we have

2nr(r+1) 7

ar(r+I1) 4

V=a3(r212-3

and

r+1 7r+11=8.
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Consequently,

and, hence,

1

1+r
=

7

or
1+cota 7

i, 8 , 1 +csc a - 8 '
1-} r

sin (z+8 cos a-7=0.
Solving this equation we find

3 3sin a=5 , a- are sin 5 .

cc

tf i

r R

FIG. 176 FIG. 177

462. Let a be the sought-for angle, R the radius of the base of the cone
and r the radius of the base of the cylinder (Fig. 177). We have

2nr2+2nrR r r 3

nR2
=2(1-+

R
2

But
RR r=tan a and, hence, -rR=l-tan a. /Thus we obtain the following

equation with respect to tan a:
4 tan2a-12 tan a+5=0.

Solving it, we find

tan a= 5
or tan a= 2 .

But it is easily seen that tan a=R R rr < 1, therefore tan a=

2

, and, hence,

a = arc tan 2 .

463. Let I be the slant height of the cone and R the radius of its base,
x the length of the edge of the prism, r the radius of the circle circumscribed
about the base of the prism (Fig. 178). Consider the triangle formed by the
altitude of the cone, an element of the cone passing through a vertex of the
prism and the projection of that element onto the base of the cone. We have

lsina R
Isina-x - r
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Since r= X and R =l cos a, we obtain
2 sin

rz-
n

21 sin a sin
nx=

2 sin -+tana
n

Consequently, the total surface area of the prism is

I

21sinasin
ly ]

S=2 nx2cot n-{-nx2=n rI+
2

cot n).
2 sin

n
+tan a

R A P N

FIG. 178 FIG. 179
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464. Consider the isosceles trapezoid AB,C D which is the projection of the
given trapezoid ABCD onto the plane perpendicular to the axis of the cylinder
shown in Fig. 179. The projected trapezoid is circumscribed about a circle, and,
hence,

AB1=AK+KB1=AM B N a+b
I 1

i_-2
From the right triangle APB, we obtain

rat b/2=(a2 bl2+h2
sine

It follows that

sin a= hab
and a= are sin Y .

465. Let R be the radius of the sphere, and a, b and c be, respectively, the
legs and the hypotenuse of the triangle ABC which is the base of the prism
(Fig. 180). We have

a= h b= h c= a = h
cos a' sin a ' sin a -cos a sin a

The radius R is obviously equal to the radius of the inscribed circle of & ABC.
Therefore,

2SAABC ab ItR-a+b+c -a+b+c-1+sina + cosa'
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and, hence, the volume of the prism is

2h3
V=SA ABC2R=sin2a(I+sin a+cosa)

466. The volume of the pyramid is equal to the sum of the volumes of the
pyramids which are obtained by joining the centre of the inscribed sphere 0
to the vertices of the pyramid. The D

tal itude of each constituent pyramid is
equal to the radius r of the sphere ins-
cribed in the given pyramid. If S is the

FIG. 180

a

FIG. 181

area of the base of the pyramid and Sr the lateral area, the volume of the
pyramid will be

V=
3

(SI+S) r.

On the other hand, we have

V= 3 hS,

and thus we obtain the following formula for r:
hS

r=371-:F-S

From the conditions of the problem it follows that
2

S=n4 cot n ,

2

sI= b2-
and

h= b2
a2-

4 sine
n
n

Substituting these expressions into (2) we find

nag cot
n

b2 - at
n

4 sine a 02 -a?, csc2 n
r- n n

4 4 cot n -{- 2 J/lb2 42 (a -}- tan n

(2)
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467. Let us denote by r the radius of the inscribed sphere and by a the
length of the line segment OE (Fig. 181). Then

r =a tan a,

where a is hall the sought-for angle (see Fig. 181). Hence, the volume of the
sphere is

Vsph=
4

na3 tan3 a.

Since DO=a tan 2a and AB=2 r3a, the volume of the pyramid is

V pyr = 3 DO 43 AB2 = r3 a3 tan 2a.

By the hypothesis, we have

V pyr 27 J1 3
Vsph 4n

Expressing tan 2a in terms of tan a we get the
equation

tan2a(1-tan2a)= 9 .

It follows that (tan a)i= 3 and (tan a)2 =
3

.

Taking into consideration that a is an acute angle,
we find

n

and

ar 6-

a,= arc tan V 2 .
3

468. Let a be the side and b the apothem of
the regular n-gon which is the base of the pyra-
mid, and H be the altitude of the pyramid. Then
(see Fig. 182, a and b) we have

b=r cot 2

and

a= 2b tan a =2r cot 2 tan n .

The area of the base is

Sbase = n 2 = nr2 tan n cot2 2

B
(b)

FIG. 182

Furthermore, H =b tan a=r tan a cot 2 , and hence the volume of the pyra-

mid is

Vpyr = 3 nr3 cots 2 tan a tan n .

10_323
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Since the volume of the s here is V 4
P sph= 3 nr3, we can write

V'ph
=4n tan3

2

a
cot a cot

V n .
Pyr

469. Let a be the side of the base of the pyramid, b the apothem of the
base, R the radius of the circumscribed circle of the base, h the altitude of

S

a

(a)

FIG. 183

b

(b) A a E B
FIG. 184

the pyramid, r the radius of the sphere inscribed in the pyramid, y the slant
height of the pyramid (see Fig. 183, a and b) Then

a=2Rsin n-, b=Rcos n-
n n

and, besides,
a

y=R+ RZ-4=R(1+cos nl and h=Yy2-b2-

=R I/ l+2cos n .
n

From the equation hr r= b
(see Fig. 183, b), we find

y

hb
R cos n 1 -F 2 cos

isr=-=+
1+2cos n

Hence, the sought-for ratio is equal to

3 h. 2 nab n sin a I I+2cos
4 a

)2

n

3
nr3 4n cos2

n

470. Let a be the side of the base of the given pyramid SABCD, h the
altitude of the pyramid, r the radius of the sphere circumscribed about the pyra-
mid (Fig. 184). Then

V=3 ara



SOLUTIONS AND ANSWERS. SOLID GEOMETRY 291

and
I

(4n) 3

If SE is the diameter of the circumscribed sphere, then from the right triangle
SBE we find

(a
2 -2) z=h (2r-h).

However, from the triangle FO,S we have
2

h cot a, and therefore, elimi-

nating a, we receive

_ 2r _ l 6V 3
h 2cot2a+I (n )

471. Taking advantage of the equality of the dihedral angles we can readily
show, as in Problem 458, that the perpendicular dropped from the vertex onto
the base is projected in the centre of symmetry of the rhombus. It is also
obvious that the centre of the inscribed sphere lies on that perpendicular.

h

FIG 185

S.

FIG 186

Let a be the side of the rhombus, 2h the altitude of the rhombus, and H
the altitude of the pyramid (Fig 185). Then the area of the base is S= a2 sin a,
and thus, since a= 2h

sin a ,
we obtain

z
S= sin a

But h= R cot 2 (see the section passing through the altitude of the pyramid
and the altitude of the rhombus shown in Fig. 185). It is also clear that

R
2 cos2

2H = R + cos
- R cos y

I Q*



292 PROBLEMS IN ELEMENTARY MATHEMATICS

We finally obtain the volume of the prism:

8
cos4

2
V=8 R3

sin a cos ij sin2 2

472. Draw a plane through the vertices S, and S2 of the pyramids and the
midpoint A of a side of the base (Fig. 186). The radius of the semicircle in-
scribed in the triangle AS1Sz so that its diameter lies on S1S2 is obviously equal
to the radius of the inscribed sphere. Let 0 be the centre of the semicircle.
Denote by b the altitude in the triangle AS1S2 dropped onto the side S1S2. Since b
is the apothem of the regular n-gon, we have

b=2a cot n

Computing the area S of the triangle AS1S2 by means of the two methods in-
dicated below we can find the radius of the sphere R. Indeed, on one hand, we
have

S= 2 (H+h),

and, on the other hand,

S= 2 S,A+ R S2A=R(11h2+b2+11H2+b2)

This results in the final formula

a(H+h)cot
R= - -

V h2 } 92 cot2 n
J'E + r H2

4
cot2

473. Let hr and h2 be the altitudes of the pyramids, and r the radius of the
circle circumscribed about the base (Fig. 187). Then we have

a . a-r sin-.
2 n

From the right triangle S1AS2 whose vertices are the vertices of the given
pyramids and one of the vertices of the base we find

a2
h - zr z-r = -

214 sine -
n

But

and, hence,

hi+h2=2R,

a2
h, R

4 sine -
n

h2=R-
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The problem is solvable if R
a

2 sin
a
n

474. It can easily be proved that the midpoint of the line segment joining
the centres of the bases of the prism is the centre of the inscribed and circum-
scribed spheres. The radius of the circle inscribed in the base is equal to the
radius of the inscribed sphere. Let r be the radius of the inscribed sphere and R

s,

FIG. 187

a

FIG. 188

the radius of the circumscribed sphere. Consider the right triangle whose verti-
ces are one of the vertices of the base, the centre of the base and the centre

of the spheres. We have R2=r2+r1 where ri= r . It follows that
cos -

n

R
cosy -

n

The ratio of the volume of the circumscribed sphere to that of the inscribed
sphere is

3

R3 l+ 1
2

COS2
n
R/

475. The radii of the circumscribed and inscribed spheres are equal to the
segments of the altitude of the tetrahedron into which it is divided by the com-
mon centre of these spheres. It can easily be revealed that the ratio of these

segments is 3:1. Indeed, from the similar triangles BQO and BPK (Fig. 188)
we have

R BKr=PK.
But

BKBK
PK QK 3'

and since the surface areas of the spheres are in the ratio of the squares of their

radii the sought-for ratio is equal to 9.

10*-323
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476. The volumes of the regular tetrahedrons are in the ratio of the cubes
of the radii of their inscribed spheres. The sphere inscribed in the larger tetra-
hedron being at the same time the circumscribed sphere of the smaller tetrahe-
dron, the ratio of those radii of the inscribed sphere is equal to 3:1 (see the
solution of Problem 475). Hence, the sought-for ratio of the volumes is equal
to 3s = 27.

477. Suppose that the problem is solvable. Draw a plane A1B,C, (see Fig. 189, a)
tangent to the smaller sphere and parallel to the base ABC of the given
tetrahedron. The tetrahedron SA,B1C1 is circumscribed about the sphere
of radius r. It is easy to show that its height is SQ1=4r (see Problem 475).

cal

FIG. 189

cbl

Let the length of the edge of the tetrahedron SABC be equal to x. Then

the line segment AQ is equal to
x 3 ' , and the altitude SQ is equal to x 6

Furthermore (see Fig. 189, b), we have QO=x-3r, and from the right

triangle AQO it follows that
\ \

Cx

3 3 Iz (z 33r)2=Ra.
Solving the quadratic equation we find

zr.z = r }16 ± YRa-3rz.
Here we must only take the root with the plus sign, because SA is in any case
greater than 3r, and 3r > r 11 6. It is obvious that the problem is solvable if
R > l 1 3r

478. Let A1B1C,D,E,F, be the regular hexagon in the section of the cube by
the cutting plane. The problem is reduced to determining the radius of the in-

scribed sphere of the regular hexagonal pyramid SA,BICIDIEIF, (Fig. 190).

The side of the base of the pyramid is equal to a 2 2, and the altitude to

If-3
. Since the radius of the sphere inscribed in a regular pyramid is threea

2
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times the volume of the pyramid divided by its total area (see formula (1) in
the solution of Problem 466), we find

r=a (3- r-3)
4

Hence, the required ratio is equal to 2
(3 -f- 3)3

9A

e,

FIG. 190 FIG 191

479. Let 0 be the centre of the sphere, and AS, BS and CS the given chords.
As is obvious, the triangle ABC is equilateral (Fig. 191). It is also easily seen
that the extension of the perpendicular SO, to the plane ABC passes through
the centre 0 of the sphere because the point 01 is the centre of the circle cir-
cumscribed about p ABC.

Now let us denote the sought-for length of the chords by d. From the trian-
gle SAB we find

AB =2d sin 2

and, hence,

O,A=AB 33=3 dsin 2

Computing the area of the isosceles triangle SOA in two different ways, we get

z

Rz-4

whence we find

d=2R I/ -
3 sin' 2

480. The radius of the inscribed sphere r is found by the formula (cf. for-
mula (1) in the solution of Problem 466)

3V
r -S,

where V is the volume of the pyramid, and S its total area. We shall first find
the volume of the pyramid. To this end, note that the right triangles BSC and

10**
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BSA (Fig. 192) are congruent since they have equal hypotenuses and a common
leg Due to this, the right triangle ASC is isosceles. Since

AS=CS= Yaz-bz,
we have

It is also clear that

and

and, hence,

( z- z)
V= 3 BS'Sn, ASa=36 a 2

FIG. 192

AD=ya-bz 2
2

BD= j1AB2 -AD2= 22 11az+bz,

1Sp ABC = 2 ya -b4'

Now substituting the necessary expressions into the above formula of r and sim-
plifying the result we finally obtain

r
b Ira? -bz

yaz+bz+2b+ Yaz-bz
481. Let r and R be the radii of the inscribed and the circumscribed spheres.

S

(a)

f
rb)

FIG. 193
(C)

We shall first consider the triangle SFE whose side SF is the altitude of
the pyramid, the side SE being the slant height of the pyramid (Fig. 193, a).
Let 0 be the centre of the inscribed sphere. In the triangles SFE and OFE
(Fig. 193, b) we have

FE = r cot 2
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and

SF=r cot I tan tp.

Furthermore, it is obvious, that

DF=EF r-2 =r cot 2 {12,

297

From Fig. 193, c showing the section passing through the axis of the pyramid
and its lateral edge we easily find

D02 = 0,F2 + DF2,
that is

It follows that
R2=(SF-R)2+LIP.

R=SF2+DF2
2SF

(1)

We have R=3r, and therefore, substituting the above expression for SF and
DF, we obtain the following equation for q:

r2 cot2 E tang qp+r2 cot2 2 2

3r =
2r cot 2 tan 'p

Simplifying this equation we write

6 tan 2 tan rp=2+ tan2 cp.

Now put tan

2

=z. Noting that tan qp=1 2zz2 , we arrive at the equation

7z'-6z2+ t = 0
from which we find

Z1,2
7

But z > 0, and hence only the two following answers are possible:

and

tan 2=V 3- 2

2 / 7

482. We have the total of six lunes (according to the number of the edges)
and four triangles (Fig. 194). Let us denote the area of each triangle by S1, and
the area of each lune by S2. We then have

4S,+6S2=4nR2. (1)

Let So be the sum of the areas of a triangle and the three adjacent lunes. So
is the area of a spherical segment cut off by the plane of the corresponding face
of the tetrahedron. This area is equal to 2nRh where h is the altitude of the
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segment. Since the altitude of the tetrahedron is divided by the centre of the
sphere in the ratio 3:1 (see Problem 475), we have

H=R- 3 R= 3 R,

which yields

Furthermore, we have

h=2R- 3 R= 3 R.

S, 13S2 =2nR 2 R= 4
2TR2. (2)

Solving the system consisting of equations (I) and (2) with respect to the un-
knowns SI and S2, we obtain

SI = 3 JR2, S2= 9 nR2.

483. Let R be the radius of the base of the cone, a the angle between the
axis of the cone and its element, and r the radius of the inscribed sphere. The

axial section of the cone shown in Fig. 195 is an isosceles triangle ABC. The
B

FIG. 194 FIG. 195

radius of the inscribed circle of this triangle is equal to the radius r of the
sphere inscribed in the cone. Let 0 be the centre of the sphere and L OCA=P.
Then it is obvious that tan = R . But, by the hypothesis,

4nr2 r 2 4

nR2 4()
It follows that R = I

and, hence, f3= 6 . Besides, we have a+2p=
2

and therefore a= Consequently, the sought-for angle is equal to 2a= 3 .
484, Let r be the radius of the hemisphere, R the radius of the base of the

cone, I the slant height of the cone, and a the angle between the axis of the
cone and its element.

By the hypothesis, we have
sR (1+R)18 (1)

2nr2 5
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Let us introduce the angle a into this equality. For this purpose, consider
the isosceles Q ABC (Fig. 196) obtained in the axial section of the cone. From
Q ABC we find

R=lsina, r=Rcosa=l sinacosa.
Substituting these expressions in the left-hand side of (1), we get

1 1+sina 18

2 sin a cost
a_5

We have cost a=1-sine a and therefore, cancelling out 1 + sin a, we receive
36 sine a-36 sin a+5=0,

which gives us

sin a1=

6

and sin a2=

Hence, the sought-for vertex angle of the axial section of the cone is equal

to 2 arc sin
6

, that is to 2 arc sin

6

.

FIG. 196 FIG. 197

485. Let h be the altitude of the cone, r the radius of the base, I the slant height of
the cone, a the angle between the altitude of the cone and its element (Fig. 197).

By the hypothesis, we have arl =knr2 which yields 1=kr and, hence sin a
k

From the right triangle ABS we get
k2 -1r = 2R cos a sin a = 2R y
k2

and

h=2Rcosacosa=2Rkz k2

The sought-for volume of the cone is
\2

(1 8
V =3 nr2h = 3 nRs k kg l

486. Let R be the radius of the sphere, h the altitude of the cone and r
the radius of the base of the cone. The ratio of the volume of the cone to that
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of the sphere is equal to

r2h 2

x=4R3= 4 (R) '

From the triangle SBA (Fig. 198) we have r2=h(2R-h). It follows that
R2

=R (2-K =q (2-q)

and, consequently,

x=
4

(2-q)

Obviously, the problem is only solvable if 0 < q < 2.

FIG. 198 FIG. 199

487. Let R be the radius of the sphere, Ssphere and Vsphere the area and

the volume of the sphere, Scone and Vcone the total area and volume of the

cone, h the altitude of the cone and r the radius of the base of the cone
(Fig. 199). Then

3

Vsphere
7iR 4R3

Vcone
l

nr2h
r h

and

Ssphere 4nR2 _ 4R2

Scone nr (1+r) r (I+r)

However, let us note that
I _h-R h

r- R R

and, consequently,

Thus, we obtain

I+r h

Vsphere 5sphere

Vcone Scone n
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Note. The same result can be obtained in a simpler way by using the follo-
wing

1

Vcone= 3 SconeR (1)

where Scone is the total area of a cone, and R the radius of its inscribed
sphere. Formula (1) is readily obtained as the limiting case of the corresponding
formula for a pyramid (see the solution of Problem 466). To obtain the result
we take the obvious formula

1

Vsphere= 3 S$phere'R

and then, dividing (2) by (1), obtain

Vsphere Ssphere

Vcone Scone n

(2)

488. Let S be the total surface area of the frustum, S, the area of the sphere,
ri and r the radii of the upper and lower base of the frustum, respectively,
and I the slant height. Furthermore, let CMDL
be the trapezoid in the axial section of the
frustum, 0 the centre of the inscribed sphere,
AB 1, LD and OF I MD (Fig. 200). We have

S n1(r+ri)+nrI are
(1)

S1 4nR2 - M.

It is obvious that AM=MF and BD=FD
because 0 is the centre of the circle inscribed
in the trapezoid and therefore

1= r + rI. (2)

Taking advantage of this equality, we obtain
from equality (1) the relation

C " A

12+r2l +r2=4mR2
It then follows from the triangle MED that

12=(r-r1)2+4R2.
Eliminating I from equalities (2) and (4) we find

rr, = R2

With the aid of this equality, eliminating I Irom (2) and (3), we obtain

r2+r2=R2 (2m-I).
Solving the system of two equations (5) and (6), we find

r= 2 (I12m+l±jf2m-3)

and

M.

(3)

(4)

15)

M

r1= 2 (Y2m-l-I-jI2m-3).

Thus, for m < 3 the problem has no solution; for m= 2 the frustum of the

cone turns into a cylinder.
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489. There are two possible cases here, namely: (1) the vertex of the cone
and the sphere lie on different sides of the tangent plane and (2) the vertex of

the cone and the sphere lie on one side of the tangent plane.

Consider the first case. Draw a plane through the axis of the cone and its
element BC mentioned in the statement of the problem (Fig. 201). The section
of the cone by this plane is a triangle ABC and the section at the sphere is
a circle with centre at 0. Furthermore, this plane intersects the plane perpen-

9 9

B R C A f
FIG 201 FIG 202

dicular to BC along a straight line ME, M being the point of tangency. Draw
BD,L AC and OF J. BC. Let BD=h, CD=OF=r and CD=R The figure
OMEF is obviously a square, and therefore

h=r-f )r2+(d+r)2.
Furthermore, h-d+ hr

rr. R=d-f-rr.

Thus, in the first case the volume of the cone is
V =

3

nR2h= 3 n h3r2 tr2 (r -f- V r2+(d+r)2)3.
(d-f-r)2 3(d+r)2

In the second case the problem is solved analogously. The volume of the
cone turns out to be equal to

70 (r -I- Vr2+(d-r)2)3
3 (d-r)2

490. Consider the axial section ABC of the cone shown in Fig. 202. Let BF
be the altitude in the triangle ABC, N and M the points of tangency of the
circle inscribed in the triangle ABC with the sides AB and BC, 0 the centre
of the circle, E the point of intersection of the smaller are MN and the line
segment BF and D the point of intersection of the line segments MN and BF.
Put DM=r, DE=H and BD=h. The desired volume is

V= 3 nrah- 3 nH2 (3R-H).
But

a
cost

h=r cot =Rcos 2 cot 2 =R a
sin -

2
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and

Consequently,

H=R-R sin
2

.

4cos l2

V= 3 aR3 a -
/
( l - sin 2) (2+ sin Z 1 .

sin 2

491. Denote the radii of the spheres by r and r, and consider the sections

of the spheres by a plane passing through their centres 0 and 0, (see Fig. 203).

Let AA,=2a, KS=R and AS=x. Then
AS=2a-x. The total area of the lens is

equal to
2xar, + (2a - x) 2ar = S. (1)

From the

that is

triangle OKS we have

r2=R2+[r-(2a-x)]2,

R2-2r (2a-x)+ (2a-x)2=0. (2)

Analogously, from the triangle 01KS we have
ri=R2+(r,-x)2,

that is
R2-2rix+x2 =0.

From (2) and (3) we find
R2+(2a-x)2

r 2(2a-x) r'

FIG. '403

(3)

R2+ r2
(4)

2x

Substituting these expressions in equality (1), we get the equation
a (R2+x2)+n ]R2+(2a-x)2] =S,

which can be rewritten in the form

x2-2ax+R2+2a2-2 =0.
Solving the equation we receive

x=a+ Y n -R2-a2. (5)

Substituting this value of x in formulas (4) and simplifying the result we obtain

S-a S -R2-a2
471- 2n

r=

r1 _

a- V '23E - R2-a2

4n+a Y 2n
-R-a2

VS 2- 2
a+ + 2n -R a

The choice of the minus sign in front of the radical in (5) is equivalent to
interchanging the letters r and r1 which designate the radii.
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492. Let Vr and V. be, respectively, the volumes of the smaller and larger
spherical segments into which the sphere is divided by the plane passing through
the line of tangency of the sphere and the cone. Denote by R the radius of the

sphere, by h the altitude of the smaller segment,
by h the altitude of the cone, and by r the radius
of its base (Fig. 204), Then

V, = 3 nh2 (3R-h), V2= 3 aR3- 3 h2 (3R-h).

The problem is reduced to finding the ratio R
Denoting the angle between the axis of the cone
and its element by a, we find from Q PKO that

R-h

r
whence

R
= sin a,

h =1-sin a.
FIG. 204 R

Furthermore, by the hypothesis, we have

nr2H
1 r2H

3 nR3
=4 R,

Let us now express r and H in terms of R and a. We have

H= R -}--1+sina
sin a sin a

r=H-tan a+R I+sin cc
cos a

Hence,
(Ifsina)3 I (1+sina)2

k
4 sina(1-sin2a) 4 sin a( I -sin a)'

Substituting sin a = l-

R

into this relation we get the to!lowing equation for

h
= z:

1 (2-z)2
k 4 (I -z)z

Simplifying the equation we receive
z2 (4k+ l)-4 (k+ 1) z+4=0

and then, solving it, we obtain

V-F(k
Z1,2 = 4k+ 1 (1)

Finally we find

Vi Zi 2(3-ZI 2)

V2 4 -Z1.2 (3- ZL,2)
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The problem has two solutions for k > 2 because both roots of the quadratic
equation can then be taken.

493. We shall find radius r of each of the eight inscribed spheres by consi-
dering the triangle AOC (shown in Fig. 205, a) in the plane passing through
the centres of these spheres and the centre 0 of the sphere S. We have

AB r . n,4-0 =p- r= sin

It follows that

sin

r=R
sin $ +l

Draw the plane section through the centre 0 of the sphere S, the centre 01 of
the sphere S1 and the centres of the two spheres of radius r shown in Fig 205, b,

(a)

FIG. 205

(b)

which lie on a diameter of the sphere 0. From the right triangle A001 we find

A02 = A02+002 ,

that is

It follows that
(r+ p)2 =(R-r)2+ (R -p)2.

r'R
which results in

P= +

R

2sin 8+1 l/2-Y2+1
494. The inscribed spheres being congruent, their centres are equidistant

from the centre 0 of the sphere S. Consequently, the centre of symmetry of
the cube indicated in the problem coincides with the centre 0 of the sphere S
(Fig. 206). Let x be the sought-for radius of the spheres. It is readily seen that
the edge of the cube is then AB=2x, and half the diagonal of the cube is
A0=C0-CA=R-x. On the other hand, we have

AO= 7 2xry,
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and therefore we get the equation R-x=x JrY, whence we find
Rx-=y.3+I .

495, Let r be the radius of the base of each of the two inscribed cones whose
common portion consists of two congruent frustums of the cones. Let r, and r2

FIG. 206

n

FIG 207

be, respectively, the radii of the upper and lower bases of each frustum, and H
its altitude. The sought-for ratio of the volumes is equal to

H (ri+ rir2 + r22)9= 2R3

The similarity of the triangles AQZ. AOS and APC (Fig. 207) implies

=rr R-H and r2 ;R
r2 R r h

Besides, H=h-R and
r= yR2_-H2 = t12Rh-h2.

Therefore, the two foregoing equalities enable us to express r, and r2 in terms
of R and 6;

RY2Rh-h 2R-hr2=
/I

R

h =k and consequentlyBy the hypothesis, we have

R

(h-R) r2 (2RR2
h)2 +"2,2R-h+,,2

}

9 = 2R3 =

2 (k-1)(2_I)(k2-5k--7).
496. Let the radii of the circular sections with areas S, and S2 be equal

to R, and R2, respectively, and the distances from the centre of the sphere to
these sections be equal to 1, and 12 (1r < 12). Let R be the radius of the sphere,
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r the radius of the section in question and I the distance between this section

and the centre of the sphere Then we have (see Fig. 208).

12-1i=d (1)

and 1i { Ri=1s F R2=R2. From these two equations we find

Ri-Rz
12+11= d

and, hence,

1z+11
=S1-S2

Rd (2)

From equations (I) and (2) we obtain

S1-S2 d Sl - Sz
12

2nd +2' 27id

Therefore, the sought-for area is

5=ar2=n(R2-12)=n(R22--1a-12)=2 CS,+Sz i 2 nd2 .

497. Let us denote the sought-for radius of the base of the cone by r. Con-
sider the section passing through the centre of one of the spheres and the axis
of the cone (Fig. 209). Note that the distance between the centres of two con-

9R

FIG 208 FIG. 209

gruent spheres tangent to one another is equal to 2R. It can readily be proved

that the centre A of the base of the cone is equidistant from all the three

points of tangency of the spheres with the plane P. Based on this fact, we find

AD =23'Ir 3 R.

It is evident that L SBA L CO,D=2S and, consequently,

2(3= T -Q

Taking the tangents of the angles on both sides of this equality, we obtain

2tan l I

1-tan20
_

tan a' (1)
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From Fig. 209 we see that tan2
3

3 R-r):R and tan a=r:qR. If

now we put R =x, equality (1) leads to the following equation for x:

3(q-2) x2-4313 (q-I) x+q=0.

For q=2 we obtain from this equation x= 6 , and, hence, r= 6 R. if
2, then 2Y_3(q-1)

:F Y9g2-18q+12
xi.z= 3(q-2)

q

Since 0 < x < 23/' 3 , the above formula should be taken with the minus sign.
It can easily be shown that for q > 2 the root with the plus sign is greater

than 2

3

3 and corresponds to a cone externally tangent to the spheres; for

q < 2 this root is negative.
498. The centres of the first four spheres lie at the vertices of a regular

tetrahedron, since the distance between the centres of any two congruent spheres
tangent to one another is equal to 2R. It is easy to show that the centres of

FIG. 210

B

FIG. 211

the fifth and sixth spheres coincide with the centre of gravity of the tetrahedron
(Fig. 210) Let r be the radius of the fifth (larger) sphere, and p the radius of
the sixth sphere. As is obvious,

r=p+2R. (1)

Since the distance from the centre of gravity and the vertex of the tetrahedron

in question is equal to 26 R, we obtain

p+R= R. (2)

Hence, p=R ( , and from formula (1) we find r=R (i+i).
Thus the sought-for ratio of the volumes is

s _
ve P

9 6-2 (5-2{`yb= r) = i 6+2 =
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499. Let A, B and C be the centres of the spheres of radius R and A1, BI
and C1 the projections of these centres onto the plane. Denote by 0 the centre
of the fourth sphere whose radius r is to be found (Fig. 211). Joining the cent-
res of all the spheres we obviously obtain a regular triangular pyramid OABC
in which AB=BC=AC=2R, AO=BO=CO=R+r and OQ=R-r. The line
segment AQ is the radius of the circumscribed circle of Q ABC and therefore

AB 2R

r-3 l 3

Applying the Pythagorean theorem to the triangle AQO we find that

(-LL)'+(R-r)2=(R+r)?.r3
R

r 3.

500. Let A, B, C and D be the centres of the larger spheres. Consider the
projections of all the spheres onto the plane containing A, 8, C and D (Fig. 212).
The centres of the smaller spheres are
equidistant from the centres of the cor-
responding larger spheres and therefore
they are projected into the centres of
gravity 01 and 02 of the equilateral tri-
angles ABC and BCD. Besides, the radii
of the smaller spheres are equal, by
the hypothesis, and therefore the line
segment joining their centres is parallel
to the plane under consideration and
is bisected by the point of tangency of
the spheres. Therefore, the projection of
that point is on the line segment BC.
It follows that the smaller spheres are
projected into circles inscribed in

FIG. 212

the triangles ABC and BCD. Therefore, the radius of the smaller spheres
is equal to

ABr32RY3
6 6

which yields R = r-3.

2. Proof Problems

501. Let E and F be the midpoints of the bases of the trapezoid ABCD in
the axial section of the cone shown in Fig. 213 Through the midpoint 0 of the
line segment EF draw the straight lines OM

1
CD, ON 1 EF and CP I AD.

For brevity, let us introduce the following notation: CD=1, EF=h, 0 =x,
EC=r, DF=R and L MON= L PCD=a.
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For the assertion to be proved it is sufficient to show that x=

2

. By the
hypothesis, we have n1(R+r)=n12, and, consequently, R+r=1. However,
from the triangles OMN and CPD we obtain

x=R2 rcosa and h=lcosa,

and, hence, x=
2

which is what we set out to prove.

502. Consider the trapezoid ABCD in the axial section of the cone shown
in Fig. 213 Let E and F be the midpoints of its bases, and 0 the midpoint
of EF. We also construct OM 1 CD, ON 1 EF and CP 1 AD, and L MON =
= L PCD = a.

d r To solve the problem it
prove that OM=OE. Let us
notation EC=r, DF=R,
OE=2

Then we have

is sufficient to

introduce the
OM=x and

x=ONcosa=R2 rcosa.

F

FIG. 213
therefore

For the triangle CPD we can write

h=CD cos a= r(R-r)2+CP2 cos a
But, by the hypothesis, CP2=4Rr and

h= J1(R-r2)+4Rr cos a=(R+r) cos a.
Thus, x= -T which is what we set out to prove.

503. Let SD be the altitude of a regular tetrahedron SABC, 0 the midpoint
of the altitude and E the midpoint of the line segment BC whose length is
designated by a (Fig. 214).

We have

DE= a 6
fi

SD =S DDEa 6 ;
3

OD=a6 6

whence

OE _ r
OD' -}- DE2 = 2

Consequently, OE=BE=EC and, hence, L BOC=90°.
504 Let a be the side of the base of the given pyramid SABCD, a the

plane angle of the dihedral angle with edge BC and H the length of the alti-

* From the above equality R+r=1 it follows that 2R+2r=1+1. This
means that the sums of the opposite sides of the considered quadrilateral are
equal. This is sufficient for the possibility of inscribing a circle in the quadri-
lateral. But here we do not take advantage of this fact.
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tude SO of the pyramid (Fig. 215). Then we have

r= 2 tan 71

Besides, according to formula (1) in the solution of Problem 481

H2+ ar2
R= 2H

Consequently,

and, hence,

_ a tanaa+2
R

4 tang

R_ tanaa+2
r 2 tan a tan 2

Putting tan x we obtain

R l + x4
2x2(I-x2)

311

we can write

introducting the notation x2- t we reduce the problem to proving the inequality

I to + j`2
2t ( -1- t)

or 0<t<1.

B

FIG 214 FIG. 215

Multiplying both members of the inequality by the denominator and opening
the brackets we obtain the quadratic inequality

(232+3) t2-2(jl2+1)t+1 ,0.
Computing the discriminant of the trinomial, we find out that it is equal to
zero. Consequently, the trinomial retains its sign for all values of t. The value
of the trinomial for 1=0 being positive, the inequality has thus been proved.
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505. The pyramids ASBC and OSBC have a common base SBC (Fig 216),
and therefore their volumes are In the ratio of their altitudes dropped onto
that common base. Since OA' 11 AS, the ratio of the altitudes of the pyramids
ASBC and OSBC drawn to the base SBC is equal to the ratio of SA to OA'.
Hence, the ratio of the volumes is

VOSBCOA'
VASBC

_SA

Analogously,

VOSCA OC' VOSCB _ OB'

VASBC SC ' VASBC SB

Adding together these equalities, we obtain
OA' OB' OC' _

SA+SB+SC-1.

506. Let P be the plane of the triangle ABC, Pr the plane of the triangle
A1BIC1 and 1 the line of intersection of P and Pr (Fig. 217). Denote by QAB
the plane passing through A, B and 0. The straight line A1B1 is in the plane

FIG. 2i6 FIG. 217

QAB. The straight lines A1B1 and AB are nonparallel and, hence, they inter-
sect at a point TAB This point lies in the planes P and Pr and thus on the
line r. We similarly prove that the straight lines BC and B1C1 intersect at a
point TBC lying on 1, and the straight lines AC and A1C1 at a point TAC also
belonging to 1.

507. Let 01 be the centre of gravity of the face ASC of a triangular pyramid
SABC (see Fig. 218) and B01 one of the line segments considered in the prob-
lem. Take another face, for instance BSC. We shall designate its centre of
gravity by 02 and prove that the line segment A02 intersects the line segment
BO1, the point of intersection 0 of these segments dividing the line segment
BO1 into the parts 001 and 01B which are in the ratio 1:3. Indeed, if M1 and
M2 are the midpoints of the line segments AC and BC, then it is obvious that
AB 11 M,M2; it is also clear that 0102 M1M2, since the points 01 and 02
divide, respectively, the line segments 1S and M2S in one and the same ratio.
Therefore, AB 110102 and the figure AB0201 is a trapezoid. Consequently, its
diagonals BO1 and A02 intersect Let us denote the point of intersection of the
diagonals by 0. We have

M1M2 _ 1 0,02 2

AB 7 ' 2q, 1M2

_
3'



SOLUTIONS AND ANSWERS. SOLID GEOMETRY 313

Multiplying these equalities termwise, we get 0AB2
3

But the similarity of

the triangles AOB and 01002 implies 010=_0102 Thus, we have in fact
OB AB

010_1
OB 3

If now we take the centre of gravity of another face and construct the corres-
ponding line segment, then, by virtue of the above, it also intersects the line
segment BO1, the point of intersection dividing this segment in the ratio 1:3.
Hence, this point coincides with the point 0. Consequently, all the line seg-
ments in question intersect at the point 0. It is also evident that the point 0
divides each of them in the ratio 1:3 which is what we set out to prove.

S

If

FIG 218 FIG. 219

508. We shall precede the proof with an auxiliary argument. Let PPI and
QQ1 he two skew lines and points A, B and C lie on QQ1, the point B being
between the points A and C. Also let A1, B1 and C1 be the feet of the perpendi-
culars dropped from the points A, B, C onto PPI. Denote, respectively, by
hA, hE and hc the distances from the points A, B and C to the straight line
PPI. We shall prove that /in is less than at least one of the distances hA
or hc.

To this end, project the configuration shown in Fig. 219 onto a plane n
perpendicular to the straight line PPI. Then the straight line PP1 is projected
into a point 0, and the line segments AA1, BBI and CCI, when projected, do not
change their size because they all are parallel to the plane n. The point B' is
then between the points A' and C'. Now taking the triangle A'OC', we can
assert that the inclined line OB' is shorter than one of the inclined lines OA'
or OC'. Indeed, dropping from the point 0 the perpendicular to A'C' (which
is not shown in Fig. 219), we see that the point B' is closer to the foot of that
perpendicular than one of the other two points A' and C'. It follows that hB
is shorter than hA or hc.

Let now ABCD be an arbitrary triangular pyramid, and EFG a triangular
section such that at least one of its vertices, say F, is not a vertex of the py-
ramid. Let us prove that the area of the triangle EFG is then less than the
area of one of the triangles AEG or DEG (Fig. 220)

In fact, all the three triangles have a common side EG, and, as has been
proved, the distance from F to the straight line EG is less than the distance
from A or D and this line. If SA EFG < SA AFG, then the assertion has been
proved. If SAEFG < SADEG and, for instance, the point E is not a vertex of
the pyramid, then we apply the above argument to A DEG and compare its

11-323
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area with the areas of the triangles DGA and BDG. If necessary, again apply-
ing the same argument to the triangle BDG we prove the assertion of the
problem. It is clear from this solution that if a section of the pyramid does
not coincide with its face, then the area of the section is strictly less than the

area of one of the faces.

C

FIG. 220 FIG. 221

509. Instead of comparing the sums of the face angles at the vertices S and
S' we shall compare the sums of the base angles of the lateral faces of both
pyramids adjacent to each of the three vertices of their common base. We shall
prove that for the outer pyramid every sum of this kind is greater than the
corresponding sum for the inner pyramid.

For instance, we shall prove below that

(see Fig. 221).
L ACS+L SCB > L ACS'+L S'CB (1)

From (1) and analogous inequalities for the vertices A and B we obtain the
solution of the problem`., Indeed, adding together these three inequalities we
find out that the sum ! of all the six base angles of the lateral faces of the
outer pyramid is greater than the corresponding sum 2'' for the inner pyramid,
that is we have the inequality

(2)

But the quantities we are interested in are, respectively, equal to the differen-
ces 180°.3- =540°-l' and and, consequently,
they satisfy t he opposite inequality. Thus, to solve the problem, we must only
prove inequality (1).

Extend the plane ACS' to intersect the outer pyramid. Considering the trf-
hedral angle CS'S"B, we conclude that

L S'CS"+ L S"CB > L S'CB. (3)

Adding L ACS' to both members of this inequality we obtain

L ACS"+ L S"CB > L ACS'+ L S'CB. (4)

But for the trihedral angle CASS" we have

L ACS+ ! SCS" > L ACS". (5)
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Based on (5), we substitute the larger quantity L ACS+ L SCS" for L ACS"
in inequality (4) and thus obtain

L ACS+(L SCS"+ L S"CB) > L ACS'+ L S'CB,
i.e. inequality (1).

510. Let 01, 02, 03 and 04 be the centres of the given spheres and Pir the
plane tangent to the spheres with centres 0; and 0k (i < k). Thus, we consider
the six planes P12, P13, P23, P14, P24 and P34.

Let us first prove that the planes P10, P13 and P23 have a common straight
line. Indeed, each of the planes is perpendicular to the plane 010203 because
it is perpendicular to the centre line of the corresponding spheres, this centre
line lying in that plane.

Besides, it is evident that the planes under consideration (Fig. 222) pass
through the point Q4 of intersection of the bisectors of p 010203. Thus, the
planes P1.., P13 and Pt3 in fact intersect along a straight line which, as we
have incidentally proved, is perpendicular to the plane of the centres 010203
and passes through the centre of the inscribed circle of the triangle 010203.
Let us designate this line by L4.

0j

04

FIG. 222

We similarly prove that the planes P.3, P 4 and P34 have a common straight
line L1 which is perpendicular to the plane of the triangle 020304 and passes
through the centre of its inscribed circle and so on. Therefore we arrive at the
following auxiliary problem (Fig. 223): a circle is inscribed in each face of the

triangular pyramid 01020304, and the perpendicular is drawn through its centre
to this face. It is necessary to prove that all four perpendiculars L1, L2, L3 and

L4 have a point in common provided that the points of tangency of every two
circles with the corresponding edge of the pyramid coincide.

This fact is almost apparent. Let 0 be the point of intersection of the

straight lines L1 and L4; the latter intersect because they are in the plane P23

and are not parallel. Let us now prove that the straight lines L3 and L2 also
pass through the point 0. Indeed, the point 0 lies on the line of intersection

of the planes P12 and P24 because the straight line L. belongs to the plane P12,
and the line L1 to the plane P24. But the line of intersection of P12 and P24
is the straight line L3, and hence the latter passes through the point 0. We
analogously prove that the straight line L2 passes through the point 0.

it*
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511. If we are given three points A, B and C not lying in a straight line,
then these points are the centres of three pairwise tangent spheres. Indeed, if P is

D

a
FIG. 224

the point of intersection of the bisectors of the
interior angles in Q ABC, and PI, P2 and P3
are the feet of the perpendiculars dropped
from P to the corresponding sides AB, BC
and CA, then

API = AP3, BPI = BP2, CP2 = CPa,

and the spheres with the centres A, B and
C whose radii are respectively equal to

rA=API, rB=BP2, rC=CPa

are pairwise tangent to one another.
Let ABCD be the given pyramid (Fig. 224).

Consider the three spheres of radii rA, rB
and rc with. centres at A, B and C which
are pairwise tangent to one another. Let us
denote the points at which the spheres inte-
rsect the edges AD, BD and CD by AI, BI
and C1. We shall prove that AID=BID=
= CID.

By the hypothesis indicated in the problem, we have
AD+BC=BD+AC.

By the above construction, we can write
AD=rA+AID, BC=rR+rc,
BD=rB+BID, AC=rA+rc,

Substituting the last four expressions in the foregoing equality we obtain

AID = BID.
Similarly, using the equality

BD+AC-=CD+AB,
we deduce

BID == CID.

Consequently, the sphere with centre D and radius rD=A,D=BID=CID Is
tangent to each of the first three spheres and, hence, the four constructed sphe-

res are pairwise tangent to one another.

512. Let us denote by rI, r2 and r3 the radii of the spheres. We shall sup-
pose that rI r2 : r3. Draw a tangent plane to the first two spheres. In addi-

FIG. 225

tion, through the centres of these spheres draw
a plane perpendicular to this tangent plane, and
consider the circle of radius r tangent to the
two great circles in the section and to their
common tangent line (Fig. 225). It is obvious
that the third sphere can be tangent to the first
two spheres and to their common tangent plane
if it is "not too small", namely, if r3 r.
We have (see Fig. 225)

VO102-OIC2 =AO+OB,
that is

(rl+r2)2-(rl-ra)2 = Y (ri +r)2-(rl-r)2 + Y(rs+r)2-(r2-r)2.
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From this equation we find

r= rrr2

(v'7 +Yi.,)2 '
Consequently, the radii of the spheres must satisfy the relation

rlr2r(Yr1+
1/- r2)2'

513. Let n be the number of lateral faces of the pyramid in question Join
an arbitrary point 0 lying in the plane of the base to all the vertices. We
thus obtain n triangular pyramids with common vertex at the point 0 It is
obvious that the volume V of the given pyramid is equal to the sum of the
volumes of the smaller triangular pyramids. We have

V=
I

3
S(ri+r2+...-f-rn),

where rr, r2, ..., r are the distances from the point 0 to the lateral faces of

the pyramid, and S is the area of its lateral face.
Hence, the uantil r r

3V
9 Y r+ s-I- . . . +rn=

S
is a constant independent of the

position of the point 0 in the plane of the base which is what we set out to
prove.

514. Consider the configuration shown in Fig. 226 where we see two shaded
planes and the triangle ADE in the plane P passing through the vertices A.
D, H and E of the given parallelepiped. The plane P intersects the plane of
A BCD along the straight line KD which passes through the point K of
intersection of the diagonals of the parallelogram ABEC. Consequently, the line

FIG. 226

C N

segment KD is a median of A AED. As is obvious, AO is also a median of
A AED. Therefore, S is the point of intersection of the medians of A AED,
and, hence, we arrive at the required result:

AS= 3 A0= 3 AH.

515. Let us draw the plane indicated in the problem through the vertices
B, D and F (Fig. 227) and a plane parallel to it through the vertices C, E
and G. These planes give in the sections two congruent equilateral triangles.
Let a be the length of the sides of these triangles. If now we draw a plane
parallel to the above planes through the midpoint of one of the six edges jo4n-
ing the vertices of the two triangles, for example, through the midpoint N of
the edge BC, then the section of the parallelepiped by this plane is a hexagon
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MNPQRS whose all sides are obviously equal to 2 . Furthermore, note that
MN II DF and NP II BD. Therefore, MNP and BDF are supplementary angles
and, consequently, L MNP= 120°. We similarly prove that the other angles
of the hexagon are also equal to 120°.

516. Let SABC be the given tetrahedron, P and Q the midpoints of the
opposite edges AC and SB. Consider a section MPNQ of the tetrahedron con-

)y

FIG. 228 FIG. 229

taining the line segment PQ (Fig. 228). Let us take the plane section SPB
which obviously divides the tetrahedron into two parts of the same volume.
The solution of the problem reduces to proving that the volumes of the pyra-
mids SPQN and MPQB are equal.

Drop the perpendiculars from the points M and N onto the plane SPB,
and designate their feet by K and L, respectively. The triangles PQB and SPQ

S are of the same area, and therefore to solve
the problem it is sufficient to show that
LN=MK. We shall prove this equality
establishing the relation

MO=N0. (t)
For this purpose, let us consider a pair of
parallel planes containing the skew lines SC
and AB (Fig. 229). The fine segment PQ
joining the midpoints of the segments AC
and SB, we see that PQ is in the plane
parallel to the given planes and equidistant
from them. Therefore, the line segments PQ
and MN intersect, the point of intersection
bisecting MN.

517. Let SABC be the given pyramid
(Fig. 230). Draw the altitude SP from the

a vertex S to the face ABC and also the alti-
FIG. 230 tudes SD, SE and SF from the same vertex

to the bases AC, AB and BC of the other
three faces. It is readily seen that the triangles SPD, SPE and SPF are equal
because L SDP L SEP= L SFP (cf. Problem 458).

Then we draw through the edges AB, BC and AC the planes bisecting the
corresponding dihedral angles. These planes intersect at a point 0 equidistant
from all four faces of the pyramid. Therefore, 0 is the centre of the inscribed
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sphere of the pyramid. It is evident that in the case under consideration the
point 0 is on the altitude SP of the pyramid because, as has been shown,
the above triangles are congruent. Repeating this argument we establish that
all the altitudes of the pyramid intersect at the point 0. Based on this fact,
we can assert that, for instance, the triangles APS and SPE lie in one plane,
and, consequently, the line segments AP and PE are in a straight line. The-
refore, in AABC, the straight line AE is a bisector of the angle A and, si-
multaneously, the altitude drawn to BC. Analogously, the other bisectors of
A ABC are its altitudes. Hence, ABC is an equilateral triangle. Repeating this
argument we establish that all the faces of the pyramid are equilateral triang-
les which is what we set out to prove.

518. Let the line segment AB be in a plane Q (see Fig. 231) and the line
segment CD in a plane P, these planes being parallel. Through the point A
draw a straight line parallel to CD, and lay off the line segment AA1 =CD.
Construct a parallelogram ABBIA, on the sides AB and AA,. Make an analo-
gous construction in the plane P. Joining A with C, B with C1, A, with D
and B, with D, we obtain a parallelepiped ABBIAIDCCIDI. Considering the
face ACB as the base of the pyramid DACB, we see that the volume of the
pyramid is equal to 6 of the volume of the parallelepiped. However, the vo-
lume of the parallelepiped is retained when AB and CD are translated in their
planes P and Q because the area of the base ABB1A1 and the altitude (which
is the distance between the planes P and Q) remain unchanged. Therefore the
volume of the pyramid is also retained.

FIG 231 FIG. 232

519. Let P and Q be the points of intersection of a given line with the
faces CBA and DBA of a given dihedral angle (Fig. 232). Draw through the
edge AB the plane ABE bisecting the dihedral angle and then through the
point 0 at which the straight line PQ intersects ABE draw the plane CIB1D1
perpendicular to the edge AB. Furthermore, let OM ,L B1D,, ON 1 B1C1, and
SR be the projection of PQ onto the plane D1B1C1 so that QS J. B1D1 and
PR J B1C1. If the points P and Q are equidistant from the edge, i.e.

B1R = B1S, (1)

then B1RS is an isosceles triangle, SO=R0 and, hence, QO=PO, I. e. the line
segments QO and PO are congruent as inclined lines with equal projections.
Also taking into account that, by the construction, we have

MO = NO, (2)
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we conclude that Q OMQ and A 01VP are right and congruent. It follows that
L MQO= L NPO. (3)

Thus, we have proved that condition (I) implies (3).
Conversely, let it be given that condition (3) expressing the equality of the

angles is fulfilled. Then, by virtue of (2) the triangles QMO and PNO are
congruent. It follows that QO=PO, and, hence, S0=OR which implies (1).

520. Join the point B with C and A with D (Fig. 233). Through the point
A draw a straight line parallel to MN to intersect the line passing through B
and N at a point K. Note that AK=2MN, since MN is a midline in the

r

FIG. 233

triangle ABK. Furthermore, we have Q BNC=,L KND because BN=NK,
CN = ND and L BNC = L KND. Therefore, DI(= BC. From the triangle ADK
it follows that

DKH- AD> AK=2MN.

(it is essential here that the point D is not in the straight line AK because,
if otherwise, we must put the sign >). Thus, we obtain the required result:

BC+ AD > 2MN.
521. Let A, 8, C and D be arbitrary points lying on the edges of a tet-

rahedral angle with vertex E (Fig. 234). We shall prove, for instance, that
L CED < L CEA+ L AEB+ L BED. (1)

Draw the plane CEB. By the property of the face angles of a trihedral

angle, we have
L CED < L CEB+ L BED, (2)

and, by the same reason,
L CEB < L CEA± L AEB. (3)

Inequalities (2) and (3) imply (1) and the desired inequality has thus been

proved.
It Is evident that the above argument also holds true when the tetrahedral

angle is not convex, i.e. when the edge ED is on the other side of the plane CEB.
522. Suppose that we are given a convex tetrahedral angle with vertex S

(Fig. 235). The extensions of the planes BSC and ASD intersect along a straight
line 11 and the extensions of the planes ASB and DSC intersect along a straight
line 12. Obviously, the straight lines 11 and 12 do not coincide because, if
otherwise, the extended faces pass through one straight line. Let P be the
plane containing the straight lines 11 and 12. Taking advantage of the conve-
xity of the tetrahedral angle, we can easily show that the plane P and the
given angle have only one point in common, namely the point of intersection S.
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Therefore, the whole angle lies on one side of the plane P (this fact is, howe-
ver, almost obvious). Now let us show that every plane parallel to the plane P
and intersecting the angle yields a parallelogram in the section.

Indeed, by the above, a plane of this type intersects all the edges of the
tetrahedral angle. Denoting the points corresponding to intersection by A', B',
C' and D' we see that A'D' 11 B'C' because each of these line segments is paral-
lel to I,. Analogously, we have A'B' 11 D'C'.

Hence, we obtain the required result: the quadrilateral A'B'C'D' is a paral-
lelogram.

8

FIG 236

523. Consider the configuration in Fig. 236. Let DL and CM be the altitu-
des of two triangles ADB and ACB drawn to their common base AB. The
triangles are of the same area, and therefore DL=CM. Furthermore, let KN
be the common perpendicular to the skew lines AB and DC.

Draw through the line segment KN a plane P perpendicular to the edge AB,
and project the quadrilateral LMCD onto the plane P (Fig. 237). The seg-
ments DL and CM being projected without changing their lengths (because they
are parallel to the plane P), and the projection of the line segment LM being

D

FIG 237

the point K, we obtain in the plane P the isosceles triangle KDIC1. By the
construction, we have KN I DC and, consequently, KN 1 D1C1. Therefore KN
is an altitude in Q KD1 1. Consequently, N is the midpoint of the segment
D1CI and thus of the segment DC as well.

We see that, under the assumptions of the problem, the common perpendi-
cular KN to the two skew lines AB and DC bisects the edges AB and DC.

As is readily seen from Fig. 237, LK=KM because DD1=CC1. Therefore
(see Fig. 236), AL=BM, and the congruence of the right triangles ALD and
8MC implies that

AD=BC
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We analogously prove that AC-BD and AB=DC. Consequently, all the
faces are congruent as triangles with three equal corresponding sides.

3. Loci of Points
524. Let P be one of the planes passing through a given point A, and M

the projection of another given point B on the plane P. Let C be the midpoint
of the line segment AB (Fig. 238).

The triangle ABM being right, we have CM= 2 AB. Thus, all the points

M which can be thus constructed are at the same distance AB from the po-

int C and, consequently, are on the sphere of radius AB with centre at the

point C. Besides, it is apparent that every point of this sphere coincides with
one of the projections of the point B. The required locus is thus a sphere of
diameter AB.

FIG. 238 FIG. 239

525. Let 0 be the centre of the given sphere. Draw through the given
straight line I a plane P intersecting the sphere in a circle with centre at
a point M (Fig. 239). As is known, OM I P. Then draw through the point 0
a plane P1 perpendicular to the straight line 1. Denote the point of intersec-
tion of the plane Pt and line I by C. The planes P, and P being mutually
perpendicular, the line segment OM is in the plane P,. Now consider the right
triangle OMC. The point C is independent of the choice of the cutting plane P,
and the hypotenuse OC of the right triangle OMC is invariab!e. If D is the
midpoint of OC, then MD= 02 . Consequently, if I and the sphere have no
points in common, the sought-for locus is a portion of the circumference of

a circle of radius 2 contained inside the sphere (this are lies in the plane

P1 and passes through the centre of the sphere). If I is tangent to the sphere,

then the sought-for locus is a circle of radius Z where R is the radius of the
sphere. Finally, if 1 intersects the sphere at two points, the locus of points M
is a circle of radius O2

526. The required locus is a surface of revolution obtained by rotating an
are of a circle or an entire circle about its diameter OC (see the solution of
the preceding problem).
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527. We shall prove that the required locus is a sphere of radius R
316
2

and that the centre of this sphere coincides with the centre of the given sphere.

Let M be an arbitrary point of the required locus; the line segments MA,
MB and MC (see Fig. 240) being the segments of the tangent lines drawn to
the given sphere from a common point, their
lengths are equal. Therefore, the right triangles
AMC, CMB and AMB are congruent. Hence,
ABC is an equilateral triangle. As is obviously
seen, the line segment OM intersects A ABC
at its centre of gravity 01. Let AM=a, then
AC=a r2 and AO,='1i.6. Substituting

3
these values in the equality

(here we take advantage of the fact that OAM
is a right triangle, and express its area in two
different ways) we obtain

=Ra.

3
0

It follows that

FIG. 240

Thus, the point M lies on the above-mentioned sphere. Rotating the given
sphere, together with the tangents AM, CM and BM, about the centre 0, wc'
see that every point of the sphere belongs to the locus of points in question.

528. Let A be a given point in space, B the point of intersection of straight
lines lying in a fixed plane, and C the foot of the perpendicular dropped from
A on the plane.

FIG. 241 FIG. 242

Furthermore, take an arbitrary straight line passing through the point B
and draw the perpendicular AD to it (Fig. 241). Then, according to the well-
known theorem, CD I BD.

Consequently, the point D lies in the sphere whose diameter is the line
segment BC. It can easily be proved that, conversely, any point of the indi-
cated circle is the foot of the perpendicular drawn from the point A to a straight
line belonging to the family in question. Therefore, the sought-for locus is the
circle in the given plane constructed on the line segment BC as diameter.
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529. There are two possible cases here which are considered below.
(1) The straight line AB is not parallel to the plane P. Designate the cor-

responding point of intersection of AB and P by D (Fig. 242). Let M be the
point of tangency of the plane with one of spheres belonging to the family in
question. Draw the plane through the straight lines AB and DM. It intersects
the sphere along a circle tangent to the straight line DM at the point M.
By the well-known property of a tangent and a secant drawn from one point
to a circle, we have DM
the constant length independent of the choice of the sphere, and,
hence, all the points M lie in the circle of radius r=YDBDA with centre at
the point D. Let us denote this circle by C. Let now, conversely, M be a point
of the circle C. We shall prove that it belongs to the locus of-pints under
consideration.

Draw an auxiliary circle through the point A, B and M and denote its
centre by 01 (Fig. 243). According to the construction we have

DM is tangent to this circle. Hence, O1M 1 DM.
Now erect at the point M the perpendicular to the plane P, and at the point
01 the perpendicular to the plane of the auxiliary circle. The two perpendi-
culars lie in a plane perpendicular to DM at the point M and are not parallel
to each other because, if otherwise, the point 01, and the points A and B as
well, are in the plane P. Therefore, these perpendiculars intersect at a point 0.
It is obvious that OA=0B=0M because the projections O1A, O1B, and OIM
of these line segments are equal as radii of one circle. Therefore, the sphere
with centre at the point 0 and radius OM is tangent to the plane P and passes
through the points A and B. Thus, conversely, any point of the circle C be-
longs to the locus. Hence, the sought-for locus of points is the circle C.

(2) If the straight line AB is parallel to the plane, the required locus is
a straight line which lies in the plane P, is perpendicular to the projection
of the line segment AB on the plane P and bisects this projection.

S

FIG. 243 FIG. 244

530. Case (a). Let D be the midpoint of the line segment AB (Fig. 244),
C the movable vertex, Q the centre of gravity of Q ABC and Q' the centre
of gravity of A ASB. Since the point Q divides the line segment DC in the
ratio 1:2, the locus of these points is obviously a ray parallel to the edge SE
and passing through the point Q' which is the centre of gravity of Q ASB.

Case (b). If the point B is also moved along the edge SG, then the centres
of gravity Q' of the triangles ASB are in the ray parallel to the edge SG and
passing through the point Q" which divides the line segment AS into the parts
AQ" and Q'S which are in the ratio 2:1. The rays considered in the case (a),
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which correspond to every fixed position of the point B, cover the whole section
of the trihedral angle by the plane passing through the point Q" and parallel
to the edges SG and SE.

4. The Greatest and Least Values
531. Without loss of generality, we may assume that the cutting plane

intersects the edge CE of the cube shown in Fig. 245. It is evident that in the
section we always obtain a parallelogram
AMEN. The area S of the parallelogram can
be found by the formula

S= AB- MK,
where MK is the perpendicular drawn from
the point M of the edge CE to the diagonal
AB. Thus, the area S is the least when the
length of the line segment MK attains its
minimal value. But, among the line segments
joining the points of two skew lines CE and
AB, the perpendicular common to these lines
has the least length. It is readily seen that
the common perpendicular to the indicated
straight lines is the line segment M'O joining
the midpoints of the edge CE and of the dia-
gonal AB. Indeed, AM'B is an isosceles tri-

A

FIG. 245

angle, and therefore M'O J AB. Since COE is also an isosceles triangle, we have
M'O 1 CE. Thus, the section bisecting the edge CE has the least area S=

a 2 a2 }'_6
2 =

2
This problem can also be solved by applying

the following theorem: the square of the area of a plane polygon is equal to
the sum of the squares of the areas of its projections on three mutually Per-
pendicular planes. The theorem is easily proved on the basis of the formula by

A

C

(a)

M

D E
(b)

FIG. 246 FIG 247

which the area of the projection of a plane polygon on a plane is equal to the

area of the polygon multiplied by the cosine of the angle between the planes
(see formula (1) in the solution of Problem 456).

Considering this theorem proved, let us denote the length of the line seg-
ment CM by x (see Fig. 245). The projections of the parallelogram we are
interested in on the planes ACD, ECDB and BDN are shown in Fig. 246,
a, b, c. The areas of the projections are respectively equal to a2, ax and a-'-ax,
and, by virtue of the above theorem, S2=(a2)2+(ax)24 (a2-ax)2--2a2 (x2 -
-ax-j-a2). Rewriting the quadratic trinomial x2-ax--a2 in the form
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a
X-2 4 aa, we find (cf. (1), page 43) that S2 takes on its least value

for x=
a

and the minimum area is S 2a2
3 as = a2

2

6
2

min =
4 2

532. Consider the configuration shown in Fig. 247. The quadrilateral MNKL
in the section of the pyramid ABCD is a parallelogram because LK ++ CD and
MN 11 CD. Hence, LK ++ MN and, analogously, LM 1+ KN. If [, LKN=a, then
the area of the parallelogram is equal to

sin a.
The angle LKN being equal to that between the skew lines AB and CD, its
sine is a constant quantity for all the parallel sections under consideration.
Thus, the section area only depends on the prod yet magnitude of the
Let us denote the length of the line segment AN by x. Then, by the simila-
rity of the triangles, we have

KN _ AD-x KL x
AB AD ' CD

_AD'

Let us multiply these equalities:

KN KL= AB-CD
AD3

(AD-x)z.

Since
AAB

D
D is constant, it follows from the preceding formula that the

2

product attains its greatest value when the product (AD-x)x is
maximal.

Regarding this product as the quadratic trinomial - x2+ ADx and repre-
Anting it in the form - x- fl

/
-+-r `2D , we see that its greatest valuese

is attained for x= 2D
(cf. (1), page 43).



TRIGONOMETRY

I. Transforming Expressions Containing
Trigonometric Functions

533. Applying the formula

a3+b3=(a+b)(a2-ab+b2) =(a+b)[(a+b)2-3ab].
we obtain
sin6 x+ cosh x= (sinz x-r cost x) [(sin2x+cos2 x)2-3 sine x cosy x] _

=1-3sin" xcos2x=1- 4 sin-' 2x.

534. Denote the left member of the identity by S and, according to formu-
la (14), page 73, substitute the sum cos(a-(-[3)+cos(a-S) for the product
2 cos acos 3. Then S can be written in the form

S=cost a-cos ((X+ 0) cos (a
Again applying formula (14), we find

cos cos

2

(cos-2a+ cos 20).

If now we substitute I + 2s 2a for -cost a, then we obtain the required result

1-cos 20S_
2

= sing

535. From the formula

tan (a+ P) = 1-tan a. tan [i
it follows that

tan a+ tan A=tan (a+0) [1-tan a tan P],
whence

tan a+ tan Is-tan (a + 3)--tan a tan (3 tan (a+P).
Putting a=x and 0 = 2x in the last relation we obtain the required formula.
536. We have

tan x tan (

3

-x} tan ( it +xl =tan x
Y3--tan x VTR- tan x =

\ !! \ 1+Y3tanx I-jl3tanx
-tanx(3-tan2x) (I)

1-3 tang x
On the other hand, applying the formula for the tangent of a sum of two angles
repeatedly, we easily find that

tan a-[- tan P

tan 3x- tan x (3-tang x)
1-3tan2x (2)

Comparing (1) with (2) we get the required result.
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Note. Formula (2) can also be deduced from formulas (7) and (8) on page 73.
537. Applying the formulas for the sum and difference of sines, we represent

the left member of the identity in the

1

following form:

2sina2-cos a2--2cosy+a2 )sin2
=2sina-, [COS

2
Cos

2 + 2

Then, using the formula for the difference
of

cosines, we see that the left
member of the identity coincides with the right one.

538. Using the identity of Problem 537, we obtain

sin a-f- sin 13 x-- sin y= 4 sin a
2

p sin P
2

T sin y 2 a=4 cos
2 cos 2 cos

because

2 2 2'
0-F-yna a4.-? nS

2 2
_

2' 2 2 2'
539. Using the identity indicated in Problem 537, we obtain

sin 2na+sin2n13+sin2ny=4

sin n (a+13)=sinn (n-y)=(-1)n+i sin ny.
Transforming analogously two other factors on the right hand side of (1), we
get the required result

540. To prove the assertion, we multiply both sides of the equality
cos (a+s)=0 by 2 sin (S and apply formula (15) on page 73.

541. The permissible values of the arguments are determined by the condition
cos a cos (a+13) 0. Note that the equality

tan (a+13)=2 tan a (1)

to be proved involves the arguments a+13 and a. Therefore, it is natural to
introduce the same arguments into the original equality. We have

0=(o+13)-a, 2a+13=(a+13)+a.
Substituting these expressions of 13 and 2a+13 into the original equality

3 sin (3 = sin (2a+ 13) (2)

and using the formulas for the sines of a sum and difference of angles, we trans-
form (2) to the following form:

sin (a+(3) cos a=2cos (a+(i) sin a.
Dividing both members of (3) by we obtain (1).

(3)

542. All values of a and 13 are permissible here except those for which
cos(a-{-S)=0 and cos0=A. Noting that sin a= sin (a+13-13), let us rewrite
the original equality in the form

sin(a+0)cos13-cos((x+6)sin13=Asin(a+13). (1)

Dividing both members of (1) by cos (a+ 0) 0, we obtain tan (a+13) X
Xcos 3-sins=A tan (a+ 13). Expressing tan (a+ 0) from the latter relation we
arrive at the required equality.
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543. It is readily seen that, by virtue of the conditions of the problem,
we have sin a cos a cos P 0 because, if otherwise, we have in I c I n 1. There-
fore, the equality to be proved makes sense. We represent this equality in the

form
tan a+ tan rn+n tan a,

1-tan a tan m-n
whence

tan(a+p)=mm+n tang.

(1)

(2)

Pepla_e in (2) the tangents of the angles a and a+ P by the ratios of the
corresponding sines and cosines, reduce the fractions to a common denominator
and discard it. We then obtain

m (cos a sin (a+f3)-sin acos (a-{-S)]-
-n[sin acos(a - -+cosasin (a+P)]=0, (3)

that is
m sin P-n sin (2a+P)=0, (4)

Thus, the proof is reduced to establishing relation (4). Since relation (4) is
fulfilled by the hypothesis of the problem, we conclude that (3) holds true
which implies the validity of (2).

But (2) implies (1), and (1), in its turn, implies the required relation

1 tan 0
+tana l -tanatan
m--}-n m-n

544. Consider the identity

cos (x+ y+ z) = cos (x+ y) cos z-sin (x+ y) sin z =
= cos x cos y cos z- cos z sin x sin y- cos y sin x sin z-cos x sin y sin z.

By the hypothesis of the problem, we have cos x cos y cos z T_ 0, and therefore
this identity implies

cos (x+ y+z) = cos x cos y cos z (I -tan x tan y-tan y tan z - tan z tan x).

545. First solution. By the hypothesis, we have
0<a<rc, 0<0<n, 0<y<n and a+]i+y=n. (1)

Therefore, from (1) we conclude that

tan2Y tan 2-2)
tang

(2)

On the other hand, by the formula for the tangent of a sum of two angles,
we can write

tan 2 {tan 2
tan

2 1-tan I tan 2
(3)

Equating the right-hand members of equalities (2) and (3), reducing the
fractions to a common denominator and discarding the latter we obtain the
required equality.
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Second solution. From the formula

cos a+P+Y1=cos cos cos 2 1-tan 2 tan
JJ

``

-tan A tan 2 -tan 2 tan 2

proved in the preceding problem we immediately find that

1-tan tan
S

- tan
2

tan 2 - tan 2 tan 2 = 0,

because

P+V
2

546. The meaning of the expression considered in the problem indicates that
cos x cos y cos z 0. Therefore, from the formula obtained in Problem 544 we find

cosk
tan xtany+-tanytanz+tanztanx=l- Cos(x+y+z) =I- 2

'cos x cosy cosz cos x cosy cosz
If k is odd, then the investigated expression is equal to unity and is inde-

pendent of x, y and z. For even values of k it depends on x, y and z.
547. First solution. Note first that tan P tan y -A I because, if otherwise, we

have tan P+ tan V=0 which contradicts the equality tan 0 tan V= I. Therefore,
from the conditions of the problem it follows that

tan fi+tan y - -tantan a=- I-tan 0 tan V -tan (0+V1=

whence we find a=kn-f3-V, i. e. a+(i+V=kn.
Second solution In Problem 544 we obtained a formula for the cosine of a

sum of three angles. We can analogously derive the formula
sin (ce+p+V)= cos a cos (3 cos V (tan a+tan P+tan V-tan a tan 0 tan V)

assuming that cos a cos 0 cos y 0. From this formula we find that under the
conditions of the problem we have

sin (a } fi V)=0, i. e. a+(irt V=kn.
548. Denote the given sum by S. Transform the first two terms in the follo-

wing way:

cot' 2x- tan2 2x
=cos' 2x sin' 2x=cos42x-sin{2x

sine 2x cos22x sine 2x cos= 2x
cosz 2x-sin2 2x 4 cos 4x

sin- 4x
sinz 4x

Hence,
_ 4 cos 4x cos4xS- sin' 4x

(1 -2 sin 4x cos 4x)=4sin2
4x

(1 -sin+8x).

Since 1-sin 8x=2 sine (4 --4x) , we finally obtain

8 cos 4x sin2 (4 -4x)

sinz 4x
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549. Denote the expression under consideration by S. Let us transform the
first two summands according to formula (16), page 73, replace the product
cos a cos J3 by a sum using formula (14), page 73, and, finally substitute I -cosy y
for sine y. We then obtain

S=-
2

(cos 2a-J- cos 2[3)-cos y+tcos (a+p)+cos (a-Ji)J cos y.

Transforming the sum cos 2a+cos 20 into a product and opening the square
brackets we receive

S =- cos (M+P) cos (a-[3)-cost y1-COs (a+p) cos T cos ((X-[3) Cos T.

Grouping the terms, we find that
S=- [cos (a- fit)-cos y] [cos (a-f-t)-cos -J.

Hence,

S=4 sin a-I-l- ysine -a-f sina+0-1-7 sin a' -y.
2 2 2 2

550. The expression in question can be transformed in the following way
(see 113), page 73):

1-4 sin 10° sin 70° 1-2 (cos 60°-cos 80") _ 2 cos 80°
2 sin 10° 2 sin 10° 2 toss 80°

Thus,

2 sin
1

10
-2sin70°=I.

°

551. By virtue of formula (12) given on page 73, the left-hand member of
the identity is equal to

2 s i n Osin o (1)

Multiplying and dividing (I) by 2 cos 10 Cos 0 , and applying the formula for
sin 2a, we obtain

. 8 . 38r

1r 3a
sin

5
sin 5

2sin -sin
10

It
3a

2 cos -O cos
10

Put

and

cos 10=sin (2 H i- ) =sin 5

n n 331 ncos 1 0 =sin
2 T o -

552. Multiplying and dividing the left member of the identity by 2 sin 7 and

making use of the formulas expressing products of trigonometric functions in
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terms of sums, we find
2n 4n 6ncos 7 --cos 7 +cos 7=

2 cos
2a

sin
a +2 cos 4n sin it -}-2 cos

6n
sin

n
7 7 7 7 7 7

2 sin

3n a 5n 3n 5nsing-sin 2+sin -T- sin T +sinn-sin
7

2sin n-1

It follows that the sum under consideration is equal to - 1
2

553. Applying formula (16) to
page 73, we find that

S= 3 1

Ccos 8 +-cos
38

-cos

The sums in the brackets

all the terms of the sum S, and then (17),

5n 7n \

8
{-cos 8 J +

1 r n 3n 5n 7n
+ cos 4} cos 4 --cos 4 +cos 4

are equal to zero because

7a
cos

8
-COs

8
,

and

n 3a
cos

4
=-cos 4 ,

3n 55
COS

8
=-cos -g

5n 7n
cos 4 = --cos 4.

Consequently, S= 3
.

554. If in the identity

tan a tan (60°-a) tan (60°+a)=tan 3a

we put a=20° (see Problem 536), then we immediately obtain

tan 20° tan 40° tan 80° = jf 3.

(1)

(2)

There is another solution in which formula (1) is not used. Let us transform
separaicly the prodccts of si es and cosines. To this end, we apply formulas
(13) and (15), page 73, and get

sin 20' sin 40° sin 80°= 2 (cos 20°- cos 60°) sin 80°=

1 (sin 100°+ sin 60°_ 2
sin 80°) .

Noting that sin 100°=sin 80°, we write

sin 20' sin 40° sin 80° = y83 (3)
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Furthermore, we have

cos 20- cos 40° cos
80'=2 sin 20° cos 20° cos 40° cos 80°-

2 sin 20°
_ sin 40° cos 40° cos 80°_ sin 80° cos 80° sin 160° sin 20° 1

2 sin 20° 4 sin 20° -8 sin 20° 8 sin
20°_

- $
Thus,

cos 20° cos 40° cos 80°= 8 . (4)

Relations (3) and (4) imply (2).

2. Trigonometric Equations and Systems of Equations
555. The equation can be written as

4 sin x cos x (sin- x- cos' x) = 1,
that is

-2 sin 2xcos 2x=-sin 4x=1.

Answer: x=- +k (k=0, +l, +2, ...).

556. The equation makes no sense for x= +kn and for x=- 4 +kn. For
all the other values of x it is equivalent to the equation

cos x-sin x=l+sin2x.
cos x-1- sin x

After simple transformations we obtain
sin x(3+sin 2x+cos 2x) =0.

It is obvious that the equation sin 2x+cos 2x-{-3-0 has no solution, and the-
refore, the original equation is reduced to the equation sin x= 0.

Answer. x= kn..
557. The equation can be written in the following form:

(sin x4- cos x)2+(sin x-)-cos x)+(cos2 x-sins x) =0,
that is

(sin x+cosx)(I±2cosx)=0.
Equating each of the expressions in the brackets to zero, we find the roots.

Answer: x1=- x2=+ 23

558. Rewrite the given equation in the following form:
sin x+l-cos 2x-cos x-cos3x+sin 2x.

After some simple transformations we obtain
sin x+2 sin2 x=2 sin 2x sin x-1- sin 2x

and, hence,

sinx (1+2sinx)(1-2cosx)=0.

Answer: x1=kn, x2= 6 (-1)k+1+kn, x3=± 3 +2kn.
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559. Rewrite the equation in the form
a

in 2x1
3

cos 2x - 4 cos (2x-
6 /

- =0,

that is

4cos' 2x-" -cos j 2x-- t) -5-0. (1)

Solving quadratic equation (1), we find

cos (2x-' )=-1, x= 12 +kn.

The other root of equation (1) is equal to 5
and must be discarded since

IcosaI< l.
560. Dividing both sides of the equation by `2, we reduce it to the form

sin 17x+sin (5x-} 3 I=0,

whence we obtain

Answ r

2sin(iiX 6J

kn n + (2kn + x: x1e
22 -

361 1 '66 12

561. The given equation makes no sense when cos x=0; therefore we can
suppose that cos x 4 0. Noting that the right-hand member of the equation is
equal to 3 sin x cos x-}- 3 cost x, and dividing both members by cost x, we obtain

tang x (tan x-{- 1)=3 (tan x-{- 1),
that is

(tang x-3) (tan x-}-1)=0.

Answer: x1=- 4 r kn, x, - 3 +klt, x3 - - 3 f kn.

562. Using the formula for the sum of cubes of two members we transform
the left-hand side of the equation in the following way:

(sin x-;- cos x) (1 -sin x cos x)= I -
2

sin 2x
\
] (sin x+ cos x).

Hence, the original equation takes the form /

(I - sin 2x(sinx+cosx-1)=0.

The expression in the first brackets is different from zero for all x. Therefore
it is sufficient to consider the equation sinx-{-cosx-1=0. The latter is redu-
ced to the form

(sin x-}-
n4

1

1y2 .

Answer: x1= 2nk, x2= 2 { 2nk,
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563. Using the well-known trigonometric formulas, write the equation in the
following way:

csc2 x-sec2x-cot2 x-tan2x-cost x-sine r=-3. (1)

Since csc2 x = 1 + cot2 x and sect x =1 -}- tang x, the above equation is reduced to
the form tang x= I.

Answer: x= +k
2

.

564. Using the identity

sin4 3 +COS4 3 = sine 3 +cos2 3 -2 sinz 3 cos- 3 - I - sin2 3 x,

we transform the equation to the form sin' 2x 3

2 - 4
Answer: x=322 I 71 (n=0, ±1, ±2, ...).

565. Using the identity obtained in the solution of the preceding problem,
we obtain the equation

Solving it, we get
sin22x+sin2x-I=O.

sin 2x= y5-1
2

Answer: x= (-I )k are sin 2-1 } 2

k;t

566. Let us rewrite the given equation in the form
(I +k) cos xcos (2x-a) = cos (x- a) -{-k cos 2x cos (x-a).

We have

cos x cos (2x-a)= 2 [cos (3x-a)+cos(x-a)]

and

cos (x- a) cos 2x= 2 [cos (3x-a)+ Cos (x+a)],

and therefore equation (1) turns into
k [cos (x-a)-cos (x+a)] --cos (x-a)-cos (3x-a),

that is
k sin x sin a = sin (2x-a) sin x.

Equation (2) is equivalent to the following two equations;
(a) sin z=0, x=ln

and
(b) sin (2x-a)=k sin a.

Thus,

(1)

(2)

nx= a
2

-r(-I)^ arc sin (k sin a) -}2 n.

For the last expression to make sense, k and a must satisfy the condition
Iksinal<1.
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567. Since the numbers a, b, c and d are consecutive terms of an arithmetic
progression, we can put b=a---r, c=a-[-2r, d=a+3r where r is the common
difference of the progression. Using the formula

sin a sin p=
2

[cos (a - P)--cos (a+P)],

we represent the equation in the form

cos (2a+r) x-cos (2a+5r) x=0
or

whence
sin (2a -}- 3r) x - si n 2rx = 0,

kn knxl _
2a -+3r . x2 T 2r

These formulas make sense because

2a+3r=b+c > 0 and r 00.
568. Write the equation in the following form:

x
x x

sin
2cost 2 -sin' 2 =2 I x- 1

cos 2

After some simple transformations it is reduced to the equation

(cos x - in 2) (3 cost 2 +2 sin2 2 --sin x cos 2
/

==0.

The equation 3cos2 2 +2 sine 2 --sin

2

cos

2

=0 is equivalent to the equation

2 tan2 2 -tan x +3=O and has no real solutions.

Answer: x- 2 +2kn.

569. First solution. The equation becomes senseless for x=kn. For all the
other values of x it is equivalent to the equation

cos x-sin x= 2 sin 2x sin x. (1)
Replacing the product standing on the right-hand side of (1) by the correspond-
ing sum according to formula (13), page 73, we obtain

cos x-sin x==cosx-cos3x, sin x=cos 3x,

whence sinx-sin
2

3x)/. Consequently,

2sin2x-41cosx-41=0.

Answer: x1= 8 + k2 , x2 == 34 -[-kn. (2)

Second solution. Applying formula (20), page 74, and putting tan x=1, we

get the equation
13+312-[-t-l=0.
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Factoring the left member, we obtain

(t+l) (t+l-Y 2) (t+l+Y2)=0,
whence

(tan x)1=-1, (tan x)2=Y2-1, (tan x)3=-1-jr2.

Answer: x1= 34 +kn; x2 = are tan (I -2- 1) +kn,

x3 = -arc tan (I+ r-2)+ kn.
Note. The above expessions of x2 and x3 can be written in the form of one

formula (2).
570. Applying formula (14), page 73, to the left-hand side of the equation,

we obtain
cos (2x- P) + cos cos

whence
cos (2x- 0.

Consequently, x=± 4 +kn+ k and tanx=tan 2 + 41 .

571. The original equation can be written in the form
sin a+ [sin (2q)+ a)-sin (2(p-a))=sin (p+a)-sin ((p-a),

or, after some simple transformations, in the form
sin a+2 sin a cos 2(p= 2 sin a cos cp.

Assuming sin a A 0 (otherwise cos (p becomes indeterminate), we obtain
1+2cos2cp-2coscp=0, 4cos2cp-2coscp-1=0,

1 ± r5
cos cp= 4

The angle p being in the third quadrant, we have cos (p < 0. Hence,
1-j/

_5

cos T= 4

572. Applying the formula cos2p=1 +c 2s 2q)
, write the equation in the form

cos 2 (a+x)+cos 2 (a-x) =2a-2

cos 2a cos 2x = a-1,
or

whence

On the other hand,

cos 2x= os 2a'

cot x= f '/1 -cos 2x
1-cos 2x'

and therefore from (1) we find

cot X= f V1 -a+cos 2a

(1)
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Formula (1) shows that the problem only makes sense if cos2a : 0 and
Icos2a;Ia-I I.

573. Using formulas (18) and (19), page 74, we reduce the given relation

sin a+ cos a= 27 to the form

(2+ V'77) tank 2 -4 tan 2 -(2-V 7)=0.

Solving this equation with respect to tan 2 , we obtain

(tan
a /

- 3 = 317-2
2 /i 24 1r7 -

and

Let us verify whether the
problem

oc J1Since 0<2 <8,we

Ctan 2 y 3

2

above values of tan 2 satisfy the conditions of the

have the condition

0<tan <tan8=Y2-1.

The value I tan 2 I Y 3 2 satisfies this condition because -2 < y2-
- 1. The `root r7-2 should be discarded since

-2 > 312-1.
574. Putting sin x-cos x=1 and using the identity (sin x-cos x)2 = 1 -

- 2 sin x cos x, we rewrite the original equation in the form
t2+ 12t-13=0.

This equation has the roots ti =-13 and i2 = I. But i =sin x-cos x =
_ j r-2 sin and thus, I t I < Y 2. Consequently, the root t` -- -13 must
be discarded. Therefore, the original equation is reduced to the equation

sin Cx- n 1

9 =-:j;7=2

Answer: x1=n+2kn, x2= 2 +2kt.

575. Transform the given equation to the form

2 cost 2 (2+ sin x)+sin x=0.

Using the formula 2 cost 2 =1 + cos x and opening the brackets, we obtain

2+ 2(sin (1)
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This equation is of the same type as in Problem 574. By the substitution
sin x+cos x=t equation (1) is reduced to the quadratic equation 12+4t+3=0
whose roots are t1=-l and t2 =-3. Since I sin x4- cos x j , }12, the original
equation can only be satisfied by the roots of the equation

sin x ; cos x =-1. (2)

Solving equation (2), we obtain

x1= - 2 -I 2kn

and

x2=(2k+1)n.
Here x2 should be discarded because sin x2=0, and therefore the original equa-
tion makes no sense for x = x2.

Answer: x=- 2 +2kn.
576. The given equation only makes sense for x kn. For these values of

x it can be rewritten in the form
cos3 x+ cos2 x- sin3 x-- sin 2 x.

Transferring all terms to the left-hand side of the equation and factoring it
we get

(cos x- sin x) (s'n2 x+ cos2 x+ sin x cos x -)- sin x +cos x) =0.

There are two possible cases here which are considered below.
(a) sin x-cos x=0, then

x1- 4 { /tn (1)

(b) sine x+cos2 x+ sin x cos x+sin x+cos x = 0. (2)

Equation (2) is analogous to the one considered in Problem 574 and has the
solutions

(3)

and

x3=(2k+1)a. (4)

But the values of x determined by formula (4) are not roots of the original
equations, since the original equation is only considered for x kn. Consequ-
ently, the equation has the roots defined by formulas (1) and (3).

577. Rewrite the equation in the form

2
sin3x_ sin2x_ sin 2x sin 2x sin3x

cos 3x cos 2x cos 2x cos 2x cos 3x+
Reducing the fractions to a common denominator and discarding it, we obtain
the equation

2 (sin 3x cos 2x-cos 3x sin 2x) cos 2x= sin 2x (sin 2x sin 3x+cos 2x cos 3x).
But the expression in the brackets on the left-hand side is equal to sin x, and
the one on the right-hand side is equal to cos x. Therefore, we arrive at the
equation

2 sin x (cos 2x-cos2x) = -2 sin3 x= 0,
whence x=kn.
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578. The given equation can be rewritten in the form

3
cos 2x cos 3x _sin 2x cos 2x
sin2x sin3x cos 2x+sin2x

or

3 sin x I

sin2x sin
3x_sin2xcos2x'

Note that this equation has sense if the condition
sin2x? 0, sin3x;6 0, cos2x-* 0

holds. For the values of x satisfying this condition we have
3 sin x cos 2x = sin 3x.

Transforming the last equation we obtain
sin x (3-4 sine x-3 cos 2x) =0

and thus arrive at the equation

2 sin3 x=0,

which is equivalent to the equation sin x=0. Hence, due to the above note, the
original equation has no solutions.

579. Rewrite the equation in the form
6 (tan x+cot 3x) = tan 2x+cot 3x

and transform it in the following way:
sin x cos 3x sin 2x cos 3x

6 (cos x+ sin 3x) cos 2x+ sin 3x
or

6 cos 2x _ cos x
cosx sin 3x cos 2x s n 3x'

6 cos 2 2x= cost x;

12 cost 2x-cos 2x-1=0.

Solving the last equation, we find

cos 2x= 12 74

whence
1 1 1(1) cos2x=
3

, x=+
2

arccos
3

+kn;

(2) cos 2x=- 4 , x=± arccos (- -}-kit.

In the above solution we have multiplied both members of the equation by
the product cosxcos2xsin3x. But it is evident that for neither of the values
of x found above this product vanishes. Consequently, all these values of x are
the roots of the original equation.

580. Reducing the fractions on the right-hand side of the equation to a
common denominator and applying the formula

as-b5=(a-b) (a4+a3b+a2b2+ab3+b°),
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we get

sin x cos x (sin x-cos x) (sins x x cost x-)-
+ sin x cos3 x-f-cos4 x)=sin x-cos x.

It follows that either
sin x-cos x=0 (1)

or

sin x cos x (sing x+ sin3 x cos x + sin x cos3 x+ cos4 x+ sin2 x cos3 x)-1 =0. (2)

Now, taking advantage of the relations

sin4 x-f-cos4 x=(sin2 x+cos2 x)2-2 sin2 x cost x,
and

sln3 x cos x+cos3 x sin x= sin x cos x,
we transform equation (2) to the form

y3-y2-y+ I =0. (3)

where y=sin xcos x. Factoring the left member of this equation we obtain

(y-1)2(y+I)=0.
If y=1, i.e. sinxcosx=l, then sin2x=2 which is impossible, and if

y=-1, then sin2x=-2 which is also impossible.
Thus, equation (2) has no roots. Consequently, the roots of the original

equation coincide with the roots of equation (1), i.e. x= 4 -}-31n.

581. The right-hand side of the equation is not determined forx=kn and

x= 2 -I-m3r, because for x=2131 the function cot 7 is not defined, for x =

= (21+ 1) n the function tan 2 is not defined and for x= 2 +m31 the denomi-
nator of the right member vanishes. For x * An we have

sin2
x -cost x
2

tan

2

-cot 2= x x 2 2sin
cos

xxsin2cos2

Hence, forx k31 and x 2 +mn (where k and m are arbitrary integers)
the right member of the equation is equal to -2 sin x cos x.

The left member of the equation has no sense for x= 2 +kn and x= a +

+I.2 (1=0, ±1, ±2, ...), and for all the other values of x it is equal

to -tan x because

tan (x- 4) tan I x+ 4 1 =tan X- -T cot 12 - I x+ T ]

=-tan
r\\\x-

4 cot (x- 4 ) =-1

Thus, if x 0 kit, x -+-mn and x 0 it +1 2 , then the original equation

is reduced to the form
tan x= 2 sin x cos x.
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This equation has the roots

x=ka and x= 4 +t 2 .
It follows that the original equation has no roots.
582. Multiplying the right member of the equation by s-n2 z+cos2 x= l ae

reduce it to the form
(I -a) sine x-sin x cos x-(a-I--2) cos2 x=0. (1)

First let us assume that a 1. Then from (1) it follows that cos x * 0,
since otherwise we have sinx=cosx=0 which is impossible. Dividing both
members of (1) by cost x and putting tan x= t we get the equation

(l-a) t2-t-(a+2)=0. (2)

Equation (1) is solvable if and only if the roots of equation (2) are real, i.e. if
its discriminant is non-negative:

D=D=-4a2-4a+90.
Solving inequality (3) we find

(3)

_Y12+I, a<Y12-1
(4)

Let 4 and t2 be the roots of equation (2). Then the corresponding solutions of
equation (1) have the form

x1=arc tan 1, +A=, x2=arc tan t24 kn.
Now let us consider the case a= 1.
In this case equation (1) is written in the form

cos x (sin x+3 cos x) = 0
and has the following solutions:

Ax1=
2

-}-ka, x2=-arc tan 3+kn.

583. Applying the formulas
sin'x=(l-c2os2x)2 cos2x=l-{ 2s2x

and putting cos 2x=t we`rewrite the given equation in the form
t2-6t+4a2-3=0. (I)

The original equation has solutions for a given value of a if and only if, for
this value of a, the roots tl and t2 of the equation (I) are real and at least

one of these roots does not exceed unity in its absolute value.
Solving equation (1), we find

t1=3-2 Y3-01 t2=3+2 V3-a2.
Hence, the roots of equation (1) are real if

IaI<Y3 (2)
If condition (2) is fulfilled, then t2 > l and, therefore, this root can be discar-
ded. Thus, the problem is reduced to finding the values of a satisfying condi-
tion (2), for which I tl < 1, i.e.

-1 <3-2 Y3-&.e 1. (3)
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From (3) we find
-4<-2 j13-a2<-2,

whence
2 Y 3 - a2 > 1. (4)

Since the inequality 2 )f3-a2 is fulfilled for I a Y 3, the system of
inequalities (4) is reduced to the inequality

1,

whence we find
I aI<V2.

Thus, the original equation is solvable if I a 1 31 2, and its solutions are

x= m
2

arc cos (3-2 Y3-a2) -f-ka.

584. Let us transform the given equation by multiplying its both members
sin 2a,by 32 sin 31 . Applying several times the formula sin a cos a=2

I

we get

or

Hence, we find the roots

32 . ax
sin

31
nx = sin

31

sin 2 cos 62 nx= 0. (1)

x1=2n, x2=33(2n+1) (n=O, ±1, ±2, ...).

In the above solution of the problem we multiplied both sides of the given
equation by the factor 32 sin

31
which can turn into zero. Therefore, equation (1)

can have extraneous roots. A value of x is an extraneous root if and only if it
satisfies the equation

nx
sin

31

=0
(2)

but does not satisfy the original equation.

The roots of equation (2) are given by the formula
x= 31k (k=O, ±1, ±2, ...), (3)

and, as is readily seen, they do not satisfy the original equation. TI,er,,fore,
from the roots of equation (1) found above we should exclude all those of
form (3). For the roots expressed by x1 this leads to the equality 2n =31k
which is only possible for an even k, i.e. for k=21 and n=311 (1-0, ±1,
±2, ...). For the roots expressed by x2 we analogously obtain the equality
31

33
(2n+1)=3]k or 2n+1=33k, which is only possible for an odd k, i.e. for

k=21+1 and n=331+16(1=0, ±1, ±2, ...)
Thus, the roots of the original equation are

x1= 2n, where n 311,

x2=33(2n+1), where nF331+16. 1=0, ±1, f2, ...
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585. Rewrite the equation in the form

2 cos 7x-{
3 sin 7x= 2

33

cos 5x+ 2 sin 5x

or

sin

6
cos 7x+ cos

6
sin 7x= sin 3 cos 5x+cos 3 sin 5x,

3T 7t
sin (6 +7x) - sin (3 +5x1.

But sin a=sin 3 if and only if either a--Il=2kn or a+P=(2m+I)n
(k, m = 0, f 1, ± 2, ...). Hence,

6 + 7x- --5x=2k3T

or

6+7x+ 3+5x=(2m+I)n.

Thus, the roots of the equation are

x=2(12kf1),
}

4m- l)
(k, m=0, ±1, ±2,

X =T4
(

...).
/I

586. The left member of the equation being equal to
2-(7-1- sin 2x) (sin2 x--sins x)= 2- (7+sin 2x) sin2 x-cost x=

=2-(7+sin 2x) 4 sine 2x,

we can put t= sin 2x and rewrite the equation in the form
t3 + 712 - 8 = 0. (1)

It is readily seen that equation (1) has the root tl = 1. The other two roots are

found from the equation
12+8x+8=0. (2)

Solving this equation we find

t=-4+2 Y2 and t=-4-2
These roots should be discarded because they are greater than unity in their
absolute values. Consequently, the roots of the original equation coincide with
the roots of the equation sin 2x= 1.

aAnswer: x-
4

+kn,

587. We may suppose that a2+b2 0, since otherwise the equation attains
the form c=0, and it is impossible to find sin x and cosx. As is known, if
a2+b2 _7j 0, then there exists an angle q), 0<q) < 2n, such that

a b
sin (P= j/"a2+b2 cos rp=

Ya2+b2
. (1)
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Dividing the given equation termwise by Ya2+b2 and using (1) we obtain the
equivalent equation

sin (x+() = )ra2+b2 . (2)

We always have I sin (x+V) I < 1, and, hence, this equation is solvable if
and only if I c I < Ya2+b2, i.e. c2 < a2+b2. This is the condition for solvabi-
lity of the problem. Furthermore, we find

.cos(x+of)=f Y1-sin2(x+(p)=f YYa+2 b2 c2
(3)

Noting that

sin x= sin (x+y-y) = sin (x+y) cos qp- cos (x+ip) sin fp
and

cos x=cos(x.+(p-*p)=cos (x+q) cos q>+sin (x+y) sin q>,

and substituting expressions (1), (2) and (3) into the right-hand side we finally
obtain the following two solutions:

be-a Yas+ b2-c2(a) sinx= a2+b2

ac+b Ya2+b2-c2cosx= a2+b2

and

(b) sin
x=bc+a Yas+/s-cs

a2+b2

ac-b j/a2+b2-c2cos x = as +ba

588. Noting that (b cos x+ a) (b sin x + a) ?4- 0 (otherwise the equation has no
sense), we discard the denominators and get

ab sin2 x+(a2+b2) sin x+ab=ab cos2 x+(a2+b2) cos x+ab,
whence

(42 +b2) (sin x-cos x)-ab.(3i i2 x---c s2 x)=0.

Therefore, the original equation is reduced to the following two equations

1°. sin x=cos x, whence x= -}-ka,

and
s

2°. sinx+cos x=a ab

But the latter equation has no solutions because
s sd2+
I a b l

Z 2,

whereas
\\

sinx-{-cosxl=Y21sinx +cosx. ,=Y2lsin(x+4JI'Y2.

12-323
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Answer: x= 4 +kn.

589. Using the identity

cos3 x= +
2

s x s=
8 (1-f-3 cos 2x+3 cosy 2x+-cos3 2x)

and the formula
cos 6x=4 cos3 2x-3 cos 2x

we reduce the equation to the form
4 cose 2x-}-5 cos 2x+ 1 =0.

From (1) we find

(see (8) page 73),

/
(cos2x)1=-1, (cos 2x)2

1=- 4'
Answer: x1= { k-{ 2 )'c;

/
x2= f 2 arc cos I - 4 ) k3t.

590. Applying the formulas

sin2a=1 2s2a and cos2a=2cos2a-l

we rewrite the equation in the form
(1-cos 2x)3 + 3 cos 2x + 2 (2 cose 2x-1)+ 1 = 0,

or
7 cose 2x-cos3 2x=0,

whence

cos 2x = 0, X=
4

-{--k
2

591. From the formulas for sin 3x and cos 3x we find

cos 3x+3 cos x 3 sin x- sin 3xcos3 x=
4

sing x= ,
4

Hence, the equation can be rewritten in the form
cos 3x (cos 3x+ 3 cos x)+ sin 3x (3 sin x-sin 3x) = 0

or
3 (cos 3x cos x+ sin 3x sin x)+cose 3x- sin2 3x=0,

that is
3cos 2x+cos 6x=0.

But, since we have cos3 2x=cos 6x+3 cos 2x

4
,equation (1) takes the form

4 cos3 2x = 0,

(1)

(1)

whence

cos2x=0, x= 4-+-2 n.
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592. Using the identity (sinz x+ cos2x)2 =1 we get

sin4 x-l-cos4x==1 sin2 2x,

whence
z

sin8x+cossx= (1-
2

sinz 2x) --h- sin4 2x=32'

1- sinz 2x+ 8 sin' 2x=32 , sin44 2x-8 sin2 2x+ 4 =0.

Solving this biquadratic equation we find

sin2 2x=4± 2, sin22x=2, 2x=4+k 2'

whence

X=
8

2k+ In.

347

593. Replacing sin2 x and cost x, respectively, by I -
2

s 2x
and

I -

2
s 2x

we rewrite the equation in the form

(1-
2

s 2x) 5+ (l - 2s 2z )6=29
cos' 2x

or

(I - cos 2x)6 + (1 + cos 2x)5 = 58 cos' 2x.

Putting cos 2x=y, after some simple transformations we obtain the following
biquadratic equation with respect to y:

24y4-IOy2-1=0.

This equation has only two real roots: y1,2 = f
22

whence x=
8

(2k+1) where k=0, ±1, ±2, ... .

Hence, cos 2x = f 22

594. Using the identity obtained in Problem 261 we rewrite the original

equation in the form

(sin x+ sin 2x) (sin 2x+sin 3x) (sin x+sin 3x)=0.

Factoring the sums of sines into products, we arrive at the equation

sin
2x

sin 2x sin
52z

cos x cost 2 =0.

Equating each factor to zero we get the solutions

(1) x=231 n; (2) x=222n; (3) x=2 'n1

(4) x=2n42 I n; (5) x=(2n5--1)it,

where ni, n2, n2, n4 and n5 are arbitrary integers.

12.
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Noting that the solutions (4) and (5) are contained in (2), we finally obtain
the following formulas for the solutions:

(1) x=231 (2) x=222 n; (3) x=232

where a1, n2 and n3 are arbitrary integers.
595. First solution. For n= I the equation turns into an identity. If n > 1,

then, by virtue of the given equation, we derive from the identity

1 = (sin2 x+cosa x)n = sin 2n x+CR sin 2 (n-1) X COS2 x+ ... +

the equation
+Cn-1 sing x cos2 (n-1) x-{- cosgn x

Cn sin2 (n-1) X cos2 x+ .. +Cn-1 sing X cos2 (n-1) x= 0.

All the summands being non-negative, we conclude that either sin2x=0
or cos2 x=0 and x= 2 k.

Second solution. As is obvious, the equation is satisfied if x takes on the
values- which are integer multiples of 2 , i.e. if x=2-that the equation

SIn2n x+COS2n x= I

has no other roots. Let x0 k 2 ; then sin2x0 < I and cos2 x0 < I whence it

follows that for n > I we have sin 2n x0 < sin2 x0 and cosgn x0 < cos2 x0 and,
hence,

SIn2n xp+ cosgn x0 < sin2 x0 -I- cos2 x0 = 1 .

The proof' is thus completed.

596. Put 10-2=y, then I.-{ 2 =n3 (T- 2
/

=n-3y, and the equa-
tion -takes the form \ /

sin 3y = 2 sin y.

With the aid of formula (7), page 73, the last equation can be transformed to
the form

sin y (4 sin2 y-l)=0. (1)

Equation (1) has the following solutions:

yl=kne yz=(-1)k
6+nk, y3=(-I)k+16+nk.

Returning to the argument x= -2y we finally obtain the solutions of the ori-

ginal equation:

XI -3n -2kn, xa_3n +(-I)k+1 n -nk- 5 5 3
x3=35+(-1)k 3 -nk,

597. Since I cos a I s l and sin a we have
jcos4x-cos2xj<2 and sin3x+54,
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Thus the left member of the equation does not exceed 4, the right member being
not less than 4. Consequently, we have I cos 4x-cos 2x +2 (and then either
cos 4x=-1 and cos 2x= 1, or cos 4x= 1 and cos 2r=-I) and sin 3x=-1.
Let us consider all the possible cases.

(a) cos 4x=-l, x= n + I n;
2 4)

cos 2x= 1, x=nk;

sin 3x=-1, x=- 6 +-2

and, hence, in this case there are no common roots.

(b) cos 4x= 1, X=T;rin

cos2x=-1, x=(k-}) n;
i

sin 3x=-I, z
6

=--+
3

Al =
-T-1 rt

Thus, in this case the common roots are

x=(2m+ 2)n, m=l), ±1, f2, ....
598. Let us transform the equation to the form

I sin x+ cos x=/ 2 2 sin x cosxV2 V=2;--
or

that is

\
sin x }n J

-
4 si

I

n'2z'

(1)sin
(x-}

4) sin 2x= 1.

We have I sin a I S 1, and therefore (1)/holds if either

sin (x+ 4) =-1 and sin 2x= -1,

or

sin I x-I- 4) =1 and sin 2x=I.

But the first two equations have no roots in common while the second two equa-

tions have the common roots x= 4 +2kn. Consequently the roots of the given

equation are x= 4 +2ka.

599. Dividing the given equation termwise by 2 and noting that 2 =cos

3
and

3 =sin 3 , we get the equivalent equation
2

sin X+-5- ) sin 4x=1.
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This equation is satisfied only if sin (x+*)z=±l and sin 4x= ±1, whence

x=-3 ± 2+2nzr and x=4 (t 2+2mt),

where n and m are integers. Equating both values and cancelling out n we
obtain the equality

3t2+2n=±8+2

Multiplying by 24 we recieve
12m- 48n = -8 ± 9.

For any integers m and n, the left member is an even integer, and the right
member an odd integer equal to 1 or -17. Thus, the last equation has no
integral solutions m and n, and hence the assertion of the problem is proved.

600. First solution. The given problem is equivalent to the following problem:
what values can the function 7,,=secx+cscx assume if the argument x varies

within the range 0 < x < ?2
Consider the function

pe2 =(secx+cscx)2= 1 + 2 + 1 =
cost x sin x cos x sine x

_ 1 2 4 4
sine x cost x+ sin x cos x

_
;70 -2x+ sin 2x

As x increases from zero to
2

, each summand on the right-hand side varies

in the following way: it first decreases from + oo to 4 for 0 < x< , then
4 )

A increases from 4 to +co for <x < 2 J ; for x=-!
f I both summands simultaneously attain their least values

and hence, for x= 4 the sum takes on the least value as

well, and X2=8. Therefore, if 0 < x < 2 , then 2> 8,
and since sec x and csc x are positive in the first quadrant,
we have ? > 2 y2. The graph of the function ? (x) is
shown in Fig. 248.

Second solution. Note that we must confine ourselves
to considering only the positive values of 4 because for

0 4
z

z 0 < x < 2 the functions secx and cscx are positive.

FIG. 248 Transforming the equation to the form
sinx-f-cosx=X sinxcosx,

we then square both members and obtain
1 +2 sinxcosx=X2sin2xcostx.

Now putting sin 2x =z we can write
?'2z2-4z-4=0,
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whence
2 f r: F+ 4X2

Z1, 2 =
Xz

(1)

By the hypothesis, we have 0 < x < 2 , and therefore z=sin 2x > 0. Thus,
in equality (1) we must take the plus sign, i. e.

Z= 2+ Y4+4X

If now we take the values of X satisfying the inequality

2+ Y4+4X2

then the equation

2 +Y + 4X2sin 2x=

will have a solution x such that 0 < x < Obviously, this solution will also

satisfy the original equation. But if inequality (2) is not satisfied, the required
solution does not exist. We see that the. problem is reduced to solving inequality
(2). Getting rid of the denominator, we readily find 4-2 J12.

601. From the given system we immediately obtain

x+y=kn, x-y=ln.
It follows that

k+l k-1X=
2 it, y = 2 A.

By the condition of the problem, we have 0'k+12 and 0k-I2.
These inequalities are satisfied by the following five pairs of values of k and 1:

(1) k=0, 1=0; (2) k= 1, 1 =0;
(3) k= 1, 1=-I; (4) k = 1, 1= 1;

(5) k = 2, 1=0.

Answer: x1=0, y,=O; x2 = 2 , y2 = 2 ;

X3 = 0, ys = 71;

x4 = n, y4 = 0;

xba, Y5=1L.

602. Transform the system to the form

sine X= 1 + Sin x sin y,

cost x =1 + cos x cos Y.

Adding together the equations of system (1) and subtracting the first equation
from the second we obtain the system

cos 2x-cos (x+ y) = 0, (2)
1+ cos (x-y) = 0.
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The first equation of system (2) can be rewritten as

cos2x-cos(x+y)=2sin( (3x 2+y)

If sin(x---y)=0, then x-y=kn. But from the second equation of system
(2) we find cosx-y=(2n+1)n.
Consequently, in this case we have an infinitude of solutions: x-y=(2n+I) n.

If sin 3x2 y1=0, then 3x+y=2kn. But x-y=(2n+l)r, and, hence,l
2k+2n+ I

x = 4 n, y = 4 n.

603. Squaring both equations, adding them termwise and using the identity

sine x+cos'",x= I- 4 sin2 2x

(see Problem 533), we get: s&n2 2x= I. If sin 2x=1, then either x= 4 +2ka

or x= 4 +(2k+ 1) a. In the first case from the original system we find sin y =

= COS y=
2

, and in the second case we have sin y=cos y=- 7 . The
case sin 2x=-1 is treated in a similar way.

Answer: x, = 4 + 2ka, Y, = 4 -{- 21n;

x2= 4 +(2k+l)n,

xa- n+
2ka, ft= 4 +;

x4 1 n-+ -(2k+1)a, y4= I n+(21+ ]):L

604. The first equation can be written in the form

sin (x+ -1
CosXCOSy ,

whence, by virtue of the second equation, we obtain

j/ 2
sin (x-{- y) = cos x cos y=

Hence, either

or

2

x + y = 4 +2kn (1)

x--y=_` +(2k+1) a. (2)

The second equation of the original system can be transformed to the form
cos (x+y) +cos{x-yJ= r-2.
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It follows that
cos (x-y)= J-cos (x+y). (3)

If (1) holds, then cos (x+y)= 22 , and from (3) we find

cos(x-y)= 22 , x-y=± 4-}-21n.

If (2) holds, then cos (z+y)=- 22 and cos (x-y)=3

2
2 which is

impossible.
Thus we have the system of equations

nx { y =
4

F 2kn,

x-y= ± n
4 -}-21n

(4)

for finding x and y. According to the choice of the sign in the second equation
of system (4), we obtain the solutions

x1 4 ±(k+l)jc, yr-(k--1)n
and

xz=(k+1)n, yz= 4 +(k-1)n.

605. Dividing termwise the first equation by the second one we get
3coszcosy= (1)4r2

Adding this equation to the first one and subtracting the first equation from (1),
we obtain the following system equivalent to the original one.

cos (x-y)=2 1

cos (x+y)= 2

It follows that

x-y= f 4 --2kn,

x+y= ±arc cos
2

+21n.
2

According to the choice of the signs in the equations (2) we get the following

solutions:

a) k+ /) n I1 arxl = ( c cos
2 2 / 2 8

y1=(1-k).n 1 arccos
1 _ n

2
2

8

I r
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b) xL=(k+l)is 1 arccos I
a

2 F V=2

y2=(l-k) 2 arccos2a ,/ 8 ;

c) x3=(k+1)n- I arccos 1 -) ,
2 2y2 s

y3=(l-k)n- - arc cos
2 2Y2 8

d) x4=(k+l)n- t arccos l - n
,

2 2 j/ 2 8

y4=(1-k)n- arccos 1

-L .
2 2j/`2 8

606. Transform the second equation to the form

2 [cos (x+y)+cos (x-y)) =a.

But, since x+ y = p, we have cos (x- y)= 2a-cos cp. Thus we obtain the system
of equations

x+y=1p,
x-y= ± arc cos (2a-cos (p)+kn.

Answer:

X=1 ± 2 arc cos (2a-cos rp)+kn,

y = 2 T are cos (2a-cos (p)-kn,

where a and p must satisfy the relation 12a- cos p I < 1.
607. The left member of the first equation of the system not exceeding unity,

the system is solvable only for a=0. Putting a=0 we obtain the system

sin x cos 2y =1,
cos 2y=0. (1)

From the second equation of system (1) it follows that either cosx=0 or
sin 2y=O. If cos x= 0, then for x1= 2 +2mn we find from the first equation

the expression y1=nn, and for x2=- 2 +2kn we get yz= (!-} 2 n. Theca-
se sin 2y=0 gives no new solutions. Thus, the system of equations is solvable
only for a=0 and has the following solutions:

x1=T+ 2mn, y1=nn

and
\

x2=- 2 +2kn, Y2= (t-F 2 I n.
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608. Note that cosy cannot be equal to zero. Indeed, if cosy=0, then
y=-T+ lm and

cos (x-2y)=cos (x-n)=- cos x=0,
sin (x- 2y)=sin (x-n)=- sin x = 0.

But sin x and cosx cannot vanish simultaneously because sine x+cos2 x= I.
Evidently, we must have a 00 since otherwise cos(x-2y)=sin (x-2y)=0.

Dividing termwise the second equation by the first one (as follows from the
above note, the division is permissible), we obtain:

tan (x-2y) = 1. x-2y= 4 +kn. (1)

Let us consider the following two possible cases:
(a) k is even. In this case

cos (x-2y)=
j)r-2

=a cost y, cos y= X;
3

a 2

y± arc cos?+2mn.
Substituting this value of y into (1) we get

x=± 2 arccos ?. +(4m+k)n+- n
4.

(b) k is odd. Then cos(x-2y)=- =acos3y,
V-2

y = + arc cos (- ))+- 2mn.
From (1) we find

x= 2 arc cos (- 7,,) -}- (4m -}- k) n -l- 7

The system is solvable for a >

609. Squaring the given relations, we obtain

sine x+2 sin xsin y+sin2 y=a2, (1)
cos2 x+ 2 cos x cos y+cos2 y = 0. (2)

Adding and subtracting the equations (1) and (2) termwise, we find
2 + 2 cos (x- y) = a2 + b2, (3)

cos 2x+cos 2y+2 cos (x+y)=b2-a2. (4)

Equation (4) can be transformed to the form
2 cos (x+ y) (cos (x- y) + 1 J =b2-a2. (5)

From (3) and (5) we find ---L_._

cos (x f y)=a+62
610. Using the formula

cos 2x+cos 2y=2 cos(x+y) cos (x- y),
we rewrite the second equation of the system in the form

4 cos (x-y) cos (x+ y)= 1 +4 cos2 (x- y).
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The original system can be replaced by the following equivalent system:
4cosacos(x-{-y)=1+4cos2a, (1)

x-y=a. } (2)
Let us compare the left-hand and right-hand sides of equation (1). We have

I4cosa cos(x+y)J<4lcosal.
On the other hand, from the inequality (1 ± 2 cos a)2:0 it follows that

41 cosaI<1+4cosza,
the sign of equality appearing only in the case 2 1 cos a 1. Consequently, the

system of equations O 1 and O 2 is solvable only if cos a I2
Consider the following two possible cases:

(a) cos a= 2 .
From (1) we find that cos (x+y)=1, i.e.

x+y=2kat.
Solving system (2), (3) we get

xa= 2 +kn, yx=kn-2
(b) cosa=- 2 T.

In this case we similarly find

x2= k+
2

n+a2 , Ys (k+ It -2.

(3)

611. This problem is analogous to the preceding one. However, we shall de-
monstrate another method of solution. Applying formula (14), page 73, we rep-
resent the first equation of the system in the form

4 cost (x- y)+ 4 cos (x±y) cos (x---- y)-}-1= 0.
Putting cos (x-y)-t and taking advantage of the fact that x+ y=a we obtain
the equation

412+41 cos a+ f =0. (1)

This equation has real roots only if D=16 (cost (z-1) 0, i.e. if I cos a I =1.
Consider the following two possible cases: cos a= I and cos a=-- 1. If cos a= 1,
then (1) implies that

We obtain the system

t= cos (x-y)=- 2 .

x+y=a,
x-y= ±

3

n+2kn, }

)
from which we find

xr=+ 3 +kn+2 , yi=T 3 -k3 2 .

If cos a=- 1, then we get in like manner the expressions

x2=kn+2f6, y2 -2-knT6.
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612. Consider the first equation of the system. By Virtue of inequality (1),

page 20, we have I tan x-}
tan x

I - 2, the sign of equality taking place only if

tan x= I or tan x=- 1. Since the right member of the first equation satisfies
y+4 2, the first equation of the system can only bethe condition 12 sin ( 'r)

satisfied in the following cases:
(a) tan x= l,) (b) tan x=- 1,

sin C y-i 4 =1, (1) sin Cy+ 4
(2)

I \ / JJJJ

System (1) has the solutions

xr=4+kn, yi=4+21n,
and system (2) the solutions

x2=- 4 +mn, y2=- 4 +2nn.

(3)

(4)

It can easily be verified that the solutions determined by formulas (3) do
not satisfy the second equation of the original system, and the solutions given
by formulas (4) satisfy the second equation (and, hence, the entire system) only
for odd values of in. Putting m=2k+1 in (4), we can write the solutions of
the original system in the form

x= 4 :T+2kn,

y =- 3 n+2nn.

613. Note that cos x . 0 and cosy ;6 0, since otherwise the third equation
of the system has no sense. Therefore, the first two equations can be transformed
to the form

(a- l) tang x= 1-b, (1)

(b-1) tangy = 1-a. (2)

But a ;4 1, because, if a=], then from (I) we have b= 1, which contradicts the
condition a v b. Similarly, if b= 1, then a= I. Consequently, (1) can be divided
termwise by (2). Performing the division we obtain

(
tanx 2 I-b 2
tan y I -a

We now must verify that a A 0. Indeed, if a=0, then the second
implies that sin y ;6 0, and the third equation indicates that b =0, i.e.
which is impossible.

By virtue of this note, the third equation can be rewritten as
(tan x)2 b2

tan ya2
Thus,

equation
a=

b
=1 -a , then a=b, which is impossible.
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If a=-I_b, then a+b=2ab.
Answer: a+b=2ab.
614. By virtue of the first relation, the second one can be rewritten in the

form
Asin P Bsin
cosa cos 0

or

sin (4 cosh-B cos a)=0.
The latter relation can be fulfilled either for sin 0=0 (and then sin a = O,
cos P=± I and cos a=± 1) or for A cos (i-B cos a=0. In the latter case we
obtain the system

sin a=A sin 0,
A cos p = B cos a. } (1)

Squaring each equation and performing substitutions according to the formulas
sine a =1-cosy a and cost 0 =1-sine S, we get the following system:

cost a+A2 sine P=1,
B2cos2a+A2sin2P=A2. } (2)

It follows that cost a and sine fi are uniquely specified if and only if A2 (1-B2) 0;
in this case

I- A2 I / A2-B2cosa= 1-B2,

A

j/
_f

.

Consider the singular cases when A2 (I-B2)=0. If A =0, then from (1) we
obtain cos a=± I and B=O; in this case cos a= ± 1, sin p remaining indeter-
minate. If B2=1, then from (2) we getA2=1, and the given equations do not
in fact involve the parameters A and B; therefore the problem of expressing
cos a and sin a in terms of A and B becomes senseless.

615. From the second equation we conclude that

sin x=sin (2 -2yl

and, consequently, either

X=T - 2y + 2kac (1)

or

x=2y- 2 --(21+1)n. (2)

Taking the first equation of the given system, we find in case (1) the relation

cot 2y = tansy or 1-tangy
2 tan y

= tans Y.

Solving the biquadratic equation we obtain tan y=± 2 22 . In the second case,

expressing x from formula (2) and substituting it into the equation tan x= tang y
we see that there are no real solutions. Thus, we have

tan y = t
Y 2

and x= 2 - 2y +2kz;,



SOLUTIONS AND ANSWERS. TRIGONOMETRY

whence

and

y1=arc tan Y -I- nn,

arc tan+nn,
which can be written as

x1=

2

+2kn - 2 arc tan_ - 2nn
2

x2= 2 +2kn+2 arc tan Y=2 -2nn,

x1= -2 arc tan Y22 --2msc,

yl=arc tan +nn
2

and

x2= +2 arc tan -}-2mn,

y2 arc tan +nn,
2

359

where m and n are arbitrary integers.
616. Transforming the left-hand and right-hand sides of the first equation

we obtain

2 sin q+-Y (cos 2 y-cos X y 0.
2 2

This equation is satisfied in the following cases:

1°. x=-y+2kn(k=0. ±1, ...).
2°. y=21n, x is an arbitrary number (1=0, ±1, ...).
V. x=2mn, y is an arbitrary number (m=0, ±1, ...).

Relations 1° and the second equation I x 1+I y I = 1 of the system are only
compatible if k=0; indeed, from 1° we derive the inequality

Ixl+Iyl>2Ikln,
which can hold, under the condition I x I+l y I =1, only if k=0.

Now solving the system

x=-y, IxI+IyI=I,
we find two solutions:

1 1 1 1

x1=2. yl=-2 and x2=-Y2= 2 .
In cases 2° and 3°, an analogous argument results in four more pairs of so-

lutions:
X3=11 ya = 0; x4 = - I, ya = 0;
x6=0, y,,=1; X6=0, x6=-1.

Thus, the system under consideration has six solutions.

617. Squaring both members of each equation of the system and adding to-
gether the resulting equalities we obtain

sine (y -3x)-1- cost (y-3x) = 4 (sin6 x -I- cosh x),
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Consider the identity

Sing X +COBt X= -L .

sine x cose x = I -

4

sins 2x

proved in Problem 533.
Comparing (1) and (2) we find

sin22x=1, sin2x=+1,

x=
4

(2n-}-1) (n=Qt ±1, ±2, ...).

Multiplying the equations of the given system, we receive

sin (y-3x) cos (y-3x)=4 sing x toss x,
i.e.

sin 2 (y-3x)= sin3 2x.
But sin 2x = ±1, therefore

sin2(y-3x)=±1,

y-3x=
4

(2m+l) (m=11, ±1, ±2, ...).

Hence,

(1)

(2)

y=34 (2n+l)-{ 4 (2m+1).

In solving' the system we multiplied both members of the equation by the
expressions dependent on unknowns which can lead to extraneous solutions.
Let us verify whether all the pairs of values of x and y found above are solu-
titms.'We must have

sin

4

(2m+1)=2sina
4

(2n+1)

and

Putting

and

cos

4
(2m+1)=2cos3 4 (2n+1).

sin (2m+1)= 1 sin 2 + cos

2y2 y2

cos 4 (2m 1)= V2 cos n2 - 172 sin n2

making a similar substitution in the right member and cancelling out the con-
stant factor, we get

AM AM / nn nn \3sin 2 +cos 2= sin
2

+
cos

2

JIM nm / An nn )3.
cos

2
sin 2 cos

2
sin

2
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For integral n, the expressions sin an +cos 2 and cos-1-sin an can
only assume the values 0, +1, -1, therefore their cubes take on the same
values. Therefore,

sin 2 {cos 2 = sin an
cos

s

and

whence we get

cos
an -sin 2 =(cos2-sin 2 a,

n R n nsin -f m- sin 2 n=cos 2 n-cos
2

m,

71 a-sin
2

m+ sin 2 n=cos 2 n-cos 2 in.

Addition and subtraction of the last relations result in

sin-m-sin2n=0,

cos
2

n-cos
2

m=0
or

sin 4 (m-n) cos 4 (m+n)=0,

sin4 (m-n) sin 4 (m+n)=0.

(3)

Since cos 4 (m+n) and sin 4 (m+n) cannot vanish simultaneously, the above
71system is equivalent to the equation sin-
4

(m-n)=0. Consequently,

m-n=4k (k=0, ±1, ±2, ...). (4)

Thus, the pairs of values of x and y expressed by formulas

x= (2n-I-l), y= 4 (2n+1)+
4

(2m+1)

are solutions of the system if and only if the integers n and m are connected
by relations (4). Hence,

x= 4 (2n+1),

Y=' (3(2n+l)+2(n+4k)+l]=n[2(n+k)+11.

But here n+k is an arbitrary integer. Denoting it by p we finally write

x= 4 (2n+1), y=n(2p+1) (n, p=0, ±1, ±2, ...).
618. Squaring both members of the first and second equations and leaving

the third one unchanged, we obtain the system
(sin x+sin y)2=4a2,
(cos x+ cos y)2 = 4b2,. (1)

tan x tan y=c.
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Let us derive the conditions on the numbers a, b and c which gu4rantee
the existence of at least one solution of system (1). The given system has been
replaced by system (1) which is not equivalent to it, and therefore we have to
show that both systems are solvable when a, b and c satisfy the same condi-
tions.

If for some a, b and c the given system has a solution, then, obviously,
for the same a, b and c, system (1) is also solvable. The converse is also true:
if for some a, b and c system (1) has a solution, then for the same values of
a, b and c the given system is also solvable.

Indeed, let x1, yl be a solution of system (1); then there are four possible
cases, namely:

(1) sinx1-1-sin y1=2a, cosx1+cos y1=2b;
(2) sin xl + sin y1 = -2a, cos x1 + cos yl = 2b;
(3) sin x1+sin yl = -2a, cos x1+cos yl=-2b;
(4) sin x1+siny1=2a, cosx,+cos y1=-2b.

If the first case takes place, then x1, y1 is the solution of the given system;

in the second case the given system has, for instance, the solution -x1, -yr;

in the third case it has the solution n+x1, a+yl; in the forth case the solution
is n-x1, n-y1. Consequently, the given system has at least one solution if and
only if system (1) has at least one solution.

Now let us find out the conditions for solvability of system (1). Adding and
subtracting the first and second equations of system (1), we find:

cos (x-y)=2 (a2+b2)- 1,
cos 2x+cos 2y+2 cos (x+ y)=4 (b2-a2)

or

whence

cos (x-y)=2(a2+b2)-1,
cos (x+y) cos (x+ y) =2 (b2-a2),

cos (x-y) =2 (a2 +b5)-.-1,
(a2 + b2) cos(x + y) = b2 - at.

Thus, we have the system
cos (x-y)=2(a2+b2)-1,

(a2+b'2) cos (x + y) =b2-a2,
tan x tan y=c,

which is equivalent to system (1).
If a2-f b2=0, then the second equation is satisfied for any x and y. From

the first equation we get x-y=n+2kn (k=O, ±1, f2, ...), the thud equa-
tion yields tan (y+n+2kn) tan y=c, or tangy=c. The last equation has a
solution for any 0. If a2+bz # 0, then we have

cos (x-y) = 2 (a2 + )-l'

.

(2)
cos (x f

b2-az z
a2+b2

This system has a solution if and only if
2 (a2+b2)-1

a22 + b2 11. (4)
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Inequality (4) is obviously valid if
a2+b2 ;6 0,

and (3) is equivalent to the inequality

Let us represent the left member of the third equation of system (I) in the
following way:

tan x tan y=
sin x sin y -2 [cos (x-y)-cos (x+ y)[

cosxcosy 2 [cos (x-y)+cos(x+y)[
(5)

Now, substituting into (5) the values of cos(x+y) and cos(x-y) found from
(2) we see that a solution of system (2) satisfies the third equation of the ori-

ginal system if
b2 - a22(a2+b2)-I-a2+b2 W+.b2)2-be

C 62-a2+2(a2 t
T

62)-I (a2+b2)2-a2

a2+ b2

Thus, we have arrived at the following result: the given system has at least
one solution in the following two cases:

a2+b2)2-b2(1) 0< a2 {<1 and c= (a2
(a2+b2)2-a2

(2) a=b=0 and c is an arbitrary non-negative number.

3. Inverse Trigonometric Functions

619. The definition of the principal values of the inverse trigonometric fun-
ctions implies that

arccos(cosx)=x if 0<x'n.
To apply this formula we replace, with the aid of the reduction formulas,

sin (- 7) by the cosine of the corresponding angle contained between 0

and``ss. We write the equalities
\

sin (- T) =-sin 7 =cos ( 2 -T + -
7

1 =cos 94

and finally obtain

arccos l sin - 7 =arc cos cos 94)
94

620. By analogy with the solution of the foregoing problem, we have

(-iocas53n=cos(6n{ 5n)=cos5t=sin1 2-5n)=sin

Hence, \ / \
arc sin (cos 53n)=aresin[sin(-10a =_ 11)] 0
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621. Let arc tan 3 =ai, arc tan 1 =a2, arc tan 7 as and arc tan T'= a4.

Obviously, 0 < ai < 4 , i = 1, 2, 3, 4. Therefore,

0 < ar+a2+a3+a4 < n.
To prove the identity it is sufficient to establish that

tan (ax+a2+as+a4)= 1.

Since tan
4 3

(a1-}- a2) =
7

, and tan (ay+a4)=11, we have

tan (a,+a2+as-+-a4)= tan (ar+a2)+tan (a3+a4) -I.1-tan (al+a2) tan (a9+(N)
622. Putting arc sinx=a and arc cosx=0, we obtain

itx=sin a and x=cos P=sin 0).

By the definition of the principal values, we have - 2 6a< 2 and 0 C V5n.
The last inequality implies the inequality

it n n-2<2-(3< 2.

Hence, a= -S, because the angles a and 2 -(3 lie between - and 2 ,
and the sines of these angles are equal. Thus the formula is proved.

623. Taking advantage of the relation arc sin x+ arc cos x= (see the solu-

tion of problem 622) we transform the equation to the form
12nt2-6n2t+(I-8a)a3=0, (1)

where t = are sin x. For a < 32 the discriminant of this equation satisfies the
inequality

D=36354-48n4 (1-8a) < 0.

Consequently, the roots of equation (I) are nonreal, and therefore the original
equation has no solutions for a < 32

624. Put arc cosx=a and arc sin
(a) If 06xc1,then 0<a< 2 and 0<P< 2 (because 0<r1-x21).

Thus, we must only verify that sin a=sin t. But, by virtue of the inequality

0 <a < we have in fact sin a=+ 1-x2.
On the other hand, for all y (l y S 1) we have sin arc sin y= y; in particu-

lar, sin g=sin arc sin Y1-x2=Y1-x2. Hence, for O<xE,1, the formula
arc cos x=arc sin )/-1-x2 holds true.

(b) If -1 <x.0, then
2

<a <n, 0 < 0 < and 2 <n-p sn.
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Besides, we have sin a= j/ -x2 and sin (n-P)= sin 0= VI-x2,, and
therefore a=n-p, i. e. for -1 <x<0 the formula arc cos x =n-arc sin jfl -x2
holds true.

625. We shall prove that are sin (- x)=-are sin x. Put arc sin (-x)= a;
then-x=sinaand, by the definition of the principal values, we have

n n25a<2. (1)

Since sin(-a)=-sing=x and inequality (1) implies the inequality
n n-
2
6-a6

2
, we can write -a =arc sin x, whence a=- arc sin x, i. e.

arc sin (- x) _- arc sin x.
The formula arc cos (- x)=n-arc cos x is proved in a similar way.

626. The definition of the principal values of the inverse trigonometric func-

tions implies that arc sin (sin a)=a if 2 cac 2 . If - 2 -f-2kn<x<

6
2

+2ka, then x-2kns 2 . But then arc sin (sinx)=arc sin [sin (x-
- 2kn)] =x-2kn.

627. By the hypothesis, we have

tan
Ta--I+X

,
(1)

2 tan 2
Using the formula sin a= we obtain, by virtue of (1), the expression

I + tang
2

1-x2sin a=l+x2'

2

Y =arc sin (sin (x)=arc sin i+Xz _ S.

have 4 < arc tan i+x < 2 and 2 < a < n. Then

<a-n<0

(2)

are sin [sin (a-n)] = arc sin (- sin a) _ - arc sin (sin a) _- y.
But the angle a-n lies within the range of the principal value arc sin x. Hence,

y=arc sin (sin a)=n-a. (3)

From (2) and (3) we obtain a+P=a.

62& In the expressions are sin cos arc sin x and arc cos sin arc cos x we take
the principal values of the inverse trigonometric functions. Let us consider
cos arc sin x. This is the cosine of an arc whose sine is equal to x. Hence,

cos are sinx=+ j1l-x2, where -I <x< 1.
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Of course, it is essential here that - 2 < arc sin x 2 . Analogously,

sin are cos x=+ Y1-x2, where -1 <x< 1.

Let y=+ Y1-x2; then O<y<l.
Thus, it is necessary to find the relation between arc sin y and arc cos y

for 0 S y <: 1. These are two complimentary angles (see the solution of Prob-
lem 622). Thus,

narc sin cos arc sin x+ are cos sin arc cos x =
2

.

4. Trigonometric Inequalities
629. The given inequality is equivalent to the inequality

sin2x+sinx-1 > 0. (1)

Factoring the quadratic trinomial on the left-hand side of (1), we get

(sinx+ I+2 5) `sin x- Y2I) > 0
(2)

But 1+2vg>
1, and, therefore, sin x+ 1+2 5 >0. Consequently, the

original irrequality is equivalent to sin x > 2-1 and has the following

solutions: 2kn + q) < x < n - p + 2kn where q) =arc sin r2-- I (k =0,
f 1, ±2, ...).

630. The expression under consideration only makes sense for x 2 j nn.
For these values of x we multiply both members of the inequality by cos2x
and arrive at the equivalent inequality (sin 2x)2- 2 sin 2x-2 > 0.

Solving the above quadratic inequality we find that either sin 2x <
-3-

4
)/41

or sin 2x >
y44-3

. The former cannot be fulfilled Hence,

Y41-3 n 1 _41-3
kn }

2
are sin

4
< x <

2
-

2
arc sin 4 -f-kn.

631. Transforming the product of sines into the sum, we replace the given
inequality by the equivalent inequality

cos 3x > cos 7x or sin 5x sin 2x > 0.

But for 0 < x < 2 we have sin 2x > 0 and, consequently, the original ine-
quality is equivalent to sin 5x > 0,

Answer: 0< x < and 2 n< x< 3
.
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632. The denominator of the left member of the inequality is positive because

sin x+ cos x = I Y2 sin (x-{ 4) < V! Therefore, the given inequality is
equivalent to

Sin2x > or (sin xI > 2.

Answer:
6

x < 6 n-1-kn.

633. Let us write the inequality in the form

(cos x-sin x) [1-(cos x-}- sin x)] _

= 2 sin 2 (sin 2 -cos 2) (cos x - si n x) > 0. (1)

But sin
2

> 0, since 0 < x < 2n. Let us consider the following two possible

cases when inequality (1) is fulfilled:
Case 1.

cos x-sin x > 0,

sin 2 -cos 2 > 0.
(2)

By the hypothesis, we have 0 < x < 2n. Taking this into account, we find
from (2) that the first inequality is fulfilled if 0 < x < 4 or

4

n < x < 2n

and the second if 2 < x < 2n. Hence, in this case 5 it < x < 2n.
Case 2.

cos x-sin x < 0,

sin 2 -cos
x

< 0. (3)

Taking into consideration that 0 < x < 2n, we see that system (3) is satisfied

if 4 <x<

Answer: 4< x< 2 and 4 n< x< 2n.

634. Put tan 2 =t. Then the inequality takes the form

2t-2+2tz
t > 21-[-2-2t2

or

(t-1)(t2-l t
> 0.

to-t-!-
(1)

Since 12-I-t+1 > 0 for all real values of t, inequality (I) is equivalent to the
inequality

f-1
tZ-t-I > 0. (2)
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The trinomial t2-t-1 has the roots I 26
and

I { 2 5
. Solving (2),

we find that either tan 2 > 1+11,6-
or I 2

6 < tan 2 < I.

Answer: (a) 2kn+2 arc tan 1+
2

< x < n+2kn.

(b) 2A=-2arctan Y2
I <x< 2+2kn.

635. From the formulas for sin 3x and cos 3x given on page 73 we find

cos'x=cos3x+3cosx singx=3sinx-sin3x

4 4

Using these formulas, we rewrite the given inequality in the form

(cos 3x+3 cos x) cos 3x-(3 sin x- sin 3x) sin 3x > 2

or

i. e.

or

sin2 3x+ cos2' 3x+3 (cos 3x cos x-sin 3x sin x) > 2 ,

I
cos 4x >

2

, whence - it +2nn < 4x < It
.}-2nn

12+2 inn (n=0, ±1, ±2, ...).

636. The inequality to be proved can be written in the form

cos, (P- sins

*
+sin T

t 2 >co
sin q>

(1)

But sin q> > 0 for 0 < p < 2 and therefore, multiplying both members of ine-

quality (1) by sin p, we get the equivalent inequality

2 cost 2 > cos' 2 - sine 2}-sin p,

i. e. I > sin qp. The last inequality is fulfilled for 0 < qp < 2 , and,
original inequality is also valid.

637. Putting tanx=t we obtain

tan 2x =
2t

I-ta'

hence, the

tan 3x= tan x-- tan 2x 31-t3
1-tan2xtanx-1-3t2'
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The left member is not determined for the values of x satisfying the relations

i2=1 and t2=
3

. For all the other values of x the left member of the inequ-

ality is equal to 14+212+1 and, hence, assumes positive values.

638. By virtue of the relations

cola z- I =cos 2x
3 cot2

x-1=3 cost x- sins x
sin" x sing x

and

cot3xtan2x-1= cos 3x sin 2x-sin 3x cos 2x sin x
sin 3x cos 2x sin 3x cos 2x

the left member of the inequality can be rewritten in the form

sinx (3 cos' x-- sine x)
sin4xsin3x

But
sin 3x= sin (x-f- 2x) = sin x cos 2x-)-cos x sin 2x= sin x (3 cost x- sine x),

and, therefore, the given inequality is reduced to the inequality

_ 1

sin'. 6-1'
Which obviously holds.

639. Using the formula tan (0-q))=
tan 0-tan q)

and the condition tan 0=
I +tanO tan 4p

= n tan rp we get

tang 9- (n-1)2tan2q (n-1)2
(

P)={1{-n
tan2 (p)2 (cot,W-.f-tt tan q))2

We now must prove that
(cot )+n tan p)2> 4n or (I+n tan2 cp)2>4n tan2 ip.

Thus, we arrive at the inequality
(1-n tan2 p)2 y 0,

which obviously holds.

640. The given inequality can be rewritten in the form
I I-sinx_2-sinx
2 +2- sinx 3- sin x - 0'

Multiplying it by 2 (2-sinx) (3-sinx) > 0 we replace it by the equivalent
inequality sine x-5 sin x+40, i. e.

(4-sin x)(l-sinx)->0. (1)

From (1) we conclude that the last inequality, and, consequently, the original

one, is ful filled for all x, the sign of equality appearing for x= 2 +2kn.

641. Let us first establish that
Isin xf xI.
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Consider the unit circle shown in Fig. 249. Let x be the radian measure of a
positive or negative angle AOM. For any position of the point M we have

AM=jxI.OA=Ixj,
IBMI=IsinxI.

Since BM < , we have sin x I < I x I (the sign of equality appears f ere

for x= 0). Now we conclude that if 0
2 f. e. if 0 < cos q) < 1 < 2 ,

then sin cosgq < cosgp. But0<sin(p <(p < 2 and,
therefore, cos c <cos sin cp. We finally obtain
cos sin cp - cos p > sin cos q).

The inequality has been proved.
642. We shall apply the method of complete

induction. Let n=2, then 0 < a < 4 . Hence,

tan 2a= 2 tan a > 2 tan a,
- tan2 a

FIG. 249
because 0 < I - tang a < 1. Suppose that

tan no: > n tan a (1)
for

0<a< it
2)4(n-1) (

We shall prove that tan (n+1) a > (n+ 1) tan a, if 0 < a < 479

n'
Let us use the formula

(x=
tan na+ tan an+ 1t a=n 3)

(
a ) l - tanatanna

Since inequality (1) is fulfilled under condition (2), it automatically holes

for 0 < a < 4n . But we have

0<tana<1, (4)

and, since 0 < not < 4 , we obtain

0 < tan not < 1. (5)

Now inequalities (4) and (5) imply
0 < I - tan a tan no; < 1. (6)

From (6) and (3) it follows that tan (n+ 1) a > (n+ 1) tan a, 1. e. we have ob-
tained what we set out to prove.

643. Since to a greater angle in the first quadrant there corresponds a greater

value of the tangent, we can write
tan at < tan ai < tan a (1)

for i = 1, 2, . ., n. Besides, cos ai > 0 (i = 1, 2, ..., n). Therefore, inequalities

(1) can be rewritten in the form
tan al cos a; < sin ai < tan an cos ai. (2)
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Let us make i in inequality (2) assume the values 1, 2, ..., n and add toge-
ther all the inequalities thus obtained. This results in
tan a, (cos %I+... + cos an) < sin al -f- ... +

+ sin a < tan a,, (cos a, + ... +cos a.). (3)

Dividing all the members of inequalities (3) by cos a, + ... + cos a,, (which is
permissible since cos a,+ ... +cos an > 0) we obtain

tan a, <
sin a,+ .. -}- sin a < tan a,.cos a,+ ... +cos an

644. Denote the left-hand side of the inequality by t. Then

t=2l cos A 2 B-cos A2BJ cos A2B

because

Putting

sing-cosA2B,

MA A+B
-x'2

after obvious transformations we obtain

t=-2 (xz-2x
2

cos A 2 8+
4

cosa
A -B

B
)

-}-

Consequently,

1 A-B I A-B I ( I A-B)2
-}-

8
cost 2= 8 cost 2- 2 X__! cos 2 J

t
$

cost
A -B B 8.

645. Transform the left member of the given inequality in the following way:
cos x I

sine x (cos x- sin x) sine x (1-tan X)

_ costx I+tan2x 1

-tang x
(1-tanx)_-

tanx ' tanx(1-tanx)'

For brevity, let us put tan x=1. Since 0 < x < 4 , we have

0<1<1.
Thus, the problem is reduced to proving the inequality

1+12 1

1 t(1-1)>8

(1)

for 0 < I < 1. By virtue of inequality (1), page 20, we have t
ta > 2. Fur-

thermore, I (1-t)= (2 -tJt6 4. Hence, 1

t
tt

t l l t> 2.-L=8
4

which is what we set out to prove.
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5. Miscellaneous Problems

646. Put arc tan b =a, are tan 12=p and consider tan (2a-13). Using the
formula for the tangent of the difference of two angles, we get

tan (2a-(3)= tan 2a-tan (3
(I)I+tan2atan(

But, since tan a= I , we have tan 2a= 12
ttanaa - j2 Substituting tan 2a

and tan (3 into formula (I) we find tan (2a-(3)=0. Thus,
\

sin (2a-0)= sin (2 arc tan

5

-arc tan 121=0.

647. Let us prove that tan (a+2(3)=1. To compute tan (a+2(3) we use the
formula

tan a+tan 20tan (a 1-tan a tan 2S
We first compute tan 20 by the formula

tan 20 . sin 2( 2 sin 0 cos
cos 2P cos 2(3

Now we must find cos 0 and cos 213. But cos S = + j1l - sinz 1

(1)

3

X10
(because is an angle in the first quadrant) and cos 2 cost sine

4

Hence, tan 20= 4 . Substituting the found value of tan 2(3 into (1) we get

tan (a+2(3)=1.

Now we can prove that (x+20= n4.

A and, besides, by the condition of theSince tan a= 7 , tan(3=
cos 3

problem, a and (3 are angles in the first quadrant, we have 0 < a < 4 and

0 < (3 < 4 . Hence, we find that 0 < a+2(3 < 4 a. But the only angle lying

between 0 and 4 a whose tangent is equal to I is 4 . Thus, a+20 = 4 .

648. We must have cos x sin x -A0 and sin x # -1, and therefore
x ;61

k2 where k is an integer. For all the values of x other than x= 2 y

has sense, and

stnxll+- 1

_ \\ cosx sinsx(I+cosx)
y

cosx(1+ I 1 cosax(I+sinx)
sinx J

(I)

Relation (1) implies that y > 0 because for x 2 we have

cosx < 1 and sin x < 1.
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649. Transforming the product sin a sum by formula
(13), page 73, we obtain

sin

2

sin 2a (cos 2a-cos 4a)=

-- 1 < .= 14sin4a- 1
2 2 5

650. We have sin 5x= sin 3x cos 2x+cos 3x sin 2x, and therefore, using for-
mulas (5) to (8), page 73, after simple computations, we find

sin 5x= 5 sin x-20 sin3 x+ 16 sins x. (1)

Putting x=36° in formula (1) we obtain the equation 1615 -20t3+51=0
for determining sin 36°. This equation has the roots

0t,=0, t2=+15+8 , is=- 5)
8

5-
t6 = -

8

among _
1

1

which only l2 and t, are positive. But sin 36° 6 t2 because
5+1/-5-{

85 > , and, hence, t2 > Thus,

1/ 5-1/5sin 36°=f,= 1

2 2

651. Using the identity proved in Problem 533, we get rp (x) = I + 3 cost 2x
4

whence it follows that the greatest value of q )(x) is equal to 1, and the least

to 4
652. Performing simple transformations we obtain

y=1-cos 2x-2 (I+cos 2x)+3 sin 2x=3+3 sin 2x+cos 2x.

Introducing the auxiliary angle (p =arc tan 3 , we can write

sin2x-} Vlo cos 2x)=3 { 10sin(2x q).

Hence, the greatest value of y is equal to 3-{ //, and the least to 3- Vfo.
653. If n is an integer satisfying the condition of the problem, we have for

all x the relation

n n x. (I)

In particular, putting x=0, we conclude from (1) that n must satisfy the equa-

tion sin 15n =0. This equation is only satisfied by the integers which are the
n

divisors of the number 15, i. e.

n=± 1, ±3, ±5, ± 15. (2)

The direct substitution shows that for each of these values the function

n x is periodic with period 3n. Formula (2) exhausts all the requi-

red values of n.
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654. Since the sum under consideration is equal to zero for x=x1, we have
a, cos (al+xl)+... +an cos (an+xl)_ (al cos al +... +an cos an) cos xl-

-(a,sinal+...+ansinan)sinxl=0. (1)

But, by the condition of the problem,
al cos al+... -)-a n cos an=0. (2)

Besides, sin xl ¢ 0 because x1 A kn. From (1) and (2) we get
a1 sin

an arbitrary number. Then we have
a1 cos ((xl +x) + ... +an cos (an+x) _ (a1 COS al + ... +an cos Mn) cos x-

- (a, sin al + . . . +an sin sin x = 0,
since, by virtue of (2) and (3), the sums in the brackets are equal to zero.

655. Suppose the contrary, i. e. assume that there exists T A 0 such that
for all x> 0 we have

) / , X - (1)

(the condition x:_:-0 must hold because the radical JI x is imaginary for x < 0).
Let us first put x=0 in formula (1); then

cos jr-T =cos0=1 (2)
and, consequently,

VT = 2ka. (3)

Now we substitute the value x=T into (1). According to (1) and (2) we obvi-
ously obtain cos 2T = cos yT =1, whence

2T = 21n.

By the hypothesis, we have T 0, and therefore, dividing (4) by (3), we
get Y2 = k where I and k are integers which is impossible.

656. First solution. Let us consider the sum
S=(cos x+1 sin x)+(cos 2x+i sin 2x)+... +(cos nx+1 sin nx).

Applying De Moivre's formula (cosx+i Sin x)' = cos ax + I sin ax we compute S
as the sum of a geometric progression. We thus obtain

S- (cos x+i sin x)n+1-(cos x+i sin x)
cos x+i sin x-1

The sought-for sum sin x+sin 2x+... +sin nx is equal to the imaginary
part of S.

Second solution. Multiplying the left-hand side by 2 sin
2

and applying for-

mula (13), page 73, we get

cos cos
1 +..

C

x 3\ r 3 5-----x + cos 2 x-cos -x
( 2n-1 2n+1 \ x 2n+1

cos 2 x-cos 2 x =cos 2-cos 2 x=

= 2 sin 2 sin n+12 x,
which results in the required formula.
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657. Denote the required sum by A and add the sum

sin
7E

sin
2

sin
nn

4 f ... { 2' 42
22

multiplied by i to it. This results in

A } Bi= 2 Ccos 1+1 sin 4
/ + 22 1 cos 24 +i sin 1-}-

\\

--.., } 2n/( /cosn 4 {-i sinn 4

Applying De Moivre's formula, we find

A+B1= 2 cos +i sin4 -{-... +2n cos --i sin
)n_

] n
I - 2n cos 4+i sin 4 )

(cos 4-{-i sin
(4) 1 n 8 l1-2 cos -4-+isin

When deriving the last expression, we have used the formula for the sum
of terms of a geometric progression. The sought-for sum A can be found as the
real part of this expression. Noting that

. l
s1n48cos

j72
we writewe

zt
1-2" sin

4
)nA l Bi= 12 (cos 4-{-i sin 4 1 1

8l - (/cos --i sin n
4 4 )

1-2n \I cosn 4 +i sinn/ q 1-
-_ (1+1) \\ 12312

1-

2n[(2312-1)-i] =
I+i 2 2-1 -isinn41=

)
L\2n-cosn 4)

2- [(231-1)2+l]
r(

1[(2312-2)+2n312] L\2n-cosn 4)-isinn!_
2-

(!OO-` 4 312) J

2 312 2 312

(1+i) L\21 -cosn4)-isinn 4]

Taking the real part, we get
\

(1/-T- 1) (2n-cosn* I+y2 sin n 4

2-(5-2 r!)
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658. The assertion will be proved if we establish that A=B=O. Let
A2+B22 0, i. e. at least one of the numbers A, B is other than zero. Then

f(x)=( Y +B2 cosx } A+82 sinx) jIA2+B2=YA2+B 2sin(x { q),

where \
sin A-

AS+B2
, cos

B
(P°Az+Ba.

Let now x1 and x2 be the two values of the argument indicated in the pro-

blem; then f (x1)= f (x2)=0 and, since -A2+ B2 0, we have sin (xj+cp) _
= sin (x2-{-c)=0. It follows that x1+q=mom, x2+T=nn and, hence,
x1-x2=kn at an integer k. This equality leads to a contradiction, because,
by the hypothesis, we must have x1-x2 ; kn. Consequently, A2+B2-0,
whence A=B=O.
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